

Lecture Notes in Computer Science 7239
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sang-goo Lee Zhiyong Peng
Xiaofang Zhou Yang-Sae Moon
Rainer Unland Jaesoo Yoo (Eds.)

Database Systems
forAdvancedApplications
17th International Conference, DASFAA 2012
Busan, South Korea, April 15-18, 2012
Proceedings, Part II

13

Volume Editors

Sang-goo Lee
Seoul National University, Seoul 151747, South Korea
E-mail: sglee@snu.ac.kr

Zhiyong Peng
Wuhan University, Wuhan 430081, Hubei Province, China
E-mail: peng@whu.edu.cn

Xiaofang Zhou
University of Queensland, Brisbane, QLD 4072, Australia
E-mail: zxf@itee.uq.edu.au

Yang-Sae Moon
Kangwon National University, Chuncheon 200701, Kangwon, South Korea
E-mail: ysmoon@kangwon.ac.kr

Rainer Unland
University of Duisburg-Essen, 45117 Essen, Germany
E-mail: rainer.unland@icb.uni-due.de

Jaesoo Yoo
Chungbuk National University, Cheongju 361-763, Chungbuk, South Korea
E-mail: yjs@chungbuk.ac.kr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29034-3 e-ISBN 978-3-642-29035-0
DOI 10.1007/978-3-642-29035-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933786

CR Subject Classification (1998): H.2-5, C.2, J.1, J.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our great pleasure to welcome you to the proceedings of the 17th International
Conference on Database Systems for Advanced Applications (DASFAA 2012),
which was held in Busan, Korea, in April, 2012. DASFAA is an international con-
ference which provides a forum for technical presentations and discussions among
database researchers, developers and users from academia, business and industry,
in the areas of databases, large-scale data management, data mining, search and
recommendation, and the Web.

The call for papers attracted 159 research submissions from 24 countries
(based on the affiliation of the first author). Among them, the Program Com-
mittee selected, through a comprehensive review process, 44 regular papers and
8 short papers for presentation. The Industrial Committee, chaired by Won Suk
Lee, Mukesh Mohania and Jeffrey Yu, selected 8 industrial papers for presenta-
tion. The conference program also included 8 demo presentations selected from
17 submissions by the Demo Committee chaired by Wolf-Tilo Balke and Seung-
Won Hwang.

This volume also includes extended abstracts of the two invited keynote lec-
tures by Divesh Srivastava (AT&T Research) and Sang Kyun Cha (Seoul Na-
tional University and SAP Labs Korea), whose topics were on “Enabling Real-
Time Data Analysis” and “A New Paradigm of Thinking and Architecture for
Real-Time Information Processing at Fingertips,” respectively. The Tutorial Chair,
Wook-Shin Han, organized four tutorials by leading experts on topics ranging from
probabilistic databases to detecting clones and reuse on the Web. A stimulating
panel was organized by the Panel Chair, Kyuseok Shim. This rich and attrac-
tive conference program boasts conference proceedings that span two volumes of
Springer’s Lecture Notes in Computer Science series.

Beyond the main conference Hwanjo Yu, Yu Ge and Wynne Hsu, who chaired
the Workshop Committee, put together five workshops that catered to specific
interests of the conference participants. The workshop papers are included in a
separate volume of proceedings also published by Springer in its Lecture Notes
in Computer Science series.

DASFAA 2012 was jointly organized by Pusan National University and the
Database Society of Korea. It received in-cooperation sponsorship from the Ko-
rea Institute of Information Scientists and Engineers, the Database Society of
Japan, the China Computer Federation Database Technical Committee, and the
Korea Database Agency. We are grateful to the industry and institutional spon-
sors who contributed generously to making DASFAA 2012 successful.

The conference would not have been possible without the support and hard
work of many colleagues. We would like to express our special thanks to Hon-
orary Conference Chair, Kyu-Young Whang, for his valuable advice on all as-
pects of organizing the conference. We thank the DASFAA Steering Committee

VI Preface

for their leaderships and encouragement. We thank the General Co-chairs, Yoon
Joon Lee and Kazutoshi Sumiya, Organizing Committee Chair, Bonghee Hong,
Publicity Co-chairs, Eenjun Hwang, Jae-Gil Lee and YunChan Chang, Local
Arrangements Committee Co-chairs, Joonho Kwon and Ok-Ran Jeong, Finance
Chair, Min-Su Lee, Web Co-chairs, Ha-Joo Song and Young-Koo Lee, Demo
Award Committee Co-chairs, Young-Kuk Kim, Takahiro Hara and Kyoung-Gu
Woo, Best Paper Committee Co-chairs, SangKeun Lee, Hiroyuki Kitagawa and
Xiaofeng Meng, Sponsor Co-chairs, Yunmook Nah and Kyu-Chul Lee, Regis-
tration Chair, Sanghyun Park, Steering Committee Liaison, Byeong-Soo Jeong,
APWEB Liaison, Wookey Lee, and EDB Liason, Jinho Kim.

Finally, our thanks go to all the committee members and other individuals
involved in putting this all together, and to all authors who submitted their
papers to this conference.

April 2012 Sang-goo Lee
Zhiyong Peng

Xiaofang Zhou
Yang-Sae Moon
Rainer Unland

Jaesoo Yoo

Organization

Honorary Conference Chair

Kyu-Young Whang KAIST, South Korea

Conference General Co-chairs

Yoon Joon Lee KAIST, South Korea
Kazutoshi Sumiya University of Hyogo, Japan

Program Committee Co-chairs

Sang-goo Lee Seoul National University, South Korea
Zhiyong Peng Wuhan University, China
Xiaofang Zhou University of Queensland, Australia

Organizing Committee Chair

Bonghee Hong Pusan National University, South Korea

Workshop Co-chairs

Hwanjo Yu POSTECH, South Korea
Yu Ge Northeastern University, China
Wynne Hsu National University of Singapore, Singapore

Industrial Co-chairs

Won Suk Lee Yonsei University, South Korea
Mukesh K. Mohania IBM Research, India
Jeffrey Xu Yu Chinese University of Hong Kong, China

Tutorial Chair

Wook-Shin Han Kyungbook National University, South Korea

Panel Chair

Kyuseok Shim Seoul National University, South Korea

VIII Organization

Demo Co-chairs

Wolf-Tilo Balke TU-Braunschweig, Germany
Seung-Won Hwang POSTECH, South Korea

Publicity Co-chairs

Eenjun Hwang Korea University, South Korea
Jae-Gil Lee KAIST, South Korea
YunChan Chang Victoria University, Australia

Local Arrangements Co-chairs

Joonho Kwon Pusan National University, South Korea
Ok-Ran Jeong Gachon University, South Korea

Finance Chair

Min-Su Lee Ewha Womans University, South Korea

Publication Co-chairs

Rainer Unland University of Duisburg-Essen, Germany
Jaesoo Yoo Chungbuk National University, South Korea
Yang-Sae Moon Kangwon National University, South Korea

Web Co-chairs

Ha-Joo Song Pukyong National University, South Korea
Young-Koo Lee Kyung Hee University, South Korea

Demo Award Committee Co-chairs

Young-Kuk Kim Chungnam National University, South Korea
Takahiro Hara Osaka University, Japan
Kyoung-Gu Woo Samsung Electronics, South Korea

Best Paper Committee Co-chairs

SangKeun Lee Korea University, South Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Xiaofeng Meng Renmin University of China, China

Organization IX

Steering Committee Liaison

Byeong-Soo Jeong Kyung Hee University, South Korea

Sponsor Co-chairs

Yunmook Nah Dankook University, South Korea
Kyu-Chul Lee Chungnam National University, South Korea

Registration Chair

Sanghyun Park Yonsei University, South Korea

APWEB Liaison

Wookey Lee Inha University, South Korea

EDB (International Conference on Emerging Databases)
Liaison

Jinho Kim Kangwon National University, South Korea

DASFAA Steering Committee

Ramamohanarao
Kotagiri (Chair) University of Melbourne, Australia

Jianzhong Li (Vice Chair) Harbin Institute of Technology, China
Katsumi Tanaka (Advisor) Kyoto University, Japan
Kazutoshi Sumiya (Treasurer) University of Hyogo, Japan
Qing Li (Secretary) City University of Hong Kong, China
Masaru Kitsuregawa University of Tokyo, Japan
Mukesh K. Mohania IBM Research, India
Byeong-Soo Jeong Kyung Hee University, South Korea
Ming-Syan Chen National Taiwan University, Taiwan
Eui Kyeong Hong University of Seoul, South Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Li-Zhu Zhou Tsinghua University, China
Stephane Bressan National University of Singapore, Singapore
BongHee Hong Pusan National University, South Korea

X Organization

Program Committees

Research Track

Toshiyuki Amagasa University of Tsukuba, Japan
Masayoshi Aritsugi Kumamoto University, Japan
Zhifeng Bao National University of Singapore, Singapore
Ladjel Bellatreche Poitiers University, France
Boualem Benatallah University of New South Wales, Australia
Sourav Bhowmick Nanyang Technological University, Singapore
Cui Bin Peking University, China
Athman Bouguettaya RMIT, Australia
Jinseok Chae University of Incheon, South Korea
Chee Yong Chan National University of Singapore, Singapore
Jae Woo Chang Chonbuk National University, South Korea
Jae-young Chang Hansung University, South Korea
Lei Chen HKUST, China
Ming-Syan Chen National Taiwan University, Taiwan
Yi Chen Arizona State University, USA
Hong Cheng Chinese University of Hong Kong, China
James Cheng Nanyang Technological University, Singapore
Reynold Cheng University of Hong Kong, China
Jae-heon Cheong Shingu University, South Korea
Byron Choi Hong Kong Baptist University, China
Yon Dohn Chung Korea University, South Korea
Gao Cong Nanyang Technological University, Singapore
Alfredo Cuzzocrea ICAR-CNR / University of Calabria, Italy
Gill Dobbie University of Auckland, New Zealand
Xiaoyong Du Renmin University of China, China
Jianhua Feng Tsinghua University, China
Ling Feng Tsinghua University, China
Yunjun Gao Zhejiang University, China
Yu Ge Northeastern University, China
Stephane Grumbach INRIA, France
Takahiro Hara Osaka University, Japan
Bingsheng He Nanyang Technological University, Singapore
Wynne Hsu National University of Singapore, Singapore
Haibo Hu Hong Kong Baptist University, China
Ming Hua Facebook, USA
Dong-Hyuk Im Seoul National University, South Korea
Yoshiharu Ishikawa Nagoya University, Japan
Adam Jatowt Kyoto University, Japan
Ruoming Jin Kent State University, USA
Sungwon Jung Sogang University, South Korea

Organization XI

Norio Katayama National Institute of Informatics, Japan
Yiping Ke Chinese University of Hong Kong, China
Chulyon Kim Kyungwon University, South Korea
Dongkyu Kim Georgetown University, USA
Han-joon Kim University of Seoul, South Korea
Jinho Kim Kangwon National University, South Korea
Sang-Wook Kim Hanyang University, South Korea
Markus Kirchberg HP Labs Singapore, Singapore
Hiroyuki Kitagawa University of Tsukuba, Japan
Ig-hoon Lee Seoul National University, South Korea
Mong Li Lee National University of Singapore, Singapore
Sang-Won Lee Sungkyunkwan University, South Korea
Wang-Chien Lee Pennsylvania State University, USA
Cuiping Li Renmin University of China, China
Jianzhong Li Harbin Institute of Technology, China
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology, Australia
Eric Lo Hong Kong Polytechnic University, China
Jiaheng Lu Renmin University of China, China
Nikos Mamoulis University of Hong Kong, China
Weiyi Meng Binghamton University, USA
Xiaofeng Meng Renmin University of China, China
Jun-Ki Min Korea University of Technology and Education,

South Korea
Jun Miyazaki Nara Advanced Institute of Science and

Technology, Japan
Bongki Moon University of Arizona, USA
Yang-Sae Moon Kangwon National University, South Korea
Yasuhiko Morimoto Hiroshima University, Japan
Atsuyuki Morishima University of Tsukuba, Japan
Miyuki Nakano University of Tokyo, Japan
Tadashi Ohmori University of Electro-Communications, Japan
Makoto Onizuka NTT Corporation, Japan
Hyoungmin Park University of Brithish Columbia, Canada
Min Sik Park Korea Database Agency, South Korea
Sanghyun Park Yonsei University, South Korea
Young-Ho Park Sookmyung Women’s University, South Korea
Jian Pei Simon Fraser University, Canada
Wen-Chih Peng National Chiao Tung University, Taiwan
Lu Qin Chinese University of Hong Kong, China
Keun Ho Ryu Chungbuk National University, South Korea
Simonas Saltenis Aalborg University, Denmark
Markus Schneider University of Florida, USA
Jialie Shen Singapore Management University, Singapore

XII Organization

Junho Shim Sookmyung Women’s University, South Korea
Hyoseop Shin Konkuk University, South Korea
Jung Hyeon Sin INET-Hosting, South Korea
Atsuhiro Takasu National Institute of Informatics, Japan
David Taniar Monash University, Australia
Vincent Tseng National Cheng Kung University, Taiwan
Haixun Wang Microsoft Research Asia, China
Jianyong Wang Tsinghua University, China
John Wang Griffith University, Australia
Wei Wang University of New South Wales, Australia
Raymond Wong HKUST, China
Xiaokui Xiao Nanyang Technological University, Singapore
Jianliang Xu Hong Kong Baptist University, China
Ke Yi HKUST, China
Man Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jaesoo Yoo Chungbuk National University, South Korea
Rui Zhang University of Melbourne, Australia
Wenjie Zhang University of New South Wales, Australia
Baihua Zheng Singapore Management University, Singapore
Bin Zhou University of Maryland Baltimore County, USA

Industrial Track

Haibo Hu Hong Kong Baptist University, China
Weining Qian Fudan University, China
Bingsheng HE Nanyang Technological University, Singapore
Marek Kowalkiewicz SAP, Australia
Jilei Tian Nokia Research China, China
Unil Yun Chungbuk National University, South Korea
Yang-Sae Moon Kangwon National University, South Korea
Byungjoo Chung Cubrid, South Korea

Demo Track

Ilaria Bartolini University of Bologna, Italy
Changkyu Kim Intel Labs, USA
Jiaheng Lu Renmin University of China, China
Yaokai Feng Kyushu University, Japan
Young-In Song Microsoft Research Asia, China
Yoonkyong Lee Samsung Electronics, South Korea
Georgia Koutrika IBM Research, USA
Christoph Lofi TU-Braunschweig, Germany

Organization XIII

External Reviewers

Brian Ackerman
Kamel Boukhalfa
Panagiotis Bouros
Yulei Fan
Wei Feng
Shen Ge
Reza Hemayati
Hai Huang
Zheng Huo
Stéphane Jean
Yu Jiang
Selma Khouri
Chungrim Kim
Young-kook Kim

Ryan Ko
Erwin Leonardi
Jing Li
Jianxin Li
Wenxin Liang
Pan Lin
Lin Liu
Yunzhong Liu
Cheng Long
Youzhong Ma
Luo Min
Jaehui Park
Peng Peng
Yu Peng

Zhenhua Song
Yu Shyang Tan
Yongxin Tong
Guan Wang
Hao Wang
Yousuke Watanabe
Kefeng Xuan
MingxuanYuan
Geng Zhao
Jinzeng Zhang
Rui Zhou
Wei Zhang
Xiaojian Zhang

Table of Contents – Part II

Top-k and Skyline Query Processing

Top-k Best Probability Queries on Probabilistic Data 1
Trieu Minh Nhut Le and Jinli Cao

Probabilistic Reverse Skyline Query Processing over Uncertain Data
Stream . 17

Mei Bai, Junchang Xin, and Guoren Wang

Malleability-Aware Skyline Computation on Linked Open Data 33
Christoph Lofi, Ulrich Güntzer, and Wolf-Tilo Balke

Information Retrieval and Recommendation

Effective Next-Items Recommendation via Personalized Sequential
Pattern Mining . 48

Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu

Scalable Top-k Keyword Search in Relational Databases 65
Yanwei Xu, Jihong Guan, and Yoshiharu Ishikawa

Composition and Efficient Evaluation of Context-Aware Preference
Queries . 81

Patrick Roocks, Markus Endres, Stefan Mandl, and Werner Kießling

Indexing and Search Systems

An Automaton-Based Index Scheme for On-Demand XML Data
Broadcast . 96

Weiwei Sun, Peng Liu, Jingjing Wu, Yongrui Qin, and Baihua Zheng

Colored Range Searching on Internal Memory . 111
Haritha Bellam, Saladi Rahul, and Krishnan Rajan

Circle of Friend Query in Geo-Social Networks . 126
Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang,
Yinan Jing, and Kunjie Chen

A Power Saving Storage Method That Considers Individual Disk
Rotation . 138

Satoshi Hikida, Hieu Hanh Le, and Haruo Yokota

XVI Table of Contents – Part II

Cloud Computing and Scalability

ComMapReduce: An Improvement of MapReduce with Lightweight
Communication Mechanisms . 150

Linlin Ding, Junchang Xin, Guoren Wang, and Shan Huang

Halt or Continue: Estimating Progress of Queries in the Cloud 169
Yingjie Shi, Xiaofeng Meng, and Bingbing Liu

Towards a Scalable, Performance-Oriented OLAP Storage Engine 185
Todd Eavis and Ahmad Taleb

Industrial Papers I: Memory-Based Query Processing

Highly Scalable Speech Processing on Data Stream Management
System . 203

Shunsuke Nishii and Toyotaro Suzumura

EVIS: A Fast and Scalable Episode Matching Engine for Massively
Parallel Data Streams . 213

Shinichiro Tago, Tatsuya Asai, Takashi Katoh,
Hiroaki Morikawa, and Hiroya Inakoshi

Real-Time Analysis of ECG Data Using Mobile Data Stream
Management System . 224

Seokjin Hong, Rana Prasad Sahu, M.R. Srikanth, Supriya Mandal,
Kyoung-Gu Woo, and Il-Pyung Park

A Main Memory Based Spatial DBMS: Kairos . 234
Hyeok Han and Seong-il Jin

Industrial Papers II: Semantic and Decision Support
Systems

Study on the International Standardization for the Semantic Metadata
Mapping Procedure . 243

Sungjoon Lim, Taesul Seo, Changhan Lee, and Soungsoo Shin

Semantics and Usage Statistics for Multi-dimensional Query
Expansion . 250

Raphaël Thollot, Nicolas Kuchmann-Beauger, and
Marie-Aude Aufaure

Hierarchy-Based Update Propagation in Decision Support Systems 261
Haitang Feng, Nicolas Lumineau, Mohand-Sáıd Hacid, and
Richard Domps

An Experiment with Asymmetric Algorithm: CPU Vs. GPU 272
Sujatha R. Upadhyaya and David Toth

Table of Contents – Part II XVII

Demo Papers I: Social Data

Tag Association Based Graphical Password Using Image Feature
Matching . 282

Kyoji Kawagoe, Shinichi Sakaguchi, Yuki Sakon, and
Hung-Hsuan Huang

Acarp: Author-Centric Analysis of Research Papers 287
Weiming Zhang, Xueqing Gong, Weining Qian, and Aoying Zhou

iParticipate: Automatic Tweet Generation from Local Government
Data . 295

Christoph Lofi and Ralf Krestel

gRecs: A Group Recommendation System Based on User Clustering 299
Irene Ntoutsi, Kostas Stefanidis, Kjetil Norvag, and
Hans-Peter Kriegel

Demo Papers II: Data Mining

PEACOD: A Platform for Evaluation and Comparison of Database
Partitioning Schemes . 304

Xiaoyan Guo, Jidong Chen, Yu Cao, and Mengdong Yang

Stream Data Mining Using the MOA Framework . 309
Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Jesse Read

Shot Classification Using Domain Specific Features for Movie
Management . 314

Muhammad Abul Hasan, Min Xu, Xiangjian He, and Ling Chen

PA-Miner: Process Analysis Using Retrieval, Modeling, and
Prediction . 319

Anca Maria Ivanescu, Philipp Kranen, Manfred Smieschek,
Philip Driessen, and Thomas Seidl

Panel

Data Management Challenges and Opportunities in Cloud
Computing (Abstract) . 323

Kyuseok Shim, Sang Kyun Cha, Lei Chen, Wook-Shin Han,
Divesh Srivastava, Katsumi Tanaka, Hwanjo Yu, and Xiaofang Zhou

XVIII Table of Contents – Part II

Tutorials

Detecting Clones, Copying and Reuse on the Web (DASFAA 2012
Tutorial) . 324

Xin Luna Dong and Divesh Srivastava

Query Processing over Uncertain and Probabilistic Databases 326
Lei Chen and Xiang Lian

Tutorial: Data Stream Mining and Its Applications (Abstract) 328
Latifur Khan and Wei Fan

Storing, Querying, Summarizing, and Comparing Molecular Networks:
The State-of-the-Art . 330

Sourav S. Bhowmick and Boon-Siew Seah

Author Index . 333

Table of Contents – Part I

Keynote Talks

Enabling Real Time Data Analysis . 1
Divesh Srivastava

A New Paradigm of Thinking and Architecture for Real-Time
Information Processing at Fingertips . 2

Sang Kyun Cha

Query Processing and Optimization

Improving the Accuracy of Histograms for Geographic Data Objects 3
Hai Thanh Mai, Jaeho Kim, and Myoung Ho Kim

Improving Online Aggregation Performance for Skewed Data
Distribution . 18

Yuxiang Wang, Junzhou Luo, Aibo Song, Jiahui Jin, and Fang Dong

A Relational-Based Approach for Aggregated Search in Graph
Databases . 33

Thanh-Huy Le, Haytham Elghazel, and Mohand-Sáıd Hacid

Data Semantics and Interoperability

Discovery of Keys from SQL Tables . 48
Van Bao Tran Le, Sebastian Link, and Mozhgan Memari

A Framework for Realizing Artifact-Centric Business Processes in
Service-Oriented Architecture . 63

Kan Ngamakeur, Sira Yongchareon, and Chengfei Liu

Appearance-Order-Based Schema Matching . 79
Guohui Ding, Han Dong, and Guoren Wang

XML and Semi-structured Data I

Fast Result Enumeration for Keyword Queries on XML Data 95
Junfeng Zhou, Zhifeng Bao, Ziyang Chen, and Tok Wang Ling

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries
in RDBMS . 110

Erwin Leonardi, Sourav S. Bhowmick, and Fengrong Li

XX Table of Contents – Part I

Updating Typical XML Views . 126
Jixue Liu, Chengfei Liu, Theo Haerder, and Jeffery Xu Yu

XML and Semi-structured Data II

Partitioned Indexes for Entity Search over RDF Knowledge Bases 141
Fang Du, Yueguo Chen, and Xiaoyong Du

SINBAD: Towards Structure-Independent Querying of Common
Neighbors in XML Databases . 156

Ba Quan Truong, Sourav S. Bhowmick, and Curtis Dyreson

Top-Down SLCA Computation Based on List Partition 172
Junfeng Zhou, Zhifeng Bao, Ziyang Chen, Guoxiang Lan,
Xudong Lin, and Tok Wang Ling

Efficiently Identifying Contributors for XML Keyword Search 185
Ya-Hui Chang, Po-Hsien Chien, and Yu-Kai Chang

Data Mining and Knowledge Discovery I

Semi-supervised Clustering of Graph Objects: A Subgraph Mining
Approach . 197

Xin Huang, Hong Cheng, Jiong Yang, Jeffery Xu Yu,
Hongliang Fei, and Jun Huan

Plink-LDA: Using Link as Prior Information in Topic Modeling 213
Huan Xia, Juanzi Li, Jie Tang, and Marie-Francine Moens

AnyOut: Anytime Outlier Detection on Streaming Data 228
Ira Assent, Philipp Kranen, Corinna Baldauf, and Thomas Seidl

Data Mining and Knowledge Discovery II

Ensemble Based Positive Unlabeled Learning for Time Series
Classification . 243

Minh Nhut Nguyen, Xiao-Li Li, and See-Kiong Ng

Efficient Mining Regularly Frequent Patterns in Transactional
Databases . 258

Md. Mamunur Rashid, Md. Rezaul Karim, Byeong-Soo Jeong, and
Ho-Jin Choi

Fast Tree-Based Mining of Frequent Itemsets from Uncertain Data 272
Carson Kai-Sang Leung and Syed K. Tanbeer

Table of Contents – Part I XXI

Data Mining and Knowledge Discovery III

On the Decidability and Complexity of Identity Knowledge
Representation . 288

Klaus-Dieter Schewe and Qing Wang

Privacy Preserving Mining Maximal Frequent Patterns in Transactional
Databases . 303

Md. Rezaul Karim, Md. Mamunur Rashid, Byeong-Soo Jeong, and
Ho-Jin Choi

Data Privacy against Composition Attack . 320
Muzammil M. Baig, Jiuyong Li, Jixue Liu, Xiaofeng Ding, and
Hua Wang

Privacy and Anonymity

Protecting Sensitive Relationships against Inference Attacks in Social
Networks . 335

Xiangyu Liu and Xiaochun Yang

Y ou Can W alk Alone: Trajectory Privacy-Preserving through
Significant Stays Protection . 351

Zheng Huo, Xiaofeng Meng, Haibo Hu, and Yi Huang

Semi-Edge Anonymity: Graph Publication when the Protection
Algorithm Is Available . 367

Mingxuan Yuan and Lei Chen

Data Management in the Web

On-the-Fly Generation of Facets as Navigation Signs for Web
Objects . 382

Yu Kawano, Hiroaki Ohshima, and Katsumi Tanaka

Searching for Quality Microblog Posts: Filtering and Ranking Based on
Content Analysis and Implicit Links . 397

Jan Vosecky, Kenneth Wai-Ting Leung, and Wilfred Ng

HotDigg: Finding Recent Hot Topics from Digg . 414
Younghoon Kim and Kyuseok Shim

Assessing Web Article Quality by Harnessing Collective Intelligence 428
Jingyu Han, Xueping Chen, Kejia Chen, and Dawei Jiang

XXII Table of Contents – Part I

Graphs and Data Mining Applications

Context Sensitive Tag Expansion with Information Inference 440
Hongyun Cai, Zi Huang, Jie Shao, and Xue Li

Efficient Subgraph Similarity All-Matching . 455
Gaoping Zhu, Ke Zhu, Wenjie Zhang, Xuemin Lin, and Chuan Xiao

Efficient Algorithm for Mining Correlated Protein-DNA Binding
Cores . 470

Po-Yuen Wong, Tak-Ming Chan, Man-Hon Wong, and
Kwong-Sak Leung

A Novel Approach for Finding Alternative Clusterings Using Feature
Selection . 482

Vinh Thanh Tao and JongHyeok Lee

Temporal and Spatial Data I

General Spatial Skyline Operator . 494
Qianlu Lin, Ying Zhang, Wenjie Zhang, and Aiping Li

Top-k Similarity Join over Multi-valued Objects . 509
Wenjie Zhang, Jing Xu, Xin Liang, Ying Zhang, and Xuemin Lin

Indexing Network Voronoi Diagrams . 526
Ugur Demiryurek and Cyrus Shahabi

Temporal and Spatial Data II

On Efficient Reverse k -Skyband Query Processing . 544
Qing Liu, Yunjun Gao, Gang Chen, Qing Li, and Tao Jiang

Co-spatial Searcher : Efficient Tag-Based Collaborative Spatial Search
on Geo-social Network . 560

Jinzeng Zhang, Xiaofeng Meng, Xuan Zhou, and Dongqi Liu

Traffic Aware Route Planning in Dynamic Road Networks 576
Jiajie Xu, Limin Guo, Zhiming Ding, Xiling Sun, and Chengfei Liu

Author Index . 593

Top-k Best Probability Queries

on Probabilistic Data

Trieu Minh Nhut Le and Jinli Cao

Department of Computer Science and Computer Engineering,
La Trobe University Victoria 3086 Australia

nhuttrieu@gmail.com, j.cao@latrobe.edu.au

Abstract. There has been much interest in answering top-k queries
on probabilistic data in various applications such as market analysis,
personalised services, and decision making. In relation to probabilistic
data, the most common problem in answering top-k queries is selecting
the semantics of results according to their scores and top-k probabilities.
In this paper, we propose a novel top-k best probability query to obtain
results which are not only the best top-k scores but also the best top-
k probabilities. We also introduce an efficient algorithm for top-k best
probability queries without requiring the user’s defined threshold. Then,
the top-k best probability answer is analysed, which satisfies the semantic
ranking properties of queries [3, 18] on uncertain data. The experimental
studies are tested with both the real data to verify the effectiveness of
the top-k best probability queries and the efficiency of our algorithm.

Keywords: Top-k Query, Query Processing, Uncertain data.

1 Introduction

Uncertain data has arisen in some important applications such as personalized
services, market analysis and decision making, because data sources of these ap-
plications are collected from data integration, data analysis, data statistics, and
results prediction. These data are usually inconsistent or likelihood information.
Thus, selecting the best choice from various alternatives of uncertain data is an
important challenge facing these applications. The top-k queries that return the
k best answers according to a user’s function score are essential for exploring
uncertain data on these applications [7]. Uncertain data have been used exten-
sively in many research areas such as modelling uncertain data [15, 5], managing
uncertain data [22], and mining uncertain data [1, 12].

In business, investors often make decisions about their products based on
analysis and statistical data [12], which provide predictions relating to successful
and unsuccessful projects.

1.1 Motivation

As an example, assume that the data in Table 1 has been collected and anal-
ysed statistically, according to historical data resources. Each tuple represents

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 T.M.N. Le and J. Cao

an investment project of USD $100 to produce a specific product (Product ID).
Investing a profit (Profit) on the product will receive with the probability esti-
mates of success on this investment (Probability) e.g. in tuple t1, a businessman
invests USD $100 on product A, and it has a 29% chance of obtaining a profit
of USD $25.

Table 1. Predicted profit of USD $100 investment

Tuple Product ID Profit Probability
t1 A 25 0.29
t2 B1 18 0.3
t3 E1 17 0.8
t4 B2 13 0.4
t5 C 12 1.0
t6 E2 11 0.2

In probabilistic data, almost tuples are independent of each other. However, in
the real world, when analysing historical data, some special tuples are mutually
exclusive. e.g. in tuple t2, product B1 has 0.3 probability of making a profit of
USD $18, and in tuple t4, product B2 has 0.4 probability of making a profit of
USD $13. In this case, if the prediction for B1 is true, then the prediction for
B2 will not be true. In probabilistic data model, these mutually exclusive tuples
can be controlled by a set of generation rules. In this example, probabilistic data
in Table 1 are restricted by the generation rules R1 = t2 ⊕ t4 and R2 = t3 ⊕ t6.

In previous research [6, 16, 15, 19], to find the top-k answers to queries, the
probabilistic data can be represented by listing all possible worlds. A possible
world contains a number of tuples in probabilistic data set. Each possible world
has a non zero probability for its existence. Table 2 lists three dimensions: the
possible world, the probability of existence, and the top-2 tuples.

Table 2. All the possible worlds

Possible world Pro. of existence Top-2

W1 = {t1, t2, t3, t5} 0.0696 t1, t2
W2 = {t1, t2, t5, t6} 0.0174 t1, t2
W3 = {t1, t3, t4, t5} 0.0928 t1, t3
W4 = {t1, t4, t5, t6} 0.0232 t1, t4
W5 = {t1, t3, t5} 0.0696 t1, t3
W6 = {t1, t5, t6} 0.0174 t1, t5
W7 = {t2, t3, t5} 0.1704 t2, t3
W8 = {t2, t5, t6} 0.0426 t2, t5
W9 = {t3, t4, t5} 0.2272 t3, t4
W10 = {t4, t5, t6} 0.0568 t4, t5
W11 = {t3, t5} 0.01704 t3, t5
W12 = {t5, t6} 0.0426 t5, t6

Table 3. Top-2 probabilities

Tuple Profit Probability Top-2 probability
t1 25 0.29 0.29
t2 18 0.3 0.3
t3 17 0.8 0.7304
t4 13 0.4 0.3072
t5 12 1.0 0.3298
t6 11 0.2 0.0426

Top-k Best Probability Queries on Probabilistic Data 3

The top-2 probability of a tuple is aggregated by the sum of its probabilities
of existence in the top-2 in Table 2.

In previous research by [6], the top-k answers are found using the probability
threshold approach called PT-k. The PT-k queries return a set of tuples with
top-k probabilities greater than the users’ threshold value. In Table 3, the answer
to the PT-2 queries with threshold 0.3 is the set containing 4 tuples {t2, t3, t4, t5}.
This result of PT-k will be discussed based on both profit and top-2 probability
attributes of the top-2 tuples in the following.

- The PT-k queries may lose some important results. According to PT-2
queries, tuple t1(25, 0.29) is eliminated by the PT-2 algorithm because its
top-k probability is less than the threshold 0.3. In this case, we recommend
that tuple t1 should be in the result, the reason being that tuple t1(25, 0.29)
is not worse than tuple t4(13, 0.3072), when comparing both attributes of
profit and top-2 probability. That is, t1.profit(25) is greater than t4.profit(13)
and t1.top-2 probability(0.29) is less than t2.top-2 probability(0.3072). In-
vestors may like to choose t1 because they can earn nearly double the profit
from t1 compared to t4, while t1 is only slightly riskier than t4 with a top-2
probability 0.0172. Therefore, t1 should be acceptable in the top-k answers.

- The PT-k answer may contain some redundant tuples which should be elim-
inated earlier in the top-k result. Referring to Table 3 again, tuples t4 and
t5 should be eliminated immediately from the answer because the values
of both attributes profit and top-2 probability in t4(13, 0.3072) and t5(12,
0.3298) are less than those in t3(18, 0.7304). It is obvious that the investor
will choose t3 which is more dominant than t4 and t5 in both profit and
top-k probability.

- The threshold of PT-k is an unclear value for users. The threshold is a crucial
factor used for efficiency and effectiveness in PT-k queries [6]. A threshold is
required from users who may not know much about the probability. There-
fore, they may assign any random threshold value several times until they
can obtain the best answers with the PT-k algorithm, which may waste time.

With the aforementioned observations, there is a need to study the top-k query
answers for a better solution. Thus, it is necessary to take both top-k profit and
top-k probability into account to select the best top-k answer. In our recom-
mendation, the top-2 results should include tuples {t1, t2, t3}, for the following
properties:

1. Inclusion of important tuples: The answer to the top-k queries should be “the
k highest scoring tuples”. i.e. in Table 1, tuples t1 and t2 the top-2 highest
profit should be in the top-2 answer.

2. Elimination of redundant tuples: The dominating concept on score and top-k
probability of tuples are used to process non-top-k score tuples. These tuples
will have “best top-k probabilities”. i.e. tuple t3 also is added into the result
because it has greater top-k probability than a tuple in the k highest ranking
tuples. Then, the tuples t4, t5, t6 in the data set, which are dominated by t3
on both score and top-k probability, are eliminated.

4 T.M.N. Le and J. Cao

3. Removal of the threshold: The combination of the two previous properties
will remove the need of the threshold.

Therefore, the answer set contains tuples {t1, t2, t3} for the top-2 query on prob-
abilistic data. This solution provides not only the best top-2 ranking scores but
also the top-2 highest probabilities to users.

The above example demonstrates and analyses the PT-k approach with our
proposed approach. This paper will discuss the novel approach for top-k best
probability queries. The proposed algorithm for new top-k queries is created to
illustrate its effectiveness and efficiency.

1.2 Contributions

Our contributions are summarized as follows:

- The new definition: “Top-k best probability” answer to the top-k queries
on probabilistic data is proposed based on common top-k answer and a
dominating concept.

- Some pruning rules are introduced by formal formulas. Their correctness
has been mathematically proven. These rules will be used to improve the
effectiveness of the proposed algorithm by reducing the computation cost of
top-k probabilities of tuples.

- The proposed algorithm demonstrates that the answers to top-k best prob-
ability queries are more efficient than the answers to PT-k under various
probabilistic data sources. Moreover, the proposed approach is proven to
meet the semantic top-k ranking properties

- A real data set is used in our extensive experimental study to evaluate the
proposed approach. The PT-k method is compared with our method in terms
of effectiveness and efficiency.

The rest of this paper is organized as follows. Section 2 presents the preliminaries
to support our approach. In Section 3, we illustrate several new concepts and
the proposed algorithm. Section 4 evaluates and discusses the proof of the pro-
posed approach. Extensive experiments are conducted to show the significance
of this study in Section 5. The final section briefly concludes our contribution
and outlines future research.

2 Preliminary

In this section, several previous definitions on probabilistic data are presented
formally, which are similar to papers [4, 6, 22, 11, 1, 21, 2, 19]. Generally, the
probabilistic data D = {t1, ..., tn} is a finite set of probabilistic tuples, where
each probabilistic tuple is a tuple being associated with probability to denote
the uncertainty of the data.

Definition 1. Probability of tuple is the likelihood of a tuple appearing in the
data set D. The probability p(ti) of tuple ti can be presented as a new dimension
in the data with values of 0 < p(ti) ≤ 1.

In Table 1, tuple t1 has a probability 0.29 of obtaining a profit.

Top-k Best Probability Queries on Probabilistic Data 5

Definition 2. A possible world represents semantics of probabilistic data. Each
possible world Wj = {t1, ..., tk} contains a number of tuples which are members
of probabilistic data. Each possible world is associated with a probability to indi-
cate its existence. The probability of existence of possible world Wj is calculated
by multiplying the probabilities of the tuples, which are the likelihood and un-
likelihood of tuples in Wj . All possible worlds W = {W1, ...,Wm} is called the
possible world space.

Table 2 is a possible world space that lists all possible worlds of Table 1.

Definition 3. In probabilistic data, a generation rule is a set of special tuples,
which are mutually exclusive in a possible world space. The generation rule is
in a form of Rh = th1 ⊕ th2 ⊕ ... ⊕ thq , where ⊕ is an exclusive operator, and
th1 , th2 , ..., thq are members of probabilistic data. The sum of all probabilities of
tuples in a same generation rule must be less than or equal to 1,

∑q
i=1 p(thi) ≤ 1.

In Table 1, data includes 2 generation rules R1 = t2 ⊕ t4 and R2 = t3 ⊕ t6.

2.1 Calculation Top-k Probability

In this section, we represent the calculation of top-k probabilities in a possible
world space. The top-k probability of a tuple prktop(ti) is the sum of the probabil-
ities of existence of possible worlds in which the tuple is in the top-k [6]. In the
probabilistic data set, when the number of tuples is increasing, it is impossible
to list all the possible worlds and calculate every probability of existence of a
possible world at a limited time, because the number of all the possible worlds is
2n and the computation cost of all probabilities of its existence is very expensive.
Then, the formulas to calculate the top-k probability of tuples are required to
avoid listing and calculating for effective algorithms.

Let a probabilistic data set D be a ranked sequence (t1, t2, ..., tn) with
t1.score � t2.score � ... � tn.score, and Sti = (t1, t2, ..., ti) (1 ≤ i ≤ n) be
a subsequence from t1 to ti.

Theorem 1. Given a ranked sequence Sti = (t1, t2, ..., ti). pr(Sti , j) is a prob-
ability of any j tuples (n > i ≥ j > 0) appearing in the set Sti . pr(Sti , j) is
calculated as follows:

pr(Sti , j) = pr(Sti−1 , j − 1) × p(ti) + pr(Sti−1 , j) × (1 − p(ti))

In special cases
◦ pr(φ, 0) = 1
◦ pr(φ, j) = 0

◦ pr(Sti−1 , 0) =
i∏

j=1

(1 − p(tj))

This Poisson binomial recurrence has been proved in [10].
Example: Given the data set in Table 1

pr(St1 , 1) = pr(φ, 0) × p(t1) + pr(φ, 1) × (1 − p(t1)) = 0.29

pr(St2 , 1) = pr(St1 , 0) × p(t2) + pr(St1 , 1) × (1 − p(t2)) = 0.416

6 T.M.N. Le and J. Cao

Theorem 2. Suppose that tuple ti and the subsequence Sti−1 . pr(ti, j) is the
probability of tuple ti which is ranked at the exact jth position (n > i ≥ j > 0).
pr(ti, j) is calculated as follows:

pr(ti, j) = p(ti) × pr(Sti−1 , j − 1)

This Poisson binomial recurrence has been proved in [10].
Example: The 1st and 2nd rank probabilities of tuple t3 are computed as follows:

pr(t3, 1) = p(t3) × pr(St2 , 0) = 0.3976

pr(t3, 2) = p(t3) × pr(St2 , 1) = 0.3328

Theorem 3. Given a tuple ti, pr
k
top(ti) is the top-k probability of ti in the pos-

sible world space, then prktop(ti) is calculated as follows:

prktop(ti) =

k∑
j=1

pr(ti, j) = p(ti) ×
k∑

j=1

pr(Sti−1 , j − 1)

If i ≤ k then prktop(ti) = p(ti)

Example: The top-2 probability of tuple t3 is computed as follows:

pr2top(t3) = pr(t3, 1) + pr(t3, 2) = 0.3976 + 0.3328 = 0.7304

2.2 Calculation of Top-k Probability with Generation Rules

Generally, the above theorems can be used to calculate the top-k probability of
each tuple. However, real probabilistic data involves mutually exclusive rules.
Therefore, the calculations of top-k probabilities have to take those rules into
account. We follow paper [6] for calculating the top-k probabilities with added
generation rules as follows:

Tuples in the same generation rule are mutually exclusive. Therefore, the rule
can produce as a tuple. Then, the previous formulas are used to calculate the
top-k probability.

Let t1.score � t2.score � ... � tn.score be ranked as the sequence D =
(t1, t2, ..., tn). To compute the top-k probability prktop(ti) of tuple ti ∈ D(1 ≤ i ≤
n), ti divides the generation rule Rh = th1 ⊕ ... ⊕ thm into two parts RhLeft =
th1 ⊕ ... ⊕ thj and RhRight = thj+1 ⊕ ... ⊕ thm . The tuples involved in RhLeft

are ranked higher than or equal to ti. RhRight contains the ranked tuples lower
than tuple ti. According to this division, the following cases are demonstrated
for reducing the tuples.
- Case 1: RhLeft = φ, i.e. all the tuples in rule Rh are ranked lower than or
equal to tuple ti. Therefore, all tuples in Rh are not considered in calculating
the top-k probability of tuple ti. Consequently, all tuples in Rh are ignored.
- Case 2: RhLeft �= φ, i.e. all tuples in RhRight can be ignored, and the tuples in
RhLeft have been changed for calculating the top-k probability of ti. There are
two sub-cases for these changes.

Top-k Best Probability Queries on Probabilistic Data 7

+ Sub-case 1: ti ∈ RhLeft, i.e. ti has already appeared in the possible world
space, the other tuples in RhLeft will be removed from subsequence Sti−1

when calculating prktop(ti).
+ Sub-case 2: ti �∈ RhLeft, all tuples in RhLeft will be produced and considered

as a tuple tRhLeft
with probability p(tRhLeft

) =
∑

RhLeft
p(thLeft).

After all the generation rules are produced, the formulas for calculating top-k
probability in the previously mentioned theorems are used normally.
Example: In Table 1, pr2top(t6) will be calculated by applying two generation
rules R1 = t2 ⊕ t4 and R2 = t3 ⊕ t6. The subsequence St6 containing the tuples
with their probabilities is presented in Table 4.

Table 4. The subsequence St6

t1 t2 t3 t4 t5 t6
0.29 0.3 0.8 0.4 1.0 0.2

Table 5. The produced subsequence St6

t1 t2⊕4 t5 t6
0.29 0.7 1.0 0.2

The generation rules are produced in subsequence St6 .
- In the generation rule R2, t3 is removed because t3 and t6 are in the same
generation rule (Sub-case 1)
- In the generation rule R1, t2 ⊕ t4 are produced as t2⊕4. The probability of t2⊕4

is 0.7 (Sub-case 2)
The subsequence St6 is produced by the generation rules with their probabilities
as presented in Table 5.

pr2top(t6) with the set St5{t1, t2⊕4, t5} is calculated as follows:

pr2top(t6) = p(t6) × (pr(St5 , 0) + pr(St5 , 1)) = 0.2 × (0 + 0.213) = 0.0426

3 The Top-k Best Probability Queries

Tuples which are the result of probabilistic top-k queries must consider not
only the ranking score but also the top-k probability [13, 21]. In the area of
probabilistic data, significant research is being conducted on semantics of top-k
queries. However, the semantics between high scoring tuples and high probability
of tuples is interpreted differently by various researchers. Our ranking approach
considers both dimensions of ranking score and top-k probability independently,
in which, the ranking score cannot be considered more important than the top-k
probability and vice versa.

3.1 Definition of the Top-k Best Probability

To answer a probabilistic query, every tuple has two associated dimensions a
top-k probability and its ranking score. These two dimensions are crucial for
choosing the answer to the top-k queries on probabilistic data. They are also
independent in real world applications. In this research, we introduce the con-
cept of dominating tuples for selecting the full meaning top-k tuples which are
non-dominated tuples. This concept is widely used for multiple independent di-
mensions for skyline queries in many papers [2, 14, 8].

8 T.M.N. Le and J. Cao

Definition 4. (domination of top-k probability tuples) For any tuples ti and tj
in probabilistic data, ti dominates tj (ti ≺ tj), if and only if ti has been ranked
higher than tj and the top-k probability of ti is greater than the top-k probability
of tj (prktop(ti) > prktop(tj)), else ti does not dominate tj (ti ⊀ tj).

Example: in Table 3, tuple t3 dominates t5, because t3 has a higher rank than
t5 (rank(t3.score) = 3, rank(t5.score) = 5) and top-2 probability (0.7304) of t3
is greater than top-2 probability (0.3072) of t5.

Now, we introduce Definition 5 to select the best tuples using the domination
concept to improve the quality of the top-k answers. That is, we are looking at
tuples which are in top-k best ranking scores and best top-k probabilities.

Definition 5. The answer L to the top-k best probability query consists of two
sets Lscore and Lpro where Lscore contains the top-k ranking score tuples in
the data without considering the probabilities, and Lpro contains non-dominated
tuples on top-k probability in the set {{D \Lscore} ∪{tpmin}}, where tpmin is the
tuple with the lowest top-k probability in Lscore.

The conditions to get the final answer to top-k best probability queries are de-
scribed in Definition 5. With the example of Table 1, the answer set to the top-2
best probability query is L = {t1, t2, t3}. In this answer, Lscore is {t1, t2} the top-
2 highest ranked profit tuples (the common result), and Lpro is {t1, t3} where tu-
ples t1 and t3 are non-dominated tuples on top-k probability in {t1, t3, t4, t5, t6},
while t1 is tpmin.

3.2 Finding Top-k Best Probability and Pruning Rules

We now describe a technique for selecting the top-k best probability answers,
and present effective pruning rules for the top-k best probability algorithm.

a. Selecting the Answer to the Top-k Best Probability

Suppose that the data set has been ranked by score, we have divided n tu-
ples of data set D into two sets Lscore = {t1, t2, ..., tk} and D \ Lscore =
{tk+1, tk+2, ..., tn}. Lscore contains the first k highest ranking score tuples.

To select non-dominated tuples for Lpro, we first pick up the tuple tpmin

which has the lowest top-k probability in Lscore. This lowest top-k probability
tuple is also the first non-dominated tuple in Lpro, because tpmin has higher
rank than all other tuples in D \ Lscore. The rest non-dominated tuples are
selected only considering their top-k probabilities due to their ranking order.
The initial value of bestPr is bestPr = minki=1(pr

k
ti). The non-dominated tu-

ples from {tk+1, tk+2, ..., tn} , the top-k probability of each tuple from tk+1 to
tn is calculated in succession. In each tuple, the top-k probability will be com-
pared to bestPr. If it is greater than bestPr, the tuple will be inserted into
Lpro, and bestPr assigns the greater top-k probability. The inserted tuple is the
non-dominated in Lpro because its top-k probability is greater than all top-k
probabilities of tuples in Lpro. At last, all the non-dominated tuples of Lpro are
found when all tuples are executed. The answer set L = Lscore∪Lpro is returned.

Top-k Best Probability Queries on Probabilistic Data 9

The value of bestPr will be increased during selecting the top-k higher prob-
ability to the answer Lpro, therefore bestPr is called “best top-k probability”.
The bestPr is also the key value to improve the effectiveness and efficiency of
our proposed algorithm because it is used to eliminate all tuples with low top-k
probabilities without conducting calculation by following the pruning rules.

b. Pruning Rules

In this section, several theorems on pruning rules are created for our proposal.

Theorem 4. Given any ti and bestPr, if bestPr ≥ p(ti) then bestPr ≥ prktop(ti)

The proof of theorem 4 is based on theorem 3.
The top-k probabilities of tuples do not need to be calculated when their

probabilities are less than bestPr. Moreover, the following theorem is used to
stop the algorithm before it calculates the top-k probabilities of lower ranking
score tuples.

Theorem 5. For any ti and bestPr, if bestPr ≥
∑k

j=1 pr(Sti\{tLmax}, j − 1)

then bestPr ≥ prktop(ti+m) for any m ≥ 1 where
- Sti = (t1, t2, ..., ti) is the ranked sequence.
- tLmax is the produced tuple of the generation rule which has the highest

produced probability than the other produced probabilities in generation rules.

Proof is omitted due to page limitations.

3.3 The Top-k Best Probability Algorithm

Input: probabilistic data D in ranking order, generation rules R.
Output: L answer set to top-k best probability query
foreach tuple ti {i=1 to n} do1

if i ≤ k then2

prktop(ti) ← p(ti) (Theorem 3);3

L ← L ∪ (ti, pr
k
top(ti));4

bestPr ← min{prktop(ti)};5

else6

if p(ti) > bestPr (Theorem 4) then7

Computing prktop(ti);8

if prktop(ti) > bestPr then9

bestPr ← prktop(ti);10

L ← L ∪ (ti, pr
k
top(ti));11

if bestPr satisfies Theorem 5 then12

Exit ;13

Algorithm 1. The top-k best probability

10 T.M.N. Le and J. Cao

Algorithm 1 is to find the top-k best probability answer L = Lscore ∪ Lpro in
section 3.2. Lscore is found from line 2 to line 5, and non-dominated tuples in
Lpro are selected from line 8 to line 11. For effectiveness, the pruning rules are
applied in line 7 and line 12. Finally, the answer L to the top-k best probability
query is returned.

4 Significance of Top-k Best Probability Query

In this section, we further analyse the top-k best probability query matching the
proposed requirements.

4.1 Dominating Concept for Semantic Answers

The top-k best probability is used to find the non-dominated tuples for the best
top-k probability value. This is the key of our proposal which has solved al-
most all the limitations of the previous approaches. A number of papers have
discussed about probabilistic data queries. The semantics of answering a query
can have different meanings in various applications [1, 17, 20]. The U-top-k [16],
C-Typical-top-k [4], and E-rank [3] were trying to create relations between the
ranking scores and top-k probabilities on probabilistic data in different domains.
These approaches are suitable in their specific situations, because these relations
have different meanings semantically. However, the real semantics of top-k an-
swers are mainly based on the users’ decisions on both top-k ranking score and
top-k probabilities. This is appropriate to use the non-dominated concept for
selecting answers to users.

4.2 Threshold vs. BestPr

A threshold plays an important role in the PT-k algorithm in paper [6]. The
authors used the static threshold to prune irrelevant answers. Hence, the PT-k
algorithm of top-k query seems to be more effective and efficient for process-
ing the top-k answers. However, it could be ineffective and inefficient for users,
because they ingeniously gave the problem of selecting the threshold value to
the users. The users randomly select the threshold from 0 to 1 several times
until obtaining a satisfactory answer. If the users choose a lower threshold than
the top-k probabilities of tuples, the computation cost of PT-k algorithm to the
top-k queries will be expensive due to the need to calculate almost all the top-
k probabilities of tuples. Otherwise, if the users choose a higher threshold than
top-k probabilities, the result set of PT-k algorithm will be empty due to pruning
all top-k probability tuples by the higher threshold. Moreover, users sometimes
do not have enough information or do not know about threshold for probabilis-
tic data. Therefore, it is not easy to choose a suitable threshold value as the
threshold is an unclear value for the users’. Therefore, based on the observation
our proposed algorithm does not use the threshold for pruning technique. Our
pruning technique uses bestPr which is automatically initialized and updated
during execution.

Top-k Best Probability Queries on Probabilistic Data 11

4.3 Semantics Ranking Properties

The previous work [3, 18] formally defined the key properties of ranking query
semantics on probabilistic data. These properties are Exact-k, Containment,
Unique ranking, Value invariance, and Stability. However, it is desirable that
the users also expect the results containing the k-best ranking scores. We con-
sider the capability of providing these scores as another property of ranking
query semantics on probabilistic data. We name this property as k-best ranking
scores. The following will present a comparison between our approach and the
previous work in terms of these properties.

U-top-k [16]: The Uncertain-top-k approach returns a set of top-k tuples,
namely, a tuple vector. This vector has the highest aggregated probabilities in
all possible worlds. The k-tuples in the tuple vector appear restrictively together
in the same possible worlds. Given the example of the probabilistic data in Table
1, the U-top-2 answer is the vector (t3, t4) which has the highest top-2 probability
vector 0.2272 in the possible world space. The answer to the U-top-2 query does
not contain the top-2 highest score tuples t1 and t2. As a results, the k-best
ranking scores property of U-top-k query answer is fail (Fail).

E-rank [3]: A new expected score is produced by the expected ranking to select
the top-k ranking query for probabilistic data. The authors used the ranking to
calculate the new expected score for their proposal to remove the magnitude of
normal expected score limitations. The magnitude of the normal expected score
is a tuple having low top-k probability and a high score, giving it the highest
expected score. If the score has been adjusted to just greater than the next
highest score, it will fall down the ranking. Applying E-rank for probabilistic
data in Table 1, the final expected score is ranked (t1, t3, t2, t5, t4, t6). The E-
rank top-2 query answer is (t1, t3) which does not contain the top-2 highest score
tuple t2. Hence, the E-rank query answer fail to reach the k-best ranking scores
property.

M. Hue and J. Pei [6] proposed a PT-k query on probabilistic data using
the threshold value to cut off irrelevant candidate tuples having lower top-k
probability. This was analysed in section I. The answer to the PT-2 query also
does not contain the top-2 highest score tuple t1 when the threshold is assigned
0.3 by users. The PT-2 query answer can contain the top-2 highest score tuples
when the threshold is assigned less than or equal to 0.29. Therefore, the k-best
ranking scores’ property is weakly acceptable (Ok).

To analyse these properties for our top-k best probability queries, the four
properties Containment, Unique ranking, Value invariance, and Stability are
proved similar to the PT-k method in paper [3]. The Exact-k property is defined
as “the top-k answer contains exactly k tuples”. The top-k best probability query
is fairly satisfied with this property, because this query always returns at least
k tuples as the answer. The answer to the top-k best probability query contains
top-k highest ranked score tuples Lscore and non-dominated tuples Lpro. In the
worst case, Lpro can contain only one tuple tpmin in Lscore. Hence, the Exact-
k property also is acceptable (Good) in the top-k best probability approach.

12 T.M.N. Le and J. Cao

Table 6. Summary of Top-k Methods

Method k
-b
es
t
ra
n
k
in
g
sc
o
re

E
x
a
ct
-k

C
o
n
ta
in
m
en

t

U
n
iq
u
e
ra
n
k
in
g

V
a
lu
e
in
va

ri
a
n
ce

S
ta
b
il
it
y

U-top-k Fail Fail Fail Good Good Good
PT-k Ok Fail Ok Good Good Good
E-Rank Fail Good Good Good Good Good
Top-k bestPr Good Ok Ok Good Good Good

The last property k-best ranking score is also obtained by top-k best probability
result because of containing Lscore the k highest ranking tuples.

Overall, Table 6 illustrates that our proposed approach covers six properties
of semantic ranking while the previous studies all fail in at least one of these
properties. Hence, the answers to the top-k best probability queries overcome the
other answers to earlier top-k queries on probabilistic data in terms of semantic
ranking properties.

5 Experimental Study

In this section, we report an extensive empirical study over a real data set to
examine which is more effective and efficient than the ranking queries with the
threshold approach [6]. All the experiments were conducted on a PC with a
2.33GHz Intel Core 2 Duo, 3 GB RAM, and 350GB HDD, running Windows XP
Professional Operating system. All algorithms were implemented in C++.

We use the International Ice Patrol Iceberg Sighting dataset for our real ex-
periment1. This data set was used in previous work on ranking and skyline
queries in probabilistic data [6, 11, 9]. The IIP’s mission is to survey, plot and
predict iceberg drift to prevent icebergs threatening ships’ travel. The data in
the IIP collection is structured in ASCII text files. The data contains a set of
iceberg sightings as tuples, each tuple including the important attributes (Sight-
ing Source, Position, Date/Time, Iceberg Description, Drifted days). These are
very important for detecting the travel of icebergs. Making the top-k queries
using the number of days of iceberg drift as a ranking score is considered an
important tool for predicting the icebergs’ travel. Moreover, there are six types
of sighting sources which are R/V (Radar and Visual), VIS (VISual only), RAD
(RADar only), SAT-LOW (LOW earth orbit SATellite), SAT-MED (MEDium
earth orbit SATellite), and SAT-HIGH (HIGH earth orbit SATellite). The differ-
ences in confidence-levels of these sighting sources are classified and presented by

1 ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G00807

Top-k Best Probability Queries on Probabilistic Data 13

probabilistic values which are R/V(0.7), VIS(0.6), RAD(0.5), SAT-LOW(0.4),
SAT-MED (0.3), and SAT-HIGH(0.2). These numbers are also considered as
probabilities of independent tuples in IIP data.

In the IIP data, some sighting tuples from different sighting sources could
detect the same iceberg at the same time. In this situation, if the distance of
these sighting tuples is less than 0.1 mile, they are considered to be sightings of
one iceberg collected from different sources. Therefore, of these sighting tuples,
only one tuple can be correct. These tuples are recorded on the IIP data which
is controlled by generation rules Rr = tr1 ⊕ tr2 ⊕ ... ⊕ trq . The probabilities of
these records are adjusted by the following formula:

p(trj) =
p(trj)∑m
i=1 p(tri)

× max(p(tr1), ..., p(trm))

where p(trj) is the probability of sighting sources of tuple trj .
After reprocessing all sighting tuples in IIP data 2009, the IIP probabilistic

data contains 13,039 tuples and 2,137 generation rules. One of the generation
rules is Rr = t7 ⊕ t8 ⊕ t9 ⊕ t10. The proposed algorithm is executed on this
IIP probabilistic data for the top-10 best probability query, the answer to this
query being (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) as shown in Table 7. Tuple t1 has
the highest value in the Drifted Days attribute, t2 is the other tuple which has
the same value or the second highest value in the Drifted Days attribute, and
so on. The answer to the top-10 best probability query contains the 10 highest
scoring tuples in the data set (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10). Tuple t11 is in the
answer due to the fact that it has a top-10 probability better than a tuple in
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10). t11 is a non-dominated tuple. Moreover, tuples
(t12, t13, t14, t15, . . .) are not in the answer because they are dominated by t11 on
both ranking score and top-k probability.

Table 7. Highest scores of tuples in IIP (2009)

Tuple Drifted days Pro. of tuples Top-10 pro.
t1 500.0 0.2917 0.2917
t2 500.0 0.2333 0.2333
t3 495.8 0.7 0.7
t4 488.7 0.35 0.35
t5 455.5 0.6 0.6
t6 439.5 0.7 0.7
t7 435.2 0.15 0.15
t8 431.6 0.15 0.15
t9 431.0 0.15 0.15
t10 430.9 0.15 0.15
t11 427.6 0.7 0.7
t12 423.5 0.7 0.7
t13 416.2 0.7 0.6
t14 414.5 0.3 0.299
t15 408.8 0.2 0.198

14 T.M.N. Le and J. Cao

On this IIP probabilistic data, we also applied PT-10 queries [6] by setting
different thresholds, as shown in Figure 1. This illustrates that the number of
tuples in the answer to PT-10 are different to the different values of threshold.
If the threshold is greater than or equal to 0.35, the number of tuples in the
PT-10 queries is less than 10. This is surely due to the PT-10 answers missing
some of tuples which have the top-10 highest scores in the data set, which is the
reason for losing important tuples in PT-k approach. Therefore, threshold plays
a main role in selecting an answer to the PT-k queries. It is not easy for the users
to choose the threshold to obtain suitable answers. In our approach, the users
do not need to choose the threshold. The best answer will be returned without
losing any important tuples in terms of the non-dominated set, whereupon, the
users can choose the best one in both ranking score and top-k probability.

Fig. 1. The answer to the PT-10 vs. thresholds

Moreover, we compare the PT-k algorithm (PT-k), our proposed algorithm
(top-k best probability), and the top-k normal algorithm (top-k normal) to eval-
uate which is the most effective calculation and the most efficient answers. The
top-k normal algorithm simply returns the k top-k highest ranking scores in the
data set. The top-k normal algorithm has been widely used on certain data, but
has not been used on probabilistic data. We mention it as the axis for comparison
of the PT-k results and top-k best probability results. The threshold of the PT-k
algorithm is assigned 0.15 the minimum probabilities from t1 to t15 of Table 7.
This value is selected due to the fact that the PT-k satisfied the “k-best ranking
score” attribute of Table 6. It means that all answers to the PT-k will contain
the top-k highest scoring tuples when k is run from 1 to 15. For these settings,
we execute programs to obtain the results in Figure 2 and 3.

The effectiveness of the proposed algorithm can be verified by counting the
number of tuples which are accessed during the executing algorithm. The lower
the number of tuples accessed, the more effective the algorithm. Figure 2 shows
that the top-k best algorithm accesses fewer tuples than the PT-k algorithm.
The top-k normal algorithm has the best performance in accessing the number
of tuples. However, this algorithm has only been executed on certain data.

Figure 3 shows the number of tuples in the answers to the PT-k queries, the
top-k best probability queries, and the normal queries. The users always expect
that the answers to the top-k queries on probabilistic data are concise. Figure 3
shows that all the answers to the top-k best probability queries contain less tuples

Top-k Best Probability Queries on Probabilistic Data 15

Fig. 2. Accessed tuples vs. k Fig. 3. Tuples in answer vs. k

than the answers to PT-k. Also, they are closer to the top-k normal answers.
This can explain why the PT-k answers can contain redundant tuples which do
not have the top-k highest score and the best top-k probabilities. Hence, the
answers to the top-k best probability queries are more concise than the answers
to PT-k queries.

In real data, the results clearly show that the top-k best probability algorithm
removed the unclear threshold value and reduced the number of accessed tuples
compared to the PT-k algorithm. This makes the top-k best probability algo-
rithm more effective. Moreover, the answers to the top-k best probability queries
are concise.

6 Conclusions

In this paper, we proposed a novel top-k best probability for queries on proba-
bilistic data, which selects the top-k best ranking score and the non-dominated
tuples for users. Firstly, several concepts and theorems from previous studies
were formally defined and discussed. Then, semantic ranking properties were
introduced to answer top-k best probability queries, and an effective algorithm
was created. This proposed approach has been demonstrated the improvement
of previous state-of-the-art algorithms. The answer has not only the best top-k
score but also the top-k best probability. Finally, the experimental results ver-
ified the efficiency and effectiveness of our approach on IIP real probabilistic
data. The proposed approach has been proven outperformed PT-k.

In many real life domains, uncertain data is inherent in many applications
and modern equipments. Therefore, discovering semantic answers to queries is a
critical issue in relation to uncertain data. The proposed approach can be applied
to modelling, managing, and analysing on uncertain data.

References

[1] Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE TKDE 21, 609–623 (2009)

[2] Atallah, M.J., Qi, Y.: Computing all skyline probabilities for uncertain data. In:
PODS, pp. 279–287 (2009)

16 T.M.N. Le and J. Cao

[3] Li, F., Cormode, G., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: ICDE, March 29-April 2, pp. 305–316 (2009)

[4] Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: on score distri-
bution and typical answers. In: SIGMOD, pp. 375–388 (2009)

[5] Getoor, L.: Learning Probabilistic Relational Models. In: Choueiry, B.Y., Walsh,
T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 322–323. Springer, Heidelberg
(2000)

[6] Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a prob-
abilistic threshold approach. In: SIGMOD, pp. 673–686 (2008)

[7] Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM 40, 1–58 (2008)

[8] Jan, C., Parke, G., Jarek, G., Dongming, L.: Skyline with presorting theory &
optimizations. IIPWM 31, 595–604 (2005)

[9] Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on
uncertain streams. In: VLDB, pp. 301–312 (2008)

[10] Lange, K.: Numerical analysis for statisticians. Springer, Heidelberg (1999)
[11] Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic

databases. In: VLDB, pp. 502–513 (2009)
[12] Pang-Ning, T., Michael, S., Vipin, K.: Introduction to data mining. Library of

Congress (2006)
[13] Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm

for skyline queries. In: SIGMOD, pp. 467–478 (2003)
[14] Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:

VLDB, pp. 15–26 (2007)
[15] Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain

data. In: ICDE (2006)
[16] Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain

databases. In: ICDE, pp. 896–905 (2007)
[17] Soliman, M.A., Ilyas, I.F., Chang, K.C.–C.: Probabilistic top-k & ranking-

aggregate queries. ACM Trans. Database Syst. 33, 13:1–13:54 (2008)
[18] Xi, Z., Jan, C.: Semantics and evaluation of top-k queries in probabilistic

databases. Distributed Parallel Databases 26(1), 67–126 (2009)
[19] Yan, D., Ng, W.: Robust Ranking of Uncertain Data. In: Yu, J.X., Kim, M.H.,

Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 254–268. Springer,
Heidelberg (2011)

[20] Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in
uncertain databases with x-relations. TKDE 20, 1669–1682 (2008)

[21] Zhang, S., Zhang, C.: A probabilistic data model and its semantics. Journal of
Research & Practice in Information Technology 35, 237–256 (2003)

[22] Zhang, W., Lin, X., Pei, J., Zhang, Y.: Managing uncertain data: probabilistic
approaches. In: Web-Age Information Management (2008)

Probabilistic Reverse Skyline Query Processing

over Uncertain Data Stream

Mei Bai, Junchang Xin, and Guoren Wang

College of Information Science & Engineering, Northeastern University, P.R. China
baimei1221@gmail.com, {xinjunchang,wangguoren}@ise.neu.edu.cn

Abstract. Reverse skyline plays an important role in market decision-
making, environmental monitoring and market analysis. Now the flow
property and uncertainty of data are more and more apparent, prob-
abilistic reverse skyline query over uncertain data stream has become
a new research topic. Firstly, a novel pruning technique is proposed to
reduce the number of uncertain tuples reserved for processing continu-
ous probabilistic reverse skyline query. Then some probability pruning
techniques are proposed to reduce some redundant calculations. Next,
an efficient algorithm, called Optimization Probabilistic Reverse Skyline
(OPRS), is proposed to process continuous probabilistic reverse skyline
queries. Finally, the performance of OPRS is verified through a large
number of simulation experiments. The experimental results show that
OPRS is an effective way to solve the problem of continuous probabilis-
tic reverse skyline, and it could significantly reduce the executionx time
of continuous probabilistic reverse skyline queries and meet the require-
ments of practical applications.

1 Introduction

With the development of information technology, the generation speed of mass
data becomes faster and faster, and the flow property of data becomes more
and more apparent. At the same time, the uncertainty of data has taken on,
so uncertain data stream has become a new research topic. Traditional data
processing technology cannot meet the requirements of uncertain data stream,
hence it is necessary to study the processing technology of uncertain data stream.

The skyline operator [1] and its variations [2,3,5,6,7,8,9,4] play an important
role in daily life. Given a set P of points, the skyline of P contains all the
points which are not dominated by any other points in P . We can say a point
x dominates y, if x is not worse than y for each dimension i, and x is better
than y for at least one dimension j. In this paper, the smaller the value is, the
better it is. Let x.i denotes the value of x in dimension i, then x dominates y
can be expressed by the formula, x ≺ y ⇔ (∀i ∈ {1, 2, ..., d}, x.i ≤ y.i) ∧ (∃j ∈
{1, 2, ..., d}, x.j < y.j). Figure 1 illustrates an example of skyline in 2-D space,
point a, c and e are the skyline points, because there are no other points can
dominate them.

Given a data set P and a query point q, Dynamic skyline [5,6] of P contains
all the points which are not dynamic dominated with respect to (w.r.t.) q by any

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 17–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 M. Bai, J. Xin, and G. Wang

other points in P . Tuple x dynamic dominates y, if x doesn’t have longer distance
to q than y for each dimension i, and x has shorter distance to q than y for at
least one dimension j. Then x dynamic dominates y w.r.t. q can be expressed
by the formula, x ≺q y ⇔ (∀i ∈ {1, 2, ...d}, |x.i − q.i| ≤ |y.i − q.i|) ∧ (∃j ∈
{1, 2, .., d}, |x.j − q.j| < |y.j − q.j|). As illustrated in Figure 1, point c, d and f
are the dynamic skyline points w.r.t. q.

Reverse skyline [6,7,8,9] is proposed based on the concept of dynamic skyline,
given a data set P and a query point q, reverse skyline w.r.t. q of P contains
all the points whose dynamic skyline contains q. As shown in Figure 1, q is the
reverse skyline of c, since c is contained in the dynamic skyline w.r.t. q. Reverse
skyline plays an important role in market decision-making.

With the development of economic and the progress of technological means,
the flow property and uncertainty of data become more and more apparent.
So reverse skyline query can be introduced to uncertain data streams which is
very useful for many applications. For example, in the shopping site, lots of new
product information can be modeled as uncertain date stream. If a shopkeeper
want to take some new products to sell, it is desirable for the new products to
attract the customers’ attention. If a customer is interested in a product p, s/he
might be also interested in the dynamic skyline of p. Therefore, the shopkeeper
conduct a reverse skyline query over all the new products w.r.t. the best-selling
product in the shopping site, then s/he can get the best purchase programme.

Although reverse skyline query has been studied in recent years [6,7,8,9,10,11],
there has no efficient method to process reverse skyline query over uncertain
data stream. In this paper, we propose an efficient algorithm, called Optimiza-
tion Probabilistic Reverse Skyline (OPRS), to continuously answer probabilistic
reverse skyline. The contributions of this paper are summarized as follows:

1. Through detailed and in-depth analysis of reverse skyline’s properties over
uncertain data stream, some pruning techniques are proposed.

2. Based the analysis of pruning techniques, a algorithm Optimization Proba-
bilistic Reverse Skyline (OPRS) is proposed.

3. The experimental results show that OPRS can efficiently process probabilis-
tic reverse skyline query over uncertain data stream.

The rest of the paper is organized as follows. Section 2 briefly review the related
work. Section 3 introduce some related concepts and define the problem of prob-
abilistic reverse skyline over uncertain data stream. Section 4 discuss the details
of OPRS algorithm. Section 5 describe the experimental results, and the results
are analyzed. Finally, we conclude the paper in Section 6.

2 Related Work

Since Borzsonyi et al. [1] introduced the concept of skyline to database in 2001,
many efficient algorithms about skyline and its variations have been proposed.
Papadias et al. [5] proposed the concept of dynamic skyline in 2003. There are
many efficient algorithms for processing skyline query. For example, BBS [5]

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 19

process skyline query based on R-tree, making use of the corner of MBR to prune
some redundant tuples, which greatly improve the efficiency of the algorithm.

Based on dynamic skyline, Dellis et al. [6] proposed the concept of reverse
skyline, they propose BBRS algorithm to process reverse skyline on the basis of
BBS, BBRS make use of R-tree to compute global skyline, then do window query
for all the global skyline points, get the final results. Wang et al. [10] proposed
the concepts of semi-dominance and semi-skyline, then they propose an efficient
algorithm to compute reverse skyline on sensor networks on basis of skyband.

Lin et al. [12] proposed CCS and PCS to compute skyline over data stream,
CCS can real-timely respond to the change of data, and prune the data on
data stream through dominance relationship transitivity. PCS is appropriate
for the application environment which updates periodically, and it help save
CPU resources. Zhang et al. [13] proposed probabilistic skyline query algorithm
over sliding window, which reduce the number of data in the sliding window by
dominance relationship transitivity, and then make use of the valid time of data
in sliding window to prune. Zhu et al. [11] proposed DCRS to compute reverse
skyline over data stream, based on the DC-tree and the concept of 2-skyline,
DCRS can continuously compute the reverse skyline over data stream. There
are many other algorithms [14,15,16,17] proposed to process skyline query and
its variations over data stream. In this paper, we propose a algorithm to process
continuous probabilistic reverse skyline over uncertain data stream, which is
different from all the studies above.

3 Problem Statement

First, we recall two important concepts, full-dominate [10] and semi-dominate
[10]. All the full-dominance relationship and semi-dominance relationship in this
paper are with respect to the query point q, later we omit ”w.r.t. q” for shortness.

Definition 1 (full-dominate [10]). Given a set P of tuples in a d-dimensional
space D, q is the query point, x full-dominate y (denoted x≺̄qy) if: 1)∀i ∈
D, |x.i − q.i| ≤ |y.i − q.i|, |x.i − q.i||y.i − q.i| ≥ 0; 2)∃j ∈ D, |x.j − q.j| <
|y.j − q.j|, |x.j − q.j||y.j − q.j| > 0.

Definition 2 (semi-dominate [10]). Given a set P of tuples in a d-
dimensional space D, q is the query point, x semi-dominate y (denoted x≺̃qy) if:
1)∀i ∈ D, |x.i− q.i| ≤ 2|y.i− q.i|, |x.i− q.i||y.i− q.i| ≥ 0; 2)∃j ∈ D, |x.j − q.j| <
2|y.j − q.j|, |x.j − q.j||y.j − q.j| > 0.

Figure 2 illustrates an example of full-dominance and semi-dominance, by Defini-
tion 1 and 2 we can see that, if two points have full-dominance or semi-dominance
relationships, they must appear in the same region of the query point. For ex-
ample, a can full-dominate b, f can full-dominate h, then a, b are in the first
region of q, and f , h in the forth region. In Figure 2, point a, b, c are in the same
region, b and c can semi-dominate a, and a, b cannot semi-dominate c, hence
there are no points can semi-dominate c.

20 M. Bai, J. Xin, and G. Wang

a

b

c

d

e

f

q

b'

a'

c'
d'

e'

0 price

si
ze

Fig. 1. Example of Skylines and Its
Variations

a

b

c
d

e f

q

0 price

si
ze

b'

h
h'

a'

c'

firstsecond

third forth

Fig. 2. Example of Full-dominate and
Semi-dominate

In paper [10], there has been an very useful theorem about semi-dominance,
which can help to process reverse skyline query, as shown in Theorem 1. Due to
the article length restrictions, proofs in this paper are omitted.

Theorem 1. [10] Given a set P of tuples in d-dimensional space D, q is the
query point, the reverse skyline of P w.r.t. q contains all the tuples which are
not semi-dominated by any other tuples in P .

Then we introduce the concept of probabilistic reverse skyline in uncertain
database. In uncertain database U , every point u must have an exist proba-
bility to express the probability that u occurs, denote as P (u). For uncertain
tuple u, reverse skyline probability of u w.r.t. q means the probability that u
become the reverse skyline w.r.t. q, denoted as PRSky(u, q). Through Theorem
1, we know that the reverse skyline probability of u equals to the product of u’s
exist probability and the probability that all the tuples which can semi-dominate
u don’t occur. So we can get Formula 1.

PRSky(u, q) =
∏

u′∈U,u′≺̃qu
(1 − P (u′)) × P (u) (1)

Definition 3 (probabilistic reverse skyline [8]). Given a set U of uncertain
tuples, the threshold t and the query point q, probabilistic reverse skyline of U
w.r.t. q contains all the uncertain points in U whose reverse skyline probability
is not smaller than t (denoted PRSky(U, q) = {u|PRSky(u, q) ≥ t}).

Figure 3 illustrates an example of probabilistic reverse skyline. In Figure 3(a),
only u1 can semi-dominate u2, so reverse skyline probability of u2 w.r.t. q
is PRSky(u2, q) = (1 − P (u1)) × P (u2) = 0.54, then PRSky(u1, q) = 0.04,
PRSky(u3, q) = 0.052, PRSky(u4, q) = 0.1, PRSky(u5, q) = 0.026. So in Figure
3(a), only u2 is the probabilistic reverse skyline.

Finally, we introduce the probabilistic reverse skyline over uncertain data
stream. Given an uncertain data stream UDS, every uncertain tuple u has a
label κ(u) to indicate its position in UDS. Supposed that in uncertain data
stream, we can only process the recent N points, then use UDSN to denote the
most recent N uncertain points over the data stream. The probabilistic reverse
skyline over uncertain data stream can be defined as Definition 4.

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 21

q
u1

u2

u5

u4

u3

u3'

u5'

u2' u1'

u4'

x

y

P(u1)=0.1

P(u2)=0.6

P(u3)=0.9

P(u4)=0.1

P(u5)=0.8

threshold=0.5

(a) This moment

q

u2

u5

u4

u3

u3'

u5'

u2'

u6'
u4'

x

y

P(u2)=0.6

P(u3)=0.9

P(u4)=0.1

P(u5)=0.8

P(u6)=0.7

threshold=0.5

u6

(b) Next moment

Fig. 3. Example of Probabilistic Reverse Skyline over Uncertain Data Stream

Definition 4 (probabilistic reverse skyline over uncertain data stream).
Given an uncertain data stream UDS, threshold t and query point q, probabilis-
tic reverse skyline over UDS w.r.t. q continuously retrieves all the points in the
most recent N points to find the probabilistic reverse skyline in UDSN .

As illustrated in Figure 3, supposed that N = 5, Figure 3(a) contains the tuples
of UDSN at this moment, u2 is the probabilistic reverse skyline. Next moment,
u6 enters into the data stream and u1 is overdue, then UDSN is shown as Figure
3(b), u2 and u6 are probabilistic reverse skyline at next moment.

4 Optimization Probabilistic Reverse Skyline

4.1 Preliminaries

First, we introduce some common symbols in this paper. UDSN express the
recent N uncertain tuples over data stream, q and t represent the query point
and threshold respectively, and u, u′ denote a uncertain tuple in UDSN .

We know that there is sequence between tuples in UDSN . For a tuple u,
u′ is u’s prefix tuple/postfix tuple if u′ enters into UDSN before/after u. If u′

is u’s prefix/postfix tuple and u′ can semi-dominate u, then we call u′ is u’s
pre-semidom tuple/post-semidom tuple. If u′ is u’s postfix tuple and u′ can full-
dominate u, then u′ is u’s post-fuldom tuple. All the pre-semidom tuples of u in
UDSN constitute the set PreSemiDom(u, q), all the post-semidom tuples of u
in UDSN constitute the set PostSemiDom(u, q), while all the post-fuldom tu-
ples of u in UDSN constitute the set PostFulDom(u, q). We use PNpreSD(u, q),
PNpostSD(u, q) and PNpostFD(u, q) to denote the probability that all the tuples in
PreSemiDom(u, q), PostSemiDom(u, q) and PostFulDom(u, q) don’t exist re-
spectively. Then probability PNpreSD(u, q) =

∏
u′∈PreSemiDom(u,q) (1 − P (u′)),

PNpostSD(u, q) =
∏

u′∈PostSemiDom(u,q) (1 − P (u′)), and then PNpostFD(u, q) =∏
u′∈PostFulDom(u,q) (1 − P (u′)). Formula 1 can be transformed as Formula 2.

PRSky(u, q) = PNpreSD(u, q) × P (u) × PNpostSD(u, q) (2)

Reserved Tuples of UDSN . Through the detailed and in-depth analysis of
reverse skyline’s properties over uncertain data stream, we know that delete some

22 M. Bai, J. Xin, and G. Wang

tuples from UDSN will not change the result. And the tuples which cannot be
deleted constitute the reserved tuples of UDSN (denoted as UDSN,reserved).

UDSN,reserved can be separated into three sets, Probabilistic Reverse Skyline
Set (PRSN), Candidate Set (CSN) and Effect Set (ESN). PRSN contains all the
probabilistic skyline points in UDSN,reserved, CSN contains all the points which
are not probabilistic reverse skyline at this moment, but will be probabilistic
reverse skyline later, ESN contains all the other tuples in UDSN,reserved.

Next, we present what kind of tuples in UDSN can be deleted. According to
Formula 2, for a tuple u in UDSN , we can know that PNpreSD(u, q) can’t become
smaller with the invalidation of old tuple, while PNpostSD(u, q) can’t become
larger with the insertion of new tuple. From Definition 3 and 4, if u wants to be a
probabilistic reverse skyline point, then PRSky(u, q) ≥ t, so PNpreSD(u, q), P (u)
and PNpostSD(u, q) must not smaller than t. For a tuple u in UDSN , u belongs
to PRSN if PRSky(u, q) ≥ t, u belongs to CSN if P (u)×PNpostSD(u, q) ≥ t and
PRSky(u, q) < t. Then we consider the situation in which u can be deleted, there
is a theorem between full-dominance and semi-dominance as Theorem 2.

Theorem 2. [10] If tuple x full-dominate tuple y, and y semi-dominate tuple
z, then x can semi-dominate z.

According to Theorem 2, if any tuple u′ can be semi-dominated by u, then u′

can be semi-dominated by all the tuples in PostFulDom(u, q). If the probability
PNpostFD(u, q) < t, u can’t belong to PRSN and CSN , and u can be directly
deleted without affecting continuously probabilistic reverse skyline query. Based
on the delete condition, we can get UDSN,reserved as Formula 3.

UDSN,reserved = {u|u ∈ UDSN ∧ PNpostFD(u, q) ≥ t} (3)

Then we can prove that at any time, the set PRSN of UDSN and the PRSN of
UDSN,reserved are equal. In order to distinguish in theorems, we use superscript
RE to denote corresponding value of UDSN,reserved. For example, PRE

RSky(u, q)
denote the probability PRSky(u, q) in UDSN,reserved.

Theorem 3. For any tuple u in UDSN , if u belongs to PRSN , then u must
belong to PRSRE

N of the same moment UDSN,reserved.

If u ∈ PRSN , then u ∈ UDSN,reserved, because all the tuples in UDSN,reserved

must be in UDSN , then we can get PRE
RSky(u, q) ≥ t, so u ∈ PRSRE

N .

Theorem 4. For any tuple u in UDSN , if u doesn’t belong to PRSN , and u is
in UDSN,reserved, then u must not belong to PRSRE

N .

If u /∈ PRSN and u ∈ UDSN,reserved, then PRSky(u, q) < t. For any tuple
u′≺̃u, if u′ ∈ UDSN,reserved, then PRE

RSky(u, q) < t. If u′ /∈ UDSN,reserved, every

tuples in PostFulDom(u′, q) can semi-dominate u, also get PRE
RSky(u, q) < t, so

u /∈ PRSRE
N . Then easily get Theorem 5 from Theorem 3 and 4.

Theorem 5. At any moment, the set PRSN of UDSN must equal to PRSRE
N

of UDSN,reserved.

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 23

According to Theorem 5, the problem of reverse skyline query over uncertain
data stream can be simplified to computing probabilistic reverse skyline over
UDSN,reserved, and we can directly delete the tuples which not meet the condi-
tion in Formula 3. The following calculations are carried out in UDSN,reserved,
and we omit superscript RE later in this paper. The tuples in UDSN,reserved can
be summarized as follows.

◦ Probabilistic Reverse Skyline Set (PRSN): All tuples belongs to set
PRSN are called result tuple(RT), whose probability PRSky(u, q) ≥ t.

◦ Candidate Set (CSN): The tuples belongs to set CSN are called candidate
tuple(CT), whose probability P (u)×PNpostSD(u, q) ≥ t and PRSky(u, q) < t.

◦ Effect Set (ESN): The tuples belongs to set ESN are called effect tuple
(ET), whose probability PNpostFD(u, q) ≥ t and P (u) × PNpostSD(u, q) < t.

Probability Prunings. In this section we present some pruning strategies
about probability. If tuple u’s probability PRSky(u, q) < t, we don’t need to
compute the exactly value of PRSky(u, q), only need to know that PRSky(u, q) is
smaller than t. Then we can get some probability pruning strategies.

If tuple u’s exist probability P (u) < t, we can know u can’t be a RT or CT ,
so u can only be a ET before it is deleted. Then we can easily get Theorem 6.

Theorem 6. For a tuple u, if the exist probability P (u) < t, u can be only an
effect tuple before it is deleted.

For a CT u, we know P (u) × PNpostSD(u, q) ≥ t and PRSky(u, q) < t, when u
can become a RT depends on probability PNpreSD(u, q). So we should keep the
set PreSemiDom(u, q) to determine the moment that u become a RT when one
tuple in PreSemiDom(u, q) is overdue. We don’t need to keep the complete set
PreSemiDom(u, q) if PNpreSD(u, q) < t. We use PreShortSD(u, q) to denote
the set we need keep. PNpreShort(u, q) denote the tuples in PreShortSD(u, q)
don’t exist, it is PNpreShort(u, q) =

∏
u′∈PreShortSD(u,q) (1 − P (u′)). If P (u) ×

PNpreSD(u, q) ≥ t, PreShortSD(u, q) are equal to PreSemiDom(u, q), other-
wise PreShortSD(u, q) is the shortness of PreSemiDom(u, q).

For a RT u, we must keep its set PreSemiDom(u, q), because we should
update its probability timely, and we can also use PreShortSD(u, q) instead
of PreSemiDom(u, q). When we compute the set PreShortSD(u, q), accessing
the data stream by reverse order can improve the calculation efficiency.

In Figure 3(a), u5 is a CT and u2 is a RT , keep PreShortSD(u2, q) =
{u1} and PreShortSD(u5, q) = {u3, u4}. For u5, its PreSemiDom(u5, q) =
{u1, u2, u3, u4}. Because P (u5) × PNpreShort(u5, q) = 0.072 < t and P (u5) ×
(1 − P (u4)) = 0.72 > t, we don’t need further calculation and get PreShortSD
(u5, q) = {u3, u4}. Only if u3 is overdue, u5 will have a chance to become a RT .

Sliding Window Structure. We use sliding window to model data stream,
each tuple is stored in the corresponding window wi, besides there is also a set
in each window wi (denoted as wi.set). For a tuple ui whose label κ(ui) = i,

24 M. Bai, J. Xin, and G. Wang

then ui is stored in wi whose label κ(wi) = i. wi.set stores some tuples u, the
first tuple in PreShortSD(u, q) have the same label with wi. Only RT and CT
need to keep PreShortSD(u, q), so in window set there are only RT and CT .

It is known that if probability PNpostFD(ui, q) < t, ui can be deleted. If wi.set
is not empty, we should reserve P (ui), otherwise ui can be deleted completely.
Figure 4 illustrates the sliding window model of Figure 3(a).

PreShortSD(u2,q)={u1}
PreShortSD(u5,q)={u3,u4}

w1 w2 w3 w4 w5

PRS={u2}
CS={u5}
ES={u1,u4}

wi wi.tuple wi.set
w1

w2

w3

w4

w5

u1

u2

P(u3)
u4

u5

u2

Ø
u5

Ø
Ø

Fig. 4. The Sliding Window Model of Figure 3(a)

In Figure 3(a), only u2 and u5 are RT or CT , so in Figure 4, window sets
stores u2 and u5. The first tuple in PreShortSD(u5, q) is u3, so u5 stores in
w3.set. It is known u3 can be deleted, but u3.set is not empty, so we keep P (u3).

4.2 OPRS Algorithm

Data Structure. According to Definition 1 and 2, full-dominance relationship
and semi-dominance relationship only exist between two tuples in the same re-
gion w.r.t. q, so the whole data space can be divided into 2d different regions.
When a new tuple u arrives, we need to find the tuples in UDSN,reserved which
has full-dominance relationship or semi-dominance relationship with u, and we
just need to scan all the regions that u belongs to (if u has the same values as
q in some dimensions, u belongs to more than one region). For simplicity, the
tuples in different regions can be stored independently, and each region need to
maintain its sets PRSN , CSN and ESN . R-tree index can help to calculation,
hence each region maintains an independent R-tree, as showed in Figure 5.

u1
u2

u3

u4

u5

u6

u7

u8

u9

u10

q x

y region1 region2

region3 region4

(a) Date set

R1

e1 e2

u1 u2 u3 u4

R2

u5 u6

R3

u7 u8

R4

u9 u10

(b) R-trees

Fig. 5. Example of Data Structure

In Figure 5(a), u3 belongs to region1 and region2. There is a R-tree for each
region, as illustrated in Figure 5(b). A tuple can be stored in only one R-tree,
but must be computed in all the corresponding R-trees of its regions. For exam-
ple, when u3 arrives, u3 belongs to region1 and region2, then we compute the

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 25

full-dominance and semi-dominance relationships between u3 and the tuples in
corresponding R-tree R1 and R2, finally u3 is stored in only one R-tree R1.

For simplicity, we reserve a label lmax for every entry of R-tree, the label
e.lmax represents the largest label of the tuples in entry e. For example, in R1 of
Figure 5(b), e1.lmax = 2 and e2.lmax = 4. Since our techniques are based on R-
tree, we present the relationships between u and R-tree entry e, e.min and e.max
denote the lower-left and the upper-right corner of e. The main relationships are
illustrated in Figure 6.

q

u4

u3

u4'

x

y

e.min

e.max

u1

u2

u2'

u3'

e

(a) Relationship u to e

q x

y

e.min

e.max

u1

u2

e.min'

e.max'

e

(b) Relationship e to u

Fig. 6. Example of Relationships between Tuples and R-tree Entry

Figure 6(a) illustrates the semi-dominance and full-dominance relationships
from tuples to e. u1 (u2) can full-dominate (semi-dominate) e.min, then all
the tuples in e can be full-dominated (semi-dominated) by u1 (u2), no further
calculation. While u3 (u4) can’t full-dominate (semi-dominate) e.max, then u3

(u4) can full-dominate (semi-dominate) no tuples in e, and we can ignore e.
Figure 6(b) illustrates the semi-dominance relationships from e to tuples.

e.min can’t semi-dominate u1, then all the tuples in e can’t semi-dominate u1,
e can be ignored. While e.max can semi-dominate u2, then all the tuples in e
can semi-dominate u2, don’t need further calculation.

OPRS Description. When a tuple unew enters into the data stream, if its label
κ(unew) > N , the old window wold whose label κ(wold) = κ(unew) − N should
be cleared, then deal with unew. We can get the frame of OPRS as Algorithm 1.

Algorithm 1. Frame of OPRS

input : Sliding window size N , threshold t and query point q.
output: Continuously maintain probabilistic reverse skyline set PRSN

while a new tuple unew arrives do1

if κ(unew) > N then2

Clearwindow(wold);3

Insert(unew);4

Algorithm 2 describes how to clear a window wold. If the old tuple uold which
should be in wold has been expired, only need to dispose wold.set. Otherwise
uold hasn’t been expired, after dealing with wold.set, uold should be deleted. For
every tuple u′ ∈ wold.set, its PNpreSD(u′, q) = PNpreSD(u′, q)/(1 − P (uold)). If
PRSky(u

′, q) ≥ t, u′ can be added into result set PRSN .

26 M. Bai, J. Xin, and G. Wang

Algorithm 2. Clearwindow(wold)

input : Threshold t , query point q and uold’s probability P (uold) in wold.
output: Changed probabilistic reverse skyline set PRSN

while wold.set is not empty do1

remove top tuple u′ from wold.set; PNpreSD(u′, q)/ = (1− P (uold));2

remove first tuple uold from PreShortSD(u′, q);3

add u′ to PreShortSD(u′, q)’s first tuple’s window set;4

if u′ is used to be a CT and PRSky(u
′, q) ≥ t then5

add u′ to result set PRSN ;6

if the tuple uold should be in wold hadn’t been expired then7

find the R-tree Ri that u belongs to; delete u from Ri;8

Algorithm 3 describes a new tuple unew is inserted into the data stream. First,
we should calculate the set PreShortSD(unew, q) and find the corresponding
window set that unew belongs to, which is described in CalPreShortSD(unew, q).
Then unew is stored in any one R-tree it belongs to. Finally, we should con-
sider the impact from unew to the tuples in data stream, which is described in
CalNewRtree(unew, q).

Algorithm 3. Insert(unew)

input : Threshold t , query point q and the new tuple unew.
output: Changed R-trees, changed sets PRSN , CSN and ESN

find the R-tree set RS that unew belongs to;1

if P (unew) ≥ t then2

for each Ri in RS do3

Ri.CalPreShortSD(unew ,q);4

add unew to PreShortSD(unew , q)’s first tuple’s window set;5

if PRSky(unew , q) ≥ t then6

add unew to set PRSN ;7

add unew to any one R-tree it belongs to;8

while RS is not empty do9

remove the top R-tree Ri from RS; Ri.CalNewRtree(unew , q);10

for each ui in set TD do11

delete ui from R-tree Ri; find the window wi of ui;12

if wi.set is not empty then13

reserve probability P (ui) in wi14

delete ui from wi;15

for each ui in set TC do16

delete ui from PRSN ;17

for each ui in TE do18

save ui as a effect tuple;19

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 27

In Algorithm 3, we discuss the impact from unew to every tuples in UDSN .
For a tuple ui ∈ UDSN , if ui can be deleted directly under the influence of unew,
we can completely delete ui if ui’s window set wi.set is empty. Otherwise we can
delete ui but have to reserve the probability P (ui) if there are some tuples in
wi.set. If ui becomes a candidate tuple from a result tuple, we should delete ui

from result set PRSN . If ui becomes a effect tuple from a candidate tuple (or
result tuple), we should reserve ui as the format of a effect tuple.

Algorithm 4 describes the details of the function CalPreShortSD(u, q), which
can calculate the set PreShort(u, q) of the tuple u, then we can find u’s cor-
responding window set. We can calculate PreShort(u, q) through the semi-
dominance relationship from the tuples in UDSN to u. And we should access
the tuples in UDSN by reverse order to improve efficiency.

Algorithm 4. CalPreShortSD(u, q)

input : Threshold t, query point q, tuple u and R-tree Ri.
output: PreShortSD(u, q), PRSky(u, q) and PNpreShort(u, q).
insert all entries in Ri.root into a heap H ;1

while H is not empty do2

remove the top entry e from H ;3

take first tuple u′ in PreShortSD(u, q);4

if PNpreShort(u, q)× P (u) < t and e.lmax < κ(u′) then5

break;6

if e is a intermediate entry then7

if e.min can semi-dominate u then8

for each child ei of e do9

if ei.min can semi-dominate u then10

add ei into H by descending order of lmax;11

else if e can semi-dominate u then12

add e to PreShortSD(u, q) by ascending order of κ(e);13

for each ui in PreShortSD(u, q) do14

remove ui from PreShortSD(u, q);15

if PNpreShort(u, q)× P (u) ≥ t then16

add ui to PreShortSD(u, q);17

break;18

return;19

Algorithm 5 describes the details of the function CalNewTree(u, q), which can
calculate the set TD, TC and TE. TD contains all the tuples which should be
deleted under the influence of u, every tuple u′ in TD are full-dominated by u
whose probability PNpostFD(u′, q) < t. TC contains all the tuples which should
be removed to candidate set from probabilistic reverse skyline set under the
influence of u, every tuple u′ in TC are semi-dominated by u whose probability
PRSky(u

′, q) < t and PNpostSD(u′, q) × P (u′) ≥ t. TE contains all the tuples

28 M. Bai, J. Xin, and G. Wang

which change to be effect tuple, every tuple u′ in TE are semi-dominated by u
whose probability PNpostSD(u′, q) × P (u′) < t.

Algorithm 1 − 5 can continuously maintain the probabilistic reverse skyline
queries efficiently, which can prune some redundant data, and minimize the
number of tuples that kept in the sliding window, the algorithms reduce the
time and space cost greatly.

Algorithm 5. CalNewTree(u, q)

input : Threshold t, query point q, tuple u and R-tree Ri.
output: The set TD, TC and TE.
insert all entries in Ri.root into a heap H by descending order of lmax;1

while H is not empty do2

remove the top entry e from H ;3

if e is a intermediate entry then4

if u can semi-dominate e.max then5

for each child ei of e do6

if u can semi-dominate ei.max then7

add ei into H ;8

else9

if u can full-dominate e then10

PNpostFD(e, q)× = 1− P (u);11

if PNpostFD(e, q) < t then12

add e into TD; continue;13

if u can semi-dominate e then14

PNpostSD(e, q)× = 1− P (u);15

if PNpostSD(e, q)× P (e) < t and e was not a effect tuple then16

add e into TE;17

if PRSky(e, q) < t and e was a result tuple then18

add e into TC;19

return;20

5 Experimental Evaluation

In this section, we have developed a simulator to evaluate the performance of
our proposed OPRS approach with C++ programming language. All the exper-
iments are run on a PC with Pentium IV 2.4GHz CPU, 512MB DDR memory,
80GB hard disk and Windows XP operating system.

We use real data set and synthetic data sets to verify the performance of our
proposed OPRS algorithm. Real data set apply forest environmental monitoring
data obtained by a sensor network, randomly generate a existing probability for
each tuple, and the query point is generated randomly. In forest environmental
monitoring data, there is 30000 tuples and we assume the sliding window size

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 29

N = 15000, each tuple has four attributes, including humidity, temperature,
light and voltage, we take two, three, four dimensions to calculate continuously
probabilistic reverse skyline as Figure 7.

0

20

40

60

80

100

120

2 3 4

R
es

po
ns

e
T

im
e/

m
s

Dimensionality

OPRS
BPS

(a) Dimensionality Vs. Time

0

0.5

1

1.5

2

2 3 4

R
es

er
ve

d
T

up
le

s
N

um
be

r(
×

10
3)

Dimensionality

OPRS

(b) Dimensionality Vs. Number

Fig. 7. The Results of Real Data Set

In Figure 7(a), BPS is the basic approach to calculate continuously proba-
bilistic reverse skyline, because the running time of BPS is too long, so we just
record the response time of BPS in two-dimensions to compare with OPRS, in
Figure 7(b), we record the max number of reserved tuples in OPRS.

Synthetic data sets apply two different distribution data, one is uniform dis-
tribution, the other one is cluster distribution, and the exist probability of tuples
is uniform distribution. In Table 1, we give the parameters in simulation.

Table 1. Parameters in Simulation

Parameter Default Range

dimensionality 2 2, 3, 4, 5

sliding window size N 100K 100K,200K,300K,400K,500K

threshold t 0.5 0.3, 0.4, 0.5, 0.6, 0.7

First, we investigate the influence of dimensionality in OPRS. Figure 8 shows
OPRS’s changing performance from two-dimensions to five-dimensions when the
window size N = 100K and the threshold t = 0.5. Figure 8(a) records the average
response time of each tuple in OPRS for two data distributions. Figure 8(b)
records the max reserved tuples’ number in OPRS for two data distributions,

0

20

40

60

80

100

120

2 3 4 5

R
es

po
ns

e
T

im
e/

m
s

Dimensionality

cluster
uniform

(a) Dimensionality Vs. Time

0

2

4

6

8

10

2 3 4 5

R
es

er
ve

d
T

up
le

s
N

um
be

r(
×

10
3)

Dimensionality

c-max
u-max

(b) Dimensionality Vs. Number

Fig. 8. The Influence of Dimensionality

30 M. Bai, J. Xin, and G. Wang

c-max represents the max reversed tuples’ number in cluster distribution data
set, while u-max represents that in uniform distribution data set.

Next, we investigate the influence of the sliding window size. Figure 9 shows
OPRS’s changing performance of the sliding window size from 100K to 500K
when data set is two-dimensions and the threshold t = 0.5. Figure 9(a) records
the average response time of each tuple in OPRS for two data distributions.
Figure 9(b) records the max reserved tuples’ number, c-max represents the max
reserved tuples’ number in cluster distribution data set, while u-max represents
that in uniform distribution data set.

12

14

16

18

20

100 200 300 400 500

R
es

po
ns

e
T

im
e/

m
s

Siling Window Size(× 103)

cluster
uniform

(a) Window Size Vs. Time

5

6

7

8

100 200 300 400 500

R
es

er
ve

d
T

up
le

s
N

um
be

r(
×

10
2)

Siling Window Size(× 103)

c-max
u-max

(b) Window Size Vs. Number

Fig. 9. The Influence of Sliding Window Size

Finally, we discuss the influence of threshold t. Figure 10 shows OPRS’s chang-
ing performance of the threshold from 0.3 to 0.7 when data set is two-dimension
and sliding window size N = 100K. Figure 10(a) records the average response
time of each tuple in OPRS for two data distributions. Figure 10(b) records
the max reserved tuples’ number, c-max represents the max reserved tuples’
number in cluster distribution data set, while u-max represents that in uniform
distribution data set.

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6 0.7

R
es

po
ns

e
T

im
e/

m
s

Threshold

cluster
uniform

(a) Threshold Vs. Time

0

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7

R
es

er
ve

d
T

up
le

s
N

um
be

r(
×

10
3)

Threshold

c-max
u-max

(b) Window Size Vs. Number

Fig. 10. The Influence of Threshold

Through the experiments above, we can conclude that no matter what kind
of data distribution, average response time of OPRS become longer and max
reserved tuples’ number become more with the increase of data dimensional-
ity and sliding window size, while the response time become shorter and max
reserved tuples’ number become fewer with the increase of the threshold. The
experimental results accord with the actual situation.

Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream 31

6 Conclusions

Many applications can be modeled by uncertain data stream, reverse skyline
plays an important role in market decision-making, environmental monitoring
and market analysis. In this paper, we focus on the problem of continuously
computing probabilistic reverse skyline over uncertain data stream. Through
detailed and in-depth analysis of probabilistic reverse skyline’s properties over
uncertain data stream, we present some probability pruning strategies, which
minimize the number of tuples that kept in the sliding window and reduce a
lot of redundant calculations. Then an efficient approach, called Optimization
Probabilistic Reverse Skyline (OPRS), is proposed for processing continuous
probabilistic reverse skyline queries. Finally, a large number of experiments verify
that our proposed approach OPRS is an efficient algorithm which can meet the
practical requirements. The next step, we will focus on the problem of reverse
skyline’s properties over distributed uncertain data stream, designing an efficient
approach to process continuous reveres skyline queries over distributed uncertain
data stream is our future direction.

Acknowledgement. This research is supported by the State Key Program of
National Natural Science of China (Grant No. 60933001), the National Science
Foundation for Distinguished Young Scholars of China (Grant No. 61025007), the
National Natural Science Foundation of China (Grant No. 60973020, 61073063),
and the National Natural Science Foundation for Young Scientists of China
(Grant No. 61100022).

References

1. Borzsonyi, S., Stocker, K., Kossmann, D.: The skyline operator. In: ICDE, Heidel-
berg, Germany, April 2-6, pp. 421–430 (2001)

2. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In:
VLDB, Vienna, Austria, September 23-27, pp. 15–26 (2007)

3. Wu, X., Tao, Y., Wong, R.C.W., Ding, L., Yu, J.X.: Finding the Influence Set
through Skylines. In: EDBT, Saint-Petersburg, Russia, March 23-26, pp. 1030–
1041 (2009)

4. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road
networks. In: SIGMOD, Beijing, China, June 12-14, pp. 796–805 (2007)

5. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: SIGMOD, San Diego, California, June 9-12, pp. 467–472
(2003)

6. Dellis, E., Seeger, B.: Effcient computation of reverse skyline queries. In: VLDB,
Vienna, Austria, September 23-27, pp. 291–302 (2007)

7. Prasad, M.D., Deepak, P.: Efficient Reverse Skyline Retrieval with Arbitrary Non-
Metric Similarity Measures. In: EDBT, pp. 319–330 (2011)

8. Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over
uncertain databases. In: SIGMOD, Vancouver, BC, Canada, June 10-12, pp. 213–
226 (2008)

9. Lian, X., Chen, L.: Reverse skyline search in uncertain databases. ACM Transac-
tions on Database Systems 35(1), Article 3, 1–49 (2010)

32 M. Bai, J. Xin, and G. Wang

10. Wang, G., Xin, J., Chen, L., Liu, Y.: Energy-efficient reverse skyline query pro-
cessing over wireless sensor networks. IEEE TKDE,
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.64

11. Zhu, L., Li, C., Chen, H.: Efficient computation of reverse skyline on data stream.
In: CSO, Sanya, Hainan, China, April 24-26, pp. 735–739 (2009)

12. Lin, J., Lin, Q.: Algorithms for skyline query on data streams. Journal of FuZhou
University 35(4), 526–531 (2007)

13. Zhang, W., Zhang, Y., Yu, J.X.: Probabilistic skyline operators over sliding win-
dows windows. In: ICDE, Shanghai, China, March 29-April 2, pp. 1060–1071 (2009)

14. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.H.: Minimizing the communication
cost for continuous skyline maintenance. In: SIGMOD, Providence, Rhode Island,
June 29-July 2, pp. 495–508 (2009)

15. Lin, X., Yuan, Y., Wang, W.: Stabbing the sky: Efficient skyline computation over
sliding windows. In: ICDE, Tokyo, Japan, April 5-8, pp. 502–513 (2005)

16. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
TKDE 18(3), 377–391 (2006)

17. Sarkas, N., Das, G., Koudas, N., Tung, A.K.H.: Categorical skylines for streaming
data. In: SIGMOD, Vancouver, BC, Canada, June 10-12, pp. 239–250 (2008)

http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.64

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 33–47, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Malleability-Aware Skyline Computation
on Linked Open Data

Christoph Lofi1, Ulrich Güntzer2, and Wolf-Tilo Balke1

1 Institut für Informationssysteme
Technische Universität Braunschweig, 38106 Braunschweig, Germany

{lofi,balke}@ifis.cs.tu-bs.de
2 Institut für Informatik

Universität Tübingen, 72076 Tübingen, Germany
ulrich.guentzer@informatik.uni-tuebingen.de

Abstract. In recent years, the skyline query paradigm has been established as a
reliable and efficient method for database query personalization. While early ef-
ficiency problems have been approached, new challenges in its effectiveness
continuously arise. Especially, the rise of the Semantic Web and linked open
data leads to personalization issues where skyline queries cannot be applied eas-
ily. In fact, the special challenges presented by linked open data establish the
need for a new definition of object dominance that is able to cope with the lack
of strict schema definitions. However, this new view on dominance in turn has
serious implications on the efficiency of the actual skyline computation, since
transitivity of the dominance relationships is no longer granted. Therefore, our
contributions in this paper can be summarized as a) we design a novel, yet intui-
tive skyline query paradigm to deal with linked open data b) we provide an ef-
fective dominance definition and establish its theoretical properties c) we de-
velop innovative skyline algorithms to deal with the resulting challenges and
extensively evaluate the our new algorithms with respect to performance and
the enriched skyline semantics.

Keywords: Query Processing; Personalization; Skyline Queries; Linked Open
Data.

1 Introduction

The continuous efforts to put the Semantic Web vision into practice have led to two
important insights: implementing a full-fledged machine understandable Web has
largely failed, but focusing only on the ‘reasonable’ part already reveals a vast variety
of valuable data [1]. This area of so-called linked open data (LOD) [2] has immedia-
tely spawned interesting efforts like for instance the DBPedia knowledge base1 that
currently describes more than 3.64 million things, out of which 1.83 million are clas-
sified in a consistent ontology. Moreover, the potential applications also promoted the

1 http://www.dbpedia.org/About

34 C. Lofi, U. Güntzer, and W.-T. Balke

development of innovative methods to make such data available to users in a struc-
tured way. IR-style or rule-based extraction frameworks like ALICE [3], Xlog [4], or
SOFIE [5] can already crawl the Web and extract structured relationships from un-
structured data with largely sufficient accuracy.

However, when it comes to retrieval of the now structured information also the
typical query paradigms have to be adapted. This is not only because extracted know-
ledge is usually represented in some form of knowledge representation language (with
RDF triples as most prominent example), but also due to the semantic loss of focus
that results from ambiguities in the extraction process. For instance when querying for
a person’s place of birth, the information where somebody grew up is generally
heavily related, but definitely less focused regarding the original query intention. Still,
whenever the exact place of birth is unknown, the information where a person grew
up is still much more helpful than an empty result set. Thus, it should be retrieved as
relevant, but of course should always get a penalty in the ranking. This desirable facet
of retrieval is known as schema malleability [6, 7].

While current retrieval paradigms for example in SOFIE’s retrieval engine NAGA
[8] or Xlog’s DBLife [9], only focus on SQL-style retrieval (usually SPARQL over
RDF) and keyword search with top-k ranking, the problem of preference-based re-
trieval paradigms like skyline queries over linked open data has not yet been solved.
In this paper we tackle the problem of malleability-aware skyline queries over linked
open data. The problem is twofold: first a viable semantics has to be defined trading a
user’s value preferences against the extracted relationships’ loss of focus with respect
to the original query, then efficient algorithm(s) have to be designed to solve the re-
trieval task in practical runtimes.

In a nutshell the problem is the intuitive interleaving of each individual user’s
attribute value preferences with the generally applicable preferences on attribute se-
mantics as specified in the query. Whereas skyline queries up to now only dealt with
relaxing value preferences, the new additional relaxation in attribute semantics is
owed to the linked open data. Let’s extend our example from above:

Example: A user might be interested in famous Nobel laureates in physics that were
born in Munich, Germany. Querying the DBPedia knowledge base retrieves only two
entries: Rudolf Mössbauer and Arno Allan Penzias. However, a similar query for
Nobel laureates in physics growing up in Munich also retrieves Werner Heisenberg
(who went to school in Munich) and a further relaxation to Nobel laureates in physics
living in Munich finally retrieves Wilhelm Conrad Röntgen. With a different degree
of relevance (with respect to famousness and having a relationship with Munich) all
these are possible answers that, however, with respect to the original query are getting
less focused and thus should be displayed accordingly. That means the final result
including schema malleability may be a trade-off between the famousness of the phy-
sicists and their relationship to Munich, which is best represented by a skyline query
result.

To model this paradigm in databases (and schema malleability as such), each query
attribute can be considered as a database column holding not only tuples based on the

 Malleability-Aware Skyline Computation on Linked Open Data 35

strict relationships given by the query, but also tuples from semantic similar relation-
ships. However, to prepare for later retrieval each such malleable attribute has to be
associated with a second attribute measuring the semantic loss of focus for each tuple.
This can be done by either automatically measuring semantic loss of focus by in-
stance-based precision/recall tests like shown in [10], testing the relationships’ seman-
tic relatedness with externally available ontologies like in [11], or simply denoting
possible relationships and allowing users to define a (partial) order over these rela-
tionships with respect to their queries.

In any case, the new associated attribute columns have to be considered by retriev-
al algorithms, but in contrast to the attribute value columns have a slightly different
quality. This is because relaxations on preferred values for cooperative query
processing might change a tuple’s desirability, but larger relaxations in attribute
senses might render tuples utterly useless. Consider the example above where a Nobel
laureate’s place of birth is relaxed in terms of the preferred value, e.g. from ‘Munich’
to ‘Bavaria’ or ‘Germany’, or in terms of the relationship with Munich e.g., from
‘born in’ to ‘lived in’. Whether a broader relaxation of the sense like ‘visited’ is still
of any use is doubtful. Thus, classical skyline query processing following Pareto-
optimality cannot readily be applied. Moreover, by basically doubling the problem
dimensionality also the well-known efficiency problems of skyline processing in
terms of runtimes and result set manageability, see e.g., [12], are bound to be encoun-
tered.

The contribution of this paper is threefold: we design an intuitive notion of skyline
dominance with respect to malleability in the form of semantically typed links in
linked open data and discuss its characteristics. We develop innovative algorithms to
efficiently process skyline queries even over large data repositories. And we exten-
sively evaluate these algorithms with respect to runtime behavior and skyline mana-
geability. In fact, our experiments show that in the general case, our algorithm can
achieve significant performance improvements over the baseline. However, when
slightly restricting general malleability, we can even show that performance indeed
can increased by several orders of magnitude, even rivaling the runtime behavior of
classical skyline algorithms over strictly transitive preferences.

This paper is structured as follows: after briefly surveying related work in section
2, we discuss the necessary foundations and theoretical characteristics of skylines
over linked open data in section 3. Section 4 then presents and evaluates skyline algo-
rithms over several malleability attributes, whereas section 5 deals with the special
case of a single aggregated malleability attribute. We close with a short summary and
outlook.

2 Related Work

Due to its potential usefulness linked open data has received a lot of attention and
even inspired a taskforce2 of the World Wide Web Consortium (W3C). Current

2 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

36 C. Lofi, U. Güntzer, and W.-T. Balke

research is often focused on the area of business intelligence, but also for the collec-
tion of common knowledge. The basic idea is using the Web to create typed links
between data items from different sources. Once extracted, these links represent se-
mantic relationships which can in turn be exploited for querying. However when que-
rying (or reasoning over) such relationships the exact nature of the relationship and its
semantic correspondence to the query is often difficult. Therefore apart from typical
exact match queries (usually performed in SPARQL3 over RDF triples) many ap-
proaches for ranking the best matching information have been designed.

The first notable approach to rank queries on extracted entity properties was Enti-
tySearch [13] proposing an elaborate ranking model combining keywords and struc-
tured attributes. When it comes to exploiting also semantic relationships NAGA [8]
used a scoring model based on the principles of generative language models, from
which measures such as confidence, informativeness, and compactness are derived,
which are subsequently used to rank query results. Finally [14] develop a general
model for supporting approximate queries on graph-modeled data, with respect to
both attribute values and semantic relationships and derive a first top-k algorithm to
implement the ranking efficiently. However, like in all top-k frameworks even far-
fetched semantic relationships can be compensated for by good matching attribute
values. Moreover, all these approaches directly work on graph-structured data relying
on the path-based semantic relatedness e.g., defined by [15], whereas our approach
works on relationship malleability quantifying the respective loss of focus.

To our knowledge the only algorithm similar to skyline queries on linked open data
is given by [16]. However, the developed algorithm has been designed for optimizing
skyline queries over RDF data stored using a vertically partitioned schema model and
thus presents an efficient scheme to interleave the skyline operator with joins over
multiple relational tables. Unfortunately it does not offer any techniques with respect
to personalization and the problem of semantic linkage and thus is not really related to
our work here. In brief, to our knowledge our approach features the first skyline algo-
rithm respecting semantic malleability.

3 Theoretical Foundations of Malleability-Aware Skylines

In the following we will briefly revisit the notion of Pareto skylines as given by [17].
Assume a database relation … on attributes.

• A preference on some attribute with domain is a strict partial order
over . If some attribute value is preferred over another value

, then , , written as (read “ dominates wrt. to ”). The
set of all preferences is denoted as .

• Analogously, also an equivalence relation on compatible with can be
defined. Then, two attribute values attribute , can be defined as be-
ing equivalent with respect to the domain: . Moreover, if some
attribute value is either preferred over or equivalent to some
ue , we write .

3 http://www.w3.org/TR/rdf-sparql-query/

 Malleability-Aware Skyline Computation on Linked Open Data 37

Assuming preferences , … , for each attribute in , the concept of Pareto domin-
ance between two tuples , with , … , can be defined as:

Definition 1. Pareto Dominance

The classical skyline set [18] can now be defined as all those tuples in each database
instance, which are not dominated by any other tuple:

Definition 2. Pareto Skyline for some relation and preferences , |

Now we are ready to extend the semantics by introducing the concept of malleability-
aware dominance, which specifically respects the semantic challenges introduced by
linked open data entities. Like motivated above the intuition is that regarding each
queried attribute personalized skyline queries consist of a user-specific value prefe-
rence and a certain meaning of the attribute that may more or less correspond to some
number of extracted attribute types in the database instance. Thus, for getting accept-
able results, not only the entities’ attribute values, but also the loss of focus with re-
spect to each attribute’s semantics has to be taken into account. The baseline approach
for this would be to simply compute skylines with the double dimensionality (one
attribute value and a malleability score for each attribute).

However, apart from the obvious scalability problems, also the semantics are un-
clear. Whereas attribute values like dates, prices, or ratings are usually crisp and fol-
low a certain preference order (users want the cheapest price for some product or the
highest quality rating), labels for semantic relationships are usually fuzzy and to some
degree ambiguous depending on their labels. Often grew_up_in may be used synony-
mously with born_in, but lived_in definitely is not. Thus, the relative loss of focus (or

-distance) between semantic labels needs to be considered: if two labels are at most
differing by they should be considered semantically equivalent, but once two labels
are too far apart a different class of semantic relationship has to be assumed.

Definition 3. -preferences for modeling malleability over linked open data

A δ-preference δ on some attribute with metric domain and metric . , .
is a reflexive and transitive binary relation ≻ over , together with an intransitive
form of equivalence with the notion of indifference: for all , : , δ see e.g [19]. If some attribute value is preferred over another
value and , δ we write ≻ (read “ strictly δ-dominates
wrt. to δ ”). The combination of several δ can easily be achieved using the normal
Pareto product and will be denoted as ≻ . Likewise, we write ≽ if either
or ≻ .

It is easy to mix δ-preferences and normal strict partial order preferences to create a
product preference over some relation (which for ease of use we will again simply
denote by ‘>’) and we will define the respective domination relationships for mallea-
bility-aware skylines in section 4 and 5. But up to now such δ-preferences with rela-
tive distances have not been considered in skyline queries, because their use directly

38 C. Lofi, U. Güntzer, and W.-T. Balke

contradicts the generally assumed transitivity of domination relationships between
tuples. Actually, since long results in psychology show that in contrast to common
belief intransitivity often occurs in a person's system of values or preferences, poten-
tially leading to unresolvable conflicts, see e.g., [20] or [21]. Analogously, in eco-
nomics intransitivity may occur in a consumer's preferences. While this may lead to
consumer behavior that does not conform to perfect economic rationality, in recent
years economists have questioned whether violations of transitivity must necessarily
lead to ‘irrational’ behavior, see for instance [22].

Indeed, from an order-theoretical point of view it is easy to show that whenever -
distances are used in at least one preference and and are given,

 does not necessarily follow:

Lemma 1. Dominance relationships are not transitive using -distances.
Proof: Transitivity for dominance regarding any product preference P is violated, if
three tuples , , and can be constructed, for which holds: , but

.
Assume a product preference P over some relation R and assume there is one attribute
m for which a δ-preference δPm is declared stating the equivalence of values within
the relative distance of some fixed . Now define preference P^ by removing δPm
from P and construct three tuples , , and such that ^ ^ . Now assign
values of , , and for attribute m as follows and .
Then with respect to P holds because of ^ and and are
equivalent with respect to the chosen . Analogously holds . However,
because of ^ , but 2 ≻ . Hence and are incompar-
able with respect to P and the domination relationship is not transitive. □

While the resulting preference orders are not transitive, at the same time domination
relationships within the intransitive product order are sensible, since there can never
exist any cyclic base preferences. However, this is only the case when strict partial-
order preferences and -preferences are used conjointly to build the product order,
product orders built only from -preferences will inevitably lead to cycles. In order to
guarantee acyclic product orders, some observations can be made: a) no cycles can
ever emerge between tuples showing dominance with respect to any attributes, over
which a strict partial-order preference is defined (due to their guaranteed transitivity),
b) cycles can only occur, if tuples are equivalent with respect to all partial-order pre-
ferences. In this case, strict δ-dominance (≻) must be enforced, and none of the tuples
are allowed to dominate by simple δ-dominance alone (≽). This leads to our formal
definition of malleability-aware dominance (Definition 4) in Section 4.1.

3.1 Implications for Algorithm Design

The danger on intransitivity of dominance relationships is that it may lead to non-
deterministic behavior when computing skylines using standard skyline algorithms.
According to Definition 2, the skyline contains all tuples of a given relation which are

 Malleability-Aware Skyline Computation on Linked Open Data 39

not dominated by any other tuple, assuming that preferences are partial orders. Naïve-
ly, this would need an algorithm pairwise comparing all tuples with respect to the
chosen dominance criterion. In practice however, most skyline algorithms increase
efficiency by pruning large numbers of tuple comparisons (e.g. basic block-nested-
loop (BNL) algorithms [18], branch-and-bound algorithms [23], distributed algo-
rithms [24], or online algorithms [25]). These optimizations usually all rely on the
transitivity of dominance.

Example. When using non transitive dominance with for instance a BNL algorithm
the result will vary non-deterministically depending on the order of the tuples in the
database instance (and therefore, also the order of the tests for dominance). For exam-
ple, when assuming , , but , then a skyline computed by
some BNL algorithm just contains , if the test for is performed first and
thus is immediately pruned from the database. Otherwise, if is tested first,
the resulting skyline contains , , because is removed prematurely before also
could be removed by testing ; and due to , incorrectly remains in
the skyline set.

However, the idea of skylines is still sensible since as we will prove in lemma 2, cyc-
lic preferences cannot occur and thus a skyline based on the notion of containing all
non-dominated objects can be computed. Since pruning may cause difficulties, the
obvious way is by simply comparing all tuples in the database instance pairwise (with
quadratic runtime). But as we will see in the next section, far more efficient algo-
rithms can be designed and thus skylines over linked open data are indeed practical.

4 Malleability-Aware Skylines

Before delving into designing skyline algorithms capable of dealing with intransitivity
as described above, we have to formalize our concept of product orders also built
from -preferences in form of a dominance criterion usable in skyline algorithms.

4.1 Malleability-Aware Skylines with Individual Attribute Malleability

Assuming preferences that can be decomposed into strict partial-order preferences , and -preferences , the concept of malleability-aware dominance between two
tuples , can be defined as

Definition 4. Malleability-aware dominance over individual attributes ≽ ≻
In this definition, there is a malleability-aware dominance a) if all non-malleable
attribute values of show Pareto dominance over and all malleable attributes of are at least equivalent to those of with respect to the -preferences (i.e. all malle-
able attributes encoding the tuple’s loss-of-focus are tested for “soft” dominance here,

40 C. Lofi, U. Güntzer, and W.-T. Balke

allowing a certain of flexibility) or b) if all data attributes are equivalent with
respect to the Pareto preferences, but show strict dominance with respect to the mal-
leable attributes for the -preferences (this means: all malleable attributes encoding
loss-of-focus have to show real Pareto dominance, i.e. no -distances are considered.
This important property is required to prevent cycles to form in :

Lemma 2. Product orders of strict partial order preferences and δ-preferences fol-
lowing Definition 4 cannot contain cyclic preferences.
Proof: We have to show that the dominance relation of the product order does not
induce cycles, more precisely, if … with 1, then neither
nor is possible. Please note that means for all non-
malleable attributes and for all malleable attributes, i.e. no malleability is
allowed for equivalence.
 For 1 let , , … , , , , , … , , where the first n

attributes are non-malleable and the following m attributes are malleable. We distin-
guish two cases:
a) There is a strict preference in the non-malleable part between two objects in an

assumed cycle, i.e. there are 1 and 1 such that , , .
Then within the cycle we have , … , , … , and
therefore , , , rendering both and impossible.

b) If there is no strict preference in the non-malleable part, for all 1 and 1 we have , , . Thus following Definition 4 for the malleable
attributes for all 1 holds: , , … , , ≻ , , … , ,
which means , , … , , ≻ , , … , , due to the strictness of ≻ . Hence is impossible.
In the same way it is easy to see that also is impossible. □

Now, the respective malleability-aware skyline can be computed analogously to defi-
nition 2 by , |

Unfortunately, actually implementing such malleability-aware skyline computations
algorithmically poses several challenges. Therefore, in the following we demonstrate
how such algorithms can be designed. For the sake of cleaner notions and without loss
of generality, we will assume that all our preferences are encoded in the database
tuples by normalized scores in 0,1], where 1 represents the most preferable attribute
values, and 0 the least preferable ones. Any database tuple is given by , … , , and the individual attributes can be separated into non-malleable data
attributes with (corresponding to), and malleable attributes with
(corresponding to). Then, the dominance criterion of definition 4 can be re-
formulated as:

 Malleability-Aware Skyline Computation on Linked Open Data 41

It is easy to see that this definition is equivalent to the Pareto dominance as given by
definition 1 for the cases of or 0. If and 0, then malleability-
aware dominance allows for additional tuples being dominated compared to Pareto
dominance, hence the resulting Skyline is a subset of the Pareto skyline.

4.2 Computing Non-transitive Skylines

As already indicated in section 3.1, modern Skyline algorithms have come to rely on
the transitivity of dominance criteria: For sake of improved performance, many tuple
comparisons are avoided by pruning objects early, relying on transitivity for the com-
putational correctness, i.e. a tuple shown to be dominated can be fully excluded from
the further execution of the algorithm. However, without guaranteed transitivity, even
basic algorithms like the well-known Block-Nested Loop Algorithm [18] fail. There-
fore, the need arises to develop new algorithms being able to cope with these new
requirements. In this section, we will therefore present a general purpose algorithm
designed for use with any non-transitive dominance criteria, including dominance for
malleability-aware skylines.

The naïve solution to the given problem is relying on exhaustive pair-wise compar-
ison, i.e. each possible tuple pair has to be tested for dominance. However, this algo-
rithm shows prohibitive practical performance requiring ½ 1 expensive
tests for dominance, with being the size of the database (and assuming that each test
for dominance is bi-directional, i.e. by testing , we can test at the same
time).

Hence, we propose a novel algorithm which is capable of dealing with any transi-
tive or non-transitive preferences . Our algorithm is derived from this naïve imple-
mentation by carefully avoiding any tuples comparisons which are guaranteed to
show no effect. This can be formalized as follows:

Algorithm 1. Non-Transitive Skyline Algorithm ; ; ;

 ;
 ;
 ;

 ;

 P
 ; ;
 ;

 :

 ;
 ;

42 C. Lofi, U. Güntzer, and W.-T. Balke

Given is a database relation with tuples and preferences . Furthermore, we
need the set of all tuples which need further testing for a) if any is dominated
by any other tuple and b) if any dominates any tuples itself; is initialized with

. Furthermore, we use the set of all tuples which are the final skyline, and the
set (i.e. losers) of those tuples which have already been shown to be dominated by
any other tuple. In contrast Skyline algorithms with transitive dominance, we cannot
exclude tuples in from further computation without additional guarantees. This
results in following algorithm:

The algorithm contains two loops, the outer one iterating over all objects to be
tested which have not already been shown to be dominated. For finding new domin-
ance relationships, the second loop iterates over the set (is initialized in each
run with .) By testing and each for dominance, objects can be marked to be
dominated by adding them the set of all losers. As soon as is dominated, any sub-
sequent comparisons of with any other tuple which has been shown to be dominated
can be avoided as those yield no new information. If was not dominated within the
inner loop, it can safely be added to the skyline. Compared to the naïve approach, this
algorithm saves a significant number of superfluous tuple comparisons (see evalua-
tion in the next section).

Furthermore, this algorithm can be implemented efficiently by representing the
membership of a tuple in the different sets by simple flags attached to the tuples in ,
thus minimizing the overhead of additional book-keeping.

5 Evaluations

5.1 Evaluating General Malleability-Aware Skylines

In this section, we evaluate the effects of malleability-aware dominance respecting
any number of malleable attributes on the properties of skylines. Furthermore, we will
also measure the performance of respective skyline algorithms.

Skyline Size: For the first set of experiments, we examined the impact malleability-
aware dominance (represented by varying values) on the Skyline size. For this
purpose, we relied on syntetic data, and in each experimental run generated new data-
base tuples with 12 independently-distributed numeric attributes. Six of these
attributes represent non-malleable (data) attributes, while the other six attributes are
malleable ones representing loss-of-focus. Using the operationalized dominance crite-
rion of Section 4.1, skylines are computed for -values ranging from 0 (the base-
line; equivalent to Pareto skylines as in definition 2) to 0.3. For each value of ,
the experiment is repeated 50 times with newly generated tuples (to ensure compara-
bility, the same random seed is used for each , resulting in the same sequence of
generated tuples). The averaged results are shown in Fig. 1. It is clearly obvious that
the skyline resulting from the baseline (0, identical to Pareto skyline of the same
data) is not practically manageable: from the 50,000 database tuples, 26,981 are con-
tained in the skyline (53%). This can be attributed to high dimensionally of 12.
But with growing , the skyline sizes dramatically decrease: already with 0.15,

 Malleability-Aware Skyline Computation on Linked Open Data 43

the skyline is reduced to 11,959 tuples in average - a clearly more manageable result.
Similar behavior can also be observed for smaller database sizes. Therefore, we can
conclude that malleability-aware skyline indeed efficiently address the issue of overly
large skylines when considering on malleable loss-of-focus attribute per data attribute.

Fig. 1. Skyline Size wrt. to using 6 malle-
able and 6 non-malleable attributes and
varying database sizes; y-axis shows skyline
size

Fig. 2. Performance using 6 malleable and 6
non-malleable attributes; x-axis shows
#tuples in database; y-axis shows number of
required tests for dominance; .

Performance of Algorithms: In the second set of experiments, we examined the per-
formance of the naïve baseline and our non-transitive skyline algorithm (measured in
the required number of tests for dominance). Similar to the last experiment, we again
relied on synthetic data with 12 independent-attributes (6 malleable, 6 non-malleable),
and incrementally increased the size of the database from 10,000 tuples up to
100,000 tuples. The results are shown in Fig. 2: Clearly, our non-transitive algorithm
shows significantly better performance than the baseline using pairwise comparisons.
Furthermore, this performance advantage increases with growing database sizes. But
still, the total time required by both algorithms is quite high (272 seconds with
n 100 using our non-transitive skyline algorithm vs. 637 seconds for pairwise
comparisons; tests performed on a 1.86 GHz Dual-Core CPU, using Java 6 and just a
single core.) Therefore, additional optimizations must be found for application do-
mains with tighter time constraints.

5.2 Malleability-Aware Skylines with a Single Malleable Attribute

As demonstrated in the last section, the runtime of general non-transitive skyline algo-
rithms with one malleable loss-of-focus attribute for each non-malleable data attribute
can be quite high. Thus, for time-critical applications, we suggest reducing the num-
ber of malleable attributes to using just a single attribute. This single attribute then

0

5000

10000

15000

20000

25000

30000
50k

40k

30k

20k

10k

0,00E+00

1,00E+09

2,00E+09

3,00E+09

4,00E+09

5,00E+09

6,00E+09

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Pairwise Comparison

Non-Transitive
Skyline Algorithm

44 C. Lofi, U. Güntzer, and W.-T. Balke

represents the overall loss-of-focus of a given database tuple with respect to the query
in an aggregated form. This reduction can be implemented by different methods: a) by
combining multiple malleable attributes by some combining function or b) by directly
eliciting just a single attribute representing loss-of-focus using one of the established
frameworks for this task (e.g.[10] or [11]).

As an immediate effect, the number of dimensions to be respected during skyline
computation is reduced drastically, leading to direct performance advantages due to
respectively reduced skyline sizes. However, there is a less obvious and significantly
more crucial advantage resulting from this reduction which allows us to build vastly
more efficient skyline algorithms. The basic considerations leading to these algo-
rithms are as follows:

When using established skyline algorithms like BNL, the only problem which is
encountered when dealing with malleability-aware dominance is that tuples are elimi-
nated early which are required to dominate another non-skyline tuple, and due to non-
transitivity, none of the remaining tuples can lead to the same dominance; thus an
incorrect skyline is computed (e.g. see example in Section 3.1). Therefore, we could
use a more efficient standard algorithm like BNL if it could be made “safe”, i.e. if this
situation can be prevented. In the general case with multiple malleable attributes, this
is unfortunately not possible. But when using just one malleable attribute, the correct-
ness of BNL depends only on the order in which the tuples are inserted into the win-
dow: for example, consider three tuples with preferences already encoded in
scores 0.8, 0.8, 0.4 , 0.7, 0.7, 0.6 , and 0.6, 0.6, 0.8 ; the grey score
represents the single malleable attribute. When computing a malleability-aware sky-
line with 0.1, then , and the resulting skyline is just . But due to

, the BNL algorithm could first test , removing , and resulting in the
skyline , (because cannot be dominated anymore). Obviously, the skyline result
would be correct if the tested order was . It is easy to see that this
observation can be generalized, i.e. problems in BNL can only occur if tuples with a
lower malleability score are removed before they have been tested for dominance
against all tuples with a higher malleability score. Therefore, for the case that there is
only one malleable attribute, we can use established algorithms like BNL if all tuples
are processed in descending order with respect to the malleability attribute (prevent-
ing the situation leading to incorrect skylines described above), i.e. the skyline algo-
rithm is therefore stratified with respect to the malleability attribute. This can be im-
plemented by pre-sorting the data before executing e.g. a BNL algorithm. The effec-
tiveness of this approach is tested later in this section.

Skyline Size: Before dealing with performance issues, similar to the last section, we
also measured the skyline sizes for varying and database sizes . Again, we gener-
ate tuples using 6 non-malleable independently distributed attributes, but just one
single malleable attribute. As now the number of overall dimensions is reduced from 12 down to 7, the respective skyline sizes are also reduced dramatically to
only 4,017 tuples (8% of database) for the baseline 0 with 50,000 (see Fig.
4). But still, by slightly increasing , the skyline can be furthermore decreased to
more manageable levels (e.g. 2,809 for 0.15 and 50,000).

 Malleability-Aware Skyline Computation on Linked Open Data 45

Fig. 3. Skyline Size wrt. to using one
malleable and 6 non-malleable attributes
and varying database sizes; y-axis shows
skyline size

Fig. 4. Performance using one malleable and
6 non-malleable attributes; x-axis shows
#tuples in database; y-axis shows number of
required tests for dominance on a logarith-
mic scale. .

Performance of Algorithms: In this last set of experiments, we examined the perfor-
mance of the naïve baseline, our non-transitive skyline algorithm, and the stratified
BNL algorithm as described above. Again, performance is measured by the required
number of tests for dominance. We also relied on synthetic data with 7 independent-
attributes (one malleable, 6 non-malleable), and incrementally increased the size of
the database from 10,000 tuples up to 100,000 tuples. The results are shown in Fig. 4
(using a logarithmic y-axis). Here, we can see that the stratified BNL-algorithm needs
roughly two orders of magnitudes fewer dominance tests than the naïve baseline, and
is also one order of magnitude more efficient than our general non-transitive skyline
algorithm. In terms of absolute runtime, the general non-transitive algorithm needed
218 seconds for 100 and 0.15, which is still quite long. In contrast, the stra-
tified BNL algorithm could be executed in less than 1.4 seconds using the same hard-
ware (the time needed for sorting the 50,000 tuples before executing the algorithm is
negligible). This significant result clearly shows that malleability-aware skylines can
even be used in interactive environments having tight constraints with respect to re-
sponse time like for example web applications.

6 Summary and Outlook

In this paper we discussed the case of query processing over linked open data. Whe-
reas traditional query processing algorithms are usually graph-based and use exact
matches on typed links between data items in SQL-like languages like SPARQL, the
fuzzy nature of semantic links calls for approximate query processing algorithms. In
particular, the exact labels of links cannot always be taken at face value, because in-

0

500

1000

1500

2000

2500

3000

3500

4000

4500
n=50k

n=40k

n=30k

n=20k

n=10k

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Pairwise Comparison

Non-Transistive Algorithm

Stratification+BNL

46 C. Lofi, U. Güntzer, and W.-T. Balke

formation extraction techniques, the use of different concept ontologies, and slight
variations in the links’ semantics introduce quite a bit of fuzzyness that algorithms
have to deal with. Relying on techniques to estimate different labels’ loss of focus
regarding each other, in this paper we presented the first skyline query algorithm that
can efficiently deal with semantically typed links in linked open data. Modeling the
semantic malleability of attributes by δ-preferences, we proved that the resulting
product order is indeed well-defined and can be used effectively as the basis for a
sensible definition of malleability-aware skylines over linked open data.

Moreover, in our experiments we show that our innovative algorithms can effi-
ciently evaluate such skylines and when restricting the type of malleability will even
result in runtime improvements of several orders of magnitude against the baseline.
Therefore, even interactive applications with tight response time requirements are
possible. While we performed the algorithmic considerations here on synthetic data to
test our algorithms in an unbiased environment, our future work will focus on the
integration of our algorithmic framework into practical linked open data sets. Our aim
is to use potential bias in the data for a tighter integration of the attribute malleability
respective to each individual query. It seems that different query intensions might
need different degrees of admissible malleability to stay semantically meaningful.

References

1. Hitzler, P., van Harmelen, F.: A reasonable Semantic Web. Semantic Web 1, 39–44 (2010)
2. Heath, T., Hepp, M., Bizer, C. (eds.): Special Issue on Linked Data. International Journal

on Semantic Web and Information Systems (IJSWIS) 5 (2009)
3. Banko, M., Etzioni, O.: Strategies for lifelong knowledge extraction from the web. In: Int.

Conf. on Knowledge Capture (K-CAP). ACM Press, Whistler (2007)
4. Shen, W., Doan, A.H., Naughton, J.F., Ramakrishnan, R.: Declarative information extrac-

tion using datalog with embedded extraction predicates. In: Int. Conf. on Very Large Data
Bases (VLDB), Vienna, Austria (2007)

5. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for informa-
tion extraction. In: Int. World Wide Web Conf. (WWW), Madrid, Spain (2009)

6. Dong, X., Halevy, A.Y.: Malleable schemas: A preliminary report. In: Int. Workshop on
Web Databases (WebDB), Baltimore, Maryland, USA (2005)

7. Dong, X., Halevy, A.Y.: A platform for personal information management and integration.
In: Conf. on Innovative Data Systems Research (CIDR), Asilomar, California, USA (2005)

8. Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: Naga: Searching and
Ranking Knowledge. In: Int. Conf. on Data Engineering (ICDE), Cancún, México (2008)

9. DeRose, P., Shen, W., Chen, F., Lee, Y., Burdick, D., Doan, A.H., Ramakrishnan, R.:
DBLife: A community information management platform for the database research com-
munity. In: Conf. on Innovative Data Systems Research (CIDR). Citeseer, Asilomar
(2007)

10. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Imprecise Answers in Distributed
Environments: Estimation of Information Loss for Multi-Ontology Based Query
Processing. International Journal on Cooperative Information Systems 9 (2000)

11. Gracia, J., Mena, E.: Web-Based Measure of Semantic Relatedness. In: Bailey, J., Maier,
D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175,
pp. 136–150. Springer, Heidelberg (2008)

 Malleability-Aware Skyline Computation on Linked Open Data 47

12. Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector computa-
tion. The VLDB Journal 16, 5–28 (2007)

13. Cheng, T., Chang, K.C.-C.: Entity search engine: Towards agile best effort information in-
tegration over the web. In: Conf. on Innovative Data Systems Research (CIDR), Asilomar,
California, USA (2007)

14. Mandreoli, F., Martoglia, R., Villani, G., Penzo, W.: Flexible Query Answering on Graph-
modeled Data. In: Int. Conf. on Extending Database Technology (EDBT), St. Petersburg,
Russia (2009)

15. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: A Semantic Search Engine for XML. In: Int.
Conf. on Very Large Data Bases (VLDB), Berlin, Germany (2003)

16. Chen, L., Gao, S., Anyanwu, K.: Efficiently Evaluating Skyline Queries on RDF Databas-
es. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer,
P., Pan, J. (eds.) ESWC 201. LNCS, vol. 6644, pp. 123–138. Springer, Heidelberg (2011)

17. Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting Matters – Controlling Skyline Sizes by In-
cremental Integration of User Preferences. In: Kotagiri, R., Radha Krishna, P., Mohania,
M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 551–562. Springer,
Heidelberg (2007)

18. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Int. Conf. on Data
Engineering (ICDE), Heidelberg, Germany (2001)

19. Fishburn, P.C.: Intransitive indifference in preference theory: A survey. Operations
Research 18 (1970)

20. Tversky, A.: Intransitivity of preferences. Psychological Review 76 (1969)
21. Fishburn, P.C.: The irrationality of transitivity in social choice. Behavioral Science 15

(1970)
22. Anand, P.: Foundations of Rational Choice Under Risk. Oxford University Press (1995)
23. Papadias, D., Tao, Y., G.F., Seeger, B.: Progressive skyline computation in database

systems. ACM Transactions on Database Systems 30, 41–82 (2005)
24. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web Informa-

tion Systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Kou-
barakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer,
Heidelberg (2004)

25. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for
skyline queries. In: Int. Conf. on Very Large Data Bases (VLDB), Hongkong, China
(2002)

Effective Next-Items Recommendation
via Personalized Sequential Pattern Mining

Ghim-Eng Yap1, Xiao-Li Li1, and Philip S. Yu2

1 Institute for Infocomm Research, 1 Fusionopolis Way #21-01 Connexis Singapore 138632
{geyap,xlli}@i2r.a-star.edu.sg

2 Department of Computer Science, University of Illinois at Chicago, IL 60607-7053
psyu@cs.uic.edu

Abstract. Based on the intuition that frequent patterns can be used to predict the
next few items that users would want to access, sequential pattern mining-based
next-items recommendation algorithms have performed well in empirical stud-
ies including online product recommendation. However, most current methods
do not perform personalized sequential pattern mining, and this seriously limits
their capability to recommend the best next-items to each specific target user. In
this paper, we introduce a personalized sequential pattern mining-based recom-
mendation framework. Using a novel Competence Score measure, the proposed
framework effectively learns user-specific sequence importance knowledge, and
exploits this additional knowledge for accurate personalized recommendation.
Experimental results on real-world datasets demonstrate that the proposed frame-
work effectively improves the efficiency for mining sequential patterns, increases
the user-relevance of the identified frequent patterns, and most importantly, gener-
ates significantly more accurate next-items recommendation for the target users.

1 Introduction

With the rapid growth of online information sources and e-commerce businesses, users
increasingly need reliable recommender systems [25,4] to highlight relevant next-items,
i.e., the next few items that the users most probably would like. Fortunately, the user
consumption histories offer crucial clues that help us to tackle this important problem.
Whenever we visit web pages or purchase things from online stores, we leave a time-
ordered sequence of items that we have seen or bought. When these historical sequences
are consolidated into a sequence database (SDB), we can employ a powerful data min-
ing process - sequential pattern mining (SPM) [1] - to discover temporal patterns that
are frequently repeated among different users. Sequential pattern mining-based next-
items recommendation works on the intuition that if many users have accessed an item
j after an item i, it makes sense to recommend item j to someone who just seen item i.

Most sequential pattern mining algorithms focus on efficiently finding all the se-
quential patterns with frequencies above a given threshold in a sequence database. For
example, algorithms exist for exact sequential pattern mining [1,3,11,16,20,30,33], ap-
proximate mining [14], constraint-based mining [5,7,21], as well as sequential pattern
mining from incremental [8] and progressive databases [13]. A significant shortcoming
is that all current methods do not perform user-specific sequential pattern mining and,
as a result, they cannot give accurate personalized recommendation to users.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 48–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 49

In this paper, we address the important problem of personalized sequential pattern
mining-based next-items recommendation, where the system discovers the user-specific
frequent sequential patterns from past users’ sequences, and it uses the mined patterns
to predict the next few items which a target user would access. We establish the the-
oretical relation between (1) support of a sequential pattern p which recommends an
item i, and (2) predictive power of p in terms of whether i is visited. Our analysis con-
firms that the predictive power of high-support (frequent) patterns is bounded by greater
information gain [9], which justifies the inductive assumption [18] in sequential pattern-
based recommendation - that the higher-support sequential patterns predict next-items
better.

Current sequential pattern-based recommendation methods are ineffective because
the simple frequency counts of patterns are used to compute the support they get from
the sequence database (SDB). These methods treat all sequences in the SDB as equally
important. However, in real applications, sequences in SDB often carry varying signifi-
cance (or weights) with respect to each target user. To mine the personalized sequential
patterns for a target user, we have to effectively model this varying relevance among
the historical sequences for that specific user. Since each sequence in the SDB belongs
to a different user, we can weight the sequences based on available knowledge about,
for example, the target user’s social affiliation to other users, or in most cases, how
relevant is each of the sequences compared to the known sequence of the target user.
For instance, in a book recommender system, the transaction records (i.e., sequences)
of users who have borrowed similar books as the target user should be assigned greater
weights because they are more likely to lead to accurate recommendations. Likewise,
web browsing sequences with pages related to those the target user has visited should
carry greater weights when we mine for sequential patterns to make recommendation.

Se
qu

en
ce

DB

Sequential
Pattern Mining

Recommended Items

Sequence
Knowledge
Learning

Source Task

Intermediate
Task

Next-Items
RecommendationTarget Task

Sequence Weights
Additional

Information

High-Support Patterns

Fig. 1. Proposed personalized learning framework - effective learning is achieved by providing se-
quential pattern mining with an additional information source (the personalized sequence weights
from a related source task) apart from the standard training data (the sequence database (DB))

50 G.-E. Yap, X.-L. Li, and P.S. Yu

We shall show that significantly more accurate next-items recommendations can be
achieved through using our novel framework (Figure 1) to enable personalized sequence
weight learning and sequential pattern mining-based next-items recommendation.

The proposed framework personalizes the sequence database (SDB) by assigning a
user-specific weight to each sequence in the SDB (source task). This effectively enables
the sequential pattern mining algorithms to perform a personalized search in sequence
space for user-specific frequent patterns (intermediate task), which leads to significantly
more accurate personalized next-items recommendation (target task). This approach is
modeled after the inherent ability of human to recognize and leverage additional knowl-
edge from related source tasks to improve the performance of a target task [31]. The
next-items recommendation performance improves due to the sequence weight learning
that makes the resulting sequential patterns much more relevant to every target user.

Our framework is novel because it inverts the current paradigm by advocating the
deep mining of user-specific patterns, unlike traditional methods which generate all fre-
quent patterns and prune them according to user relevance. The traditional post-filtering
methods will not work well for personalized recommendation because the meaningful
patterns for one user may not be frequent among the sequences of all users, so the tra-
ditional methods miss important patterns that really match the target user’s preferences.
By exploiting sequence weight knowledge to adjust the support of patterns, we effec-
tively personalize the hypothesis space in which frequent patterns are searched, thereby
enabling the discovery of more user-relevant frequent sequential patterns which cannot
be found by traditional sequential pattern mining algorithms. The resulting user-specific
sequential patterns are then more useful for personalized next-items recommendation.

We summarize our major research contributions as follows:

1. We propose a novel personalized sequential pattern mining-based next-items rec-
ommendation framework that learns and exploits additional user-specific sequence
importance knowledge to improve the accuracy of next-items recommendation.

2. We propose a novel Competence Score to learn user-specific sequence weights for
mining personalized frequent patterns and to recommend user-relevant next-items.

3. Through experimental validation using real-world sequence datasets, we demon-
strate that learning of user-specific sequence weights is scalable, and it yields signif-
icantly more accurate personalized next-items recommendation for the target users.

The rest of this paper is organized as follows. Section 2 discusses the related work
and Section 3 formally defines the personalized sequential pattern mining-based next-
items recommendation problem. Section 4 introduces our novel personalized recom-
mendation framework, and Section 5 presents extensive empirical results on real-world
datasets to validate the proposed framework. Finally, Section 6 concludes this paper.

2 Related Works

The sequential pattern mining-based next-items recommendation is an inductive
learning task where the objective is to induce a predictive model (i.e., the next-items rec-
ommender system) from a set of examples (i.e., the sequences in database). The useful-
ness of sequential pattern mining-based recommendation has, to a certain extent, been

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 51

Table 1. An example sequence database

No. Sequence
1 <(1,4),(3),(2,8),(1,5)>
2 <(5,6),(1,2),(4,9),(3),(8)>
3 <(5),(7),(1,6),(3),(2),(8)>

demonstrated empirically by past studies on various domains such as e-commerce [12],
web browsing [34] and IPTV programs scheduling [23], but there remains a lack of the-
oretical analysis on why high-support sequential patterns are useful for recommending
next-items to users. We provide the necessary theoretical justification in this paper.

The proposed framework leverages on the learned user-specific sequence weights to
improve the next-items recommendation. This is similar in concept to Bayesian transfer,
where inductive transfer improves Bayesian learning [31]. In Bayesian learning, the
prior distribution is combined with training data to get the predictive model. Bayesian
transfer provides informative priors as additional knowledge from source task, so that
the resulting model is more accurate. The learning of sequence weights for sequential
pattern mining-based recommendation is similar to the learning of priors for Bayesian
prediction in that the additional sequence weight knowledge helps the sequential pattern
mining algorithms to better interpret the data and thus yield better recommendations.

Weighted sequential pattern mining [17,32] recognizes the difference in importance
between sequences, but assumes that the importance of a sequence depends only on its
items. The importance of items are derived from their domain value (e.g. price and pop-
ularity). The same weights are assigned to sequences and patterns with the same item
characteristics regardless of the target user, which obviously cannot generate accurate
personalized predictions since user-specific information are not used. Capelle et al. [5]
proposed a method where they require the discovered patterns to be similar to a refer-
ence pattern. Specifically, they mandate that each user has to supply a reference pattern
as well as specify a minimum similarity threshold. The similarity constraint introduces
restrictions that only their proposed sequential pattern mining algorithm can satisfy,
making their solution non-generalizable to other sequential pattern mining algorithms.
In contrast, our framework extends to any source task that is related to sequence weight
learning (not restricted to reference sequence matching and no need to ask users to state
the similarity threshold etc), and can be readily integrated with all the existing sequen-
tial pattern mining algorithms. Additionally, our novel Competence Score method not
only emphasizes other users’ sequences that are relevant to the target user by comput-
ing their compatibility scores, but also takes the sequences’ recommendation ability (or
extensibility) into consideration, thus giving much better next-items recommendations.

3 Problem Definition

We now formally introduce the personalized sequential pattern mining-based next-items
recommendation problem. A sequence database (SDB) is a collection of sequences, i.e.
SDB={s1, s2, . . . , sn} where |SDB| = n denotes the number of sequences (also the
number of users as each user has a corresponding sequence in SDB). A sequence si ∈

52 G.-E. Yap, X.-L. Li, and P.S. Yu

SDB(i = 1, 2, . . . , n), can be represented as si =<si1, si2, . . . , si|si|>, which is an
ordered list of itemsets (each sij in si (j = 1, 2, . . . , |si|) is an itemset) associated with
an user Ui. Each itemset sij comprises transacted items with the same timestamp t(sij),
and the different itemsets sij1 and sij2 in the same sequence si cannot have the same
timestamp, i.e., t(sij1) �= t(sij2), (j1 �= j2). A sequence si =<si1, si2, . . . , si|si|>
contains a sequence sj =<sj1, sj2, . . . , sj|sj |>, or sj is a subsequence of si, if there ex-
ist integers d1<d2<. . .<d|sj | such that sj1 ⊆ sid1, sj2 ⊆ sid2, . . . , sj|sj | ⊆ sid|sj | [1].
Table 1 shows an example sequence database comprising three sequences. Each row is a
sequence representing a user’s consumption histories; items in each ()-bracket form an
itemset with same timestamp, e.g. (1,4). Sequence 1 describes a user who accessed the
items 1 and 4 at timestamp t0, item 3 at timestamp t1, items 2 and 8 at timestamp t2, and
items 1 and 5 at timestamp t3, etc. Using patterns to refer to subsequences generated
during mining process, the count of a pattern p is the number of sequences in SDB con-
taining p. The support for pattern p is then defined as support(p) = count(p)/|SDB|.

Given a target user’s past sequence sq and the database of all other users’ past se-
quences, the next-items recommendation task is to predict items that the target user is
most likely to access in the near future, i.e., those items in the next few itemsets that
he or she will access. We do not restrict the prediction to just the immediate next item
that a target user will access, nor the immediate itemset that the user will access in the
next visit [24]. The personalized next-items recommendation task can be formalized
by identifying and ranking the candidate next-items through a novel framework of per-
sonalized sequential pattern mining that takes into account the relative importance (i.e.,
weights) of other users’ sequences in the database according to each target user, so that
the top-m items (may be from multiple itemsets) are recommended to the target user.

4 Personalized Sequential Pattern Mining-Based Recommendation

Given a sequence database SDB and a minimum support δ, the traditional sequential
pattern mining task is to discover all the patterns having a support not less than δ, under
the assumption that all the sequences in the SDB should be treated equally. The required
most-probable next-items are then recommended from the patterns having the highest-
support. In contrast, the problem of next-items recommendation via personalized se-
quence weight learning takes into account the fact that sequences in the real-world
have different importance to each specific user; sequence weights should be effectively
learned and exploited to generate more user-relevant sequential patterns, which can in
turn significantly improve the next-items recommendation accuracy for the end-users.

While numerous empirical studies (e.g. [12,34,23]) have demonstrated that sequen-
tial pattern mining-based next-items recommendation is effective in many different do-
mains, we take the analysis further by formally explaining how the predictive power and
the support of sequential patterns are related, similar to how the discriminative power
of features in pattern-based classification is related to the pattern/feature frequency [9].
Specifically in our case, we need to establish that reliably computing the support values
of patterns can result in better next-items recommendations, in order to explain why our
proposed framework, which enables the resulting pattern supports to reliably reflect the
user-relevance, is so effective in practice for personalized next-items recommendations.

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 53

4.1 The Predictive Power and Support of Patterns

Let V ∈{0, 1} and X∈{0, 1} be the events of visiting an item i and predicting item i,
respectively. The information gain (a standard measure of predictive power [9]) for V
(i.e., whether i is visited) from knowing X (i.e., whether i is predicted) is computed by:

IG(V |X) = H(V) − H(V |X) (1)

where H(V) and H(V |X) are the entropy and conditional entropy for V . Specifically,

H(V |X) = −
∑

X P (X)
∑

V P (V |X)log(P (V |X)) (2)

Given a sequence database, H(V) is fixed as the prior probability of i, so the upper
bound of the information gain (i.e., IGUB(V |X)) depends only on the lower bound of
the conditional entropy for V given X (i.e., on HLB(V |X)). P (X = 1) is the proba-
bility of predicting item i. Item i is predicted if a pattern that predicts i is considered
frequent, i.e., if P (X = 1) = θ ≥ minsup, where minsup is a minimum support thresh-
old and θ is the support of such a pattern. P (V = 1) is the probability that i is visited.
Given a sequence database, P (V = 1) = α is a fixed value equal to i’s support in the
database (α ≥ 0). By Apriori lemma, i appears in any pattern that predicts it, so θ ≤ α.

Letting P (V = 1|X = 1) = β, the conditional entropy H(V |X) is at its minimum
if knowing X = 1 completely predicts V , i.e., if β = 1 or β = 0. For the case β = 1,

HLB(V |X) = (α − 1)log(
1 − α

1 − θ
) − (α − θ)log(

α − θ

1 − θ
) (3)

The partial derivative of HLB(V |X)β=1 with respect to the support θ is:

∂HLB(V |X)β=1

∂θ
= log(

α − θ

1 − θ
) ≤ log1 ≤ 0 (4)

So, HLB(V |X) reduces as the support θ increases. For the case β = 0,

HLB(V |X)=(θ − (1 − α))log(
1 − α − θ

1 − θ
)−αlog(

α

1 − θ
) (5)

The partial derivative of HLB(V |X)β=0 with respect to the support θ is:

∂HLB(V |X)β=0

∂θ
= log(

1 − α − θ

1 − θ
) ≤ log1 ≤ 0 (6)

The above analysis reveals that lower bound conditional entropy HLB(V |X) monoton-
ically decreases as θ increases, so theoretical upper bound information gain increases
with θ. Hence, the predictive power of a higher-support pattern is upper-bounded by a
higher information gain, justifying the strategy of predicting items from more frequent
sequential patterns rather than less frequent patterns. This explains why our proposed
framework can be so effectively used for personalized next-items recommendation.

54 G.-E. Yap, X.-L. Li, and P.S. Yu

4.2 Sequence Weight Learning

We shall now discuss the source task which performs the sequence weight learning
(Figure 1). Given a target user’s sequence sq , for each si in sequence database SDB
(si =<si1, si2, . . . , si|si|> is user Ui’s sequence), we assign a sequence weight
w(si, sq) to si that represents its significance with respect to the target user sequence
sq. We first discuss two existing methods and then present our novel Competence Score
method.

Method 1: User-independent Weight Learning. Weighted sequential pattern min-
ing [6] weighs si based on the characteristics of items in si, e.g., price [32], popular-
ity [23] (application oriented). These methods give the same weight for si regardless
of the target user’s sequence sq . Weight w(si, sq) can be computed using the mean
popularity of si’s itemsets — popularity of an itemset sij , sij ∈ si, is computed as
count(sij)/|SDB|.

Method 2: User-dependent Weight Learning. This method accounts for the differ-
ences between target users to learn more user-specific sequence weights. In this learning
task, each si∈SDB is compared to sq to determine their similarity, and similar se-
quences in SDB are deemed more relevant for making recommendation [15,27] to the
target user. The weight of si w.r.t. sq is computed using the following pattern similarity
functions:
1. Longest Common Subsequence (LCS) [29,5]: Let the longest common subsequence

of si and sq be denoted LCSi,q =<lcsi,q1, lcsi,q2 , . . . , lcsi,q|LCSi,q|> (each lcsi,qj
is an itemset that is common to sequences si and sq , such that timestamp t(lcsi,qj+1)
> t(lcsi,qj), j = 1, 2, . . . , |LCSi,q| − 1). The weight w(si, sq) is defined as:

w(si, sq) =
|LCSi,q|

|sq| (7)

where | · | denotes the number of itemsets in a sequence.
2. Cosine Similarity [23]: The weight w(si, sq) for si w.r.t. sq can be measured as the

cosine similarity [26] between their respective itemset vectors (denoted vi and vq):

w(si, sq) =
vi · vq
|vi||vq| (8)

where vi and vq are the vector representations of si and sq , respectively, such that
each dimension in vi and vq denotes an unique itemset.

Method 3: Our Proposed Weight Learning Method. Our novel Competence Score
method computes a personalized score for each sequence si in the sequence database
(SDB) to reflect its competency in recommending next-items for the target user. Every
si is a temporally-ordered list of itemsets with timestamps from oldest to most recent.
Instinctively, si is highly-competent if it is not only compatible to the user sequence sq ,
but also is capable of readily extending beyond sq to offer more next-items. To satisfy
both these requirements, our proposed Competence Score is computed in three steps:

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 55

1. Step 1: Compute backward-compatibility score (BCS) of each sequence si ∈
SDB w.r.t. the user sequence sq. We iterate over every sequence si in sequence
database (SDB) to evaluate its string-compatibility and temporal-compatibility to
sq . String compatibility of si and sq is derived by Longest Common Subsequence
(LCSi,q, Eq. 7), so that the longer the LCSi,q, the more compatible si is to sq .
However, string-compatibility alone does not take into account that the most re-
cently transacted itemset by the target user is the most relevant for predicting next-
items to that user [34,17]. Our BCS score also considers the temporal-compatibility
of the itemsets in si and sq by weighting the itemsets in sq such that its more re-
cent itemsets are weighted heavier. This is analogous to a Markov Chain where the
future items of the target user depend mainly on the most recent items the user saw.

Letting the longest common subsequence of si and sq be LCSi,q = < lcsi,q1 ,
lcsi,q2 , . . . , lcsi,q|LCSi,q| >, the weight of each itemset lcsi,qj ∈LCSi,q is w(tj , tl),
where tj is the timestamp of lcsi,qj in sq and tl is the timestamp of the last itemset
in sq. For a given sq , tl is a constant so we can simply refer to the weight as w(tj).
This itemset weight decay is modeled using the normalized Gaussian distribution:

w(tj) = ae−
(tj−tl)

2

2σ2 , 0 ≤ w(tj) ≤ 1 (9)

where a = 1
σ
√
2π

and σ = (tf − tl)/(2
√
2 ln 2); the constants tf and tl denote the

timestamps of the first and the last itemsets in the user sequence sq, respectively.
The time-weighted BCS of si w.r.t. target sequence sq is computed as follows:

bi,q(t) =

∑|LCSi,q|
j=1 w(tj), lcsi,qj ∈ LCSi,q∑

w(tk), sqk ∈ sq
, 0 ≤ bi,q(t) ≤ 1 (10)

where tk is the timestamp of itemset sqk in sq . This BCS score favors si sequences

whose LCSi,q contains itemsets closer in time to the most recent itemset in sq.
2. Step 2: Compute the forward-extensibility score (FES) of each sequence si ∈

SDB w.r.t. the user sequence sq . We define forward-extensibility score (FES) of
si to answer the following important question: having seen some of the itemsets in
sq , does si have sufficient suitable next-items to recommend to the target user?

Similar to our BCS score, our FES score computation involves the identification
of the longest common subsequence (LCSi,q) between each si ∈ SDB and sq .
Let LCSi,q =< lcsi,q1 , lcsi,q2 , . . . , lcsi,q|LCSi,q| >. We identify the set of unique
candidate next-items that si is able to recommend to the target user, by finding the
unique items from those itemsets in si that are later than the last common itemset
lcsi,q|LCSi,q| . The basic formula for computing the FES score is therefore:

fi,q =
|CNIi,q |

|CNIi,q|max
, 0 ≤ fi,q ≤ 1 (11)

where CNIi,q = {cnii,q1 , cnii,q2 , . . . , cnii,q|CNIi,q|} is the set of unique candidate
next-items in si with respect to sq. To keep fi,q between 0 to 1, we only consider
up to at most the first |CNIi,q|max unique candidate next-items after lcsi,q|LCSi,q| ,

56 G.-E. Yap, X.-L. Li, and P.S. Yu

where |CNIi,q |max is the maximum desired number of new items, a standard pa-
rameter in recommenders. In this way, |CNIi,q| (i.e., the number of candidate next-
items in CNIi,q) cannot be more than |CNIi,q |max. We further default parameter
|CNIi,q|max to the number of items in sq , ||sq||, since it is reasonable for heavier
users to demand more recommendations (e.g., books). The FES formula becomes:

fi,q =
|CNIi,q |

||sq|| , 0 ≤ fi,q ≤ 1 (12)

where ||sq|| denotes the number of items in sequence sq .
Furthermore, we need to take into account the different suitability of each can-

didate next-item cnii,qj (cnii,qj ∈ CNIi,q) in terms of how much time difference
exists between the timestamp tk when the last common itemset lcsi,q|LCSi,q| (i.e.,
the last itemset in LCSi,q) was seen in si and the timestamp tj when candidate
next-item cnii,qj was seen in si. The intuition is that items transacted nearer in
time from the most recent common itemset (i.e., lcsi,q|LCSi,q|) are more relevant to
the target user and should get more weight, whilst candidate next-items that are fur-
ther in time from lcsi,q|LCSi,q| are not quite as relevant to the target user and should
be weighted less. This decay (over time) in item weight w(tj , tk), which we simply
refer to as w(tj) since tk (timestamp of lcsi,q|LCSi,q| in si) is a constant given the
sequence pair si and sq, is modeled using the normalized Gaussian distribution:

w(tj) = ae−
(tj−tk)2

2σ2 , 0 ≤ w(tj) ≤ 1 (13)

where a = 1
σ
√
2π

and σ = (tl − tk)/(2
√
2 ln 2); the constants tl and tk denote the

timestamps of the last itemset in si and the last itemset in LCSi,q , respectively.
The time-weighted FES of si w.r.t. target sequence sq is computed as follows:

fi,q(t)=

∑
w(tj), cnii,qj∈ CNIi,q

||sq|| , 0≤ fi,q(t)≤ 1 (14)

where ||sq|| denotes number of items in sequence sq.
3. Step 3: Compute Competence Score (CS) of sequence si with respect to user

sequence sq by merging its BCS and FES. The sequence weightw(si, sq) is given
by the Competence Score (ci,q(t)) of si w.r.t. sq . We define si’s Competence Score
ci,q(t) as the harmonic mean between its time-sensitive BCS and FES scores:

ci,q(t) =
bi,q(t) × fi,q(t)

1
2 × (bi,q(t) + fi,q(t))

, 0 ≤ ci,q(t) ≤ 1 (15)

The BCS bi,q is high only if the given sequence si is highly-compatible to the target
user’s sequence, while the FES fi,q is high only if si has sufficient next-items to
recommend. Being their harmonic mean, CS ci,q is high only if both bi,q and fi,q are
high, i.e., both compatibility and extensibility requirements are satisfied. In specific
domains where there exists a certain preferred trade-off between BCS and FES, the
more general weighted harmonic mean (where different weights can be allocated to

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 57

BCS and FES) can also be used. Besides the harmonic mean, alternative methods
to merge BCS and FES have been investigated but are found to be not as suitable.
For instance, using multi-objective optimization (i.e., skyline queries [22]) may not
maintain the balance between the two important requirements, e.g. a high skyline
score may be given to a sequence si with a high BCS but a very low FES [19].

4.3 Exploiting the Sequence Weight Knowledge for Next-Items
Recommendation

In the proposed framework, personalized weights are first assigned to all sequences in
the sequence database (SDB) as an off-line operation using the aforementioned learning
methods. We now define the personalized count and support to take into account the
learned sequence weights so that the user-specific sequence knowledge is effectively
exploited by the proposed framework to personalize the sequential pattern mining:

[Pattern Count]. Given that each sequence si ∈ SDB has a learned weight w(si, sq)
with respect to user sequence sq, the count of pattern x in sequence database (SDB) is:

count(x, sq) =
∑

si:(x⊆si)

w(si, sq) (16)

Equation 16 sums the weights of all sequences which contain the pattern x, such that
a higher count(x, sq) means a higher support for pattern x in the sequence database.

[Pattern Support]. The support of x in SDB is defined as:

support(x, sq) =
count(x, sq)∑

si∈SDB w(si, sq)
(17)

where the denominator is the total sequence weight in the sequence database.
The above support definition satisfies the monotonically-decreasing property: given

patterns A and B, if B⊆A, then support(B)≥support(A), as B must be part of all se-
quences containingA. Hence, it is readily applicable to any of the conventional Apriori-
inspired sequential pattern mining algorithms to mine the high-support (frequent) pat-
terns (the intermediate task in Figure 1). An example of such sequential pattern mining
algorithms is PrefixSpan [20], the popular pattern-growth approach in which a sequence
database is recursively projected into a set of smaller databases, and sequential patterns
are grown in each projected database by exploring only locally frequent fragments [20].

During sequential pattern mining, patterns with personalized support not less than
the specified minimum support δ are output as the user-specific frequent patterns Fq:

Fq = {x|support(x, sq) ≥ δ, δ > 0} (18)

In Eq. 18, we used sequence weight knowledge to eliminate all the user-irrelevant
records in SDB which are not related to the target user (since we will not include x in
Fq if support(x, sq) = 0). As such, we can significantly improve the mining efficiency.

The frequent pattern set Fq is then used in our target task (Figure 1) to recommend
next-items to the target user [34,17], where the most recent items of the target user
are considered more valuable for predicting the next-items. Let the target user’s known

58 G.-E. Yap, X.-L. Li, and P.S. Yu

sequence be sq =<i1, i2, . . . , in> where ij (ij ∈ sq) is an itemset. We find candidate
pattern set CP = {x|in ∈ x, x ∈ Fq} which is the frequent patterns containing in. We
eliminate redundant patterns from CP by keeping only closed patterns starting with in.

Let a candidate pattern be cp =<in, in+1, . . . , in+k>, cp ∈ CP . Items in the item-
sets after in are candidate items for recommendation. The support for each candidate
item ic (ic ∈ iw, w > n, iw ∈ cp) is the sum of support of all cp that promote ic, i.e.,

supportic =
∑

ic∈iw,w>n,iw∈cp,cp∈CP

support(cp, sq) (19)

The overall algorithm is presented in Algorithm 1, where our proposed Competence
Score method is used to learn the personalized sequence weights for each target user.
The personalized sequence weights are then effectively exploited to discover the user-
specific frequent sequential patterns for personalized next-items recommendation.

Algorithm 1. Personalized Sequential Pattern Mining-based Recommendation

INPUT: The target user uq’s sequence, sq , and the database SDB of other users’ sequences
BEGIN
// sequence weight learning step (source task)
for all sequence si ∈ SDB do

Compute bi,q(t) // backward-compatibility (Eq. 10)
fi,q(t) // forward-extensibility (Eq. 14)
ci,q(t) // Competence Score (Eq. 15)

end for // now we have the SDB with sequence weights personalized to user uq

// sequential pattern mining step (intermediate task)
Apply a state-of-the-art sequential pattern mining algorithm to get personalized frequent

patterns, Fq , with Eqs. 16 and 17 to compute the personalized support
// next-items recommendation step (target task)

Use Eq. 19 to compute the personalized support of each candidate next-item in frequent
patterns Fq , and recommend the items with highest support to user uq

END

5 Experimental Evaluation

We present a two-part evaluation of our proposed personalized sequential pattern
mining-based next-items recommendation framework (Figure 1). In the first part (Sec-
tion 5.2), we evaluate the effectiveness of learning sequence weights with respect to the
sequential pattern mining. In the second part (Section 5.3), we evaluate the framework’s
effectiveness in terms of prediction accuracy of the next-items recommendation.

5.1 Experimental Setup

– Algorithms: We compare the sequence weight learning methods with the tradi-
tional sequential pattern mining-based recommendation [34,17] with no weight
learning. The state-of-art PrefixSpan [20] algorithm is used for the pattern mining.

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 59

– Datasets: We use two real-world datasets for the performance evaluation. The
first dataset is the msnbc.com dataset from UCI [2]. It captures the time-ordered
sequence of webpages visited by msnbc users on a day. There are a total of 989,818
sequences, each one corresponding to a different user. The second dataset is a book-
loan dataset comprising the borrowing records for 126,714 users on 144,966 books
(126,714 sequences), all during a six-month period.

– Evaluation Metrics: The measures to evaluate if sequence weight learning helps
the next-items recommendation include [31]: (1) reduction in time for mining se-
quential patterns, and (2) improvement in accuracy for next-items recommendation.

5.2 Evaluating the Framework Efficacy

We choose msnbc.com dataset to evaluate the efficacy of our framework as it has much
more sequences (close to 1 million) than the book-loan dataset. Note that the learning of
user-specific (personalized) sequence weights should decrease the time taken for pattern
mining, because by eliminating all the user-irrelevant sequences (i.e. their weights are
equal to zero) in SDB, we only need to handle a much smaller personalized hypothesis
space consisting of sequences that are more relevant to the target users. On the contrary,
without exploiting personalized sequence weights, sequential pattern mining algorithm
will be performed inefficiently since it has to go through all the transactions in SDB.

0
10
20
30
40
50
60
70

0.01 0.008 0.006 0.004 0.002

T
im

e
 S

p
e

n
t (

S
e

c
o

n
d

s
)

Minimum Support

no seq. weight popularity LCS similarity

cosine sim. competence

(a) Shorter time taken to mine patterns (lower
is better) due to the sequence weight learning.

0
10
20
30
40
50
60
70

0.01 0.008 0.006 0.004 0.002

T
im

e
 S

p
e

n
t (

S
e

c
o

n
d

s
)

Minimum Support

no seq. weight popularity LCS similarity

cosine sim. competence

(b) Total time taken (lower is better) for the se-
quence weight learning and the pattern mining.

Fig. 2. Improvement in time taken as a result of our proposed personalized learning framework

Figure 2(a) shows the time taken to mine sequential patterns over different minimum
support values when there is no personalized sequence weight learning, versus with se-
quence weight learning using the different methods presented in Section 4.2. Indeed,
our framework significantly reduced the time for the sequential pattern mining, espe-
cially with our Competence Score weighting method. Figure 2(b) compares the total
time taken for both learning sequence weights and running the sequential pattern mining
algorithm. Taking into account the sequence weight learning time, the user-independent
learning method, which completely ignores the target users and computes sequence

60 G.-E. Yap, X.-L. Li, and P.S. Yu

weights based on their items’ popularity, added significantly to the time taken, making
it less attractive compared to sequential pattern mining without sequence weight learn-
ing. However, with reference to Figures 2(a) and 2(b), the extra time spent on the more
user-specific weight learning methods (LCS, cosine similarity, Competence Score) is
worthwhile since it greatly reduced the time used in the subsequent pattern mining step.
More specifically, our proposed Competence Score method added only an average of
6.37 seconds for the weight learning but led to an average reduction of more than 20
seconds in pattern mining time. Considering that the learning of Competence Score and
other methods to compute personalized sequence weights can be completed off-line,
the time saving in sequential pattern mining due to our framework (Figure 2(a)) is even
more significant.

Fig. 3. The time spent for weight learning and pattern mining using the Competence Score method
grows linearly with the size of sequence database (varying from 100,000 to 989,818 sequences).

Figure 3 shows the total time spent in learning the personalized sequence weights
based on our proposed Competence Score, and in mining the frequent patterns from the
personalized sequence database (with minsup=0.002). Both the weight learning and the
pattern mining time increased in a linear manner as we increased the size of the database
from 100,000 sequences to 989,818 sequences (the full size of the msnbc.com dataset),
demonstrating the scalability of the proposed method for personalized recommendation.
Further significant savings in weight learning time can be achieved by only considering
those sequences in the database which have at least one common itemset with the target
sequence (e.g., using the standard inverted index approach in search engines [35] so that
sequences without any of the itemsets in the target sequence are pruned immediately).

The sequence weight learning methods in Section 4.2 use different relevance criteria
(i.e., popularity, LCS, cosine similarity, and Competence Score) to compute personal-
ized sequence weights. For each method, we evaluate the quality of the high-support
sequential patterns in terms of how well they satisfy the corresponding criterion used
to learn the sequence weights (similar results are observed for the top 5, 10, 15, 20 and
25 high-support patterns, and for minsup 0.002-0.010). We compare the results to the
corresponding cases where personalized sequence weights are not used. The proposed
Competence Score method improved pattern quality by five times, the LCS and cosine
similarity methods improved pattern quality by three times, and the user-independent
weight learning method based on item popularity also managed to improve the pattern

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 61

quality, albeit marginally. The results clearly show that, for each of the sequence weight
learning methods, the relevance criterion used to compute the sequence weights has
been effectively exploited to improve the quality of the resulting high-support patterns,
such that the discovered patterns inherit the corresponding desirable relevance criterion.

The improvement in mining time and pattern quality from the item popularity-based
weight learning method, which ignores the target user, is much less than our personal-
ized methods (LCS, cosine similarity, and Competence Score) that learn user-specific
sequence weights . This shows that even when using the same sequential pattern mining
algorithm, the more user-specific sequence knowledge helps to generate high-support
sequential patterns that are more relevant to the target users. This could explain why
simply picking patterns to match the users after sequential pattern mining is inade-
quate [34,23]; since patterns that are meaningful for a user may not be frequent among
the sequences for all users, directly using standard sequential pattern mining algorithm
(without learning and exploiting sequence weights) would miss those personalized pat-
terns which really match the users’ preferences, indicating that it is crucial to integrate
user relevant sequence knowledge into the pattern mining process.

5.3 Accuracy of the Next-Items Recommendation

We can now compare the different methods for next-items recommendation using both
the msnbc.com and book-loan datasets. Using a standard backlog evaluation method, we
partition each target user’s test sequence into two portions: release only the earlier por-
tion to the recommendation methods, and evaluate the accuracy by comparing the rec-
ommended items to the held-out portion. We need to experiment with sequences having
sufficient items (at least ten items in our experiments). For each sequence, we release
the first five items (known portion) and hold-out the remaining items as the ground-
truth for evaluation. We allow each method to recommend up to ten items with the
highest support values and evaluate results in terms of recall, precision (precision@1)
and F1-measure, all of which are standard evaluation metrics for recommendation sys-
tems [12,23,34]. As there are test sequences (or cases) for which certain methods do not
give any recommendation, we also measure the applicability of each method in terms of
the percentage of test cases for which recommendations are given. We set the minsup for
msnbc.com and book-loan as high as possible to 0.5 and 0.01, respectively, so that most
of the less frequent patterns are effectively filtered off by the sequential pattern mining,
while maintaining a minimum applicability of around 40% for the recommendation.

The results for the msnbc.com and book-loan datasets are presented in Table 2.
The experimental results clearly demonstrate that the methods for learning of sequence
weights which are more related to the target users can indeed yield significantly more
accurate next-items recommendations. In particular, sequence knowledge learning us-
ing our proposed recommendation Competence Score in Section 4.2 produced the great-
est improvement in performance among the competing methods; it provided recom-
mendations for almost 100% of the test cases (a vast improvement in applicability),
and significantly increased the recall, precision, F1-measure, and precison@1 (i.e., pro-
portion of test cases where the top-1 recommended item is correct). Specifically, for
the msnbc.com dataset, 70.6% of the test cases contained the first recommended item
when Competence Score was used, compared to just around 40% for the competing

62 G.-E. Yap, X.-L. Li, and P.S. Yu

Table 2. Recommendation performance. Indicated in brackets are the % improvement over and
above sequential pattern mining with no sequence weight learning (denoted as “no seq. weight”).

(a) Performance on msnbc.com dataset.

Applicability Recall Precision F1-measure Precision@1
no seq. weight 45.4% 0.178 0.313 0.227 0.375

popularity 45.4% (0%) 0.178 (0%) 0.313 (0%) 0.227 (0%) 0.375 (0%)
cosine sim. 49.1% (8%) 0.223 (25%) 0.342 (9%) 0.270 (19%) 0.404 (8%)

LCS similarity 52.3% (15%) 0.229 (29%) 0.366 (17%) 0.282 (24%) 0.435 (16%)
competence 100% (120%) 0.547 (207%) 0.502 (60%) 0.524 (131%) 0.706 (88%)

(b) Performance on book-loan dataset.

Applicability Recall Precision F1-measure Precision@1
no seq. weight 39.5% 0.017 0.073 0.028 0.075

popularity 43% (9%) 0.024 (41%) 0.063 (-14%) 0.035 (25%) 0.07 (-7%)
LCS similarity 93% (135%) 0.069 (306%) 0.083 (14%) 0.075 (168%) 0.135 (80%)

cosine sim. 95% (141%) 0.074 (335%) 0.092 (26%) 0.082 (193%) 0.135 (80%)
competence 99% (151%) 0.077 (353%) 0.094 (29%) 0.085 (204%) 0.155 (107%)

methods. Likewise for the book-loan dataset, our proposed Competence Score method
was able to outperform all the competing methods in terms of the various evaluation
metrics. In particular, while the baseline method without any sequence weight learning
managed a mere 4% accuracy in terms of predicting one or more of the next-books that
were subsequently borrowed by the target users in the six-months period, our proposed
personalized recommendation framework using the Competence Score method for se-
quence weight learning was able to achieve a significantly higher accuracy of 57%. The
experimental results thus demonstrate that our personalized framework predicts future
items reliably and can be used to automatically recommend next-items to target users.

6 Conclusions

Learning about the different importance of sequences can improve the sequential pat-
tern mining-based next-items recommendation in real-world applications. We present a
novel personalized sequence weight learning and sequential pattern mining-based next-
items recommendation framework that learns every sequence’s importance as weights,
and then effectively exploits this additional sequence knowledge to improve the effi-
ciency and the quality of learning in sequential pattern mining algorithms. Experimen-
tal results using real-world sequence datasets demonstrate that the proposed framework
is highly effective in learning and exploiting the sequence knowledge for sequential
pattern mining, and that this significantly improves the performance of the personalized
next-items recommendation, especially with our novel Competence Score method.

The proposed framework can be readily applied for next-items recommendation in
domains such as web mining, financial mining, and product/service consumption anal-
ysis, etc. An interesting future work is to explore sequence weighting methods which
exploits user knowledge beyond what is present in the sequences, e.g., social influence

Effective Next-Items Recommendation via Personalized Sequential Pattern Mining 63

measures [10] and similarity in user vocabulary [28]. It is also interesting to investigate
the combination of weight knowledge from multiple methods (i.e., early fusion) in a
single recommender, and the efficacy of a recommender ensemble that inherits weight
knowledge from many methods (i.e., late fusion). Other measures of recommendation
performance like coverage, diversity and serendipity (e.g. [19]) can also be investigated.
More generally, the benefits of personalized mining can be realized in data mining prob-
lems beyond sequential pattern mining (e.g. in classification, clustering); the question is
how we can effectively personalize inputs to these algorithms for user-specific results.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of IEEE International
Conference on Data Engineering (ICDE 1995), pp. 3–14 (1995)

2. Asuncion, A., Newman, D.: UCI ML Repository (2007),
http://www.ics.uci.edu/˜mlearn

3. Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a bitmap represen-
tation. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2002), pp. 429–435 (2002)

4. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction 12, 331–370 (2002)

5. Capelle, M., Masson, C., Boulicaut, J.-F.: Mining Frequent Sequential Patterns under a Sim-
ilarity Constraint. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.)
IDEAL 2002. LNCS, vol. 2412, pp. 1–6. Springer, Heidelberg (2002)

6. Chang, J.H.: Mining weighted sequential patterns in a sequence database with a time-interval
weight. Knowledge-Based Systems (2010) Available Online

7. Chen, E., Cao, H., Li, Q., Qian, T.: Efficient strategies for tough aggregate constraint-based
sequential pattern mining. Information Sciences 178(6), 1498–1518 (2008)

8. Cheng, H., Yan, X., Han, J.: IncSpan: Incremental mining of sequential patterns in large
databases. In: Proceedings of ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD 2004), pp. 527–532 (2004)

9. Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative Frequent Pattern Analysis for Effec-
tive Classification. In: Proceedings of IEEE International Conference on Data Engineering
(ICDE 2007), pp. 716–725 (April 2007)

10. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social net-
works. In: Proceedings of ACM International Conference on Web Search and Data Mining
(WSDM 2010), pp. 241–250 (2010)

11. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., et al.: FreeSpan: Frequent pattern-
projected sequential pattern mining. In: Proceedings of ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD 2000), pp. 355–359 (2000)

12. Huang, C.-L., Huang, W.-L.: Handling sequential pattern decay: Developing a two-stage
collaborative recommender system. ECRA 8(3), 117–129 (2009)

13. Huang, J.-W., Tseng, C.-Y., Ou, J.-C., Chen, M.-S.: A general model for sequential pattern
mining with a progressive database. IEEE TKDE 20(9), 1153–1167 (2008)

14. Kum, H.-C., Pei, J., Wang, W., Duncan, D.: ApproxMAP: Approximate mining of consensus
sequential patterns. In: Proceedings of SIAM Intl. Conf. on Data Mining, pp. 311–315 (2003)

15. Li, C., Lu, Y.: Similarity measurement of web sessions by sequence alignment. In: Procs. of
IFIP Intl. Conf. on Network and Parallel Comp. Workshops (NPC 2007), pp. 716–720 (2007)

16. Lin, M.-Y., Hsueh, S.-C., Chang, C.-W.: Fast discovery of sequential patterns in large
databases using effective time-indexing. Information Sciences 178(22), 4228–4245 (2008)

http://www.ics.uci.edu/~mlearn

64 G.-E. Yap, X.-L. Li, and P.S. Yu

17. Lo, S.: Binary prediction based on weighted sequential mining method. In: Proceedings of
International Conference on Web Intelligence (WI 2005), pp. 755–761 (2005)

18. Mitchell, T.: Machine Learning. McGraw Hill (1997)
19. Onuma, K., Tong, H., Faloutsos, C.: TANGENT: A novel, ’surprise me’, recommendation

algorithm. In: Proceedings of ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD 2009), pp. 657–665 (2009)

20. Pei, J., Han, J., Mortazavi-Asl, B., et al.: Mining sequential patterns by pattern-growth: The
PrefixSpan approach. IEEE TKDE 16(11), 1424–1440 (2004)

21. Pei, J., Han, J., Wang, W.: Mining sequential patterns with constraints in large databases. In:
Procs. of ACM Intl. Conf. on Info. and Knowl. Management (CIKM 2002), pp. 18–25 (2002)

22. Pei, J., Fu, A.W.-C., Lin, X., Wang, H.: Computing compressed multidimensional skyline
cubes efficiently. In: Procs. of IEEE Intl. Conf. on Data Eng. (ICDE 2007), pp. 96–105 (2007)

23. Pyo, S., Kim, E., Kim, M.: Automatic recommendation of (IP)TV program schedules using
sequential pattern mining. In: Adjunct Proceedings of EuroITV 2009, pp. 50–53 (2009)

24. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains
for next-basket recommendation. In: Proceedings of International Conference on World Wide
Web (WWW 2010), pp. 811–820 (2010)

25. Resnick, P., Varian, H.R.: Recommender Systems. Comms. of the ACM 40(3), 56–58 (1997)
26. Salton, G.: Automatic text processing: The transformation, analysis, and retrieval of infor-

mation by computer. Addison-Wesley Longman Publishing (1989)
27. Saneifar, H., Bringay, S., Laurent, A., Teisseire, M.: S2MP: Similarity measure for sequential

patterns. In: Procs. of Australasian Data Mining Conf. (AusDM 2008), pp. 95–104 (2008)
28. Schifanella, R., Barrat, A., Cattuto, C., et al.: Folks in folksonomies: Social link prediction

from shared metadata. In: Proceedings of ACM International Conference on Web Search and
Data Mining (WSDM 2010), pp. 271–280 (2010)

29. Sequeira, K., Zaki, M.: Admit: Anomaly-based data mining for intrusions. In: Proceedings
of ACM Intl. Conf. on Knowledge Discovery and Data Mining (KDD 2002), pp. 386–395
(2002)

30. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

31. Torrey, L., Shavlik, J.: Transfer Learning. In: Handbook of Research on Machine Learning
Applications. IGI Global (2009)

32. Yun, U.: A new framework for detecting weighted sequential patterns in large seq. databases.
Knowledge-Based Systems 21, 110–122 (2008)

33. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learn-
ing 42(1/2), 31–60 (2001)

34. Zhou, B., Hui, S.C., Chang, K.: An intelligent recommender system using sequential web
access patterns. In: Procs. of IEEE Conf. on Cybernetics and Intell. Sys., pp. 393–398 (2004)

35. Zobel, J., Moffat, A.: Inverted files for text search engine. ACM Comp. Surveys 38(2) (2006)

Scalable Top-k Keyword Search in Relational Databases

Yanwei Xu1, Jihong Guan1, and Yoshiharu Ishikawa2,3,4

1 Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
2 Information Technology Center, Nagoya University, Nagoya-shi, 464-8601 Japan

3 Graduate School of Information Science, Nagoya University, Nagoya-shi, 464-8601 Japan
4 National Institute of Informatics, Chiyoda-ku, Tokyo, 101-8430 Japan

Abstract. Keyword search in relational databases has been widely studied in re-
cent years because it does not require users neither to master a certain structured
query language nor to know the complex underlying database schemas. There
would be a huge number of valid results for a keyword query in a large database.
However, only the top 10 or 20 most relevant matches for the keyword query
–according to some definition of “Relevance”– are generally of interest. In this
paper, we propose an efficient method for answering top-k keyword queries over
relational databases. The proposed method is built on an existing scheme of key-
word search on relational data streams, but incorporates the ranking mechanisms
into the query processing methods and makes two improvements to support top-k
keyword search in relational databases. Experimental results validate the effec-
tiveness and efficiency of the proposed method.

Keywords: Relational databases, keyword search, top-k query.

1 Introduction

With the proliferation of text data available in relational databases, simple ways to ex-
ploring such information effectively are of increasing importance. Keyword search in
relational databases, with which a user specifies his/her information need by a set of
keywords, is a popular information retrieval method because the user needs to know nei-
ther a complex query language nor the underlying database schemas. Given l-keyword
query Q = {w1, w2, · · · , wl}, the task of keyword search in a relational database is to find
structural information constructed from tuples in the database [21].

Example 1. Consider a sample publication database shown in Fig. 1. Figure 1(a) shows
the three relations Papers, Authors, and Writes. In the following, we use the initial of
each relation name (P, A, and W) as its shorthand. There are two foreign key refer-
ences: W → A and W → P. Figure 1(b) illustrates the tuple connections based on
the foreign key references. For the keyword query “James P2P” consisting of two key-
words “James” and “P2P”, there are six matched tuples in the database (underlined in
Fig. 1(a)), which can be regarded as the query results. However, they can be joined with
other tuples according to the foreign key references to form more meaningful results
that are shown in Fig. 1(c). The arrows represent the foreign key references between
tuples. Finding such results which are formed by the tuples containing the keywords is
the task of keyword search in relational databases. As described later, results are often
ranked by relevance scores evaluated by a certain ranking strategy. �

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 65–80, 2012.
© Springer-Verlag Berlin Heidelberg 2012

66 Y. Xu, J. Guan, and Y. Ishikawa

Papers
pid title
p1 “Leveraging Identity-Based Cryptography for Node ID Assignment in Structured

���
P2P Systems.”

p2 “
��
P2P or Not

��
P2P?: In

���
P2P 2003”

p3 “A System for Predicting Subcellular Localization.”
p4 “Logical Queries over Views: Decidability.”
p5 “A conservative strategy to protect

���
P2P file sharing systems from pollution attacks.”

· · · · · ·
Authors
aid name
a1 “

����
James Chen”

a2 “Saikat Guha”
a3 “

����
James Bassingthwaighte”

a4 “Sabu T.”
a5 “

����
James S. W. Walkerdines”

· · · · · ·

Writes
wid w1 w2 w3 w4 w5 w6 w7 w8 · · ·
aid a3 a2 a3 a1 a5 a3 a2 a4 · · ·
pid p2 p1 p3 p4 p5 p4 p2 p5 · · ·

(a) Database (Matched keywords are underlined)

(b) Tuple connections (Matched tuples are solid circles) (c) Examples of query results

Fig. 1. A sample database with a keyword query “James P2P”

There would be a huge number of valid results for a keyword query in a large
database. However, only the top 10 or 20 most relevant matches for the keyword query
–according to some definition of “Relevance”– are generally of interest [4]. [4] and [11]
have tried to avoid exhaustive processing by introducing a top-k processing algorithm
such as a pipelined algorithm. Although their algorithms can stop early before all the
results are generated, they still suffer from a huge number of join checking which can-
not produce results. In this paper, we describe an efficient method which can efficiently
find the top-k results. Major contributions of this paper are:

– We incorporate the ranking mechanisms into the query processing methods of the
existing query processing scheme of [14], and then the keyword query can be eval-
uated in pipelined way as in [4] and [11].

– For each tuple that contains keywords, a tree consisting of the tuples that can join
it through the foreign key references is constructed through the query processing,
which can highly accelerate the following processing involving that tuple.

– Extensive experiments are conducted to evaluate the proposed approach.

The rest of this paper is organized as follows. In Section 2 some basic concepts are
introduced. Section 3 presents the details of the proposed method. Section 4 gives the
experimental results. Section 5 discusses related work. Finally, in Section 6 we conclude
this paper.

2 Preliminaries

We consider a relational database schema as a directed graph GS (V, E), called a schema
graph, where V represents the set of relation schemas {R1,R2, . . .} and E represents the

Scalable Top-k Keyword Search in Relational Databases 67

foreign key references between pairs of relation schemas. Given two relation schemas,
Ri and R j, there exists an edge in the schema graph, from R j to Ri, denoted Ri ← R j, if
the primary key of Ri is referenced by the foreign key defined on R j. For example, the
schema graph of the publication database in Fig. 1 is Papers ← Writes → Authors. A
relation on relation schema Ri is an instance of Ri (a set of tuples) conforming to the
schema, denoted r(Ri). Below, we use Ri to denote r(Ri) if the context is obvious.

The results of keyword queries in relational databases are a set of connected trees
of tuples, each of which is called a joint-tuple-tree (JTT for short). A JTT represents
how the matched tuples, which contain the specified keywords in their text attributes,
are interconnected through foreign key references. Two adjacent tuples of a JTT, ti ∈ Ri

and t j ∈ R j, are interconnected if they can be joined based on a foreign key reference
defined on relational schema Ri and R j. For example, the second JTT in Fig. 1(c) can
be denoted as p2 ← w1 → a3 or p2 � w1 � a3. To be a valid result of a keyword query
Q, each leaf of a JTT is required to be a matched tuple. The number of tuples in a JTT
T is called the size of T , denoted by size(T).

Each JTT belongs to the results of a relational algebra expression, which is called
a candidate network (CN) [4,11,17]. For example, the CN that corresponds to JTT
p2 ← w1 → a3 is PQ � W � AQ, where � represents a equi-join between relations.
In the following, we also denote PQ � W � AQ as PQ ← W → AQ, the arrows
represent the foreign key references. Relations in CNs are also called as tuple sets.
Given a keyword query Q, the query tuple set RQ

i of a relation Ri is defined as the set
of matched tuples in Ri, and the free tuple set RF

i is defined as the set of un-matched
tuples in Ri. In Example 1, PQ = {p1, p2, p5}, AQ = {a1, a3, a5}, PF = {p3, p4, . . .} and
AF = {a2, a4, . . .}. If a relation Ri has no text attributes (e.g., relation W in Fig. 1), Ri

is used to denote RF
i . Hence, a CN corresponds to a join expression on tuple sets that

produces JTTs as results, where each join clause RQorF
i � RQorF

j corresponds to an
edge 〈Ri,R j〉 in the database schema graph. As the leaf nodes of JTTs must be matched
tuples, the leaf nodes of CNs must be query tuple sets. The size of CN C, denoted as
size(C), is defined as the size of the JTTs it produces. A CN can be easily transformed
into an equivalent SQL statement and executed by an RDBMS.1

When a keyword query Q is specified, all the non-empty query tuple sets are firstly
computed using the full-text indices. Then they and the database schema are used to
generate the set of valid CNs. There is always a constraint CNmax to restrict the maxi-
mum size of CNs. In Example 1, there are two non-empty query tuple sets PQ and AQ. If
CNmax = 5, seven CNs are generated: CN1 = PQ, CN2 = AQ, CN3 = PQ ← W → AQ,
CN4 = PQ ← W → AQ ← W → PQ, CN5 = PQ ← W → AF ← W → PQ,
CN6 = AQ ← W1 → PQ ← W → AQ and CN7 = AQ ← W → PF ← W → AQ. Then,
these CNs are evaluated by sending the corresponding SQL statements to the RDBMS
for finding the query results. An efficient evaluation process is necessary because the
number of candidate networks is huge. For example, [5] shows how generating a CN
can reduce the cost of execution by exploiting reused common sub-expressions [6].

There would be a huge number of valid results for all the CNs. However, only the top
10 or 20 most relevant matches for the keyword query –according to some definition of

1 For example, we can transform CN PQ ← W → AQ as: SELECT * FROM W w, P p, A a
WHERE w.pid = p.pid AND w.aid = a.aid AND p.pid in (p1, p2, p5) and a.aid in (a1, a3, a5).

68 Y. Xu, J. Guan, and Y. Ishikawa

“Relevance”– are generally of interest [4]. Thus, many efforts have been dedicated to
the top-k keyword search [1,4,11,17]. The problem of top-k keyword search is to find
the top-k JTTs based on a certain scoring function. In this paper, we adopt the scoring
method employed in [4], which is an ordinary ranking strategy in the information re-
trieval area. The following function score(T,Q) is used to score JTT T for query Q,
which is based on the TF-IDF weighting scheme:

score(T,Q) =
∑

t∈T tscore(t,Q)
size(T)

(1)

where t ∈ T is a tuple (a node) contained in T , tscore(t,Q) is the tuple score of t with
regard to Q defined as follows:

tscore(t,Q) =
∑

w∈t∩Q

1 + ln(1 + ln(t ft,w))

(1 − s) + s · dlt
avdl

· ln
(

N
d fw + 1

)

(2)

where t ft,w is the term frequency of keyword W in tuple t, d fw is the number of tuples in
relation r(t) (the relation corresponds to tuple t) that contain W. d fw is interpreted as the
document frequency of W. dlt represents the size of tuple t, i.e., the number of letters
in t, and is interpreted as the document length of t. N is the total number of tuples in
r(t), avdl is the average tuple size (average document length) in r(t), and s (0 ≤ s ≤ 1)
is a constant which usually be set to 0.2. The function in Eq. (1) has the property of
tuple monotonicity, which is defined as: for any two JTTs T = t1 � t2 � . . . � tl
and T ′ = t′1 � t′2 � . . . � t′l generated from the same CN C, if for any 1 ≤ i ≤ l,
tscore(t,Q) ≤ tscore(t′,Q), then we have score(T,Q) ≤ score(T ′,Q).

Table 1 shows the tuple scores of the six matched tuples in Example 1. We suppose
all the matched tuples are shown in Fig. 1, and the numbers of tuples of relations A and
P are 150 and 170, respectively. Therefore, the top-3 results are T1 = p2 (score = 7.04),
T2 = a1 (score = 4.00) and T3 = p2 ← w1 → a3 (score = 3.48).

Table 1. Tuple scores of tuples of PQ and AQ

Tuple p1 p2 p5 a1 a3 a5

tscore 3.28 7.04 3.33 4.00 3.40 3.36

3 Top-k Keyword Search

3.1 Evaluating CNs Using Lattice

KDynamic [14,16] formalizes each CN as a rooted tree, whose root is defined to be the
node r such that the maximum path from r to all leaf nodes is minimized2. Figure 2(a)
shows the rooted tree of CN6. Each node Vi in the rooted trees is associated with an
output buffer, denoted by Vi.output, which contains the tuples of Vi that can join at least
one tuple in the output buffer of its each child. Tuples in the output buffer are called the

2 Note that the CN defined in KDynamic has some differences with ours.

Scalable Top-k Keyword Search in Relational Databases 69

output tuples of the node. Thus, each output tuple of the root can form JTTs with the
output tuples of its descendants. Tuples of CNs are processed in a two-phase approach in
the rooted tree. In the filter phase, as illustrated in Fig. 2(a), when a tuple t is processed
at the node W1, KDynamic uses selections to check if (1) t can join at least an output
tuple of each child of W1; and (2) t can join at least an output tuple of the ancestors
of W1. The tuples that can not pass the checks are pruned; otherwise, in the join phase
(shown in Fig. 2(b)), a joining process is initiated from each output tuple of the root
node that can join t, in a top-down manner, to find the JTTs involving t. KDynamic
achieves full tuple reduction by pruning the tuples that cannot form JTTs, and thus
the join operations can always produce results. In order to share the computation cost
among CNs, all the rooted trees are compressed into a L-Lattice by collapsing their
common subtrees. Thus, the output tuples of a node are shared by more than one nodes,
among different CNs. Figure 2(c) shows the lattice of the seven CNs. We use VQ

i to
denote a node of query tuple set particularly. The dual edges between two nodes, for
instance, VQ

1 and V5, indicate that V5 is a dual child of VQ
1 .

(a) Filter phase (b) Join phase (c) L-Lattice of the seven CNs

Fig. 2. Query processing in KDynamic

3.2 Candidate Network Clustering

According to Eq. (1), relevance scores of JTTs of different CNs have great differences.
For example, relevance scores of JTTs of CN5 and CN7 are smaller than that of JTTs
of CN3 due to their large sizes. And then the same tuple set can have different numbers
of processed tuples in different CNs if they are evaluated separately. If the seven CNs
are evaluated separately, AQ of CN7 would have no processed tuples. However, in the
lattice, a node VQ

i can be shared by multiple CNs. For instance, the node VQ
8 in Fig. 2(c)

is shared by CN2, CN3, CN6, and CN7. We use Vi.CN to denote the set of CNs that node
Vi belongs to. Then, when processing a tuple t at node VQ

8 , t is processed in all the CNs
in VQ

8 .CN; hence some results of CN7 can be computed, which would have very small
relevance scores and cannot contribute to the top-k results.

The essence of the above problem is that CNs have different potentials in producing
the top-k results. Thus, the CNs that have very different such potentials can not share
tuple sets. The optimal method is merely to share the tuple sets which have the same set
of processed tuples if CNs are evaluated separately. However, we can not get these sets
without evaluating them. As an alternative, we attempt to estimate these sets according
to two heuristic rules:

70 Y. Xu, J. Guan, and Y. Ishikawa

– If Max(C) =

∑
1≤i≤m C.RQ

i .t1.tscoreu

size(C)
, which indicates the maximum scoreu of JTTs

that C can produce, is high, tuple sets of C have more processed tuples.
– If two CNs have the same Max(C) values, tuple sets of the CN with larger size have

more processed tuples.

Therefore, we can use Max(C)·ln(size(C)) to measure the potential of a CN in producing
top-k results, where ln(size(C)) is used to normalize the effect of CN sizes. Then, we can
cluster the CNs using their Max(C) · ln(size(C)) values, and only the subtrees of CNs in
the same cluster can be collapsed when constructing the lattice. For instance, Max(C) ·
ln(size(C)) of the seven CNs are: 5.15, 2.93, 5.39, 6.84, 5.32, 5.70 and 3.03; hence
they can be clustered into two clusters: {CN2,CN7} and {CN1,CN3,CN4,CN5,CN6}.
Figure 3 shows the lattice after they are clustered.

Fig. 3. The lattice of the seven CNs if they are clustered into two clusters

The CNs are clustered using the K-means clustering algorithm [10], which needs an
input parameter to indicate the number of expected clusters. We use Kmean to indicate
this parameter. The value of Kmean represents the trade-off between sharing the com-
putation cost among CNs and considering their different potentials in producing top-k
results. The CNs is not clustered when Kmean = 1, then the computation cost is shared
at the maximum extent. When Kmean = MAX, all the CNs are evaluated separately. As
shown in the experimental section, clustering the CNs can highly improve the efficiency
in computing the initial top-k results, and the optimal Kmean depends on CNmax.

3.3 Pipelined Evaluation of the Lattice

In order to find the top-k results in a pipelined way, we first sort tuples in each query
tuple set VQ

i .R
Q in non-increasing order of tscore. We use VQ

i .cur to denote the current
tuple such that the tuples before its position are all processed, and we use VQ

i .cur ←
VQ

i .cur + x to move VQ
i .cur to the next x position. Initially, for each node VQ

i in L,
VQ

i .cur is set as the top tuple in VQ
i .R

Q. In Fig. 3, VQ
i .cur of the four nodes are denoted

by arrows. Note that, for a node Vi that is of a free tuple set RF
i , we regard all its tuples

as processed tuples for all the times.
The key to evaluate queries in a pipelined way in [4] and [11] is to compute an upper

bound for the relevance score of the un-found results. For a keyword query Q, given a

Scalable Top-k Keyword Search in Relational Databases 71

CN C, let the set of query tuple sets of C be {RQ
1 ,R

Q
2 , . . . ,R

Q
m}. For each tuple RQ

i .t j, [4]
computes the upper bound score for all the JTTs of C that contain RQ

i .t j as:

score(C.RQ
i .t j,Q) =

t j.tscore +
∑

1≤i′≤m∧i′�i C.RQ
i′ .t1.tscore

size(C)
(3)

where C.RQ
i′ .t1 indicates the top-most tuple of query tuple set C.RQ

i′ . Using this equa-
tion, for each node VQ

i , this paper computes the maximum score of the found JTTs by
processing the un-processed tuples at VQ

i as:

score
(
VQ

i ,Q
)
=

⎧
⎪⎪⎨
⎪⎪⎩

0, a child node of VQ
i has an empty output buffer,

maxC∈VQ
i .CN

(
score

(
C.VQ

i .cur,Q
))
, otherwise

(4)

If a child of VQ
i has an empty output buffer, processing any tuple at VQ

i can not pro-

duce JTTs; hence score
(
VQ

i , t j,Q
)
= 0 in such cases, which chokes the tuple pro-

cessing at VQ
i until all its child nodes have non-empty output buffers. This property of

score
(
VQ

i ,Q
)

can be seen as our version of the event-driven evaluation in KDynamic,
which is firstly proposed in S-KWS [13] and can noticeably reduce the query processing
cost. In Fig. 3, score

(
VQ

i ,Q
)

values of the four VQ
i nodes are shown next to the arrows.

For example, score
(
VQ

9 ,Q
)

is computed as maxC∈{CN2 ,CN7}
(
score

(
C.AQ.a1,Q

))
= 4.00.

Algorithm 1 outlines our pipelined algorithm of evaluating lattice L to find the
top-k results. Lines 1-1 are the initialization steps, which sort tuples in each query
tuple set and initialize each VQ

i .cur. Then in each while iteration (lines 1-1), step

un-processed tuples in the node VQ which maximizes score
(
VQ

i ,Q
)

are processed. Pro-
cessing tuples at a node is done by calling the procedure Insert. Algorithm 1 stops when
maxVQ

i ∈L
score(VQ

i ,Q) is not larger than the relevance score of the top-k-th found result
because no results with larger relevance scores can be found in the further evaluation.
The procedure Insert(Vi, S) is firstly provided in KDynamic, which updates the output
buffers for Vi (line 1) and all its ancestors (lines 1-1), and finds all the JTTs contain-
ing tuples of S′ by calling the procedure EvalPath (line 1), which is firstly provided
by KDynamic too. In KDynamic, the second parameter of Insert and EvalPath is one
tuple. As shown by the BP algorithm of [11], processing tuples in batch can achieve
high efficiency due to the reduced numbers of database accesses. Hence, tuples are
processed in batch in Algorithm 1: step tuples are processed when Insert is called in
line 1, and EvalPath also handles a set of tuples. However, it is not the larger step is, the
higher efficiency of Algorithm 1 has. Because a larger step can result in un-necessary
tuple processing in some lattice nodes. We will experimentally to study how to select a
proper step value. The recursive procedure EvalPath(Vi, S, path) constructs JTTs using
the output tuples of Vi’s descendants that can join tuples in S. The stack path is used to
record the join sequence for reducing the join cost (see line 1).

Example 2. Figure 4 shows the lattice after finding the top-3 results. Suppose step = 1,
then in the first round, tuple VQ

11.p2 is processed by calling Insert(VQ
11, {p2}). Since VQ

11

is the root of CN1, EvalPath(VQ
11, {p2}) is called and JTT T1 = p2 is found. Then,

Insert(V7, {w1, w7}) and Insert(V8, {w1, w7}) are called. V7.output is not updated be-
cause VQ

10.output = ∅; V8.output is updated to {w1, w7}. And then, for the two father

72 Y. Xu, J. Guan, and Y. Ishikawa

Algorithm 1. EvalStatic-Pipelined (lattice L, the top-k value k, integer step)

topk ← ∅: the priority queue for storing found JTTs ordered by score;1

Sort tuples of each VQ
i .R

Q in non-increasing order of tscoreu;2

foreach node VQ
i in L do let VQ

i .cur ← VQ
i .R

Q.t1;3

while maxVQ
i ∈L

score(VQ
i ,Q) > topk[k].score do4

Suppose score(VQ
0 ,Q) = maxVQ

i ∈L
score(VQ

i ,Q);5

path ← ∅; // A stack which records the join sequence6

Insert(VQ
0 , {V

Q
0 .cur, · · · ,VQ

0 .cur + step − 1}); // Processing step tuples at VQ
07

VQ
0 .cur ← VQ

0 .cur + step;8

Output the first k results in topk;9

L.θ ← topk[k].score;10

Procedure Insert(lattice node Vi, set of tuples S)11

Let S′ ← {t|t ∈ S, t can join at least one outputted tuple of every child of Vi };12

Vi.output ← Vi.output
⋃
S
′;13

if S′ � ∅ then14

Push (Vi,S′) to path;15

if Vi is a root node then topk ← topk
⋃

EvalPath(V, S′, path);16

foreach father node of Vi, Vi′ in L do17

Let S′′ be the set of processed tuples of Vi′ that can join tuples in S′;18

Insert(Vi′ ,S
′′);19

Pop (V ,S′) from path;20

21

Procedure EvalPath(lattice node Vi, set of tuples S, stack path)22

T ← S; // The set of found JTTs23

foreach child node of Vi, Vi′ in L do24

if Vi′ ∈ path then S′ ← the set of output tuples of Vi′ that are stored in path;25

else S′ ← the set of output tuples of Vi′ that can join tuples in S;26

T ′ ← EvalPath(Vi′ , S
′, path);27

T ← T � T ′; // Join the JTTs in the two sets28

return T ;29

nodes of V8, VQ
3 and V4, VQ

3 .output is not updated since VQ
3 has no processed tuples,

and V4.output is set as {a2} because there is only one tuple a2 in AF that can join w1

Fig. 4. The lattice after finding the top-3 results (output tuples are shown in bold)

Scalable Top-k Keyword Search in Relational Databases 73

and w7. Since V4 is the root node of CN5, EvalPath(V4, {a2}, path) is called but the
found JTT p2 ← w7 → a2 ← w7 → p2 is not a valid result. After processing VQ

11.p2,

score
(
VQ

3 ,Q
)
= 3.61 and score

(
VQ

11,Q
)
= score(CN1.PQ.p5,Q) = 3.33. In the second

round, Insert(VQ
9 , a1) is called, · · · . Lastly, Algorithm 1 stops because topk[3].score is

larger than all the score
(
VQ

i ,Q
)

values.

3.4 Caching Joined Tuples

In Algorithm 1, procedure Insert may be called multiple times upon multiple nodes
for the the same tuple. And the procedure EvalPath may also be called multiple times
for the same tuple in procedure Insert. The core of these two procedures are the select
operations. For example, line 1 selects the tuples that can join tuples of S from the
output buffer of each child node of Vi. Although such select operations can be done
efficiently by the RDBMS using indexes, the cost is high due to the large number of
database accesses. For example, in our experiments, for a tuple t, the maximal number
of database accesses can be up to several hundred.

In this paper, the selections in Insert and EvalPath are done efficiently by caching the
joined tuples for each tuple. Algorithm 2 shows our procedure to find the tuples in S that
can join at least one output tuple of node Vi, which is called in line 1 of procedure Insert.
For each tuple t in S, if the joining tuples of relation Ri are not cached, they are queried
from the database and are stored into t in line 2. The procedures of doing the selections
in line 1 of Insert, and line 1 of EvalPath are also designed in this pattern, which are
omitted due to the space limitation. Since the two procedures are called recursively,
for each tuple t, a tree rooted at t and consist of all the tuples that can join t is created
temporarily, which can be seen as the cached localization information of t and is denoted
as T . Since T of different tuples can share the same tuples, fractions of the database
graph are created.

Algorithm 2. CanJoinOneOutputTuple(lattice node Vi, set of tuples S)

Let Ri be the relation corresponding to the tuple set of Vi;1

Let S′ ← {t|t ∈ S, t does not store the joining tuples of relation Ri};2

if S′ � ∅ then Query the joining tuples of relation Ri for tuples in S′;3

foreach Tuple t in S do4

if the stored joining tuples of relation Ri in t has empty intersection with Vi.output5

then Remove t from S;
return S;6

Assume procedure Insert is called three times at VQ
3 , VQ

9 and VQ
10 for a tuple a0,

which would incur at most seven selections denoted by arrows in the left part of Fig. 5.
For instance, the arrow form VQ

3 to V8 selects the output tuples of V8 that can join a0.
There are three selections denoted by dashed arrows because they would not be done if
the results of the three selections: form VQ

9 to V5, form VQ
10 to V6 and form VQ

10 to V7,

are empty. If both the two selections, from VQ
9 to V5 and from V5 to V1, have non-empty

74 Y. Xu, J. Guan, and Y. Ishikawa

results, EvalPath is called and would incur the two selections denoted by dotted arrows
in Fig. 5. The right part of Fig. 5 shows the created T for the tuple w0, where tuples in
the dashed rectangle are queried in the dashed arrows and tuples in the dotted rectangle
are queried in EvalPath.

Fig. 5. Selections done in Insert and EvalPath and the cached joined tuples for a tuple a0 of AQ

T is created on-the-fly, i.e., along the execution of procedures Insert and EvalPath,
and its depth is determined by the recursion depths of them. Therefore, T is not com-
plete in Fig. 5. The maximum recursion depth of procedure Insert is �CNmax

2 [14]. And
the recursion depth of procedure EvalPath is �CNmax

2 �. Hence, the height ofT is bounded
by CNmax. If we use M1 and M2 to indicate the maximum number of adjacent relations
that each relation Ri can have and the maximum number of tuples that a tuple of Ri

can join in its each adjacent relation, respectively. Note that M1 and M2 are often rather
small compared to the number of CNs. Then in the worst case, there are tuples of Ml

1
relations in level l (the level of the root is 0) of T ; and for each relation, there are Ml

2
tuples. Hence, the total number of tuples in T is:

O

⎛
⎜⎜⎜⎜⎜⎜⎝

CNmax−1∑

l=1

Ml
1 · M

l
2

⎞
⎟⎟⎟⎟⎟⎟⎠ = O

(
(M1 · M2)CNmax

)
(5)

In practice, the height of T is smaller than �CNmax
2 for most of the tuples. We use n to

denote the number of lattice nodes that the procedure Insert or EvalPath is called for a
tuple t. In the best case, we only need to query tuples from the database in the first time
of calling Insert, and then the cached tuple in T can be reused. The cost of doing the
select operations is the majority of the cost of executing Insert and EvalPath; hence the
total time cost to process t can be reduced to O(1/n), compared to KDynamic.

4 Experimental Study

We conducted extensive experiments to test the efficiency of our methods. We use the
DBLP dataset3. The downloaded XML file is decomposed into relations. We retrieve
the data in the XML file sequentially until number of tuples in the relations reach the
numbers shown in Table 2. The DBMS used is MySQL (v5.1.44) with the default “Ded-
icated MySQL Server Machine” configuration. All the relations use the MyISAM stor-
age engine. Indexes are built for all primary key and foreign key attributes, and full-text

3 http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php/

Scalable Top-k Keyword Search in Relational Databases 75

indexes are built for all text attributes. All the algorithms are implemented in C++.
We conducted all the experiments on a 2.53 GHz CPU and 4 GB memory PC running
Windows 7.

Table 2. Tuple numbers of relations

Papers PaperCite Write Authors Proceedings ProcEditors ProcEditor
354,804 19,438 899,565 320,579 3,904 5,208 8,439

We use the following five parameters in the experiments: (1) k: the top-k value; (2) l:
the number of keywords in a query; (3) IDF: the d fw

N value of Eq. (3); (4) CNmax: the
maximum size of the generated CNs; (5) Kmean: the number of clusters of CNs; and
(6) step: the number of tuples being processed one time in Algorithm 1. The parameters
with their default values (bold) are shown in Table 3. The keywords selected are listed in
Table 4 with their IDF values, where the keywords in bold fonts are keywords popular
in author names. For each l value, ten queries are constructed by selecting l keywords
from the set of keywords of IDF = 0.013. We run the Algorithm 1 on different values
of each parameter while keeping the other five parameters in their default values. Ten
top-k queries are selected for each combinations of parameters, and report the average
time cost (Time) and number of computed JTTs (#R).

Table 3. Parameters

Name Values
k 100, 200, 250, 300
l 2, 3, 4, 5
IDF 0.003, 0.007, 0.013,

0.025
CNmax 4, 5, 6, 7
Kmean 1, 4, 8, 14, 20, MAX
step 1, 50, 100, 200, 400

Table 4. Keywords and their IDF values

Keywords IDF
ATM, collaboration, cluster, Java, navigation, ontology, privacy, QoS, scal-
able, Spatial Charles, Eric

0.004

embedded, fuzzy, genetic, Intenet, machine, mining, semantic, sensor, video,
XML, James, Zhang

0.007

adaptive, architecture, database, evaluation, mobile, oriented, optimization,
process, security, simulation, wireless, John, Wang

0.013

algorithm, design, distributed, information, learning, networks, performance,
software, time, web, David, Michael

0.025

Figure 6 shows how the two measures change while varying the five parameters. The
values of #R are all plotted on the right Y-axis. Figure 6(a), (b) and (c) show that the
two measures all increase while k, id f and CNmax grow. However, they do not show
rapid increase in Fig. 6(a), (b) and (c), which imply the good scalability of our method.
Figure 6(d) shows that the effect of l seems more complicated: all the two measures
may decrease when l increases, and they even both achieve the minimum values when
l = 5. This is because the probability that the keywords to co-appear in a tuple and
the matched tuples can join is high when the number of keywords is large. Therefore,
there are more JTTs that have high relevance scores, which results in larger θ and small
values of the two measures. Figure 6(e) presents the importance of processing tuples
in batch (or block), due to the highly reduced number of database accesses. Because
score

(
VQ

i ,Q
)

is computed using the first un-processed tuple, larger values of step can

result in more un-necessary tuple processing at node VQ
i . Hence, as can be seen from

76 Y. Xu, J. Guan, and Y. Ishikawa

(a) Varying CNmax (b) Varying IDF

(c) Varying k (d) Varying l

(e) Varying step

Fig. 6. The effects of CNmax, IDF, k, l and step on the two measures

Fig. 6(e), #R increases while step grows, and the time cost increases while step grows
from 200 to 400.

In Fig. 7a, we draw the changes of the two measures while varying Kmean when
CNmax = 6 (indicated by “Time (6)” and “#R (6)”), and the changes of the time cost
while varying Kmean when CNmax is 4, 5 and 7 (indicated by “Time (4)”, “Time (5)”
and “Time (7)”, respectively). Since the results of the K-means clustering may be af-
fected by the starting condition [10], for each Kmean value, we run Algorithm 1 five
times on different starting condition for each keyword query and report the average
result. Note that, KDynamic corresponding to Kmean = 1 since there is no CN clus-
tering in its method. From Fig. 7a, we can find that clustering the CNs can consider-
ably improve the efficiency of computing the top-k results. The two meaures decreases
quickly while Kmean growing from 1 to 14. However, increasing Kmean from 14 to
MAX can not distinctly reduce the time cost, because the CNs that have big differences
in their Max(C) · ln(size(C)) values have been clustered into different clusters when

Scalable Top-k Keyword Search in Relational Databases 77

Kmean > 14. When Kmean grows from 14 to MAX (i.e., the CNs are evaluated sep-
arately), the time cost changes differently on different CNmax values. When CNmax is
6 or 7, the time cost is increased. When CNmax = 5, the time cost unchange. When
CNmax = 4, the time cost is decreased to the minimum value. This is because the num-
ber of CNs is small when CNmax is 4 and 5, but is large when CNmax is 6 and 7; hence
sharing the time cost among CNs can achieve improvement when CNmax is 6 and 7.
Therefore, for a small CNmax value, the CNs can be evaluated separately, each as a
rooted tree; and for a large CNmax value, the lattice is constructed while clustering the
CNs on Kmean = 14. It worth noting that #R continually decreases as Kmean grows,
which implies the effectiveness of clustering CNs using Max(C) · ln(size(C)) values.

Figure 7b compares the time cost of computing the initial top-k results of Algo-
rithm 1, denoted by “LP”, with that of the Block pipeline (BP) algorithm of SPARK
(which is the state-of-art top-k keyword search algorithm [20]) and KDynamic, respec-
tively, while varying CNmax. Figure 7b shows that, compared to SPARK, Algorithm 1
and KDynamic are more efficient in finding the top-k results, because evaluating the
CNs using the lattice can achieve complete reduction since all the output tuples of the
root nodes can form JTTs [14]. The time costs of KDynamic in Fig. 7b are all obtained
when Kmean = 14. Hence, the difference between our approach and KDynamic reflects
the effect of caching the joined tuples. We can see that caching the joined tuples highly
improves the efficiency of computing the top-k results. More importantly, the improve-
ment increases as CNmax grows. The reason is that when CNmax grows, the number of
lattice nodes at which the procedure Insert is called for each tuple increases exponen-
tially; hence the saved cost for storing the joined tuples increases as CNmax grows.

(a) Time & #R vs. Kmean (b) LP vs. KDynamic & SPARK

Fig. 7. Comparison in calculating top-k results

5 Related Work

Keyword search in relational databases has attracted substantial research effort in re-
cent years, which can be categorized into two approaches. The graph-based meth-
ods [1,3,7,8,9,15] model and materialize the entire database as a directed graph where

78 Y. Xu, J. Guan, and Y. Ishikawa

the nodes are relational tuples and the directed edges are foreign key references be-
tween tuples. Fig. 1(b) shows such a database graph of the example database. Then for
each keyword query, they find a set of structures (either Steiner trees [1], distinct rooted
trees [7], r-radius Steiner graphs [8], or multi-center subgraphs [15]) from the database
graph. For the details, please refer to the survey papers [6,21]. The schema-based ap-
proaches [2,4,5,11,12,14,17,18,19] in this area utilize the database schema to generate
SQL queries. After receiving a keyword query, they first utilize the database schema to
generate a set of candidate networks (CNs), which can be interpreted as select-project-
join views and all have explicit meanings. Then, these CNs are evaluated by sending
the corresponding SQL statements to the RDBMS to find JTTs. A data graph cannot
exploit the semantics of the underlying database schema directly. Another drawback of
the data graph model is that a graph of the tuples must be materialized and maintained;
therefore, it may not be scalable when maintaining a large size database [6]. This pa-
per adopts the schema-based framework for query processing, but materializes small
fractions of the entire database graph in the process of query processing.

There would be a huge number of valid results for a keyword query in a large
database. However, only the top 10 or 20 most relevant matches for the keyword query
–according to some definition of “Relevance”– are generally of interest [4]. DISCOV-
ERII [4], SPARK [11] and SPARKII [12] efficiently execute top-k queries by avoid-
ing the creation of all the query results. DISCOVERII proposed the Global-Pipelined
(GP) algorithm. For a keyword query Q, given a CN C, let the set of query tuple
sets of C be {RQ

1 ,R
Q
2 , . . . ,R

Q
m}. Tuples in each RQ

i are sorted in non-increasing order
of their scores computed by Eq. (2). For each tuple RQ

i .t j, the upper bound score for
all the JTTs of C that contain RQ

i .t j is computed using Eq. (3). Algorithm GP initially
mark all tuples in each tuple set as un-processed except for the top-most one. Then in
each iteration (one round), the un-processed tuple, assume it be C0.R

Q
s .tpro, maximizes

the score is selected for processing, which is done by testing all the combinations as
(t1, t2, . . . , ts−1,R

Q
s .tpro, ts+1 . . . , tm), where ti is a processed tuple of C0.R

Q
i (1 ≤ i ≤ m,

i � s). If the k-th relevance score of the found results is larger than score values of all
the un-processed tuples in all the CNs, GP stops and outputs the k found results with
the largest relevance scores.

One drawback of the GP algorithm is that when a new tuple C.RQ
s .tpro is processed, it

tests all the combinations as (t1, t2, . . . , ts−1,R
Q
s .tpro, ts+1 . . . , tm). This operation is costly

due to extremely large number of combinations when the number of processed tuples
becomes large [20]. SPARK and SPARKII proposed the Skyline-Sweeping (SS) and
Block-pipeline (BP) algorithms, which highly reduce the number of tested combina-
tions. SPARKII also proposed the Tree-pipeline (TP) algorithm, which can share the
computational cost among CNs in some extent, using the binary decompositions of
them. However, SPARK and SPARKII still can not avid testing a huge number of com-
binations which cannot produce results.

This paper incorporates the ranking mechanisms into the query processing schema
of KDynamic, which was introduced in Section 3.1. We adopt the basic idea of the
pipelined query evaluation method of DISCOVERII, SPARK and SPARKII. The nov-
elties of our method can be summarized as:

Scalable Top-k Keyword Search in Relational Databases 79

– The CNs are clustered according to their potentials in producing the top-k results;
– A pipelined evaluation method of the lattice is provided; and
– Fractions of the database graph are materialized to accelerate the query processing.

6 Conclusion

In this paper, we have studied the problem of finding the top-k results in relational
databases. We adopt an existing scheme of finding all the results in a relational database
stream, but incorporate the ranking mechanisms in the query processing methods and
make several improvements that can facilitate efficient top-k keyword search. Hence, the
keyword query can be evaluated in a pipelined way and the evaluation process can stop
early after finding the top-k result. The experimental results validate the effectiveness
and efficiency of the proposed method. Therefore, it can be used to solve the problem
of answering top-k keyword search in relational databases.

Acknowledgements. The authors would like to thank Prof. Shuigeng Zhou and Ph.D.
Fengrong Li for their revision and comments on the manuscript. This research was
partly supported by the National Natural Science Foundation of China (NSFC) under
grant No. 60873040. Jihong Guan was also supported by the “Shu Guang” Program
of Shanghai Municipal Education Commission and Shanghai Education Development
Foundation. Yoshiharu Ishikawa was supported by KAKENHI (22300034).

References

1. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag: BANKS: Browsing
and keyword searching in relational databases. In: VLDB, pp. 1083–1086 (2002)

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over
relational databases. In: ICDE, pp. 5–16 (2002)

3. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: ACM
SIGMOD, pp. 305–316. ACM, New York (2007)

4. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over rela-
tional databases. In: VLDB, pp. 850–861 (2003)

5. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In:
VLDB, pp. 670–681 (2002)

6. Jaehui, P., Sang-goo, L.: Keyword search in relational databases. Knowledge and Information
Systems 26(2), 175–193 (2011)

7. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirec-
tional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)

8. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: An effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: ACM SIGMOD, pp. 903–
914 (2008)

9. Li, G., Zhou, X., Feng, J., Wang, J.: Progressive keyword search in relational databases. In:
ICDE, pp. 1183–1186 (2009)

10. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information The-
ory 28, 129–136 (1982)

11. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: Top-k keyword query in relational databases.
In: ACM SIGMOD, pp. 115–126 (2007)

80 Y. Xu, J. Guan, and Y. Ishikawa

12. Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: SPARK2: Top-k keyword query in
relational databases. IEEE Trans. Knowl. Data Eng. 23(12), 1763–1780 (2011)

13. Markowetz, A., Yang, Y., Papadias, D.: Keyword search on relational data streams. In: ACM
SIGMOD, pp. 605–616 (2007)

14. Qin, L., Yu, J.X., Chang, L.: Scalable keyword search on large data streams. VLDB J. 20(1),
35–57 (2011)

15. Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In:
ICDE, pp. 724–735 (2009)

16. Qin, L., Yu, J.X., Chang, L., Tao, Y.: Scalable keyword search on large data streams. In:
ICDE, pp. 1199–1202 (2009)

17. Xu, Y., Ishikawa, Y., Guan, J.: Effective Top-k Keyword Search in Relational Databases
Considering Query Semantics. In: Chen, L., Liu, C., Zhang, X., Wang, S., Strasunskas, D.,
Tomassen, S.L., Rao, J., Li, W.-S., Candan, K.S., Chiu, D.K.W., Zhuang, Y., Ellis, C.A., Kim,
K.-H. (eds.) WCMT 2009. LNCS, vol. 5731, pp. 172–184. Springer, Heidelberg (2009)

18. Xu, Y., Ishikawa, Y., Guan, J.: Efficient Continuous Top-k Keyword Search in Relational
Databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184,
pp. 755–767. Springer, Heidelberg (2010)

19. Xu, Y., Ishikawa, Y., Guan, J.: Efficient continual top-k keyword search in relational
databases. Journal of Information Processing 20(1), 1–14 (2012)

20. Yu, J.X., Qin, L., Chang, L.: Keyword Search in Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers (2010)

21. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: A survey. Bulletin of
the IEEE Technical Committee on Data Engineering 33(10) (2010)

Composition and Efficient Evaluation

of Context-Aware Preference Queries

Patrick Roocks, Markus Endres, Stefan Mandl, and Werner Kießling

Institut für Informatik, Universität Augsburg,
D-86159 Augsburg, Germany

{roocks,endres,mandl,kiessling}@informatik.uni-augsburg.de

Abstract. This paper presents a modular approach to context-aware
preference query composition based on a novel kind of preference gen-
erator. We introduce a constructive model to generate preference terms
within the Preference SQL framework. Given several sources for pref-
erence related knowledge like explicit user input, information extracted
from a preference repository, domain-specific application knowledge,
location-based sensor data, or web service feeds for weather data our
preference generator can compile a user search request into one rather
complex context-aware Preference SQL query. Choosing as use case a
commercial e-business platform for outdoor activities, we demonstrate
how such queries despite the power and complexity of this approach can
be evaluated efficiently on a practical data set.

1 Introduction and Related Work

Preferences in Databases [Kie05] – as shown by a recent survey [SKP11] – are a
well established framework to create personalized information systems. By using
well designed preference models, users can be provided with just the information
they need, thereby overcoming the dreaded empty result set and flooding effect
[Kie02]. These improvements are starting to show up in real world applications.
For instance, today in the area of tourism – which is used in this paper as an
example application domain – there are many portals which provide information
about flights, hotels or outdoor activities by parametrized queries which either
result in an abundant number of items or no answer at all. Clearly, this state
of affairs is non-satisfactory for both the users and the owners of the portals.
In new tourist portals (like presented in [KSH+11]), preferences allow for richer
queries which define a strict partial order on the items available for the pur-
pose of selecting just the best items available, resulting strongly improved user
experience.

In domains like tourism, the notion of preference varies between users and
strongly depends on users’ situations. Hence, recently models of context-aware
preferences emerged [LKM11, PSV11, BFA07, SPV07], which are taking into ac-
count factors like users’ personalities, situation parameters (e.g. location, time,
season, weather), or even options of users’ acquaintances. [LKM11] introduces
CareDB, that provides scalable personalized location-based services to users

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 81–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 P. Roocks et al.

based on their preferences and current surrounding context. In particular it
deals with the problem that some contextual values may be very expensive to
compute. In [Cho07] relation-algebraic aspects of database queries under chang-
ing preferences are discussed. [BFA07] suggests a context-model for preference
queries, where context is represented by a variant of description logic.

There is the open challenge to create a comprehensive framework to derive
preferences from context. In this paper, we meet this challenge by presenting
an approach for context-aware preference composition, which 1) produces in-
ductively structured preference queries that are intuitive such that they can be
verified by domain experts, 2) allows for easy adaption of the composition pro-
cess for the specific application domain and 3) covers the whole path from the
application model to the preference query language.

[SPV07] suggests a discrete context model and introduces profile trees as a
data structure for the context resolution problem, hence retrieving the most ap-
propriate preferences depending on context. Similarly [PSV11] suggests a model
for a contextual preference selection based on the idea of a situation hierarchy.
These models can be seen as top-down approaches in contrast to our construc-
tive bottom-up model. In our approach all preferences are generated dynamically
instead of performing a look-up in a set of predefined preferences.

Throughout the paper we refer to the following example from the domain of
hiking tour recommendation which informally demonstrates the lines of reason-
ing about context-aware preferences of domain experts (like touristic companies)
we want to model: social network (recommendations from friends), history (al-
ready visited regions by the user), and external knowledge sources (weather
services, like the snow line and the altitude-dependent temperature).

Example 1 (Running Use Case). Consider John, who is planning a hiking tour
in the touristic region of the Bavarian Alps. He was already last year there in
the sub-region “Tannheim Mountains”, and a friend of him made a tour in the
“Walser Valley” which he was very excited about. Because now John wants to
see something new and he trusts his friend he wants to avoid regions already
visited by himself and prefers regions recommended by friends.

As he is not very experienced, he only specifies a duration for the tour, while
for the ascent and length he relies on the recommender. John prefers not to
hike in the snow, hence only mountain peaks below the current snow line are
preferable for him. Because it is a sunny day, the temperatures in low altitudes
are too high, so the tour should mainly be in a convenient altitude range.

John looks out for an online portal which picks out a hiking tour from a large
database which perfectly matches the preferences formulated above. In case there
are no “perfect tours” he is able to accept compromises, e.g. tours whose altitude
exceeds the snow line a little bit.

The remainder of the paper is structured as follows: Section 2 presents informally
the preference model used in this paper. Thereafter Section 3 describes our
context-aware preference generation process. Section 4 shows how the generated
preference queries can be evaluated using Preference SQL. Finally, Section 5
summarizes our claimed contributions and outlines further research directions.

Composition and Efficient Evaluation of Context-Aware Preference Queries 83

2 Preference Modeling

Preference modeling has been in focus for some time, leading to diverse ap-
proaches, e.g. [Cho03, Kie02, Kie05]. We follow the preference model from [Kie05]
which is a direct mapping to relational algebra and declarative query languages.
It is semantically rich, easy to handle and very flexible to represent user prefer-
ences which are ubiquitous in our life.

A preference P = (A,<P) is a strict partial order on the domain values of
the attributes A of a database relation. The term x <P y is interpreted as “y is
better than x according to P” where x, y are domain values of the attribute
set A. The result of a preference is computed by the preference selection.

Definition 1 (Preference Selection, BMO-set). The Best-Matching-Objects
(BMO-set) of a preference P = (A,<P) are all tuples from a database relation R
that are not dominated w.r.t. the preference. It is computed by the preference se-
lection operator σ[P](R) (called winnow in [Cho03]) and finds all best matching
tuples t for P , where t[A] is the projection to the attribute set A:

σ[P](R) := {t ∈ R | ¬∃t′ ∈ R : t[A] <P t′[A]}
Preference selection offers a cooperative query answering behavior by automatic
matchmaking: The BMO query result adapts to the quality of the data in the
database, defeating the empty result effect and reducing the flooding effect by
filtering off worse results.

To specify a preference a choice of intuitive base preference constructors
together with some complex preference constructors has been defined. Subse-
quently, we present some selected preference constructors used in this paper.
More preference constructors as well as their formal definition can be found in
[Kie02, Kie05].

Base Preference Constructors. Preferences on single attributes are called
base preferences. There are base preference constructors for discrete and for
continuous domains.

Definition 2 (POS and NEG Preference). The discrete Positive-preference
POS(A,POS-set) states that the user has a set of preferred values, the POS-set,
in the domain of A. The Negative-preference constructor is the counterpart to the POS-
preference, formally NEG(A,NEG-set) := POS(A,dom(A)\NEG-set).

We now present some preference constructors for continuous domains.

Definition 3 (AROUNDd Preference). In the AROUNDd(A, z) preference the
desired value should be z ∈ dom(A). If this is infeasible, values within a distance
of d are acceptable.

Definition 4 (LESS THANd and MORE THANd Preference).

a) In the MORE THANd(A, z) preference the desired values are greater or equal
to z. If this is infeasible, values within a distance of d are acceptable.

b) LESS THANd(A, z) is the dual preference to MORE THANd(A, z). The desired
values are less or equal to z w.r.t. to the d-Parameter.

84 P. Roocks et al.

Complex Preference Constructors. If one wants to combine several prefer-
ences into more complex preferences, one has to decide the relative importance
of these given preferences. Intuitively, people speak of “this preference is more
important to me than that one” or “these preferences are all equally important
to me”. Equal importance is modeled by the so-called Pareto preference.

Definition 5 (Pareto Preference). In a Pareto preference

P := P1 ⊗ . . . ⊗ Pm = (A1 × · · · × Am, <P)

all preferences Pi = (Ai, <Pi), i = 1, . . . ,m on the attributes Ai are of equal
importance.

The Prioritization preference allows the modeling of combinations of prefer-
ences that have different importance.

Definition 6 (Prioritization Preference). Let Pi = (Ai, <Pi), i = 1, . . . ,m
be preferences. In a Prioritization preference

P := P1 & . . .& Pm = (A1 × · · · × Am, <P)

preferences expressed earlier are more important than preferences expressed later
in the preference term.

Example 2 (Running Use Case). John prefers a hiking tour with a duration of
5 hours which is more important than all other preferences. Thereby he spec-
ifies a d-paramter of 10%, i.e. 0.5 hours. John prefers tours recommended by
his friends and equally important is that the altitude should be less than 2400
meters because of the snow line. Using the preference constructors this complex
preference can be formulated as:

PJohn := AROUND0.5(duration , 5) &

(POS(recommended , ’yes’) ⊗ LESS THANda(altitude, 2400))

The variable da is the d-parameter which will be used for all preferences regarding
altitude. A typical value could be da = 200, implying a tolerance of 10% at a
typical altitude of 2000 meters.

For the rest of this paper we also need the notion of a preference term.

Definition 7 (Preference Terms). We define the set of preference terms P
inductively:

– A base preference P = (A,<P) is a preference term.
– If P1 and P2 are preference terms, then the complex preferences P1 ⊗P2 and

P1 & P2 are preference terms.

The semantically well-founded approach of this preference model is essential for
personalized preference term composition. As a unique feature this preference
model allows multiple preferences on the same attribute without violating the
strict partial order. Furthermore, the inductive preference construction preserves
strict partial order, too.

Composition and Efficient Evaluation of Context-Aware Preference Queries 85

3 Context-Aware Preference Generation

Based on the preference framework presented in Section 2 we present our model
for creating preference terms dependent on the context. This model depends on
context-based triggers which are described by a discrete situation model with
few states. Compared to continuous models such models are particularly use-
ful when communicating with domain experts as the small number of states
makes it possible to systematically consider all combinations of context state
and therefore to guarantee that the system behaves in the desired way for all
possible context values. For example, concerning the weather, it is intuitive to
distinguish between “good” and “bad”. For our domain of a hiking tour recom-
mender we introduced the states: “good”, “bad” and “warning”. Whereas “bad”
implies less convenient outdoor activities, the state “warning” discourages from
activities like hiking because of safety reasons. Dependent on the context (time
of year, region) alternatives like city tours or visiting the spa could be suggested.

3.1 A Constructive Approach for Preference Generation

According to our running use case of a hiking tour recommender we have three
different kinds of influences for the preference generation: The user input from
the search mask, the user profile from the database and the contextual infor-
mation from external knowledge sources. In the following we describe how they
interact in our model. As described in Example 1, the weather conditions lead
to certain preferences. But weather warnings do not mean that the user input is
overridden. The rough concept of the preference composition always follows this
prioritization-schema, where each 〈...〉-part is called preference component.

〈pref term〉 := 〈user input〉 & 〈context〉 & 〈profile〉 (1)

This schema is supported by the conclusion of [BD03] that users might feel a
“lack of control” in context-aware systems, therefore the user input is prioritized.
In the same study was shown that users prefer context-awareness to personal-
ization, thus the profile is less prioritized.

The gravity of this external influences depends on the user: A well specified
user input, i.e. all fields of a search mask all filled out, implies that the context
can just do slight modifications and the profile even less. If a “lazy” user leaves
all fields blank, a “default request” based on the context and the profile will be
generated.

In the following the components of Eq. 1 are stepwise filled with preferences
which underlines our constructive approach. It is one of the big advantages of our
model that preferences are closed under Prioritization and Pareto-composition,
even “seeming contradictions” keep the strict partial order property. In our run-
ning use case of the hiking tour recommender, the user input consists of the
tour parameters length, duration, and ascent, unless they are not specified. The
components 〈context〉 and 〈profile〉 are sub-divided:

〈context〉 := 〈weather safety〉 & 〈children〉 & 〈weather conv〉 (2)

〈profile〉 := (〈social net〉 ⊗ 〈history〉) & 〈default input〉 (3)

86 P. Roocks et al.

In the 〈context〉 component in Eq. 2 the influence of the weather is divided into
〈weather safety〉, the safety-relevant preferences (e.g. snow line), and 〈weather
conv〉, the convenience-relevant (abbr. conv) preferences (e.g. convenient tem-
perature). The 〈children〉 component is relevant for families with young children
and will set preferences for tours with playgrounds, etc.

In the 〈profile〉 component in Eq. 3 the recommendations from friends are
contained in 〈social net〉 and the already visited tours in 〈history〉.

The components 〈user input〉 in Eq. 1 and 〈default input〉 in Eq. 3 only depend
on what the user filled out in the search mask, which is shown in the following
example.

Example 3 (Running Use Case). Consider the tourist John who has only spec-
ified a duration for his tour, let us say 5 hours. In our tour recommender this
preference is modeled with the AROUND-Constructor. Thereby we assume a tol-
erance of 10% which leads to a d-value of 0.5h. Thus we have the following user
input preference:

〈user input〉 := AROUND0.5(duration , 5)

Depending on empirical values like average speed and condition of his user type
(e.g. ”tourist” or “athlete”), the system selects defaults for length and ascent
according to the duration, let us say 12 kilometers for the length and 600 meters
for the ascent, both with a d-parameter of 10 %.

〈default input〉 := AROUND1.2(length, 12) ⊗ AROUND60(ascent , 600)

The Pareto-composition of these preferences is based on the assumption that
the attributes of length and ascent are of equal importance for the user. This
ordering may depend on the user type, e.g. an athletic user is focused on the
ascent of the tour whereas an unexperienced tourist is more used to the duration,
i.e. the preferences in our use-case also depend on the “tourist role”, which is
investigated in [GY02].

The social network and the history in Eq. 3 are Pareto-composed to allow
compromises. In the following example we will show, how conflicting preferences
in this components can be handled.

Example 4 (Running Use Case). We assume the attributes recommended and
visited , which are not attributes of the tour, but represent the recommenda-
tions from the social network and the visited tours for the current user. For
recommended we have the values “yes”, “no” and “unknown”, representing that
the region is recommended, disadvised or that there are no or contradicting in-
formations in the social network. For the visited attribute we just have the values
“yes” and “no” to mark the regions already visited by John. Recommended re-
gions are preferred whereas already visited regions are not preferred, because
the tourist wants to see something new.

〈social net〉 := POS(recommended , ’yes’)

〈history〉 := NEG(visited , ’yes’)

Composition and Efficient Evaluation of Context-Aware Preference Queries 87

According to the Pareto composition 〈social net〉 ⊗ 〈history〉 a region which was
both visited and recommended is considered equal to a region which was neither
visited nor recommended.

The preference model from Section 2 gives us the freedom for this component-
based model, where the preferences in the components may contradict each other
or may be defined on the same attribute.

To fill the 〈context〉 component with context-dependent preferences, a formal
model based on context-aware generators is introduced in the following.

3.2 Context-Aware Generators

The generation of preferences in our approach is context-aware in two regards:

1. Preferences in the components are triggered by a discretized context.
2. Parameters of this preferences can change with the (continuous) context.

By this breakdown the model is kept clear. Whereas in the “discretized world”
the rough structure of the preference term is decided, the “continuous world”
influences the fine structure of the preference term. Thus it is easy to see how
the configuration of the recommender changes the final output.

Definition 8 (Context Variables, (Current) Situation). Let Ω the set of
world states and ω ∈ Ω a world state, containing user input and contextual
knowledge. We define context variables by mappings

vi : Ω → Vi for i ∈ {1, ..., n} =: I

where Vi are finite sets modeling the discretization of the context. The set
S := ×i∈I Vi represents possible situations and s ∈ S is a single situation.
The aggregation of all context variables leads to the mapping

sit : Ω → S, ω �→ (v1(ω), ..., vn(ω))

If ω is the current world state, then sit(ω) is called current situation. For a ∈ Vi

we define
{vi = a} := V1 × ... × Vi−1 × {a} × Vi+1 × ... × Vn.

We illustrate the concept of context variables in the following example.

Example 5 (Running Use Case). To describe the current weather state of the
hiking region selected by a hard constraint, we introduce a context variable
weather : ω �→ {good, bad,warning}. To this end, we assume ω contains infor-
mations from an online weather service, which is retrieved automatically after
the user submitted the search request.

By children : ω �→ {yes, no} we describe if young children are participating in
the hiking tour. We assume that the user ticks this in the search mask and this
information is stored in ω.

88 P. Roocks et al.

With the context variables we will trigger the rough structure of the 〈context〉
component. To form the fine structure, we introduce the concept of ω-dependent
preference terms.

Definition 9 (ω-Dependent Preference Terms). Functions f : Ω → M ,
where M is either a finite set or the real numbers, are called ω-dependent func-
tions. They extract a single part of the world context.

P[ω] is the set of ω-dependent preference terms. If p ∈ P[ω] is a base pref-
erence, then for all parameters of base preferences, ω-dependent functions may
occur. Analogous to Def. 7 complex preferences which are inductively constructed
from ω-dependent base preferences, are also in P[ω].

For p ∈ P[ω] the evaluation of all ω-dependent functions in p is denoted by
p(ω), where p(ω) ∈ P holds.

Example 6 (ω-Dependent Preference Terms). An ω-dependent function repre-
senting the altitude of the snow line is snowline : Ω → R. The term LESS

THANda(alt max , snowline(ω)) is an ω-dependent base preference, where alt max
is the attribute for the maximal altitude of the tour.

The interplay of the rough and the fine structure of preference generation is done
by the context-aware generators introduced next.

Definition 10 (Context-Aware Generator). We define context-aware gen-
erators as tuples

g = (S, p) ∈ G, G := P(S) × P[ω]

where S ∈ P(S) (P denotes the power set) is the set of associated situations and
p ∈ P[ω] is the associated ω-dependent preference term. A generator g = (S, p)
is called active, if sit(ω) ∈ S.

Example 7 (Running Use Case). To realize the components 〈children〉 and
〈weather safety〉 we define the following generators:

gch := ({children = yes}, POS(difficulty , ’easy’))

gws,1 := (S, LESS THAN(alt max , snowline(ω)))

gws,2 := ({weather = bad}, LESS THANda(alt max ,min(snowline(ω), 1500)))

gws,3 := ({weather = wrn}, POS(activity , ’CityTrail’) &

LESS THANda(alt max ,min(snowline(ω), 1500)))

Thereby wrn is short for warning. Whereas gws,1 is always active (the situa-
tion set is S), the generators gch, gws,2, and gws,3 are restricted to situations
depending on the weather and the presence of children. The sets of generators
{gch} and {gws,i | i = 1, 2, 3} are associated with 〈children〉 and 〈weather safety〉
respectively.

Composition and Efficient Evaluation of Context-Aware Preference Queries 89

3.3 Constructing Preference Terms from Generators

Now we have components and associated sets of generators. The next step is
to select the active generators and to create a preference term from it. To this
end we have to specify how the preferences of the generators shall be Pareto-
composed or prioritized, if there is more than one generator associated with a
component.

Assume an ordering of the generators representing the importance. For a set
of generators G ⊂ G we realize this by a function π : Ω ×G → N, where smaller
values stand for a higher importance. π is ω-dependent, which primarily means
a dependency of the user type like described at the end of Example 3.

In the following translation from a set of generators to a preference term at
first the active generators are selected (Def. 11). With Def. 12 we realize the
principle that preferences created by more important generators are prioritized,
and Pareto-composed if the according generators are equally important.

Definition 11 (Restriction to Situation, Active Generators). Consider
a set of generators G ⊂ G. The restriction to a situation s ∈ S is defined as

G|s := {(S, p) ∈ G | s ∈ S}

and with G|sit(ω) we restrict G to the set of active generators.

Definition 12 (Preference Generation). For a set of generators G ∈ G, an
ordering π : Ω × G → N, and ω ∈ Ω we define the preference generation:

pref(G, π, ω) :=&
i≥1

⊗
{p(ω) | (p, S) ∈ G|sit(ω), π(ω, g) = i}

where
⊗

{p1, ..., pn} := p1 ⊗ ... ⊗ pn and &m
i=1qi := q1 & ... & qm for p1, ..., pn,

q1, ..., qm ∈ P. The configuration of a component is described by the tuple (G, π).

Preference terms generated with the pref-function from Def. 12 – also known
as p-skylines [MC09] – could be very long if many generators are active. But
there may be generators which are more “appropriate” for the current situation
than others. The measure for this is the inclusion order in the set of associated
situations. Formally g = (S, p) is more appropriate than g′ = (S′, p′) for the
current situation t if and only if t ∈ S � S′. Hence generators which are more
specialized to the current situation are preferred to less specialized ones. This
unveils a nice analogy to the “best matches only” principle, but now we look out
for the best matching generators.

Definition 13 (Best Matching Generators). For G ∈ G and ω ∈ Ω we
define

best gen(G,ω) := {(S, p) ∈ G|sit(ω) | �(S′, p′) ∈ G|sit(ω) : S
′ � S}

The translation from components with configuration (G, π) to a preference term
using the best-matching-generators principle is given by pref(best gen(G,ω), π, ω).

90 P. Roocks et al.

A similar concept also occurs in [SPV07]. But we use this concept only to re-
duce the number of active generators, we are still allowed to have more active
generators. They may also produce contradicting preferences or more than one
preference on the same attribute.

Example 8 (Running Use Case). In Example 7 using Def. 13 only one generator
is in the set best gen({gws,i | i = 1, 2, 3}) because of {weather = x} � S for
x ∈ {bad,warning}.

3.4 The Context Model in Practice

To apply the context model to Example 1 from the introduction we are still
missing some definitions. We have generator sets for all the components of the
〈context〉 and 〈profile〉 part except 〈weather conv〉. We will omit this component
for brevity, which is intended to generate preferences on altitude ranges with
convenient temperatures. We also omit a formal definition of the generators
for 〈user input〉 and 〈default input〉, informally described in Example 3. In our
implementation of this use case the concept of generators is “reused” for this
components: By allowing that the input from the search mask is also stored in
ω and by defining context variables which tell us whether the user filled out the
fields for length, duration, and ascent in the search mask, we are able to define
generators for 〈user input〉 and 〈default input〉.

Example 9 (Running Use Case). According to the previous examples and the as-
sumption that convenient weather conditions imply a minimal altitude (attribute
alt min) higher than 1200 meters (because it is too hot below), we present here
the entire preference term created by our model:

〈pref term〉 = AROUND0.5(duration , 5)︸ ︷︷ ︸
P1:=〈user input〉

& LESS THANda(alt max, 2400)︸ ︷︷ ︸
P2:=〈weather safety〉

&

(POS(recommended , ’yes’)︸ ︷︷ ︸
P3:=〈social net〉

⊗NEG(visited , ’yes’)︸ ︷︷ ︸
P4:=〈history〉

) &

MORE THANda(alt min, 1200)︸ ︷︷ ︸
P5:=〈weather conv〉

&

(AROUND1.2(length, 12) ⊗ AROUND60(ascent , 600))︸ ︷︷ ︸
P6:=〈default input〉

Thereby we use the rough structure from Eq. (1)–(3), P1 and P6 are generated
according to Example 3, P3 and P4 are explained in Example 4, and P2 is from
Example 7. P5 is mentioned above in this example.

With this we have defined a model which is applicable for our problem of
designing a hiking tour recommender. But we have still one drawback with the

Composition and Efficient Evaluation of Context-Aware Preference Queries 91

assumption that all the external information in ω is available for the recom-
mender. This may not always be the case.

For example, we assumed we have access to the complete weather forecast
to determine the values of our context variables. But what if the user specified
no region for the activity or a too big region to get a reliable weather forecast?
Or what shall the recommender do if the weather service is unavailable? This
can be modeled by replacing the current situation sit(ω) ∈ S by a set of current
situations sit(Ω0) ⊆ S with Ω0 ⊆ Ω, where all weather states are contained,
formally {weather = x} � sit(Ω0) for all x ∈ {good, bad,warning}. In the formal
model of the generators one must only change all occurrences of the expression
sit(ω) ∈ S by sit(Ω0) ⊆ S, which is straightforward but will be not worked out
for brevity. The implication of this is that all the weather dependent generators
are not active, the ones for good weather as well as the ones for bad weather.

4 Context-Aware Preference Query Evaluation

The complex preference terms generated in Section 3 must be evaluated effi-
ciently to retrieve the best-matching objects for the user. All preference terms
can be transformed into Preference SQL, an extension of standard SQL for pref-
erence query evaluation on database systems, cp. [KEW11]. Syntactically, the
SELECT statement of SQL is extended by an optional PREFERRING clause. It se-
lects all interesting tuples, i.e., tuples that are not dominated by other tuples.
While the first prototype [KK02] used query rewriting to standard SQL, the
current implementation of Preference SQL (since 2005) is a middleware compo-
nent between client and database which performs the algebraic and cost-based
optimization of preference query evaluation. This allows for a seamless, flexible
and efficient integration with standard SQL back-end systems using a Preference
SQL JDBC Driver. This trend is followed by [AK12], which suggests to imple-
ment numerical preferences tightly in the relational database engine. According
to [SKP11] currently Preference SQL is the only comprehensive approach to
support a general preference query model.

The final preference term from Example 9, e.g., can be formulated in Prefer-
ence SQL as demonstrated in Fig. 1. The query is based on a real-world database
provided by Alpstein Tourismus GmbH (http://www.alpstein-tourismus.com).
It returns all hiking tours in the Bavarian Alps which are best concerning the
preference term from Example 9. All hiking tours are stored in the relation tour.
There is a join with the relation region, because it holds additional information
about recommendations and visited tours, cp. Example 4. A Prioritization is ex-
pressed using PRIOR TO, wheres AND in the PREFERRING clause denotes a Pareto
preference. The preference constructors AROUND, LESS THAN and MORE THAN are
already known from Section 2 and 3. Note that the second argument in these
preference constructers denotes the d-parameter. The Pi on the right side of the
query correspond to the preference terms in Example 9.

92 P. Roocks et al.

SELECT t.id, t.name

FROM tour t, region r

WHERE t.main_region = ’Bavarian�Alps ’ AND

t.subregion_id = r.subregion_id

PREFERRING t.duration AROUND 5, 0.5 -- P1

PRIOR TO t.alt_max LESS THAN 2400, 200 -- P2

PRIOR TO (r.recommend = ’yes’ AND

r.visited != ’yes’) -- P3⊗ P4
PRIOR TO t.alt_min MORE THAN 1200, 200 -- P5

PRIOR TO (t.length AROUND 12, 1.2 AND

t.ascent AROUND 600, 60); -- P6

Fig. 1. Preference SQL query for the preference term in Example 9

4.1 Optimization of Preference Queries

A first view on the query in Fig. 1 leads to the assumption that the evaluation
of this query on a database system is very inefficient. Executing such queries
on large data sets makes an optimized execution necessary to keep the run-
times small. For this, Preference SQL implements the accumulated vast query
optimization knowhow from relational databases as well as additional optimiza-
tion techniques to cope with the preference selection operator for complex strict
partial order preferences.

For example, the Preference SQL rule based query optimizer transforms the
query from Fig. 1 into the operator tree depicted in Fig. 2.

πt.id, t.name

σ
[
((P3 ⊗ P4) & P5 & P6) groupby duration, alt max

]

�� t.subregion id =
r.subregion id

����
���

�����
�����

��

σ[P1 & P2] Region r

� t.subregion id =
r.subregion id

��
�

��
��

σ t.main region =
’Bavarian Alps’ Region r

Tour t

Fig. 2. Optimized operator tree of the Preference SQL query in Fig. 1

Composition and Efficient Evaluation of Context-Aware Preference Queries 93

The optimizer applies among well-known optimization rules the law L8: Split
Prioritization and Push over Join published by [HK05]. This law splits the large
Prioritization preference from Example 9 and pushes σ[P1 & P2] over the join
(��). Since the preference selection σ[P1 & P2] may eliminate tuples from the
relation tour which are necessary for the join on the subregions, a semi-join
(�) on tour and region is necessary. Finally, a grouped preference selection
after the join operation leads to an optimized operator tree of this context-
aware preference query. Note that we omit the Push-Projection optimization law
for a better reading. Afterwards, a cost-based algorithm selection is applied for
efficient Pareto and Prioritization evaluation. Such a preference query processing
leads to a very fast retrieval of the best-matching objects concerning a users’
preference. For further details we refer to [KEW11].

4.2 Practical Performance Tests

We now present some practical runtime benchmarks for the evaluation of context-
aware preference queries. We do not look at the quality of the results, which will
be future work. But for an useful empirical evaluation the runtime must be small.

In our benchmarks Preference SQL operates as a Java framework on top of a
PostgreSQL 8.3 database. It stores the already mentioned real-world database of
Alpstein Tourismus GmbH. The relations tour and region used in this paper
contain about 48.000 rows and 200 rows, respectively. We build groups of three
queries each with a specified main region as hard constraint, e.g. Bavarian Pre-
alps, Bavarian Alps, and Alps. For each query in a group we generated different
preference terms to show the influence of context-aware preference generation.
Furthermore, the hard constraint on the main region leads to a different number
of tuples (the basic set) for preference evaluation. We present two context-aware
preference queries in detail. The runtimes are depicted in Fig. 3.

Query 4 corresponds to the preference query used in this paper, cp. Fig. 1. It
can be evaluated in less than 1 second. The hard selection on the main region

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9

R
un

tim
e

in
 s

ec

Query

Bavarian Prealps
Bavarian Alps

Alps

Fig. 3. Runtime for different context-aware preference queries

94 P. Roocks et al.

of the Bavarian Alps as well as the early computation of the P1 & P2 preference
(cp. Fig. 2) leads to a preference selection on 1650 tuples after the join. Query 5
and 6 are restricted to the same main region but have different preference terms.

The next query, Query 7 depicted below, is similar to Query 1. However, the
basic set (about 16.000 tuples) is changed because of a different main region,
namely the complete Alps. The runtime is about 3 seconds, which is fast enough
for context-aware recommender applications, e.g. in the domain of hiking tours.

SELECT t.id, t.name

FROM tour t, region r

WHERE t.main_region = ’Alps ’ AND

t.subregion_id = r.subregion_id

PREFERRING r.duration AROUND 1.5, 0.15

PRIOR TO t.alt_max LESS THAN 2000, 200

PRIOR TO (r.recommend IN (’yes’) AND

r.visited NOT IN (’yes’))

PRIOR TO t.alt_min MORE THAN 1600, 200

PRIOR TO (r.length AROUND 1.5, 0.15 AND

r.ascent AROUND 150, 15);

Fig. 4. Query 7 of our benchmark

The evaluated queries are only a small selection of the queries occurring in
our use case, but they are representative for our performance benchmarks. The
runtime of these queries show that our approach of a context-aware preference
query composition is not only an intuitive and inductive preference construction
but also very efficient in result computation on a real-world database.

5 Summary and Outlook

In the paper we present a new approach to context-aware preference query com-
position which covers all the way from context modeling to generating the pref-
erence query in a well known preference query language. Preferences, after being
retrieved from a repository, are composed – on the fly – depending on context.
The construction is performed according to an explicitly available set of expres-
sive rules, which easily can be adapted by domain experts to meet their specific
requirements. By using discretization and context dependent functional map-
pings, we achieve an easy to understand (no surprises) system that is suitable
for commercial applications. A running use case from the field of commercial
e-business platforms for outdoor activities is used to motivate and illustrate the
various steps in the process. The performance evaluation shows that the answers
for the generated queries can be computed efficiently for realistic data sets. As
future work we are planning to perform qualitative user studies.

Acknowledgements. This project has been funded by the German Federal
Ministry of Economics and Technology (BMWi) according to a resolution of the
German Bundestag, grant no. KF2751301.

Composition and Efficient Evaluation of Context-Aware Preference Queries 95

References

[AK12] Arvanitis, A., Koutrika, G.: Towards Preference-aware Relational
Databases. In: To appear in International Conference on Data Engineer-
ing, ICDE 2012 (2012)

[BD03] Barkhuus, L., Dey, A.K.: Is Context-Aware Computing Taking Control
away from the User? Three Levels of Interactivity Examined. In: Dey, A.K.,
Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp.
149–156. Springer, Heidelberg (2003)

[BFA07] van Bunningen, A.H., Feng, L., Apers, P.M.G.: A Context-Aware Preference
Model for Database Querying in an Ambient Intelligent Environment. In:
Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp.
33–43. Springer, Heidelberg (2006)

[Cho03] Chomicki, J.: Preference Formulas in Relational Queries. ACMTransactions
on Database Systems 28, 427–466 (2003)

[Cho07] Chomicki, J.: Database Querying under Changing Preferences. Annals of
Mathematics and Artificial Intelligence 50(1-2), 79–109 (2007)

[GY02] Gibson, H., Yiannakis, A.: Tourist Roles: Needs and the Lifecourse. Annuals
of Tourism Research 29(29), 358–383 (2002)

[HK05] Hafenrichter, B., Kießling, W.: Optimization of Relational Preference
Queries. In: Australasian Database Conference (ADC 2005), pp. 175–184
(2005)

[KEW11] Kießling, W., Endres, M., Wenzel, F.: The Preference SQL System – An
Overview. IEEE Data Eng. Bull. 34(2), 11–18 (2011)

[Kie02] Kießling, W.: Foundations of Preferences in Database Systems. In: Very
Large Databases (VLDB 2002), pp. 311–322 (2002)

[Kie05] Kießling, W.: Preference Queries with SV-Semantics. In: International Con-
ference on Management of Data (COMAD 2005), pp. 15–26 (2005)

[KK02] Kießling, W., Köstler, G.: Preference SQL – Design, implementation, Ex-
periences. In: Very Large Databases (VLDB 2002), pp. 990–1001 (2002)

[KSH+11] Kießling, W., Soutschek, M., Huhn, A., Roocks, P., Wenzel, F., Zelend, A.:
Context-Aware Preference Search for Outdoor Activity Platforms. Techni-
cal Report 2011-15, Universität Augsburg

[LKM11] Levandoski, J.J., Khalefa, M.E., Mokbel, M.F.: An Overview of the
CareDB Context and Preference-Aware Database System. IEEE Data Eng.
Bull. 34(2), 41–46 (2011)

[MC09] Mindolin, D., Chomicki, J.: Discovering relative importance of skyline at-
tributes. In: Very Large Databases (VLDB 2009), pp. 610–621 (2009)

[PSV11] Pitoura, E., Stefanidis, K., Vassilidis, P.: Contextual Database Preferences.
IEEE Data Eng. Bull. 34(2), 20–27 (2011)

[SKP11] Stefanidis, K., Koutrika, G., Pitoura, E.: A Survey on Representation, Com-
position and Application of Preferences in Database Systems. ACM Trans-
actiopns on Database Systems 36(3), 19:1–19:45 (2011)

[SPV07] Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding Context to Preferences.
In: International Conference on Data Engineering (ICDE 2007), pp. 846–
855 (2007)

An Automaton-Based Index Scheme
for On-Demand XML Data Broadcast�

Weiwei Sun1, Peng Liu1, Jingjing Wu1, Yongrui Qin2, and Baihua Zheng3

1 School of Computer Science, Fudan University, Shanghai, China
{wwsun,liupeng,wjj}@fudan.edu.cn,

2 School of Computer Science, The University of Adelaide, SA, 5005, Australia
yongrui.qin@adelaide.edu.au

3 School of Information Systems, Singapore Management University, Singapore
bhzheng@smu.edu.sg

Abstract. XML data broadcast is an efficient way to deliver semi-
structured information in wireless mobile environment. In the literature,
many approaches have been proposed to improve the performance of
XML data broadcast. However, due to the appearance of wildcard "*"
and double slash "//" in queries, their performance deteriorates. Con-
sequently, in this paper, we propose a novel air indexing method called
Deterministic Finite Automaton-based Index (abbreviated as DFAI) on
the XPath queries. Different from existing approaches which build index
based on XML documents, we propose to build the index based on the
queries submitted by users. The new index treating the XPath queries
with "*" or "//" as a DFA actually improves the efficiency of broad-
cast system significantly. We further propose an efficient compression
strategy to reduce the index size of DFAI as well. Experiment results
show that our new index method achieves a much better performance in
terms of both access time and tuning time when compared with existing
approaches.

Keywords: air indexing, deterministic finite automaton, on-demand
XML data broadcast.

1 Introduction

In recent years, there is a sharp increase of mobile subscriptions. The inter-
national Telecommunication Union estimates there would be 5.3 billion mobile
subscriptions by the end of 2010 and the mobile application market will be worth
$25 billion in 2014. Mobile devices play an important role in sending and access-
ing information, which means information can be retrieved by anyone, anywhere,
at any time. The data retrieved via various wireless technologies becomes a sub-
stantial part of information in our daily life.

� This research is supported in part by the National Natural Science Foundation of
China (NSFC) under grant 61073001.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 96–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automaton-Based Air Index 97

Point-to-point and broadcast are two ways of information access via wireless
technologies. In point-to-point access, mobile clients submit queries to the server
via a logical channel established between them, and retrieve results returned in a
similar way as in a wired network. It is suitable for systems with adequate band-
width resources and server processing capacity. On the other hand, in broadcast
access, data is sent to all the mobile clients. Mobile clients listen to the wireless
channel and download the data they are interested in and hence a single broad-
cast of a data item can simultaneously satisfy an arbitrary number of mobile
clients. Compared with point-to-point access, broadcast is suitable for heavily
loaded systems in which the number of mobile clients is very large and the band-
width resources are limited.

There are two critical performance metrics in data broadcast, namely access
time and tuning time [1]:

• Access Time (AT): the time elapsed between the moment when a request
is issued and the moment when it is satisfied, which is related to access
efficiency.

• Tuning Time (TT): the time a mobile user stays active to receive the re-
quested data items, which is related to the power consumption.

Air indexing technique is one of the most important research fields of data broad-
cast. As the limited battery power heavily restricts the usage of mobile devices,
the tuning time metric is more important in wireless data broadcast system.
Without any assistance, the mobile clients have to continuously monitor the
broadcast data to make sure all interested data items are retrieved. The air
indexing technique is used to improve the tuning time. The main strategy is
to build a small size index based on broadcast data and interleave indices with
broadcast data. Then, the mobile clients are aware of the arrival time of the data
items they need according to the index. They can tune to doze mode to save the
power when waiting and tune into the channel only when the data items of their
interest arrive.

Concluded by [1], there are two typical broadcast modes: push-based broadcast
and on-demand broadcast. For push-based broadcast, the server disseminates
data periodically. The mobile clients listen to the channel and find the requested
data items of their queries. For on-demand broadcast, the mobile clients submit
their queries to the server via an uplink channel and data are sent based on the
submitted queries via a downlink channel.

In the past few years, XML has become more and more popular and XML
data broadcast has become a hot research topic recently. A wealth of work has
focused on indexing and scheduling XML data in wireless environment under
different broadcast modes [2,7,8,9,10,12].

In on-demand XML data broadcast, the broadcast XML documents in each
cycle are determined by the pending requests dynamically and the broadcast
contents of these cycles are different from each other. Moreover, during a broad-
cast cycle, some queries are satisfied while some queries are being submitted to
the server and the server builds the index scheme of the next cycle according to

98 W. Sun et al.

the new query set. All the above features bring more complexity in air indexing
technique of on-demand XML data broadcast.

[2] proposed an efficient two-tier index scheme for on-demand XML data
broadcast. It first builds DataGuides [5] for each XML document, and then
integrates these DataGuides by adopting the RoXSum [6] technique. Also, a
pruning strategy and a two-tier structure are designed which can significantly
reduce the index size. The main idea of the pruning strategy is to eliminate all
the dead nodes that are not accessed by any query.

However, there are some drawbacks of PCI technique in [2]. The efficiency of
pruning would be deteriorated when the probability of "*" and "//" in queries
increases (users mostly don’t quite understand the structures of the documents
they need, so fuzzy queries with "*" and "//" are always issued). Firstly, the size
of index scheme increases as more branches are satisfied by queries which also
means less dead nodes are pruned. Secondly, the tuning time of index scheme
will increase as the clients have to probe more index nodes to locate the arrival
time of the entire required document set.

Motivated by the drawbacks of existing approaches, in this paper, we propose
a novel air indexing method called Deterministic Finite Automaton based Index,
abbreviated as DFAI.

To summarize, our main contributions include:

• We are the first to introduce an index scheme built on user queries rather
than data in wireless broadcast environments.

• We treat the XPath queries with "*" or "//" as a Deterministic Finite Au-
tomaton (DFA) as other queries, and integrate all the XPath queries into
one DFA which greatly reduces the access time and tuning time.

• We propose a compression strategy to further reduce the index size of DFAI.
• We compare the DFAI with PCI and provide a detailed analyze about ex-

periment results.

The remainder of the paper is organized as follows. First, Section 2 presents
the related work. The details of our index approach DFAI as well as the access
protocol are explicitly depicted in Section 3. Section 4 shows the Compression
Strategy which further reduces the index size of DFAI. Then, experiments and
evaluation are demonstrated in Section 5. Finally, Section 6 concludes our work.

2 Related Work

Air indexing and scheduling methods in XML data broadcast have been exten-
sively investigated in the past few years, we only outline the most related work
in the following.

[7] first studies the XML data broadcasting in wireless environment. An XML
stream organization and the corresponding event-driven stream generation al-
gorithms are provided. The stream structures support simple XPath queries. [8]
provides a novel XML data streaming method in wireless broadcasting environ-
ments. It separates the structure information from the text values. The former is

Automaton-Based Air Index 99

used as index scheme in data broadcast. Mobile clients access the index scheme
selectively to process their queries. The total size of the index scheme is further
reduced by using the path summary technique. [9] constructs two tree structures
to represent the index scheme and the XML data. Three data/index replication
strategies are also provided. The main idea of the replication is to repeatedly
place part of the index/data tree to improve the efficiency of broadcast.

The work described above all focuses on the push-based broadcast. While in
on-demand broadcast mode, as mentioned in Section 1, the queries submitted
to the server should be taken into consideration and the broadcast content of
each cycle could be changed dynamically. Thus, [2,10] study the air indexing
technique for on-demand XML data broadcast .

[2] provides a novel two-tier air index scheme. The basic structure of the index
scheme is the combination of all the DataGuides of each XML document. RoX-
Sum technique is used to integrate these DataGuides efficiently. In this basic
index scheme, every unique-label path of a document appears exactly once for
supporting simple XPath queries. Thus it contains the entire unique-label paths
in all of the XML documents. The pruning strategy is provided to reduce the size
of the index scheme by eliminating the nodes not accessed by any queries. The
two-tier structure enables efficient access protocol at the client which facilitates
the index access. The mobile clients download the first-tier (i.e. the major index
scheme to answer the query which XML documents satisfy) only once and the
second-tier (presenting the arrival time of the XML documents in the current
cycle) several times.

[10] studies the air index scheme for twig queries. Similar to the DataGuides
technique adopted in [2], [10] uses the Document Tree structure as the basic
index structure, which keeps only the tree structure information of an XML
document. Pruning and combining strategies are also provided to reduce the
size of index scheme.

Scheduling techniques are also related to our work. [11] introduces two heuris-
tic algorithms called MPFH and MPLH. The two algorithms choose the candi-
date item to be broadcasted by the popularity of the item requested by user
queries. The popularity of one XML document which can be considered as an
item in multi-items traditional broadcast environments, is also an important
factor in scheduling XML documents. [12] provides two effective fragment meth-
ods for skewed data access. It uses the sub-tree level data organization scheme
and fragments the XML document according to the access probability of each
element node.

3 Deterministic Finite Automaton-Based Index (DFAI)

The main idea of DFAI is to locate all the XML documents matched with each
submitted query based on XML stream filtering techniques (e.g. YFilter [4] and
AFilter [3]), build a Deterministic Finite Automaton (DFA) for each query and
finally combine all the DFAs into an integrated DFA to share common prefixes
among the queries.

100 W. Sun et al.

DFAI has a better improvement in terms of both access time and tuning time
compared with other approaches for listed reasons.

• For access time, DFAI combines all DFAs built based on queries into an
integrated DFA to share common prefixes which greatly reduces the index
size of DFAI. An improvement strategy is proposed to further reduce the
index size which will be introduced in Section 4.

• For tuning time, users mostly submit a fuzzy query with "*" and "//" as
they always don’t know the detailed structures of the documents they need.
DFAI takes "*" and "//" as normal element nodes in building DFA of each
query which greatly reduces the tuning time of queries. Besides, matched
documents IDs are directly attached to the accept state node. When queries
are satisfied by the accept state node, the matched documents IDs can be
downloaded immediately.

A running example is used to illustrate indexing scheme, as shown in Fig.1. It
contains 5 documents, i.e. d1, d2, d3, d4 and d5, with their detailed documents
structures depicted in Fig.1(a). We assume there are six user queries submitted,
i.e. q1, q2, q3, q4, q5 and q6, as shown in Fig.1(b). Fig.2 shows an example of a
DFA for the query set in Fig.1(b). The nodes with double circles represent the
accept states of DFA.

PCI in [2] uses the structure of DataGuides [5] to build a compact index
structure capturing the path information of all the documents. Using the same
running example (i.e. Fig.1), a PCI index is shown in Fig.3.

Built based on the users’ queries and treating "*" and "//" as normal element
nodes, DFAI has its advantages in reducing tuning time. When coming across
"//", PCI has to traverse nearly all the subtrees of the current node to find
the matched accept state nodes. In contrast with PCI, DFAI just treats it as a
normal element node and gets to the next state directly. When coming across
"*", PCI has to traverse all the child nodes of current node. The same as "//",
DFAI simply jumps to the next state without bringing any extra cost.

For example, in Fig.1(b) q4 = "/a//c", users have to traverse n1,n2,n3,n4,n5

and n6 in PCI index as shown in Fig.3 to get all the matched documents IDs.
However, users just need to traverse n1,n3 and n8 in DFA Index as shown in
Fig.2. For query q3 = "/a/b/*", users have to traverse n1,n2,n4 and n5 in PCI
index, while only n1,n2 and n7 are traversed in DFA index. We use the two-tier
structure in implementing the index of DFA. Two-tier structure can not only
further reduce the index size but also achieve a much better tuning time [2].

When we put the index into practice, we will partition it into packets with
fixed size such as 64 bytes/packet. The minimal unit for user’s data retrieval is
a packet. Because of the feature of user queries, we sort the nodes according to
the depth-first order. When the current packet doesn’t have enough space for
the next node, a new packet is used to store the whole node. According to the
depth-first order mentioned above, the broadcast order of nodes is n1, n2, n5,
n6, n7, n3, n8, n4 and n9. The structure of the node is shown in Fig.4. We assign
2 bytes to flag, 8 bytes to entry, 4 bytes to pointer and 2 bytes to doc. The
partition result is depicted in Fig.5 (assuming packet size is 64 bytes). For query

Automaton-Based Air Index 101

(a) Sample document set

Q Matched documents IDs list
q1 : /a/b d1, d3, d4, d5

q2 : /a/b/c d1, d5

q3 : /a/b/* d1, d3, d5

q4 : /a//c d1, d2, d3, d4, d5

q5 : /a/c/a d2, d4

q6 : /a/b/a d1, d3

(b) Sample query set

Fig. 1. A running example

//

Fig. 2. DFA for the query set

q5 = "/a/c/a", users need to download P1 and P3 in Fig.5 to get all matched
documents IDs.

Although the concept of finite automaton has been used in other XML index
structures such as YFilter, DFAI is unique because of the following differences.
First, in DFAI, the "//" and "*" operators are treated as normal element nodes.

102 W. Sun et al.

Consequently, they do not introduce any non-determinism to DFAI. However,
in YFilter, "//" and "*" can match any elements at any/current level in the
current document, which introduces non-determinism. Second, DFAI is designed
for XPath queries while YFilter is designed for XML data documents. Third,
DFAI is designed for sequential access on the broadcast channel while YFilter is
designed for random access in the main memory.

Fig. 3. A PCI index

Fig. 4. Node structure of DFAI

Fig. 5. Partitioning of DFAI

4 Compression Strategy

In this section, first we proof our observation and then we propose our improve-
ment strategy based on the observation.

In Fig.2, we observe that, the matched documents IDs list of an accept state
node is a subset of that of its ancestor accept state nodes, which can be proofed
in the following part.

Theorem 1. Assume that Anc is an accept state node in DFA, Des is its de-
scendant accept state node and that Lanc and Ldes are the matched documents
IDs lists of Anc and Des respectively. Then Ldes ⊆ Lanc.

Automaton-Based Air Index 103

Proof. Anc and Des are accept state nodes in DFA, so there are queries qanc

and qdes satisfied by Anc and Des respectively. Because of the determinism of
DFA, there is only one path from the root of DFA to Anc and it’s the same with
Des. Hence, the path from root to Des must pass Anc definitely, otherwise, Des
isn’t a descendant node of Anc. So, qanc (i.e. the path from root to Anc) is just
a front part of qdes (i.e. the path from root to Des). The matched documents
IDs list of qdes (i.e. Ldes) is included in that of qanc (i.e. Lanc) according to
XPath definition. So Ldes ⊆ Lanc. ��

For example, the matched documents IDs list of node n5 in Fig.2 is {d1, d3}.
Its parent node n2’s matched documents IDs list is {d1, d3, d4, d5}. The docu-
ments IDs lists of nodes n6 and n7 also prove our observation. If an accept state
node is a leaf node, its matched documents IDs list will repeat many times in
its ancestor accept state nodes which results in a bigger index size, even though
two-tier index method is adopted.

Based on our observation above, we propose an improvement strategy called
Compression Strategy to reduce the index size. As the child accept node’s
matched documents IDs list is always a subset of that of its ancestor nodes,
we use bit to represent the position of the child node’s documents ID in its
first ancestor accept state node. The pseudo-code of the strategy is shown in
Algorithm 1. A new example with XML documents’ size 12 is depicted in Fig.6.

(a) A DFAI (b) A compressed DFAI

Fig. 6. An example of compressed DFAI

Take n3 in Fig.6(a) for example, its first ancestor accept state node is n2

whose matched documents IDs list is {d1, d3, d9, d10, d12}. d1, d3, d12 of n3

are in the first, second and fifth position of {d1, d3, d9, d10, d12} respectively.
So {d1, d3, d12} can be represented as ’11001’ as shown in Fig.6(b) with bits.
In reality, we should extend it to a full byte with 0, that is ’11001000’. For the
first accept state node from root (i.e. the first accept state node in a single path.
e.g. n2 in path /n1/n2), we need to express the matched document IDs with
positions in IDs of XML documents set like n2 in Fig.6(b).

DFAI with Compression Strategy is named Compressed Deterministic Finite
Automaton Index (abbreviated as CDFAI) in next sections.

104 W. Sun et al.

Algorithm 1 Compression Algorithm
Require: DFAI, XML documents IDs as D
Ensure: Compressed DFAI
1: initialize r to represent the root node of DFAI
2: for each node n ∈ DFAI do
3: initialize the matched documents IDs bit array of n: B ← ∅;
4: if n is the first accept state node from root to n then
5: for each i ∈ D from smaller document ID to bigger document ID do
6: if i ∈ n’s documents IDs list then
7: append a bit ‘1’ to B;
8: else
9: append a bit ‘0’ to B;

10: end if
11: end for
12: else
13: find n’s first ancestor accept state node from n to r and get its matched

documents IDs list L;
14: for each i ∈ L from smaller document ID to bigger document ID do
15: if i ∈ n’s documents IDs list then
16: append a bit ‘1’ to B;
17: else
18: append a bit ‘0’ to B;
19: end if
20: end for
21: end if
22: extend B to full bytes with ‘0’;
23: end for

5 Experiments and Evaluation

In this section, we first compare the performance of DFAI and CDFAI, to demon-
strate the advantage of Compression Strategy. Then we compare the performance
of our approach CDFAI with PCI , which is the state of art air indexing technique
in on-demand broadcast, in terms of tuning time and access time.

A.Environment Setup
Similar as existing work [2,3,4], simple XPath queries are used in our experi-

ments. A simple query has the path expression format of

P = /N |//N |PP, N = E| ∗ (1)

Here, "E" is the element label; "/" means the child axis; "//" means the de-
scendant axis; and "*" is the wildcard.

In our simulation, we use News Industry Text Format (NITF) DTD which is
a synthetic data set, and XML Documents generated by the IBM’s Generator
tool [13]. We generate synthetic XPath queries without predicates by implement-
ing the modified version of the generator [4].

In our experiments, we use the same scheduling algorithm for CDFAI and
PCI approaches in order to maintain fairness of all comparisons between them.

Automaton-Based Air Index 105

In other words, the time cost to retrieve the documents under a scheduling
algorithm is independent of the index structures, and hence it remains the same
under different index structures. As a result, in our simulation, we only consider
the tuning time and access time of index without mentioning the documents
retrieval cost. Besides, we assume the bandwidth is constant; the tuning time
and access time of CDFAI and PCI can be evaluated by the number of bytes
retrieval/broadcasted, and hence, the unit of tuning time and access time is
byte. In order to express the figure well, our minimal unit is 1k bytes in the
experiments. As mentioned in Section 3, we divide the index into blocks (i.e.
block is the minimal unit to be broadcasted. In the experiments, we set the
block size to 4K bytes). When users retrieve the index, they have to download
a whole block each time. System default parameters are listed in Table. 1.

Table 1. Experimental Setup

Variable Description Default
value

N(q) The number of queries submitted by
users during the broadcast cycle

500

N(d) Total relevant documents number in
server

1000

D(q) Maximal depth of queries 8
Prob The probability of wildcard "*" and

double slash "//" in queries
0.2

B. Comparison of DFAI and CDFAI

(a) Index size (b) Tuning time

Fig. 7. Comparison of index size and tuning time

First, we evaluate the improvement of CDFAI with default value in terms
of access time and tuning time. As the access time is dependent on the index

106 W. Sun et al.

size, we use the size of index to represent the performance. It’s observed that
CDFAI significantly reduces the index size and slightly decreases the tuning time
compared with DFAI as shown in Fig.7 because of adopting the Compression
Strategy.

C. Comparison of CDFAI and PCI
Next, we evaluate access time and tuning time of CDFAI and PCI. We consider

the impacts of four parameters, namely the number of queries denoted as N(q),
total number of relevant documents denoted as N(d), maximal depth of queries
denoted as D(q) and the probability of "*" and "//" in queries denoted as Prob.
In each set of experiments, we change one parameter only and fix the others at
their default values described in Table 1.

1) Tuning Time
In the second set of experiments, we study the tuning time performance pre-

sented in Fig.8.
For CDFAI, the tuning time to retrieve relevant index can be approximated by

the depth of the query and the block size. Recall that "*" and "//" are treated
as normal element nodes.

For PCI, the tuning time for queries with no "*" and "//" is almost the same
as that under CDFAI, i.e. the depth of the query multiplying the index block
size. However, for queries with "*" and "//", PCI incurs much longer tuning
time since the client has to access more packets to get the matched documents.

First, we evaluate the tuning time under different N(q), as depicted in
Fig.8(a). Although N(q) increases, the tuning time of CDFAI almost remains
the same. The reason is that tuning time of CDFAI depends on the average
depth of user queries (i.e. the steps the CDFA needs to jump to the matched
state). The increasing N(q) doesn’t change the average depth of user queries
which results in a steady tuning time. However, with a increasing N(q), fewer
and fewer branches and documents are pruned by PCI. For an accept state node
of PCI, it needs to traverse a bigger subtree of the node [2,6] to get all the
matched documents IDs. Queries with "*" and "//" also need to traverse much
more nodes. The above two reasons not only make the tuning time of PCI much
longer than that of CDFAI, but also push the tuning time of PCI increasing
mush faster than that of CDFAI. When N(q) is large enough, there are almost
no branches and documents pruned. tuning time of PCI will remain the same
(i.e. when N(q)>= 800, tuning time of PCI remains steady in Fig.8(a)).

Second, we evaluate the impact of the number of documents, as reported in
Fig.8(b). Recall that CDFAI builds its index by user’s queries, so we may think
that the tuning time of CDFAI stays the same when the user’s queries don’t
change. However, with documents number increases, one query may match more
documents. The matched documents IDs in accept state nodes of index tree may
become bigger. Notice that tuning time of PCI increases much faster than that
of CDFAI, because PCI is built based on the documents whose number is in-
creasing, while CDFAI is based on the fixed user queries.

Third, we evaluate the impact of Prob, as depicted in Fig.8(c). The tuning
time of PCI increases as Prob grows. This is because the client has to access

Automaton-Based Air Index 107

(a) Different queries size (b) Different documents size

(c) Different prob (d) Different depth

Fig. 8. Comparison of tuning time performance

much more packets to find all the matched documents which prolongs the perfor-
mance. However, the tuning time of CDFAI is almost unchanged under different
Prob as it is mainly determined by the average depth of the query set and less
impacted by the selectivity of the queries (i.e. Prob).

Finally, we evaluate the impact of the maximal query depth D(q), as reported
in Fig.8(d). As the maximal depth of queries increases, more packets have to be
accessed in order to get all the matched documents. On the other hand, a deeper
query will have fewer matched documents. As a result, increasing D(q) will bring
not only positive but also negative influences on the tuning time performance. It
can be found in the figure that tuning time of PCI decreases first, remains almost
the same in the middle and decreases in the end. It means, initially the reduced
documents retrieval has the dominant impact; in the middle, the increasing of
the index packets and the reduced documents retrieval almost have the same im-
pact; and later the reduced documents retrieval plays the dominant role again.
On the contrary, CDFAI demonstrates a relatively stable performance with the
interaction of depth and selectivity (i.e. Prob) with tuning time just about 30%
of PCI.

108 W. Sun et al.

2) Access Time
Then, we compare their access time performance, with results presented in

Fig.9.

(a) Different queries size (b) Different documents size

(c) Different prob (d) Different depth

Fig. 9. Comparison of access time performance

First, the access time of CDFAI and PCI under different N(q) is depicted in
Fig.9(a). It is observed that both index sizes of CDFAI and PCI increase with
the growing query number. Obviously, when query number increases, the index
size of CDFAI will increase proportionally to the query number for the index
is built by user queries. For PCI, with more queries, more branches of more
documents are matched. The size of pruned branches decreases resulting in the
index size increasing with the growing query number. We also can see that the
size of CDFAI exceeds that of PCI when the query number is between 600 and
700. That’s because as the query number increases, more and more branches of
the documents are retained for PCI. The room for the index size of PCI to rise
is limited as the size of all documents which is the upper bound of the index
size, is fixed. However, for CDFAI with increasing query number, more different
queries are added to the growing index.

Automaton-Based Air Index 109

Second, when the number of documents set increases, the performance of CD-
FAI and PCI can be seen in Fig.9(b) . Both of them have the same trend as N(d)
increases. A larger documents set means more documents are matched by user
queries, so CDFAI and PCI’s index sizes both grow with the increasing N(d).

Third, Fig.9(c) shows the change of the CDFAI and PCI index size with Prob.
It can be found that with the Prob increases, both sizes of CDFAI and PCI grow.
The reason is that, with bigger Prob, "*" and "//" appear more often in queries
and more branches of documents are retained. In other words, fewer branches of
documents are pruned by PCI, so the index size increases with Prob. For CDFAI,
more "*" and "//" means more matched documents. Therefore, the accept state
nodes in CDFAI are associated with more matched documents IDs lists which
lead to a bigger index. When Prob is less than 0.1, index size of CDFAI is larger
than that of PCI, as pruning strategy of PCI behaves well with a small Prob.

Finally, the performance under different D(q) is depicted in Fig.9(d). As max-
imal depth increases, the index size of CDFAI decreases first and then remains
the same. The reason is that when depth becomes bigger and bigger, fewer and
fewer documents are matched by queries. Recall that CDFAI is built by user
queries. A deeper query means CDFAI needs more states to build the index.
This is the negative influence. The positive influence is that a deeper query has
fewer matched documents and hence the corresponding accepting state node in
CDFAI has a shorter matched documents IDs list, resulting in a smaller index.
Then we can understand why at the very beginning the index size of CDFAI de-
creases and then later, it remains the same. That’s because positive factor plays
a more significant role than negative factor first and then cancels each other out.
However, for PCI, a deeper query means more chances for "*" and "//" to ap-
pear resulting in more branches retained. At the same time, a deeper query also
has fewer matched documents. So at the very beginning, PCI decreases and then
slightly increases. Both factors are interact with each other with the increasing
of D(q).

From the above analysis we can draw the conclusion that CDFAI is better in
its tuning time especially when the probability of wildcard "*" and double slash
"//" is high (see fig.8(c)), while the access time is almost the same as that of
PCI. Even though the probability of "*" and "//" is very low (e.g. 0.05), the
tuning time is just about 1/2 of that of PCI. Of course, when the probability
is ZERO, they will fall to the same level. While the queries increase, CDFAI
will gradually lose its advantage in access time, but always keeps its advantage
in tuning time. So for time-critical and energy-conservation on-demand wireless
environments, CDFAI has its incomparable advantages. For other wireless envi-
ronments that need to gather a large number of queries per cycle and don’t pay
much attention to limited power, PCI can be considered.

6 Conclusion

In this paper, we propose a novel indexing method, namely DFAI to reduce
the tuning time and access time for users in on-demand XML data broadcast.

110 W. Sun et al.

Existing approaches are typically sensitive to the probability of "*" and "//"
while our approach DFAI is not. A compression strategy is proposed to further
reduce the index size of DFAI, namely CDFAI. The simulations show us that
CDFAI achieves a better performance compared with PCI. In the near future,
we plan to find the relationships between document IDs sets in different accept
state nodes to further reduce access time and tuning time of DFAI. Promoting
DFAI to support twig queries is another future work of us.

References

1. Xu, J., Lee, D.-L., Hu, Q., Lee, W.-C.: Data Broadcast. In: Handbook of Wireless
Networks and Mobile Computing. John Wiley & Sons (2002)

2. Sun, W., Yu, P., Qin, Y., Zhang, Z., Zheng, B.: Two-Tier Air Indexing for On-
Demand XML Data Broadcast. In: ICDCS 2009, pp. 199–206 (2009)

3. Selcuk Candan, K., Hsiung, W.-P., Chen, S., Tatemura, J., Agrawal, D.: AFilter:
Adaptable XML Filtering with Prefix-Caching and Suffix-Clustering. In: VLDB
2006, pp. 559–570 (2006)

4. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst. (TODS) 28(4), 467–516 (2003)

5. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: VLDB 1997, pp. 436–445 (1997)

6. Vagena, Z., Moro, M.M., Tsotras, V.J.: RoXSum: Leveraging Data Aggregation
and Batch Processing for XML Routing. In: ICDE 2007, pp. 1466–1470 (2007)

7. Park, C.-S., Kim, C.S., Chung, Y.D.: Efficient Stream Organization for Wireless
Broadcasting of XML Data. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN
2005. LNCS, vol. 3818, pp. 223–235. Springer, Heidelberg (2005)

8. Park, S.-H., Choi, J.-H., Lee, S.: An Effective, Efficient XML Data Broadcasting
Method in a Mobile Wireless Network. In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 358–367. Springer, Heidelberg (2006)

9. Chung, Y.D., Lee, J.Y.: An indexing method for wireless broadcast XML data. Inf.
Sci. (ISCI) 177(9), 1931–1953 (2007)

10. Qin, Y., Sun, W., Zhang, Z., Yu, P., He, Z., Chen, W.: A Novel Air Index Scheme for
Twig Queries in On-Demand XML Data Broadcast. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 412–426. Springer, Heidelberg
(2009)

11. Su, T.-C., Liu, C.-M.: On-Demand Data Broadcasting for Data Items with Time
Constraints on Multiple Broadcast Channels. In: Yoshikawa, M., Meng, X., Yu-
moto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193,
pp. 458–469. Springer, Heidelberg (2010)

12. Wu, J., Liu, P., Gan, L., Qin, Y., Sun, W.: Energy-Conserving Fragment Methods
for Skewed XML Data Access in Push-Based Broadcast. In: Wang, H., Li, S.,
Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 590–601.
Springer, Heidelberg (2011)

13. Diaz, A., Lovell, D.: XML Generator,
http://www.alphaworks.ibm.com/tech/xml-generator

http://www.alphaworks.ibm.com/tech/xml-generator

Colored Range Searching on Internal Memory

Haritha Bellam1, Saladi Rahul2, and Krishnan Rajan1

1 Lab for Spatial Informatics, IIIT-Hyderabad, Hyderabad, India
2 Univerity of Minnesota, Minneapolis, MN, USA

Abstract. Recent advances in various application fields, like GIS, fi-
nance and others, has lead to a large increase in both the volume and the
characteristics of the data being collected. Hence, general range queries
on these datasets are not sufficient enough to obtain good insights and
useful information from the data. This leads to the need for more so-
phisticated queries and hence novel data structures and algorithms such
as the orthogonal colored range searching (OCRS) problem which is a
generalized version of orthogonal range searching. In this work, an ef-
ficient main-memory algorithm has been proposed to solve OCRS by
augmenting k-d tree with additional information. The performance of
the proposed algorithm has been evaluated through extensive experi-
ments and comparison with two base-line algorithms is presented. The
data structure takes up linear or near-linear space of O(n logα), where
α is the number of colors in the dataset (α ≤ n). The query response
time varies minimally irrespective of the number of colors and the query
box size.

1 Introduction

Multi-attribute queries are becoming possible with both the increase in kind of
attributes the datasets are able to store and also the processing power needed to
do so. In addition to specific queries across the multiple attributes, there is an
increasing need for range queries across these attributes especially in fields like
GIS, business intelligence, social and natural sciences. In most of these one needs
to identify a set of classes that have attribute values lying within the specified
ranges in more than one of these attributes. For instance, consider a database
of mutual funds which stores for each fund its annual total return and its beta
(a real number measuring the fund’s volatility) and thus can be represented as
a point in two dimensions. Moreover, the funds are categorized into groups ac-
cording to the fund family they belong to. A typical two-dimensional orthogonal
colored range query is to determine the families that offer funds whose total
return is between, say 15% and 20%, and whose beta is between, say, 0.9 and
1.1 [8]. An another example can be to identify potentially suitable locations for
afforestation programs and the choice of right vegetation types for these loca-
tions. The spatial database can contain multiple themes like soil class, weather
related parameters (temperature, relative humidity, amount of precipitation),
topography and ground slope, while for each vegetation type there exists a suit-
able range of values in these themes/attributes. In such cases, one is interested

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 111–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 H. Bellam, S. Rahul, and K. Rajan

in finding the best match between the two, leading to a need to answer a set
of colored range queries. Generally speaking, in many applications, the set S
of input points come aggregated in groups and we are more interested in the
groups which lie inside q rather than the actual points. (a group lies inside q if
and only if at least one point of that group lies inside q.) For convenience, we
assign a distinct color to each group and imagine that all the points in the group
have that color. This problem is known as colored range searching. In this paper,
we specifically consider the problem of orthogonal colored range searching (see
Figure 1) where the query is an orthogonal box in d-dimensional space (i.e q =
Πd

i=1[ai, bi]) and propose a algorithm to effectively deal with it.

Fig. 1. A set of ten colored points lying in a plane. For the given orthogonal query
rectangle, a standard orthogonal range query would report all the points lying inside
the query rectangle. However, an orthogonal colored range searching (OCRS) query
would report the unique colors of the points lying inside the rectangle.In this figure,
each color is represented with a different symbol.The output for this query would be
�, and ◦. Note that � is not reported.

Orthogonal colored range searching (OCRS) can be described in an SQL-like
language (basically a GROUP-BY operation). However, the current DBMS’s
do not provide with efficient query processing techniques for OCRS. OCRS
query will be executed by first executing the standard orthogonal range searching
query. This will report all the points lying inside q. Then all the reported points
are scanned to filter out the unique colors. In many real-life applications, there
could be a huge difference between the number of points lying within q and the
number of unique colors among them. This can lead to poor query time.

OCRS and the general class of colored intersection problems [8] have been
extensively studied in the field of Computational Geometry. Efficient theoret-
ical solutions for OCRS though have been provided on internal memory (or
main memory) with the objective of providing worst-case optimal performance.
However they suffer from the following shortcomings:

1. Most of these solutions are good in theory but are extremely difficult to
implement.

2. The space of the data structures proposed increase exponentially in terms of
the dimension size. Building linear or near-linear size data structures is a re-
quirement in In-memory database systems (IMDS) that are steadily growing

Colored Range Searching on Internal Memory 113

[1]. In fact we implemented one of these theoretical solutions [7] but had to
be discarded since it was not fitting into the main-memory for the datasets
we tested on (see Figure 3).

3. For most of the practical applications we need not come up with solutions
which need to be optimal even in the worst case scenario. In practice the
worst case scenario occurs extremely rarely.

We seek to to build a solution which works well for most of the cases/scenarios.
The problem that will be addressed in this paper is formally stated as-

– Preprocess a set S of n colored points lying in d-dimensional space (or
IRd) into an index structure, so that for any given orthogonal query box
q=Πd

i=1[ai, bi] ⊆ IRd, all the distinct colors of the points of S lying inside q
need to be reported efficiently.

Since we are dealing with main-memory, the main focus in this paper is on
building space-efficient data structures for answering orthogonal colored range
searching query. The following are the main contributions of the paper:

– We come up with non-trivial techniques for building the data structure and
for answering the query algorithm of orthogonal colored range searching
(OCRS) on main-memory. The objective is to use minimal space while main-
taining efficient query time.

– Detailed experiments and theoretical analysis have been carried out to show
the performance of our technique against two base-line algorithms which can
be used to solve the orthogonal range searching problem in relation to the
distribution that the data exhibits, the query size and the number of colors
in the data. These two base-line algorithms are described later in the paper.

2 Related Work

Orthogonal range searching is one of the most popular and well studied problem
in the field of computational geometry and databases. The formal definition is the
following: “Preprocess a set S of n points lying in d-dimensional space (or IRd)
into an index structure, so that for any given orthogonal query box q=Πd

i=1[ai, bi]
⊆ IRd, all the points of S lying inside q need to be reported/counted efficiently”.
There have been a numerous data structures proposed in the computational ge-
ometry literature to handle orthogonal range searching query. Traditionally, the
researchers in computational geometry have been interested in building solu-
tions for this problem which aim at coming up worst-case efficient query time
solutions, i.e., ensuring that the query time is low for all possible values of the
query. The most popular among them are the range-trees [6] and the k-d tree
[6,5]. The original range-tree when built on n points in d-dimensional space took
O(n logd n) space and answered queries in O(logd−1 n + k) query time, where
k are the number of points lying inside the query region q. By using the tech-
nique of fractional cascading we can reduce the query time by a log factor [6].

114 H. Bellam, S. Rahul, and K. Rajan

In a dynamic setting, the range-tree uses O(n logd−1 n) space, answers queries
in O(logd−1 n log logn + k) time and handles updates in O(logd−1 n log logn)
time. A k-d tree when built on n points in d-dimensional space takes up linear
space and answers a range-query in O(n1−1/d + k) time. Updates can be han-
dled efficiently in it. A detailed description of k-d tree’s construction and query
algorithm shall be provided later.

In the field of databases there have been a significant number of index struc-
tures proposed to answer an orthogonal range-query. These are practical solu-
tions which are optimized to work well for the average case queries (with the
assumption that the worst-case query will occur rarely). Perhaps no other struc-
ture has been more popular than the R-tree proposed in 1984 by Guttman [9].
It’s main advantage arises from the fact that it is versatile and can handle vari-
ous kinds of queries efficiently (range-queries being one of them). K-d tree also
enjoys similar benifits of being able to handle different kinds of queries efficiently.
Varaints of R-tree such as R* tree [4], R+ tree [13], Hilbert tree and Priority
R-tree are also quite popular index structures for storing multi-dimensional data.

Orthogonal colored range searching (OCRS) happens to be a generalization
of the orthogonal range searching problem. Janardan et al. [10] introduced the
problem of OCRS. Gupta et al. [7] came up with dynamic (both insertions and
deletions) solutions to this problem in 2-dimensional space and a static solution
in 3-dimensional space. The best theoretical solution to this problem in d=2
has been provided by Shi et al. [14] which is a static data structure taking up
O(n log n) space and O(log n + k) time, where ‘k′ is the number of colors lying
inside the query rectangle. For d=3, the only known theoretical solution takes
up O(n log4 n) space and answers query in O(log2 n + k) time [7]. For d > 3,
there exists a data structure which answers queries in O(log n + k) time but
takes up O(n1+ε) space which from a theoretical point of view is not considered
optimal (O(n polylog n) is desirable). As stated before, the objective in the
computational geometry field has been to come up with main-memory algorithms
which are optimal in worst-case scenario. A good survey paper on OCRS and
other related colored geometric problems is [8].

Agarwal et al. [3] solved OCRS on a 2-dimensional grid. Recently, there has
been some work done on range-aggregate queries on colored geometric objects.
In this class of problems, the set S of geometric objects are colored and possibly
weighted. Given a query region q, for each distinct color c of the objects in S ∩ q,
the tuple 〈 c, F(c) 〉 is reported where F(c) is some function of the objects of color
c lying inside q [11,12]. Examples of F(c) include sum of weights, bounding box,
point with maximum weight etc. In [11,12], theoretical main-memory solutions
have been provided.

3 Existing Techniques to Solve OCRS

In the database community OCRS problem is solved by using the filter and prune
technique. Two base-line algorithms are described which follow this paradigm.
Then we shall discuss about the theoretical solutions which emerged from com-
putational geometry for answering OCRS. Based on these discussions we shall

Colored Range Searching on Internal Memory 115

motivate the need for a practical data structure and algorithm which will work
efficiently in a main-memory or internal memory environment.

3.1 Base-line Algorithms

Here we shall describe two base-line algorithms with which we shall compare our
proposed method. These two algorithms solve the standard orthogonal range
searching problem. We will describe how they can be modified to answer the
orthogonal colored range searching problem.

1. Plain Range Searching (PRS) In this method, we build a k-d tree on all
the points of S. Given an orthogonal query box q, we query the k-d tree and
report all the points of S lying inside q. Then we filter out the unique colors
among points that are lying inside q. The space occupied by a k-d tree is
O(n). The query time will be O(n1−1/d + |S ∩ q|), where S ∩ q is the set of
points of S lying inside q. If the ratio of |S ∩ q| and the number of unique
colors is very high, then this technique will not be efficient.

2. Least Point Dimension (LPD) A set S of n points lie in a d-dimensional
space with some color associated to each point. For each dimension i we
project S onto dimension i, then we sort the points of S w.r.t coordinate
values in dimension i and store them in an array Ai. Given an orthogonal
query q =Πd

i=1[ai, bi], we decompose the query q into intervals corresponding
to each dimension (interval corresponding to dimension i will be [ai, bi]).
Then we do a binary search on all the arrays Ai (∀ 1 ≤ i ≤ d) with [ai, bi]
to find the number of points of S lying inside it. The array Al, in which
the total number of points is least is chosen. Each point of Al which occurs
within [al, bl] is also tested for its presence inside q. Among all the points
which pass the test, the unique colors of these points are filtered out. Query
time for LPD is O(d log n+ β) where β is the number of points in Al which
lie inside [al, bl]. Note that the performance of LPD algorithm is dependent
on the value of β. If the ratio of β and the number of unique colors is high,
then the performance of LPD will not be good.

3.2 Existing Theoretical Solutions

As mentioned before in Section 2 (related work), there have been theoretical
solutions proposed to answer OCRS. Only a few of these solutions can be im-
plemented and tested. Most of them are meant for theoretical interest and are
impossible to implement. We implemented the solution proposed by Gupta et
al. [7] for d = 2 (semi dynamic solution which handles only insertions). Theoret-
ically it takes up O(n log2 n) space, O(log2 n + k) query time (k is the number
of unique colors reported) and O(log3 n) amortized insertion time. We observe
that for large datasets O(n log2 n) space is not acceptable as that would mean
storing O(log2 n) copies of each data item in the internal memory. Experiments
on real-life and synthetic datasets confirmed our intuition that this data struc-
ture takes up a lot more space than the base-line algorithms and the proposed

116 H. Bellam, S. Rahul, and K. Rajan

solution in this paper (see figure 3). Therefore, this solution was discarded. For
higher dimnesions (d > 2), the theoretical solutions get too complicated to be
implemented and tested.

4 Proposed Algorithm

As we are trying to build main-memory structures, the highest priority is to
minimize the space occupied while trying to keep the query time competitive.

4.1 Data Structure

In this section we construct a data structure named BB k-d tree, which is based
on a regular k-d tree but is augmented with additional information at each
internal node. We chose k-d tree as our primary structure since it takes up
linear space for indexing points lying in any dimension and though it has a poor
theoretical query performance, it does well in practice [15,5].

We shall first describe the structure for a 2-dimensional scenario The primary
structure of BB k-d tree is a conventional k-d tree. A splitting line l(v), here
choosen as a median, is stored at every node (v) which partitions the plane into
two half-planes. We denote the region corresponding to a node v by region(v).
The region corresponding to the left child and right child of the node v are
denoted as region(lc(v)) and region(rc(v)), where lc(v) and rc(v) denote the
left and right children of v, respectively.

At each internal node v, apart from the regular information two height-
balanced binary search trees Tl and Tr are stored. Tl is built as follows: Let
c be one of the colors among the distinct colors of the points lying in the subtree
rooted at lc(v). The bounding box of the points of color c in the subtree of lc(v)
is calculated and kept at a leaf in Tl. A bounding box for a point set in the plane
is the rectangle with the smallest measure within which all the points lie. This
process is repeated for each color c which lies in the subtree of lc(v). The colors
stored in the leaves of Tl are sorted lexicographically from left to right. To make
navigation easier, each leaf in Tl is connected to its adjacent leaves. This forms a
doubly linked list among the leaf nodes of Tl. Also, the root node of Tl maintains
a special pointer pointing to the leftmost leaf of Tl. Similarly, Tr is constructed
based on the points stored in the subtree of rc(v).

BB k-d tree can also be built for point sets in 3 or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x-axis. In other words, at the root the point set is parti-
tioned based on the first coordinate of the points. At the children of the root
the partition is based on the second coordinate, at nodes of depth two on the
third coordinate, and so on, until depth d − 1 where we partition on the last
coordinate. At depth d we start all over again, partitioning on first coordinate.
The recursion stops when there is only one point left, which is then stored at a
leaf. The binary search trees (Tl and Tr) at each internal node are constructed
in the same manner as described above.

Colored Range Searching on Internal Memory 117

(a) Set of 9 points lying on a plane (b) BB-tree corresponding to these nine
points. Note that all the arrays are not
represented for the sake of clarity

Fig. 2. An example of a BB-tree. At every node there are two arrays. The left/right
array contains the unique colors present in the left/right subtree along with their
respective bounding boxes.

In the example shown in Fig 2 there are 9 points and a color has been assigned
to each point. The construction of the K-d tree on these points has been showed
in Fig 2(a). At the root we split the point set P with a vertical line x = 3 into
two subsets of roughly equal size. At the left and right children we split the
point set using horizontal median lines. In this way we build a traditional k-d
tree first. At each internal node the bounding box of all the colors lying in the
left (resp. right) subtree are stored in Tl (resp. Tr). For example, the left child of
the root node has the bounding box of � points 3 and 4, bounding box of
points 1 and 5, bounding box of the � point 2, are computed and stored at the
left binary search tree (Tl) of the of root node of k-d tree. Similarly Tr is also
constructed.

Theorem 1. A BB-tree with n points and α colors takes O(nlogα) storage

Proof. To store a set of n points in d-dimensional space, a normal k-d tree uses
O(n) space. The space occupied by the internal binary search trees Tl and Tr

dominates the overall space complexity. Let the number of distinct colors of the
points in S be α. We want to find the space occupied in the worst case. The
height of a k-d tree will be O(log n). The height of a node is the length of the
longest downward path to a leaf from that node. Consider a node v at height h.
If h ≤ �logα� (i.e. 2h ≤ α), then the number of leaves in the subtree rooted at
v will be ≤ 2h ≤ α. Then the size of Tl and Tr will be bounded by 2h (worst
case being each point having a unique color). The total space occupied by all the
nodes at a particular level h (≤ �logα�) will be O((2log n−h) ×2h) ≡ O(n), where
O(2log n−h) is the number of nodes at level h. Then the total space occupied by
all the internal binary search trees stored at primary nodes having height ≤
�logα� will be Σ

�logα
h=0 O(n) ≡ O(n logα).

118 H. Bellam, S. Rahul, and K. Rajan

Now consider a node v at height h > �logα� (i.e. 2h > α). The number of
leaves in the subtree at v is bounded by 2h. However in this case the size of Tl

and Tr is bounded by O(α). If each node at level h has array size O(α), then
the total size of all the arrays at level l will be O(2logn−h × α). ≡ O(nα

2h
). The

overall size of the internal binary search trees added over all levels h > �logα�
will be

O(Σlogn
h=�logα

nα

2h
) ≡ O(nαΣlog n

h=�logα
1

2h
)

≡ O(nα(Σlog n
h=0

1

2h
− Σ

�logα−1
h=0

1

2h
)) ≡ O(nα(

1

α
− 1

n
)) ≡ O(n)

Therefore, the total size of the BB k-d tree will beO(n logα) +O(n) ≡ O(n logα).

4.2 Query Algorithm

We now turn to the query algorithm. We maintain a global boolean array
outputSet of size α, which contains an entry for each distinct color of set S.
Given a query box q, an entry of outputSet[c] being true denotes that color c
has a point in the query box and we need not search for that color any more
inside our data structure. The query algorithm is described in the form of a
pseudo-code in Algorithm 1. The input parameters are the current node being
visited (v), the orthogonal query box q and a boolean array A. A has a size of
α and A[c], 1 ≤ c ≤ α, being true denotes that we need to search if color c has
a point in the subtree of currently visited node (i.e. v), else we need not.

The processing of the query box q commences from the root of the BB k-d
tree. Initially, all elements of A are set to true and all elements in outputSet are
set to false. If the current node v is not a leaf, then we intialize two arrays Al

and Ar of size α to false (lines 4 − 5). Al (and Ar) are updated later in the
procedure and will be used when the children of the current node will be visited.

If region(lc(v)) is fully contained in q, then all the colors stored in the
leaves of secondary tree Tl are set to true in outputSet (lines 6–8). However,
if region(lc(v)) partially intersects q, then we do the following: Using the special
pointer at the root of Tl, we will go to the leftmost leaf of Tl. Then we will check
if q contains any bounding box b corresponding to each leaf of Tl (line 11). The
adjacent pointers of each leaf help in navigating through the list of leaves. If a
bounding box b (of color c) is fully contained in q then there exists at least one
point of color c in q. In this case we will update the outputSet[c] to true and
we need not search for this color anymore (lines 11–12). If a bounding box b
partially intersects q, then we need to search for that color c in the subtree of v.
So, we will update Al to true (lines 13-14).

The last case is when the query box q and bounding box b of all the points in
the subtree of v do not intersect at all. In this case, we need not search for any
color in the subtree of v. This is automatically reflected in the arrays Al (or Ar)

Colored Range Searching on Internal Memory 119

Algorithm 1. SearchBBTree(v, q, A)

Input : A node in BB k-d tree (v) , Query box (q), an array of colors which
need to be searched (A)

Output: An array ‘OutputSet’ which contains the colors lying inside q

if v is a leaf and point p stored at v lies in q then1

outputSet[p.color]= true2

else3

forall colors i from 1 → α do4

Al[i] = false ; Ar[i] = false5

if region(lc(v)) is fully contained in q then6

forall colors c in leaves of Tl do7

outputSet[c]= true8

else if region(lc(v)) partially intersects q then9

foreach bounding box b of color c in leaves of Tl where A[c] = true do10

if q contains b then11

outputSet[c] = true12

else if q partially intersects b and outputSet[c] = false then13

Al[c] = true14

if region(rc(v)) is fully contained in q then15

forall colors c in leaves of Tr do16

outputSet[c] = true17

else if region(rc(v)) partially intersects q then18

foreach bounding box b of color c in leaves of Tr where A[c] = true do19

if q contains b then20

outputSet[c] = true21

else if q partially intersects b and outputSet[c] = false then22

Ar[c] = true23

if any Al[c] = true then24

SearchBBTree (lc(v), q, Al)25

if any Ar[c] = true then26

SearchBBTree (rc(v), q, Ar)27

120 H. Bellam, S. Rahul, and K. Rajan

as they are intialized to false in the beginning itself. Similar steps are applied
for right subtree (lines 15 – 23). If an entry in Al (or Ar) is true, then there
is a possibility of existence of that color in the left (or right) subtree of v. So,
we shall make a recursive call by passing lc(v) and Al (lines 24–25). Similarly, if
required a recursive call is made by passing rc(v) and Ar (lines 26–27).

4.3 Handling Updates

Insertion and deletion of points can be efficiently handled in the proposed struc-
ture. When a point p (having color c) is inserted into BB k-d tree, then an
appropriate leaf node is created by the insertion routine of k-d tree [5]. Then
we will update all the secondary structures existing on the path (say Π) from
the newly created leaf node to the root, in the following manner: At each node
v ∈ Π , we search for color c in the secondary structures (Tl and Tr). If no en-
try of color c exists, then an appropriate leaf is created (in Tl and Tr) and the
bounding box of color c will be the point p. The adjacency pointers are also
set appropriately. If the new node happens to be the leftmost leaf (of Tl or Tr),
then the special pointer from the root (of Tl or Tr) is set to the newly created
node. If an entry of color c already exists, then the bounding box of color c is
updated. To delete a point p (having color c) from BB k-d tree, we first delete
the appropriate leaf node in the primary structure by using the deletion routine
of a k-d tree [5]. Before that, at each node v on the path from the leaf node of
p to the root we do the following: Search for the color c (in Tl and Tr). Then
update the bounding box of color c. If the bounding box of color c becomes null,
then that leaf node is removed from (Tl or Tr). The adjacency pointers are also
appropriately adjusted. If the leaf node being removed was the leftmost entry,
then the special pointer from the root of (Tl or Tr) is set to the new leftmost
leaf. Next we shall summarize the update time in our structure in a lemma. In
the lemma, by random we mean that for each point the coordinate value in each
dimension is an independently generated random real number.

Lemma 1. (Using [5]) The average time taken to insert a random point into
the BB k-d tree is O(log2 n). The average time taken to delete a random point
from a BB k-d tree is O(log2 n). In the worst case, the time taken to delete a
point from BB k-d tree is O(n1−1/d log n).

5 Experimental Setup

All techniques were implemented in C using the same components. The system
used is a 1.66 GHz Intel core duo Linux machine with 4 GB RAM. Programs
were compiled using cc. We used both synthetic and real life data sets. The
following datasets (both real and synthetic) have been used for our experiments
(n will denote the number of data points and d denotes the dimensionality):

a) Uniform Synthetic Dataset (D1). n=1, 000, 000 and d=2.
b)Gaussian Synthetic Dataset (D2). n=100, 000, d=2 and σ as 0.2% of the

number of points.

Colored Range Searching on Internal Memory 121

c) Gaussian Skewed Synthetic Dataset (D3). n=100, 000 and d=2. The x-
coordinate of these points have been assigned using a gaussian function with σ
as 10% of the total points and the y-coordinates are produced using a gaussian
function with σ 1% of the total points. This helped us in generating a skewed
dataset.

d)Forest Cover real dataset (R1). The Cover data set contains 581,012 points
and is used for predicting forest cover types from cartographic variables. We used
the spatial information to get the 2-d points corresponding to the locations. We
used the soil type information, which contains 40 distinct category values to
assign colors to the points.

e)U.S Census real dataset (R2). The US Census Bureau data contains 199,523
records, from which we derived two separate sets: (i) the Census3d, having as
dimensions the age, income and weeks worked; and (ii) the Census4d, having as
additional dimension dividends from stocks. As categorical attribute we selected,
in both cases, the occupation type,that has 47 distinct values in total. We went
to [2] to obtain the datasets.

6 Results and Performance Evaluation

In this section we shall look at different kinds of factors which effect the query
output time. This section describes the effect of each factor on the performance of
the three techniques. In all the datasets, queries are generated using each data
point as the center of the query box. The output time per query is obtained
by averaging all the query times. We also look at the space occupied by these
techniques.

Forest Cover US Census (3d) US Census (4d)
(in MB) (in MB) (in MB)

PRS 96 38 45

LPD 152 100 160

BB 510 211 249

Gupta et al.[7] > 4 GB > 4 GB > 4 GB

Fig. 3. Comparision of space occipied by various techniques. We implemented the semi-
dynamic solution of Gupta et al.[7] for d=2. For real-life datasets, the size of this data
structure exceeded our main memory capacity.

6.1 Comparision of Space Occupied

Theoretically, both PRS and LPD techniques take up O(n) space. However,
notice that in LPD we project all the points to each of the d dimensions. There-
fore, it is expected to occupy slightly higher space than the PRS technique. This
was also observed while testing them on real-life datasets as shown in Figure 3.
BB k-d tree occupies O(n logα) space in any dimensional space. The secondary

122 H. Bellam, S. Rahul, and K. Rajan

information stored at each internal node of a k-d tree leads to a slight blow up in
the space occupied. In contrast, the data structure proposed by Gupta et al. [7]
for d=2 (semi-dynamic solution) could not be loaded to main memory. This was
expected as the space complexity of the data structure is O(n log2 n). Hence, we
could not compute the query time of it and hence discarded this solution.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

T
im

e(
in

 m
ill

is
ec

on
ds
)

pe
r

qu
er

y

Colors

"BB"

(a) Uniform dataset D1

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

T
im

e
ta

ke
n(

in
 m

ill
is

ec
on

ds
)

pe
r

qu
er

y

Colors

"BB"

(b) Gaussian dataset D2

Fig. 4. Performance of BB k-d tree w.r.t the number of colors

6.2 Number of Colors (α)

Query response time of PRS and LPD techniques are independent of the number
of colors in the dataset. In a BB k-d tree, as the number of colors start increasing
in the dataset (while dataset size remains constant), the size of the secondary
structures increase. Consequently, the query time increases. In real life datasets,
number of colors remain constant. So we used synthetic datasets D1 and D2
for observations. Average query time for BB k-d tree for both the datasets is
increasing with the increase in the number of colors as shown in the Fig 4(a)
and 4(b). However, in real life scenerio, the ratio of the number of colors in a
dataset and the size of the dataset is generally very low.

6.3 Size of Query Box

In general, for a given dataset, as the size of the query box increases, the number
of points lying inside it also increases. So, naturally the query time of PRS and
LPD techniques are expected to increase with increase in size of the query box.
Interestingly, BB k-d technique is minimally affected by the variation in the size
of query box which is highly desirable. As the query box size keeps increasing, the
depth of the nodes being visited in the BB k-d tree decreases; since the existence
or non-existence of the bounding box a color inside the query box becomes clear
at an early stage. At the same time when the size of the query box is very small,
then the number of primary structure nodes visited will also be less. Hence the
query time is minimally varied w.r.t. the query box size. Experimental results
have shown that with increase in size of the query box, initially the query time
off BB k-d tree increaes slightly and then decreases or stays flat (see Fig 5). In
5(a) and 5(b), we observe the same pattern even when we vary the number of
colors in the synthetic datasets D1 and D2.

Colored Range Searching on Internal Memory 123

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
ta

ke
n
(i

n
m

ill
is

ec
on

ds
)

pe
r

qu
er

y
"PRS"

Query Size

"BB_10"
"BB_50"
"BB_100"
"BB_200"
"LPD"

(a) Uniform dataset D1

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
im

e(
in

 m
ill

is
ec

on
ds
)

pe
r

qu
er

y

Query Size

"BB_2"

"LPD"
"BB_20"

"PRS"

"BB_10"

"BB_30"

(b) Gaussian dataset D2

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160 180 200

T
im

e(
in

 m
ill

is
ec

on
ds
)

pe
r

qu
er

y

Query Size

"LPD"
"BB"

"PRS"

(c) Foreset Cover dataset R1

Fig. 5. Effect of size of query box on the query time. Two synthetic datasets and one
real-life dataset have been used. In Fig 5(a) and 5(b) BB x represents that the dataset
used has x number of distinct colors. Note that the lines corresponding to BB k-d
technique are almost flat.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120 140 160

T
im

e
ta

ke
n(

in
 m

ill
is

ec
on

ds
)

pe
r

qu
er

y

Query size

"BB"

"PRS"
"LPD"

(a) Skewed Data (D3)

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90

T
im

e
ta

ke
n
(i

n
m

ill
is

ec
on

ds
)

pe
r

qu
er

y

Query Size

"BB"

"LPD"
"PRS"

(b) 3d-dataset

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90

T
im

e
ta

ke
n(

in
 m

ill
is

ec
on

ds
)

pe
r

qu
er

y

Query Size

"BB"

"LPD"
"PRS"

(c) 4d-dataset

Fig. 6. Effect of skewed datasets on query time. (b) and (c) are based on US census
dataset (R2)

124 H. Bellam, S. Rahul, and K. Rajan

6.4 Effect of Data Distribution

Both PRS and BB k-d techniques use k-d tree as their primary structure. Hence,
the distribution of data will have similar effect on both the data structures. On
the other hand, LPD will perform well if the dataset is highly skewed w.r.t one
of the dimensions. As described in Section 2, if the dataset is highly skewed, then
the value of β will be small, resulting in good query performance. Fig 6(a) shows
the results on the skewed synthetic dataset (D3) to validate our arguments. US
Census data (Fig 6(b) and 6(c)) is skewed w.r.t age dimension and hence, LPD
does well. However, the query time for BB k-d technique is always within a
bounded factor of LPD’s query time. However, in Fig 5(a) the datasets have
uniform distribution which leads to poor perfomance of LPD.

7 Conclusions and Future Work

In this paper we came up with a main-memory data structure, BB k-d tree, to
solve the orthogonal colored range searching problem (OCRS). In BB k-d tree,
we augmented the traditional k-d tree with secondary data structures which re-
sulted in significant improvement of the query response time (with minimal in-
crease of O(logα) factor in space). Comparision of this data structure was done
with two base-line brute-force algorithms which solved the traditional orthogonal
range searching problem. An existing theoretical solution was implemented but
found unsuitable due to its high space consumption. Experiments were performed
to compare our technique with the base-line techniques by varying factors such
as number of colors (α), size of the query box and data distribution. The BB k-d
tree performed consistently well under most of the conditions. In some minimal
cases the base-line brute-force do better (in terms of query response) than BB k-d
tree: In a highly skewed data LPD slightly performed better than BB k-d tree,
PRS performs better than BB k-d tree in an extreme scenario where the number
of colors in the dataset are almost close to the cardinality of the dataset. This BB
k-d tree method is equally applicable to higher dimensions. Future work would
involve coming with efficient execution plans for the query optimizer to answer
OCRS query. There is need for practical solutions for aggregate queries on colored
geometric problems [11,12] for main-memory, external memory models etc.

References

1. http://www.mcobject.com/in_memory_database

2. http://www.ics.uci.edu/mlearn/MLRepository.html

3. Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.: Range Searching in Categor-
ical Data: Colored Range Searching on Grid. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)

4. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Effi-
cient and Robust Access Method for Points and Rectangles. In: ACM SIGMOD
Conference, pp. 322–331 (1990)

http://www.mcobject.com/in_memory_database
http://www.ics.uci.edu/mlearn/MLRepository.html

Colored Range Searching on Internal Memory 125

5. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18, 509–517 (1975)

6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
geometry: algorithms and applications. Springer, Heidelberg (2000)

7. Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection
searching problems: counting, reporting, and dynamization. Journal of Algo-
rithms 19, 282–317 (1995)

8. Gupta, P., Janardan, R., Smid, M.: Computational geometry: Generalized inter-
section searching. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures
and Applications, ch. 64, pp. 64-1–64-17. Chapman & Hall/CRC, Boca Raton, FL
(2005)

9. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIG-
MOD Conference, pp. 47–57 (1984)

10. Janardan, R., Lopez, M.: Generalized intersection searching problems. Interna-
tional Journal on Computational Geometry & Applications 3, 39–69 (1993)

11. Rahul, S., Gupta, P., Rajan, K.: Data Structures for Range Aggregation by Cate-
gories. In: 21st Canadian Conference on Computational Geometry (CCCG 2009),
pp. 133–136 (2009)

12. Rahul, S., Bellam, H., Gupta, P., Rajan, K.: Range aggregate structures for colored
geometric objects. In: 22nd Canadian Conference on Computational Geometry
(CCCG 2010), pp. 249–252 (2010)

13. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. In: 13th International Conference on Very Large Data
Bases (VLDB 1987), pp. 507–518 (1987)

14. Shi, Q., JáJá, J.: Optimal and near-optimal algorithms for generalized intersec-
tion reporting on pointer machines. Information Processing Letters 95(3), 382–388
(2005)

15. Kumar, Y., Janardan, R., Gupta, P.: Efficient algorithms for reverse proximity
query problems. In: GIS 2008, p. 39 (2008)

Circle of Friend Query in Geo-Social Networks�

Weimo Liu1, Weiwei Sun1,��, Chunan Chen1, Yan Huang2,
Yinan Jing1, and Kunjie Chen1

1 School of Computer Science, Fudan University
Shanghai 201203, China

{liuweimo,wwsun,ynjing,chenkunjie}@fudan.edu.cn, huangyan@unt.edu
2 Department of Computer Science and Engineering, University of North Texas

Denton, TX 76203-5017, USA
chenchunan@fudan.edu.cn

Abstract. Location-Based Services (LBSs) are becoming more social
and Social Networks (SNs) are increasingly including location compo-
nents. Geo-Social Networks are bridging the gap between virtual and
physical social networks. In this paper, we propose a new type of query
called Circle of Friend Query (CoFQ) to allow finding a group of friends
in a Geo-Social network whose members are close to each other both
socially and geographically. More specifically, the members in the group
have tight social relationships with each other and they are constrained
in a small region in the geospatial space as measured by a “diameter”
that integrates the two aspects. We prove that algorithms for finding the
Circle of Friends (CoF) of size k is NP-hard and then propose an ε-
approximate solution. The proposed ε-approximate algorithm is guaran-
teed to produce a group of friends with diameter within ε of the optimal
solution. The performance of our algorithm is tested on the real dataset
from Foursquare. The experimental results show that our algorithm is
efficient and scalable: the ε-approximate algorithm runs in polynomial
time and retrieves around 95% of the optimal answers for small ε.

Keywords: Circle of friend query, geo-social networks.

1 Introduction

The wide availability of wireless communication and positioning enabled mobile
devices allows people to access Location-Based Services (LBSs) whenever and
wherever they want. On the other hand, Social Networks (SNs) are penetrating
people’s daily lives. For example, by January 2011, Facebook has more than
600 million active users. Half of these users login everyday and more than 150
million active users access Facebook through mobile devices. LBS and SN are
increasingly integrated together into Geo-Social Networks (GSNs). In GSNs,
e.g. Foursquare, users form a social network, can communicate, and share their

� This research is supported in part by the National Natural Science Foundation of
China (NSFC) under grant 61073001.

�� Corresponding author.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 126–137, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Circle of Friend Query in Geo-Social Networks 127

locations. Recently many SNs are adding support of locating friends nearby.
In fact, there is a trend of increasingly bridging the gap between virtual and
physical worlds. Aligning with this trend, this paper proposes a new query type
called Circle of Friend Query (CoFQ) in a GSN. A k-CoFQ allows a user q with
location q.l to identify k “circle of friends” in “spatial proximity”. Here “circle
of friends” refers to the group of k + 1 users including q with small pairwise
social distances in a social network. And “spatial proximity” is to constrain the
diameter of the point set formed by the locations of the k+1 users. The k-CoFQ
is the integration of social and physical world distances. This query allows a
circle of friends with the following two properties to be found: (1) The friends
are mutual which is ensured by the small pairwise social distance; (2) The friends
are in spatial proximity.There are many challenges in answering k-CoFQ in a
large GSN. The three major ones are:

1. There are two types of distances in GSNs: social network distance and spatial
network distance. The integration of these two requires careful balance of the
different metrics;

2. The k-CoFQ requires to find a subgraph with the smallest diameter. The
NP-hard max-clique problem can be reduced to the k-CoFQ problem which
makes k-CoFQ NP-hard and computational expensive. With spatial prox-
imity considered, it is even more challenging to design a scalable algorithm;

3. It is known that obtaining real social network dataset for validation is very
difficult in social network research especially in academic settings.

The paper addresses these challenges and makes the following contributions:

1. We formulate a new and useful query in GSNs, namely, k-CoFQ. This query
enables many applications in a GSN. Examples include group sports, social
deal, friend gathering, and community service. To bridge the gap between
virtual and physical world, this paper uses a normalization method with a
empirical parameter to combine the two metric values.

2. We prove that the k-CoFQ is NP-hard. We propose an ε-approximate al-
gorithm to k-CoFQ. We identify an upper-bound and lower-bound when
searching k -circle of friends in a social network. This allows the the ε-
approximate algorithm prunes most of the search space. For the candidate
groups remained, the ε-approximate algorithm narrows the range of the op-
timal group’s diameter gradually by checking the candidates in a binary
search fashion, tightening the bounds along the way until the distance be-
tween bounds is less than ε. The suboptimal result is guaranteed to be with
in ε of the optimal solution.

3. We algebraically analyze the cost of the algorithms using small world as-
sumption [16]. We test the performance of our algorithm on real dataset
from Foursquare. Experimental results demonstrate efficiency and scalabil-
ity of the algorithms proposed.

The rest of this paper is organized as follows: Section 2 overviews the research
on GSNs. Section 3 defines the circle of friend query and proves it is NP-hard.

128 W. Liu et al.

Section 4 proposes an ε-approximate algorithm in social networks. Section 5
introduces the ε-approximate algorithm in GSNs. Experimental results are pro-
vided in section 6. In section 7, we conclude our work and discuss the future
work.

2 Related Work

The research on location-based social networks is attracting much attention re-
cently. A main activity is to mine user’s location and social network data to
retrieve the relationships between the locations and the users. It has been shown
that users with short-distance links are often geographically close [15][14]. C.
Hung, et al. [8] store users’ trajectory profiles by using a probabilistic suffix tree
structure. They formulate distance of profiles and uses clustering algorithms
to identify communities. M. Lee, et al. [11] focus on the semantic information
of location. Their paper proposes a structure that organizes the location infor-
mation into categories to compute the similarity between users. M. Ye, et al.
[18] recommend locations to users based-on their social networks. Their paper
proves that there is a co-relationship between friends’ ratings on the same lo-
cation and discusses how to build a location recommendation system based on
the co-relationship. The above works attempt to discover some useful Geo-Social
information from the history information. In this paper we propose a new kind
of query which is very useful in real life applications such as activity planning.

C. Chow, et al. [3] present GeoSocialDB which supports location-based social
query operators such as location-based news feed, location-based news ranking,
and location-based recommendation. Y. Doytsher, et al. [4] propose a socio-
spatial graph model and introduce a query language formed by a set of socio-
spatial operators. The socio-spatial operators mentioned in this paper are dif-
ferent from ours. The circle of friend query in our paper aims to find a group
based on the social relationship and the location of users.

D. Yang, et al. [17] discuss the problem of finding a group of given number of
members from a social network. The group should satisfy the hop and unfamiliar
member constraints and make the sum of closeness between the query and each
member of the group smallest. Our work aims to find a group with smallest
diameter and considers both social network distance and geo-distance.

Finding k points in Euclidean space with minimum diameter or minimum
sum of all distance has been studied. It has been shown that polynomial time
algorithm is available [1]. However, the problem of finding a k-vertex group with
the smallest diameter in a graph has not been studied yet.

Another query to find a group in spatial databases is proposed recently called
collective spatial keyword query [2]. It is to find a group of objects that cover
all the keywords in the query and minimize the maximal distance between the
objects and the sum of distances from the objects to the query location.

In the area of spatial databases, the problem of group nearest neighbor query,
also named aggregate nearest neighbor query, is studied in [13][19]. Given a group
of k members, the group nearest neighbor query is to find an aggregate point to

Circle of Friend Query in Geo-Social Networks 129

minimize the total distance from all the members to the aggregate point. This
differs from our work because we aim to find a group to minimize the diameter
of a group containing a given point. Furthermore, we consider not only spatial
distance but also social network distance.

3 Problem Definition

A social network is modeled as an undirected weighted graph G(V, E) with
vertex setV and edge set E. For u, v∈ V, (u, v) ∈ E if u and v are friends, and
the weight of (u, v), denoted as w(u, v), is defined by their direct interactions such
as message exchange or co-authorship. For example, in the case of co-authorship
w(u, v) can be defined as 1/Σn

i=1
1
xi
, where n represents the number of papers u

and v co-write, xi is the number of the ith paper’s authors [12]. The closeness
closeness(u, v) between u and v is defined as[10][9]:

closeness(u, v) =

⎧⎨
⎩

w(u, v), if (u, v) ∈ E
the accumulative weights of the

shortest path between u and v in G, otherwise

In a GSN, every vertex v∈ V is geo-tagged and associated with a location. The
geographical distance between u and v is denoted as dist(u, v). This distance
can be the common distance measures such as Euclidean or network distances.
We use Euclidean distance in this paper.

3.1 Circle of Friend Query (CoFQ) in Social Networks

Definition 1 (diameter). Given a subset of vertices S in a graph G(V, E),
the diameter of S, denoted as dia(S), is the distance between the farthest pair
in S:

dia(S) = maxa,b∈Scloseness(a, b). (1)

Problem Statement [k-circle of friend query in social networks]. Given
a query point q in a social network G(V, E) and the size k, the k-circle of friend
query (CoFQ(q, k)) is to find a set V ’ ⊆ V, satisfying that:

q ∈ V ′; (2)

| V ′ | = k + 1; (3)

dia(V ′) is the smallest; (4)

The set V ’ is called the k-circle of friends of q, denoted as CoF (q, k).

3.2 Geo-Social Circle of Friend Query (gCoFQ)

We denote the diameters of a vertex set S with respect to geometric distance
and social closeness as diageo(S) and diasocial(S):

diageo(S) = maxa,b∈Sdist(a, b), (5)

diasocial(S) = maxa,b∈Scloseness(a, b). (6)

130 W. Liu et al.

The Ranking Function. Because we want the diageo(S) and diasocial(S) to be
small, the combining function of diageo(S) and diasocial(S) needs to be mono-
tonic with respect to both. The linear combination of the two factors is a rea-
sonable method:

distgs(u, v) = λ
dist(u, v)

diageo(V)
+ (1 − λ)

closeness(u, v)

diasocial(V)
. (7)

And the ranking function is

f(S) = diags(S) = maxa,b∈Sdistgs(a, b). (8)

Here, λ varies according to the users’ different demands. Even for the same user,
the demand may change at different moment. For example, if a user wants to
invite some friends to play football, the geo-distance weights more in the function
since the friends nearby are convenient to come together. However if the user
wants to hold a party, the closeness is more important. The user probably invites
a very close friend although the friend lives a little far. A user can pick up a
reasonable λ based on her demand possibly through taking suggestion from the
system who learns the value from similar queries.

Problem Statement [Geo-Social Circle of Friend Query]. Given a
query point q in a GSN G(V, E) and the size k, the Geo-Social Circle of Friend
Query (gCoFQ(q, k)) is to find a set V ’ ⊆ V, satisfying that:

q ∈ V ′; (9)

| V ′ | = k + 1; (10)

diags(V
′) is the smallest; (11)

and the setV ’ is called the Geo-Social circle of friends of q, denoted as gCoF (q, k).

3.3 NP-Hard Proof

The max-clique problem is to find the largest complete subgraph in an un-
weighted undirected graph and is NP-Hard. We reduce the max-clique problem
to CoFQ problem.

Theorem 1. Finding CoF(q, k) is NP-hard.

Proof. Assume that the circle of friend problem’s running time is T. Suppose
that all the edges’ weights of a weighted undirected graph G are one, we iterate
all the vertices in G and let k be 1, 2, . . . , n (n = |G|). We can get different k0 in
the following condition: if G is a complete graph, k0 = n; if G is not a complete
graph, there exists q that makes the CoF ’s diameter equals to 1 when k=k0 and
for any k>k0 there is no q makes CoF problem has a solution that satisfies that
the diameter equals to 1. The CoF problem’s solution for k=k0 is the max-clique
problem’s solution. The algorithm complexity is O(k*n)*T, so MAX-CLIQUE
≤ PCIRCLE OF FRIEND. So CoFQ is also an NP-hard problem.

Circle of Friend Query in Geo-Social Networks 131

Theorem 2. Finding the Geo-Social Circle of Friends is NP-hard.

Proof. Assume that the running time of gCoFQ is T. Then set the value of λ as
0. We have

distgs(u, v) = λ
dist(u, v)

diageo(V)
+ (1 − λ)

closeness(u, v)

diasocial(V)
=

closeness(u, v)

diasocial(V)
(12)

Since diasocial(V) is constant, the gCoFQ is equivalent to CoFQ. CIRCLE OF
FRIEND ≤ PGEO-SOCIAL CIRCLE OF FRIEND. So gCoFQ is NP-hard.

4 Algorithm for Circle of Friend Query (CoFQ)

In this section, by exploring the upper bound and lower bound of the diameter,
we propose an ε-approximate solution to CoFQ. We then optimize the algorithm
and analyze its complexity.

4.1 Find the Upper Bound and the Lower Bound

The circle of friend result is different from the kNN of the query point. However,
the upper bound and the lower bound of the diameter of the circle of friends can
be computed based on the kNN result:

Lemma 1 (Upper bound property). Let N be the union of q and the set
of q’s kNNs, Dmax = dia(N), M = {u | u ∈ V and closeness(q, u) ≤ Dmax},
then CoF(q, k) is a subset of M.

Proof omitted due to space constraint.

Lemma 2 (Lower bound property). Let r be the distance between q and its
kth NN, then we have dia(CoF(q, k)) ≥ r.

Proof omitted due to space constraint.
Based on Lemma 1, a very straightforward solution to the CoFQ is to compute

the diameter of every possible group in M and find the one with the smallest
diameter. This method needs

(|M|−1
k

)
times of diameter computation, once for

each possible group. The computation time is very expensive.

4.2 ε-approximate Algorithm

We introduce our first algorithm to CoFQ. The main idea of this algorithm is to
process a binary search on the

(|M|−1
k

)
groups generated by M. Firstly, we check

if there is a group with diameter smaller than 1/2 Dmax. If such a group exits,
then the diameter of CoF (q, k) falls in the range [1/4Dmax, 1/2Dmax]. Then we
continue the binary search in the subspace until we get an ε-approximate result.
By ε-approximate result, we mean that we are sure that the optimal result
dia(CoF (q, k)) falls in the range [δ−,δ+] and δ+ - δ− < ε. Lemma 3 shows
that with a tight upper bound and special access order, the binary-search-based
algorithm will prune most of the groups and avoid scanning the whole space.

132 W. Liu et al.

| |-1...21

1 2

+1

Fig. 1. prune in the ε-
approximate algorithm

Fig. 2. pop in the ε-approximate algorithm

Lemma 3. Suppose that we are currently checking if there is a group with di-
ameter smaller than Dcur. If there are two points u, v in M satisfying that
closeness(u, v) > Dcur, then any group containing u and v can be discarded.

Proof omitted due to space constraint.
Based on Lemma 3, we develop an ε-approximate algorithm. Suppose that

the points in M is stored in a list and q is the first element of the list, as shown
in Fig. 1. We use a stack S to store the currently checked group. S is initialized
as q. Then we add the elements in M to S in sequence. Before adding a element
p to S, we check whether or not the diameter of S will become larger than Dcur

after p is added. Based on Lemma 3, we just have to check the distance between
p and the elements in S. For example in Fig. 1, S currently has three elements:
q, u1 and u2. Before adding pi to S, we check that if the distance between pi and
q(or u1, u2) is larger than Dcur. If the above condition is satisfied, pi is pruned
for the current set in S. Otherwise pi is added to S.

If for the elements in S, adding any other element will lead to a diameter
larger than Dcur, the top element of S is popped out. In Fig. 2, u2 is popped
out and the element pj after u2 in M is the next element to be added to S.

When the size of S becomes k+1, we output the group generated by the
elements in S as the currently suboptimal result, denoted as CoFcur. Then we
check if the difference between CoFcur and the optimal result is smaller than ε.
If so, CoFcur is output as the suboptimal result. Otherwise, the upper bound
dUP of dia(CoF (q, k)) is set to Dcur and we continue to check if there is a group
with diameter smaller than 1/2 (Dcur + dLB). If all the groups’ diameter is
larger than Dcur, then we continue to check if there is a group with diameter
smaller than 1/2 (Dcur + dUP).

4.3 Optimized ε-approximate Algorithm

As mentioned above, we use an |M |×|M | matrix to store the distance between
every pair of M in order to compute the diameter efficiently. However, as the
value of M becomes larger, both computation time and space cost will increase
rapidly. In this section, we propose an optimized algorithm by cutting down the
size of the distance matrix. The optimization is based on the following observa-
tion.

Observation 1. Suppose that there exists a group whose diameter is smaller
than Dcur, for a element u in M, if closeness(u, q) > Dcur, then u will not

Circle of Friend Query in Geo-Social Networks 133

appear in the suboptimal result. So the columns or rows containing u will not
be used in our binary search process. As shown in Fig. 3, only the sub matrix at
the top left corner is useful to our ε-approximate algorithm. We call it “useful
space”.

Observation 1 can be proved by Lemma 3. As Fig. 3 shows, at the first step
of the binary search, we don’t have to compute the distance matrix of all the
elements in M. Instead, we only compute the useful space and check if there
is a group whose diameter is smaller than Dcur. If such a group doesn’t exist,
we would have to extend the useful space according to the new Dcur. The check
procedure based on the distance matrix is the same as ε-approximate Algorithm.
The only difference is the search space. In ε-approximate Algorithm, the search
space is all the elements whose distance to q is smaller than dia(N), while in
our second algorithm, the search space depends on Dcur and may be extended
in the following steps.

5 Algorithm for Geo-Social Circle of Friend Query
(gCoFQ)

In this section, we explore the problem inGeo-Social network environment where
both social distance and geometric distance are considered. Firstly, we propose
a kNN algorithm in GSNs based on the ranking function. Then a binary search
based algorithm to gCoFQ is proposed.

The ε-approximate algorithm described in section 4.2 can be applied to gCoFQ,
too. The first step is to find the kNNs of q ordered by the value of the rank-
ing function. This a multi-objective top-k problem (i.e., the top-k objects are
ranked according to the social network distance and spatial proximity). To deal
this problem, we propose a Geo-Social kNN algorithm, which is inspired by the
NRA algorithm in [5].

5.1 The Geo-Social kNN Algorithm

Definition 2 (Geo-Social kNN query). Given a query point q in a GSN
G(V, E) and the size k, the Geo-Social kNN query (GSkNN(q, k)) is to find a
set V’∈ V with | V ′ |= k, and for any point u ∈ V ′ and v /∈ V ′,

distgs(q, u) < distgs(q, v). (13)

The main idea of our algorithm is to search the kNN in the social network and
space separately and synchronously. Fig. 4 shows the framework of the algorithm.
The kNNs in social networks are searched on the graph G(V, E) (see section
4). While the NNs in geo-space are searched using the R-Tree index [6]. The
incremental NN search algorithm [7] are used in this paper.

Like NRA, we append the NNs retrieved in the social network or geo-social
space with two attributes: W and B (short for worst and best score). W means
the upper bound of the ranking function and B means the lower bound. We use

134 W. Liu et al.

a priority queue Q to store the NNs. The elements in Q are sorted by W in
ascending order, if W is the same, ties are broken using B, the lower B wins.

Notice that every time a nearest neighbor in social NNsocial is retrieved, the
Euclidean distance can be computed as well using the coordinates of NNsocial.
So we set the value of NNsocial.W and NNsocial.B as the exact Geo-Social
distance between q and NNsocial. Meanwhile, when a nearest neighbor in geo-
space NNgeo is retrieve, the social network distance is unknown. So we compute
the value of NNgeo.W and NNgeo.B with the lower and upper bound of the
social network distance. The social network upper bound is set as ∞, while the
lower bound closenessLB is initialized as 0 and increases when a new NN is
found. For geo-distance, a lower bound distanceLB is also maintained. When
the lower bound of the ranking function f(distanceLB, closenessLB) is larger
than the last element’s in Q, the algorithm ends and the first k elements in Q
are output as the top-k result.

1

1

11 1

1

m

m mm

d d

d d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� � �

�

Fig. 3. Useful space in the matrix Fig. 4. The Geo-Social kNN algorithm

5.2 The Algorithm for gCoFQ

Recall the upper bound property in Lemma 1, the kNN result can be used to
prune most of the search space in the social network. This property holds for
the gCoFQ as well. Suppose that q and its kNNs are stored in N. We compute
diags(N) and use it as the upper bound. Then we process a range query on the
social network with the distance bound of diags(N). For every point u lying in
this range, we compute distgs(u, q) using the coordinate of u. If distgs(u, q) is
larger than diags(N), u is pruned. Otherwise, u is added to the set M, sorted
by diags(N). Then we process a binary search on M to get the ε-approximate
result, as described in section 4.2.

6 Experiment

We used a real social network from Foursquare, which is a world famous location-
based social networking application. The graph consists of 20,550 nodes and
586,424 edges in our experiments. The relation between users and their check-in
locations with geographic were crawled from Foursquare by using the open API.
Because the API requests’ number per hour is limited by the server, we only
achieved a subset of the total social network. All experiments were carried out
on a Genuine 1.8GHZ CPU desktop computer with 3GB memory and our imple-
mentation source code of the algorithms aforementioned were written in C++.

Circle of Friend Query in Geo-Social Networks 135

We conducted several experiments for CoFQ and gCoFQ to: 1) compare the per-
formance of the baseline, the ε-approximate and the optimized ε-approximate
algorithm with the increase of k ; 2) evaluate the effect of ε on the correctness
and the response time.

6.1 CoFQ on Social Networks

The Effect of k. In this section, we discuss the effect of k when all algo-
rithms use both upper bound aforementioned as the prune condition. As Fig. 5
shows, the ε-approximate and the optimized ε-approximate algorithm signifi-
cantly outperform the baseline for all value of k. The gap between them even
increases considerably as k increase. As our analysis above, the CPU time of
the ε-approximate and the optimized ε-approximate algorithm grows in a poly-
nomial way while the Baseline increases in an exponential way due to its huge
amount of computation of diameter for every possible group. The Baseline can
hardly return any results when k is bigger than 7 in our experiments, which
will be considered unacceptable because in real applications such as groupon, k
is often a relative large number. We also compared the ε-approximate and the
optimized ε-approximate algorithm in a relative large extent of k, as is shows
in Fig. 6. The optimized ε-approximate algorithm’s CPU time still keeps in a
low level but the ε-approximate’s becomes bigger with increasing k. This is be-
cause the ε-approximate use a |M |×|M | matrix to store the distance between
every pair of M. When k becomes larger which will result in the increase of M,
the computation time of the distance matrix will increase dramatically. But for
the optimized ε-approximate algorithm, only part of the distance matrix (useful
space) will be computed, thus the CPU time greatly reduced.

The Effect of ε. Finally, we explore the effect of ε on the correctness and the
response time of our algorithm. We used our two ε-approximate algorithms to
process 1,000 CoF queries whose query points are randomly chosen in the social
network. k is set as 6 and ε ranges from 0.001 to 0.1. For each of the queries,
we compute the actually CoF using the baseline algorithm. We then compare
ε-approximate CoF with the actual CoF and record the number of the correct
answers. We define the correct rate Rcorrect and the approximate rate Rappro as
follows, and the effect of Rappro on Rcorrect is shown in Fig. 7.

Rcorrect =
num(correctanswers)

num(totalqueries)
× 100% (14)

Rappro =
ε

dia(G)
× 1000� (15)

6.2 Geo-Social CoF Query

The Effect of k. Fig. 8 measures the effect of the k (ranging from 3 to 6) on
the running time for gCoFQ. When k equals to three, three methods make little
difference in CPU time. As k increase, the optimized ε-approximate’s CPU time
still keep in a low level due to its effective exploring way despite the addition

136 W. Liu et al.

Fig. 5. Small k on the CPU
time

Fig. 6. Large k on the CPU
time

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

92
93
94
95
96
97
98
99

100
101

Rappro(%0)

R
co

rr
ec

t
(%

)

4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5

 Rcorrect

 C PU time C
PU

 tim
e (second)

Fig. 7. The effect of ε

Fig. 8. Small k on the CPU
time

Fig. 9. Large k on the CPU
time

Fig. 10. The effect of ε

computation on the spatial distance. On the other hand, baseline’s performance
degrades very fast. Again, we still get no result in a reasonable time using base-
line, since the method exhausts all possible combinations of the candidate set.
And the ε-approximate performs similar as before with using addition 50 seconds
mostly because the algorithm need to get the Euclidean space distance.

Fig. 9 illustrates the effect of k on two approximate algorithms. The optimized
ε-approximate’s CPU time increases in a different way as shown in Fig. 6. With k
increase, the method takes more time to calculate the spatial distance for every
candidates. The same holds for the ε-approximate algorithm.

The Effect of ε. Fig. 10 shows the effect of ε on the CPU time and the
correctness. The approximate ratio is redefined as

Rappro =
ε

diags(G)
× 1000�. (16)

With small ε, most of the results retrieved by the ε-approximate algorithm are
the same as the optimal solution. For example, with Rappro = 0.3�, all the
results got are correct. When Rappro gets bigger, the response time becomes
less, and the correctness ratio decreases.

7 Conclusion

In this paper, we define a new query in GSNs, namely, the Geo-Social Circle of
Friend Query. Given a query point in a GSN, the gCoFQ is to obtain a group
including q and the members are close to each other with respect to Euclidean
distance and social relationship closeness. We proved that the problem is NP-
hard. After exploring the upper bound and lower bound property of the gCoF, we
proposed two ε-approximate algorithms to find a suboptimal solution. We tested
the performance of our algorithms on real dataset with different parameters. The

Circle of Friend Query in Geo-Social Networks 137

response time was reduced from exponential to polynomial. By experimental
results, we showed that with ε < 0.01, the ε-approximate algorithms yielded
95% of the correct answers.

An interesting direction for future work is to process Geo-Social queries based
on the trajectories of the mobile users. The main challenge is how to calculate
the geo-distance between users based on the history of the locations, not only
the current locations.

References

1. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diam-
eter and related problems. Journal of Algorithms 12(1), 38–56 (1991)

2. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.
In: SIGMOD, pp. 373–384. ACM (2011)

3. Chow, C.Y., Bao, J., Mokbel, M.F.: Towards location-based social networking ser-
vices. In: LBSN, pp. 31–38. ACM (2010)

4. Doytsher, Y., Galon, B., Kanza, Y.: Querying geo-social data by bridging spatial
networks and social networks. In: LBSN, pp. 39–46. ACM (2010)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS, pp. 102–113. ACM (2001)

6. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14.
ACM (1984)

7. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2),
265–318 (1999)

8. Hung, C.C., Chang, C.W., Peng, W.C.: Mining trajectory profiles for discovering
user communities. In: LBSN, pp. 1–8. ACM (2009)

9. Jøsang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems 4(2), 139–161 (2006)

10. Jøsang, A., Pope, S.: Semantic constraints for trust transitivity. In: APCCM,
vol. 43, pp. 59–68. Australian Computer Society, Inc. (2005)

11. Lee, M.-J., Chung, C.-W.: A User Similarity Calculation Based on the Location
for Social Network Services. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part I. LNCS, vol. 6587, pp. 38–52. Springer, Heidelberg (2011)

12. Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Physical Review E 64(1), 016132 (2001)

13. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: ICDE, p. 301. IEEE Computer Society (2004)

14. Scellato, S., Mascolo, C., Musolesi, M., Latora, V.: Distance matters: Geo-social
metrics for online social networks. In: Proceedings of the 3rd Conference on Online
Social Networks, p. 8. USENIX Association (2010)

15. Singla, P., Richardson, M.: Yes, there is a correlation:-from social networks to
personal behavior on the web. In: WWW, pp. 655–664. ACM (2008)

16. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Na-
ture 393(6684), 440–442 (1998)

17. Yang, D.N., Chen, Y.L., Lee, W.C., Chen, M.S.: On social-temporal group query
with acquaintance constraint. VLDB 4(6), 397–408 (2011)

18. Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social
networks. In: SIGSPATIAL GIS, pp. 458–461. ACM (2010)

19. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road
networks. TKDE, 820–833 (2005)

A Power Saving Storage Method That Considers
Individual Disk Rotation

Satoshi Hikida, Hieu Hanh Le, and Haruo Yokota

Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{hikida,hanhlh}@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract. Reducing the power consumption of storage systems is now
considered a major issue, alongside the maintenance of system reliability, avail-
ability, and performance. In this paper, we propose a method named as the Replica-
assisted Power Saving Disk Array (RAPoSDA) to reduce the electrical consump-
tion of storage systems. RAPoSDA utilizes a primary backup configuration to
ensure system reliability and it dynamically controls the timing and targeting of
disk access based on individual disk rotation states. We evaluated the effective-
ness of RAPoSDA by developing a simulator that we used for comparing the per-
formance and power consumption of RAPoSDA with Massive Arrays of Inactive
Disks (MAID), which is a well-known power reduction disk array. The experi-
mental results demonstrated that RAPoSDA provided superior power reduction
and a shorter average response time compared with MAID.

Keywords: storage, power saving, performance, large scale, reliability.

1 Introduction

Ongoing increases in the total electricity consumed by data centers present significant
problems that must be solved to reduce the running cost of centers and to keep the global
environment green. A governmental report estimated that the electricity consumption
of US data centers in 2011 would be double that of 2006 [11].

Servers and storage systems are the two main data center components that consume
electricity. They tend to grow at a numerically faster rate, because of the increasing
requirements for processing load and the targets of processes. The amount of data stored
in storage systems is increasing particularly rapidly, because of the explosive increase in
the volume of data generated by the Internet. The IDC reports that the growing amount
of digital data created and replicated will surpass 1.8 zettabytes in 2011 [7]. Many
services are leveraged by cloud computing, which is becoming widespread in our daily
life and business, including social network services, data sharing services, and movie
sharing services. These services require large-scale storage, which is characterized by
writing new data and reading recent data, while only a few read old data. In this paper,
we focus on a power saving method for large-scale storage systems that involve time-
skewed data access.

Many methods have been proposed to reduce the power consumption of storage sys-
tems. A typical approach is to spin down some of the hard disk drives in a storage

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 138–149, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Power Saving Storage Method That Considers Individual Disk Rotation 139

system, because rotation of the platters in a disk drive accounts for most of the elec-
tricity consumption by a storage system. Thus, the electricity consumption of a disk is
decreased by spinning it down.

A well-known system that uses this approach is MAID (Massive Arrays of Inac-
tive Disks) [3]. MAID keeps a small number of disk drives rotating at all times, which
are used as a cache (known as cache disks), and this allows other disk drives to spin
down (known as data disks). The MAID approach is effective for reducing power con-
sumption when data access is time skewed, because numerous data disk drives store
infrequently accessed old data and this allows disk rotation to be suspended. However,
the original version of MAID did not consider system reliability. Thus, data stored on a
disk are lost if one of data disks fails in the MAID system.

If we introduce a simple replica-based fault-tolerant configuration into MAID,
synchronization between replicas during update operations would reduce the effect of
saving power consumption because an increased number of write operations on disks
elevates the number of spinning disks. In contrast, if we choose to improve timing
when applying replica updates, we can reduce power consumption and maintain system
reliability. In this paper, we propose a Replica-assisted Power Saving Disk Array (RA-
PoSDA) as a method for dynamically controlling the timing of disk write operations by
considering the rotation status of disks storing replicas.

RAPoSDA employs a duplicated write cache memory to maintain reliable data and
it waits for a suitable time to write to an appropriate disk, thereby avoiding unnecessary
disk spin-ups. We assume that there is an independent power supply (UPS) for the
duplicate cache memory to ensure tolerance of power shortages or a UPS failure. Data
on data disks are replicated in RAPoSDA as a primary backup configuration to ensure
system reliability. RAPoSDA also has cache disks that provide large read cache spaces,
as found with MAID, but they do not need to be replicated. Cache disks are an optional
feature in RAPoSDA if there is sufficient cache memory.

The main contribution of this approach is the introduction of careful control over tim-
ing and targeting of disk access by replicas, which is achieved by dynamically checking
the rotation status of individual disk drives. To ensure system reliability and reduce
power consumption, RAID-based low power consumption storage systems [9,8] and
power proportional disk arrays using replicas [14,13,1] have also been proposed. How-
ever, those other methods do not check the rotation status of each disk drive.

A simulation was more appropriate than empirical experiments and disks when eval-
uating the performance and power consumption of a storage system with changing con-
figurations, including various sizes of cache memory, disk capacity, number of disks,
and particularly with large numbers of disks. Therefore, we developed a dedicated sim-
ulator to compare RAPoSDA with MAID and a simple disk array with no power saving
mechanism. We also prepared synthetic workloads with skewed data access based on
a Zipf distribution and different ratios of read/write requests. The experimental results
using the simulator indicated that RAPoSDA provided superior power reduction and a
shorter average response time compared with MAID.

The remainder of this paper is organized as follows. Section 2 describes the power
consumption model of a disk drive and a general approach to power reduction for
a storage system with disk drives. Section 3 describes the details of our proposed

140 S. Hikida, H.H. Le, and H. Yokota

storage system, RAPoSDA. Section 4 outlines the simulator we developed to evalu-
ate the performance and power consumption of a storage system. A detailed discussion
of our evaluation of RAPoSDA and MAID in terms of power saving and performance
is reported in Section 5. Section 6 presents a number of related studies. Finally, Section
7 provides the conclusions of this paper.

2 Disk Drive Power Consumption Model

A disk drive is mainly composed of mechanical and control parts. The mechanical part
has four components: platters, a spindle motor, read and write heads, and an actuator
to move the heads over the platters. The controller is a component of the control part
that performs read and write operations to comply with requests. Of these components,
the spindle motor, actuator, and controller consume the most electricity in a disk drive,
depending on its state.

A disk drive has three states, as shown in Table 1. It consumes the most power when it
is in an active state, because the spindle motor, actuator, and controller are all working.
It consumes the least in the standby state, because all components are not working,
whereas only the spindle motor is working in the idle state. The standby state transfers
to the active state after a read or write request. The idle state transfers to the standby
state via spin-down, and vice versa via spin-up.

Compared with the active state, a disk drive consumes larger amounts of electricity
when it spins up or down, especially at the beginning of spin-up. This means that fre-
quent spin-ups and spin-downs to provide short standby states are not good for power
saving. Thus it is important to keep unaccessed disk drives in a standby state for as long
as possible. The duration of a standby state where a spin-up and spin-down requiring
energy consumption does not exceed that of the idle state is known as the break-even
time. A power saving is produced only if the duration of the standby state is longer than
the break-even time.

Table 1. Disk-drive Status and Corresponding Power Consumption

State I/O RPM Head location Power
Active In operation max rotation on disk Large
Idle No operation max rotation on disk Middle
Standby No operation 0 off disk Small

3 RAPoSDA

One approach for reducing power consumption in a storage system with multiple hard
disk drives is to divide the disk drives into two groups. Disk drives in one group are
mainly kept in the standby state for longer than the break-even time, while disk drives
in the other group are kept in active or idle states by access localization.

A Power Saving Storage Method That Considers Individual Disk Rotation 141

Fig. 1. Configuration of RAPoSDA

MAID (Massive Arrays of Inactive Disks) [3] is a well-known system that takes
this approach. MAID ensures that a small number of disk drive are always kept in idle
or active state as cache disks, while the remaining large number of disks are kept in
a standby state as data disks. All read and write requests are initially dealt with by
the cache disks and a replacement algorithm is used to keep the hit ratio high. This
approach is effective in reducing the power consumption of a storage system. However,
the original MAID method had problems of reliability, which is a major requirement
for data centers. There is no means of recovering data in the event of a data disk failure.
Direct importation of replicas into MAID might make it more reliable, but it would have
detrimental effects on power consumption because the increased disk access required
for replicas might violate the break-even time restriction.

To solve this problem, we propose a method for controlling the timing and targeting
of replica disk access by dynamically checking the rotation status of individual disk
drives. This reduces the power consumption and maintains system reliability. To imple-
ment the method, we propose the RAPoSDA storage system configuration.

3.1 RAPoSDA Configuration

In RAPoSDA, we adopt the chained declustering [6] method for data placement on data
disks as a primary backup configuration that tolerates disk failures. When writing data
onto data disks, RAPoSDA tries to select a disk that is currently rotating or one that has
been longer in the standby state than the break-even time. This means that RAPoSDA
has to maintain data elsewhere when waiting for the write timing. We use a write cache
memory to temporarily maintain data. It is important to maintain reliability when the
data are in the volatile cache memory, so we provide the cache memory with a primary
backup configuration that corresponds to the data disks. As with MAID, RAPoSDA can
use some disks as cache disks to provide larger read cache spaces. Figure 1 shows the
configuration of RAPoSDA.

Data Disks. Chained declustering is a simple but effective strategy for data placement
that provides good reliability and accessibility when the backup data is logically located
in the disk next to the primary. We assume that a data disk spins down and moves to a
standby state if the time without access is longer than a predefined threshold time.

142 S. Hikida, H.H. Le, and H. Yokota

Fig. 2. Data Flow in RAPoSDA During Write Requests

Cache Disks. When the size of cache memories is not sufficient for comparing the
total capacity of a disk array, cache disks are effectively used for enlarging the read
cache space. However, cache disks are optional in RAPoSDA if there is sufficient cache
memory and access localization. The cache contents are copies, so they do not need to
be replicated. In contrast to data disks, we assume that cache disks do not spin down.
Therefore, a large number of cache disks is not appropriate for reducing power con-
sumption.

Cache Memory. RAPoSDA has two layers of cache memories that correspond to the
primary and backup data disks, while one cache memory is shared by more than one
disk drive. Each layer is connected to an individual power supply (UPS) to ensure the
tolerance of power shortages or UPS failures.

3.2 Handling Write Requests

Write requests are processed in RAPoSDA as shown in Figure 2. Data are initially writ-
ten into both the primary and backup layer of the cache memory. The written data are
gathered in a corresponding buffer location in the cache memory of each individual
disk that is responsible for storing the data. Buffered data are written onto their corre-
sponding data disks when the amount of buffered data on the cache memory exceeds
a predefined threshold. The rotation status of the data disk is investigated at this point.
The data disk will spin up if it is in a standby state. When the disk enters an active state,
all data on the location that corresponds to the disk in the cache memory are written to
disks and then deleted from the cache memory. When a buffer overflow occurs in the
primary layer corresponding to Pi, all data in the backup layer buffer for Bi−1 are also
transferred onto the data disk. However, if the buffer overflow occurs in Bi, the data
in Pi+1 are also transferred. Therefore, the amount of data in the primary layer of the
cache memory is different from that in the backup layer.

This collective writing process reduces the frequency of spin-ups and spin-downs.
Data are also copied to the cache disks to ensure quick responses for future read requests
when there is time-skewed access. The remaining data disks with data still in the buffer
stay in a standby state beyond the break-even time.

A Power Saving Storage Method That Considers Individual Disk Rotation 143

Fig. 3. Data Flow in RAPoSDA During Read Requests

3.3 Handling Read Requests

As shown in Figure 3, read requests initially check the existence of data in the cache
memory, followed by cache disks. The cache memory has primary and backup layers,
and both layers are searched for data. If the target data are in the cache memory or cache
disks, the data are returned without accessing the data disks. If the data do not exist in
the cache memory or cache disk, the data are read from a data disk.

Chained declustering is the method used for primary backup data placement on data
disks, so RAPoSDA selects an appropriate disk from the two disks that correspond to
the primary and backup for data. This selection is also important for reducing power
consumption while still maintaining the break-even restriction. We propose the follow-
ing set of rules for selecting the disk.

– If only one data disk is active, select the one that is active.
– If both data disks are active, select the disk with the largest memory buffer capacity.
– If both data disks are in standby, select the disk with the longer standby duration

period.

Data read from data disks are also copied to cache disks to ensure a rapid response in
future read requests when there is time-skewed access.

4 Disk Array Simulator

A number of simulators, such as DiskSim [4], have been proposed for evaluating the
performance of storage systems. However, many cannot measure power consumption,
including DiskSim. Dempsey [15] used an expansion of DiskSim with a function for
measuring power consumption, but it needed to measure the power of the actual disk
drives in advance and there was a limitation on the number of hard disks that could be
used in a simulation. Thus, we developed a new simulator to evaluate the performance
and power consumption of RAPoSDA and MAID.

The developed simulator is shown in Figure 4. It simulates behavior of each disk
drive in the target storage system with a given workload, including the response time
and power consumption, and it can flexibly change its configuration and workload.

The simulator initially sets up the parameters for the workload and the configuration
of the cache memories, cache disks, and data disks. Clients inside the simulator then

144 S. Hikida, H.H. Le, and H. Yokota

Fig. 4. Simulator Configuration

generate requests at times assigned by the workload. The Storage Manager dispatches
the requests to the cache memories, cache disks, and data disks, based on informa-
tion from the Data Layout Manager. Logs of the operation status for each device are
collected by the Log Collector and analyzed by the Analyzer after finishing the simula-
tion.

5 Evaluation

We used the simulator described in the previous section to compare the performance and
power consumption of RAPoSDA, MAID, and a Normal system that was composed of
a simple disk array with no power saving mechanism. In this paper, we mainly focus
on the effect of read/write ratio for their performance and power consumption. We also
evaluated other aspects, including their scalability. The evaluation results on the scala-
bility indicate the superiority of RAPoSDA to MAID. Because of the page limits, we
will report the details of the scalability evaluation in the other chance.

The original MAID proposed by [3] had no cache memory. However, many practical
storage systems have cache memories and the cache memories in RAPoSDA play a
very important role in reducing power consumption. To ensure a fair comparison, we
introduced cache memory into MAID and evaluated the effect of cache memory with
the three storage systems.

To ensure reliability, we also modified MAID so it had two replicas on the data disks
to match RAPoSDA. However, MAID had no replica in the cache memory and cache
disks because the data in the cache was only a copy. To prevent data loss from the cache
during failures, the cache memory and cache disk in MAID used the ‘write through’
protocol. To handle replicas in the data disks, MAID randomly selected disks for the
replicas. Normal also used replicas and it provided a faster response than the other
method. RAPoSDA determined the access disk based on the rotation state of individual
disks.

A Power Saving Storage Method That Considers Individual Disk Rotation 145

parameter value

Capacity (TB) 2
Number of platters 5
RPM 7200
Disk cache size (MB) 32
Data transfer rate (MB/s) 134
Active power (Watt) 11.1
Idle power (Watt) 7.5
Standby power (Watt) 0.8
Spin-down energy (Joule) 35.0
Spin-up energy (Joule) 450.0
Spin-down time (sec) 0.7
Spin-up time (sec) 15.0

Fig. 5. Parameters for the Hard Disk
Drive Used in the Simulation

Workload parameter value
Time 5 hours
read:write 7:3, 5:5, 3:7
Number of files 1,000,000 (32KB/file)
Amount of file size 64GB (Primary × Backup)
Number of requests λ× 3600 × Time
Distribution of access Zipf distribution
Request arrival distribution Poisson process
Zipf factor 1.2
Mean arrival rate (λ) 25 (request/sec)

Fig. 6. Parameters of the Synthetic Workload

0.0

0.5

1.0

1.5

2.0

2.5

P
o
w
e
r
 C
o
n
su
m
p
ti
o
n
 [
K
w
h
]

Read:Write

Normal MAID RAPoSDA

7:3 5:5 3:7

0

20

40

60

80

100

P
o
w
er
 R
ed
u
ct
io
n
 [
%
]

Read:Write

MAID RAPoSDA

7:3 5:5 3:7

Fig. 7. Power Consumption of Each Storage System and the Power Reduction Ratios of RA-
PoSDA and MAID versus Normal

The hard disk drive model used in our simulator was based on the Hitachi Deskstar
7K2000[12] produced by Hitachi Global Storage Technologies. Table 5 shows the pa-
rameters of the model. Furthermore, We prepared a synthetic workload for the eval-
uation. The workload parameters used in this experiment are listed in Table 6. In the
workload, the access skew was based on Zipf distribution and the request arrival rate
was based on a Poisson distribution. A workload was generated with three different
types of read:write ratio, 7:3, 5:5, and 3:7.

In this evaluation, we set the simulation parameter as follows. The number of data
disks was 64 with six cache disks and the total capacity of the cache memory was the
number of data disks × 1/4 GB.

5.1 Power Consumption and Power Reduction Rate

Figure 7 shows the power consumption of Normal, MAID, and RAPoSDA, and the
power reduction ratio of MAID and RAPoSDA when compared with Normal.This

146 S. Hikida, H.H. Le, and H. Yokota

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m
b
e
r
 o
f
S
p
in
-u
p

Read:Write

MAID RAPoSDA

7:3 5:5 3:7

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m
b
e
r
 o
f
S
p
in
-d
o
w
n

Read:Write

MAID RAPoSDA

7:3 5:5 3:7

Fig. 8. Spin-up and Spin-down Counts with MAID and RAPoSDA

figure shows that Normal was the highest power consumer and that the power consump-
tion of Normal increased with an increase in the write frequency. In contrast, MAID
and RAPoSDA decreased power consumption with an increased write frequency. This
shows that MAID and RAPoSDA achieve significant power savings. The power reduc-
tion ratio of RAPoSDA was higher than MAID with all read/write ratios. This matched
our assumption of time-skewed data access with high write requests.

The disk drive power consumption depended on the rotation state and the number
of spin-ups or spin-downs. If spin-ups and spin-downs occurred frequently, the power
consumption may exceed that with no disk spin-downs. Control of excessive spin-ups
and spin-downs is very important for power saving in the storage system.

Figure 8 shows the number of disk spin-ups and spin-downs with MAID and RA-
PoSDA (Normal had no spin-downs). The graph shows that the trend for MAID was
decreasing a number of spin-ups and spin-downs with a decreasing read frequency,
while the trend for RAPoSDA was an increasing spin-up and spin-down count. From
the perspective of the write cache size, MAID had a larger write cache than RAPoSDA
because MAID used the cache disks for reads and writes, whereas RAPoSDA only used
them for reads and this led to a smaller write cache memory compared with cache disks.
This led to the possibility of a higher hit ratio of write requests for MAID and a smaller
number of spin-ups and spin-downs with a frequent write workload.

However, the power reduction ratio shown in Figure 7 indicates that RAPoSDA gave
a greater power reduction ratio compared with MAID. This shows that the group writing
method of RAPoSDA provided a beneficial effect in maintaining the break-even time
for individual data disks, even though the total counts of spin-ups and spin-downs with
RAPoSDA exceeded those with MAID.

5.2 Average Response Time

Figure 9 shows the average response time for each storage system. The graph shows that
Normal had the fastest response time but Normal consumed the most amount of power,
because the disks were always spinning. The average response time of RAPoSDA was
faster than that of MAID. When the average response time of MAID changed from
2.302 sec to 3.308 sec, the corresponding values for RAPoSDA fell in the range 0.559
sec to 1.296 sec.

A Power Saving Storage Method That Considers Individual Disk Rotation 147

0.559

0.893

1.296

2.302

2.911

3.308

0.004

0.004

0.004

3:7

5:5

7:3

Average Response Time [sec]

R
ea
d
:W
ri
te

Normal MAID RAPoSDA

Fig. 9. Average Response Time with Normal, MAID, and RAPoSDA

Based on the previous discussion of hit ratios for the write cache, it seemed possible
that the average response time of MAID was shorter than that of RAPoSDA, because the
cache hit was effective in reducing the response time. However, Figure 9 demonstrates
that RAPoSDA was also superior to MAID in terms of the average response time. One
of the main reasons for this was the cache protocol. MAID adopted a write through
protocol for cache memories and cache disks to prevent data loss because of failures.

6 Related Studies

This section briefly reviews related systems other than MAID.
In DRPM [5], the power consumption of disk drives can be expressed as a function

of the rotation speed (RPM). To achieve good performance and low power consump-
tion, DRPM utilizes multispeed disk drives that can dynamically change the rotation
speed of the disk depending on the system’s workload. Similarly, Hibernator [16] ex-
ploited this concept to implement power saving and performance controlled by a RAID
configuration of multispeed disk drives.

The reduction of power consumption by network servers, such as Web servers and
Proxy servers, was investigated by Carrera [2]. According to that report, multispeed
hard disk drives are necessary to reduce power consumption and maintain server re-
sponse performance. However, dynamic changes in the frequency of disk drive rotations
present many technical challenges. As a result, such hard disk drives are not currently
popular in practical use.

PARAID [14] is a powerful power saving technique for targeting RAID-based stor-
age [10]. The controller skews the access to a small number of disk drives. It then creates
inaccessible disks and spins down these disks to reduce power consumption. GRAID
[9] places an emphasis on ensuring reliability and power savings based on RAID10 disk
arrays. Using information at the log disk that is added into the normal disk to store logs,
the system only needs to update the mirror disks periodically, so the system can spin
down all the mirror disks to a low-power mode for most of the time and save energy.
EERAID [8] is a power saving method that is focused in the RAID controller layer.
EERAID reduces the power consumption using dynamic I/O scheduling and a cache
management policy.

SIERRA[13] and RABBIT[1] are distributed storage systems that implement power
proportionality through leveraging cluster-based data placement with data replication.
These methods achieve proportional relation between power consumption and system

148 S. Hikida, H.H. Le, and H. Yokota

performance by dividing all storing nodes into groups and controlling which groups are
to be active to serve certain workloads.

7 Conclusions

Large-scale, high-performance, reliable, and low-power storage systems are required
to construct better data centers for cloud computing. In this paper, we proposed RA-
PoSDA (Replica-assisted Power Saving Disk Array) for use with such storage systems.
RAPoSDA carefully controls the timing and targeting of disk access by dynamically
checking the rotation status of individual disk drives. We compared the performance
and power saving effects of RAPoSDA with modified MAID in simulations with dif-
ferent ratios of read/write requests in the workloads. The original version of MAID had
no cache memory and no replication mechanism, so we added them to MAID to make
a fair comparison.

The experimental results showed that RAPoSDA and the modified MAID provide
reduced power consumption compared with a simple disk array with no power saving
mechanism. However, RAPoSDA was superior to the modified MAID. From the per-
formance perspective, the simulation results showed that the average response time of
RAPoSDA was shorter than that of the modified MAID. Thus, consideration of individ-
ual disk rotation is an effective method for reducing the power consumption of storage
systems, while maintaining good performance.

In future work, we will consider distributed file systems such as Hadoop Distributed
File System (HDFS) and Google File System (GFS) which accepts more than two repli-
cas, as power saving storage systems. We also aim to develop an experimental system
with actual disk drives and evaluate the system using actual workloads.

Acknowledgment. This work is partly supported by Grants-in-Aid for Scientific Re-
search from Japan Science and Technology Agency (A) (#22240005).

References

1. Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., Schwan, K.: Robust and flexible
power-proportional storage. In: Proceedings of the 1st ACM Symposium on Cloud Comput-
ing, SoCC 2010, pp. 217–228. ACM, New York (2010)

2. Carrera, E.V., Pinheiro, E., Bianchini, R.: Conserving disk energy in network servers. In:
ICS 2003: Proceedings of the 17th Annual International Conference on Supercomputing, pp.
86–97. ACM, New York (2003)

3. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In: Supercom-
puting 2002: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1–11.
IEEE Computer Society Press, Los Alamitos (2002)

4. Ganger, G., et al.: The DiskSim Simulation Environment (v4.0),
http://www.pdl.cmu.edu/DiskSim/

5. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M., Franke, H.: DRPM: Dynamic Speed
Control for Power Management in Server Class Disks. In: International Symposium on Com-
puter Architecture, p. 169 (2003)

http://www.pdl.cmu.edu/DiskSim/

A Power Saving Storage Method That Considers Individual Disk Rotation 149

6. Hsiao, H.I., DeWitt, D.J.: Chained Declustering: A New Availability Strategy for Multipro-
cessor Database Machines. In: Proceedings of the Sixth International Conference on Data
Engineering, pp. 456–465. IEEE Computer Society, Washington, DC (1990)

7. IDC: Extracting value from chaos (2011), http://idcdocserv.com/1142
8. Li, D., Wang, J.: EERAID: energy efficient redundant and inexpensive disk array. In: EW

11: Proceedings of the 11th Workshop on ACM SIGOPS European Workshop, p. 29. ACM,
New York (2004)

9. Mao, B., Feng, D., Wu, S., Zeng, L., Chen, J., Jiang, H.: GRAID: A Green RAID Storage
Architecture with Improved Energy Efficiency and Reliability. In: MASCOTS, pp. 113–120
(2008)

10. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks
(raid). SIGMOD Rec. 17(3), 109–116 (1988)

11. Program, U.E.P.A.E.S.: Report to Congress on Server and Data Center Energy Efficiency
Public Law 109-431 (2007),
http://www.energystar.gov/ia/partners/prod development/
downloads/EPA Datacenter Report Congress Final1.pdf

12. Technologies, H.G.S.: Hard disk drive specification, hitachi deskstar 7k2000,
http://www.hitachigst.com/tech/techlib.nsf/techdocs/
5F2DC3B35EA0311386257634000284AD/$file/
USA7K2000 DS7K2000 OEMSpec r1.4.pdf

13. Thereska, E., Donnelly, A., Narayanan, D.: Sierra: practical power-proportionality for data
center storage. In: Proceedings of the Sixth Conference on Computer Systems, EuroSys
2011, pp. 169–182. ACM, New York (2011)

14. Weddle, C., Oldham, M., Qian, J., Wang, A.I.A., Reiher, P., Kuenning, G.: PARAID: A gear-
shifting power-aware RAID. Trans. Storage 3(3), 13 (2007)

15. Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., Wang, R.: Modeling Hard-
Disk Power Consumption. In: Proceedings of the 2nd USENIX Conference on File and Stor-
age Technologies, pp. 217–230. USENIX Association, Berkeley (2003)

16. Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., Wilkes, J.: Hibernator: helping disk arrays
sleep through the winter. In: Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP 2005, pp. 177–190. ACM, New York (2005)

http://idcdocserv.com/1142
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.hitachigst.com/tech/techlib.nsf/techdocs/5F2DC3B35EA0311386257634000284AD/$file/USA7K2000_DS7K2000_OEMSpec_r1.4.pdf
http://www.hitachigst.com/tech/techlib.nsf/techdocs/5F2DC3B35EA0311386257634000284AD/$file/USA7K2000_DS7K2000_OEMSpec_r1.4.pdf
http://www.hitachigst.com/tech/techlib.nsf/techdocs/5F2DC3B35EA0311386257634000284AD/$file/USA7K2000_DS7K2000_OEMSpec_r1.4.pdf

ComMapReduce: An Improvement

of MapReduce with Lightweight
Communication Mechanisms

Linlin Ding, Junchang Xin, Guoren Wang, and Shan Huang

Key Laboratory of Medical Image Computing (NEU),
Ministry of Education, P.R. China

College of Information Science & Engineering, Northeastern University, P.R. China
{linlin.neu,xinjunchang}@gmail.com, wanggr@mail.neu.edu.cn,

milesandnick@163.com

Abstract. As a parallel programming model, MapReduce processes
scalable and parallel applications with huge amounts of data on large clus-
ters. In MapReduce framework, there are no communication mechanisms
among Mappers, neither are among Reducers. When the amount of final
results is much smaller than the original data, it is a waste of time pro-
cessing the unpromising intermediate data objects. We observe that this
waste can be avoided by simple communication mechanisms. In this pa-
per, we propose ComMapReduce, a framework that extends and improves
MapReduce for efficient query processing of massive data in the cloud.
With efficient lightweight communication mechanisms, ComMapReduce
can effectively filter the unpromising intermediate data objects in Map
phase so as to decrease the input of Reduce phase specifically. Three com-
munication strategies, Lazy, Eager and Hybrid, are proposed to filter the
unpromising intermediate results ofMap phase. In addition, two optimiza-
tion strategies, Prepositive and Postpositive, are presented to enhance the
performance of query processing by filtering more candidate data objects.
Our extensive experiments on different synthetic datasets demonstrate that
ComMapReduce framework outperforms the original MapReduce frame-
work in all metrics without affecting its existing characteristics.

1 Introduction

As a well-known programming model, MapReduce [1] has gained extensive at-
tention in recent years from industry and research communities. MapReduce
processes scalable and parallel applications with huge amounts of data on large
clusters. This programming model is scalable, fault tolerant, cost effective and
easy to use. Query processing applications can be easily solved by MapReduce.
In MapReduce framework, the implementations of Mappers and Reducers are
independent without communication among Mappers, neither among Reducers.
Each Mapper has no processing information of the other ones. When the amount
of final results is much smaller than the original data, it is a waste of time process-
ing the unpromising data objects. Combiner of MapReduce framework is only

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 150–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ComMapReduce: An Improvement of MapReduce 151

a local filtering strategy to compress the intermediate results of one Mapper.
There is no global information to filter the unpromising data objects of MapRe-
duce. In our opinion, when there is a little communication to filter numerous
unpromising data objects, this waste of time can be avoided by simple and effi-
cient communication mechanisms for many query processing applications, such
as top-k, kNN and skyline.

In this paper, we propose a new improvement of MapReduce framework named
ComMapReduce, with simple lightweight communication mechanisms for query
processing of massive data in the cloud. ComMapReduce adds a lightweight com-
munication function to effectively filter the unpromising intermediate output of
Map phase and the input of Reduce phase, and then further extends MapReduce
to enhance the efficiency of query processing applications without sacrificing its
existing availability and scalability. In summary, the primary contributions of
this paper can be summarized as follows:

– A framework with simple lightweight communication mechanisms,
ComMapReduce, is proposed. The Mappers and Reducers of ComMapRe-
duce use global communication information to enhance the query processing
performance without sacrificing the availability and scalability of the original
MapReduce.

– Three communication strategies, Lazy, Eager and Hybrid, are proposed to
analyze ComMapReduce framework in depth. Two optimization strategies,
Prepositive and Postpositive, are also proposed to enhance the query pro-
cessing performance of ComMapReduce framework.

– Abundant synthetic datasets are adopted to evaluate the query process-
ing performance of ComMapReduce framework. The experimental results
demonstrate that ComMapReduce outperforms the original MapReduce in
all metrics.

The rest of this paper is organized as follows: Section 2 proposes ComMapReduce
framework. Three communication strategies are presented in Section 3. Section 4
proposes two optimization strategies. Section 5 reports the experimental results.
Section 6 reviews the related work and the conclusion is given in Section 7.

2 ComMapReduce Framework

2.1 MapReduce Analysis In-depth

MapReduce framework was first presented by Dean et.al. in 2004, with one of
its pubic available implementations Hadoop [2]. The nodes of MapReduce are
divided into two kinds: one Master node and the other Slave nodes. The Master
node is like a brain of the whole framework scheduling a number of parallel
tasks to run on the Slave nodes. Non-experts can deploy their applications in
parallel simply by implementing a Map function and a Reduce function. In the
following, we give a simple example of query processing, top-2 query, to illustrate
how query processing applications are executed on MapReduce framework.

152 L. Ding et al.

EXAMPLE 1. (Simple T op-k Query) There are fifteen data objects from ‘1’
to ‘15’ in the initial dataset and the top-2 query searches the two biggest data
objects from ‘1’ to ‘15’. Obviously, ‘14’ and ‘15’ are the final results.

1,2,3,
7,12

4,5,6,
8,15

15,14

Master

9,10,11,
13,14

8,15

13,14

7,12

15,14,13,
12,8,7

Fig. 1. Top-k Query on MapReduce (k=2)

Split 0

Split 1

Split 4

Split 5

Output

Output

Split 2

Split 3

Mapper

Mapper

Mapper

Reducer

Reducer

Coordinator filter valve

Fig. 2. Framework of ComMapReduce

Figure 1 shows the simple top-k query of EXAMPLE 1 processing on MapRe-
duce framework. There are three Mappers and one Reducer on the platform.
The original fifteen data objects are partitioned into three splits as the input
of three Mappers and then processed by the Mappers. Each Mapper reads the
partition of its input data objects and computes its local top-k query results by
calling a user-defined Map function. For example, the first Mapper reads data
objects ‘1’, ‘2’, ‘3’, ‘7’, ‘12’ and generates ‘7’ and ‘12’ as its intermediate results.
The Reducer copies the output of three Mappers and then invokes a user-defined
Reduce function to generate the final results of this top-2 query, data objects
‘14’ and ‘15’.

Obviously, MapReduce framework has the ability of query processing nat-
urally. In addition, Combiner of MapReduce processes the intermediate data
objects compression of one Mapper. However, Combiner is a local data com-
pression and has no processing information of the other Mappers. It cannot
obtain a global filter value to process data compression for further filtering. It
is meaningless of filtering unpromising data objects by using Combiner for query
processing applications.

Just as this simple example, before the intermediate results of three Mappers
are written into their disks, if the Mappers can receive data object ‘13’ as a
filter value to prune their intermediate results first with simple communication
mechanisms, the output of Mappers can be decreased dramatically. The input of
Reducer can be decreased from data objects ‘15’, ‘14’, ‘13’, ‘12’, ‘8’, ‘7’ to data
objects ‘15’, ‘14’, ‘13’. Based on this idea, our ComMapReduce is proposed in
the following.

ComMapReduce: An Improvement of MapReduce 153

2.2 ComMapReduce Overview

In order to further optimize the intermediate data objects of the original MapRe-
duce framework, we propose ComMapReduce, an efficient lightweight commu-
nication framework extending MapReduce by pruning more unpromising data
objects of query processing applications dramatically.

Figure 2 illustrates the architecture of ComMapReduce framework.
ComMapReduce inherits the basic framework of MapReduce and takes HDFS
[3] to store the original data objects and the final results of each application.
In ComMapReduce framework, the Master node and Slave nodes play the same
roles as the original MapReduce, so the Master node is not shown in Figure 2
and the following figures for convenience. The Coordinator node is deployed on
ComMapReduce to share global communication information to enhance the per-
formance of ComMapReduce without sacrificing the availability and scalability
of the original MapReduce. The Coordinator node communicates with the Map-
pers and Reducers with simple lightweight communication mechanisms to filter
the unpromising data objects. The Coordinator node receives and stores some
temporary variables, and then generates filter values of the query processing
applications. Each Mapper obtains a filter value from the Coordinator node to
prune its data objects inferior to the other ones. After filtering, the output of
Mappers and the input of Reducers both decrease dramatically. Therefore, the
query processing performance of massive data on ComMapReduce framework is
enhanced.

In Figure 2, when a client submits an application to the Master node, it
schedules several Mappers to process this application. In Map phase, the orig-
inal data objects of the client are divided into several splits. The Mappers on
clusters process the splits in parallel and obtain their intermediate results. Then,
each Mapper generates its filter value and sends it to the Coordinator node with
simple communication mechanisms. The Coordinator node gains the most opti-
mal result as a global filter value from the results it receives. Simultaneously,
the Mappers receive a global filter value from the Coordinator node to filter
their intermediate results and generate their new ones as the input of Reducer.
Finally, in Reduce phase, the final results of this application are generated. In the
following, we illustrate that ComMapReduce retains the existing characteristics
of the original MapReduce from two aspects: availability and scalability.

2.3 ComMapReduce Availability

The availability of ComMapReduce is dependent on MapReduce. The recovery
strategies of the Master node and Slave nodes are the same as MapReduce. For
the recovery of the Coordinator node, easy method of periodic checkpoints can
be used to check it whether fails or not. If the Coordinator node fails, a new
copy can be deployed from the last checkpoint state to implement the filtering
of unprocessed Mappers. However, there is only a single Coordinator node of
ComMapReduce framework, so its failure is unlikely. Our current implementa-
tion stops the ComMapReduce computation if the Coordinator node fails. The

154 L. Ding et al.

clients can check and restart the ComMapReduce operation according to their
desire. Therefore, ComMapReduce has its availability the same as MapReduce.

2.4 ComMapReduce Scalability

The scalability of ComMapReduce inherits the scalability of the original MapRe-
duce. The Master node and Slave nodes retain the same functions of MapReduce,
so they own the same scalability as MapReduce. To illustrate the scalability of
ComMapReduce, we only need to illustrate that the scalability of ComMapRe-
duce isn’t affected by the Coordinator node. In the following, we analyze the scal-
ability of the Coordinator node from two aspects: time complexity and memory
usage.

Time Complexity: Suppose that the number of system setting Map tasks is
M indicating that the number of Map tasks implementing at the same time is
no more than M . Each Map task sends its filter value to the Coordinator node
after it completes. That is to say, the maximum value of sending filter values
at the same time is M . However, the probability of all Mappers completing at
the same time is so low that this situation scarcely happens. As a result, if we
can illustrate the scalability of ComMapReduce isn’t affected in this extreme
case, the scalability isn’t affected certainly in the other cases. Further, if we can
illustrate the time complexity of the Coordinator node is the same as the Master
node, the scalability of ComMapReduce isn’t affected by the Coordinator node.

– First, the time complexity of the Coordinator node receiving filter values of
Map tasks is the same as the time complexity of the Master node receiving
Map tasks requirements of locating data chunks.

– Second, the time complexity of the Coordinator node identifying the global
filter value is the same as the time complexity of the Master node sending
the data chunks locations to Map tasks. They both search a value in a Hash
table.

– Third, the time complexity of the Coordinator node sending a global
filter value to Map tasks is equal to the time complexity of the Master
node sending the locations of data chunks to Map tasks.

Therefore, the scalability of ComMapReduce isn’t affected by the Coordinator
node from the aspect of time complexity.

Memory Usage: The memory usage of the Coordinator node is much lower
than the Master node for only storing the global filter value and other variables
of communication strategies. Therefore, the scalability of ComMapReduce isn’t
affected by the Coordinator node from the aspect of memory usage.

From the above analysis, we draw a conclusion that ComMapReduce has the
same availability and scalability of the original MapReduce.

3 ComMapReduce Communication Strategies

Towards scalable and efficient query processing on ComMapReduce, how to
identify the global filter value with simple communication mechanisms without

ComMapReduce: An Improvement of MapReduce 155

influencing the correctness of results is an important problem. ComMapReduce
doesn’t change the functions of the Master node in MapReduce, so we only
present the communication strategies of the Coordinator node. We design three
communication strategies to illustrate how to communicate with the Coordina-
tor node to obtain a global filter value. In this section, a complex top-k query
example is adopted to illustrate the three communication strategies, Lazy, Eager
and Hybrid.

EXAMPLE 2. (Complex Top-k Query) The original dataset is fifty data
objects, from ‘1’ to ‘50’. There are five Mappers processing ten data objects
respectively. Top-5 query returns the five biggest data objects as the final
results. Obviously, data objects ‘50’, ‘49’, ‘48’, ‘47’ and ‘46’ are the results.

3.1 Lazy Communication Strategy

The principle of Lazy Communication Strategy (LCS) is that the Coordinator
node generates a global filter value after all Mappers complete. It receives the
filter values of all Mappers and chooses the most optimal one as the global
filter value. Then the Mappers filter their intermediate values using the global
filter value from the Coordinator node and generate the input of Reducer. The
Reducer produces the final results with less input than MapReduce.

1,2,3,20,22,
39,41,43,45,50

50,49,48,
47,46

50,45,43,
41,39

50,49,48,47,
46,45,44,43,
42,41,40,39

4,5,6,11,12,16,
23,26,29,35

35,29,26,
23,16

7,8,9,14,18,19,
24,28,32,46

46,32,28,
24,19

10,13,15,17,21,
25,27,38,42,47

47,42,38,
27,25

30,31,33,34,36,
37,40,44,48,49

49,48,44,
40,37

Send local filter value

Send global filter value

Send local top-5 results

Mapper Reducer OutputSplit

39 16
39

39Coordinator

19 25 37

39

2

11111

2

392

392

392

3

3

3

3

1

2

3

Fig. 3. Top-k Query Processing on ComMapReduce with LCS

Figure 3 shows the complex top-k query processing on ComMapReduce with
LCS. The data objects in original dataset are divided into five splits processed by
five Mappers respectively. We use three steps to illustrate the course of LCS. Step
1. Each Mapper processes its own data objects and generates its filter value, the
kth one of its intermediate results, and then sends it to the Coordinator node. For
example, the first Mapper generates its intermediate results ‘50’, ‘45’, ‘43’, ‘41’,
‘39’ and sets ‘39’ as its filter value, and then sends it to the Coordinator node
after it completes. Step 2. The Coordinator node receives all the filter values of
Mappers, ‘39’, ‘16’, ‘19’, ‘25’, ‘37’ and chooses the biggest one, ‘39’, as the global
filter value, and then sends it to all the Mappers. Step 3. After receiving the
global filter value ‘39’, the intermediate results of Mappers are filtered and sent

156 L. Ding et al.

to the Reducer. For example, after filtering, there are no intermediate results
of the second Mapper, because its intermediate results are all smaller than the
global filter value ‘39’. The italic type shown data objects in Figure 3 are the
intermediate results of Map phase after filtering. The final input of Reducer
is data objects ‘50’, ‘49’, ‘48’, ‘47’, ‘46’, ‘45’, ‘44’, ‘43’, ‘42’, ‘41’, ‘40’, ‘39’,
which is about 48% of the original dataset without filtering the intermediate
results of Mappers. By obtaining the most optimal one from the filter values
of all Mappers as the final global filter value, LCS filters the intermediate data
objects which are not the final results sharply for query processing applications
of ComMapReduce.

3.2 Eager Communication Strategy

In order to improve the response speed of query processing, Eager Communica-
tion Strategy (ECS) is proposed with the principle as follows. After each Mapper
completes, it sends its filter value to the Coordinator node and receives a global
filter value simultaneously. If the global filter value is null, the Mapper pro-
cesses its split normally. Otherwise, the Mapper prunes its intermediate results
with the global filter value. Once receiving a filter value of another Mapper,
the Coordinator node chooses the more optimal one as a new global filter value
according to the application by comparing with the original global filter value.
This course still repeats until all Mappers in the platform complete.

1,2,3,20,22,
39,41,43,45,50

50,45,43,
41,39

50,45,43,
41,39

4,5,6,11,12,16,
23,26,29,35

35,29,26,
23,16

7,8,9,14,18,19,
24,28,32,46

10,13,15,17,21,
25,27,38,42,47

30,31,33,34,36,
37,40,44,48,49

Mapper Reducer OutputSplit

39 16
39

39Coordinator
Send local filter value of

the first Map

Send global filter value to
the first Map

Send top-k results of
the first Map

Send local filter value of
the second Map

Send global filter value to
 the second Map

1

2

3

4

395

3

1

2

4

5

Fig. 4. Top-k Query Processing on ComMapReduce with ECS

Figure 4 shows the complex top-k query processing on ComMapReduce with
ECS. Six steps are taken to illustrate the implementations of the first and the
second Mapper. Step 1. After the first Mapper completes, it sends data object
‘39’ to the Coordinator node as its filter value. Step 2. After receiving ‘39’,
the Coordinator node sets ‘39’ as the global filter value and sends it to the
first Mapper. Step 3. The final intermediate results of the first Mapper are data
objects ‘50’, ‘45’, ‘43’, ‘41’, ‘39’ after filtering. Step 4. The second Mapper sends
its filter value ‘16’ to the Coordinator node. Step 5. After the Coordinator node
receives the filter value ‘16’, it chooses the bigger one ‘39’ as the new global

ComMapReduce: An Improvement of MapReduce 157

filter value. Step 6. The second Mapper filters its intermediate results with ‘39’.
All the intermediate results of the second Mapper are smaller than ‘39’, so there
are no intermediate results of the second Mapper without showing in Figure 4.
This course continues until the fifth Mapper completes and then generates the
final results.

The Coordinator node generates the temporary global filter value in time
with ECS instead of waiting for all the Mappers completing. Mappers can re-
ceive a temporary global filter value immediately to filter their intermediate
results. So ECS can dramatically enhance the efficiency of query processing of
ComMapReduce.

3.3 Hybrid Communication Strategy

In order to both effectively filter the unpromising intermediate results with more
optimal global filter value and improve the response speed of query process-
ing, Hybrid Communication Strategy (HCS) is proposed to enhance the query
processing performance of ComMapReduce. The main workflow of HCS is as
follows. Suppose that one Mapper completes, it sends its filter value to the
Coordinator node at once. However, the Coordinator node waits for a preas-
signed a period of time (tw) to receive the other Mappers’ filter values instead
of generating a global filter value immediately. After receiving the other com-
pleting Mappers’ filter values, the Coordinator node chooses the most optimal
one as a global filter value according to the application. The Mappers receive a
global filter value from the Coordinator node to prune their intermediate values
and decrease the input of Reducer. The same course repeats until all the Map-
pers in the system complete. Nevertheless, when the last Mapper completes, it
sends its filter value to the Coordinator node and receives a global filter value
immediately.

1,2,3,20,22,
39,41,43,45,50

50,45,43,
41,39

50,47,46,45,43,
42,41,39

4,5,6,11,12,16,
23,26,29,35

35,29,26,
23,16

7,8,9,14,18,19,
24,28,32,46

46,32,28,
24,19

10,13,15,17,21,
25,27,38,42,47

47,42,38,
27,25

30,31,33,34,36,
37,40,44,48,49

Mapper Reducer OutputSplit

39 16
39

39Coordinator

19 25

Send local filter values of
the first tw

Send global filter value of
the first tw

Send local top -5 results of
the first tw

Send local filter values of
the second t w

Send global filter value of
the second t w

Send local top -5 results of
the second t w

1

2

4

3

5

1 4

392

395

395

6

6

4

1

2

3

6

Fig. 5. Top-k Query Processing on ComMapReduce with HCS

Figure 5 shows the complex top-k query processing on ComMapReduce with
HCS. For simple description, we suppose that there are two Mappers complet-
ing in each preassigned a period of time tw. Six steps are taken to illustrate the

158 L. Ding et al.

implementations of the first and the second tw. Step 1. The first Mapper gener-
ates ‘39’ as its filter value and sends it to the Coordinator node. After receiving
data object ‘39’, the Coordinator node waits for the second Mapper completing
in the first tw and receives its filter value ‘16’ instead of generating a global
filter value in time. Step 2. After receiving ‘39’ and ‘16’, the Coordinator node
chooses the larger one, ‘39’, as a global filter value and sends it to the first and
the second Mapper. Step 3. The first and the second Mapper receive the global
filter value ‘39’ to filter their intermediate results. Step 4. In the second tw, the
third and the forth Mapper complete and send their filter values ‘19’ and ‘25’
to the Coordinator node. Step 5. After receiving filter values ‘19’ and ‘25’, the
Coordinator node compares ‘19’ and ‘25’ to the original global filter value ‘39’
and sets ‘39’ as a global filter value again. Step 6. After receiving the global
filter value ‘39’, the third and the forth Mapper filter their intermediate results
and send them to the Reducer.

HCS neither waits for the completion of all the Mappers to generate a global
filter value nor immediately sends local filter value after each Mapper com-
pletes. It can both effectively filter the unpromising intermediate results of Map-
pers and don’t need to wait for a long time to generate a more optimal global
filter value.

4 Optimizations

In practical applications, the number of Mappers is much larger than the number
of virtual machines, about hundreds multiples. Even adopting the above commu-
nication strategies to filter the unpromising data objects, the data objects which
are not the final results can be filtered ulteriorly. Therefore, we propose two op-
timization strateties to enhance the performance of query processing of massive
data on ComMapReduce. The two optimization strategies are orthometric to the
communication strategies in Section 3. Therefore, they can be combined with
any communication strategy above. In addition, the two optimization strategies
can be used together to further enhance the performance of ComMapReduce.

4.1 Prepositive Optimization Strategy

The principle of Prepositive Optimization Strategy (PreOS) is as follows. Af-
ter a part of Mappers complete, the Coordinator generates a temporary global
filter value by any communication strategy above. The other unprocessed Map-
pers can retrieve the temporary global filter value in their initial phase from the
Coordinator node, and then prune their data objects by the global filter value.
The number of data objects to be sorted of Mappers decreases dramatically, so
the sorting time of Mappers also decreases. PreOS improves the query processing
performance of ComMapReduce by further filtering.

Figure 6 shows the complex top-k query processing on ComMapReduce with
PreOS. We take five steps to illustrate the workflow of PreOS. For simple de-
scription, from Step 1 to Step 3, the Coordinator node generates a temporary

ComMapReduce: An Improvement of MapReduce 159

30,31,33,34,36,
37,40,44,48,49

50,49,48,
47,46

49,48,44,
40,37

50,49,48,47,46,
45,44,43,42,41,

40,39,38,37

7,8,9,14,18,19,
24,28,32,46

46,32,28,
24,19

4,5,6,11,12,16,
23,26,29,35

null

10,13,15,17,21,
25,27,38,42,47

47,42,38

1,2,3,20,22,
39,41,43,45,50

50,45,43,
41,39

Mapper Reducer OutputSplit

37 19
37

37Coordinator

null

37

37

37

null
Send local filter values

Send global filter value

Retrieve the temporary
global filter value

Send local top-5 results
or

1

2

3

4

1

372

3

5

5

1

2

3 5

4

4

4

Fig. 6. Top-k Query Processing on ComMapReduce with PreOS

global filter value ‘37’ with HCS after the first and the second Mapper com-
plete. Step 4. The other three unprocessedMappers retrieve the temporary global
filter value ‘37’ from the Coordinator node in their initial phase and filter their
input data objects that cannot be the final results. For example, all the input
data objects of the third Mapper are smaller than ‘37’, so it is unnecessary to
process these data objects. Step 5. The third to the fifth Mapper send their inter-
mediate results to the Reducer only with PreOS not using any communication
strategy above.

In practical applications, when the number of Mappers is much more than
the number of virtual machines, the Mappers run in several batches. The un-
processed batches of Mappers can filter the unnecessary data objects in time
by retrieving a temporary global filter value from the Coordinator node in
their initial phase of Mappers with PreOS to enhance the query processing
performance.

4.2 Postpositive Optimization Strategy

When all the Mappers in the system are processed in one batch, Postpositive
Optimization Strategy (PostOS) is proposed to further filter the input data ob-
jects of Reducer. The main idea of PostOS is as follows. After the intermediate
results of Mappers are sent to the Reducer, the Reducer first retrieves a tem-
porary global filter value from the Coordinator node and filters its input data
objects again. As the global filter value changes along the running of Mappers,
it is necessary to filter the input of Reducer again. Therefore, the Reducer pro-
cesses the input data objects after filtering to enhance the performance of query
processing of massive data in ComMapReduce framework.

Figure 7 shows the complex top-k query processing on ComMapReduce with
PostOS. Only four steps are taken to illustrate the implementation of PostOS
simply. From Step 1 to Step 2, after the first and the second Mapper complete,
the Coordinator node generates a temporary global filter value ‘37’ with HCS.
Step 3. All Mappers send their intermediate results to the Reducer. Step 4.

160 L. Ding et al.

30,31,33,34,36,
37,40,44,48,49

50,49,48,
47,46

49,48,44,
40,37

50,49,48,47,46,45,
44,43,42,41,40,39,
38,37,35,29,27,26,

25,23,16

7,8,9,14,18,19,
24,28,32,46

46,32,28,
24,19

4,5,6,11,12,16,
23,26,29,35

35,29,26,
23,16

10,13,15,17,21,
25,27,38,42,47

47,42,38,
27,25

1,2,3,20,22,
39,41,43,45,50

50,45,43,
41,39

Mapper Reducer OutputSplit

37Coordinator

Send local filter values

Send global filter value

Retrieve the temporary
global filter value

Send local top-5 results

1

2

3

4

37 19
1 1

372

372

3

3

3

3

3

4

Fig. 7. Top-k Query Processing on ComMapReduce with PostOS

20

40

60

80

100

120

2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100M)

PreOS
HCS
ECS
MR

(a) Uniform Distribution

 20

 40

 60

 80

 100

 120

 2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100M)

PreOS
HCS
ECS
MR

(b) zipf Distribution

0

30

60

90

120

150

2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Data Records (100M)

PreOS
HCS
ECS
MR

(c) Uniform Distribution

0

30

60

90

120

150

2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Data Records (100M)

PreOS
HCS
ECS
MR

(d) zipf Distribution

Fig. 8. Changing Data Size of Top-k Query

After receiving the intermediate results of Mappers, the Reducer retrieves the
temporary global filter value ‘37’ from the Coordinator node and prunes its
input data objects. The data objects smaller than ‘37’ are all filtered. Therefore,
the input of Reducer decreases sharply so as to relieve the workload of Reducer.

5 Experiments

In this section, three types of query processing are taken as examples to evalu-
ate the query processing performance of our ComMapReduce framework. Two
communication strategies of ComMapReduce, ECS, HCS and two optimization
strategies, PreOS and PostOS, are taken to compare with MapReduce (MR).
For LCS, if some weak Mappers occupy long processing time, the Coordinator

ComMapReduce: An Improvement of MapReduce 161

node waits for the completion of these Mappers and then generates the global
filter value, which leads to the increase of running time of query processing.
When the number of Mappers is unknown, it is hard to detect the time of all
Mappers completing and sending their local filter values. Therefore, LCS is not
widely used in actual applications, so we don’t evaluate the performance of LCS.

104

108

112

116

120

200 400 600 800 1000

R
un

nn
in

g
T

im
e

(s
)

k

PreOS
HCS
ECS
MR

(a) Uniform Distribution

 104

 108

 112

 116

 120

 200 400 600 800 1000

R
un

ni
ng

 T
im

e
(s

)

k

PreOS
HCS
ECS
MR

(b) zipf Distribution

0

30

60

90

120

150

200 400 600 800 1000

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

k

PreOS
HCS
ECS
MR

(c) Uniform Distribution

0

30

60

90

120

150

200 400 600 800 1000

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

k

PreOS
HCS
ECS
MR

(d) zipf Distribution

Fig. 9. Changing k of Top-k Query

5.1 Experimental Setup

We set up a cluster of 9 commodity PCs in a high speed Gigabit network,
with one PC as the Master node and the Coordinator node, the others as the
Slave nodes. Each PC has an Intel Quad Core 2.66GHZ CPU, 4GB memory and
CentOS Linux 5.6. We use Hadoop 0.20.2 and compile the source codes under
JDK 1.6. Two main experimental benchmarks are the running time of query
processing and the number of Reducer input records. We compare ECS, HCS
and PreOS to MapReduce processing top-k and kNN query. We compare ECS,
HCS and PostOS to MapReduce processing skyline query. The experimental
parameters of top-k, kNN and skyline query are as follows:

– The top-k query is evaluated in uniform distribution and zipf distribution.
The default number of data records is 1000M, ranging from 200M to 1000M.
The default number of k value of top-k query is 1000.

– The kNN query is evaluated in uniform distribution and clustered distribu-
tion. The default number of data records is 1000M, ranging from 200M to
1000M. The default number of k value of kNN query is 1000 and the default
number of data dimensions of kNN query is 4.

162 L. Ding et al.

– The skyline query is evaluated in independent distribution and anti-related
distribution. The default number of data records is 1000K, ranging from
200K to 1000K. The default number of data dimensions of skyline query
is 4.

5.2 Experiments of Top-k Query

Figure 8 shows the performance of changing data size of top-k query. The number
of Reducer input records of our three strategies are much smaller than MapRe-
duce. This phenomenon illustrates that ComMapReduce can effectively filter the
unpromising data objects with high performance of processing top-k query. The
similar changing trend of two distributions illustrates that different data dis-
tributions have no influence on ComMapReduce framework. The running time
of PreOS, HCS and ECS are shorter than MapReduce. One reason is that the
experimental environment is a high speed Gigabit network and the transmitting
time itself is very short. In zipf distribution, the data object are skewed to the
query results, so our three efficient communication strategies only have 1000
records for its effective filtering ability without obviously showing in in Figure
8(d).

0

50

100

150

200

1 2 4 8

R
un

ni
ng

 T
im

e
(s

)

Nodes

PreOS
HCS
ECS
MR

(a) Uniform Distribution

0

50

100

150

200

1 2 4 8

R
un

ni
ng

 T
im

e
(s

)

Nodes

PreOS
HCS
ECS
MR

(b) zipf Distribution

0

10

20

30

40

50

1 2 4 8

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Nodes

PreOS
HCS
ECS
MR

(c) Uniform Distribution

0

10

20

30

40

50

1 2 4 8

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Nodes

PreOS
HCS
ECS
MR

(d) zipf Distribution

Fig. 10. Changing Number of Slave Nodes of Top-k Query

Figure 9 shows the performance of changing k of top-k query. PreOS, HCS
and ECS are more optimal to MapReduce both in uniform distribution and zipf
distribution. The similar changing trend of different data distributions also shows
the high scalability of ComMapReduce. As the k of top-k query increases, the
number of final results also increases, so the number of Reducer input records
increases certainly. In Figure 9(a) and Figure 9(b), the unprocessed Mappers can

ComMapReduce: An Improvement of MapReduce 163

retrieve a temporary global filter value to filter their unpromising data objects
in the initial phase by PreOS, so its running time is more optimal to the others.

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100M)

PreOS
HCS
ECS
MR

(a) Uniform Distribution

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100M)

PreOS
HCS
ECS
MR

(b) Cluster Distribution

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Data Records (100M)

PreOS
ECS
HCS
MR

(c) Uniform Distribution

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Data Records (100M)

PreOS
HCS
ECS
MR

(d) Cluster Distribution

Fig. 11. Changing Data Size of kNN Query

Figure 10 shows the performance of changing the number of slave nodes to
evaluate top-k query. As the number of Slave nodes increases, the running time
decreases for enlarging the parallelism of the system. The similar changing trend
of different data distributions illustrates that ComMapReduce can reach the
same scalability of MapReduce. In addition, the running time and the number of
Reducer input records of ComMapReduce are both more optimal to MapReduce.

5.3 Experiments of kNN Query

Figure 11 shows the performance of changing data size of kNN query. As the
data size increases, the running time and the number of Reducer input records
both increase sharply. The number of Reducer input records of ComMapRe-
duce is extremely fewer than MapReduce showing the efficient filtering ability of
ComMapReduce, about 14% of the number of Reducer input records of MapRe-
duce. PreOS is better than HCS and ECS by obtaining a global filter value in
the initial phase of Mappers and filtering numerous unpromising data objects.

Figure 12 shows the performance of changing the dimensions of kNN query.
As the dimensions of kNN query increases, the running time and the number
of Reducer input records increase accordingly as the computation and transmis-
sion cost increase. The number of Reducer input records is much fewer than
MapReduce showing the efficient filtering ability of ComMapReduce.

Figure 13 shows the performance of changing k of kNN query. With increasing
k, the final results increase, so the running time and number of records also

164 L. Ding et al.

 200

 250

 300

 350

 400

 450

 500

 2 3 4 5 6

R
un

ni
ng

 T
im

e
(s

)

Dimensions

PreOS
HCS
ECS
MR

(a) Uniform Distribution

 200

 250

 300

 350

 400

 450

 500

 2 3 4 5 6

R
un

ni
ng

 T
im

e
(s

)

Dimensions

PreOS
HCS
ECS
MR

(b) Cluster Distribution

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Dimensions

PreOS
ECS
HCS
MR

(c) Uniform Distribution

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Dimensions

PreOS
HCS
ECS
MR

(d) Cluster Distribution

Fig. 12. Changing d of kNN Query

 310

 315

 320

 325

 330

 200 400 600 800 1000

R
un

ni
ng

 T
im

e
(s

)

k

PreOS
HCS
ECS
MR

(a) Uniform Distribution

 300

 305

 310

 315

 320

 325

 330

 200 400 600 800 1000

R
un

ni
ng

 T
im

e
(s

)

k

PreOS
HCS
ECS
MR

(b) Cluster Distribution

 0

 100

 200

 300

 400

 500

 200 400 600 800 1000

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

k

PreOS
ECS
HCS
MR

(c) Uniform Distribution

 0

 100

 200

 300

 400

 500

 200 400 600 800 1000

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

k

PreOS
HCS
ECS
MR

(d) cluster Distribution

Fig. 13. Changing k of kNN Query

increase. The running time of ComMapReduce and the number of Reduce input
records of ComMapReduce are dramatically optimal to MapReduce.

ComMapReduce: An Improvement of MapReduce 165

0

10

20

30

40

50

2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100K)

PostOS
HCS
ECS
MR

(a) Independent Distribution

 0

 20

 40

 60

 80

 100

 2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

)

Data Records (100K)

PostOS
HCS
ECS
MR

(b) Anti-related Distribution

2

4

6

8

2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

)

Data Records (100K)

PostOS
HCS
ECS
MR

(c) Independent Distribution

 2

 4

 6

 8

 2 4 6 8 10

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Data Records (100K)

PostOS
HCS
ECS
MR

(d) Anti-related Distribution

Fig. 14. Changing Data Size of Skyline Query

5.4 Experiments of Skyline Query

The computation cost of skyline query is larger than top-k and kNN, so the
Mappers processing skyline query implement in a batch instead of many batches
incurring the waste of running time. Therefore, we choose PostOS to compare
with the other strategies. Figure 14 shows the performance of changing the data
size of skyline query. As the data size increases, the running time and the number
of Reducer input records increase dramatically. ComMapReduce is more optimal
to MapReduce under different data distributions. In anti-related distribution,
although the data objects skew to the final results and the computation cost
increases accordingly, the performance of ComMapReduce is still optimal to
MapReduce.

Figure 15 shows the performance of changing the number of slave nodes of
skyline query. The running time decreases as the number of nodes increases for
enhancing the parallelism of the system. The same changing trend of different
distributions shows that ComMapReduce has high scalability. ComMapReduce
filters the unpromising data objects with efficient communication mechanisms,
so the number of Reducer input records of ComMapReduce is fewer than MapRe-
duce. Without using efficient filtering strategies, the number of Reducer input
records of MapReduce keeps a constant.

166 L. Ding et al.

20

25

30

35

1 2 4 8

R
un

ni
ng

 T
im

e
(s

)

Nodes

PostOS
HCS
ECS
MR

(a) Independent Distribution

50

100

150

200

1 2 4 8

R
un

ni
ng

 T
im

e
(s

)

Nodes

PostOS
HCS
ECS
MR

(b) Anti-related Distribution

5

6

7

1 2 4 8

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

)

Nodes

PostOS
HCS
ECS
MR

(c) Independent Distribution

6.2

6.4

6.6

6.8

1 2 4 8

R
ed

uc
er

 I
np

ut
 R

ec
or

ds
 (

10
00

0)

Nodes

PostOS
HCS
ECS
MR

(d) Anti-related Distribution

Fig. 15. Changing Number of Slave Nodes of Skyline Query

6 Related Work

Google’s MapReduce [1] was first proposed in 2004 for massive parallel data anal-
ysis in shared-nothing clusters. Hadoop [2] is an open-source implementation of
MapReduce followed by several systems including Hive [4], HBase [5] and Pig
[6]. Paper [7] illustrates the limitations and opportunities of data management in
the cloud and there has already been several research achievements as follows.
Map-Reduce-Merge [8] is a new model improved MapReduce adding a Merge
phase to merge data already partitioned and sorted by Map and Reduce models.
Azza Abouzeid et. al. proposes HadoopDB [9], using MapReduce as the com-
munication layer above numerous nodes running single-node DBMS instances.
PLANET [10] is a scalable distributed framework for learning tree models over
large datasets, with implementing each one using MapReduce model. Ariel Cary
et. al. [11] applies MapReduce model to solve the problems of bulk-construction
of R-trees and aerial image quality computation. Papers [12,13] introduce how
to process Join algorithms using MapReduce without the query processing algo-
rithms. Jens Dittrich et. al. proposes Hadoop++ [14], injecting index and join
techniques at the right places by Use Defined Functions only to achieve advan-
tages. HaLoop [15] is an improvement of MapReduce supporting iterative appli-
cations, which improves their efficiency by making the task scheduler loop-aware
and by adding various caching mechanisms. Pergel [16] is a distributed system for
processing largesize graph datasets and doesn’t support general query process-
ing applications. Contrary to these research, ComMapReduce adopts efficient
communication mechanisms to improve the performance of query processing of
massive data in the cloud.

ComMapReduce: An Improvement of MapReduce 167

7 Conclusions

This paper proposes the design and evaluation of ComMapReduce, an improved
version of MapReduce framework with lightweight communication mechanisms,
supporting query processing for a large number of data objects. ComMapRe-
duce maintains the main great features of MapReduce, availability and scala-
bility, while filtering the unpromising data objects by communicating with the
Coordinator node. Three communication strategies, Lazy, Eager and Hybrid,
are presented to effectively implement query processing applications of massive
data in ComMapReduce framework. We also propose two improvements, named
Prepositive Optimization Strategy and Postpositive Optimization Strategy to
enhance the performance of ComMapReduce. Three query processing applica-
tions, top-k, kNN and skyline, are taken as examples to evaluate the query pro-
cessing performance of ComMapReduce. The experimental results demonstrate
that the performance of ComMapReduce is beyond of MapReduce dramatically
in all metrics.

Acknowledgement. This research is supported by the State Key Program of
National Natural Science of China (Grant No. 61033007), the National Science
Foundation for Distinguished Young Scholars of China (Grant No. 61025007), the
National Natural Science Foundation of China (Grant No. 60973020, 61073063),
the National Natural Science Foundation for Young Scientists of China (Grant
No. 61100022), and the National Marine Public Benefit Research Foundation
(Grant No. 201105033).

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proc.of OSDI, pp. 137–150 (2004)

2. Hadoop, http://hadoop.apache.org/
3. HDFS, http://hadoop.apache.org/common/hdfs/
4. Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive-A Warehousing Solution Over a

Map-Reduce Framework. PVLDB 2(2), 1626–1629 (2009)
5. Carstoiu, D., Lepadatu, E., Gaspar, M.: Hbase-non SQL Database, Performances

Evaluation. IJACT-AICIT 2(5), 42–52 (2010)
6. Olston, C., Reed, B., Srivastava, U., et al.: Pig Latin: A Not-so-foreign Language

for Data Processing. In: Proc.of SIGMOD, pp. 1099–1110 (2008)
7. Abadi, D.J.: Data Management in the Cloud: Limitations and Opportunities. IEEE

Data Eng. Bull. (DEBU) 32(1), 3–12 (2009)
8. Yang, H., Dasdan, A., Hsiao, R., et al.: Map-reduce-merge: Simplified Relational

Data Processing on Large Clusters. In: Proc. of SIGMOD, pp. 1029–1040 (2007)
9. Abouzeid, A., Baida-Pawlikowski, K., Abadi, D., et al.: HadoopDB: An Architec-

tural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.
PVLDB 2(1), 922–933 (2009)

10. Panda, B., Herbach, J.S., Basu, S., et al.: PLANET: Massively Parallel Learning
of Tree Ensembles with MapReduce. In: Proc. of VLDB, pp. 1426–1437 (2009)

http://hadoop.apache.org/
http://hadoop.apache.org/common/hdfs/

168 L. Ding et al.

11. Cary, A., Sun, Z., Hristidis, V., Rishe, N.: Experiences on Processing Spatial Data
with MapReduce. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 302–
319. Springer, Heidelberg (2009)

12. Blanas, S., Patel, J.M., Ercegovac, V., et al.: A Comparision of Join Algorithms
for Log Processing in MapReduce. In: Proc. of SIGMOD, pp. 975–986 (2010)

13. Pavlo, A., Paulson, E., Rasin, A., et al.: A Comparison of Approaches to Large-
scale Data Analysis. In: Proc. of SIGMOD, pp. 165–178 (2009)

14. Dittrich, J., Quian-Ruiz, J., Jindal, A., et al.: Hadoop++: Making a Yellow Ele-
phant Run Like a Cheetah (Without It Even Noticing). PVLDB 3(1), 518–529
(2010)

15. Bu, Y., Howe, B., Balazinska, M., et al.: HaLoop: Efficient Iterative Data Process-
ing on Large Clusters. PVLDB 3(1), 285–296 (2010)

16. Malewicz, G., Austern, M.H., Bik, A.J.C., et al.: Pregel: A System for Large-scale
Graph Processing. Proc. of SIGMOD, pp. 135–146 (2010)

Halt or Continue: Estimating Progress of Queries
in the Cloud

Yingjie Shi, Xiaofeng Meng, and Bingbing Liu

School of Information, Renmin University of China, Beijing, China
shiyingjie1983@yahoo.com.cn, {xfmeng,liubingbing}@ruc.edu.cn

Abstract. With cloud-based data management gaining more ground by day, the
problem of estimating the progress of MapReduce queries in the cloud is of
paramount importance. This problem is challenging to solve for two reasons:
i) cloud is typically a large-scale heterogeneous environment, which requires
progress estimation to tailor to non-uniform hardware characteristics, and ii)
cloud is often built with cheap and commodity hardware that is prone to fail,
so our estimation should be able to dynamically adjust. These two challenges
were largely unaddressed in previous work. In this paper, we propose PEQC, a
Progress Estimator of Queries composed of MapReduce jobs in the Cloud. Our
work is able to apply to a heterogeneous setting and provides a dynamically up-
date mechanism to repair the network when failure occurs. We experimentally
validate our techniques on a heterogeneous cluster and results show that PEQC
outperforms the state of the art.

Keywords: progress estimate, PERT network, MapReduce, cloud.

1 Introduction

As a solution to manage big data with high cost performance, cloud data management
system has attracted more and more attentions from both industry and academia, and
it is now supporting a wide range of applications. These applications need operations
on massive data, such as reporting and analytics, data mining and decision support. A
large part of the applications are implemented through MapReduce[5] jobs. MapReduce
integrates parallelism, scalability, fault tolerance, load balance into the simple frame-
work, and MapReduce-based applications are very suitable to be deployed in the cloud
which is composed of large-scale commodity nodes. Although data queries are sped-
up in cloud-based systems, many queries cost a long period of time, even to several
days or months[15]. So users want to know the remaining time of such long-running
queries to help decide whether to terminate the query or allow it to complete. For them,
some early results within a certain confidence interval which can be computed through
online aggregation[7] are even better. The accurate feedback and online aggregation
both depend on the progress estimate of queries. There are also some applications in
which every query requires critical response time, such as advertisement applications,
customer profile management of SNS(Social Network Site), etc. Estimating the remain-
ing time of the queries is beneficial for scheduling them to guarantee their deadlines.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 169–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 Y. Shi, X. Meng, and B. Liu

In addition, providing the accurate remaining time of queries is also helpful to per-
formance debugging and configuration tuning for applications in the cloud. Progress
estimate of queries in the cloud first confronts challenges in parallel environment, such
as parallelism and concurrency[11]. The characteristics of cloud raise this problem’s
complexity , common failures and environment heterogeneity are two main challenges.

In order to achieve high performance cost, cloud system is often constructed with
cheap, commodity machines, and the platform is always of large scale (hundreds or
thousands of nodes[4]), so failures are very common. Cloud systems support high fault
tolerance and consider failure as normal situation. According to the usage statistics in
[4], the average worker deaths per MapReduce job in Google is 5.0 with the average
worker machines 268. It is reported in[8] that in a system with 10 thousand of super re-
liable servers (MTBF of 30 years), according to typical yearly flakiness metrics, servers
crash at least twice with the failure rate of 2-4%. For commodity nodes in the cloud, the
failure rate is even higher. So the challenge is that once a failure happens, the progress
indicator has to cope with failures promptly to provide continuously revised estimates.

Scalability is one main advantage of cloud systems. With the development of appli-
cations and the increase of data volume, there is a trend that more nodes will be added
into the existing system to get more computing capability. So it is difficult to keep all
the nodes in the cloud belonging to the same hardware generation. This brings another
challenge – heterogeneity. Different software configurations and concurrent workload
further reduce the homogeneity of cluster performance [1]. As [14] reports, in the virtual
environment, the performance COV (coefficient of variation) of the same application on
the same virtual machines is up to 24%. A MapReduce job is always composed of sev-
eral rounds of tasks, and the tasks during each round are executed parallel on different
nodes. The heterogeneity and variation of performance results in that the task schedul-
ing is composed of irregular task rounds, and it raises the complexity of estimating the
progress.

We propose PEQC, a progress estimator of queries based on MapReduce jobs in the
cloud. The main contributions of our work include:

1. We model every MapReduce task of the query with its duration and failure probabil-
ity, and transform the query procedure into a stochastic PERT(Project Estimate and
Review Technique) network by allowing the task duration to be random vairables;

2. We propose a method to compute the most critical path of the PERT network, which
can present the execution of the whole query in the heterogeneous environment;

3. We provide an efficient update mechanism to repair the network and re-compute
the critical path when failure happens;

4. We implement PEQC on Pig[19] & Hadoop[18] to verify its accuracy and robust-
ness in presence of failures.

The rest of this paper is structured as follows. Section 2 describes the related work.
Section 3 presents the problem modeling, and discusses the uncertainties and stochas-
tic characteristics of task duration. In Section 4, we propose our solution to estimat-
ing progress of MapReduce queries, we also present the repair mechanism to react to
common failures. Experimental validation of PEQC on Pig & Hadoop is presented in
Section 5. We conclude the paper and discuss the future work in Section 6.

Halt or Continue: Estimating Progress of Queries in the Cloud 171

2 Related Work

There are two kinds of areas that are related to our work. First is the area of estimating
the progress of SQL queries on single-node DBMS. [9] separates a SQL query plan
into pipelined segments, which is defined by blocking operators. The query progress is
measured in terms of the percentage of input processed by each of these segments. Its
sub-sequent work [10] widens the class of SQL queries the estimator supports, and it
increases the estimate accuracy by defining segments at a finer granularity. [3] decom-
poses a query plan into a number of pipelines, and computes the query progress through
the total number of getnext() calls made over all operators. [2] characterize the query
progress estimation problem introduced in [3] and [9] so as to understand what the
important parameters are and under what situations we can expect to have a robust esti-
mation of such progress. The work of this area focuses on partitioning a complex query
plan into segments(pipelines) and collecting the statistics on cardinality information to
compute the query progress. These techniques are helpful for estimating the progress
of queries running on a single node. However, they do not account for the challenges
brought by query parallelization, such as parallelism and data distribution.

Our work is also related to progress estimate of MapReduce jobs. We can classify the
related work into two categories: estimating the progress of tasks during one MapRe-
duce job, and estimating the progress of MapReduce pipelines. [17] estimates the time
left for a task based on the progress score provided by Hadoop. This paper focuses on
task scheduling in MapReduce based on the longest approximate time to end of ev-
ery task, so it orders the task by their remaining times. It computes the progress rate
through the progress score and the elapsed time of the task execution, and computes
the remaining time of a task based on the progress rate. [17] provides a method to es-
timate the progress of a MapReduce task, however, there are also several challenges
to estimate the progress of MapReduce jobs and MapReduce DAGs. Parallax[12] esti-
mates the progress of queries translated into sequences of MapReduce jobs. It breaks a
MapReduce job into pipelines, which are groups of interconnected operators that exe-
cute simultaneously. Parallax estimates the remaining time by summing the expected re-
maining time across all pipelines. It addresses the challenges of parallelism and variable
execution speeds, without considering concurrent workloads. ParaTimer[11] extends
Parallax to estimate queries translated into MapReduce DAGs. It estimates the progress
of concurrent workloads through a critical path based on task rounds, which works well
in a homogeneous environment. ParaTimer handles task failure through comprehen-
sive estimation, which provides an upper bound on the query time in case of failure.
However, ParaTimer assumes only one worst-case failure before the end of the execu-
tion, and it has to repeat all the steps in the estimate algorithm to adjust to failures. It
may become inefficient when failures are very common, which is one characteristic of
cloud. None of the above work handles heterogeneity in the estimation, which is also
an important characteristic of cloud.

3 Problem Modeling and Stochastic Characteristics

The project evaluation and review technique (PERT) is widely used to estimate com-
pletion time of projects with concurrent workloads[6], we formulate the problem into a

172 Y. Shi, X. Meng, and B. Liu

stochastic PERT network. In this section, we discuss the problem modeling procedure
and the stochastic characteristic.

3.1 Why stochastic PERT?

We take a query related to HTML document processing and log-file analysis as an
example to discuss the problem. The query is to find the ad revenue of all the web page
visitings with both page rank and duration in specific ranges. Table Rankings contains
basic information of pageURLs, and table UserVisits models log files of HTTP server
traffic. The SQL command is like:

SELECT sourceIP, destURL, adRevenue FROM Rankings, UserVisits WHERE
Rankings.pageRank > 10 AND UserVisits.duration > 1 AND
UserVisits.duration <= 10 AND Rankings.pageURL = UserVisits.destURL;

This query can be translated into three MapReduce jobs: job1 and job2 filter tuples
according to the query conditions, they can be executed concurrently; job3 joins the
tables and executes after job1 and job2. Suppose job1 is composed of 2 mappers and 1
reducer, job2 is composed of 6 mappers and 1 reducer, and job3 includes 1 mapper and
1 reducer. In the cluster there are 5 nodes with different hardware settings, and every
node has 1 map slot and 1 reduce slot. The scheduling and execution of tasks in this
query can be illustrated by a Gantt chart, as shown in Fig. 1.

m11
m12
m21
m22

m23

m24

m26
m25

r1

r2

m3

r3

MAP

REDUCE

Job1 Job2 Job3

Fig. 1. Task Scheduling and Execution

m11
m12
m21
m22

m23

m24

m26
m25

r1

r2

m3

r3

MAP

REDUCE

Job1 Job2 Job3
Path Fragmen

Critical Path

Fig. 2. The Critical Path Detected by ParaTimer

Though map tasks in one job execute the same operations on the same amount
of data(one data block), their elapsed time is different because of the cluster hetero-
geneity. So even during one task round, time differences between tasks are obvious.
ParaTimer[11] assumes that tasks in one round process at approximately the same
speed. It detects the path fragment based on the task round, then composes them to
a critical path. In the heterogeneous environment, ParaTimer does not find the actual
critical path. The critical path ParaTimer detects is shown in Fig. 2, it is m12-m25-part
of r1-part of r2-m3-r3. Not all the tasks on the path are actually critical activities that
can directly impact total duration of the query, so monitoring these fake critical tasks is
redundant. The critical path contains not only total tasks, but also some task fragments,
which makes the estimation more complicated.

We can predict the duration of every task with sampling debug run or the execution
performance history. However, the tasks do not execute exactly as planned due to the
variation of hardware and software, which is called ”duration uncertainty”. So fixed task

Halt or Continue: Estimating Progress of Queries in the Cloud 173

durations cannot reflect the real execution of the whole query. During the field of op-
erational research, stochastic PERT[16] is always used to solve planning problems and
recognize uncertainty in the activity durations.We formulate every task of the MapRe-
duce query into an edge of a DAG, and model the execution processing into a stochastic
PERT network.

3.2 PERT Modeling

In this section, we discuss the problem modeling. First, we give the problem definition:

Definition 1. [Problem Definition] Given the MapReduce job DAG D(N,E) of Query
Q in the cloud, return accurate and real-time estimate of the query progress T .

The execution plan of a query is represented by a MapReduce job DAG D, during
which the nodes N represent the jobs, and the arcs E represent the job’s logical rela-
tionships. The modeling can be defined as follows:

Definition 2. [Modeling to PERT network] Given DAG D(N,E) of Query Q, construct
a PERT network G(U,ξ). Node set U ={ui}n

i=1 represents the completing of tasks; Edge
set ξ is composed of two subsets: EP= {epi j} represents execution procedure of a task,
with edge weight ωi j denoting the task duration; ER = {eri j} only represents logical
relationship of tasks,with ωi j equal to zero.
In G(U ,ξ), nodes represent completing of one or more tasks, and there are two kinds
of edges: EP and ER, EP

⋃
ER=ξ . EP represents the execution procedures of tasks,

the direction of arcs represent precedence relation between two nodes, and the edge
weights represent task durations, which are considered as random variables in PEQC;
ER doesn’t represent real task execution, they only represent the precedence relationship
of nodes, and the edge weights are always fixed values - 0. The precedence relationship
of tasks results from two sequences: logical sequence between jobs and execution se-
quence of tasks on the same slot. The logical sequence between jobs is from query plan
D, if two jobs have the relationship: job1→job2, then all the map tasks of job2 must
execute after all the reduce tasks of job1. There can only be one task executing on one
slot at the same time, so tasks assigned to the same slot have the the precedence re-
lationships. Given the execute plan and task scheduling of the query example, we can
construct the PERT network as Fig. 3 shows. The precedence relationship of m3 and
r1 is determined by the job DAG, while the precedence relationship of m11 and m24 is
determined by the scheduler that assigns them to the same slot.

m11=4

m23=17
m22=12

m21=10

m12=9

m26=10

m25=11

m24=6

0
0

0

0

0

0

0

r2=15

r1=12

0

0

m3=10 r3=15 0

Fig. 3. PERT Network

174 Y. Shi, X. Meng, and B. Liu

3.3 The Stochastic Characteristics

There are two kinds of uncertainties during the query execution procedure: duration
uncertainty and scheduling uncertainty. The duration uncertainty will change PERT
network by alter the weight of arcs, while the scheduling uncertainty will change the
structure of PERT network. We discuss duration uncertainty and the stochastic charac-
teristics it brings in this section, the algorithm reacting to scheduling uncertainty will
be shown in Section 4.4.

Suppose there are m tasks in the query, let T ={Ti}m
i=1 represents the duration of

every task in query Q. We can estimate Ti from sampling debug or running history of
tasks on the node, however, tasks will never execute with the durations we expected. It is
unrealistic to associate Ti with a deterministic value, so we treat Ti as a random variable
which obeys some distribution. We assume all the duration of tasks have independent
distributions. Let P ={Pi}r

i=1 represents the path between initial node U1 and terminal
node Un, where r denotes the cardinality of set P. Di represents the duration of Pi, where
Di=∑epk∈Pi

(Tk). According to the central limit theorem (CLT), Di approximately obeys
normal distribution [8]. The duration D* of the PERT network is D*=maxpi∈P(Di) ,
then P* will be the critical path. Let μk, σ2

k represent the mean and variance of task
duration Tk on one path Pi. Then the expected value and variance of Di are:

E(Di) = E(∑
epk∈Pi

Tk) = ∑
epk∈Pi

E(Tk) = ∑
epk∈Pi

μk (1)

σ2(Di) = σ2(∑
epk∈Pi

Tk) = ∑
epk∈Pi

σ2(Tk) = ∑
epk∈Pi

σ2
k (2)

The expected value of D* is E(D*)=maxpi∈P(E(Di)). Given a deadline t for the query,
we can compute the probability for completing the query before t according to the
distribution characteristic and parameters of D*: P{D∗ < t} =

∫ t
−∞ f (x)dx.

4 Proposed Solution

In this section, we introduce our three-step solution to estimating query progress in the
cloud. First, PEQC constructs the PERT network of tasks depending on environment
resources and scheduling strategy. Secondly, PEQC chooses the most critical path from
PERT network. Thirdly, it computes the progress of tasks on the critical path to rep-
resent the query progress. Since common failures affect the task scheduling and query
progress, we also discuss the update mechanism to respond to failures with less time
cost and changes.

4.1 Constructing the PERT network

Given the execution plan DAG of MapReduce jobs for one query, we can compute
a topological order of the job sequence. We decompose every job into map tasks and
reduce tasks and compute the task topology sequence, which is used as the input of con-
structing PERT network. As discussed in Section 3.2, the precedence relationship be-
tween tasks stems from job DAG and task scheduling. Although we demonstrate PEQC

Halt or Continue: Estimating Progress of Queries in the Cloud 175

with FIFO scheduler in this paper, it can be extended to other schedulers with some
manageable modifications. Under the FIFO policy, the scheduler maintains a waiting
queue of jobs sorted by arrival time and job priority. The scheduler assigns available
slots to tasks from the job at the head of the queue. When allocating slots to tasks from
one job, it also follows the data locality rule, which means that the available slot is
preferentially allocated to the task that operates on data in the same node of this slot.
We mimic the schedule policy and compute the relationships between tasks scheduled
on the same slot.

Among all the jobs of one query, there are some jobs that can execute concurrently,
which we call a job batch. More precisely:
Definition 3 (Job Batch). Given the execution plan DAG D(N,E) of a query Q, a
job batch J, is a set of jobs j ∈ N that can execute concurrently with no precedence
relationships among them.

The DAG D(N,E) can be broken into several job batches, which execute sequen-
tially. The job batches can be computed from D(N,E), or can be gotten directly from the
MapReduce job launcher. Algorithm 1 computes the task scheduling using job batch
as the unit, because only tasks during the same job batch can execute concurrently
and influence the task scheduling of each other. In Algorithm1, every task in the input
sequence contains a list of dependencies, which includes its precursor tasks accord-
ing to the job DAG. We adopt two arrays called MapSlots and ReduceSlots to store
scheduling information for map slots and reduce slots, respectively. Every element of
the array denotes a task slot, and it is associated with three attributes: pointer to the
currently scheduled task, sum of length of tasks executed on this slot, number of tasks
scheduled on this slot. Both MapSlots and ReduceSlots contain information for one job
batch, so they are set to initial status at the beginning of scheduling tasks of every job
batch(line4). Take the query in Section 3.1 for example, the task sequence is m11, m12,
r1, m21, m22, m23, m24, m25, m26, r2, m3, r3. There are two job batches: job1 and
job2 compose JB1, and job3 composes JB2. The initial state of MapSlots[] is listed in
Table 1.

Table 1. Initial State of MapSlots

slot1 slot2 slot3 slot4 slot5
pointer null null null null null
length 0 0 0 0 0
round 0 0 0 0 0

Table 2. MapSlots State after Round One

slot1 slot2 slot3 slot4 slot5
pointer m11 m12 m21 m22 m23
length 4 9 10 12 17
round 1 1 1 1 1

Algorithm 1 schedules jobs from the head of the job sequence. It chooses the slot
with the smallest length from MapSlots (line8), then arranges a task to this slot. Dur-
ing the tasks belonging to the scheduling job, the one that operates data on the same
node with this slot is scheduled preferentially (line8). If there are no such tasks in the
scheduling job, it chooses the task at the head of task queue. Table 2 shows the state
of MapSlots[] when all the slots have been arranged with one task. Next the algorithm
chooses the slot with the smallest length - slot1, and arrange a task from m24, m25,
m26 according to data locality. After arranging a new task to one slot, Algorithm1 first
adds a new node and edge of this task into the AdjList(line9-11), then it deals with the
task’s dependencies.

176 Y. Shi, X. Meng, and B. Liu

Algorithm 1. Construct PERT Network
input : TaskSequence T : task topology sequence, it maintains six variables for each task t

∈ T : t.name, t.type, t.length, t.dependency, t.failureprob, t.nodeip.
output: AdjList[]:PERT network
Set AdjList[0].data = Start; AdjList[0].out = null;1

current = 0; /*current represents the processing node in the network*/;2

for all jobbatch JB in T do3

MapSlots.setInitial(); ReduceSlots.setInitial();4

for all job J in JB do5

Slots = MapSlots;6

while existing unscheduled task in J do7

s = getShortestSlot(Slots); t = getLocalTask(s, J);8

t.length = getLength(t, s); t.failureprob = getFailureProb(t.s);9

AdjList[++current].data = t.name; AdjList[current].adj = null;10

Edge e ← new Edge(t.name, t.length, t.failureprob, null);11

if t.dependency != null then12

if length(t.dependency) ==1 && Slots[s].pointer==null then13

addEdge(getEdge(t.dependency), e); /*add e consecutively after t ′s14

dependency task*/

else15

AdjList[++current].data = virtual t.name; AdjList[current].out = e;16

for i in t.dependency do17

Edge ed = new Edge(virtual t.name, 0,0,null);18

ed.out = AdjList[i].out; AdjList[i].out = ed19

if Slots[s].pointer!=null then20

Edge ed = new Edge(virtual t.name, 0,0, null);21

addEdge(Slots[s].pointer, ed);

else addEdge(start, e); /*make the network’s start node tail of e*/22

Slots[s].length += T.length; Slots[s].round++; Slots[s].pointer = e ;
if (all map tasks in J are scheduled) then Slots = ReduceSlots;23

AdjList[++current].data = End; AdjList[current].out = null;24

for i with AdjList[i].out == null do25

Edge ed = new Edge(End, 0, 0, null); AdjList[i].out = ed;26

The dependency tasks of task t stem from two precedence relationships: the logical
relationship from job DAG is included in the dependency attribute of t, and the pre-
cursor task of t on slot s can be gotten from MapSlots[s] or ReduceSlots[s]. If a task
has more than one dependency task, PEQC creates a virtual node which represents the
event of all the dependency tasks’ completing, the weights of all the arcs pointing to
the virtual node are set to 0(line16-19). After scheduling all the tasks in the sequence,
Algorithm1 adds edges from the nodes without out edges to the end node (line20-22).
PEQC adopts an adjacency list to store the PERT network, because the netwok is not
too dense, and adjacency list is more convenient in the network update. After construct-
ing the PERT network for the task execution of the query, the remaining work of PEQC
will be all operations on the graph.

Halt or Continue: Estimating Progress of Queries in the Cloud 177

4.2 Computing the Critical Path

The job batches of a query partition G(U ,ξ) into k sub-networks:SG={SGi(Ui,ξi)}k
i=1.

Let P∗
i represents the critical path of SGi, D∗

i represents the duration of P∗
i , then the

critical path of the whole network is P∗ =
⋃k

i=1(P
∗
i) , the duration is D∗ = ∑k

i=1(D
∗
i).

PEQC computes the critical path of each sub-network and connects them to form the
critical path of the whole network. PEQC adopts the divide and rule mechanism for two
reasons: computing the critical paths of all the sub-networks parallel;re-computing the
critical path of some job batch instead of the whole network when failure happens.

Given a PERT network using the duration expected value as the arc weight, there
can be several critical paths whose durations are equal, which we call candidate critical
paths. How to find the most critical path that can represent the execution of the whole
query from these candidate critical paths? We discuss how the task failure can influence
the path length first. When a task failure happens on one slot, the task duration on
this slot is changed to the time interval between its start time and failure time, which
is shorter than the expected task duration. So task failure can result in the duration
reduction of path where the failed task is. However, the critical path is always the longest
path in the network. If there are task failures on the path, its duration may be exceeded
by other paths. We use a metrics called path reliability to measure the probability that a
candidate critical path maintains the longest path.

Definition 4 (Path Reliability). Suppose a candidate critical path Pc includes m tasks,
the failure rate of task i is denoted by Fi, then the reliability of Pc is: Pc =∏m

i=1(1 − Fi) .

A task failure can be caused by many reasons. However, modelling the failure proba-
bility of tasks is beyond the scope of this paper. So we do not address this problem and
assume predefined task failure rate to focus on the other factors. Among all the candi-
date critical paths of each sub-network, PEQC chooses the one with the biggest path
reliability, then connects them together as the critical path of the whole query.

4.3 Estimating the Progress

Tasks on the critical path represent the query progress. They can be classified into
three types: completed tasks, running task, and pending tasks. Suppose there are n
pending tasks of the query, the remaining time of the query is: Tremaining = Trunning

+ ∑n
i=1 (Ti) . For the pending tasks that haven’t executed, PEQC adopts their dura-

tion expected values as the estimate time. The elapsed time of the running task can
be evaluated through its actual execution speed to provide more accurate estimate.
Existing methods break map or reduce task into pipelines and sum the elapsed time
of every pipeline as the task estimate[17][12]. In our experiment, we adopts the fin-
ish time estimate method of [17], which estimates the time left for a task based on
the progress score provided by Hadoop, as (1 − ProgreeScore)/ProgressRate, and the
ProgressRate=ProgressScore/elapsed time t.

4.4 Reacting to Failures

PEQC constructs a PERT network to identify how the MapReduce query behaves before
its execution, we call it baseline scheduling. However, the actual jobs do not execute

178 Y. Shi, X. Meng, and B. Liu

exactly as the baseline scheduling because of common failures. Predicting accurately all
the failures to happen in the execution is unrealistic, so PEQC provides reactive update
algorithm to adjust to the changes caused by failures.

PEQC has to ”repair” the whole network and re-compute the critical path whenever
a task failure comes up. An intuitive method is to reconstruct the PERT network and
repeat the regular steps of Algorithm1. However, this method involves much unneces-
sary work and costs much time when failures are very common. We can partition the
baseline PERT network into three parts depending on the time when failure occurs, just
as Fig. 4 shows(failure happens at 3s): executed part contains tasks that have completed
or being executed when failure occurs; scheduling part contains tasks that haven’t ex-
ecuted and their scheduling is affected by the failure; pending part contains tasks that
have not been executed, and their scheduling is not changed by this failure. Tasks in
the scheduling part have two characteristics: they belong to the same job batch with the
failure task, and they have not been executed when the task failure happens. The update
algorithm only changes the scheduling part instead of the whole PERT network.

Algorithm 2. Updating PERT When Task Failure Happens
input : AdjList[]: baseline PERT network; T : TaskSquence; t f : failed task; T Pf : time

point when failure happens.
output: Updated PERT network
Schedule.setInitial();1

start task =T.getNext(Schedule.getLastTask()); slot = Schedule.getSlot(t f);2

RT Pf = T Pf − ST ; /* ST : start time of job batch; RT Pf : relative failure time to ST */3

Schedule[slot].current lengh = Schedule[slot].scheduling lengh = RT Pf ;4

CandidateSlots = getShortestSlot(Schedule − slot);5

ls = getLocalSlot(CandidateSlots, t f ′); /* t f ′ represents the re-executing task of t f */6

Ad jList[++ length].data = t f ′.name; Ad jList[length].ad j = null;7

Edge e = new Edge(t f ′.name, t f ′.length, t f ′. f ailureprob,null);8

addEdge(s.executing task, e);9

ls.scheduling task = t f ′;10

ls.scheduling length+= t f ′.length;11

for edge in getFollowingEdge(t f) do12

if edge.name ∈ t f .dependency then13

moveEdge(edge, t f ′); /*move edge consecutively after t f ′, update the14

scheduling length and scheduling task of two corresponding slots*/

for all job J between start task and end task do15

s = getShortestSlot(Schedule); t = getLocalTask(s,J);16

edge = getEdge(t); moveEdge(edge,s.scheduling task);17

for edge in getFollowingEdge(t) do18

if edge.name ∈ t.dependency then19

moveEdge(edge, t)20

The left bound ary of scheduling part can be determined by the event nodes repre-
senting the completion of executing tasks. The right bound ary is composed of the event
nodes that represent the completion of reduce tasks owing to the same job batch with the

Halt or Continue: Estimating Progress of Queries in the Cloud 179

m11=4

m23=17
m22=12
m21=10

m12=9

m26=10

m25=11

m24=6

0
0

0
0

0

0

0

r2=15

r1=12

0

0

m3=10 r3=15 0

Executed Scheduling Pending

Fig. 4. Task Failure Happens

m11=4

m23=17
m22=12
m21=10

m12=3

m25=10

m24=11

m12'=4

0
0
0
0

0

0

r2=10

r1=9

0

0

m3=4 r3=5 0

m26=12

Scheduling Executed Pending

Fig. 5. The Task Scheduling after Failure

failed task. After determining the start task and end task from the task scheduling queue,
Algorithm2 reschedules the tasks between the start task and end task, and updates
the network. PEQC maintains two arrays called MapSchedule and ReduceSchedule
for every job batch, which store the execution and scheduling information for map
slots and reduce slots respectively. Every element in the array contains four variables:
executing task represents the task that is executing on this slot; scheduling task rep-
resents the last scheduled task of this slot; current length represents the duration sum
of tasks executed on this slot; scheduling length represents the duration sum of tasks
scheduled on this slot. At the beginning of the update algorithm, scheduling task is set
to the executing task, and scheduling length is set to current length(line1). The failure
task affects the scheduling of tasks of the same type with it, the processing procedure af-
ter failed map task and reduce task are the same except the scheduling arrays they used.
During the scheduling queue T , the start task is the one following the last task of the
executed part (line2), and the end task is the one before the first task of the pending part.
For the corresponding slot of t f , its current length should be changed to the relative
time of TPf to the start time of the job batch (line3-4). Algorithm 2 schedules t f

′
first

because failure task always has the highest priority (line5-6). After finding the proper
slot ls, it creates a new node and a new edge for t f

′
, the new node is added at the end

of Adjlist (line7-8), and the new edge is added after the executed task of ls (line9-11).
The edges following tf which represent the logical precedence of the query, are moved
consecutively after the new task t f

′
(line12-14). After processing t f

′
, Algorithm2 re-

schedules the tasks between start task and end task(line15-20). The re-computed task
scheduling after failure is shown in Fig. 5.

The previous method focuses on updating the network when a task failure happens.
When node failure happens, all the executing tasks on the failure node have to be re-
executed on other nodes. If a map task has completed on the node before failure hap-
pens, but the job the map task belongs to hasn’t completed, then this map task also has
to be re-executed. Because the output results of map task are stored on the local node,
and the output results are unavailable after the node failure. The updating algorithm
after node failure should take three things into consideration: first, there may be more
than one failed task to be re-executed; second, the slots on the failure node should be
disabled when re-scheduling tasks; third, the scheduling of tasks in the pending part
may be changed because of the disabled slot. The pending part may include several job
batches, and the updating can execute parallel.

180 Y. Shi, X. Meng, and B. Liu

5 Evaluation

In this section we evaluate PEQC, and compare it with ParaTimer and the default esti-
mator of Pig from two aspects: the precision of query estimate and the resilience react-
ing to failures. The experiment is implemented on Pig 0.8.0 and Hadoop 0.20.2.

5.1 Experimental Setup and DataSet

All the experiments are run on a heterogeneous cluster of 31 nodes connected by a
1Gbit Ethernet switch. One node serves as the namenode of HDFS and jobtracker of
MapReduce, and the remaining 30 nodes act as slaves. There are four levels of hardware
equipment of all the nodes in the cluster, the setup details are shown in Table 3. The
master node which acts as the jobtracker belongs to levelIII.We set the block size to
64M, and configure Hadoop to run 1 mapper and 1 reducer per node.

Table 3. Testbed Setup

LevelI LevelII LevelIII LevelIV

CPU
Quad Core Quad Core Quad Core Quad Core
2.33GHz 2.66GHz 4GHz 2.13GHz

RAM 7GB 8GB 4GB 4GB
Disk 1.8TB 2TB 2TB 500GB

No. of Node 4 10 14 2
Node Type PC PC PC Server

In the experiment we adopt the query introduced in Section 3.1, which contains
three MapReduce jobs. We perform the tests on two datasets with different data size.
In dataset1, the data size of Rankings and UserVisits are 2G and 24.5G; in dataset2,
the data size of the two table are 1.4G and 61G. We adopt the data generation method
from[13]. It first generates a collection of random HTML documents, then generates
the data of Rankings and UserVisits. The task number of every job is listed in Table 4.
We estimate the distribution parameters of task duration from the task running history
of every node, Table 5 shows the distribution parameters of map task in Job2 on four
nodes, they belong to four different hardware levels.

Table 4. No. of Tasks

Mappers Reducers Mappers. Reducers
Dataset1 Dataset1 Dataset2 Dataset2

Job1 393 27 970 66
Job2 32 3 21 2
Job3 406 27 998 67

Table 5. Distribution Parameters

Node1 Node6 Node11 Node30

Mean Value 12.60 8.19 7.30 9.60

Variance 0.77 0.72 0.46 0.99

Halt or Continue: Estimating Progress of Queries in the Cloud 181

5.2 Accuracy Evaluate

In this experiment, we evaluate the estimate accuracy and the time overhead of get-
ting the first estimate result in the heterogeneous environment. We obtain progress es-
timate every 10 seconds and examine three metrics: mean estimate error, max estimate
error[3][11], and time overhead. Pig reports the progress as the percentage of the query
completed, PEQC and ParaTimer provide the remaining time. In order to compare them
with the same metric, we transform the percentage of query f reported by Pig into re-
maining time: tremaining =

(1− f)(ti−t0)
f . t0 represents the time when the query is submitted,

ti represents the time when this estimate is reported. Let te represents the estimated re-
maining time at time ti, tn represents the time when the query actually completes, then
the estimate error at time ti is: errori = | ti+te−tn

tn−t0
|.

Fig. 6 and Fig. 7 illustrate the remaining query time estimated by the progress indi-
cator over time on two datasets. There are four lines in each figure. The almost straight
line represents the actual remaining time. In Fig. 6, there are two turning points on Pig’s
curve: t1(140s) and t2(380s). Pig’s indicator assumes all the jobs execute sequentially
with the same weight. Job1’s mappers occupied the slots before t1, so the estimate is
pessimistic. After that Job1 and Job2 execute concurrently, the estimate changes to be
optimistic. Job3 starts approximately at t2, and its duration accounts for about one-third
of the whole query’s time. So after t2, the estimate is close to the actual remaining time.
ParaTimer’s estimate becomes close to the actual line at t3(448s), when there are only
the reducers of Job3 executing. The critical path ParaTimer detects after t3 is close to
the actual one. PEQC computes the critical path from PERT network, and it supplies
relatively stable estimate. In general, PEQC’s estimate is slightly optimistic. This is be-
cause PEQC computes the critical path based on the mean value of every task duration,
which is different from the task’s duration in the actual query execution. The trend of
every curve in Fig. 7 is similar to that of Fig. 6. The metrics of tests on two datasets
are shown in Fig. 8. Pig fetch the job progress from Hadoop directly without any over-
head. PEQC has to construct the PERT network and compute the critical path before
estimating, and ParaTimer has to compute the path fragment and compose the critical
path, which costs more time than PEQC.

700

800
900

c)

PEQC ParaTimer Pig Actual

400
500

600
700

ni
ng

 ti
m

e(
se

c

0

100
200
300

re
m

ai

0

0 32

65

98

13
2

16
7

20
2

23
8

27
4

31
0

34
5

38
3

42
2

46
1

50
1

54
0

Fig. 6. Estimated Result (Dataset1)

PEQC P Ti Pi A l

1750

2000

2250

c)

PEQC ParaTimer Pig Actual

750

1000

1250

1500

ni
ng

 ti
m

e
(s

ec

0

250

500

750

re
m

ai
n

0

0 89

18
1

27
5

37
6

47
4

57
2

67
1

76
9

86
7

98
7

11
09

12

29

13
47

14

63

Fig. 7. Estimated Result (Dataset2)

182 Y. Shi, X. Meng, and B. Liu

Overhead(s)

Fig. 8. Metrics of Accuracy Test Fig. 9. Metrics of Failure Test

5.3 Robustness to Failures

In this section, we conduct two tests to evaluate the estimators’ robustness to task fail-
ures and node failures. The metrics we adopt are: mean estimate error, max estimate
error, the time overhead of reacting to each failure. Fig. 10 shows the results of task fail-
ure test. ParaTimer provides an additional estimate called PessimisticFailureEstimate,
which assumes a single worst-case task failure will occur. We run this test on dataset1
and fail three tasks at 134s, 225s, and 377s. The metrics are shown in Fig. 9. When
task failure occurs, PEQC only recomputes part of the network, so it cost less time than
ParaTimer.

Fig. 11 shows the results of node failure. ParaTimer does not support estimate in
presence of node failures, we conduct this test on PEQC and Pig on dataset2. We make
two node failures(two nodes in LevelI) by cutting off their network connections to the
cluster concurrently. The node failure happens at about 275s, when Job1 is executing.
There are 28 slave nodes left in the cluster after the failure, all the executing tasks
and completed map tasks of Job1 have to be re-executed, and the scheduling of the
remaining tasks have to be changed. The metrics of this test is shown in Fig. 9. It costs
PEQC 2.9s to repair the network and re-compute the critical path. Though tasks in both
JB1 and JB2 have to be re-scheduled, and their critical paths have to be re-computed,
PEQC can do the repair work in parallel.

PEQC ParaTimer Pig Actual Pessimistic

700

800

900

ec
)

Q g

400

500

600

ni
ng

 ti
m

e(
se

100

200

300

re
m

ai
n

0

0 42

85

12
9

17
5

22
3

27
0

31
8

36
6

41
7

46
9

52
1

56
7

61
0

Fig. 10. Estimated Result (Task Failure)

i l

2500

3000

)

PEQC Pig Actual

1500

2000

ni
ng

 ti
m

e(
se

c)

500

1000

re
m

ai
n

0

0
15

4
31

6
49

1
65

9
82

6
99

4
11

62

13
31

14

99

16
82

18

89

20
93

22

93

Fig. 11. Estimated Result (Node Failure)

6 Conclusion and Future Work

In this paper, we propose PEQC, a progress indicator of queries composed of MapRe-
duce jobs in the cloud. PEQC focuses on solving challenges brought by two features of
cloud: environment heterogeneity and common failures. PEQC models the task

Halt or Continue: Estimating Progress of Queries in the Cloud 183

execution of a whole query into a stochastic PERT network. It adopts partial update
mechanism to react to the task failures. Based on our implementation on Pig & Hadoop
on a heterogeneous cluster, PEQC provides promising remaining time estimate of a
query in the cloud, and can repair the PERT network when failure happens in acceptable
time. There are also some inherent characteristics within MapReduce that give rise to
difficulties of the problem, such as speculative execution and data skew in the reduce
phase. We will judge the tradeoff between algorithm complexity and processing time,
and make PEQC more robust to these challenges in the future work.

Acknowledgements. This research was partially supported by the grants from the Nat-
ural Science Foundation of China (No. 91024032, 91124001, 61070055, 60833005),
the Fundamental Research Funds for the Central Universities, and the Research Funds
of Renmin University of China (No. 11XNL010, 10XNI018), National Science and
Technology Major Project (No. 2010ZX01042-002-003).

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB:
an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. In:
35th ACM Conference of Very Large Databases, pp. 922–933. ACM Press, New York (2009)

2. Chaudhuri, S., Kaushik, R., Ramamurthy, R.: When can we trust progress estimators for
SQL queries. In: 25th ACM International Conference on Management of Data, pp. 575–586.
ACM Press, New York (2005)

3. Chaudhuri, S., Narassaya, V., Ramamurthy, R.: Estimating progress of execution for SQL
queries. In: 24th ACM International Conference on Management of Data, pp. 803–814. ACM
Press, New York (2004)

4. Dean, J.: Experiences with mapreduce, an abstraction for large-scale computation. In: PACT,
p. 1. IEEE Press, Washington (2006)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI,
pp. 137–150. ACM Press, New York (2004)

6. Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: Application of a technique for re-
search and development program evaluation. Operations Research 7(5), 646–669 (1959)

7. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: 17th ACM International
Conference on Management of Data, pp. 171–182. ACM Press, New York (1997)

8. Dean, J.: Designs, lessons and advice from building large distributed systems. In: Keynote
from LADIS 2009 (2009)

9. Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.: Toward a progress indicator for database
queries. In: 24th ACM International Conference on Management of Data, pp. 791–802. ACM
Press, New York (2004)

10. Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.: Increasing the accuracy and coverage of
SQL progress indicators. In: 21st IEEE International Conference on Data Engineering, pp.
853–864. IEEE Press, Washington (2005)

11. Morton, K., Balazinska, M., Grossman, D.: ParaTimer: A progress indicator for mapreduce
DAGs. In: 30th ACM International Conference on Management of Data, pp. 507–518. ACM
Press, New York (2010)

12. Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the progress of MapRe-
duce pipelines. In: 26th IEEE International Conference on Data Engineering, pp. 681–684.
IEEE Press, Washington (2010)

184 Y. Shi, X. Meng, and B. Liu

13. Pavlo, A., Rasin, A., Madden, S., Stonebraker, M., DeWitt, D., Paulson, E., Shrinivas, L.,
Abadi, D.J.: A comparison of approaches to large-scale data analysis. In: 29th ACM Interna-
tional Conference on Management of Data, pp. 165–178. ACM Press, New York (2009)

14. Schad, J., Dittrich, J., Quian-Ruiz, J.: Runtime measurements in the cloud: observing, ana-
lyzing, and reducing variance. J. Proc. of VLDB Endowment 3(1), 460–471 (2010)

15. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformat-
ics 25(11), 1363–1369 (2009)

16. Shogan, A.W.: Bounding distributions for a stochastic pert network. Networks 7(4), 259–381
(1977)

17. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce per-
formance in heterogeneous environments. In: OSDI. ACM Press, New York (2008)

18. The Hadoop Website, http://hadoop.apache.org
19. The Pig Website, http://pig.apache.org

http://hadoop.apache.org
http://pig.apache.org

Towards a Scalable, Performance-Oriented

OLAP Storage Engine

Todd Eavis1 and Ahmad Taleb2

1 Concordia University, Montreal, Canada
2 Najran University, Saudi Arabia,

College of Computer Science and Information Systems

Abstract. Over the past generation, data warehousing and OLAP ap-
plications have become the cornerstone of contemporary decision support
environments. Typically, OLAP servers are implemented on top of either
proprietary array-based storage engines (MOLAP) or as extensions to con-
ventional relational DBMSs (ROLAP).While MOLAP systems do indeed
provide impressive performance on common analytics queries, they tend
to have limited scalability. Conversely, ROLAP’s table oriented model
scales quite nicely, but offers mediocre performance at best relative to the
MOLAP systems. In this paper, we describe a storage and indexing frame-
work that aims to provide both MOLAP like performance and ROLAP
like scalability by essentially combining some of the best features of both.
Based upon a combination of R-trees and bitmap indexes, the storage en-
gine has been integrated with a robust OLAP query engine prototype that
is able to fully exploit the efficiency of the proposed storage model. Exper-
imental results demonstrate that not only does the framework improve
upon more naive approaches, but that it does indeed offer the potential to
optimize both query performance and scalability.

1 Introduction

Data warehousing and OLAP have been popular targets for researchers over
the past 10-15 years, with papers published on a wide variety of related topics.
In the OLAP domain, early work often focused on the development of algo-
rithms for the efficient computation of the data cube. Later, the cube methods
were expanded to include mechanisms for the computation or representation of
hierarchies derived from the cube’s dimensions. For the most part, academics
built upon table-based models, as the associated relational systems were well
understood. On the positive side, scalability for relational OLAP (ROLAP) was
very impressive and was generally limited only by the hardware. Unfortunately,
such systems often provided poor query performance as they were ill suited to
OLAP’s complex, multi-dimensional data model.

For this reason, commercial vendors often developed proprietary array-based
server products that were meant to more closely resemble the hyper-cubic nature
of the data cube. Performance on these multi-dimensional OLAP (MOLAP)
servers was/is indeed impressive as the direct indexing provided by arrays often
leads to much improved query response time. Of course, everything comes at a

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 185–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

186 T. Eavis and A. Taleb

price and, in the case of MOLAP, scalability remains a concern. Specifically, the
sparsity of high cardinality OLAP spaces significantly limits the size of the cube
structures in enterprise environments.

In this paper, we discuss the storage architecture — from a systems per-
spective — for an OLAP-specific server designed from the ground up as a high
performance analytics engine. The system is capable of efficiently generating full
or partial cubes and subsequently providing complex processing on common cube
queries (slice/dice, drill down/rollup, etc.). Until recently, the DBMS essentially
relied on the file system for storage services. Some indexing was available but it
was limited in nature. Our recent work, as presented in this paper, has signifi-
cantly extended the original model to include both R-tree and bitmap indexing
facilities. Specifically, we have integrated the open source Berkeley DB libraries
into the server so as to encapsulate both indexes and cube data within a single
data store. Cube dimensions are also efficiently stored as Berkeley DB databases
and are, as expected, hierarchy aware. Non-hierarchical attributes, in turn, are
stored as a set of FastBit bitmap indexes. Ultimately, the integrated architecture
represents a very efficient OLAP storage engine that provides the kind of query
performance that one would expect of a MOLAP system, with the scalability
typically associated with table-oriented relational servers.

This paper is organized as follows. In Section 2, we discuss a number of re-
lated research projects. In Section 3, we introduce the conceptual model upon
which the storage engine is based. A detailed look at how data is encoded is
provided in Section 4, including both its abstract and physical representation.
The integration with the Berkeley DB and Fastbit bitmap libraries is discussed
in Section 5. Then, in Section 6, we present an overview of the query processing
logic that actually utilizes the relevant storage components. We round out the
paper with some final conclusions in Section 8.

2 Related Work

Subsequent to the initial definition of the data cube cube operator [9], a number
of researchers proposed techniques for the compact representation of the cube.
Both the DWARF cube [18] and QC-trees [11], for example, define compact
non-relational tree-based structures that provide efficient data access. However,
their complex models were never integrated into practical systems, academic or
otherwise. Conversely, the CURE cube [14] supports the representation of cubes
and dimension hierarchies and does so with relatively compact table storage.
Still, the CURE model lacks the native multi-dimensional indexing schemes that
are essential for high performance query functionality.

In terms of OLAP indexing, a number of researchers have proposed methods
that would improve warehouse access. In the simplest case, clusters of B-trees
have been proposed, though such an approach is neither scalable nor efficient
in higher dimensions [10]. A more interesting proposal was perhaps the CUBE
Tree, a warehouse-specific mechanism based upon the R-tree [17]. The CUBE
tree not only demonstrated that the R-tree was well suited to OLAP access
patterns, but also provided an efficient update mechanism.

Towards a Scalable, Performance-Oriented OLAP Storage Engine 187

Recently, column store databases have been investigated as means to minimize
IO costs on aggregation queries [16]. It is important to note, however, that
column stores are best suited to general purpose warehouses that perform ad hoc,
real time querying involving massive amounts of raw data. True OLAP servers,
often working in conjunction with a supporting warehouse (possibly a column
store), typically use a combination of pre-aggregation, specialized indexing, and
query optimization to target the most common query forms. In practice, OLAP
severs and column store DBMSs can be seen as complimentary rather than
competitive.

A second recent theme has been the exploitation of the increasingly popular
MapReduce framework [3] — and its open source implementation Hadoop —
as a kind of parallel DBMS subsystem. Integration of Hadoop and traditional
relational DBMSs (with their storage and indexing architectures) has also been
suggested [1]. While this work is indeed interesting, there remains considerable
doubt as to whether such systems can compete directly with the performance
offered by purpose-built DW/OLAP servers [19].

Finally, we note that non-academic DBM systems are certainly available. The
open source Java-based Mondrian server, for example, provides OLAP query
functionality [13]. Mondrian, however, is primarily an OLAP query API and
actually piggy-backs on top of existing database servers. Commercially, leading
vendors such as Microsoft [12] and Oracle [15] also provide warehousing and
OLAP applications, often with very rich functionality. Even here, however, users
generally have a choice between the scalability of ROLAP or the performance
of MOLAP. It is true that Hybrid OLAP (HOLAP) promises the “the best of
both worlds” by incorporating relational tables and array-storage into the same
repository but, in practice, this is an awkward, complex configuration at best.

3 The Data Cube Model

Before we look at the storage framework, we briefly discuss the model the DBMS
is meant to represent. We consider analytical environments to consist of one or
more data cubes. Each cube is composed of a series of d dimensions — sometimes
called feature attributes — and one or more measures. The dimensions can be
visualized as delimiting a d -dimensional hyper-cube, with each axis identifying
the members of the parent dimension (e.g., the days of the year). Cell values,
in turn, represent the aggregated measure (e.g., sum or count) of the associated
members. Figure 1(a) provides an illustration of a very simple three dimensional
cube on Store, Time and Product. Here, each unique combination of dimension
members represents an aggregation on the measure. For example, we can see
that Product OD923 was purchased 53 times at Store CA69 in January (assum-
ing a Count measure). Note, as well, that each dimension is associated with a
distinct aggregation hierarchy. Stores, for instance, are organized in Country,
Province, and City groupings. There are in fact many variations on the form
of OLAP hierarchies [7] (e.g., symmetric, ragged, non-strict). Regardless of the
form, however, traversal of these aggregation paths — typically associated with

188 T. Eavis and A. Taleb

(a)

Location

PK Store_Number

store
city
state
country

Product

PK Product_Number

name
colour
user
type
category

Time

PK timeID

day
month
year

Sales Fact

PK,FK1 Store_Number
PK,FK3 Product_Number
PK,FK2 timeID

totalSales

(b)

Fig. 1. (a) A three dimensional data cube (b) The Star Schema

rollup and drill down operations — is perhaps the single most common query
pattern in the OLAP domain.

In practice, the cube is modeled as what is known as a Star Schema, essentially
a central Fact table surrounded by one or more Dimension tables. Figure 1(b)
demonstrates how the cube would be logically represented in a relational system.
Note that the primary keys of the dimension tables form a composite primary
key in the Fact table. Moreover, it is important to keep in mind that the Fact
table typically dwarfs the Dimension tables in size. Consequently, we must seek
to minimize both its size and processing costs.

4 Encoding the Database

Given the cube model presented above, we now examine how our DBMS actually
encodes the contents of the schema. We begin with an overview of Dimension
encoding. We note that Dimension attributes can be described as either hierar-
chical or non-hierarchical, with each requiring a distinct representation. In short,
hierarchical attributes are those found within a dimension aggregation pathway
(e.g., Country-Province-City), while non-hierarchical attributes are descriptive
elements typically used to restrict a user query (e.g., Product Name). Encoding
of a non-hierarchal dimension — a dimension that doesn’t contain any hierarchy
— is relatively straightforward and is accomplished with a linear pass through
the native data set that simply assigns an incremental surrogate key to the table
(i.e., an artificial, integer-base primary key).

Encoding of hierarchical values is more involved and is based upon the notion
of hierarchy linearity [6]. Given an a hierarchy A, we define the hierarchy levels
A1, A2, . . . Ak, for hierarchy depth k, in terms of decreasing granularity. So, for
example, A1 = city is more granular than A2 = province. Briefly, we say that
a hierarchy on an attribute A is linear if for all direct descendants A(j) of A(i)

there are |A(j)|+1 values, x1 < x2 . . . < x|A(j) | in the range 1 . . . |A(i)| such that

Towards a Scalable, Performance-Oriented OLAP Storage Engine 189

A(j)[k] =

xk+1∑
l=xk

A(i)[l]

where the array index notation [] indicates a specific value within a given hierar-
chy level. Informally, we can say that if a hierarchy is linear, there is a contiguous
range of values R(j) on A(j) that may be aggregated into a contiguous range R(i)

on A(i).
The DBMS exploits hierarchy linearity by using mapping tables that represent

a sorting of the hierarchical column values of the associated dimension. In effect,
values are ordered as Ak, Ak−1, . . . , A1, where A1 is the base attribute in the
hierarchical dimension. For each hierarchical attribute level L in the dimension,
a sibling column L ID is added. Values of L ID are created as consecutive integer
IDs and are used to delineate hierarchical group-by levels. Figure 2(a) illustrates
the mapping table for the Product dimension with the three-level hierarchy
ProductNumber → Type → Category. In the next section, we will see that these
mapping tables are used to load hierarchy-aware data structures that provide
real-time query value transformations.

4.1 Dimension Table Storage

We must now consider how these dimension tables are physically stored on disk.
We address hierarchical attributes first. Once the mapping tables have been de-
fined, they are used to load a data structure called a mapGraph [6]. Figure 2(b)
shows a mapGraph sub-structure called an hMap that is used to model a simple
Product hierarchy (We note that the mapGraph is typically loaded in a single
linear pass when the cube is first accessed). In effect, the mapGraph is a two-
way hashing structure for the hierarchy levels above the base. For a sub-attribute

(a) (b)

Fig. 2. (a) Product Mapping Table (b) mapGraph structure for the Product dimension

190 T. Eavis and A. Taleb

(Aj), j ≥ 2, the associated map is made up of the maximum encoded value from
the range on (A1), corresponding to the current encoded value of (Aj). We add
the native values of (Aj) to allow conversion of any encoded value of (Aj) to
its native value. For example, we can use the Category component to retrieve
the encoded value (1) of the Automotive category in O(1) time. Then, we can
use the map associated with Category to find all ProductIDs (1 → 7) that are
Automotive. Conversely, mapping base level IDs to coarser levels (i.e., base value
7 → Interior at the Type level) can be done as a O(logn) binary search, where
n = the cardinality of the given level (typically quite small relative to the base
level). Because data in the associated Fact structure is physically stored at the
base level (i.e., the dimension record’s surrogate key), the mapGraph allows ex-
tremely efficient run-time mapping in response to the user’s query specification.
Specifically, constraints can be transformed between levels at run-time, with the
final results aggregated as required.

Non-Hierarchical Attributes. While the transparent mapping of hierarchi-
cal attribute values is crucial for optimal query performance, non-hierarchical
attribute processing must also be efficiently supported. In particular, if a non-
hierarchical attribute is used in the restriction of an OLAP query or displayed
in an OLAP report (e.g.,“All customers older than 40”), then joins between the
appropriate group-bys and dimension tables are required. This process can be
very expensive and its costs must therefore be minimized.

The DBMS utilizes bitmap indexes for this purpose. For each non-hierarchical
attribute we provide one bit string for each distinct value on the dimension.
For k -non-hierarchical attributes, with each attribute having m distinct val-
ues, we would therefore have (k*m) bit strings. In practice, compression tech-
niques (typically some variation of Run Length Encoding) significantly mini-
mize storage requirements. Ultimately, the advantage of bitmap indexes for non-
hierarchical attributes is that they allow us to identify the surrogate key values
(e.g., ProductID) matching multiple non-hierarchical column constraints, typi-
cally without retrieving any records from the dimension table itself. In the current
context, the DBMS uses the open source FastBit bitmap indexing libraries [8]
as its bitmap subsystem.

4.2 Fact Structures

While the dimension tables, and their indexes in particular, are involved in
the resolution of virtually every query, the bulk of both the raw IO and post-
processing is associated with the enormous Fact structures. We saw earlier how
the DBMS associates each dimension table record with a surrogate key. It is
these integer values, along with the associated measures (e.g., a total sales sum-
mation), that are housed within the Fact Structure. Physically, the DBMS stores
and indexes data using what is known as a packed R-tree[17]. Specifically, the
underlying data records are ordered as per the Hilbert space filling curve [5].

Towards a Scalable, Performance-Oriented OLAP Storage Engine 191

Note that for a d-dimensional space of side-length s, the sd-length curve iden-
tifies a unique, strictly increasing order on the sd point positions. We refer to
the numeric representation of a point position as a Hilbert ordinal . Figure 4(a)
provides an illustration of a simple 2-dimensional space, with each point rep-
resenting the feature values of two distinct dimensions (e.g., think Product on
the vertical axis and Customer on the horizontal). One can clearly see how data
points are ordered as per the Hilbert curve (origin at bottom left), with the index
itself formed as a series of increasingly broad block-sized bounding boxes. Here,
Box B0 forms the root of the R-tree, B1/B2 are at the second level, and B2-B8
form the leaves. Ultimately, the benefit of Hilbert packing is that it clusters spa-
tially related points into common disk blocks. For OLAP queries that typically
identify value ranges on multiple dimensions, this translates into significant IO
savings at run-time.

(a) (b)

Fig. 3. (a) A 2-D Hilbert data set and index (b) Tuple differential compression

In practice, the fact table is stored in a compressed form, using a technique
known as Hilbert tuple differential compression. Here, data records are first
sorted in terms of their relative position in the Hd

k space. Pairs of adjacent
points < i, j > along the curve may then be represented in integer form as the
difference value |ordinali − ordinalj |, i < j. Figure 4(b) provides a simple exam-
ple in which points are located 6 and 9 steps from the H2

3 origin. With the first
point serving as the anchor , the second point — sales of Product 3 for Customer
3 — is stored as 9 − 6 = 3, or 11 in binary form. This is 62 bits less that the
default encoding for a 2-d value (assuming 32-bit integers). When coupled with
bit compaction techniques that strip away leading zeros, differential compression
can produce storage savings of 20%-80%.

192 T. Eavis and A. Taleb

It should be clear that the physical representation of the Fact data, while
conceptual encoded as a table of records (i.e., ROLAP), bears little resemblance
to a traditional table. In essence, it is a block-based collection of compacted bit
strings, each representing a specific point in the multi-dimensional data space.
Moreover, its supporting Hilbert R-tree index provide rapid retrieval of points
in contiguous ranges. In short, it blurs the line between ROLAP and MOLAP
by providing some of the best features of both.

5 Cube Consolidation

In practice, the DBMS allows the administrator to either fully or partially mate-
rialize the O(2d) summary views or group-bys in the d-dimensional.This can be
done to reflect disk space availability or performance constraints. Each group-by
effectively represents a subset of the Fact Structure and is physically represented
as a pair of files — one that houses the data in Hilbert sort order and one that
defines the R-tree index metadata and bounding boxes. Even for a partially
materialized cube, this can represent a large number of files that have to be in-
dependently managed by the OS and the DB admin. Moreover, these files are not
databases in any sense of the word and lack even basic mechanisms for caching,
locking, ACID compliance, etc.

For this reason, we have chosen to embed the Berkeley DB libraries [2] within
the larger DBMS framework. While the Berkeley API offers a number of indexing
methods (Btree, Hash, Recno, Queue), it has no direct support for R-trees. As
such, we have extended the Berkeley C++ interface to allow for the creation and
access of Hilbert packed R-trees using standard Berkeley protocols. We note that
Berkeley supports the storage of multiple Database Objects in one physical file
known as an environment. In the current context, the Berkeley database contains
a master B-tree database that, in turn, points to all related group-by meta data,

(a) (b)

Fig. 4. (a) The internal structure of a cube database (b) The full cube storage archi-
tecture

Towards a Scalable, Performance-Oriented OLAP Storage Engine 193

indexes, and tuple compressed data. The extended API transparently routes data
access requests as required. In Figure 4(a) we see how we store, in one physical
file, the seven materialized group-bys for the three-dimensional cube ABC (letters
represent dimension names). For each indexed group-by, the following blocks are
required: one block to store the metadata, consecutive blocks to store the data
blocks in their Hilbert ordered form, and consecutive blocks to store the Hilbert
R-tree index. In this case, 56 contiguous blocks are used in total.

Finally, Figure 4(b) provides a more complete illustration of the core compo-
nents of the storage engine, albeit for a very simple example with just two dimen-
sions. One can see how the dimension tables are accompanied by a (memory-
resident) hMap structure to support hierarchical attributes, multiple bitmaps
for non-hierarchical attributes, and a system generated surrogate key. During
query resolution (discussed below), strings of surrogate keys pass in/through
the query engine to the storage backend. At that point records can be matched
against Hilbert compressed data, using the Berkeley Master B-tree to locate the
required view/block combinations.

5.1 Supporting DBMS Components

While the table storage and indexing components are the focus of the current
paper, we note that the DBMS as a whole provides a relatively comprehensive
processing stack. Figure 5 illustrates the complete architecture of the DBMS,
including the native components as well as the Berkeley extensions. Note that
the View Manager is responsible for the identification of the most cost effective
group-by — and is initialized by scanning the primary Master B-tree database
that contains references to all indexed group-bys — while the Hierarchy Man-
ager builds and maintains the in-memory mapGraph structures. Note as well
that OLAP Caching has nothing to do with the Berkeley caching component
that stores recently accessed disk blocks, but refers instead to a native, multi-
dimensional OLAP query cache.

Fig. 5. Single Berkeley environment

194 T. Eavis and A. Taleb

6 Query Processing Logic

The DBMS provides full query processing functionality. In particular, it ex-
poses an OLAP-specific algebra (similar to the relational algebra) that allows
queries to be transformed into algebraic expression trees and extensively opti-
mized at runtime. While the algebra and optimization methods are the subject
of a concurrent submission, it is nonetheless important in the current context to
understand how the storage and indexing facilities are integrating into the query
engine. In this section, we examine the logic of the query resolution process.

Algorithm 1 is a somewhat simplified representation of the core logic imple-
mented by the query engine. (We note that DBMS is actually a fully parallelized
architecture so that the resolution algorithm is executed by each of the back-
end servers in the cluster federation.) Queries are transmitted to/from the end
user in XML format and verified syntactically against an XML Query Gram-
mar. Valid queries are then evaluated for semantic correctness to ensure that
they comply with the database schema. If so, an algebraic plan is generated,
optimized via a set of transformation rules, and then converted into a series of
function calls that carry out the plan. It is these execution algorithms that will
actually manipulate the indexes and storage structures described in the paper.
While the View Manager, Hierarchy Manager, and Bitmap Manager will already
have been initialized (on previous queries), they may need to be updated as per
the current query parameters. Finally, once the query has been resolved (using
buffer pipelining where appropriate), the encoded integer values are converted
back into the text-based column values expected by the end user.

Algorithm 1. Query Resolution

1: Receive user’s XML-encoded OLAP query Q
2: Perform syntactic and semantic verification on Q
3: IF Q is valid, create parse tree P
4: Generate and optimize algebraic algebraic expression tree E from P
5: for each algebraic operation in E do
6: Generate a function call fi to invoke the associated execution algorithm
7: Add function fi to set fC.
8: Update mapGraph Hierarchy Manager (M), as required
9: Update View Manager (M), as required
10: Update Bitmap Index manager (B) for non-hierarchical attributes, as required.
11: for each function call fi in fC, where i = 1, . . ., n - 1 do
12: Invoke the associated execution algorithm(s)
13: Pass the result Ri to the pipelined parent function fi+1

14: Re-sort and aggregate Rn−1 as required.
15: Convert internal format to textual representation for display.

We now turn to the logic implemented by the second FOR loop; that is, the
actual data access methods. While each implementation function is associated
with a distinct algebraic operator, we will focus here on SELECTION as it is

Towards a Scalable, Performance-Oriented OLAP Storage Engine 195

arguably the most important and expensive of the core operations. Given the
underlying indexes and storage structures, it is the job of the SELECTION algo-
rithm to map the user’s query constraints to the Dimension and Fact structures.
This happens in two stages. First, hierarchical and non-hierarchical query at-
tributes are converted as required into the base level attributes found in the
Fact table. Algorithm 2 describes this process. Using either the mapGraph Hi-
erarchy Manager or the FastBit bitmap indexes, ranges of contiguous base level
IDs are extracted. Logical AND or OR operations are applied as required. The
end result is an ordered list of Dimension record IDs (i.e., surrogate keys) that
may be passed as input to the Fact Structure search algorithm.

Algorithm 2. SELECTION Transformation

Input: An OLAP selection condition C, a hierarchy manager M , an OP array of
logical operators, and a bitmap index manager B.

Output: A set S of matching surrogate keys.
1: for each dimension condition Ci in C do
2: for each expression ej in Ci do
3: if attribute (A) involved in ej is a hierarchical attribute level then
4: arrayj = M .getBaseID(A, ej)
5: else
6: arrayj = B.getBaseID(A, ej)
7: if Logical Operator between ej and ej−1 == AND then
8: arrayj = setIntersection(arrayj, arrayj−1)
9: else
10: arrayj = setUnion(arrayj, arrayj−1)
11: Set R = arrayj , ordered as a set of contiguous ranges
12: Replace current SELECTION condition Ci with R, the list of record-level IDs

satisfying condition Ci.

Once the Dimension ID lists have been generated, they are passed to the cube
storage engine to be matched against the Hilbert ordinals of the Fact Structure
(Note that the View Manager transparently selects the most cost effective group
by within the Berkeley database). Given an ordered list of O(d) range sets, the
search algorithm traverses the nodes in the selected R-tree based on a breadth
first traversal strategy, visiting each node in a level-by-level, left-to-right fashion.
Queries are answered as follows. For a level i of the tree, the algorithm identifies
at level i− 1 the j nodes (block numbers) that intersect the user query. It places
these block numbers into a page list W . Using the block numbers in W , the
algorithm traverses the blocks at level i− 1 and replaces W with a new list W ′.
This procedure is repeated until the leaf level has been reached. At this point, the
algorithm identifies and returns the d-dimensional records encapsulated by the
user query. Figure 6 illustrates the traversal logic of the Fact Structure search.
Because the Fact table stores dimension attributes as base level record IDs, and
because the input to the search algorithm is a set of base level IDs sorted in
ascending order, a breadth first search is able to make a single pass through the

196 T. Eavis and A. Taleb

table, incrementally adding relevant blocks IDs to the result list (While it is not
obvious in the illustration, the levels of the R-tree index are physically ordered on
disk in this same root-to-leaf fashion). Moreover, because of the explicit Hilbert
ordering of data, target records tend to be clustered into a small number of disk
blocks. In fact, even when selectivity is very high, the combination of Hilbert
ordering and breadth first search implies that, in the worst case, Fact Structure
access can be no worse than a sequential scan (and is typically much better).

7 Experimental Results

We now turn to the effectiveness of the integrated storage engine. To begin, we
note that all evaluations, unless otherwise indicated, are conducted on a Linux-
based workstation running a standard copy of the 2.6.x kernel, with 8 GB of
main memory and a 3.2 GHz CPU. Disks are 160 GB SATA drives operating at
7200 RPM. The Berkeley DB components are taken from version db4.7.25. Data
sets are generated using a custom data generator developed specifically for this
environment. We first generate a multi-dimensional Fact Table (the dimension
count varies with the particular test), with cardinalities arbitrarily chosen in the
range 2–10000. Depending on the test involved, row counts typically vary from
100,000 to 10 million records. The primary Fact tables are then used to compute
fully materialized data cubes containing hundreds of additional views or cuboids.
For example, a 10-dimensional input set of 1,000,000 records produced a data
cube of 1024 views and approximately 120 million total records. Once the cubes
are materialized, we index the data using the the R-tree and bitmap mechanisms.

Because individual millisecond-scale queries cannot be accurately timed, we
use the standard approach of timing queries in batch mode. In the succeeding
tests, five batches of queries are generated and the average run-time is computed
for each plotted point. Because query benchmarks are not well standardized for
OLAP (the OLAP APB benchmark is effectively dead and TPC-H is better

Fig. 6. Breadth First search strategy

Towards a Scalable, Performance-Oriented OLAP Storage Engine 197

suited to long running, ad hoc warehouse queries), we define our own query
classes (described below). (We note that space restrictions prevent a full cata-
logue of the queries. We expect to include the list of queries in the longer version
of this paper). The queries themselves are typically written in SQL and then
translated to an XML representation as required. Finally, we note that when
evaluating query performance, we use the “drop caches” option available in the
newer Linux kernels to delete the OS page cache between runs.

7.1 Non-hierarchical Attributes: FastBit Bitmap Versus Standard
B-tree

We begin with a comparison of the FastBit indexing subsystem for non hierarchi-
cal attributes versus clusters of standard B-trees (implemented by Berkeley DB).
We create a dimension (called Customer) with five non-hierarchical attributes
(Age, FirstName, LastName, Balance and Nationality) and 1,000,000 records
(i.e., the cardinality of the primary key CustomerID). The cardinalities of the
non-hierarchical attributes were arbitrarily chosen in the range 100 - 1000.

We constructed 3 sets of queries against the Customer dimension, with each
set containing five queries. The SQL format of two sample queries from each
category is given in Figure 7(a). We can see, for example, that Set 1 contains
only look-up queries on a single non-hierarchical attribute. Set 2 includes multi-
column constraints, while Set 3 consists of range queries with one or more at-
tributes.

Figure 7 (b) shows a comparison of the running time using the two indexing
implementations. For the first set (simple look-up on one attribute), we can see
that the running times are actually quite similar. However, when we move to the
more complex queries in Set 2 and Set 3, there is a factor of two to three increase
in running time for the B-tree indexing method. The difference is primarily due
to the efficient bitwise logical operations (AND and OR) directly supported on

(a) (b)

Fig. 7. (a) Sample SQL queries (b) Berkeley Btree versus FastBit bitmap

198 T. Eavis and A. Taleb

the compressed FastBit bitmap indexes. (For higher numbers of non-hierarchical
attributes, the performance of B-trees is quite poor.) Finally, we note that the
size of the B-tree indexes in this case is four times greater than the size of the
compressed FastBit bitmap indexes — 13.8 MB for the B-trees versus 3.5 MB
for the bitmaps.

7.2 Cube Construction

As previously noted, one of the advantages of the use of the Berkeley libraries is
that its environment construct allows us to encapsulate all views and indexes into
a single table space, thereby reducing the burden on the OS (and administrator).
We therefore compared cube construction times (indexes and data sets) for the
Berkeley environment versus the multi-file approach, as a function of both Fact
table size and Dimension count.

In the first test, the full cube (2d views) was generated from 9-dimensional
input sets (i.e., Fact tables) ranging in size from 10,000 records to 1,000,000
records. Figure 8 (a) shows the running time for index cube construction before
and after Berkeley DB integration. On average, the integration of Berkeley into
our server reduces the index cube construction time by 40% - 60%. The primary
reason for this reduction in time is that because the new method uses a single,
integrated DB repository, its contiguous block layout allows for very efficient IO,
even on larger R-trees. Conversely, use of multiple OS files leads to considerable
disk thrashing.

An increase in dimension count has a similar impact in that each additional
dimension effectively doubles the number of views to be computed and stored. In
Figure 8 (b), we see the results for a data set of one million records and dimension
counts of 5, 7, and 9 (common dimension counts in many OLAP environments).
Again, we observe that the running time when using Berkeley DB drops by 40%
to 60% due to the fact that we are storing the indexed cube in one contiguous
physical file.

7.3 Query Performance

Of course, the ultimate purpose of a DBMS server is to provide impressive query
performance. While it would be possible to simply test the system against an
artificially defined baseline, a more meaningful comparison can be made against
existing DBMS servers. Therefore, we have also evaluated the DBMS relative to
systems often used in industrial database environments, namely the open source
MySQL server (the “lower end”) and Microsoft’s Analysis Services (the “higher
end”). In this case, we generate a 6-dimensional, 10-million record database
(using the dimension characteristics described previously) and load it into both
DBMS platforms in the standard Star Schema format (the Microsoft server was
installed on a Windows partition on the same workstation). Batches of common
OLAP queries — slice and dice, drill down and rollup — were written in SQL
format, as well as the native XML form of our own OLAP DBMS. The form of
these queries is similar to those described above, except that multiple dimensions

Towards a Scalable, Performance-Oriented OLAP Storage Engine 199

(a) (b)

Fig. 8. (a) Index Construction/Fact table size (b) Index Construction/Dimension
Count

were used in each query. Figure 9 shows comparative results for both platforms
and demonstrates that the MySQL server takes approximately 10-15 times as
long to resolve the same queries, while Microsoft’s Analysis Services — running
in ROLAP mode — is three to six times slower. Note that the term “Sibling
Server” refers to a single node of our parallel DBMS.

Of course, one can argue that MOLAP offers superior performance to ROLAP
configurations, at least for data sets of this size. So we loaded the same Star
Schema data using the MOLAP mode of Microsoft’s Analysis Services. Figure 10
(a) shows that MOLAP does indeed outperform our OLAP DBMS by a factor of
about 5 to 1. However, we note that in this test, our DBMS was not permitted to
materialize any additional data; it was essentially just an efficient Star Schema.

(a) (b)

Fig. 9. Single “sibling” server versus (a) MySQL (b) MS Analysis Services (ROLAP)

200 T. Eavis and A. Taleb

(a) (b)

Fig. 10. (a) MOLAP versus non-materialized Sibling (b) MOLAP versus materialized
Sibling

In Figure 10 (b), we see the result once aggregate materialization is added to the
Fact Structure. (Note that production systems would typically use partial cube
materialization consisting of the Fact data and a set of low-dimensional group-
bys. In practice, this produces a compressed cube database that is not much
bigger than the original Fact and Dimension tables). While Microsoft’s MOLAP
server still has a slight advantage, we note that (i) the Microsoft DBMS benefits
from years of optimization, and (ii) MOLAP is ideally suited to the scale of the
current test (i.e., 1-10 million records). Given that our DBMS framework is not
constrained by the limits of array-based storage [4], these preliminary results
suggest that the current DBMS — and the architecture it represents — does
indeed have the potential to provide MOLAP-style performance with ROLAP-
style scalability. (We note that a number of legacy components in the code base
currently prevent true Terabyte scale testing. However, an ongoing software re-
engineering effort is expected to remove these limitations in the coming year).

8 Conclusions

In this paper, we have described the storage and indexing architecture of a high
performance OLAP DBMS. Current OLAP DBMS platforms generally take an
“either/or” (MOLAP/ROLAP) approach to data representation and query pro-
cessing, with the result being a very clear tradeoff between the scalability of
relational systems and the performance of array-based platforms. The DBMS
described in this paper attempts to build on the best features of both. Specifi-
cally, it uses a Fact Structure storage model that is constrained primarily by the
disk space available, rather than the sparsity of the cube space. At the same time,
the use of compressed Hilbert ordered R-tree indexes, mapGraph mapping tables
for hierarchical attributes, and bitmap indexes on non-hierarchical attributes,

Towards a Scalable, Performance-Oriented OLAP Storage Engine 201

coupled with a linearized Fact Structure search strategy, produces query perfor-
mance beyond what one would expect with relational systems. In fact, a series
of experiments confirmed that not only are the storage structures compact (and
easily administered), but that query performance is actually comparable to com-
mercial, and far less scalable, MOLAP servers. Given the enormous size of both
existing and projected warehouses, we believe that the principles presented in
the current paper offer great potential for the OLAP servers of the future.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for an-
alytical workloads. Proc. VLDB Endow. 2, 922–933 (2009)

2. Berkeley db (2011),
http://www.oracle.com/technetwork/database/

berkeleydb/overview/index.html

3. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commununi-
cations of the ACM 53, 72–77 (2010)

4. Dehne, F., E.T., Rau-Chaplin, A.: Rcube: Parallel multi-dimensional rolap index-
ing. Journal of Data Warehousing and Mining 4, 1–14 (2008)

5. Eavis, T., Cueva, D.: The lbf r-tree: Efficient multidimensional indexing with grace-
ful degradation. In: 22nd International Database Engineering and Applications
Symposium, IDEAS 2007 (2007)

6. Eavis, T., Taleb, A.: Mapgraph: efficient methods for complex olap hierarchies. In:
Conference on Information and Knowledge Management, pp. 465–474 (2007)

7. Zimanyi, E., Malinowski, E.: Hierarchies in a conceptual mode, from conceptual
modeling to logical representation. In: Data & KNowledge Engineering (2005)

8. Fastbit (2011), https://sdm.lbl.gov/fastbit/
9. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: A relational aggre-

gation operator generalizing group-by, cross-tab, and sub-total. In: International
Conference on Data Engineering (ICDE), pp. 152–159. IEEE Computer Society,
Washington, DC (1996)

10. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for olap.
In: Proceedings of the Thirteenth International Conference on Data Engineering,
ICDE 1997, pp. 208–219. IEEE Computer Society, Washington, DC (1997)

11. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: Qc-trees: an efficient summary structure for
semantic olap. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2003, pp. 64–75. ACM, New York (2003)

12. Microsoft analysis services (2011),
http://www.microsoft.com/sqlserver/2008/en/us/analysis-services.aspx

13. Mondrian (2011), http://www.mondrian.pentaho.org
14. Morfonios, K., Ioannidis, Y.: Cure for cubes: cubing using a rolap engine. In: Pro-

ceedings of the 32nd International Conference on Very Large Data Bases, VLDB
2006, pp. 379–390. VLDB Endowment (2006)

15. Oracle olap (2011),
http://www.oracle.com/technology/products/bi/olap/index.html

16. Plattner, H.: A common database approach for oltp and olap using an in-memory
column database. In: Proceedings of the 35th SIGMOD International Conference
on Management of Data, SIGMOD 2009, pp. 1–2 (2009)

http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
https://sdm.lbl.gov/fastbit/
http://www.microsoft.com/sqlserver/2008/en/us/analysis-services.aspx
http://www.mondrian.pentaho.org
http://www.oracle.com/technology/products/bi/olap/index.html

202 T. Eavis and A. Taleb

17. Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: organization of and
bulk incremental updates on the data cube. In: Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, SIGMOD 1997, pp.
89–99. ACM, New York (1997)

18. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking
the PetaCube. In: Proceedings of the 2002 ACM SIGMOD Conference, pp. 464–475
(2002)

19. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: Mapreduce and parallel dbmss: friends or foes? Commun. ACM 53,
64–71 (2010)

Highly Scalable Speech Processing

on Data Stream Management System

Shunsuke Nishii1 and Toyotaro Suzumura1,2

1 Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
2 IBM Research - Tokyo 1623-14 Shimotsuruma, Yamato-shi, Kanagawa, Japan

Abstract. Today we require sophisticated speech processing technolo-
gies that process massive speech data simultaneously. In this paper we
describe the implementation and evaluation of a Julius-backended par-
allel and scalable speech recognition system on the data stream manage-
ment system “System S” developed by IBM Research. Our experimental
result on our parallel and distributed environment with 4 nodes and 16
cores shows that the throughput can be significantly increased by a factor
of 13.8 when compared with that on a single core. We also demonstrate
that the beam management module in our system can keep throughput
and recognition accuracy with varying input data rate.

1 Introduction

Present emphasis on speech communication technologies has triggered the re-
quirement of sophisticated speech processing technologies that process speech
simultaneously. For example, in call center of an enterprise there can be simul-
taneous activities such as checking whether the operator talks the matter that
should be told, making sure the operator does not talk the matter that violates
compliance, and display information that the operator needs on monitor, etc.
Such activities can be done via processing the speech/text communication that
happens between customer and the operator. It is important to utilize real-time
speech processing technologies, since quality of the call center’s service depends
up on aforementioned factors. On the other hand, data stream processing [1] is
a new computational paradigm for processing large amounts of streaming data
in real-time. It is an active area of research that concentrates on processing data
in memory without use of an offline storage. Some software systems (e.g. Data
Stream Management Systems (DSMS) and Data Stream Processing Systems
(DSPS)) and programming models have been proposed, such as IBM’s System
S [2][3] and Borealis [1] etc.

While there were previous works on real-time speech processing [4], this paper
aims at utilizing the generality and high extensibility introduced by DSMS for
speech processing. We implemented a highly scalable and distributed parallel
speech recognition system on top of System S and evaluated scalability and
validity of our approach.

Normally performance of one instance of speech recognition system (e.g. recog-
nition accuracy, throughput, latency) is fixed after it initialize. Recognition ac-
curacy and throughput/latency are in relation of trade-off. Input data rate can

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 203–212, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 S. Nishii and T. Suzumura

be variable (some times it can be extremely high) in data stream processing
systems. If input data rate is low then a high recognition accuracy is required.
On the other hand, if the input data rate is high then a high through put is
required. Therefore a mechanism that changes priority between recognition ac-
curacy and throughput according to input data rate is needed. In this paper
we implemented a mechanism that optimizes “beam width” which is the pa-
rameter of a speech recognition engine that largely affects recognition accuracy,
throughput and latency according to the current input data rate.

Organization of this paper is as follows. In section 2 we refer to related work. In
section 3 we explain data stream processing and DSMS. We briefly explain speech
recognition in section 4. Then design and implementation of the system are given
in section 5. System evaluation is described in section 6. Finally conclusions and
further works are given in section 7.

2 Related Work

Work done by Arakawa et al [4] proposes a method to find the appropriate
number of servers required for processing assumed services by performance of
the servers and scalability evaluation model. Our research is different from this
in the perspective of using DSMS and in the point of variability in performance
of the servers.

Load shedding is a technique that ignores part of input data to realize real-
timeness when input data rate is increased. Many researches about load shedding
on DSMS have been performed such as the work by Tatbul et al [5]. In this pa-
per, our mechanism that manages beam width resembles a similar load shedding
approach.

3 System S

System S [2][6][7][8] is large-scale, distributed data stream processing middleware
under development at IBM Research. It processes structured and unstructured
data streams and can be scaled to a large numbers of compute nodes. The System
S runtime can execute a large number of long-running jobs (queries) in the form
of data-flow graphs described in its special stream-application language called
SPADE (Stream Processing Application Declarative Engine) [6]. SPADE is a
stream-centric and operator-based language for stream processing applications
for System S, and also supports all of the basic stream-relational operators with
rich windowing semantics. Here are the main built-in operators mentioned in
this paper:

– Functor: adds attributes, removes attributes, filters tuples, maps output
attributes to a function of input attributes

– Aggregate: window-based aggregates, with groupings
– Join: window-based binary stream join
– Sort: window-based approximate sorting

Highly Scalable Speech Processing on Data Stream Management System 205

– Barrier: synchronizes multiple streams
– Split: splits the incoming tuples for different operators
– Source: ingests data from outside sources such as network sockets
– Sink: publishes data to outside destinations such as network sockets,
databases, or file systems

SPADE also allows users to create customized operations with analytic code or
legacy code written in C/C++ or Java. Such an operator is a UDOP (User-
Defined Operator), and it has a critical role in providing flexibility for System
S. Developers can use built-in operators and UDOPs to build data-flow graphs.

After a developer writes a SPADE program, the SPADE compiler creates ex-
ecutables, shell scripts, other configurations, and then assembles the executable
files. The compiler optimizes the code with statically available information such
as the current status of the CPU utilization or other profiled information. Sys-
tem S also has a runtime optimization system, SODA [2]. For additional details
on these techniques, please refer to [2][6][7][8].

SPADE uses code generation to fuse operators with PEs. The PE code gener-
ator produces code that (1) fetches tuples from the PE input buffers and relays
them to the operators within, (2) receives tuples from operators within and in-
serts them into the PE output buffers, and (3) for all of the intra-PE connections
between the operators, it fuses the outputs of operators with the downstream
inputs using function calls. In other words, when going from a SPADE program
to the actual deployable distributed program, the logical streams may be im-
plemented as simple function calls (for fused operators) for pointer exchanges
(across PEs in the same computational node) to network communications (for
PEs sitting on different computational nodes). This code generation approach is
extremely powerful because simple recompilation can go from a fully fused ap-
plication to a fully distributed version, adapting to different ratios of processing
to I/O provided by different computational architectures (such as blade centers
versus Blue Gene).

4 Speech Recognition with Data Stream Processing

4.1 Outline of Speech Recognition

Speech recognition is the process that converts human’s spoken words to text. In
speech recognition, speech data is converted to the time series of feature vector:
X = x1, x2, . . . , xT , and calculate word sequence W that maximize P (W |X):

W̃ = argmax
W

P (W |X)

Since calculating P (W |X) directly is difficult, the expression is transformed
based on Bayes rule as follows.

W̃ = argmax
W

P (X |W)P (W)

P (X)

206 S. Nishii and T. Suzumura

Since P (X) is constant for W :

W̃ = argmax
W

P (X |W)P (W)

The statistical models that are used to calculate P (W |X) and P (W) are called
acoustic model (AM) and language model (LM) respectively, and it is main-
stream to use Hidden Markov Model and N-gram model respectively. There are
some speech recognition engines that can recognize Japanese such as HTK [9],
Julius [10][11], T3 decoder [12] etc. In this paper, we adopted Julius 4.1.4 for
the convenience of implementing speech recognition operator as UDOP (User-
Defined Operator) on SPADE.

4.2 Beam Search

In Julius, search network is built based on acoustic model and language model,
and speech recognition is performed by the algorithm based on tree-trellis search
[13]. The algorithm consists of two passes. In 1st pass, Rough search by approx-
imation is conducted to narrow the candidate of the output. Then in 2nd pass,
detailed search is done based on the results of first pass to get the final output
sentence. Both in 1st and 2nd pass, search is not done to all routes in the net-
work, but calculation is done for the hypotheses with high score, and the other
hypotheses are rejected. This rejection method is called “beam search”, and the
width of calculation range is called “beam width”.

The 1st pass takes majority of process time during speech recognition. To
perform the accurate speech recognition, it is needed to raise the probability
that the correct answer sentence stays in the candidate of the output hypotheses.
Therefore, it is needed to enlarge the value of beam width. On the other hand,
too large value of beam width makes the recognition process slow. In short,
the value of beam width in the 1st pass most greatly affects both recognition
accuracy and processing time.

In the following sections, “beam width” simply indicates the beam width in
the 1st pass.

5 Design and Implementation of Highly Scalable Speech
Recognition System

We implemented a scalable speech recognition system using System S and
SPADE. Fig.1 shows rough data flow diagram of the system and fig.2 shows de-
tailed data flow diagram. The idea of system design are described in subsections
5.1 to 5.3. Explanation of each module in the system is given in subsection 5.4.
Additionally supplementary explanation of the data flow diagram is described
in Section 5.5.

Highly Scalable Speech Processing on Data Stream Management System 207

�������	�	�
	���

��	����

�������	
��

������

������� ���

��

������

�	
��

������

������

��

	�����

�����
���

��	
���

������
������

���
�����

�����

������

�	
�������

�������

	

��
���

����

�������

�������

����

�����	���
���
�������

����

����������
�����

�������

�������	
��
 ������������

�������	�	��	�����	��
�
 ��	���������	�	��

������ �����������	

��������

�����������

����

�������

������������

�������

����������������

�����������������

���

��������	

���������������������	

�

�

�

�

� �

� 	

 � �

Fig. 1. Rough Data Flow Diagram of
the System

Fig. 2. Detailed Data Flow Diagram of the
system

5.1 Extensibility and Scalability

The system has been designed considering the scale-out property and extensi-
bility for various speech processing. SPADE source code of this system consists
of only 120 lines. Hence it indicates SPADE’s ability in describing some paral-
lel and distributed processes over plural nodes easily. Furthermore, to perform
scale-out processing, it only has to modify lines 1-2 (number of parallel nodes)
and 24-27 (names of using nodes). So it shows that it is easy and straight-
forward to make the system scale-out. Moreover, if one needs to add extra
speech/text processing to the system, that can be done by writing processes
after “Decoder@j Transcripton” stream (lines 71-75).

5.2 Mechanism of Beam Width Management

As described in section 4.2, the 1st pass takes the majority of process time in
speech recognition and the process time depends on the value of beam width. It
is normal in Julius that the value of beam width is set by users and this value is
fixed after the engine is launched. As mentioned previously in speech recognition
on DSMS, if input data rate is low then recognition accuracy has the priority.
If input data rate is high then throughput has the priority. Therefore in our
system the value of beam width is a variable one. We implemented a mechanism
to adoptively optimize beam width according to the current input data rate. In
this mechanism, user first sets candidates of beam width (e.g. 400, 800 and 1200).
After this, user launches the system and inputs the training data to the system.
Then the system measures throughput for each candidate of beam width. When
the system is in use it monitors input data rate and sets beam width to the max
value on condition that throughput is not less than input data rate.

5.3 Batch Processing vs. Sequential Processing

Speech recognition operator (UDOP) is implemented based on libjulius/libsent,
the library version of Julius. There are two methods of speech recognition. In
one method the recognition starts after input of one speech block has finished
(batch processing). In the other method the recognition starts sequentially as
parts of one speech block has arrived (sequential processing). The 2nd pass

208 S. Nishii and T. Suzumura

cannot be performed unless input finished, but the 1st pass can. The 1st pass
takes long time to get processed, so that sequential process is better way than
batch processing when considering the latency. In spite of this, in this paper we
adopted batch processing because of the reasons described below.

It is difficult to get/process parts of one speech block sequentially for some
reasons. First, UDOP function is data-driven and is called when data tuple has
reached the UDOP instance. On the other hand, the method of speech input
in libjulius is a callback function, that is, when libjulius needs data to process,
libjulius calls user-defined callback function to get speech data. Taking both
the data-driven nature of UDOP and dependency of libjulius on user defined
call back function, it is needed to make one UDOP instance to multithreading
explicitly. In general one UDOP instance runs in single thread. Considering
this factor, our system was implemented using batch processing rather than
sequential processing.

Batch processing has an advantage compared to sequential processing. In
sequential processing, if RTF (real time factor) of the process time is less than
1.0, the CPU needs to idle till the input data appears which reduces the CPU’s
efficiency. Therefore the capacity of speeches to be processed simultaneously
(throughput) cannot exceed 1.0 per one speech recognition operator instance.
But it can exceed 1.0 in batch process. Therefore our system with batch process
approach has the advantage in terms of throughput when assuming that RFT is
less than 1.0.

5.4 The Structure of the System

The system is composed of four modules of “Input Parser”, “Speech Decoder”,
“Input Data Rate Measurer” and “Beam Width Manager” (shown in fig.1). The
role of each module is as follows.

“Input Parser” module receives input by socket communications and converts
it into tuples that can be processed in System S. This module runs in M-cores
parallel (M threads). Each thread of this module has a port of socket communi-
cation, so the communication load can be distributed. Additionally, this module
adds input time to data tuples for measuring input data rate and throughput.

“Speech Decoder” module decodes input speech data into recognized text. This
module runs in N-cores parallel (N threads). The input data of this module are
passed from Input Parser and assigned into eachmodule. This assignmentmethod
is naive round-robin. Each data input sequence is assigned into 1st, 2nd, ..., N-th
core of Speech Decoder module, and the next of N-th is assigned to 1st again. Out-
put data tuples (consist of input time, output time and speech length) are passed
into BeamWidth Manager module. This data are used for measuring throughput.

“Input Data Rate Measurer” module measures input data rate from input
time data given from Input Parser module.

“Beam Width Manager” module runs in 3 modes by external command; (1)
set beam width direct, (2) measure throughput for current beam width, (3)
optimize beam width for current input data rate. In running mode (3), beam
width is chosen according to throughput measured in (2).

Highly Scalable Speech Processing on Data Stream Management System 209

5.5 Supplementary Explanation

This section provides a supplementary explanation about data flow diagram of
the system shown in fig.2. The system consists of 12 operators. In the fig.2,
each operator has the number; (0) to (9), (A) and (B). Among these, (0) to (3)
belong to Input Parser, (4) to (7) belong to Speech Decoder, (8) and (9) belong
to Input Data Rate Measurer, and (A) and (B) belong to Beam Width Manager.
The behavior of each operator is as follows.

(0) Receives input speech data from the outside of the system and converts input
speech data into data tuples that are available in System S.
(1) Adds input time and tag, used for decoder assignment, to tuples.
(2) Assigns speech data to each decoder.
(3) Extracts data that are used for measuring input data rate from tuples.
(4) Performs speech recognition. (Beam width can be changed by the operator
(B).)
(5) Adds output time to tuples.
(6) Extracts data that are used for measuring throughput from tuples.
(7) Outputs recognition results outside of the system.
(8) Aggregates data for measuring input data rate by a fixed-size window.
(9) Measures input data rate.
(A) Receives commands for Beam Width Manager from the outside of the sys-
tem.
(B) Integrates data and sets beam width to decoders if needed.

6 Evaluation

We evaluated the scale-out property to number of cores used for Speech Decoder
module and effectiveness of Beam Width Manager module experimentally.

6.1 Experimental Environment

Computing environment is as follows. A node that consists of [Opteron 1.6GHz
L2 512KB (2 cores), Memory 8GB] was used for I/O from the outside of the sys-
tem to the inside of the system, a node that consists of [Phenom X4 2.0GHz L2
512KB (4 cores), Memory 3.5GB] was used for Input Parser module and measur-
ing input/output time, four nodes that consist of [Phenom X4 2.5GHz L2 512KB
(4 cores), Memory 8GB] respectively were used for Speech Decoder module, and
a node that consists of [Phenom X4 2.5GHz L2 512KB (4 cores), Memory 8GB]
was used for Input Data Rate Measurer module and Beam Width Manager mod-
ule. All nodes in computing environment were connected with 1Gpbs Ethernet.
As software environment, [CentOS 5.2 2.6.18-92.el5 AMD64, gcc4.1.2, InfoSphere
Streams 1.2 (System S)] were used common in all nodes.

210 S. Nishii and T. Suzumura

6.2 Recognition Models and Julius Parameters

The acoustic model was a tied-state Gaussian mixture triphone HMM that was
trained on 52 hours of clean speech data from the Japanese News Article Sen-
tences (JNAS) [14] corpus using the ML (maximum likelihood) methods. The
HMM had 3000 states and Gaussian mixture with 16 components per state.
Feature vectors had 38 elements comprising 12 MFCCs, their delta, their delta
delta, delta of log energy, and delta delta of log energy. The language model was
a trigram trained from the newspaper articles of 1991-2002 years on Mainichi
Newspapers, and the dictionary size was 60k. Beam width was variable, and the
other parameters were set to values that makes RTF less than 1.0 for our test
data set.

6.3 Test Data Set

Test data set for evaluation was 20.2 minutes of clean speech data from JNAS
(IPA-98-TestSet), which was not overlapped with the one that was used for
acoustic model training. We divided it into set0 and set1. Set0 consists of about
20% of total test data set (3.7 minutes), and set1 consists of the rest 80% (16.5
minutes).

6.4 Evaluation of Scale-Out Property

We set the number of cores used for Input Parser (M) to 4, and fixed beam
width to 1200. We measured throughputs of Speech Decoder module when the
number of cores used for Speech Decoder module (N) was changed from 1 to 16
under this condition. Set0 was used for input data. In detail, each input port
received the entire copy of set0. Fig.3 shows the result. The horizontal axis shows
the capacity of speeches to be processed simultaneously (throughput). As fig.3
shows, the capacity of speeches to be processed simultaneously when operating
in single core was 1.4 and when operating in parallel 16 cores was 19.3. This
means that throughput of 16 cores is 13.8 times as much as that of single-core
and nodes can be added to the system easily as shown in section 5.1 giving
the system a high scale-out property. Word error rate (WER) for set0 in this
condition was 5.9%.

6.5 Evaluating Beam Width Manager

We tested the effectiveness of Beam Width Manager module by test input data
set with variable input data rate, in running mode (3) (given in section 5.4).
We set the number of cores used for Input Parser (M) to 4, and that for Speech
Decoder module (N) to 16. We measured throughput for beam width 400, 800,
and 1200 by set0 in running mode (2). So the system chose as beam width among
400, 800 and 1200 automatically if needed. Test input data set was set1 with
variable input data rate, which is shown in fig.4. In these conditions, we compared
WER and response time in variable beam width mode (running mode (3)) to

Highly Scalable Speech Processing on Data Stream Management System 211

that in fixed beam width mode (running mode (1), values of beam width are
400, 800, and 1200). We call these modes VAR, FIX400, FIX800, and FIX1200
respectively at the following.

Fig.5 shows WERs and fig.6 shows response times for test data set in each
running mode. Since beam width varied from 400 to 1200 in VAR, WER in VAR
was less than that in FIX400 and more than FIX1200 as fig.5 shows. Response
time of VAR did not explode like in FIX1200 when on high input data rate as
fig.6 shows. Therefore, it is shown that Beam Width Manager module can keep
both throughput and recognition accuracy.

����

����

�����

�����

�����

�����

� � � � 	 �
 � � �� �� �� �� �	 �� �

�
�
�
�
�
�
�
�
	

�
	
�

�
�

�
�
	�

	
�

�
�

�

�
�

�
	�
�
�
�
�
�
�
�

�
�
�
�

�������	
��	����
	�����������	��� �

����

����

�����

�����

�����

�����

�����

�����

	����

	����

�����

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
	�
�
�
�
	�
�
�

	�
�
	
�

�
�

�
�

������	
�������������������

����

��

���

��

����

����

	���

���

����

�����

�����

�	���

���	�� ������ ������� ���

�

�
�
	�
�
�

�
	�
�
�

	�
�
�

���������	��������������

Fig. 3. Scale-Out Prop-
erty of Speech Decoder
Module

Fig. 4. Change in Input
Data Rate of Set1

Fig. 5. Word Error Rate
for Set 1

���

���

���

���

���

���

	��

� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

	
�

�
�

�
�

�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�	

�
�
�

�
�
	
�
�

���������	
������������
��

�����

����

������

���

Fig. 6. Response Time in RTF for Set 1 (=Response Time ÷ Speech Length)

7 Concluding Remarks and Future Work

In this work we implemented a highly scalable speech recognition system using
System S and SPADE. We developed speech recognition operator used in this
system based on Julius 4.1.2. We also implemented the automatic and adaptive
mechanism of beam width management that enables to keep both throughput
and recognition accuracy. It was experimentally shown that throughput when

212 S. Nishii and T. Suzumura

operating in parallel 16 cores is 13.8 times as much as that when operating
in single-core. Moreover it was also experimentally demonstrated that Beam
Width Manager module in the system can keep both throughput and recognition
accuracy.

In our current implementation, we adopted naive round-robin method for
task assignment of Speech Decoder module. Such a simple method causes biases
of task loads among cores hence some times response time is increased. This
problem can be avoided by making the system to assign tasks evenly based on
speech length.

We adopted batch processing method for our speech recognition operator, so
high latency cannot be avoided with the current mechanism. To avoid this, it
is required to implement a speech recognition operator that runs in sequential
process.

References

1. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: Proc.
CIDR, pp. 277–289 (2005)

2. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.-L.,
Fleischer, L.K.: SODA: An Optimizing Scheduler for Large-Scale Stream-Based
Distributed Computer Systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 306–325. Springer, Heidelberg (2008)

3. Gedik, B., et al.: A Code Generation Approach to Optimizing High-Performance
Distributed Data Stream Processing. In: Proc. USENIX, pp. 847–856 (2009)

4. Arakawa, Y., et al.: A Study for a Scalability Evaluation Model of Spoken Dialogue
System. Transactions of Information Processing Society of Japan 46(9), 2269–2278
(2005) (in Japanese)

5. Tatbul, N., et al.: Load Shedding in a Data Stream Manager. In: Proc. VLDB
(2003)

6. Gedik, B., et al.: SPADE: The System S Declarative Stream Processing Engine.
In: Proc. SIGMOD, pp. 1123–1134 (2008)

7. Amini, L., et al.: SPC: A Distributed, Scalable Platform for Data Mining. In:
DM-SSP, pp. 27–37 (2006)

8. Jain, N., et al.: Design, implementation, and evaluation of the linear road bench-
mark on the stream processing core. In: International Conference on Management
of Data, ACM SIGMOD, Chicago, IL (2006)

9. Young, S., et al.: The HTK book (for HTK Version 3.2) (2002)
10. Lee, A., et al.: Recent Development of Open-Source Speech Recognition Engine

Julius. In: Asia-Pacific Signal and Information Processing Association Annual Sum-
mit and Conference, APSIPA ASC (2009)

11. Lee, A.: Large Vocabulary Continuous Speech Recognition Engine Julius ver. 4.
IEICE technical report. Speech 107(406), pp.307-312 (2007) (in Japanese)

12. Dixon, P.R., et al.: The Titech Large Vocabulary WFST Speech Recognition Sys-
tem. In: IEEE ASRU, pp. 443–448 (2007)

13. Lee, A., et al.: An Efficient Two-pass Search Algorithm using Word Trellis Index.
In: Proc. ICSLP, pp. 1831–1834 (1998)

14. Itahashi, S., et al.: Development of ASJ Japanese newspaper article sentences cor-
pus. Annual Meeting of Acoustic Society of Japan 1997(2), 187–188 (1997) (in
Japanese)

EVIS: A Fast and Scalable Episode Matching

Engine for Massively Parallel Data Streams

Shinichiro Tago, Tatsuya Asai, Takashi Katoh,
Hiroaki Morikawa, and Hiroya Inakoshi

Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan
{s-tago,asai.tatsuya,kato.takashi 01,h.morikawa,

inakoshi.hiroya}@jp.fujitsu.com

Abstract. We propose a fast episode pattern matching engine EVIS
that detects all occurrences in massively parallel data streams for an
episode pattern, which represents a collection of event types in a given
partial order. There should be important applications to be addressed
with this technology, such as monitoring stock price movements, and
tracking vehicles or merchandise by using GPS or RFID sensors. EVIS
employs a variant of non-deterministic finite automata whose states are
extended to maintain their activated times and activating streams. This
extension allows EVIS’s episode pattern to have 1) interval constraints
that enforce time-bound conditions on every pair of consequent event
types in the pattern, and 2) stream constraints by which two interested
series of events are associated with each other and found in arbitrary
pairs of streams. The experimental results show that EVIS performs
much faster than a popular CEP engine for both artificial and real world
datasets, as well as that EVIS effectively works for over 100,000 streams.

1 Introduction

Recent advances in network and sensor technologies such as GPS and RFID
have facilitated their adoption in a growing number of applications, including
shoplifting detections [1], stock price movement detections, and car accident
detections [2]. Thus, there have been increasing demands for cyber physical sys-
tems [11] that enable us to get useful and valuable information for our social
issues such as energy, traffic, distribution, finance, or urban problems by inte-
grating both computational and physical processes of our society. There are many
complex correlations among tons of natural phenomena and human activities in
our society. To understand these correlations and to take measures against them
become very important factors for improving our society. Then the successful
development of cyber physical systems must address two unique challenges be-
low: 1) Real time processing against massively parallel and heterogeneous event
streams that are summaries of various event streams for natural phenomena and
human activities in both real and digital worlds. 2) A fast matching algorithm
for detecting richer classes of patterns than sequential patterns with more precise
temporal constraints than time window constraints.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 213–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

214 S. Tago et al.

Stream constraints

It changes to
 the left lane.

A car reduces
its speed

It changes to
the left lane.

:same

1sec.

:differ

It changes to
the right lane.

30sec.

1hour

A car changes to
 the left lane.

It changes to
 the right lane.

15sec.

1hour15sec.

Fig. 1. An example of our extended episode, which represents that a car reduces its
speed quickly and another car immediately changes to the left lane within one hour
after the latter car frequently changes lanes in 30 seconds

In this paper, we propose a fast and scalable episode matching engine EVIS
that detects all occurrences in parallel event streams for an episode pattern. The
episode represents a collection of event types in a given partial order [12]. It
is a rich class of patterns, and it can represent conjunction patterns. EVIS em-
ploys a variant of non-deterministic finite automata whose states are extended to
maintain their activated times and activating streams. There are some difficul-
ties for NFAs to detect conjunction patterns against parallel event streams. We
resolved these difficulties, moreover, we enable EVIS to detect episodes with the
following two constraints for practical use. The first one is an interval constraint,
which restricts a time bound between a pair of event types. By this constraint,
for instance, we can detect a short episode after a long episode. The other is a
stream constraint, which detects associations in arbitrary pairs of streams, such
as an object’s episode in a stream causes another object’s episode. Our extended
episodes can represent various natural phenomena and human activities. Fig. 1
shows an example of our extended episode, which represents that an unsafe
driver threatens another driver.

The experimental results show that EVIS performs much faster than a pop-
ular Complex Event Processing (CEP) engine for both artificial and real world
datasets, and EVIS runs effectively against complex patterns such that the CEP
engine cannot finish its execution. EVIS also effectively works on some practi-
cal patterns for even over 100,000 streams, and it can be said that EVIS has a
potential to solve practically important problems for our society in real time.

This paper is organized as follows: Section 2 introduces related work, Section 3
gives notations and two types of episode matching problems, Section 4 describes
an NFA based processing model and algorithms of constructing our NFA for
the two problems, Section 5 reports evaluation results, and finally, Section 6
concludes this paper.

2 Related Work

CEP systems appeared as an active database [7,9,5] which detects situation rules.
A stream-oriented processing [4] is proposed for CEP systems, rather than no
real-time processing for traditional DBMSs. Some CEP engines [1,3] use NFAs
to search sequence-like patterns from several types of event streams. There are
some difficulties for NFAs in detecting conjunction patterns. An open-source
software Esper [8] searches window constrained sequence-like patterns and SQL-
like language patterns, that have a capability to detect conjunction patterns

EVIS: A Fast and Scalable Episode Matching Engine 215

within a window by inserting time stamp data for each event set and processing
a join operation. However, it takes much time to detect a conjunction pattern by
an SQL-like language. Zstream [13] detects conjunction, disjunction, negation,
and Kleene Closure patterns by using tree based query plans.

There are various studies for episode mining problems [12,10,14]. Das et al. [6]
proposed efficient algorithms for the episode matching problem with window
constraints. The window constraint is not sufficient for solving many types of
practical problems. Another interval constraint [15] between a basis event type
and another event type is proposed, while we propose an interval constraint
between each pair of event types.

3 Preliminaries

In this section, we define two types of episodes and those detection problems.
We denote the set of all natural numbers by IN. For a set S, we denote the
cardinality of S and the power set of S by |S| and 2S, respectively. A digraph is
a graph with directed edges (or, arcs). A digraph is weakly connected if there is
an undirected path between any pair of nodes. For nodes u and v on a digraph,
if there exists an arc directed from u to v, the nodes v and u are called the head
and tail of the arc, respectively. For an arc e, we denote the head and tail of e by
Head(e) and Tail(e), respectively. For arcs e1, e2 such that Tail(e1) = Tail(e2),
we call the tail a branch tail and call the arcs branch arcs. Additionally, for arcs
e1, e2 such that Head(e1) = Head(e2), we call the head a junction head and call
the arcs junction arcs. Let Σ = {1, . . . , k}(k >

= 1) be a finite alphabet with a
total order <= over IN. Each element e ∈ Σ is called an event type.

An input event stream (a stream for short) S on Σ is a sequence 〈S1, S2, . . .〉 ∈
(2Σ)∗ of events, where Si ⊆ Σ is called the i-th event set for every i >= 1. For any
i <= 0, we define Si = ∅. Parallel input event streams (parallel streams for short)
M on Σ are a sequence of streams 〈S1, . . . ,Sm〉 of events, where Sj is called the
j-th event stream for every 1 <

= j <= m. We denote i-th event set of Sj by S(i,j).

Definition 1. (Episode: Mannila et al. [12]) A labeled acyclic digraph X =
(V,E, g) is an episode over Σ where V is a set of nodes, E ⊆ V × V is a set of
arcs and g : V → Σ is a mapping associating each node with an event type.

An episode is an acyclic digraph in the above definition, while it is defined as a
partial order by Mannila et al. [12]. It is not hard to see that the two definitions
are essentially the same.

Definition 2. (Interval-Constrained Episode and Matching) For an
episode X = (V,E, g) and a mapping h : E → N , a labeled and weighted acyclic
digraph Y = (V,E, g, h) is an interval-constrained episode over Σ. An interval-
constrained episode Y = (V,E, g, h) is matched at the i-th event set on a stream
S if there exists at least one mapping f : V → IN such that (i) f preserves the
labels of nodes, that is, for all v ∈ V, g(v) ∈ Sf(v), (ii) f preserves a precedence
relation, that is, for all u, v ∈ V with u �= v, if (u, v) ∈ E, then f(u) < f(v),
(iii) the last period of the event sets of nodes is i, that is, max∀v∈V f(v) = i,
and (iv) f satisfies the interval constraints, that is, for all u, v ∈ V with u �= v

216 S. Tago et al.

A

B

C4

4

B

C4

4

B

C4

4 A

B
C

4

4

B
4

4

C

B 4

4
D

A binary branch episode

with length 3

A binary junction episode

with length 3

A B

C D
3
2

4

A B

C D
3 :same
2

4 :none
A Z-type episode A Z-connected sequential

episode

Fig. 2. Examples of stream-constrained episodes

State
Time Buffer :Buf

Time Buffer:Buf[0]
Instance Instance

Time Buffer:Buf[1]
Instance

Output
Arc

Input
Arc

Input
Arc

P[0]
Last

1
2

2
4

1
3

P[0]
Last

P[0]
Last

Fig. 3. Components of PNFA

if (u, v) ∈ E, then f(v) − f(u) <= h((u, v)). The mapping f is called a matching
of Y at the i-th event set on S, or it is simply called a matching of Y on S.
We note that we define a matching by a many-to-one mapping, while Mannila
et al. [12] defines a matching by a one-to-one mapping. Without the loss of
generality, we can extend a minimum interval constraint or both the maximum
and minimum interval constraints. In this paper, we simply call a maximum
interval-constrained episode an interval-constrained episode.

Definition 3. (Stream-Constrained Episode and Matching) For an in-
terval episode Y = (V,E, g, h) and a mapping associating each arc z : E →
{“same”, “differ”, “none”}, a double labeled and weighted acyclic digraph Z =
(V,E, g, h, z) is a stream-constrained episode over Σ. For a stream-constrained
episode Z = (V,E, g, h, z), Z is matched at i-th event sets on parallel streams M
if there exists at least one pair of matchings (1) a period mapping fP : V → IN
and (2) a track mapping fT : V → IN such that (i) fP and fT preserves the
label of nodes, that is, for all v ∈ V, g(v) ∈ S(fP (v),fT (v)), (ii) fP preserves the
precedence relation, (iii) the last period of the event sets of nodes is i, (iv) fP
satisfies the interval constraints, and (v) fT satisfies the stream constraints such
that for all u, v ∈ V with u �= v, (a) if (u, v) ∈ E and z(u, v) = “same”, then
fT (u) = fT (v), and (b) if (u, v) ∈ E and z(u, v) = “differ”, then fT (u) �= fT (v).
The pair of mappings fP and fT is called a matching of Z at i-th event sets on
M, or it is simply called a matching of Z on M.

In this paper, we treat the “same” and “none” constraints and leave the “differ”
constraint for future work. Examples of stream-constrained episodes are in Fig. 2.

4 Processing Model

Our processing model employs a variant of a nondeterministic finite state au-
tomaton (NFA). We call our variant of an NFA PNFA. Formally, a PNFA
A = (Q,D, θ, T , q0, F) consists of a set of states Q, a set of arcs D ⊂ Q×Q, a set
of operation sequences θ for processing PNFA, a mapping T : D → θ ×Σ × IN∗,
a start state q0 ∈ Q and a set of final states F ⊂ Q. Fig. 3 shows components of
PNFA and we represent about each of them.

EVIS: A Fast and Scalable Episode Matching Engine 217

Instances each of them indicates a state of matching and holds a series of event
detected periods. Periods P [0], P [1], . . . of them are used by checking event
identifications for branch or junction patterns, and a period Last of them is
used by checking interval constraints.

Time Buffers hold instances. Each time buffer is associated with a connected
arc. Each time buffer associated with an output arc contains all of the time
buffers associated with input arcs.

States have time buffers. Each state represents a state of matching process.
The start state q0 represents the beginning of matching and holds the start
instance with Last = 0 during the whole time. A final state qf ∈ F represents
that the pattern is matched completely. A period of matching detection is
reported if an instance is created in a time buffer of a final state.

Operation sequence defines a series of actions, such as creation, update, or
deletion, against some instances in a defined situation.

Arc represents a transitions of a states and is associated with an operation
sequence by T . The basic operation sequence associated with each arc is to
check instances in the time buffers of the tail of the arc, and then, according
to the result, to create or update an instance in the time buffer of the head
of the arc and/or to delete instances in the time buffer of the tail of the arc.

We also represent the following features of PNFA.

Preservative. While each state does not keep a previous state unless it is de-
fined by a transition function in normal NFAs, each instance stays in the
previous time buffer in PNFAs. In PNFAs, only after it has occurred a situa-
tion defined by an operation sequence, the instances are processed. In other
words, each instance in a time buffer of a state is never processed unless it
occurs a situation defined by an operation sequences associated with an arcs
connected to the state.

Non-deterministic. There may exist several instances on a PNFA because
instances may be created without deleting instances. This means that the
next state of a state may be any one of several possible states. Then, PNFAs
have a non-deterministic character.

Next, we present our method for building and processing a PNFA for an episode
pattern detection. We first propose an interval-constrained episode
matching detection model, and next, we propose a stream-constrained episode’s
one.

4.1 Interval-Constrained Episode Matching Detection Model

We present a processing model for interval-constrained episode detection. First,
we study the detection of a simple episode, that is, an interval-constrained se-
quential episode for an easy understanding of a PNFA. We can easily solve the
pattern detection problem of an interval-constrained sequential episode by us-
ing our extended NFA with the event detected period. It is trivial that for
each matching state, to just check an event type of a new event and the dif-
ference between a detected period of a preceding event type in an instance

218 S. Tago et al.

procedure θnormal(d, e, c, t)
input arc d, event type e, interval constraint

c, time-out t
if e ∈ Si then
for I ∈ Tail(d).Buf do
if i − I.Last <

= c then
if ∃Ix ∈ d.Buf in Head(d) such that

∀k, I.P [k] = Ix.P [k] then
Ix.Last ← i

else
Copy I as I′ into d.Buf ; I′.Last ← i

end if
end if
if i − I.Last > t then Delete I

end for
end if

end procedure

procedure θepsilon(d)
input arc d
for I ∈ Tail(d).Buf do
if I is Updated in this period then
if ∃Ix ∈ d.Buf in Head(d) such that

∀k, I.P [k] = Ix.P [k] then
Ix.Last ← i

else
Copy I as I′ into d.Buf
I′.Last ← i

end if
else
Delete I

end if
end for

end procedure

Fig. 4. Algorithms of operation sequences θnormal and θepsilon

2 1A B C

Fig. 5. An interval-constrained
sequential episode

(θnormal,A,∞,∞) (θnormal,C,1,1)
d1 d3

d2 df

(θnormal,B,2,2) (θepsilon,ε)

q1 q2 q3q0 qf

Fig. 6. An example of PNFA for the episode in Fig. 5

and a detected period of the new event is sufficient to find matching periods
for interval-constrained sequential episodes. Moreover, we note that it is suf-
ficient to find matching periods as holding only one instance with the latest
period in each time buffer. We use this filtering technique for reducing both
memory usage and computation time. Then, we define two operation sequences
θnormal for checking the event types and interval constraints and θepsilon in
Fig. 4. Additionally, we prepare a mapping r : Σ → 2D such that for each
e ∈ Σ, r(e) = {d|d ∈ D, ∃θx ∈ θ, T (d) = (θx, e, . . .)}. Because this mapping
r gets operation sequences triggered by each detected event e; it enables an
event-driven processing.

For example, Fig. 5 and Fig. 6 show a sequential episode and its correspond-
ing PNFA, respectively. Let “AABACBC” be an input event stream. At the
beginning, an instance Iq0,0 such that Iq0,0.Last = 0 is created in q0. At pe-
riod 1, there is an event A ∈ S1, r(A) = {d1}, T (d1) = (θnormal, A,∞,∞),
and Iq0,0 satisfies the interval constraint i − Iq0,0.Last = 1 <

= ∞. Then Iq1,1
is copied from Iq0,0 in q0 to q1 and Iq1,1.Last = 1. At period 2, A ∈ S2

again, Iq0,0 satisfies i − Iq0,0.Last = 2 <
= ∞, and Iq0,0 does not have periods

Iq0,0.P except for Iq0,0.Last. Then Iq1,1.Last = 2. At period 3, there is B ∈ S3,
r(B) = {d2}, T (d2) = (θnormal, B, 2, 2), and Iq1,1 satisfies i − Iq1,1.Last = 1 <

= 2,
then Iq2,3 is copied from Iq1,2 in q1 to q2 and Iq2,3.Last = 3. At period 4, A ∈ S4,
Iq0,0 satisfies i − Iq0,0.Last = 4 <

= ∞, then Iq1,1.Last = 4. At period 5, C ∈ S5,
r(C) = {d3}, T (d3) = (θnormal, C, 1, 1), and Iq2,3 satisfies the delete condition
i − Iq2,3.Last = 2 > 1, then Iq2,3 is deleted. At period 6, there is B ∈ S6, and
Iq1,1 satisfies i − Iq1,1.Last = 2 <

= 2, then Iq2,6 is copied from Iq1,1 in q1 to q2
and Iq1,1.Last = 6. At period 7, C ∈ S7, and Iq2,6 satisfies i− Iq2,6.Last = 1 <

= 1,

EVIS: A Fast and Scalable Episode Matching Engine 219

procedure θsave(d, e, c, t, a)
input arc d, event type e, interval con-

straint c, time-out t, save ID a
if e ∈ Si then
for I ∈ Tail(d).Buf do
if i − I.Last <

= c then
if ∃Ix ∈ d.Buf in Head(d) such

that ∀k, I.P [k] = Ix.P [k] then
Ix.Last ← i ; Ix.P [a] ← i

else
Copy I as I′ into d.Buf
I′.Last ← i

end if
end if
if i − I.Last > t then Delete I

end for
end if

end procedure

procedure θcheck(d, t, k1,K)
input arc d, time-out t, save ID for time-out k1, set

of save ID to check K
for Updated Ix ∈ Tail(d).Buf[x] do
for all combination 〈Ix, . . . , Iyi

i , . . . 〉 such that

i �= x, I
yi
i ∈ d.Buf[i], ∀k ∈ K, Ix.P [k] = · · · =

I
yi
i .P [k] = · · · (overlooking I.P [k] = Null) do

Copy I as I′ into d.Buf ; I′.Last ← i
if I′.P [k] = Null then
I′.P [k] ← Iz

y .P [k] such that Iz
y .P [k] �= Null

end if
end for

end for
for I ∈ Tail(d).Buf do
if i − I.P [k1] > t then Delete I

end for
end procedure

Fig. 7. Algorithms of operation sequences θsave and θcheck

then Iq3,7 is copied from Iq2,6 in q2 to q3 and Iq3,7.Last = 7, moreover, Iqf ,7 is
copied from Iq3,7 in q3 to qf , the period number of S7,that is, 7 is reported as
the period of matching, and Iqf ,7 is deleted.

Next, we show a PNFA of an interval-constrained episode Y = (V,E, g, h).
We consider an episode as a concatenation of some sequential episodes to treat
an interval-constrained episode. Our strategy is to detect each divided sequential
episode pattern and to check the identification of detected events associated with
each branch tail or junction head. To check the identification, we introduce save
states and check states. It holds event detected periods in the corresponding
instance at the save state and finds all the combinations of instances such that
the held periods are same at the check state. If each instance corresponding to
the matching of each divided sequential episode has the same detected periods for
each branch tail and junction head, it is guaranteed that there exists a matching
for the episode. Even though each instance actually held a detected period of a
different event of the same event type, if the different events have been detected
as the event type of the branch tail or junction head at the same period, there
exists another instance associated with the same event. Because two events with
the same event type detected at the same period, if one of them satisfies interval
constraints, the other also satisfies the interval constraints. Thus, to just check
a detected period and an event type is sufficient to find the periods of matchings
for an interval-constrained episode.

We define two operation sequences θsave and θcheck in Fig. 7. Then we pro-
pose an algorithm for constructing PNFAs from interval-constrained episodes in
Fig. 8. For instance, Fig. 9 shows a PNFA for the Z-type episode in Fig. 2.

A PNFA A for Y is processed as follows:

1. when an event e ∈ Σ is detected, for each d ∈ r(e), operate θd(d, e, . . .) such
that T (d) = (θd, e, . . .).

2. when an instance is created or updated in the time buffer of the tail of d ∈ D,
operate θd(d, . . .) such that T (d) = (θd, ε, . . .).

220 S. Tago et al.

Input Y = (V, E, g, h)
Output A = (Q, D, θ, T , q0, F)
θ ← {θnormal, θepsilon, θsave, θcheck}
Create q0, qsf , qf ∈ Q ; F ← {qf} ; l = 0

for v ∈ V do
Create q ∈ Q ; v.fN ← q
if v is branch tail then

Create q ∈ Q ; v.fT ← q ; v.k ← l ; l + +
else if v is junction head then

Create q ∈ Q ; v.fH ← q ; v.k ← l ; l++
end if
if v is source node then

Create q ∈ Q ; v.fI ← q
end if

end for
for e ∈ E do

if e is branch arc then
Create q ∈ Q ; e.fB ← q

else if e is junction arc then
Create q ∈ Q ; e.fJ ← q

end if
end for
for v ∈ V do

if v is junction head then
Create d = (v.fH , v.fN) ∈ D

t ← maxp∈P

∑
h(vx) (for vs ∈ VBran. ∪

VJunc., P = {p|p is path (vs, v)})
K ← {v.k|v, u on two different paths (q0,

v.fN)andv.k = u.k}

T (d) ← (θcheck, ε, t, vs.k,K)
end if
if v is source node then

Create d = (q0, v.fI) ; T (d) ← (θepsilon, ε)

Create d = (v.fI , v.fN) ∈ D
T (d) ← (θnormal, g(v), ∞,∞)

else if v is sink node then
Create d = (v.fN , qsf) ∈ D ; T (d) ← (θepsilon, ε)

end if
end for
for e ∈ E do

if e is branch arc then
Create d = (Tail(e).fN , e.fB) ; T (d) ← (θeplison, ε)

Create d = (e.fB, Head(e).fN) ∈ D
T (d) ← (θsave, g(Head(e)), h(e), e.k)

else if e is junction arc then
Create d = (Tail(e).fN , e.fJ)
T (d) ← (θsave, g(Head(e)), h(e), e.k)
Create d = (e.fJ , Head(e).fH) ∈ D ; T (d) ← (θeplison, ε)

else
Create d = (Tail(e).fN ,Head(e).fN) ∈ D
T (d) ← (θnormal, g(Head(e)), h(e))

end if
end for
Create d = (qsf , qf) ∈ D

t ← maxp∈P

∑
h(vx) (for vs ∈ VBran., ve ∈ VSink, P = {p|p

is path (vs, ve)})
K ← {v.k|v ∈ V, v is branch tail }
T (d) ← (θcheck, ε, t, vs.k,K)

Fig. 8. An algorithm for constructing a PNFA from an interval-constrained episode

(θepsilon,ε) (θepsilon,ε)

(θsave,C,∞,∞,0) (θnormal,A,∞,∞)

(θepsilon,ε) (θepsilon,ε)
(θsave,B,2,2,1)

(θnormal,D,4,4) (θsave,B,3,3,1)

(θepsilon,ε) (θepsilon,ε) (θepsilon,ε)

(θcheck,0,1,{1})
(θcheck,4,0,{0})

(θepsilon,ε)

(θepsilon,ε)
qf

q0

Fig. 9. An example of PNFA for
the Z-type episode in Fig. 2

(θepsilon,ε) (θepsilon,ε)

(θspsave,C,1,∞,∞,0) (θspsave,C,m,∞,∞,0) (θspecify,A,1,∞,∞) (θspecify,A,m,∞,∞)

(θepsilon,ε)
(θspsave,B,m,2,2,1) (θspsave,B,1,2,2,1)

(θspsave,B,1,3,3,1) (θspsave,B,m,3,3,1)
(θepsilon,ε) (θepsilon,ε)

(θepsilon,ε) (θepsilon,ε)
(θepsilon,ε)

(θspecify,D,1,4,4) (θspecify,D,m,4,4) (θepsilon,ε)

(θepsilon,ε) (θepsilon,ε) (θcheck,0,1,{1}) (θcheck,0,1,{1})

(θepsilon,ε) (θepsilon,ε)
(θcheck,4,0,{0})

...

...

...
...

...

...

...

... ...

...

...

...

......

...

...

...

...
(θepsilon,ε)

qf

q0

Fig. 10. An example of PNFA for the Z-connected
sequential episode in Fig. 2

4.2 Stream-Constrained Episode Matching Detection Model

In this section, we present a processing model for stream-constrained episode
detections extended from the interval-constrained one. The basic idea is quite
simple. We first divide a stream-constrained episode into sub-episodes with same
stream constraints. We prepare m-duplicated PNFAs for each sub-episode with
the same stream constraints against m event streams, while we prepare one
PNFA for each sub-episode without stream constraints. Each of the m PNFAs
detects the matchings of the sub-episode against the corresponding event stream.
Then, detecting the matchings on one of the PNFAs means finding the match-
ings of the sub-episode. Thus, we construct a PNFA for the original episode
by connecting the sub-episode’s PNFAs by arcs with θepsilon. We can eliminate
redundant ε-transitions from PNFAs like ordinary NFAs.

We define two operation sequences θspecify and θspsave for stream-constrained
episode matching detections.

EVIS: A Fast and Scalable Episode Matching Engine 221

Input Z = (V, E, g, h, z) , m = # of streams
Output PNFA A = (Q, D, θ, T , q0, F)
Create PNFA As = (Qs,Ds, θs, Ts, q0, F) for Y = (V, E, g, h)
Q ← Qs;D ← Ds
θ ← {θnormal, θepsilon, θsave, θcheck, θspecify , θspsave}
for each weakly connected subgraph Gi = (Vi, Ei) of Gs = (V, Es)

such that |Vi| >
= 2, Es = {e|e ∈ E, z(e) = same} do

Q1
i

← {v.fN , v.fT , v.fH, e.fB, e.fJ |v ∈ Vi, e ∈ Ei} ⊆ Qs

D1
i

← {d|d ∈ Ds,Head(d),Tail(d) ∈ Q1
i
} ⊆ Ds

Duplicate G1
i

= (Q1
i
,D1

i
)

into G2
i

= (Q2
i
,D2

i
), . . . , Gm

i
= (Qm

i
,Dm

i
)

qj .O ← original q ∈ Q1
i

; dj.O ← original d ∈ D1
i

Q = Q ∪ Q2
i

∪ · · · ∪ Qm
i

; D = D ∪ D2
i

∪ · · · ∪ Dm
i

For d ∈ D
j
i

do ChangeOperation(d) end for

for each qj ∈ Q
j
i

such that qj is source node on G
j
i

or qj.O =

v.fN , (u, v) ∈ E, (u, v) /∈ Ei do
Duplicate each (q, qj .O) ∈ Ds into d = (q, qj) ∈ D

ChangeOperation(d)
end for

for each qj ∈ Q
j
i

such that qj is sink

node on G
j
i

or qj.O = v.fN , (v, u) ∈
E, (v, u) /∈ Ei do

Create qc ∈ Q
for q such that q.O = qj do

Create d = (q, qc) ∈ D
T (d) ← (θepsilon, ε)

end for
for d ∈ D such that Tail(d) = qj do

Reconnect arc as Tail(d) ← qc
end for

end for
end for
function ChangeOperation(d)

if Ts(d.O) = (θnormal, e, c, t) then
T (d) ← (θspecify , e, j, c, t)

else if Ts(d.O) = (θsave, e, c, t, a)
then

T (d) ← (θspsave, e, j, c, t, a)
else T (d) ← Ts(d.O)
end if

end function

Fig. 11. An algorithm for constructing a PNFA from a stream-constrained episode

θspecify(d, e, l, c, t) is defined by as well as θnormal(d, e, c, t), but it is triggered by
only e ∈ S(i,l) instead of Si.

θspsave(d, e, l, c, t, a) is defined by as well as θsave(d, e, c, t, a), but it is triggered
by only e ∈ S(i,l) instead of Si.

Then we propose an algorithm for constructing PNFAs from stream-constrained
episodes in Fig. 11. For instance, Fig. 10 shows a PNFA for the Z-connected
sequential episode in Fig. 2.

5 Experimental Results

We test EVIS on the Linear Road Benchmark Data [2] and real world taxi probe
data, which is emitted by over 3,000 taxis belong to several taxi companies
in Tokyo. We transformed the numerical data into parallel event streams in
advance. The experiments were run on a PC (Intel Core i7 3.07 GHz quad core,
Ubuntu 11.04 64 bit OS) with 6 GB of main memory.

We compared the performance of EVIS with a popular open source CEP
engine Esper [8] on sequential (with length 2-4), binary branch (with length 2-4),
binary junction (with length 2-4), Z-type, and Z-connected sequential episodes
such as Fig. 2 against 1,000 cars of the benchmark data. Esper treats a SQL-like
query language, while EVIS treats an episode pattern. Then we transformed
episodes into SQL-like queries by using join operations against time-stamps and
car IDs. Fig. 12 shows the throughputs of these patterns. The results show that
EVIS performs over seventy times faster than Esper on simple patterns, and
Esper could not finish its execution on some complex patterns because of out-
of-memory (signed with X in Fig. 12). The throughput of EVIS becomes lower
for longer branch and junction patterns, because we cannot apply the filtering
technique for sequential patterns to these patterns.

222 S. Tago et al.

10

100

1000

10000

100000

1000000

10000000

Seq
ue

nti
al-

2

Seq
ue

nti
al-

3

Seq
ue

nti
al-

4

Bran
ch

-2

Bran
ch

-3

Bran
ch

-4

Ju
nc

tio
n-

2

Ju
nc

tio
n-

3

Ju
nc

tio
n-

4

Z-ty
pe

Z-co
nn

ec
ted

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

EVIS

Esper

X X X X

Fig. 12. Throughput of EVIS and Esper
for various patterns on 1,000 streams

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

The number of streams

T
ho

ur
gh

pu
t (

ev
en

ts
/s

ec
)

0

100

200

300

400

500

600

P
ea

k
M

em
or

y
U

sa
ge

 (
M

B
)

Z-type (throughput)

Z-connected sequential (throughput)

Z-type (memory)

Z-connected sequential (memory)

Fig. 13. Throughput and memory usage
with varying the number of streams

Table 1. Throughput for a Z-connected sequential episode on taxi probe data

EVIS Esper

Throughput (events/sec) 958095 2854

Next, we examined the scalability of EVIS. Fig. 13 shows the throughputs and
memory usages for two episodes in Fig. 2 with varying the number of streams
(cars) from 300 to 100,000. The throughputs for the two episodes are about the
same. From the results, we can conclude that EVIS runs fast and scales against
the number of streams.

Finally, we verified usefulness about the throughput on real world data. Ta-
ble 1 shows the throughput for the Z-connected sequential episode in Fig. 2 on
the taxi probe data. This shows that EVIS runs fast on real world data as well
as on artificial data. Then we can suppose that EVIS has a potential to detect
a pattern on probes emitted from even 100,000 cars per 1 second.

6 Conclusion

This paper presented EVIS a fast and scalable episode matching engine for
massively parallel data streams. EVIS efficiently detects an episode with inter-
val constraints and stream constraints against parallel data streams. EVIS em-
ploys a variant of non-deterministic finite automata whose states are extended to
maintain their activated times and activating streams. The experimental results
showed that EVIS performs much faster than Esper for both artificial and real
world datasets, and EVIS also effectively runs against complex patterns such
that Esper cannot finish its execution. Furthermore, EVIS could process about
nine hundreds of thousands of events per second on even over 100,000 streams.
EVIS has the potential to lead our society in the coming age of cyber physi-
cal systems by detecting a lot of valuable correlations among tons of natural
phenomena and human activities.

EVIS: A Fast and Scalable Episode Matching Engine 223

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: SIGMOD, pp. 147–160 (2008)

2. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In:
VLDB, pp. 480–491 (2004)

3. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald,
M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine.
In: SIGMOD, pp. 1100–1102 (2007)

4. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: VLDB, pp. 215–226 (2002)

5. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for
active databases: Semantics, contexts and detection. In: VLDB, pp. 606–617 (1994)

6. Das, G., Fleischer, R., Gasieniec, L., Gunopulos, D., Kärkkäinen, J.: Episode
Matching. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp.
12–27. Springer, Heidelberg (1997)

7. Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., Hsu, M., Ledin, R., Mc-
Carthy, D., Rosenthal, A., Sarin, S., Carey, M.J., Livny, M., Jauhari, R.: The hipac
project: combining active databases and timing constraints. SIGMOD Rec. 17, 51–
70 (1998)

8. Espertech, http://www.espertech.com/
9. Gehani, N.H., Jagadish, H.V.: Ode as an active database: Constraints and triggers.

In: VLDB, pp. 327–336 (1991)
10. Katoh, T., Arimura, H., Hirata, K.: Mining Frequent k-Partite Episodes from Event

Sequences. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009.
LNCS (LNAI), vol. 6284, pp. 331–344. Springer, Heidelberg (2010)

11. Lee, E.A.: Cyber physical systems: Design challenges. In: ISORC, pp. 363–369
(2008)

12. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

13. Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting
composite events. In: SIGMOD, pp. 193–206 (2009)

14. Tatti, N., Cule, B.: Mining closed episodes with simultaneous events. In: SIGKDD,
pp. 1172–1180 (2011)

15. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is “next” in event pro-
cessing? In: PODS, pp. 263–272 (2007)

http://www.espertech.com/

Real-Time Analysis of ECG Data Using Mobile

Data Stream Management System

Seokjin Hong, Rana Prasad Sahu, M.R. Srikanth, Supriya Mandal,
Kyoung-Gu Woo, and Il-Pyung Park

Samsung Advanced Institute of Technology, South Korea
{s.jin.hong,rana.prasad,srikanth.mr,

mandal.s,kg.woo,ilpyung.park}@samsung.com
http://www.sait.samsung.co.kr

Abstract. Monitoring and analyzing electrocardiogram(ECG) signals
for the purpose of detecting cardiac arrhythmia is a challenging task,
and often requires a Complex Event Processing (CEP) system to ana-
lyze real-time streamed data. Various server-based CEP engines exist to-
day. However, they have practical limitations to be used in environments
where network connectivity is poor and yet continuous real-time moni-
toring and analysis is critical. In this paper, we introduce a lightweight
mobile-based CEP engine called Mobile Data Stream Management Sys-
tem (MDSMS) that runs on the smart phone. MDSMS is built on an
extensible architecture with concepts such as lightweight scheduling and
efficient tuple representation. MDSMS enables developers to easily in-
corporate domain specific functionalities with User Defined Operator
(UDO) and User Defined Function (UDF). MDSMS also has other use-
ful features, such as mechanisms for archiving streamed data in local
or remote data stores. We also show effectiveness of our MDSMS by
implementing a portable, continuous, and real-time cardiac arrhythmia
detection system based on the MDSMS. The system consists of ECG
sensor and a smart phone connected to each other via a wireless connec-
tion. MDSMS can detect and classify various arrhythmia conditions from
ECG streams by executing arrhythmia detection algorithms written in
Continuous Query Language.

Keywords: Stream Data Processing, Complex Event Processing, ECG,
Arrhythmia detection, Telemedicine, Mobile device.

1 Introduction

Real-time electronic detection systems of impending cardiac attacks could prove
life saver for mid-risk patients by giving warnings during the golden hour. A sys-
tem of this nature, when put in place, presents physicians with an opportunity to
get details of the cardiac episodes as it happens which significantly improves the
accuracy of decision making while selecting appropriate treatment procedures.
With the advent of new technology in biomedical device design and a flurry
of publications seen in the recent times associated with efficient algorithms for

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 224–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.sait.samsung.co.kr

Real-Time Analysis of ECG Data Using MDSMS 225

cardiac signal processing, it is becoming increasingly essential to develop pow-
erful systems that could aid in accurate real-time monitoring of cardiovascular
diseases. Detection of such cardiovascular abnormal conditions is commonly en-
abled by analysis of electrocardiogram(ECG). ECG signal is an across the chest
wall interpretation of electrical activity of the human heart over a period of
time. The electrical activity is detected by electrodes attached to the surface
of skin and recorded by a device external to the body. The conditions that can
be detected by analyzing ECG signals range from minor, chronic, to life threat-
ening in nature. A large and heterogeneous group of heart rate abnormalities
are called as arrhythmia which can be broadly classified as un-sustained with a
single irregular heartbeat or as sustained with an irregular group of heart beats.
While many arrhythmias are less serious in nature, some are to be treated as
life-threatening medical emergencies that may lead to stroke or sudden cardiac
death. Various algorithmic methods have been discussed in literature for classi-
fication of arrhythmia based on analysis of ECG signals[1,2,3]. Recently we have
witnessed a paradigm shift in the healthcare domain where the disease man-
agement strategy is moving from a reactive treatment approach to a predictive
and preventive mode. This often necessitates continuous monitoring of bio sig-
nals without affecting the normal life of a patient. Ubiquitous nature of a smart
phone with computing capabilities and an array of connectivity features proves
to be a promising candidate for implementing such a system.

In this paper, we describe a software system that we have developed for real-
time monitoring and analysis of ECG signals specifically aimed for a smart
phone. A system of this nature should deal with, (a) Multiple data streams
originating from varying data sources and their correlation, (b) Synchronizing
event streams especially if they are delayed or at times arrive out of order and
(c) Handling large volumes of data from input sources yet ensure low latency
for real-time analysis. Considering all these points, a Complex Event Processing
(CEP) system stands out to be a right choice for realizing an alert system based
on real-time analysis of ECG signals. A CEP system typically deployed on a
server is capable of handling streams from multiple sources, performing real-
time analysis on large volumes of data with low latency and allowing application
developers to express most of the complex logic using queries based on Contin-
uous Query Language (CQL). Unlike the existing CEP systems that run on a
server, the system that we have realized is a mobile based CEP engine called
Mobile Data Stream Management System henceforth referred to as MDSMS.

The remainder of this paper is organized as follows. We provide background
on healthcare monitoring systems and continuous query processing models in
section 2. We describe architecture of portable arrhythmia detection system and
its components in section 3. Architecture and key features of MDSMS are also
described in section 4. Subsequently we discuss the experiment results for the
arrhythmia detection application in section 5, and conclude the paper with future
scope of our work in section 6.

226 S. Hong et al.

Fig. 1. ECG Signal

2 Preliminaries and Related Work

A typical ECG pattern represents a cyclic signal composed of a series of beats
as shown in Fig. 1. Each beat is an outcome of polarization and depolarization
of the heart muscles initiated by the sinus node. ECG signal has several kinds of
prominent features. Some features are intra-beat features such as P, Q, R, S, and
T which are medically meaningful points in a beat of the signal. There are also
inter-beat features that are derived from intra-beat features such as RR-interval.

The process of detecting abnormal heart beat conditions known as arrhyth-
mia begins with the extraction and annotation of several kinds of features from
each beat of the ECG signal streams. Arrhythmic beat or episode can be clas-
sified using these ECG features. Various algorithms have been developed to de-
tect arrhythmias from ECG features such as RR Interval based[1], time domain
analysis[2] and frequency domain analysis[3].

There have been systems proposed in literature for real-time monitoring of
ECG data[4], but these systems rely on transmitting the data to a networked
server and perform analysis remotely. Such systems are prone to disruption of
services in situations where network connectivity is poor or nonexistent. Ap-
plications performing such analysis locally face various challenges of handling
high volumes of data, yet guaranteeing low latency for providing the results.
CEP systems are most appropriate to analyze continuous streams of data. Such
CEP systems[5][6] have been designed to run on server machines. In contrast,
our system is designed with the goal to run on smart phones possible through a
light-weight architecture and a small foot print.

3 Portable Arrhythmia Detection System

3.1 System Architecture

The system components consist of a single channel ECG sensor, preprocessor,
MDSMS execution engine and a monitoring application as shown in Fig. 2. The
ECG sensor is enabled by bluetooth connectivity that continuously monitors
ECG signals while the subject goes about with his daily routine. Internally the

Real-Time Analysis of ECG Data Using MDSMS 227

Fig. 2. System Architecture

preprocessor is responsible for noise removal from the sensor data and apply
feature extraction techniques for accurate R-peak detection[7]. It then trans-
forms the detected R-peak data into feature streams consisting of tuples with an
associated timestamp called RR-tuples. Arrhythmia detection algorithms have
been implemented as continuous queries and registered in MDSMS. MDSMS
continuously executes these registered queries over ECG feature stream received
from the preprocessor. Whenever an event satisfied with the query is detected,
MDSMS notifies the event to the monitoring application.

3.2 Continuous Query Language for Arrhythmia Detection

Continuous queries are queries for data streams written using CQL, which are
issued once and run continually over the database[8]. The CQL language of
STREAM[9] which is a powerful SQL based approach for CEP systems has been
adopted. Our system implements the semantics of CQL with added features like
pattern matching, UDF and UDO.

Continuous queries act on either a stream or a relation. A stream is an un-
bounded collection of timestamped tuples associated with a schema similar to
that of a schema for relational database. A relation is a finite set of tuples de-
rived from streams but constrained by time or number of tuples within a given
window, such relations are obtained by applying window operators on streams.

Life cycle of a typical stream begins by getting processed into a finite subset
of tuples called as a relation using window operator which is a stream-to-relation
operation. These relations are then subjected to relation-to-relation operators for
further processing such as join, aggregate etc. Output from relational operators
are then passed through other relational operators as input or as output stream
to the applications.

We have implemented continuous queries for various arrhythmia conditions
such as Bradycardia (BC), Sinus Tachycardia (STC), Ventricular Tachycardia
(VTC) and Premature Ventricular Complexes (PVC) as a variant of algorithm
developed by Tsipouras et.al.[1]. Given below are examples of continuous queries
for Sinus Tachycardia and Premature Ventricular Complexes. EcgStream is the
input data stream consisting of time varied tuples which consist of three RR-
interval values (RR1, RR2, RR3) computed over four successive beats. They are
passed through ROW window operator to split the stream into one tuple per re-
lation and predicates are evaluated on the relation. The output is propagated to

228 S. Hong et al.

the application by converting relational output to stream using ISTREAM oper-
ator. Query for Sinus Tachycardia also utilizes step count from the accelerometer
sensor stream called AccelStream that contains total step counts averaged every
5 seconds extrapolated to steps per minute. Correlation between EcgStream and
AccelStream is achieved by using binary join synchronized on time.

Sinus Tachycardia

ISTREAM (SELECT E.RR1, E.RR2, E.RR3

FROM EcgStream [ROWS 1] AS E, AccelStream [ROWS 1] AS A

WHERE (60.0/E.RR1 > 100.0) AND (60.0/E.RR1 <= 120.0)

AND (A.StepsPerMinute < 250)

AND (E.timestamp >= A.timestamp))

Premature Ventricular Complexes

IStream (SELECT * FROM EcgStream [ROWS 1]

WHERE ((1.15*RR2 < RR1) AND (1.15*RR2 < RR3))

OR ((((RR1-RR2 > 0)

AND (RR1-RR2 < 0.3)) OR ((RR2-RR1 >= 0)

AND (RR2-RR1 < 0.3))) AND ((RR1<0.8)

AND (RR2<0.8)) AND (RR3 > 1.2*((RR1+RR2)/2)))

OR ((((RR2-RR3 > 0) AND (RR2-RR3 < 0.3))

OR ((RR3-RR2 >= 0) AND (RR3-RR2 < 0.3)))

AND ((RR2<0.8) AND (RR3<0.8))

AND (RR1 > 1.2*((RR2+RR3)/2))))

4 Mobile Data Stream Management System

In this section we present the architecture of MDSMS. It was designed primarily
to be deployed on a mobile device. Such a system should be aware of the limited
resources and provide capabilities of existing CEP systems. At the same time
design of such a system should focus on providing low latency, high throughput
stream processing while ensuring lower battery consumption and limited memory
usage. Architecture of such a system should be lightweight and extensible in
providing flexible feature set to the applications.

4.1 MDSMS Architecture

General architecture of the system is shown in Fig. 3. MDSMS is a 3-layered
architecture which consists of MDSMS API, MDSMS core, and platform ab-
straction layers. Functionality of the core is exposed to the applications through
an API layer. MDSMS exposes API to perform operations such as registration
of queries, push input tuples and retrieve query results. Applications have the
flexibility of expressing the logic by composing continuous queries. The core of

Real-Time Analysis of ECG Data Using MDSMS 229

Fig. 3. MDSMS Architecture

MDSMS is comprised of query registration, catalog, stream IO, and query execu-
tion subsystems. A platform abstraction layer ensures portability of the system
across various OS and DBMS.

When the application registers a query, it is parsed into a parse tree with
syntactic and semantic verification, and the parse tree is then transformed into
an execution plan graph. Each vertex of this plan graph is an executable operator
which is scheduled independently by the scheduler. Every operator is associated
with one or more input as well as output queues. Cataloging subsystemmaintains
the registered queries as forms of execution plan graph and meta-data related to
all the schema in the system. A registered query can be used as a view in other
queries that is, an output stream of a query can be used as an input stream to
subsequent queries.

MDSMS provides extensibility features for applications to express domain spe-
cific functionality via User Defined Operators (UDO) and User Defined Functions
(UDF) to be discussed in section 4.2. The catalog subsystem is also responsible
for maintaining UDO, UDF meta data information. Query registration and ex-
ecution subsystems uses UDO, UDF meta data from the repository subsystem.
The Query execution subsystem that includes the scheduler is discussed in the
subsequent sections. The IO subsystem is in charge of stream input, output, and
archive. The stream inserter module receives stream input data and inserts it
into MDSMS. Incoming stream data at times suffers from transmission anoma-
lies causing the data to arrive out of order or at irregular intervals or data being
delivered in bursts. The system provides heartbeat mechanism which guarantees

230 S. Hong et al.

that the stream will contain tuples with increasing timestamp and to ensure that
the system generates timely output.

4.2 Features of MDSMS

MDSMS incorporates various system level features during the execution phase.
We briefly describe some of these as following.

Optimization techniques. Several optimization techniques have been adopted
to improve the performance of MDSMS. We would like to mention some of the
techniques that resulted in performance boost in the streaming data context.
Query plan optimization plays a major role in enhancing the performance of the
system by reducing the number of operators and interactions between them. The
planner optimizes the query plan by pushing down the predicates which reduces
load on the successors. Operator’s output queue is shared with all the succes-
sors input queues to minimize data duplication and memory usage. We follow
tuple sharing across multiple operators to avoid duplication. This is attained by
reference counting mechanism within the tuple structure.

Fig. 4. depicts plan for the following query with join over two input stream
ranges of 30 seconds each. Selection and projection are combined along with
binary join operator without extra selection and projection operators. In addition
the output queue of the range window is used as the shared queue for the input
queue of the binary join operator. It can reduce the number of operators and
query execution latency.

SELECT S1.A, S2.D

FROM Stream1[RANGE 30 SECONDS] as S1,

Stream2[RANGE 30 SECONDS] as S2

WHERE S1.B > 0 AND S1.A > S2.E

Fig. 4. Queue sharing mechanism

Real-Time Analysis of ECG Data Using MDSMS 231

Lightweight Scheduler. Based on the lightweight architecture, MDSMS im-
plements a single threaded execution engine which comprises query execution
subsystem and result handler. The scheduler is based on round robin algorithm,
where number of tuples to be processed for each job is computed via statistics
based adaptive load aware scheduling strategy. If an operator has backlog of
tuples to be processed, it pushes itself to the ready queue after each run. As an
optimization for the scheduling strategy, each operator after its execution places
its successor to the ready queue to improve query response times.

User Defined Components. MDSMS provides an extensible framework for
applications by adding the functionality of the system through UDO and UDF.
A UDO is a user defined stream-to-stream operator that consumes a stream and
produces a stream. A UDF is a user defined function that takes scalar values
across one or multiple tuples and returns a scalar value. These components are
compiled into native libraries and linked with MDSMS which are seamlessly
invoked at runtime from continuous queries. In our application we chose to im-
plement feature extraction algorithms as UDO which accepts raw ECG data
streams and produce RR-interval feature stream.

Local/Remote Persistent Store. MDSMS supports a feature to store and
retrieve stream data using a persistent store. This is required to perform histor-
ical analysis as well as saving subset of the actual stream for future references.
In our analysis with arrhythmia monitoring application, we have realized that
we need to store arrhythmic episode data to be reviewed by a physician at any
point of time. We have exposed this feature through CQL to support local and
remote data stores to tackle limited memory capabilities on mobile phones.

5 Experimental Result

The system that we have developed has been extensively tested with ECG data
from the MIT-BIH database[10]. It provides a total of 48 data sets, lasting for 30
minutes each. All the data sets contain full information of beat types reviewed
and manually annotated by cardiac experts. From these we have chosen 30 data
sets, which do not contain overlapping regions among various arrhythmias with
the main purpose of accurately validating the existence of a particular arrhyth-
mia. Performance of system was measured based on the doctor’s annotation
provided in the database. The system was demonstrated on a smart phone with
a processor clock of 800 MHz and memory of 256 MB RAM with the embed-
ded operating system as Microsoft Windows Mobile 6.5 Professional. Table 1
provides the accuracy of the system for various arrhythmia conditions.

ECG sensors operate on various sampling frequencies, hence the data was
categorized into three sampling zones consisting of 60, 300 and 600 readings
per second. Fig. 5. shows time delays associated with identification of arrhyth-
mia conditions once the preprocessing of raw tuples is carried out. Arrhythmia

232 S. Hong et al.

Table 1. Accuracy Measurements

Accuracy No. of Data set True Positive (%) False Positive (%) False Negative (%)

BC 30 98.8 0 1.20

STC 30 98.20 0 1.80

VTC 30 97.50 0 2.50

PVC 30 95.20 14.60 4.80

detection latency was measured as a difference between the output tuple emit
time and the tuple’s input timestamp. Fig. 6. presents memory usage of the
system. Profiling data shows that overhead of running MDSMS in the context
of real-time ECG detection system is acceptable to run in mobile devices.

Fig. 5. Arrhythmia Detection Latency Fig. 6. Memory footprint

6 Conclusion and Future Work

In this paper, we have presented mobile data stream management system that
executes continuous queries on stream data in mobile devices such as smart
phones. The key features of this MDSMS system are a lightweight architec-
ture, extensible user defined modules and mechanisms for efficiently storing the
streams. Based on MDSMS we have successfully demonstrated a portable ar-
rhythmia detection system that is capable of real-time detection and analysis
of four different arrhythmia conditions. We are also working towards enhancing
the present system to a signal based MDSMS that provides specialized operators
capable of handling raw sensor data streams there by extending its application
to any bio-sensor. We believe that such as system when put in place in an am-
bulatory medical scenario will be an useful tool in the hands of physicians for
the treatment of patients with cardiac and neurological disorders.

Acknowledgment. The authors would like to thank Prof. S Sudarshan from
Dept. of Computer Science and Engineering, IIT Bombay for the discussion and
valuable reviews of this work.

Real-Time Analysis of ECG Data Using MDSMS 233

References

1. Tsipouras, M., Fotiadis, D., Sideris, D.: Arrhythmia classification using the RR-
interval duration signal. Computers in Cardiology, 485–488 (2002)

2. Throne, R., Jenkins, J., DiCarlo, L.: A comparison of four new time-domain tech-
niques for discriminating monomorphic ventricular tachycardia from sinus rhythm
using ventricular waveform morphology. IEEE Transactions on Biomedical Engi-
neering 38(6), 561–570 (1991)

3. Afonso, V., Tompkins, W., Nguyen, T., Luo, S.: ECG beat detection using filter
banks. IEEE Transactions on Biomedical Engineering 46(2), 192–202 (1991)

4. Goni, A., Rodriguez, J., Burgos, A., Illarramendi, A., Dranca, L.: Real-time mon-
itoring of mobile biological sensor data-streams: Architecture and cost model. In:
Ninth International Conference on Mobile Data Management Workshops, pp. 97–
105 (2008)

5. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data
stream management. The VLDB Journal 12(2), 120–139 (2003)

6. Arasu, A., et al.: Stream: The stanford stream data manager. IEEE Data Engi-
neering Bulletin 26(1), 19–26 (2003)

7. Bera, D., Bopardikar, A.S., Narayanan, R.: A robust algorithm for R-peak detection
in an ECG waveform using local threshold computed over a sliding window. In:
Third International Conference on Bioinformatics and Biomedical Technology, pp.
278–283 (2011)

8. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: ACM SIGMOD International Conference on Management of Data,
vol. 21(2), pp. 321–330 (1992)

9. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

10. MIT-BIH database distribution (1998),
http://www.physionet.org/physiobank/database/mitdb

http://www.physionet.org/physiobank/database/mitdb

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 234–242, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Main Memory Based Spatial DBMS: Kairos

Hyeok Han and Seong-il Jin

Realtimetech Inc., Suite 207 IT Venture Town,
 694 Tamnip-Dong, Daejeon, Korea

{hhan,sijin}@realtimetech.co.kr

Abstract. The spatial database management system that supports the real-time
processing for spatial data is emerging with the Location-based Services(LBS)
that uses the location information as the key information in ubiquitous envi-
ronment. Kairos Spatial is a spatial database management system which is
based on the main-memory database technology. It supports both relational data
model and spatial data model in the forms of the engine-level integration and
supports an efficient spatial data management and real-time spatial data
processing in GIS applications handling large amounts of spatial data. Using
Kairos Spatial as the DBMS for the spatial data management will be able to get
effect reducing the development time and improving the performance of spatial
data processing.

In this paper, we present the introduction to spatial DBMS technology, Spa-
tial DBMS features and functionality, short introduction to a Main memory-
based Spatial DBMS and its case study.

Keywords: Main Memory DBMS, Spatial DBMS.

1 Introduction

As Location-based Services(LBS) for providing optimal resources and information
services based on the geographical location is emerging with the development of mo-
bile infrastructure and the growth of the customers demand for leisure. Many compa-
nies such as web portal company, mobile handset manufacturers and communication
carriers have recognized the LBS as a key strategic element of the business and have
entered into the LBS market.

The map search service for Navigation and POI search is already generalized on
the web site such as Google and Yahoo. Its applicable range is gradually expanding
into the mobile market like the Google’s Map/Earth service using Apple’s iPhone.

The essential technical components to enable LBS services are the location posi-
tioning technology and the GIS(Geographical Information System) related technolo-
gy. The former is technology to identify the location of moving objects such as cars or
mobile users by GPS, RFID and Wireless network. The latter is the set of information
technology to store, manage and analyze the spatial data and attributes of enti-
ties(topography, streets, buildings, etc.) representing the geometric characteristics of
the real-world.

 A Main Memory Based Spatial DBMS: Kairos 235

In the 1970s, GIS system was used as a utility for managing communication lines,
water lines, transformers, and other public facilities. Spatial data and geographic in-
formation systems (GIS) had a professional systematic nature primarily used by a
limited user and tailored to the special purpose application such as land information
systems, urban information systems and traffic information systems.

As the increase of internet users and the development of web technologies have
create a new environment which is easy to provide geographic information services to
an unspecified number of users, GIS system deviated from the concept of professional
GIS system is recently changing into the concept of integrated information system in
order to accommodate the needs in a variety of user-layer.

In addition to traditional applications, GIS is used in a broad range of application
domains such as Education, military, weather forecasts, sales analysis, demographic
and land planning. As the GIS is changing into the service-oriented paradigm through
convergence with communication technologies, the Spatial DBMS available for stor-
ing, managing and analyzing spatial data has been the subject of interest by the many
GIS companies.

2 The Emergence Background of Spatial DBMS

In this paper, before the introduction to the Spatial DBMS, the historical transition
process of the GIS application architecture will be discussed to understand the emer-
gence background of Spatial DBMS

Fig. 1. Architecture evolution of GIS system

The architecture of first-generation GIS system stores spatial data in the file system
and supports spatial data types, spatial indexes and spatial operators for the processing
of spatial data in GIS engine. In this architecture, GIS application using non-standard
API offered exclusively by the GIS engine must implement spatial data processing

236 H. Han and S.-i. Jin

capabilities and store spatial data in the file system. So, it has the disadvantage that
the sharing of the application data is difficult.

In the early 1990s, major GIS vendors such as IBM, ESRI and MapInfo developed
second generation GIS system architecture in which stored spatial data in the Rela-
tional DBMS by using conventional database data types (BLOB, Integer) and served
spatial data operations by a GIS middleware. Second-generation architecture with the
introduction of RDBMS technology in the GIS system takes advantage of DBMS-
specific functionalities such as concurrency control, data backup and recovery. But,
the interface to develop GIS application provided by each middleware vendor can still
not support an open architecture which is the pursuit of the recent enterprise solutions.

In addition, this architecture is inefficient in the case of the web GIS service due to
the duality of this architecture, in which spatial operation is handled by GIS middle-
ware and spatial data is stored in the RDBMS as a converted form of BLOB type.

As increasing needs of customers who need GIS applications not only taking full
advantage of the DBMS benefits such as Data sharing, management, and security but
also handling the high-speed spatial operations, interoperability between GIS solu-
tions, and web-based geographic information services, the third-generation GIS sys-
tem architecture managing spatial data and attribute data in one database and provid-
ing spatial indexes, spatial operators, and access of spatial data through standard SQL
was emerged. The Spatial DBMS supports the storage and operation for spatial data
in this third-generation GIS system architecture. In third generation of architecture,
GIS applications using the Open API such as C, JDBC, OLEDB, and .NET Data Pro-
vider can use the features provided by Web Application Server and Spatial DBMS. In
addition, this architecture does not cause performance degradation by data type con-
version operation such as second-generation architecture, because spatial DBMS itself
supports spatial data types

3 The Characteristics of Spatial DBMS

Spatial DBMS manages both spatial data and attribute data in one database, while
providing the DBMS-specific function such as storage management, indexing, query

Fig. 2. Concept of Spatial DBMS

 A Main Memory Based Spatial DBMS: Kairos 237

optimization, and user management capabilities and GIS engine data processing func-
tion such as the spatial data types, spatial operators, spatial indexing techniques and
the spatial join operations. GIS Applications can achieve increasing performance and
reducing system complexity and overhead of spatial data management by taking ad-
vantage of the convenient features of spatial data management such as SQL and
ODBC databases via the standard programming interface provided by Spatial DBMS
instead of middleware.

Spatial DBMS can be used for the following many applications.

Table 1. Application area of Spatial DBMS

Application area Example
Location-based
Living information

Interest information service associated with the user's current loca-
tion, Address search, finding travel routes, POI search.

Telematics
Vehicle Information and management services, Navigation, weath-
er/traffic information service.

Map-based
web site

Travel maps service, geo-coding service, etc.

Geographic Infor-
mation system

Land Use Management and flood control, population/geographic
data management for disaster and rescue.

Public facilities
management

Public Facilities network management like Utility poles, telephone
lines, water supplying line

Personal informa-
tion management

Increasing work efficiency from combining PIM(Personal Informa-
tion Management) system to mange conferences, meetings, business
trip and daily task with location information.

The Classification of Spatial DBMS. Spatial DBMS can be divided into Disk-based
Spatial DBMS (Spatial DDBMS) and the Main Memory-based Spatial DBMS (Spa-
tial MMDBMS) by the physical storage which loads the database. Spatial DDBMS
has mainly released by major DBMS vendors on the market and MMDBMS compa-
nies such as Realtimetech Inc.[6], comes with Spatial MMDBMS packages reflecting
change of service-oriented GIS systems technology flow. MMDBMS improves the
response time and processing ratio for transaction by optimizing data and index struc-
tures, query processing algorithms and managing the entire database in memory.

The Main Memory Based Spatial DBMS. The benefits of Main Memory DBMS
can be applied in Spatial DBMS. Disk-based DBMS has the fundamental problems
such as slowing down of data processing speed due to the frequent disk I/O. Typical-
ly, the complexity of spatial queries on Spatial DBMS may be faced far more serious
performance problems. In contrast, Spatial MMDBMS has the advantage of being
able to provide performance of spatial query processing faster than Spatial DDBMS
because the entire database is loaded into the system memory. Particularly, it shows
the excellent spatial data processing performance in GIS applications using search
oriented operations. But, in terms of the database size which can be loaded, Spatial
DDBMS can be said to dominate rather than Spatial MMDBMS. However, as this
restriction on the amount of memory has been improved by drop of main memory
price and the generalization of 64bit computing, large database can be handled in
MMDBMS[1].

238 H. Han and S.-i. Jin

4 Kairos Spatial : A Main Memory Based Spatial DBMS

Kairos Spatial was initially released in 2004 as the world's first commercial memory-
resident Spatial DBMS with 2D spatial model implementation. It is based on
main-memory database technology to provide high-speed transaction processing per-
formance. It delivers core components of GIS specific functions as the DBMS engine
functionalities. Recently, its functionalities were extended to the 3D spatial model and
network data model in order to meet the requirement of various GIS markets. The
spatial data in Kairos Spatial is based on ‘Simple Feature Access’ specification which
is defined by OGC, an international GIS standard group[5].

Fig. 3. Architecture of Kairos Spatial

As you can see in Fig.3, Kairos Spatial has the architecture of the form that is inte-
grated with one DBMS in order to provide spatial data management facilities on un-
derlying database engine modules. Thus, Kairos Spatial takes the advantage of being
able to manage the spatial data and relational data in a single integrated database. Due
to the use of main-memory database techniques and the support of the integrated ser-
vice with the spatial data and relational data in one DBMS, Kairos Spatial is suitable
not only for the conventional GIS application, but also for the ubiquitous application
which needs the high speed spatial data process. Also, we can expect productivity
improvement through integrating the spatial data model into the RDBMS components
and reusing both the environment and experience which are used in RDBMS
development.

From now, Let us observe Kairos Spatial functions and key features.

 A Main Memory Based Spatial DBMS: Kairos 239

Spatial Data Model. As shown in Fig.4, Kairos Spatial provides spatial data model
including 3- dimensional spatial objects that conform to OGC Simple Feature specifi-
cation. This specification supports data formats such as Well Known Binary (WKB)
and Well Known Text (WKT) which is commonly used in industry in order to
represent real-world spatial objects having geometric features such as rivers, roads
and buildings. Also, it can be used for modeling spatial objects.

Fig. 4. Data model of Kairos Spatial

Spatial Operators. Kairos Spatial can evaluate the correlation between the various
spatial objects(including 3D spatial Objects[4]) by providing spatial relational func-
tions based on the OGC 9-Intersection model such as Contains, Intersects and Over-
laps etc. In addition, it provides various spatial analytical functions conforming OGC
standard such as Distance, Area, Length, Convex-hull and Volume etc. Table 2 shows
Kairos spatial operators based on the conformance of standard specifications.

Table 2. Spatial Operators in Kairos Spatial

240 H. Han and S.-i. Jin

Spatial Data Access. As
Kairos Spatial provides R
dex[2] using the informatio
bounding rectangles (MBR
jects in order to optimize
performance. In addition, i
join algorithms[3] optimiz
memory based DBMS an
filters for the enhancement
performance.

Usage Model. Kairos Spat
in GIS solutions, but also b
processing performance in
case that Kairos Spatial is u
pensate for the disadvantag
base and having a role of sp
Mobile GIS that requires re

5 Case Study : u-S

In this chapter, the applied
Korea will be introduced.[7

System Overview. In April
u-Statistics service to acco
national policies and for the
and decision-making with hi

The u-Statistical system so
ment area. Data manageme
ing u-Statistics database. It
GIS solution in order to edi

Fig. 6

shown in Fig.5,
R*Tree spatial in-
on of the minimum
R) of spatial ob-
the spatial query

it provides spatial
zed for the main
nd provides 2nd
t of spatial search

 Fig. 5. R*-Tree for 3D Objects

tial can not only be utilized as a stand-alone spatial DB
be utilized as caching DBMS to improve the spatial qu

a large GIS system using Disk-based spatial DBMS
used as a caching database server, Kairos Spatial can co
ges of Disk-based DBMS by loading hot data into its d
patial database server of service area such as Web GIS

eal-time processing

Statistical System of Statistics Korea

case of Kairos Spatial in u-Statistical System of Statis
7]

l 2007, Statistics Korea launched the infrastructure projec
mmodate the need for spatial statistic service to prom

e production of sub-regional statistics in order to help po
ighlighting the importance of the spatial statistical service

oftware is divided into the service area and data mana
ent area is a part of u-Statistics system creating and man
t is implemented by Oracle 10g RDBMS and ESRI's A
it and manage the GIS data.

6. u-Statistic service system architecture

MS
uery
. In
om-
ata-
and

stics

ct of
mote
licy
es.

age-
nag-
Arc-

 A Main Memory Based Spatial DBMS: Kairos 241

Service area provides the portal service of real-time statistics to public and end users
through the Web using u-Statistic database. As shown in Fig.6, spatial
MMDBMS(Kairos Spatial) and web server technology is applied in order to imple-
ment this area. The spatial data and Census data of u-Statistics database in Oracle is
exported as shape file and then imported to Kairos Spatial using the utility which is
provided by Kairos Spatial.

The Description of Problem and Solution. Performance problem arose while
processing the editing transaction on the large u-Statistics database and providing web
portal service of high-quality real-time statistics with only single Disk-based DBMS
simultaneously.

Kairos Spatial was adopted as the solution to this problem. They utilized Kairos Spa-
tial as the cashing server of Oracle in order to be dedicated to process the real-time
statistical search from web users. As a result of this approach, the workload was dis-
tributed by separating the spatial data and census data from the entire u-Statistics
database.

The Effect of Introduction. As an example, the response time of the statistical theme
query shortened to less than 2 seconds while the conventional service took an hour or
more in the worst case. This approach enabled to provide the portal service for real-
time statistics. Furthermore, it contributed to improving Citizen Service of Statistical
Office and to obtaining economic benefits by improving the ROI.

6 Conclusion

In this paper, we presented the introduction to spatial DBMS technology, Spatial
DBMS features and functionality, short introduction to a Main memory-based Spatial
DBMS and its case study.

LBS that provide a variety of services with location and geo-information breathe
new life into the business around the world. Also, Spatial DBMS, especially main
memory based spatial DBMS that provide high-speed processing for the spatial data,
is expected to increase the utilization in LBS and GIS market.

References

1. Devitt, D.J., et al.: Implementation techniques for main memory data systems. In: Proc.
ACM SIGMOD Conf. (1984)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient and ro-
bust access method for points and rectangles. In: ACM SIGMOD Conf., pp. 322–331
(1990)

242 H. Han and S.-i. Jin

3. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient Processing of Spatial Joins Using R-
Trees. In: Proc. ACM SIGMOD Conf., pp. 237–246 (1993)

4. Zlatanova, S.: 3D geometries in DBMS. In: Proc.: Innovations in 3D GeoInformation
Systems, Kualla Lumpur, Malaysia, pp. 1–14 (2006)

5. OpenGIS Consortium, OpenGIS Implementation Specification for Geographic information
– Simple feature access – Part 2: SQL option, Revision 1.2.1 (2010)

6. Realtimetech Inc., http://www.realtimetech.co.kr
7. SGIS of Statistics Korea, http://sgis.kostat.go.kr

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 243–249, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Study on the International Standardization
for the Semantic Metadata Mapping Procedure

Sungjoon Lim1, Taesul Seo2, Changhan Lee1, and Soungsoo Shin1

1 Korea Database Agency, 9th Floor, KNTO Bldg.,
 10 Da-dong, Jung-gu, Seoul 100-180, Korea
{joon,leech,kolatree}@kdb.or.kr

2 Korea Institute of Science and Technology Information,
66 Hoegi-ro, Dondaemun-gu, Seoul, 130-741 Korea

tsseo@kisti.re.kr

Abstract. This paper introduces a semantic metadata mapping procedure which
is able to maximize the interoperability among metadata. The methodology
consists of three processes such as identifying metadata element sets, grouping
data elements, and mapping semantically. And also this paper shows applicable
example for the e-book cataloging domain. The methodology in this paper is
recommended for use in a specific subject domain because the procedure can be
more meaningful when a specific information object is concerned.

Keywords: metadata, metadata registry, semantic interoperability, international
standard, ISO.

1 Introduction

Usually, two systems do not share the same model, and that is because the categories
represented in the models were not factored in the same way. This situation inhibits
interoperability. For example, there may be two or more metadata element sets
applicable to an information object. For example, metadata such as DC (Dublin Core),
MARC (MAchine Readable Cataloguing), and MODS (Metadata Object Description
Schema) can be used to describe a book. Thus, a data element for an information
object may be differently named due to the preferences of individual database
developers. Consequently, data exchange among databases becomes difficult or
almost impossible.

ISO/IEC 111791 provides a framework for achieving semantic interoperability of
metadata between systems. A metadata registry based on ISO/IEC 11179 offers a
good way to secure interoperability among databases. However, there are many
metadata sets which are not following ISO/IEC 11179. In order to mediate among
plural data elements already developed or used, other measures are necessary. In
general, interoperability may be achieved through conformity to some set of
provisions. The basic concept of ISO/IEC 11179 can still be applicable to the

1 An international standard for representing metadata for an organization in a metadata registry.

244 S. Lim et al.

improvement of semantic metadata crosswalk because it addresses the semantics of
metadata and naming principles for data elements.

This paper describes a semantic metadata mapping procedure (SMMP) based on
ISO/IEC 11179, which can maximize the interoperability among data elements. The
procedure consists of three main processes: identifying metadata element sets,
grouping data elements, and semantic mapping.

2 Previous Studies for Metadata Interoperability

Metadata crosswalk [1] is the most commonly used way to map a data element to
another data element. However, the metadata crosswalk has poor semantics; it
provides a simple one-to-one mapping table among data elements without any
explanation about the semantic relationship. Therefore, the metadata crosswalk needs
to be elaborated in order to give semantics and to cover cases other than one-to-one
mapping.

Some other approaches have been tried to provide guidelines or a model for
harmonization of metadata and data in especially transport industry. Piprani, B. [2]
suggests a model for semantic mapping of master data harmonizing. This master data
harmonizing is including rationale for the need of semantic metadata mapping in
general.

3 Semantic Metadata Mapping Procedure

3.1 General

In this paper, the procedure for data element mapping consists of three main processes
as shown in Fig. 1.

Fig. 1. Procedure for data element mapping

The first process is to identify metadata element sets required to be mapped. It is
necessary to survey available metadata element sets (in a specific domain).

The second process is to group data elements obtained from the identified metadata
element sets, including four consecutive sub-processes namely, finding objects,
grouping all data elements by object, finding their properties, and grouping all data
elements by property.

The last process involves mapping data elements semantically. In this process, it is
necessary to arrange all data elements into a table. Notes on the accuracy of matching
are included in every slot of the table. A recommended set of metadata can also be
provided in the process for guiding future standardization.

Identifying metadata sets

Grouping data elements

Semantic mapping

 International Standardization for the Semantic Metadata Mapping Procedure 245

Fig. 2. Main and sub-processes for data element mapping

Fig. 2. shows all sub-processes related to corresponding main processes.

3.2 Identifying Metadata Element Sets

First, it is necessary to collect available metadata element sets and to identify
candidate metadata element sets to be mapped. Then, what the domain or service
database is should be checked, how many numbers of fields should be counted, and
whether sample data exists or not should be checked. Who or which organization has
the authority over each metadata element set should also be checked.

If the metadata element set or target object is not suitable for mapping, it may not
be chosen.

3.3 Grouping Data Elements

The next process is to group data elements by object class, and then to find properties
involved in the objects and sub-grouped data elements by properties. For
convenience, it is helpful to select a primary data element among the collected data
elements and aggregate data elements by the primary data element. The simplest or
the highest-level data element is recommended to be the primary data element.

All data elements included in the candidate metadata element sets should be
aggregated by property. Data elements relatively less important may be eliminated.
Some data elements, which cannot be grouped, are supposed to be set aside.

In this process, metadata experts should perform the work along with domain
experts.

3.4 Semantic Mapping

After identifying object classes and properties hidden in and related to all the primary
data elements, we can create common Data Element Concepts (DECs) according to
ISO/IEC 11179-1:20042 and ISO/IEC 11179-3:20033.

2 Information technology -- Metadata registries (MDR) -- Part 1: Framework.
3 Information technology -- Metadata registries (MDR) -- Part 3: Registry metamodel and basic

attributes.

1. Identifying metadata sets to be mapped

2. Finding objects of all data elements
3. Grouping data elements by objects

4. Finding properties

5. Grouping data elements by properties

6. Finding data element concepts(DECs)
7. Mapping by data element concepts(DECs)

8. Recommending data element names

9. Giving notes according to types of
heterogeneities

Main Processes Sub- Processes

Identifying metadata sets

Grouping data elements

Semantic mapping

246 S. Lim et al.

Table 1. Types of heterogeneity

Type
Sub-Type Mark Examples

Ways of harmonization (Types of mapping)

Same
Same

One-to-one mapping

Hierarchical

Generalization
Specialization

H/gen
H/spe

Price
Retail price, Wholesale price,
…

One-to-one mapping (dumb down)

Composition
Decomposition

H/com
H/dec

Name
Family name, given name, …

One-to-many or many-to-one mapping (if required)

Domain
Domain D Summary : Synopsis

One-to-one mapping (if required)

Lexical

Synonyms L/syn First name : Given name

Abbreviation L/abb Address : Addr.

Acronyms L/acr Serial Number :SN

Case sensitivity L/cas Address : ADDRESS

Language L/lan Name : 이름

Variation L/var Color : Colour

One-to-one mapping

Syntactic

Ordering S/ord Family name : Name (family)

Delimiters S/del Family-name : Family_name

Missing S/mis Author name : Author

One-to-one mapping

Complicated
Complicated C

Mapping is impossible.

 International Standardization for the Semantic Metadata Mapping Procedure 247

The third process starts from finding common data element concepts in each group
of data elements based on objects and properties found in the second process. If the
domain ontology or taxonomy is known, it will be very helpful to construct common
DECs.

Finally, all candidate data elements are arranged into a table by the common DECs.
Types of heterogeneity can be described in the table. The types consist of six
categories. Complicated difference is the type of heterogeneity that cannot be solved
without human intervention. A recommended data element can be provided for the
future standardization work.

4 Example for SMMP

This example shows mapping procedure using SMMP for the e-book cataloging
domain. In the e-book cataloging domain, three available metadata element set are
identified, such as OEBPS [3], MODS [4] and TEI [5].

- Domain: e-book cataloging
- Available metadata element sets: OEBPS, MODS and TEI

Table 2. Analysing available metadata element sets

Metadata
element set
name

OEBPS MODS TEI header

Domain or
service
database

Description of
electronic book

Description of library
resources

Encoding methods for
machine-readable texts

Number of
fields

15 About 60 (top level:
20)

Over 20

Sample data Yes No Yes

Authority Open eBook Forum Library of Congress TEI Consortium

In the sample object class, the e-Book has plural properties as shown below.

- Object class: e-Book
- Properties: title, author, subject, …, edition

Similar properties of MODS and TEI are grouped according to those of the primary
data elements from OEBPS. In the table, the italicized parts refer to properties
considered less important in the target application domain.

The data element concepts found can be shown as follow:

- DECs: ebookTitle, ebookAuthor, ebookSubject, …, ebookEdition

248 S. Lim et al.

Table 3. Example of grouping data elements by property

OEBPS
(primary data elements) MODS TEI

Title

Title
subTitle
partNumber
partName
nonSort

title
seriesStmt:title
seriesStmt:idno

Creator(role)
Creator(file-as)

name:role
name:namePart
name:displayForm
name:affiliation
name:discription

author

Subject

Topic
classification
catographics
occupation

keyword
classCode
catRef

… … …

(no data element) Edition

fileDesc_editionStmt_date
fileDesc_editionStmt_edition
fileDesc_editionStmt_respStmt
fileDesc_editionStmt_respStmt_name
fileDesc_editionStmt_respStmt_resp

Table 4. Semantic mapping of metadata

Common
DEC

OEBPS MODS TEI Recommended DE4

ebookTitle Title
Title H/dec Title H/dec

ebookTitle
Subtitle H/dec seriesStmt:title

H/dec
S/del

ebookAuthor
Creator(role) C name:role C

Author S/mis ebookAuthorName
Creator(file-
as)

D name:namePart D

ebookSubject Subject
Topic L/syn Keyword L/syn

ebookSubject
Classification L/syn Class L/syn

ebookEdition Edition
L/cas
S/mis

Edition
L/cas
S/mis

ebookEditionNumber

4 Recommended DE (Data Element) is provided according to the DE naming rule from

ISO/IEC 11179-5:2005 Information technology -- Metadata registries (MDR) -- Part 5:
Naming and identification principles.

 International Standardization for the Semantic Metadata Mapping Procedure 249

Finally, we can create DECs according to ISO/IEC 11179-1. New DECs should be
also created for data elements that could not be grouped during the second process.

Table 4 shows the final result obtained through the procedure. The common DECs
are described in the first column while the recommended data elements are done in
the right end column. Between them are data elements from the candidate metadata
element sets.

5 Conclusions

Data elements having different names even though they have the same meanings may
cause a data discrepancy problem when such data are shared or interchanged. Thus,
semantic metadata mapping is required to mediate among these data elements to
allow sharing or interoperable use. A metadata crosswalk is the most commonly used
method to map a data element to another data element. However, it has poor
semantics because it is meaningful only for simple one-to-one mapping. Therefore,
the metadata crosswalk needs to be elaborated in order to have semantics and to cover
cases other than one-to-one mapping.

This paper describes a semantic metadata mapping procedure (SMMP), which can
maximize the interoperability among data elements. The procedure of data element
mapping consists of three main processes, which are divided into nine sub-processes.
The main processes are identifying metadata element sets, grouping data elements,
and semantic mapping. This paper also includes a simple example to explain each
process.

This paper is recommended for use in a specific subject domain because the
procedure can be more meaningful when a specific information object is concerned.

References

1. Zeng, M.L., Chan, L.M.: Metadata Interoperability and Standardization – A Study of
Methodology Part I. D-Lib Magazine 12(6) (2006)

2. Piprani, B.: A Model for Semantic Equivalence Discovery for Harmonizing Master Data.
In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872,
pp. 649–658. Springer, Heidelberg (2009)

3. Open eBook Publication Structure,
http://old.idpf.org/oebps/oebps1.2/index.html

4. Metadata Object Description Schema, http://www.loc.gov/standards/mods
5. Text Encoding Initiative, http://www.tei-c.org/index.xml

Semantics and Usage Statistics

for Multi-dimensional Query Expansion

Raphaël Thollot1, Nicolas Kuchmann-Beauger1, and Marie-Aude Aufaure2

1 SAP Research - BI Practice, 157 rue Anatole France, 92309 Levallois-Perret, France
raphael.thollot@sap.com, nicolas.kuchmann-beauger@sap.com

2 Ecole Centrale Paris, MAS laboratory, 92290 Chatenay-Malabry, France
marie-aude.aufaure@ecp.fr

Abstract. As the amount and complexity of data keep increasing in
data warehouses, their exploration for analytical purposes may be hin-
dered. Recommender systems have grown very popular on the Web with
sites like Amazon, Netflix, etc. These systems proved successful to help
users explore available content related to what they are currently looking
at. Recent systems consider the use of recommendation techniques to sug-
gest data warehouse queries and help an analyst pursue its exploration. In
this paper, we present a personalized query expansion component which
suggests measures and dimensions to iteratively build consistent queries
over a data warehouse. Our approach leverages (a) semantics defined in
multi-dimensional domain models, (b) collaborative usage statistics de-
rived from existing repositories of Business Intelligence documents like
dashboards and reports and (c) preferences defined in a user profile. We
finally present results obtained with a prototype implementation of an
interactive query designer.

Keywords: query, expansion, recommendation, multi-dimensional, OLAP.

1 Introduction

Data warehouses (DW) are designed to integrate and prepare data from pro-
duction systems to be analyzed with Business Intelligence (BI) tools. End-users
can navigate through and analyze large amounts of data thanks to a significant
effort from IT and domain experts to first model domains of interests. However,
exploiting these multi-dimensional models may become challenging in important
deployments of production systems. Indeed, they can grow extremely complex
with thousands of BI entities, measures and dimensions used, e.g., to build OLAP

cubes.
In common reporting and analysis tools, end-users can design data queries

using some kind of query panel. For instance, a user may drag and drop measures
and dimensions she wants to use to create a new visualization, e.g., showing the
Sales revenue aggregated by City. Given the number of available measures
and dimensions, it is crucial to help the user iteratively build her query. We

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 250–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semantics and Statistics for Query Expansion 251

Fig. 1. Architecture overview of the proposed personalized query expansion system for
multi-dimensional models

define the iterative query expansion problem as a function QE taking as input
a user u, the current query q and additional parameters params. This function
returns a collection of scored queries (qi, ri) such that, for all i from 1 to n,
|qi| = |q| + 1 and q ⊂ qi:

QE : (u, q, params) �→ {(q1, r1), . . . , (qn, rn)}

The problem is thus to find candidate measures and dimensions that are best
associated with q. In response to this, this paper presents our solution which
was experimented by building an interactive and personalized query designer.
Our method leverages semantics of multi-dimensional models, collaborative us-
age statistics derived from repositories of BI documents and user preferences to
iteratively suggest relevant measures and dimensions. Figure 1 illustrates the
main components involved in the architecture of our system.

In the rest of this article, Section 2 introduces multi-dimensional domain
models and their semantics. Section 3 presents a collaborative measure of co-
occurrence between entities of these models. Then, Section 4 introduces users’
preferences and our personalized query expansion component. Section 5 describes
the system architecture and presents results obtained with the implementation
of an interactive query designer. Finally, we review related work in Section 6.

2 Semantics of Multi-dimensional Domain Models

Multi-dimensional models for DWs define concepts of the business domain with
key indicators (measures) and axis of analysis (dimensions).

252 R. Thollot et al.

2.1 Measures and Dimensions

Measures are numerical facts that can be aggregated against various dimen-
sions [3]. For instance, the measure Sales revenue could be aggregated (e.g.,
from unit sales transactions) on dimensions Country and Product to get the
revenue generated by products sold in different countries.

Business domain models are used to query the DW for actual data and perform
calculations. A DW may be materialized as a relational database, and queries
thus have to be expressed accordingly, for instance as SQL. From a calcula-
tion point of view, it is also possible to build multi-dimensional OLAP cubes.
Measures are aggregated inside the different cells of the cube formed by dimen-
sions. Queries can be expressed on these cubes, e.g., with Multi-Dimensional
eXpressions (MDX). Beyond this, modern DWs provide SQL/MDX generation
algorithms to enable non-expert users to formulate ad-hoc queries.

In the next section, we present hierarchies and functional dependencies (be-
tween measures and dimensions) that multi-dimensional domain models may
also define.

2.2 Functional Dependencies and Hierarchies

Two objects (measures or dimensions) are functionally dependant if one deter-
mines the other. For instance, knowing the City determines the related State.
Another example that involves a measure and a dimension is to say that the
Sales revenue is determined by a Customer (e.g., aggregated from unit sales
in a fact table). Functional dependencies are transitive: if A determines B which
determines C, then A determines C. In the most simple scenario, all measures are
determined by all dimensions. This is the case when using a basic dataset, for
instance reduced to one fact table with dimensions in a star schema.

Functional dependencies are important to compose meaningful queries. For
instance, they can be used to ensure suggested queries do not contain incom-
patible objects which would prevent their execution. However, business domain
models do not necessarily capture and expose this information. Hierarchies of
dimensions are more common though, usually exploited in reporting and analy-
sis tools to enable the drill-down operation. For instance, if a Year - Quarter

hierarchy is defined, the result of a user drilling down on Year 2010 is a more
fine-grained query with the Quarter dimension, filtered on Year = 2010. If hi-
erarchies of dimensions can be used to determine minimal dependency chains,
techniques are required to help with automatic detection of functional dependen-
cies. In particular, the approach presented by [12] is to create DL-Lite domain
ontologies from conceptual schemas and use inferencing capabilities.

3 Usage Statistics in BI Documents

Functional dependencies and hierarchies previously presented provide very struc-
tural knowledge regarding associations between BI entities. Beyond this, some

Semantics and Statistics for Query Expansion 253

Fig. 2. Graph describing a dashboard (orange) and associated charts (blue), with ref-
erenced measures (purple) and dimensions (yellow)

BI platforms propose repositories of documents like reports or dashboards which
can be used to compute actual usage statistics for measures and dimensions. This
kind of information is extremely valuable in our use case, since query expansion
implies to find the best candidate to associate to a given set of measures and
dimensions.

3.1 Structure of BI Documents and Co-occurrence

We use the structure of BI documents to define co-occurrences between mea-
sures and dimensions. For instance, BI reports are roughly composed of sections
which may contain charts, tables, text areas for comments, etc. Charts and ta-
bles define important units of sense. Measures and dimensions associated in a
same table/chart are likely to be strongly related and represent an analysis of
specific interest to the user. Similarly, dashboards can be composed of different
pages or views which contain charts and tables. Figure 2 illustrates the graph
representation of the dashboard World Cup Team STATS 2 and its associated
charts. More generally, any BI document referencing measures and dimensions
could be used to derive consolidated co-occurrences or usage statistics.

254 R. Thollot et al.

3.2 Personal Co-occurrence Measure

BI platforms provide access control rules for business domain models and docu-
ments built on top of them. Consequently, different users may not have access
to the same models and at a more fine-grained level to the same measures and
dimensions. Besides, repositories contain documents generated by and shared
(or not) between different users of the system. As a result, the measure of co-
occurrence that we define in this section is inherently personalized. Let us con-
sider a user u and let occu(e1) denote the set of charts and tables – visible to
the user u – referencing a BI entity e1, measure or dimension. We define the
co-occurrence of two entities e1 and e2 as the Jaccard index of the sets occu(e1)
and occu(e2):

coocu(e1, e2) = J(occu(e1), occu(e2)) =
|occu(e1) ∩ occu(e2)|
|occu(e1) ∪ occu(e2)|

(1)

The Jaccard index is a simple but commonly used measure of the similarity
between two sample sets.

3.3 Collaborative Co-occurrence Measure

Cold-start Users and Coverage. In recommender systems (RS), the cover-
age is the percentage of items that can actually be recommended, similar to the
recall in information retrieval. Formula 1 presents a problem for cold-start users,
i.e. those new to the system. Indeed, these users do not have stored documents
from which co-occurrences can be computed. Collaborative RS introduce the
contribution of other users in the item scoring function to improve the system’s
coverage and enable the exploration of resources previously unknowned (or un-
used) by the user. A simple approach consists in using a linear combination of
the user-specific value and the average over the set of all users.

Using the Social/Trust Network. The simple approach previously described
broadens the collaborative contribution to “the whole world” and all users have
the same weight. Trust-based RS have illustrated the importance of considering
the user’s social network and, e.g., favoring users close to the current user [7].
Narrowing the collaborative contribution down to close users presents benefits
at two levels: (a) results are more precisely personalized and (b) potential pre-
computation is reduced.

Let us note SN(u) the set of users in u’s social network which can be filtered,
e.g., to keep only users up to a certain maximum distance. We propose the
following refined co-occurrence measure, were α and β are positive coefficients
to be adjusted experimentally such that α+ β = 1:

cooc(u, e1, e2) = α · coocu(e1, e2)

+
β

|SN(u)| ·
∑

u′∈SN(u)

1

d(u, u′)
coocu′(e1, e2) (2)

Semantics and Statistics for Query Expansion 255

This measure cooc(u, e1, e2) is defined for entities e1 and e2 exposed to the user
u by access control rules. The contribution of each user u′ is weighted by the
inverse of the distance d(u, u′).

Relations between users can be obtained from a variety of sources, including
popular social networks on the Web. However, this does not necessarily match
corporate requirements since users of the system are actual employees of a same
company. In this context, enterprise directories can be used to extract, e.g.,
hierarchical relations between employees. Clearly, other types of relations may
be considered but the actual construction of the social network is beyond the
scope of this paper.

4 Personalized Query Expansion

In this section, we describe our approach to design a personalized query ex-
pansion component leveraging models semantics, co-occurrences and user pref-
erences.

4.1 User Preferences

We distinguish explicit and implicit preferences, respectively noted prefu,expl
and prefu,impl. For a given entity e, we define the user’s preference function
prefu as a linear combination of both preferences, for instance simply:

prefu(e) =
1

2
(prefu,impl(e) + prefu,expl(e)) (3)

Explicit preferences are feedback received from the user, e.g., in the form of
ratings (in [0, 1]) assigned to measures and dimensions. Let us note ru,e the rating
given by u to e and ru the average rating given by u. We define prefu,expl(e) =
ru,e if u has already rated e, and prefu,expl(e) = ru otherwise.

Implicit preferences can be derived from a variety of sources, for instance by
analyzing logs of queries executed in users’ sessions [4]. In our case, we consider
occurrences of BI entities in documents manipulated by the user as a simple
indicator of such preferences:

prefu,impl(e) =
|occu(e)|

maxe′ |occu(e′)|
(4)

4.2 Query Expansion

The aim of our system is to assist the user in the query design phase by offering
suggestions of measures and dimensions she could use to explore data. When
she selects a measure or a dimension, it is added to the query being built and
suggestions are refreshed to form new consistently augmented queries.

256 R. Thollot et al.

Fig. 3. Screenshot of auto-completion used in an interactive query designer. (a) First
suggestions after characters “sa” and (b) suggestions following the selection of measure
Sales revenue and character “c”. On the right is a sample visualization that can be
built with the query Sales revenue by City.

Ranking. To complete a given query q = {e1, . . . , en} with an additional mea-
sure or dimension, we need to find candidate entities and rank them. Candidate
entities, cj , j = 1..p, are those defined in the same domain and compatible with
every ei, determined using functional dependencies (see Section 2.2). We then
use the following personalized function to rank each candidate cj:

ranku(cj , q) =

{
prefu(cj) if q = ∅
prefu(cj) · 1

n

∑n
i=1 cooc(u, cj , ei) otherwise

(5)

To conclude with the notation of the query expansion problem introduced in
Section 1, we define our component QE as:

QE : (u, q, params) �→ {(q1, ranku(c1, q)), . . . , (qp, ranku(cp, q))}

Parameters. Beyond ranking, suggestions of the query expansion component
can be fine-tuned using various parameters:

– The maximum number of results.
– The type of suggested entities can be limited to measures and/or dimensions.
– The domain can be restricted to a list of accepted models.
– Suggested dimensions can be grouped by and limited to certain hierarchies.

This may be used to reduce the number of suggestions and encourage the
user explore varied axis of analysis.

5 Experimentation: Auto-Completion in a Query
Designer

In previous sections we presented tools used to implement an interactive query
designer. In this section, we illustrate results obtained with a prototype imple-
mentation. We developed a query designer which simply presents a search text
box to the user. As she types, candidate measures and dimensions are proposed
as auto-completion suggestions.

Semantics and Statistics for Query Expansion 257

Table 1. Top-5 dimensions that most co-occur (in a collection of dashboards) with the
Sales Revenue measure

Measure Dimension Co-occurrence

Sales Revenue Quarter 0,38
State 0,25
Year 0,25

Category 0,25
Lines 0,22

Figure 3.a) shows measures (from distinct domain models) suggested when the
user starts typing “sa”: Sales revenue, Avg of savegoal and Keeper save

goal. In Figure 3.b), the user has selected the first suggestion Sales revenue

and keeps typing “c”. The system suggests the two dimensions City and
Category. The auto-completion initialization requires that the user roughly
knows the names of objects she wants to manipulate, which may be a barrier
to adoption. To help her get started and explore available data, suggestions can
be surfaced to the user before she even starts typing. For instance, the most
commonly used measures and dimensions of various domain models could be
suggested to start with.

In our implementation of the architecture presented in Figure 1, we relied
on the BI platform SAP BI 4. Documents wise, this platform proposes report-
ing and dashboarding solutions respectively named WebIntelligence and SAP
BusinessObjects Explorer (or Exploration Views). We experimented the compu-
tation of co-occurrences using dashboards accessible through the demonstration
account of SAP Exploration Views on-demand1. This account exposes 9 dash-
boards which contain 31 charts. The 7 underlying domain models define 54 di-
mensions and 86 measures. Table 1 presents the 5 dimensions that most co-occur
with a given measure named Sales Revenue. From the social network point of
view, we build on the prototype Social Network Analyzer2. In particular, APIs
of this prototype expose the user’s social graph at a depth of 2.

6 Related Work

In this section we briefly review previous work related to personalization and
recommendation in multi-dimensional DWs. Various types of OLAP recommen-
dations can be considered with interactive assistance for query design, antici-
patory recommendations and alternative results [8]. The work presented in this
paper best corresponds to the first type which, to the best of our knowledge, has
not been investigated much by previous research.

Techniques employed for query recommendations in DWs have been thor-
oughly reviewed by Marcel et al. [10]. In particular, the authors provide a formal
framework to express query recommendations and divide them in methods (a)

1 http://exploration-views.ondemand.com
2 http://sna-demo.ondemand.com/

258 R. Thollot et al.

based on user profiles, (b) using query logs, (c) based on expectations and (d)
hybrid ones. The first ones include user profiles (e.g., preferences) in the recom-
mendation process to maximize the user’s interest for suggested queries [6,9]. In-
terestingly, recommendations may integrate visualization-related constraints [2].
Second, methods based on query logs mainly address predictive recommenda-
tions of forthcoming queries and position analysis sessions as first-class citi-
zens [4]. One approach is to model query logs using a probabilistic Markov model.
Another is to use a distance metric between sessions to extract recommended
queries from past sessions similar to the current one. Methods based on expec-
tations aim at determining and guiding the user toward zones of a cube that
present unexpected data, for instance by maximizing the entropy [13]. Finally,
these approaches may be combined in various ways with hybrid methods [5].

Recommendations of multi-dimensional queries is a fairly recent topic. How-
ever, RS have become a popular research area thanks to successful commercial
applications, e.g., on e-commerce Web sites. RS are commonly categorized in
content-based (CB) and collaborative filtering (CF) approaches [1]. CF methods
usually rely on user × item matrices to compute similarities between items and
users based on ratings, preferences, etc. [14]. The main assumption behind such
techniques is that users with similar rating schemes will react similarly to other
items. Preferences can be either explicit (ratings) or implicit (e.g., derived from
click-through data). Metrics used in CF techniques build for instance on vector-
based cosine similarity and Pearson correlation. The collaborative contribution
can be refined by considering the use of a trust network between users [7]. CF
techniques present a certain number of issues dealing with matrix sparsity and
cold-start users. Besides, they remain superficial since they lack a representation
of the actual item content. On the other hand, CB methods use descriptions of
items’ features (like weighted keywords in a vector space model) and assume
that the user will like items similar to those he liked in the past. Finally, hy-
brid methods often combine CB and CF approaches to overcome their respective
drawbacks [11].

7 Conclusion and Future Work

In this paper we presented a personalized query expansion system that leverages
(a) semantics of multi-dimensional domain models, (b) usage statistics derived
from (co-)occurrences of measures and dimensions in repositories of BI docu-
ments and (c) user preferences. The system was experimented with a prototype
of interactive query designer, assisting the user with auto-completion sugges-
tions. This experimentation showed encouraging usability results.

However, we did not manage to obtain a joint dataset between deployments
of SAP Exploration Views and Social Network Analyzer. Therefore, we would
like to focus in future work on the generation of such a dataset to conduct user-
satisfaction tests. In particular, it would be interesting to highlight and measure
the benefits of the collaborative contribution introduced in formula 2.

Semantics and Statistics for Query Expansion 259

We illustrated our approach with an interactive query designer. Beyond this,
we are currently investigating other promising applications of the concepts pre-
sented in this paper. For instance, the search-like interface of Figure 3 could
be extended. In particular, we are considering the retrieval of charts – from ex-
isting reports and dashboards – with similar data. Also, user preferences and
(co-)occurrences may be used in a question answering system to help, e.g., with
personalized query reformulation.

More generally, we reckon that recommendations in the context of DWs and
BI platforms could benefit much further from techniques developed in the RS

area. However, taking into account the specific semantics of multi-dimensional
models is also key to provide relevant structured analytics.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

2. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personal-
ization framework for olap queries. In: Proceedings of the 8th ACM International
Workshop on Data Warehousing and OLAP, DOLAP 2005, pp. 9–18. ACM, New
York (2005)

3. Bhide, M., Chakravarthy, V., Gupta, A., Gupta, H., Mohania, M.K., Puniyani,
K., Roy, P., Roy, S., Sengar, V.S.: Enhanced business intelligence using erocs. In:
ICDE, pp. 1616–1619. IEEE (2008)

4. Giacometti, A., Marcel, P., Negre, E.: A framework for recommending olap queries.
In: Proceeding of the ACM 11th International Workshop on Data Warehousing and
OLAP, DOLAP 2008, pp. 73–80. ACM, New York (2008)

5. Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for olap
discovery driven analysis. In: Proceeding of the 12th ACM Workshop on Data
Warehousing and OLAP, DOLAP 2009, pp. 81–88. ACM, New York (2009)

6. Golfarelli, M., Rizzi, S., Biondi, P.: myolap: An approach to express and evaluate
olap preferences. IEEE Transactions on Knowledge and Data Engineering 23, 1050–
1064 (2011)

7. Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-
based and item-based recommendation. In: Elder IV, J.F., Fogelman-Soulié, F.,
Flach, P.A., Zaki, M.J. (eds.) KDD, pp. 397–406. ACM (2009)

8. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-Based Recommendations
for OLAP Analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK
2009. LNCS, vol. 5691, pp. 467–478. Springer, Heidelberg (2009)

9. Kozmina, N., Niedrite, L.: OLAP Personalization with User-Describing Profiles. In:
Forbrig, P., Günther, H. (eds.) BIR 2010. LNBIP, vol. 64, pp. 188–202. Springer,
Heidelberg (2010)

10. Marcel, P., Negre, E.: A survey of query recommendation techniques for dataware-
house exploration. In: Proceedings of 7th Conference on Data Warehousing and
On-Line Analysis (Entrepôts de Données et Analyse), EDA 2011 (2011)

260 R. Thollot et al.

11. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering
for improved recommendations. In: Eighteenth National Conference on Artificial
Intelligence, pp. 187–192 (2002)

12. Romero, O., Calvanese, D., Abelló, A., Rodŕıguez-Muro, M.: Discovering functional
dependencies for multidimensional design. In: Proceeding of the 12th ACM Work-
shop on Data Warehousing and OLAP, DOLAP 2009, pp. 1–8. ACM, New York
(2009)

13. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings
of the 26th Conference on Very Large DataBases (VLDB), Cairo, Egypt (2000)

14. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Ad-
vances in Artificial Intelligence, 4:2–4:2 (January 2009)

Hierarchy-Based Update Propagation

in Decision Support Systems�

Haitang Feng1,2, Nicolas Lumineau1,
Mohand-Sáıd Hacid1, and Richard Domps2

1 Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

firstname.lastname@liris.cnrs.fr
2 Anticipeo, 4 bis impasse Courteline, 94800, Villejuif, France

firstname.lastname@anticipeo.com

Abstract. Sales forecasting systems are used by enterprise managers
and executives to better understand the market trends and prepare ap-
propriate business plans. These decision support systems usually use a
data warehouse to store data and OLAP tools to visualize query results.
A specific feature of sales forecasting systems regarding future predictions
modification is backward propagation of updates, which is the compu-
tation of the impact of modifications on summaries over base data. In
Data warehouses, some methods propagate updates in hierarchies when
data sources are subject to modifications. However, very few works have
been devoted so far, regarding update propagation from summaries to
data sources. This paper proposes an algorithm called PAM (Propaga-
tion of Aggregate Modification), to efficiently propagate modifications
on summaries over base data. Experiments on an operational applica-
tion (Anticipeo1) have been conducted.

Keywords: Aggregate update propagation, Data warehouses, Decision
support systems, Dimension-Hierarchy.

1 Introduction

A forecasting system is a set of techniques or tools that are mainly used for
analysis of historical data, selection of most appropriate modeling structure,
model validation, development of forecasts, and monitoring and adjustment of
forecasts2. The most frequently used forecasting systems relate to domains like
weather, transportation or sales.

A sales forecasting system (SFS), also called a business forecasting system is a
kind of forecasting system allowing achievable sales revenue, based on historical

� Research partially supported by the French Agency ANRT (www.anrt.asso.fr), An-
ticipeo (www.anticipeo.com) and the Rhône-Alpes region (projet Web Intelligence,
http://www.web-intelligence-rhone-alpes.org).

1 See http://www.anticipeo.com
2 See http://www.businessdictionary.com/definition/forecasting-system.html.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 261–271, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 H. Feng et al.

sales data, analysis of market surveys and trends, and salespersons’ estimates3.
To be effective, a SFS must adhere to some fundamental principles such as the
use of a suite of time-series techniques [11].

The basic functionalities a SFS supports are: computation, visualization and
modification. The first functionality, computation of forecasts, uses specific meth-
ods (typically statistical models) to derive sales forecasts. Several predictive
methods have been introduced in the domain of statistics (see, e.g., [9][10]). The
second functionality, visualization of computed forecasts, uses OLAP (online
analytical processing) tools to visualize data stored in a DW (data warehouse).
The visualization methods are investigated, especially by resorting to “roll-up”
and “drill-down” operators of OLAP or reporting tools of BI (Business Intel-
ligence) (see, e.g., [7][12][13]). However, the third functionality, modification of
computed forecasts during visualization, is a specific problem. In SFSs, source
data are composed of historical data and predictive data while predictive data
are not as stable as traditional source data that we employ in a traditional DW.
Sales managers could make some modifications to adjust computed forecasts to
some specific situations, e.g., occasional offers. These adjustments occur on sum-
marized data and should be propagated to base data (facts and forecasts) and
then to other summarized data. Some approaches dealing with view maintenance
in OLAP were proposed. Some of them focus on the evolution of multidimen-
sional structure (see, e.g., [1][8]) and others focus on the optimization of OLAP
operators such as pivot and unpivot (see, e.g., [3]). Approaches to view mainte-
nance in DWs were also investigated. They are concerned with the combination
of updates before propagation (see, e.g., [14]), multi-view consistency over dis-
tributed data sources (e.g., [2]) and many others4. The main context of these
approaches is the propagation of updates over sources on materialized views. To
the best of our knowledge, the problem of updating summaries and computing
the effect on row data has not been investigated so far. The motivating case
study we consider is a real sales forecasting system called Anticipeo. In this ap-
plication, we are facing the optimization problem regarding update propagation
from summarized data to base data and to other summarized data.

The rest of this paper is organized as follows : Section 2 defines the sales fore-
casts modification problem. Section 3 discusses the current and ad-hoc solutions
to support this issue. In Section 4, we describe a novel algorithm based on intel-
ligent exploitation of dimension-hierarchies. Section 5 describes the evaluation
and the experimental results. We conclude in Section 6.

2 Problem Statement and Motivations

To clearly define our problem, we first review the use of dimensions (and hier-
archies) and the basic data schema by visualization tools of OLAP systems [4].
OLAP systems employ multidimensional data models to structure “raw” data
into multidimensional structures in which each data entry is shaped into a fact

3 See http://www.businessdictionary.com/definition/sales-forecast.html
4 See http://www.cise.ufl.edu/∼jhammer/online-bib.htm

Hierarchy-Based Update Propagation in Decision Support Systems 263

Fig. 1. Example of dimension-hierarchies and fact tables

with associated measure(s) and descriptive dimensions that characterize the fact.
The values within a dimension can be further organized in a containment type
hierarchy to support multiple granularities. In our case, we are interested in
quantitative measures, not qualitative measures.

In the example shown Fig. 1, we present the data model in a sales forecast-
ing system. This data model is based on one fact table with three measures:
turnover, quantity and price; and three different dimensions: customer, product
and time. Each dimension has its hierarchies to describe the organization of data.
Customer dimension has 4 hierarchies, product dimension has 4 hierarchies and
time dimension has 3 hierarchies. For instance, the second hierarchy of customer
dimension is a geographical hierarchy. Customers are grouped by city for level 1,
by department for level 2 and by country for level 3. Base sales are aggregated
on each level according to this geographical organization when one analyzes the
sales through this hierarchy.

Regarding the visualization, the calculation of aggregated information needs
to be performed on the fly. OLAP systems employ materialized views or fictive
information to avoid extra response time. In this example, fictive customers and
fictive products are added to represent elements in superior hierarchy levels, such
as a fictive customer for the city of Lyon, another one for the department Rhône
and a third one for the country France. Thus, the system has three new entries in
the customer dimension and accordingly some aggregated sales in the fact table
regarding these newly created customers. Finally, all elements of every hierarchy
level from every dimension are aggregated and added to the dimension and
fact tables. This pre-calculation guarantees an immediate access to any direct
aggregated information while users perform visualization demands.

Regarding forecasting systems, the visualization is not the last operation as
in other OLAP systems. The sales forecasts produced by a system are a first ver-
sion which are reviewed by experienced salespersons. Salespersons check these
automatically generated sales forecasts, take into consideration some issues not
considered by the system (e.g. promotional offers) and perform some necessary

264 H. Feng et al.

Fig. 2. Example of data modification on an aggregated level

modifications. In other cases, salespersons can also perform some modifications
on summaries in order to simulate a new marketing target. This update taking
place on an aggregated level constitutes the major feature of sales forecasting
systems. Compared to traditional OLAP systems in which source data are con-
sidered to be static, data in sales forecasting systems can be modified many
times to obtain a final result.

Hence, sales forecasting systems need to have the ability to quickly react to
data modification on an aggregated level. Fig. 2 is an example to show how an
aggregation-level modification impacts all the data.

In this example and for the sake of simplicity, we consider only the first two
hierarchies respectively from customer dimension and product dimension of the
previous data model (see Fig. 1). In the fact table, we group all the tuples into
10 sets: named from a to j (In the following, these sets are named “base tuple”).
Aggregates at superior hierarchical levels are presented by rectangles including
the composing base tuples and are formalized by the function α with the com-
posing base tuples in parameters: α(x,y,...). For instance, the circled rectangle,
or the aggregate α(a,i,j) on level 2 of hierarchy 2 of the customer dimension
containing aij means that the result of this aggregate is generated from the base
tuples a, i and j. In this specific case, the result of the aggregate α(a,i,j) is the
sum of sales: a, i and j. Other aggregates are generated and presented in the
same manner. The root rectangle of every hierarchy represents all the sales.

Figure 2 shows the underlying data structure when the system presents the
prediction result to sales managers. Sales managers analyze the sales and then
decide to modify the sales of the aggregate α(a,i,j) (i.e. to evaluate beforehand
the impact of a strategical or tactical move). Let us see the impact of this
modification. As the aggregate α(a,i,j) is generated from a, i and j, once its
result is modified, the results of the three tuples should be afterwards updated.
Meanwhile, these three tuples are also the base tuples which are involved in
the calculation of other aggregates in all dimension-hierarchies. All aggregates

Hierarchy-Based Update Propagation in Decision Support Systems 265

containing any of these three tuples in its composition should be updated as
well. The aggregates impacted by the modification on the aggregate α(a,i,j) are
darkened in Fig. 2.

Sales managers may perform modifications many times to obtain a satisfying
result. SFSs should provide a short delay between the modification and the
visualization of modified data. Hence, the problem we need to deal with is how
to efficiently update aggregated data through a dimension-hierarchy structure.

3 Current Solution

A current solution consists in identifying approaches to similar problems and
building on the implemented solutions. In this system, methods to calculate the
aggregates are well defined. The steps of the current solution which recomputes
everything are as follows:

1. calculate the base tuples wrt the modification and the decomposition rules,
2. recompute all the aggregates.

To illustrate this process, consider the example shown Fig. 2. The actual result
of the aggregate α(a,i,j) is 500 000 euros, but the sales manager has a new
marketing plan and (s)he estimates the sales can achieve 600 000 euros. Then
(s)he does this modification which is then processed as follows:

Step 1: Calculation of Modified Base Tuples
The example in Fig. 2 indicates that the result of the aggregate α(a,i,j) is com-
posed of three tuples: a, i and j. Assume that the distribution of sales is re-
spectively 100 000 euros, 200 000 euros and 200 000 euros for the three tuples.
When the sales of the aggregate α(a,i,j) raise to 600 000 euros, the modification
is spread over these tuples with respect to the weight of every tuple according
to the company’s previously defined rules; the weight in this case is the actual
sales. For a, i and j, their weights are respectively 100 000, 200 000 and 200 000
(i.e. 1:2:2). The formula to calculate the new result for a tuple t is

evalα,T (t) = val(t) + (val′(α, T) − val(α, T)) ∗ weight(t)∑
t′∈T weight(t′)

where α is an aggregation operator, T is a set of tuples, val returns the current
value of a tuple or an aggregate and val′ returns the new value of a tuple or an
aggregate.

The new values for T={a,i,j} are then:
evalα,T (a) = 100000+ (600000 − 500000) ∗ 1

1+2+2 = 120000

evalα,T (i) = 200000 + (600000 − 500000) ∗ 2
1+2+2 = 240000

evalα,T (j) = 200000+ (600000 − 500000) ∗ 2
1+2+2 = 240000

Step 2: Recalculation of Aggregated Information
The second step consists in recomputing the aggregates on higher levels. We
follow the same process as when the aggregates are created using the hierarchy
dependencies. For instance, the aggregate α(a,c,d) is an aggregate of the base

266 H. Feng et al.

tuples a, c and d ; so its new result is calculated by summing the sales of a, c
and d.

Following this straightforward solution, we can regenerate all the hierarchies of
the whole schema with updated data.

4 Update Propagation Algorithm

The current solution advocates the calculation of all the aggregates of all the
hierarchies. However, this solution performs some useless work. If we closely
look at the recomputed aggregates in Fig. 2, only the dark ones are concerned
with the modification and need to be updated, that is, 18 aggregates out of 32.
Hence, the current solution leads to the calculation of 14 aggregates in vain.
The key idea is thus to be able to identify and recompute only the concerned
elements. By considering the dependencies between aggregates and base tuples,
we can identify the exact aggregates to modify and hence avoid useless work.

Another drawback with the current solution is its heavy recomputing proce-
dure. Operations of removing and adding aggregates demand heavy maintenance
of index tables and physical storage. Nevertheless, our approach can keep the
aggregates at their logical and physical location and avoid extra effort.

To summarize, our approach follows the following steps:

1. retrieval of participating base tuples of the modified aggregate
2. creation of a temporary table for the base tuples to be updated and

calculation of the differences resulting from the old values and the new ones
3. update of impacted base tuples
4. identification of impacted aggregates
5. update of impacted aggregates with the previously calculated differences of

base tuples

The algorithm for the update propagation through dimension-hierarchies is
shown Table 1. Line 1 to line 4 identify the base tuples involved in the modifi-
cation and calculate their differences. Line 5 allows to update these base tuples.
Line 6 to line 9 identify impacted aggregates and perform the update.

Let us take the previous example to illustrate the approach. A sales man-
ager changes the sales of the aggregate α(a,i,j) from 500 000 euros to 600 000
euros. Once (s)he confirms the modification, the system will proceed using the
algorithm in Table 1.

Step 1: Retrieval of the Participating Tuples to the Aggregate
Retrieve the composition of the aggregate α(a,i,j): sales of the aggregate α(a,i,j)
is the sum of a, i and j. Hence, the composing tuples are a, i and j.

Step 2: Creation of a Temporary Table and Calculation of Differences
Create a temporary table ΔX for the base tuples identified in step 1.
Calculate the δ for the aggregate α(a,i,j): δ = 600000 - 500000 = 100000

Considering W=
∑

t∈{a,i,j} weight(t), calculate the difference for every tuple
using the weight coefficient.

Hierarchy-Based Update Propagation in Decision Support Systems 267

Table 1. Algorithm for the update propagation

Algorithm PAM (Propagation of Aggregate Modification)

Input: Schema S, aggregate X, its actual result AR and its objective result OR

Output: An updated schema S’ of all hierarchies

Algorithm:

1: Calculate the modification of the aggregate X: δ = OR - AR

2: Retrieve participating base tuples of X : CX = {x1, x2, ..., xn}
3: Create a temporary table: ΔX = CX

4: Calculate the differences for every base tuple: ∀xi ∈ ΔX: δi = δ * weight coeffi;

Add the result to ΔX

5: Update all the base tuples impacted: ∀bti ∈ ΔX: val′(bti) = val(bti) + δbti
6: Identify aggregates to update:

A = {results after filtering by dependencies to ΔX}
7: For Ai in A

8: Retrieve its composition: CAi = {a1, a2, ..., am}
Identify base tuples which are also in ΔX: U = ΔX ∩ CAi

Calculate new result of Ai: ∀ui ∈ U val′(Ai) = val(Ai) + δui

9: End for

δa = δ ∗ weight(a)
W = 100000 ∗ 1

1+2+2 = 20000

δi = δ ∗ weight(i)
W = 100000 ∗ 2

1+2+2 = 40000

δj = δ ∗ weight(j)
W = 100000 ∗ 2

1+2+2 = 40000

The resulting differences of base tuples are added to the temporary table. This ta-
ble also contains the dependency information to higher hierarchical levels (shown
Table 2).

Step 3: Update of Base Tuples
Update the base tuples impacted by the aggregate modification (same procedure
as in the current solution). The new values of these base tuples are computed
by their actual values and the differences calculated in step 2. In this case, a is
updated to 120 000, i to 240 000 and j to 240 000.

Table 2. Temporary table ΔX created to store influenced base tuples

element identifier customer dim link product dim link δx
a customer linka product linka 20000
i customer linki product linki 40000
j customer linkj product linkj 40000

268 H. Feng et al.

Step 4: Identification of Impacted Aggregates
Identify all the aggregates concerned with the modification of the sales of the
aggregate α(a,i,j) by using the links between aggregates and registered base
tuples in the temporary tableΔX. In this case, we identify all the dark rectangles.

Step 5: Update of Impacted Aggregates
Propagate the changes to every concerned aggregate. Let us illustrate this issue
with the customer dimension hierarchy 1. We loop for every level of the hierarchy.
For level 1, two aggregates need to be updated: α(a,c,d) and α(i,j). The aggregate
α(a,c,d) is composed of a, c and d and among these base tuples, only one is
registered in the table ΔX, namely, the base tuple a. Hence, the value of α(a,c,d)
is changed only by adding the δa (here 20 000).

val′(α, {a, c, d}) = val(α, {a, c, d}) + δa = val(α, {a, c, d}) + 20 000

Another element ij of level 1 and the root element abcdefghij on level 2 can be
calculated in a similar way: val′(α, {i, j}) = val(α, {i, j}) + 40 000 + 40 000;
val′(α, {a, b, c, d, e, f, g, h, i, j}) = val(α, {a, b, c, d, e, f, g, h, i, j}) + 20 000 + 40
000 + 40 000.

Doing this way, we update only the aggregates impacted by the modification
for hierarchy 1 of the customer dimension. The propagation in other hierarchies
are processed in the same manner. Finally, we obtain updated data over the
entire schema.

5 Experiments

The main technical characteristics of the server on which we run the evaluation
are: two Intel Quad core Xeon-based 2.4GHz, 16GB RAM and one SAS disk
of 500GB. The operating system is a 64-bit Linux Debian system using EXT3
file system. Our evaluation has been performed on real data (copy of Anticipeo
database) implemented on MySQL.

The total size of the database is 50 GB of which 50% is used in the com-
putation engine, 45% for result visualization and 5% for the application. Our
test only focuses on the data used by the update: one fact table and two di-
mension tables: customer and product. The fact table has about 300 MB with
257.8MB of data and 40.1 MB of index. The customer dimension table contains
5240 real customers and 1319 fictive customers (6559 in total) and the product
dimension table contains 8256 real products and 404 fictive products (8660 in
total). Each of these dimension tables is composed of 4 hierarchies. It presents
a similar structure to Fig. 1 with different number of levels in each hierarchy
(from 2 to 4 levels). Note that the time dimension is investigated within the fact
table for some performance issues [6][5]. Hence, only two explicit dimensions are
materialized in dimension tables.

The objective of the evaluation is to compare the time of the whole schema
update using the current solution and our algorithm. The tests are performed
on 3 hierarchies which have 2, 3 and 4 levels, respectively. In our evaluation,

Hierarchy-Based Update Propagation in Decision Support Systems 269

Table 3. Evaluation time of an aggregate modification using the current solution

Hierarchy H1 Hierarchy H2 Hierarchy H3
Level 1 Level 2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 4

Step 1* 0.9 7.9 0.9 1.0 7.5 0.08 0.8 2.9 7.8
Step 2* 179.5 182.1 185.7 181.4 188.4 181.1 179.6 179.9 176.6
Total 180.4 190.0 186.6 182.4 195.9 181.2 180.4 182.8 184.4
* Step 1: update base tuples; Step 2: reconstruct all aggregates

Table 4. Evaluation time of an aggregate modification using our algorithm

Hierarchy H1 Hierarchy H2 Hierarchy H3
Level 1 Level 2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 4

Stage 1* 0.3 2.9 0.3 0.3 2.9 0.04 0.3 1.2 3.0
Stage 2* 0.9 7.8 0.9 2.0 7.2 0.1 0.8 2.8 7.7
Stage 3* 5.4 53.5 5.2 5.4 56.1 0.6 4.3 21.0 54.4
Total 6.6 64.2 6.4 6.7 66.2 0.7 5.4 25.0 65.1
* Stage 1: create a temporary table; Stage 2: update base tuples; Stage 3: propagate

we modify one aggregate from each level of every hierarchy to compare the
evaluation time resulting from the current solution and from our approach.

We first perform tests with the current solution. The result is shown Table
3. Step 2 stays almost the same for different hierarchies because it concerns the
recomputation of the whole schema.

The same tests are performed with our algorithm. During the implementation,
we group some logical steps introduced in Section 4 to optimize the execution
time: Step 1 and Step 2 are merged to form Stage 1; Step 4 and Step 5 are
merged to form Stage 3. The result is shown Table 4.

We then compare the total evaluation time using the two solutions in one chart
shown Fig. 3. In some cases, e.g., the level 1 of hierarchy H3, the propagation
time is only 0.7 seconds. Compared to 181.2 seconds consumed by the current

Fig. 3. Comparison of evaluation time using two solutions

270 H. Feng et al.

solution, the gain of performance reaches 25786%. Even in the worst case where
the root aggregate (top level of every hierarchy) is subject to modifications, we
get a nearly 200% better performance. In these practical cases, our algorithm
presents more than 3000% better performance in average. The result confirms
that, instead of recalculating all the aggregates as the current solution does, our
solution is more efficient by identifying and updating the exact set of aggregates
impacted by the modification.

6 Conclusion

In this paper, we discussed the problem of efficiently propagating an aggregate
modification through a dimension-hierarchy structure. A current solution naively
recomputes all the aggregates of all the hierarchies, which is time-consuming
and does not fulfill the performance needs. We proposed the algorithm PAM
to reduce the modification cost. Our algorithm is based on the dependencies
that may exist between aggregates and base data. It identifies the exact sets
of aggregates to be updated and calculates the delta for each aggregate. We
conducted experiments to show that with our approach, the update propagation
time can be considerably reduced compared to the current solution implemented
in a real application.

For further work, we will take into consideration more factors that could affect
the evaluation time, such as complexity of dimensions, complexity of hierarchies,
complexity of queries, etc. We will also investigate the update propagation of an
aggregate which results from multiple hierarchies.

References

1. Body, M., Miquel, M., Bedard, Y., Tchounikine, A.: Handling Evolutions in Mul-
tidimensional Structures. In: ICDE, pp. 581–591 (2003)

2. Chen, S., Liu, B., Rundensteiner, E.A.: Multiversion-based view maintenance over
distributed data sources. ACM Trans. Database Syst. 29(4), 675–709 (2004)

3. Chen, S., Rundensteiner, E.A.: Gpivot: Efficient incremental maintenance of com-
plex rolap views. In: ICDE, pp. 552–563 (2005)

4. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-Line Analytical Pro-
cessing) to User-Analysis: An IT Mandate, vol. 32. Codd & Date, Inc. (1993)

5. Feng, H.: Data management in forecasting systems: Case study - performance prob-
lems and preliminary results. In: BDA Proceedings (2011)

6. Feng, H.: Performance problems of forecasting systems. In: ADBIS Proceedings II,
pp. 254–261 (2011)

7. Gupta, H.: Selection of Views to Materialize in a Data Warehouse. In: Afrati, F.N.,
Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg
(1997)

8. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining data cubes under
dimension updates. In: ICDE, pp. 346–355 (1999)

9. Jain, Chaman, L.: Which forecasting model should we use? Journal of Business
Forecasting Methods & Systems 19(3), 2 (2000)

Hierarchy-Based Update Propagation in Decision Support Systems 271

10. McKeefry, Lynne, H.: Adding more science to the art of forecasting. In: EBN,
vol. 1252, p. 46 (2001)

11. Mentzer, J.T., Bienstock, C.C.: The seven principles of sales-forecasting systems.
Supply Chain Management Review (Fall 1998)

12. Ross, K.A., Srivastava, D., Chatziantoniou, D.: Complex Aggregation at Multiple
Granularities. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998.
LNCS, vol. 1377, pp. 263–277. Springer, Heidelberg (1998)

13. Theodoratos, D.: Exploiting hierarchical clustering in evaluating multidimensional
aggregation queries. In: DOLAP, pp. 63–70 (2003)

14. Zhou, J., Larson, P.Å., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB, pp. 231–242 (2007)

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 272–281, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Experiment with Asymmetric Algorithm:
CPU Vs. GPU

Sujatha R. Upadhyaya1 and David Toth2,*

1 Infosys Limited, Bangalore, India
2 Imperial College, London, UK

sujatha_upadhyaya@infosys.com, david.toth10@imperial.ac.uk

Abstract. Discovery of sequential patterns in large transaction databases for
personalized services is gaining importance in several industries. Although a
huge amount of mobile location data of consumers is available with the service
providers, it is hardly put to use owing its complexity and size. To facilitate
this, an approach that represents the entire area by a location grid and records
the movements across the cells as sequences has been proposed. A new
algorithm for mining sequential data is devised to find frequent travel patterns
from location data and analyze user travel patterns. The algorithm is
asymmetric in nature and is parallelized on the GPGPU processor and tested for
performance. Our experiments assert that asymmetric nature of the algorithm
doesn’t allow the performance to elevate despite parallelization, especially with
large data.

Keywords: Sequence Mining, Parallelization, Location Data, Personalization.

1 Introduction

Mobile towers record the movement of the devices as a response to the signals sent by
these devices. The frequency with which the towers respond, the phase of the towers
that acknowledges the signal and other parameters can point to the exact location of
the device. Given that the process of signal search and acknowledgement is a
continuous one; this data can be used to study the travel patterns of individuals.
Such analysis of consumer data can be eventually used for personalization of services,
where consumers receive the right information at the right time. However, analysis of
device location data is not simple owing to its complexity and size. A method has
been proposed to convert this data into sequences of locations [1]. This method
suggests that geographic area under consideration is divided into a grid like structure
where each cell is uniquely identified by a cell ID as shown in Figure 1. Here,
movements of individuals are represented as sequences formed by the cell IDs in the
order of travel.

* David worked as an intern with Infosys Limited. This work was carried out during his

internship.

 An Experiment with Asymmetric Algorithm: CPU Vs. GPU 273

Fig. 1. A Sketch Showing the Location Grid

A sequence that represents movements in a day would start and end with the same
location ID as in BCDEFGHEDB. Analysis of such sequences collected over the
years reveals travel patterns. An algorithm called Frequent Sequence Algorithm (FS
algorithm), particularly used for the purpose of identifying the most frequent and
frequent routes used by consumers is proposed in this paper. This algorithm processes
the data of people who live in same location.

Processing terabytes of data calls for optimization. Our effort for performance
enhancement is brought about by making an effort to parallelize the FS algorithm and
running it on a parallel architecture. The modified algorithm is called P-FS algorithm
here on. We chose the NVIDIA’s GPGPU as the hardware platform, with CUDA as
the coding language.

In this paper, a background to the research has been discussed in Section 2. The FS
algorithm has been described Section 3. Section 4 elaborates on P-FS Algorithm, the
parallelization of FS Algorithm. Section 5 describes the experiments we ran through
and discusses the results. The last section presents the conclusions from the
experience and future research directions.

2 Background and Literature

A very short background has been presented here. From the beginning of GPU era,
we have witnessed several tasks being subjected to parallelization on GPUs. In the
initial years, many efforts [1] [2] [6] have taken up tasks such as matrix
multiplication, sorting, sparse matrix solving, etc. for parallelization on GPUs. Years
later, the focus moved on to parallelizing machine learning algorithms. There have
been numerous efforts [3] [4] [5] [7] [8] [9] [10] [11] in this direction staring from
itemset mining [10] to the recent text mining efforts [11]. One of the efforts [3]
speaks about stream mining of quantiles and frequencies that exploits the
computational abilities of GPU to build a new rasterization scheme. Another
interesting work [4] refers to a new sorting algorithm that uses blending and mapping
functionalities of GPU. Two of the efforts [7] [9] represent parallelization of SVM
approach. As against these approaches, our effort describes an effort to parallelize an
asymmetric algorithm and studies the effect of parallelization on GPU.

274 S.R. Upadhyaya and D. Toth

3 Frequent Sequence Algorithm

The Frequent Sequence algorithm (FS Algorithm) is devised especially for the
sequences generated from ordering the events generated. Here, the event refers to the
movement of the device into a new cell and is represented by its cell ID. A sequence
is generated by stringing the cell ID in the order of even occurrence. One sequence
corresponds to a day’s travel. We collect the data of people living at a particular
location, for a couple of years and analyze the sequences to determine the travel
patterns of individuals. The data is huge and can contains multitude of travel patterns,
depending on the number of people living in that area and directions they take to
work. Objective of this algorithm is to find the most frequent and frequent sequences
with specific minimum support in the database.

3.1 Data Representation

An example sequence data shown Figure 2 is used for illustrating data representation.
The typical sequences have the following properties:

1. They have a common starting and ending event, which refers to the base
point or ‘home’. In the example set ‘A’ is the base point.

2. It can also be observed that a certain length of typical sequence represents
the forward path and the rest of the sequence represents the reverse path. For
example, in sequence ‘ABCDCBA’, ‘ABCD’ represents the forward path
and ‘CBA’ represents the reverse path for that sequence. Beginning of the
reverse path may be identified by the re-occurrence of an event. While
‘forward journeys’ and ‘return journeys’ exist in real sense, it is difficult to
identify the respective forward and return paths unless the destination is
known.

Fig. 2. Matrix Representation of Sequence Data

A set of sequences with ‘n’ unique events is represented with a matrix of size n×n,
where ‘n’ is the number of unique events in the sequence set. The one path
frequencies are stored in a matrix as shown above. A careful examination shows that
most of the cells in the matrix are empty. This is because, movements occur across the
adjacent cells and every cell is adjacent to few other cells. As the length of the
sequences increases more entries in the matrix will be zero as the number of cells that
cannot be reached from a specific cell also increases. It may also be noted that if the

 An Experiment with Asymmetric Algorithm: CPU Vs. GPU 275

frequency of sequence ‘AB’ is represented in the upper triangle of the matrix; then the
frequency of sequence ‘BA’ is represented in the lower triangle. If sequence ‘AB’
represents a forward path, then ‘BA’ represents the reverse path. In an ideal situation,
one must be able to represent the entire forward paths in the upper triangle and the
reverse paths in the lower triangle. But, in reality, this can never happen as it is
extremely difficult to find the right order of representation of events in the matrix,
given that there could be multiple paths, partial deviations, loops etc. In the
illustration example, the representation of subsequence BF appears in the upper
triangle of the matrix, although it is a part of the backward path.

3.2 Algorithm

The skeleton of the algorithm has been shown in Figure 2. Other than the frequent
sequence matrix, we have two lists L1, L2 containing sequences of lengths 1 to n-1,
whose frequencies are greater than the minimum support. A sequence with a
frequency greater than minimum support is a ‘frequent sequence’.

Fig. 3. FS Algorithm

Procedure for Building L1, L2: Our database contains sequence corresponding to the
entire community of people who live at a location; however, it would contain equal
number of sequences corresponding to each user. The value of minimum support is
decided as a percentage of the total number sequences corresponding to one user. We
build these lists as preparation to generate the candidate sequences and at this stage
we ignore all 1-path sequences with frequencies less than the minimum support.

276 S.R. Upadhyaya and D. Toth

To build L1, we start with the 1-path sequences with frequency greater than the
minimum support and in each step; grow them by one length by appending suitable 1-
length sequences. For illustration example, assuming a minimum support of 2,

Step 1: L1={ ab, bc, be, cd}
Step 2: L1={ ab, bc, be, cd, abc, abe, bcd }
Finally, Step 3: L1={ ab, bc, be, cd, abc, abe, bcd, abcd} – Note that the sequences do
not grow further.
Similarly,
Step 1: L2={ed, dc, cb, ba,}
Step 2: L2={ed, dc, cb, ba, edc, dcb, cba}
Step 3: L2={ed, dc, cb, ba, edc, dcb, cba, edcb, dcba}
And, finally, Step 4: L2={ed, dc, cb, ba, edc, dcb, cba, edcb, dcba, edcba}

Generation of Candidate Set:
In an ideal situation, all paths in L1 would represent forward paths; all paths in L2

represent reverse paths. Although in a real situation, this cannot be completely true;
we follow this notion and grow sequences by appending sequences in L1 with
sequences in L2 and then, resultant sequences with sequences in L1 again and then
with sequences in L2 and so on. The result is similar to growing of sequences in
Apriori algorithm; the only difference being; in Apriori procedure, the sequences
grew by one length in each stage; One the other hand, sequences of unequal lengths
grow by unequal lengths in this context..

In an ideal situation, most of the frequent sequences would have been generated in
initial steps of combining L1 and L2. (Longest forward sequences would combine with
longest reverse sequences to make the full sequences, in step 1).

Fig. 4. Algorithm for Candidate Generation

 An Experiment with Asymmetric Algorithm: CPU Vs. GPU 277

 The algorithm for candidate generation has been depicted in Figure 4. The candidate
generation is similar to the procedure in Apriori algorithm. However, each step will
not produce frequent sequences of the same length. Candidate sequences will be
produced in n-1 trials of combining L1with L2. As may be observed, the sequence
generation can be parallelized easily, however, it is not possible to ensure that each
thread carries equal load. This makes the algorithm highly asymmetric.

4 Parallelization on GPU

The FS algorithm gives into parallelization very well; in the sense that the algorithm
can be split into processes that can run independent of the other in every stage.
However, one or two of the threads end up generating useful sequences while the rest
complete their part and wait for longer threads to complete. We implemented the
parallelized version of the same on NVidia Tesla S870. The parallelization scheme is
as shown in Figure 5.

Fig. 5. Parallelization Scheme

Parallelization Component 1 - Building Fr_Matrix: The first step in the algorithm
builds the Fr_Matrix that counts the frequency of one length sequences in the data.
When the size of Fr_Matrix is ‘n × n’, n2 threads are introduced. Each thread counts
one type of sequence. This portion gives considerable gain, depending on the actual
number of 1-length sequences present in the data. However, we notice that most of
the threads wait for others to finish, especially if the 1-path sequences are unequally
distributed. In such cases, the speed up may not be proportional to the number of
threads introduced.

278 S.R. Upadhyaya and D. Toth

Parallelization Component 2 - Building L1
 and L2: One thread gets initiated for

each 1-length sequence in top/bottom triangle and L1 and L2 are built from the
1-length sequences of top and bottom triangles respectively.

Parallelization Component 3 – Generation of Candidate Sequences: We grow
sequences from the base point. In the first step, sequences starting with the base point
in L1 / L2 are appended with appropriate sequences in L2 / L1. Number of threads
initiated in this step depends on number of sequences that start with the base point.
This is one of the stages, where several threads are introduced. During
experimentation we observed that the asymmetry of the algorithm causes some of the
threads to run much longer than the rest.

5 Experiments with Sequential and Parallel Algorithm

Here, we must mention the nature of the algorithm we just discussed and the
architecture of GPGPU. The algorithm is symmetric in the sense that the threads take
unequal time to complete. It might so happen that the one or two threads take the
entire load while the others finish quickly. However, the available memory is shared
equally amongst the threads. As a result, while much of memory does not get used
up; a few threads run out of memory soon.

Fig. 6. Effect of Minimum Support on Performance

Figure 6. shows the number of candidate sequences generated for different values

of minimum support. These experiments were run on artificially generated data,
where the deviation, (the probability that a deviation is introduced while generating
data sequences), number of records, length of sequences are some of parameters are
controlled. In the above experiment is deviation remains constant.

Figure 7. shows that parallelization does not improve performance as the number
of records increase. Length of sequence affects performance. The performance
improves a little with the increase in length of sequences. This is possibly because the
number of threads that take up load increases with the length of the sequences.

 An Experiment with Asymmetric Algorithm: CPU Vs. GPU 279

Fig. 7. Speed Up vs. Number of Records for a Fixed Value of Minimal Support

Figure 8. shows the deterioration of speed up as the number of candidates
generated increases. There’s every chance that the thread uses up the memory
allocated quickly.

Fig. 8. Speed up Vs. the Number of Candidate Generated

Fig. 9. Speed up Vs. Number of records

Larger the number of records worse is the speed-up. Figure 7. points out the same.
Figure 9. emphasizes the same, but also shows that the performance dips sharply for
sequences of greater length. We also observed performance for a slightly higher
minimum support does not deteriorate as bad for the same number of records.

280 S.R. Upadhyaya and D. Toth

6 Conclusions

We have implemented the parallelization exercise of an asymmetric algorithm on
GPU and have recorded our experience in this paper. As against the many efforts in
the past where parallelization is brought about by dividing the data among the
processors, we have achieved parallelization by identifying the part of the process that
can be run independently on complete data. We have arrived at the conclusion that
parallelization of an asymmetric algorithm results in deterioration of performance,
despite the algorithm being well parallelizable. The reason for the deterioration is
mainly attributed to the asymmetric nature of the algorithm. There are other reasons
that contribute to this. One of them is that memory overflow that can be caused easily
because available memory gets distributed among the threads. This results in
inefficient memory usage. Then, there is the effect of memory transfers that can cause
further delay.

Special APIs are now available to deal with asymmetricity. Use of such APIs and
the use of streaming mechanisms for reducing the effect of memory transfers would
help in bringing about greater speed-up. Another important factor is to devise an
efficient threading scheme. The present scheme generates the threads depending on
the initial number of sequences. However, it is possible to recursively allocate the
new threads to carry on the task, while closing the old threads and make them
available for fresh allocation. This scheme in a way could ensure usage of maximum
threads. Since a portion of the threads get generated half way through, memory
requirement at that stage would be lower as there are many more threads sharing
the task.

References

1. Scott Larsen, E., McAllister, D.: Fast Matrix Multiplies Using Graphics Hardware. In:
Super Computing (2001)

2. Bolz, J., Farmer, I., Grinspun, E., Schrooder, P.: Sparse Matrix solver on the GPU:
Conjugate Gradients and Multigrid. In: SIGGRAPH (2003)

3. Govindaraju, N.K., Raghuvanshi, N., Henson, M., Tuft, D., Manocha, D.: Fast and
Approximate Stream Mining of Quantiles and Frequencies Using Graphics Processors. In:
SIGMOD (2005)

4. Govindaraju, N.K., Raghuvanshi, N., Manocha, D.: A Cache-Efficient Sorting Algorithm
for Database and Data Mining Computations using Graphics Processors, Tech. Report,
University of North Caroloina (2005)

5. Cao, F., Tung, A.K.H., Zhou, A.: Scalable Clustering Using Graphics Processors. In: Yu,
J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 372–384.
Springer, Heidelberg (2006), doi:10.1007/11775300_32

6. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High Performance
Graphics Coprocessor Sorting for Large Database Management. In: SIGMOD 2006 (2006)

7. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast Support Vector Machine Training and
Classication on Graphics Processors. In: ICML 2008 (2008)

 An Experiment with Asymmetric Algorithm: CPU Vs. GPU 281

8. Fang, W., Keung Lau, K., Lu, M., Xiao, X., Lam, C.K., Yang Yang, P., He, B., Luo, Q.,
Sander, P.V., Yang, K.: Parallel Data Mining on Graphics Processors, GPUComputing.net
(October 2008)

9. Carpenter, A.: CUSVM: A CUDA Implementation of Support Vector Classification and
Regression

10. Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent Itemset Mining on Graphics
Processors. In: DaMon 2009 (2009)

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 282–286, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tag Association Based Graphical Password
Using Image Feature Matching

Kyoji Kawagoe, Shinichi Sakaguchi, Yuki Sakon, and Hung-Hsuan Huang

College of Information Science and Engineering
Ritsumeikan University, Japan

{kawagoe@is,sakaguchi@coms.is.,sakon@coms.ics,huang@fc.}
ritsumei.ac.jp

Abstract. Much work on graphical password has been proposed in order to
realize easier and more secure authentication with use of images as a password
rather than text based passwords. We have proposed a Tag Association Based
graphical password called TAB. In TAB, a set of images which are presented to
a user is determined among a large collection in image search or sharing web
services using user pre-registered pass-terms, while the typical graphical
password presents a user a set of images including one of the user pre-registered
images. In our demo, we present the novel prototype system with an extension
of TAB. The extended TAB is incorporated a well-known image recognition
algorithm, such as SIFT (Scale Invariant Feature Transform) or SURF (Speeded
Up Robust Feature) in order to increase both Shoulder Surfing Unsuccess and
Authentication Success Ratios.

Keywords: graphical password, image search, authentication, image features, tags.

1 Introduction

There have been many research activities on graphical password [1–9], which is a
new type of passwords by using images instead of common textual password. The
main advantage of graphical password over textual password is its ease to be
remembered and recognized [7]. Moreover, a system in which graphical password is
adopted is less expensive than other types of authentication methods such as
fingerprints and face recognition. In a mobile multimedia application, it is important
to provide easy and quick authentication. Such an application can benefit from user
friendly direct manipulation interface such as multi-touch input feature provided by
many smartphone devices. One of the most important problems in the current
graphical passwords using an image selection based method is shoulder surfing attack
vulnerability. The shoulder surfing is an attack using direct observation to get users’
critical information. As it is easier to make shoulder surfing on mobile multimedia
applications, than PC-based ones, the vulnerability is a more critical issue should be
addressed.

In order to prevent this shoulder surfing problem, we proposed a new graphical
password method, called TAB which stands for Tag Association Based graphical

 Tag Association Ba

password [10]. This meth
between an image and the
implementation of extended
on matching images which
order to obtain better Shou
Success Ratio.

2 Tag Association

Fig.1 shows a brief proces
proposed original TAB (rig
pre-registers some pass-ima
pre-registers some pass-ter
authentication process, the
with one of the pre-register
In TAB, it is important to p
the other incorrect image
registered by the user.

Fig. 1. Typical Graphical Pa
(right)

The main advantage of T
different each time. Therefo
based applications. More
applications due to simple l

It is important to present
to guess a user pass-term. I
objects as the correct answ
Apple. Therefore, all the im
sub-images.

ased Graphical Password Using Image Feature Matching

od can avoid shoulder surfing by using the associat
tags attached to it. In our demo, we present a protot

d TAB. The extension made over the original TAB [10
are related to one of the user pre-registered pass-terms

ulder Surfing Unsuccess Ratio as well as Authenticat

n Based Graphical Password (TAB)

ss of the typical graphical password (left) and that of
ght). In the case of the typical graphical password, a u
ages among a set of stored images. On the contrary, a u
rms for graphical password images in TAB. During
 user selects a correct answer image which is associa

red pass-terms, not from one of an identical predefined
present images which contain one correct answer image
es which are never associated with any pass-term p

assword (left) and Tag Association Based Graphical Passw

TAB is the possibility to provide a set of images tha
fore, shoulder surfing is more difficult to be made on T
eover, TAB is suitable for authentication in mob
layout and easy usage.
t a user a set of images so as for an attacker not to be a
If the attacker views only apple images including no ot
wer images, he/she can easily guess the user pass-term
mages which are presented to a user should include seve

283

tion
type
0] is
s, in
tion

our
user
user
the

ated
set.
and
pre-

word

at is
TAB
bile

able
ther

m is
eral

284 K. Kawagoe et al.

3 TAB Using Imag

In the demo, we presen
incorporates feature detec
similarity between an ima
image associated with a set
the features of the two imag

There are not only a s
beforehand but also a collec
which we call Imagetag. Th
feature detection algorithms
acquires a set of correct ans
pass-terms as well as a set of
feature points of these imag
Imagetags. The similarity be
matched pairs of the featur
points of two images. Match
whose cosine similarity mea
correct answer image by get
image candidate and an Im
terms. Also, we can obtain a
Imagetag of user pass-terms

4 Demonstration

Fig. 2. Prototyp

ge Feature Matching

nt the prototype implementation of extended TAB.
ction algorithms such as SIFT [11] or SURF [12].T
ge obtained by searching images on the Internet and
t of user pre-registered pass-terms can be calculated us
ges.
set of pass-terms determined in an authentication sys
ction of image set appropriately representing each pass-te
he feature vectors are built from the feature points found
s such as SIFT or SURF. During authentication, the sys
wer image candidates which matches the user pre-registe
f incorrect images from image search web services. Then,
ges are detected with the same algorithm as in the case
etween an image and an Imagetag is defined as the numbe
re points over the smaller value of the numbers of feat
hed pairs are obtained by extracting a pair of feature po
asure is less than a threshold. Therefore, we can select
tting the image with the highest similarity value between

magetag associated with one of the user pre-registered p
an incorrect answer set where all images are not similar to
.

n System and Overview

pe system structure (Left) and a screenshot (Right)

. It
The

d an
sing

tem
erm,
d by
tem
ered
, the
e of
er of
ture

oints
one

n an
ass-
any

 Tag Association Based Graphical Password Using Image Feature Matching 285

Fig. 2 shows the structure of the prototype system on the left, and a snapshot of the
user interface on the right. As shown in the figure, the system has two main
components: user registration function and user authentication function. A set of
images is presented to a user during authentication, after generating one correct
answer image and the other incorrect answer images by calculating the similarity
value between an image obtained from image search web services and an Imagetag
stored in the system. For the sake of avoidance of miss-selection by a user, we
provide the RELOAD function which can change a set of images presented to a user.
The system keeps the images in a cache after the system obtains a collection of
images with use of image search web services, in order to improve the performance
on image presentation to a user. The prototype system is mainly implemented in
JAVA.

5 Demo Scenario

We demonstrate our prototype system with the following scenario:

Step-1: A guest registers his/her pass-terms by selecting from a list of pass-terms.
Step-2: Our demo system displays N images to the guest. In the demo, N=12 is used.
Step-3: The guest select one image from N images, which is the most related image to
one of his/her pass--terms. If the guest cannot select it because of no related images or
multiple related images, RELOAD function can be selected.
Step-4: The guest and the system iterate Step-3, K times. In the demo, K is set to 2.
The number of RELOAD usage is limited to K.
Step-5: When the guest can select correct images K times, then the system displays
"Authentication Success" message to the guest. Otherwise, the system displays
"Authentication Failed".

6 Conclusion

In this demo, we present a prototype system implementing a novel graphical password
method, called TAB which stands for Tag Association Based graphical password. The
method was designed and developed so as to apply it for mobile multimedia
applications in an easy authentication way, with higher tolerance toward shoulder
surfing. The prototype system enables a user to make his/her authentication easier and
more reliable by using TAB.

References

1. Bicakci, K., Yuceel, M., Erdeniz, B., Gurbaslar, H., Atalay, N.B.: Graphical Passwords as
Browser Extension: Implementation and Usability Study. In: Ferrari, E., Li, N., Bertino,
E., Karabulut, Y. (eds.) IFIPTM 2009. IFIP AICT, vol. 300, pp. 15–29. Springer,
Heidelberg (2009)

286 K. Kawagoe et al.

2. Gao, H., Guo, X., Chen, X., Wang, L., Liu, X.: Yagp: Yet another graphical password
strategy. In: ACSAC 2008, pp. 121–129 (2008)

3. Kumar, M., Garfinkel, T., Boneh, D., Winograd, T.: Reducing shoulder-surfing by using
gaze based password entry. In: 3rd Symposium on Usable Privacy and Security, pp. 13–19
(2007)

4. Li, Z., Sun, Q., Lian, Y., Giusto, D.: An association-based graphical password design
resistant to shoulder-surfing attack. In: Int. Conf. on Multimedia and Expo., pp. 245–248
(2005)

5. Perra, C., Giusto, D.D.: A framework for image based authentication. In: ICASSP 2005,
pp. II-521–II-524 (2005)

6. Abari, A.S., Thorpe, J., van Oorschot, P.C.: On purely automated attacks and click-based
graphical passwords. In: 24th ACSAC, pp. 111–120 (2008)

7. Suo, X., Zhu, Y., Owen, G.S.: Graphical passwords: A survey. In: 21st ACSAC, pp. 463–
472 (2005)

8. Takada, T., Koike, H.: Awase-e: Image-based authentication for mobile phones using
user’s favorite images. In: Mobile HCI 2003, pp. 347–351 (2003)

9. Wiedenbeck, S., Waters, J., Birget, J., Brodskiy, A., Memon, N.: Pass-points: Design and
longitudinal evaluation of a graphical password system. Int. J. Human-Computer
Studies 63, 102–127 (2005)

10. Sakaguchi, S., Huang, H.-H., Kawagoe, K.: Tag Association Based Graphical Password
with Image Search Web Services. In: 3rd EDB, pp. 152–163 (2011)

11. Lowe, D.G.: Object recognition from local scale-invariant features. In: 7th ICCV, pp.
1150–1157 (1999)

12. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis,
A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer,
Heidelberg (2006)

Acarp: Author-Centric Analysis

of Research Papers

Weiming Zhang, Xueqing Gong, Weining Qian, and Aoying Zhou

Institute of Massive Computing,
Software Engineering Institute,
East China Normal University

51091500016@ecnu.cn,
{xqgong,wnqian,ayzhou}@sei.ecnu.edu.cn

Abstract. Scientific publications are an important kind of user-generated
content, which contains not only high-quality content but also structures,
e.g. citations. Scientific publication analysis has attracted much attention
in both database and data mining research community.

In this demonstration, we present a system, named as Acarp, for ana-
lyzing research papers in database community. The relationship between
a research paper and the authors is analyzed based on a learning to rank
model. Not only the content of the paper, but also the citation graph is
used in the analysis. Acarp can not only guess authors for papers under
double-blind reviewing, but also analyze the researchers’ continuity and
diversity of research. This author-centric analysis could be interesting to
researchers and be useful for further studying on double-blind reviewing
process.

1 Introduction

Research papers are important resource for research activities, since they are
formal reports on research progress and results. However, there are so many
research papers, so that a single researcher is usually not capable of reading
and remembering too many papers. A natural solution in terms of data and
content management to this problem is that we may build a system to manage
all research papers and provide services for analyzing them to assist researchers.

Research paper management is not new in content management. Existing
services include directory-based systems, search-based ones, and mining-based
ones. An excellent example of directory-based systems is DBLP [3]. It provides
list of papers with author names, paper titles, booktitles indexed. Search-based
systems include CiteSeer [4] and Google Scholar [5]. They both provide search
services for not only the basic information of research papers but also their con-
tent. Mining-based systems, such as ArnetMiner [6] and Dolphin [7], go one step
further. ArnetMiner analyzes the co-author graph and determines the roles of au-
thors, while Dolphin analyzes the content of papers and is capable of generating
a survey for a specific topic.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 287–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 W. Zhang et al.

Acarp is a mining-based system. It differs from other ones in that: 1) both
content and citation graph are used to extract the features, so that the subse-
quent analysis is more accurate; 2) authors are treated as the major object for
analysis; 3) various analysis tasks can be conducted based on Acarp.

1.1 System Overview

The architecture of Acarp is shown in Figure 1. The offline part of the system is
essentially a learning to rank trainer. It accepts papers with author information
as input. The papers are parsed, and features, such as terms, references, are
extracted. Then, a RankSVM [2] model is trained, in which the target is the
author’s list.

Fig. 1. The architecture of ACARP Fig. 2. The modeling of a research paper

The trained model is used in the online part of the system. The online part
provides two services. The first one accepts a paper as input. The author in-
formation is not necessarily provided. Acarp parses the paper, along with all
papers in its references, extracts features, and tests the paper against the model
trained by the offline part. Then, a list of predicted authors, each of which is
associated with a score, is returned.

The second service of the online part accepts user queries on authors or papers.
Acarp would provide reports on continuity and diversity of research of authors.
Acarp also provides information on why it predicts a researcher is the author
of a paper.

1.2 Paper Organization

The rest part of the paper is organized as follows. In next section, the method for
author prediction of a paper is introduced. Then, in Section 3, the method for
analyzing research papers is introduced. Finally, in Section 4, the demonstration
outline is presented.

Acarp: Author-Centric Analysis of Research Papers 289

2 Author Prediction

Author prediction is the major part of the Acarp system. The details of the
author prediction algorithm is introduced in [1]. An outline of the method is
introduced here.

2.1 Modeling of a Research Paper

A research paper can be modeled as it is illustrated in Figure 2. Each paper has
a title. It may have several authors. It should be noted that a paper may not
contain any author information in case that the paper is under review satisifying
the double-blind-review guideline.

A paper contains content. The content is organized in tree structure, in which
leaf nodes are plain text. They can also be treated as lists of terms. Furthermore,
usually, a paper contains references. Each reference is a point to another paper.

2.2 Features

Features are extracted from papers. They come from both content of the paper
itself, and content in references. Each paper is represented by a vector, in which
each dimension corresponds to a feature. The features that are used in Acarp
are listed as follows.

– Occurrence Occurrence means number of times the author appears in the
reference. Each author corresponds to a dimension in the vector, while the
value is the frequency of the author appears in the reference list. The intu-
ition is that the more an author’s paper is cited, the more likely that she is
the author.

– Fame Fame here means whether the author is famous, which is defined
in [8]. If an author has published more than 20 papers in both SIGMOD
and VLDB, then the author is marked as a famous one. Otherwise, she is
not famous. Thus, the value of the dimension corresponding to the fame of
an author is binary: 1 for famous, and 0 for unfamous. It should be noted
that famous authors are more likely to appear in references than other ones.
Therefore, this feature should be used to prevent the model always predict
the researcher who have most papers as author.

– Title rate The feature is simply the number of the same term in both
reference’s title and paper’s title. It is quite possible that the continually
works share same terms in titles.

– Time gap This feature is the difference between the year the paper pub-
lished and the year of the paper appearing in reference. Each author of the
cited paper has one dimension for this feature. This is a feature that measures
the relationships between a paper and its reference.

– Term rate Similar to the title rate feature, the term rate feature measures
the similarity between a paper to its references. It should be noted that not
all keywords are used as terms. Terms are identified as those words that are

290 W. Zhang et al.

written in capital, or not appearing in dictionaries. Thus, abbreviations of
specific algorithms, names of data sets, etc. can be identified.

– Publication type This feature is based on the place the paper in refernce
was published. There are six types, which are listed in Table 1. Intuitively,
papers in prestigious conferences or journals are more likely to be cited, while
technical reports are more likely to be self-citations.

Table 1. Types of publications

Type Publication

1 Prestigious conferences and journals: SIGMOD, VLDB,
SIGKDD, ICDE, VLDBJ, TKDE, . . .

2 Other Conferences and journals of ACM and IEEE etc.

3 Published Books

4 Technique report

5 Ph.D. or Master Thesis

6 Others

2.3 Learning to Rank

Let S denotes the training data sets which contains several feature vector sets
X = {x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yn} means the rank space,
{r1, r2, . . . , rn} is a set of ranks, and n is number of ranks. P denotes the pref-
erence relationship of a pair of features (xi, xj). It equals +1 denotes xi ranks
a head of xj . On contrast, −1 denotes the later one ranks high. For example:
Pi,j = +1, if yi > yj , and Pi,j = −1, if yi > yj .There exists an order among
all the ranks: rn > r(n − 1), . . . > r1, where ”>” denotes the previous one has
priority than the later one.

[?] proposed the learning problem by using above pairs of instances. So we
assume there is a ranking function f which is linear:

f(x) = (ω, x) (1)

f(xi) − f(xj) = (ω, xi − xj) (2)

So plugging the pair-wise result, we obtain:

f(xi) > f(xj) ←→ (ω, xi − xj) > 0 ←→ yi > yj (3)

Based on the given data sets S, there will generate a new data sets S′ of each
document generated from xi − xj , which all have the label p = +1 or p = −1.
Then we can train a SVM model on the new sets X ′ which is equivalent to
solving the optimization problem:

min
1

2
ωTω + C

n∑
i=1

ξi (4)

Acarp: Author-Centric Analysis of Research Papers 291

s.t. pi(ω, xi − xj) ≥ 1 − ξi, ξi ≥ 0, ∀i ∈ {1, . . . , n}
where ω denotes the weight of ranking function and ξ is a slack variable. As
using SVM to generate a model, we can get a rank function fw∗ :

fw∗(x) = (ω∗, x) (5)

where ω∗ is the weights in the SVM solution for ranking function. And than fw∗

can be used to identify potential authors.

3 Extensions and Summary of Results

Acarp provides a set of services based on the author prediction model, which
are called extensions. They are introduced as follows.

3.1 Are Double-Blind Reviewers Really Blind?

Previous studies, e.g. Tung 2006 [8], show that double-blind reviewing may im-
prove the review process in that reviewers are less biased to famous authors.
However, experienced reviewers may argue that it is not difficult to know the
authors even the the authors’ names are hidden.

Acarp can be used directly to guess authors. Figure 3 shows that while
features on both content and citation graph are used, the precision can be around
80%1. It should be noted that this precision is quite high, since only part of the
papers are self-citation ones. The rates of self-citation papers from 1994 to 2010
on SIGMOD are shown in Table 2.

Fig. 3. Precision on author prediction Fig. 4. Comparison of precision in double-
and non-double-blind reviewing

In Figure 4, it is shown that though the precision of famous author prediction
decreases a little in double-blind reviewing (SIGMOD after 2001), the difference
of double-blind reviewing and non-double-blind reviewing is not significant.

1 Here, the precision is defined as ‖P‖/N , in which N is the number of all papers in
testing, and P is the set of papers that have at least one real author is returned by
Acarp in the first n results, where n is the number of authors listed in the paper.

292 W. Zhang et al.

Table 2. The rate of self-citation papers

Year Self- Total Rate Year Self- Total Rate
-cited -cited

1994 37 40 92.5% 2003 43 53 81.13%

1995 33 36 91.67% 2004 59 69 85.51%

1996 40 47 85.11% 2005 53 65 81.54%

1997 36 42 85.71% 2006 50 58 86.21%

1998 38 42 90.48% 2007 56 70 80%

1999 38 41 92.68% 2008 66 78 84.62%

2000 37 42 88.10% 2009 55 63 87.30%

2001 35 44 79.55% 2010 64 80 80%

2002 38 42 90.48%

Acarp analyzes the disambiguation ability, which means information gain, of
features for each paper. Thus, while the authors of a paper are guessed, a series
of features is returned. Users of Acarp may understand why a specific author
is predicted better based on these features. Figure 5 shows the percentage of
features that returned for SIGMOD 2009 papers.

Fig. 5. Features with high disambiguation ability in SIGMOD 2009 papers

Based on statistics returned by Acarp, an interesting conclusion can be made
that: double-blind reviewers are usually not blind. However, sometimes they may
pretend to be blind and be less biased to famous authors.

3.2 Continuity Analysis

The second service Acarp provides is the continuity analysis on research inter-
ests of researchers. Since author prediction is based on papers previously written,
an author with high rank is actually highly related to his previous work appearing
in references. Thus, by listing one researcher’s papers in timeline along with her
ranks of each paper returned by Acarp, we can see her continuity of research.

Acarp: Author-Centric Analysis of Research Papers 293

Fig. 6. Three researchers’ continuity curves

Table 3. The top and bottom 5 researchers on diversity of interests in 50 most famous
researchers in SIGMOD and VLDB

Rank of Top ranked author Precision Rank of Bottom ranked author Precision
fame fame

32 Hans-Peter Kriegel 0.83 17 Beng Chin Ooi 0.12

21 Rajeev Rastogi 0.81 19 Kian-Lee Tan 0.19

14 Minos N. Garofalakis 0.76 18 Philip S. Yu 0.22

36 Kevin Chen-Chuan Chang 0.73 43 S. Sudarshan 0.30

22 David J. DeWitt 0.71 6 Raghu Ramakrishnan 0.32

Figure 6 shows continuity curves of three researchers, namely Jennifer Widom,
Hans-Peter Kriegel, and Dan Suciu. There are several hills in each curve. A
hill with several points whose ranks are high usually corresponds to a research
projects. For Jennifer Widom, for example, The first three hills correspond to the
WHIPS (1995-1999), LORE (1996-1999) and TRAPP (2000-2003) projects. The
fourth and fifth hill correspond to the STREAM (2001-2005) and TRIO (2005-
2009) projects. Papers whose authors that are not correctly returned are usually
the first paper of the project, overview papers without references to previous
work, or papers that do not appear in list of any project.

3.3 Diversity of Interests

Researchers have different styles. Some researchers’ papers are highly related,
while some others’ papers focus on different topics.Acarpmeasures the diversity
of interests of a researcher by percentage that it accurately predict her as the
author of all her papers. Table 3 shows researchers whose diversity of interests
are ranked highest and lowest of the fifty authors who have most SIGMOD and
VLDB papers.

4 Demonstration Outline

Initially, Acarp will be setup on a public service with a learning to rank model
trained by papers from SIGMOD, VLDB, and ICDE in three years. The demon-
stration contains two parts.

294 W. Zhang et al.

4.1 Result Query Part

In this part, all papers from SIGMOD, VLDB, and ICDE (with information on
authors hidden) are used to test the model. Then, audience may query the result
to see:

– The authors Acarp predicts and the real authors of any specific paper.
– The reason that Acarp thinks a researcher is the author of the paper.
– The continuity of any specific author.
– The diversity of research interests of any specific author.

4.2 Interactive Part

In this part, we encourage audience to provide electronic copy of their own
papers, and/or even papers in references, to test the model.

Acknowledgement. This work is partially supported by National Science
Foundation of China under grant numbers 60833003, 61170086, and 60803022,
National Basic Research (973 program) under grant number 2010CB731402,
and National Major Projects on Science and Technology under grant number
2010ZX01042-002-001-01.

References

1. Qian, W., Zhang, W., Zhou, A.: Are Reviewers Really Blind in Double Blind Review,
Or They Just Pretend to Be? East China Normal University, Technical Report
(2011)

2. Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Or-
dinal Regression. In: Advances in Large Margin Classifiers, pp. 115–132. MIT Press
(2000)

3. Ley, M.: Subharmonic solutions with prescribed minimal period for nonautonomous
Hamiltonian systems (2011), http://www.informatik.uni-trier.de/~ley/db/

4. The College of Information Sciences and Technology at Penn State: Scientific Liter-
ature Digital Library and Search Engine (2011), http://citeseerx.ist.psu.edu/

5. Google Inc.: Google Scholar (2011), http://scholar.google.com
6. KEG at Tsinghua University: Academic Researcher Social Network Search (2011),

http://arnetminer.org/

7. Wang, Y., Geng, Z., Huang, S., Wang, X., Zhou, A.: Academic web search engine:
generating a survey automatically. In: WWW, pp. 1161–1162 (2007),
http://doi.acm.org/10.1145/1242572.1242745

8. Tung, A.K.H.: Impact of double blind reviewing on SIGMOD publication: a more
detail analysis. SIGMOD Record 35(3), 6–7 (2006),
http://doi.acm.org/10.1145/1168092.1168093

http://www.informatik.uni-trier.de/~ley/db/
http://citeseerx.ist.psu.edu/
http://scholar.google.com
http://arnetminer.org/
http://doi.acm.org/10.1145/1242572.1242745
http://doi.acm.org/10.1145/1168092.1168093

iParticipate: Automatic Tweet Generation

from Local Government Data

Christoph Lofi1 and Ralf Krestel2

1 IFIS, Carolo-Wilhelmina Universität Braunschweig, Germany
lofi@ifis.cs.tu-bs.de

2 L3S Research Center, Leibniz Universität Hannover, Germany
krestel@L3S.de

Abstract. With the recent rise of Open Government Data, innovative
technologies are required to leverage this new wealth of information.
Therefore, we present a system combining several information processing
techniques with micro-blogging services to demonstrate how this data
can be put to use in order to increase transparency in political processes,
and encourage internet users to participate in local politics. Our system
uses publicly available documents from city councils which are processed
automtically to generate highly informative tweets.

1 Introduction

More and more public institutions and governments provide access to official
documents via the Internet. This fosters transparency [2] and the possibility
for common citizens to participate more actively in political and governmental
processes. But the huge amount of information available and the diversity of
documents (meeting minutes, requests, petitions, proposals, . . .) makes it dif-
ficult for non-experts to detect interesting information snippets. Especially the
younger generations want to stay informed but are not willing to spent much
time digging for related information.

With e-Democracy and e-Government on the rise [6], the use of information
technologies for governmental processes becomes a regular means of communica-
tion between the government and its citizens. Leveraging all the public informa-
tion available today could not only yield social value but also commercial value.
Important proposals and eventually decisions are made public by officials but
are not easy to find by a broader audience. In particular local politics are not
covered by mass media and thus remain obscure and non-transparent despite
the goal of Open Government Data.

Besides the informational aspect, open public data can also encourage active
participation in political discussions and decisions if combined with modern in-
formation systems techniques. Politicians can get quick feedback and capture
the overall mood towards a question or argument. Communication technology
nowadays offers various ways of interaction and participation [3]. Web 2.0 appli-
cations enable everyone to share their thoughts, e.g. via blogs, in social networks
such as Facebook, or using microblogging (e.g. Twitter).

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 295–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 C. Lofi and R. Krestel

In this paper we present an innovative approach to combine Web 2.0 appli-
cations and Open Government Data, directly delivering relevant information to
support citizens. We connect and link data offering a space for discussion and
sharing of ideas. In detail, we present a system which automatically generates
tweets in Twitter based on open local government data.

2 Automatic Tweet Generator

In our demonstrator, we use publicly available data from the city of Hannover,
Germany1. This data contains various types of documents, such as meeting min-
utes, proposals, and petitions. The documents are part of official administration
processes. The city council, for example, governs the citywide affairs, while for
each city district an additional district council manages local issues, such as
traffic planning, school and kindergarten organization, maintenance and reorga-
nization of parks and recreational areas, and local town planning. Furthermore,
districts may suggest measures to the city council. Each of the district councils
meets monthly. For each meeting, members of the council, but also every citi-
zen, may submit petitions to be added to the agenda of the upcoming meeting.
These petitions are published online as individual documents as soon as they are
received. Briefly before the meeting, the full agenda is published. After the meet-
ing, all decisions are documented in meeting minutes, while the initial petitions
are updated to include the passed resolutions.

Currently, although all documents are openly published, the whole process
is quite opaque for the average citizen: documents are hard to find and usually
only identified by a numeric id. The missing link structure makes it difficult
to follow a certain process or stay informed about a particular issue. Here, our
prototype systems steps in to increase transparency and convenience of Open
Governmental Data. In particular, the following issues are addressed:

– Obtaining relevant documents from local open-data enabled governmental
websites and archives

– Automatic topic classification of documents for better accessibility
– Extraction of hash-tags for intuitive navigation between interrelated tweets
– Automated Twitter tweet generation for always up-to-date push-style noti-

fications of notable local political developments

2.1 System Architecture

Figure 1 gives an overview of our system. The first step in generating tweets is to
poll the city archives for new documents and store them in an internal database.
Each document is then analyzed, classified, and linked to previously obtained
documents. Then, the expected “interestingness” of each document is established
based on its type, content, and relation to other documents. For each city district,

1 https://e-government.hannover-stadt.de/lhhsimwebre.nsf (german). For
demonstration purposes, we will use documents machine-translated to English.

https://e-government.hannover-stadt.de/lhhsimwebre.nsf

iParticipate: Automatic Tweet Generation from Local Government Data 297

Fig. 1. System Architecture Overview

a twitter account is available allowing users to follow the local politics in this
district. Documents which are considered interesting by the system are then
transformed into a Twitter tweet, and published via the respective district’s
account. Each tweet also contains a link to the full document. This task raises
two major challenges: a) selection of suitable hash-tags for finding, grouping, and
organizing tweets and b) summarization of the document respecting Twitter’s
highly limited text length (140 characters).

Hash-tags are generated by several different means: Topic hash-tags (like
’schools’, ’traffic’, ’parks’, etc.) briefly summarize the document’s content. This
classification with respect to a pre-defined topic taxonomy can be achieved by
using a machine learning algorithm like support vector machines (SVM) [4]. By
training the SVM with a small sample set, all following documents can easily
be classified with high accuracy. Hash-tags can then be used to group docu-
ments together belonging to a single process or issue. For example, all petitions,
agendas, and protocols of one particular district meeting use the same, unique
hash-tag, thus allowing for easy navigation between related tweets. Source tags
encode the documents political source, i.e. usually containing the shortcut for
the responsible political party or spokesperson. These tags help to better explore
the political activity within a city. City tags group all tweets of a city’s districts
together for broader overviews. Finally, different techniques for automatic text
summarization [5] and key phrase extraction [1] can be used to summarize and
tag the content of a document.

An example tweet illustrating the functionality of our automatic tweet gener-
ator is shown in Figure 2. Hannover uses its Twitter account (iPart Hannover)

298 C. Lofi and R. Krestel

Fig. 2. Example Tweet

to publish news, in this particular case about a petition to build new toilets in
the city center.

3 Summary and Outlook

In this paper we presented a system to automatically generate tweets from Open
Government Data. Our system can help citizens to stay informed about local
affairs. Further, it allows internet users to discuss, follow, and get involved in local
politics adding transparency and encouraging participation. For future work, we
plan a long-term user study to evaluate the system and estimate the possible
impact of new communication technologies like Twitter on local politics.

References

1. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-
specific keyphrase extraction. In: Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann
Publishers Inc., San Francisco (1999)

2. George, J.M.: Can it help government to restore public trust?: Declining public trust
and potential prospects of it in the public sector. In: Sprague, R. (ed.) Proceedings
of the 36th Hawaii International Conference on Systems Sciences (HICSS 2003).
IEEE Computer Society (2003)

3. Gibson, A.: Local by Social: How Local Authorities Can Use Social Media to Achieve
More for Less. NESTA (2010)

4. Joachims, T.: Learning to Classify Text Using Support Vector Machines – Methods,
Theory, and Algorithms. Kluwer/Springer (2002)

5. Mani, I.: Advances in Automatic Text Summarization. MIT Press, Cambridge
(1999)

6. Parycek, P., Kripp, M.J., Edelmann, N. (eds.): CeDEM11 Proceedings of the In-
ternational Conference for E-Democracy and Open Government. Edition Donau-
Universität Krems (May 2011)

gRecs: A Group Recommendation System

Based on User Clustering

Irene Ntoutsi1, Kostas Stefanidis2, Kjetil Norvag2, and Hans-Peter Kriegel1

1 Institute for Informatics, Ludwig Maximilian University, Munich
{ntoutsi,kriegel}@dbs.ifi.lmu.de

2 Department of Computer and Information Science, Norwegian University of Science
and Technology, Trondheim

{kstef,Kjetil.Norvag}@idi.ntnu.no

Abstract. In this demonstration paper, we present gRecs, a system for
group recommendations that follows a collaborative strategy. We en-
hance recommendations with the notion of support to model the confi-
dence of the recommendations. Moreover, we propose partitioning users
into clusters of similar ones. This way, recommendations for users are
produced with respect to the preferences of their cluster members with-
out extensively searching for similar users in the whole user base. Finally,
we leverage the power of a top-k algorithm for locating the top-k group
recommendations.

1 Introduction

Recommendation systems provide suggestions to users about movies, videos,
restaurants, hotels and other items. The large majority of recommendation sys-
tems are designed to make personal recommendations, i.e., recommendations for
individual users. However, there are cases in which the items to be suggested are
not intended for personal usage but for a group of users. For example, a group
of friends is planning to watch a movie or to visit a restaurant. For this reason
some recent works have addressed the problem of identifying recommendations
for a group of users, trying to satisfy the preferences of all the group members.

Our work falls into the collaborative filtering approach, i.e., we offer user rec-
ommendations for items that similar users liked in the past. We introduce the
notion of support in recommendations to model how confident the recommen-
dation of an item for a user is. We also apply user clustering for organizing
users into clusters of users with similar preferences. We propose the use of these
clusters to efficiently locate similar users to a given one; this way, searching for
similar users is restricted within his/her corresponding cluster instead of the
whole database. Moreover, we exploit a top-k algorithm to efficiently identify
the k most prominent items for the group.

2 The gRecs Group Recommendations Framework

Assume a set of items I and a set of users U interacting with a recommendation
application. Each user u ∈ U may express a preference for an item i ∈ I, which

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 299–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 I. Ntoutsi et al.

is denoted by preference(u, i) and lies in the range [0.0 − 1.0]. For the items
unrated by the users, we estimate a relevance score, denoted as relevance(u, i),
where u ∈ U , i ∈ I. To do this, a recommendation strategy is invoked.

We distinguish between personal recommendations referring to a single user
and group recommendations referring to a set of users.

Personal Recommendations. There are different ways to estimate the rele-
vance of an item for a user. Our work follows the collaborative filtering approach,
such as [5] and [3]. To produce relevance scores for unrated items for a user, we
employ preferences of users that exhibit similar behavior to the given user. Sim-
ilar users are located via a similarity function simU(u, u′), that evaluates the
proximity between u and u′. We use Fu to denote the set of the most similar
users to u. We refer to such users as the friends of u. Several methods can be
employed for selecting Fu. A straightforward method is to locate the users u′

with simU(u, u′) greater than a threshold δ. This is the method used here.
Given a user u and his friends Fu, if u has not expressed any preference for

an item i, the relevance of i for u is commonly estimated as follows:

relevance(u, i) =
∑

u′∈fu∧∃preference(u′ ,i) simU(u,u′)×preference(u′,i)
∑

u′∈fu∧∃preference(u′ ,i) simU(u,u′) .

Typically, users rate only a few items in a recommendation application because
of the huge amount of the available items. This is our motivation for introducing
the notion of support for each suggested item i, for user u. Support defines
the percentage of friends of u that have expressed preferences for i, that is,

support(u, i) = |S,S⊆Fu,s.t.∀u′∈S,∃preference(u′,i)|
|Fu| .

To estimate the worthiness of an item recommendation for a user, we pro-
pose to combine the relevance and support scores in terms of a value func-
tion. Formally, the personal value of an item i ∈ I for a user u ∈ U , such
that, � preference(u, i), is defined as: value(u, i) = w1 × relevance(u, i)+w2 ×
support(u, i), w1 + w2 = 1.

Group Recommendations. In addition to personal recommendations, there
are contexts in which people operate in groups, and so, a model for group rec-
ommendations should be defined. Some approaches have been recently proposed
towards this direction (e.g., [2]).

In general, collaborative filtering combines the preferences of the single users
to predict the preferences for the group as a whole. To this end, in our approach,
we first compute the personal value scores for the unrated items for each user
of the group. Based on these predictions, we then produce the aggregated value
scores for the group. Formally, given a group of users G, G ⊆ U , the group value
of an item i ∈ I for G, such that, ∀u ∈ G, � preference(u, i), is: value(G, i) =
Aggru∈G(value(u, i)).

We employ three different designs regarding the aggregation method Aggr,
each one carrying different semantics: (i) the least misery design, capturing cases
where strong user preferences act as a veto, (ii) the fair design, capturing more
democratic cases where the majority of the group members is satisfied, and (iii)
the most optimistic design, capturing cases where the most satisfied member
of the group acts as the most influential member. In the least misery (resp.,
most optimistic) design the predicted value score for the group is equal to the

gRecs: A Group Recommendation System Based on User Clustering 301

minimum (resp., maximum) value score of the scores of the members of the
group, while the fair design returns the average score.

Given a group of users and a restriction k on the number of the recommended
items, our goal is to provide the group with k suggestions for items that are
highly valued, without computing the group value scores of all database items.

3 gRecs System Overview

In this section, we describe the main components of the architecture of our
system. A high level representation is depicted in Figure 1. Given a group of
users, we first locate the friends of each user in the group. Friends preferences
are employed for estimating personal recommendations, while in turn, personal
recommendations are aggregated into recommendations for the whole group.

Friends Generator. This component takes as input a group of users G and
returns the friends Fu of each user u in the group. The naive approach for finding
the friends of all users in G requires the online computation of all similarity
values between each user in G and each user in U . We compute the similarity
between two users with regard to their Euclidean distance. This however, is too
expensive for a real-time recommendation application where the response time is
an important aspect for the end users. To speed up the recommendation process,
we perform preprocessing steps offline. More specifically, we organize users into
clusters of users with similar preferences. For partitioning users into clusters, we
use a hierarchical agglomerative clustering algorithm that follows a bottom-up
strategy. Initially, the algorithm places each user in a cluster of his own. Then, at
each step, it merges the two clusters with the greatest similarity. The similarity
between two clusters is defined as the minimum similarity between any two users
that belong to these clusters. The algorithm terminates when the clusters with
the greatest similarity, have similarity smaller than δ. In this clustering approach,
we consider as friends of each user u the members of the cluster that u belongs
to. This set of users is a subset of Fu.

Personal Recommendations Generator. In this step, we estimate the per-
sonal value scores of each item for each user in G. To perform this operation, we
employ the outputs of the previous step, i.e., the friends of the users in G. Given
a user u ∈ G and his friends Fu, the procedure for estimating the value(u, i) of
each item i in I requires the computation of relevance(u, i) and support(u, i).
Pairs of the form (i, value(u, i)) are maintained in a set Vu. This component is
also responsible for ranking, in descending order, all pairs in Vu on the basis of
their personal value score.

Group Recommendations Generator. This component generates the k
highest group-valued item recommendations for the group of users G. To do
this, we combine the personal value scores computed from the previous step by
using either the least misery, the fair or the most optimistic design.

302 I. Ntoutsi et al.

Fig. 1. gRecs system architecture

Instead of following the common way of computing the group value scores of all
items and ranking the items based on these scores, we employ the TA algorithm
[4] for efficient top-k computation. Note that TA is correct when the group value
scores of the items are obtained by combining their individual scores using a
monotone function. In our approach, aggregations are performed in a monotonic
fashion, hence the applicability of the algorithm is straightforward.

4 Demonstration

The gRecs system for group recommendations has been implemented in JAVA
on top of MySQL. We demonstrate our method using a movie ratings database
[1]. In particular, we form groups of users with different semantics and choose
an aggregation design from the available ones. After estimating the top-k group
value scores, users are presented with the recommended movies. An explanation
is also provided along with each movie, i.e., why this specific recommendation
appears in the top-k list. For the least misery (resp., most optimistic) design,
we report with each movie its group value score and the member of the group
with the minimum (resp., maximum) personal value score for the movie, i.e., the
member that is responsible for this selection. Similarly, for the fair design, we
report with each movie the members of the group with personal value scores for
the movie close to the group value score of the movie, i.e., the members that are
highly satisfied, and hence, direct towards this selection.

gRecs: A Group Recommendation System Based on User Clustering 303

References

1. Movielens data sets, http://www.grouplens.org/node/12 (visited on October
2011)

2. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation:
Semantics and efficiency. PVLDB 2(1), 754–765 (2009)

3. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-
rithms for collaborative filtering. In: UAI, pp. 43–52 (1998)

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In:
PODS (2001)

5. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.:
Grouplens: Applying collaborative filtering to usenet news. Commun. ACM 40(3),
77–87 (1997)

http://www.grouplens.org/node/12

PEACOD: A Platform for Evaluation and Comparison
of Database Partitioning Schemes

Xiaoyan Guo1, Jidong Chen1, Yu Cao1, and Mengdong Yang2

1 EMC Labs China
{xiaoyan.guo,jidong.chen,yu.cao}@emc.com

2 Southeast University
mdyang@seu.edu.cn

Abstract. Database partitioning is a common technique adopted by database
systems running on single or multiple physical machines. It is always crucial
yet challenging for a DBA to choose an appropriate partitioning scheme for a
database according to a specific query workload. In this paper, we present PEA-
COD, a platform that aims to ease the burden of DBAs for database partitioning
design. By automating the processing of database partitioning scheme evaluation
and comparison, PEACOD provides the DBAs with a conventional way to choose
a suitable scheme.

1 Introduction

Database partitioning (or sharding) has been used for providing scalability for both
transactional and analytical applications [1]. There already exist many kinds of general-
purpose partitioning algorithms, among which round-robin, range-based, hashing are
the most widely used. In the meantime, more ad-hoc and flexible partitioning schemes
tailored for specific-purpose applications were also developed, such as the consistent
hashing of Dynamo [2] and Schism [3]. As such, choosing the most suitable scheme for
an application puts heavy burden on the database administrator (DBA), who needs to
consider the following issues: partitioning key selection, data partition algorithms, data
placement strategies, load balance, re-partitioning, implementation complexity, etc. The
challenges for the DBA lie in the large number of alternative partitioning schemes to
choose from, the uncertainty on the practical performance of each scheme, and the dif-
ficulty in efficiently comparing all feasible schemes and fast picking up the appropriate
one. Without a partitioning advisory tool, usually the DBA has to make a choice based
on his past experience and/or some heuristic rules, which very possibly may result in
significantly sub-optimal performance of partitioning against the target application.

In this paper, we demonstrate PEACOD, a platform for evaluation and comparison
of database partitioning schemes in an automatic and extendible way. In PEACOD, var-
ious partitioning schemes can be easily configured and measured against a database and
a query workload via either simulated or actual execution, and the evaluation results and
statistic logs will be vividly visualized so that the users can fully understand the prac-
tical effects of different schemes according to certain performance metrics. PEACOD
can also recommend a suitable scheme according to the performance metrics. With the

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 304–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

PEACOD: Platform for Evaluation and Comparison of Database Partitioning 305

help of PEACOD, it becomes more convenient for DBAs to choose the right or proper
partitioning schemes according to their own requirements. PEACOD is designed to be
a stand-alone application which is compatible with multiple database systems. How-
ever, it can also be tightly integrated into a certain database system as a plug-in after
customizations by the database vendor. In the rest of this paper, we first introduce the
system components of PEACOD in Section 2, then describe the demonstration scenar-
ios that we plan to arrange in Section 3, and finally conclude in Section 4.

Fig. 1. System Architecture of PEACOD

2 System Overview

PEACOD runs in two phases: a partitioning scheme execution phase and an evaluation
result visualization phase. In the first phase, dataset, workload and partitioning schemes
are loaded and then evaluated to generate evaluation results and statistic logs, which
in turn will be used in the second phase to draw figures for the exhibition and com-
parison of the effects of partitioning schemes. Figure 1 provides the overview system
architecture, which consists of the following four components:

1) Benchmark Configurator loads the user-indicated dataset and workload. The dataset
source can be a database instance or just plain text files, both of which should in-
clude the database schema information. The workload is a trace of SQL statements.
PEACOD can handle both analytical and transactional workloads.

2) Algorithm Configurator imports the partitioning schemes under evaluation. PEA-
COD is embedded with several common partitioning schemes, and also supports
user-defined schemes. For convenience, we define the following interfaces for each
user-defined scheme being plugged to instantiate: how to choose partitioning key,
how to partition data, how to route queries and how to re-partition the database
when the number of nodes of a non-centralized system changes.

3) Workload Executor generates evaluation results and statistic logs that will be visual-
ized later, via either the actual execution of the workload or a simulated execution.
The actual execution takes place in the real database system environment, and will
be invoked when the original input dataset is small enough or a randomly sampled
subset of the dataset can be easily derived by PEACOD. In this case, the actual
execution is able to generate the accurate statistics in a short period. Otherwise,

306 X. Guo et al.

PEACOD will run a lightweight execution simulator which doesn’t interact with the
underlying database system and thus can run faster without significantly scarifying
the quality of derived evaluation results and statistics.

4) Visualized Comparator parses and visualizes the execution results and statistic logs
in the following three forms: figures that describe the performance of a scheme with
a particular setting, figures that compare the performance of a specific scheme with
different settings, and figures that compare the performance of different schemes
according to the same setting. It also recommends a good candidate scheme based
on the performance metrics that ranked by the users.

3 Demonstration Scenarios

We will first use a poster and several slides to introduce the motivation of PEACOD
and highlight how it works. After that, we will show the audience the live demonstra-
tion system and invite them to participate in the system-user interactions. The whole
procedure is described below.

Fig. 2. Demonstration System of PEACOD

Benchmark Configuration. In this demonstration, we will focus on online transac-
tional processing (OLTP) applications. The audience first specify a benchmark to be
evaluated. The benchmark setting panel in the left of Figure 2 shows all the pre-defined
workloads to be chosen from, which are TPC-C, TPC-W, TPC-E1 and TATP2. The au-
dience can configure the size of the dataset used in the benchmark and the underlying
database system running the workload. Moreover, if the database system in assumption
is distributed, the number of nodes in the system also can be configured.

Partitioning Scheme Configuration. The audience specify several partitioning
schemes to be evaluated and compared. They also configure each scheme with dif-
ferent settings. The scheme setting panel in the right of Figure 2 shows totally eleven

1 http://www.tpc.org
2 http://tatpbenchmark.sourceforge.net

PEACOD: Platform for Evaluation and Comparison of Database Partitioning 307

pre-defined schemes, including round-robin, range, hashing, consistent hashing, etc.
We will prepare both text description and illustrating figures in order for the audience
to better understand each partitioning scheme.

Simulated Workload Execution. Next, the system will run to generate useful statistic
logs, by invoking a lightweight database partitioning simulator which generate required
results without accessing the real database system. The simulator samples the dataset
and executes the workload in main memory. As the demonstration focuses on OLTP
workloads, we define four performance metrics of a partitioning scheme: 1) Data Dis-
tribution, which shows how uniformly data are distributed across partitions (nodes). 2)
Workload Distribution, which evaluates how uniformly the data accesses by the work-
load are distributed across partitions. 3) Number of Distributed Transactions, which
measures how many distributed transactions have resulted from partitioning. Since dis-
tributed transactions incur dominant execution cost, a fewer number of them implies
the better scheme performance. 4) Re-Partitioned Data Migration, which indicates the
amount of data to be migrated among nodes in case of database re-partitioning. Here,
we will assume the scenario where database re-partitioning is triggered for the load
re-balance of the system with one new node added. During this workload execution
step, the simulator collects four types of statistic logs corresponding to the above four
performance metrics.

Evaluation Result Visualization. In this step, the audience will review the figures in all
three forms mentioned in Section 2 for scheme evaluation and comparison, as depicted
on the main panel of Figure 2. The audience can see descriptive evaluation represen-
tations of a single scheme. They can modify the settings of a scheme and view the
effect of this change - this functionality can facilitate the partitioning scheme parame-
ter tuning. The audience can also compare different partitioning schemes based on the
present figures so as to rank the partitioning schemes on their own. In addition, PEA-
COD can serve as a partitioning scheme advisor by recommending a good candidate
scheme when the aduience press the recommend button.

4 Conclusion

In this demonstration, we present a tool, PEACOD, in order to help the DBAs to more
efficiently choose the optimal partitioning scheme for a specific application scenario.
PEACOD only requires the users to provide the input dataset and workload, and indicate
the partitioning schemes that they intend to evaluate and compare. After that, PEACOD
will automatically derive the performance results of schemes in comparison and show
them to the users with illustrative figures of different forms. We demonstrate PEACOD
on different scenarios using well-known benchmarks and present the functionality using
its interface.

308 X. Guo et al.

References

1. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database sys-
tems. Comm. ACM (1992)

2. DeCandia, G., Hastorun, D., Jampani, M., et al.: Dynamo: Amazon’s highly available key-
value store. In: SOSP (2007)

3. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a Workload Driven Approach to
Database Replication and Partitioning. In: VLDB (2010)

Stream Data Mining Using the MOA Framework

Philipp Kranen1, Hardy Kremer1, Timm Jansen1, Thomas Seidl1,
Albert Bifet2, Geoff Holmes2, Bernhard Pfahringer2, and Jesse Read2

1 Data Management and Exploration Group, RWTH Aachen University, Germany
{kranen,kremer,jansen,seidl}@cs.rwth-aachen.de

2 Department of Computer Science, University of Waikato, Hamilton, New Zealand
{abifet,geoff,bernhard,jmr30}@cs.waikato.ac.nz

Abstract. Massive Online Analysis (MOA) is a software framework
that provides algorithms and evaluation methods for mining tasks on
evolving data streams. In addition to supervised and unsupervised
learning, MOA has recently been extended to support multi-label clas-
sification and graph mining. In this demonstrator we describe the main
features of MOA and present the newly added methods for outlier de-
tection on streaming data. Algorithms can be compared to established
baseline methods such as LOF and ABOD using standard ranking mea-
sures including Spearman rank coefficient and the AUC measure. MOA
is an open source project and videos as well as tutorials are publicly
available on the MOA homepage.

1 Introduction

Data streams are ubiquitous, ranging from sensor data to web content and click
stream data. Consequently there is a rich and growing body of literature on
stream data mining. For traditional mining tasks on static data, several estab-
lished software frameworks such asWEKA (Waikato Environment for Knowledge
Analysis) provide mining algorithms and evaluation methods from the research
literature. Such environments allow for both choosing an algorithm for a given
application as well as comparing new approaches against the state of the art.

MOA [4] is a software environment for implementing algorithms and running
experiments for online learning from evolving data streams. MOA is designed to
deal with the challenging problems of scaling up the implementation of state of
the art algorithms to real world dataset sizes and of making algorithms compa-
rable in benchmark streaming settings. MOA initially contained algorithms for
stream classification and was extended over the last years to support clustering,
multi-label classification and graph mining on evolving data streams. In this pa-
per we describe the newly added methods for outlier detection on data streams
in comparison to established baseline methods.

Only two other open-source data streaming packages exist: VFML and a
RapidMiner plugin. The VFML (Very Fast Machine Learning) [5] toolkit was
the first open-source framework for mining high-speed data streams and very
large data sets. It was developed until 2003. VFML is written mainly in stan-
dard C, and contains tools for learning decision trees (VFDT and CVFDT),

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 309–313, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

310 P. Kranen et al.

for learning Bayesian networks, and for clustering. The data stream plugin (for-
merly: concept drift plugin) [6] for RapidMiner (formerly: YALE (Yet Another
Learning Environment)), is an extension to RapidMiner implementing operators
for handling real and simulated concept drift in evolving streams.

MOA is built on experience with both WEKA and VFML. The main advan-
tage of MOA is that it provides many of the recently developed data stream
algorithms, including learners for multi-label classification, graph mining and
outlier detection. Generally, it is straightforward to use or to extend MOA.

2 The MOA Framework

In the following we first describe the general architecture, usage and features of
MOA. In Section 2.1 we discuss the new components for outlier detection and
Section 2.2 provides information on documentation and tutorials.

Architecture, extension points and workflow follow the design depicted in
Figure 1. The three components data feed, algorithm and evaluation method
have to be chosen and parameterized in order to run an experiment. For each
component a simple interface is available in MOA which can be used to include
new components. MOA is written in Java, allowing portability to many platforms
and usage of the well-developed support libraries. MOA can be used from the
command line, as a library, or via the graphical user interface (cf. Figure 2).

Data Streams. MOA streams can be build using generators, reading ARFF
files, joining several streams, or filtering streams. Most of the data genera-
tors commonly found in the literature are provided: Random Tree Genera-
tor, SEA Concepts Generator, STAGGER Concepts Generator, Rotating Hy-
perplane, Random RBF Generator, LED Generator, Waveform Generator, and
Function Generator. Settings can be stored to generate benchmark data sets.

Classification. MOA contains a range of classification methods such as: Naive
Bayes, Stochastic Gradient Descent, Perceptron, Hoeffding Tree, Adaptive Ho-
effding Tree, Boosting, Bagging, and Leveraging Bagging.

Clustering. For clustering MOA contains several stream clustering methods,
such as StreamKM++, CluStream, ClusTree, Den-Stream, CobWeb, as well as
a large set of evaluation methods including the recent Cluster Mapping Measure
(CMM) [7]. Dynamic visualization of cluster evolution is available, as depicted
in Figure 2.

MOA Framework

Extension points

data feed/
generator

learning
algorithm

evaluation
method

Results

0.7

0.75

0.8

0.85

0.9

0.95

1

vowel pendigits letter

Anyout

LOF

ABOD

OPTICSOF

SC
R

Spearman rank coefficient at 5% noise

Fig. 1. Left: Architecture and workflow of MOA. Right: outlier detection results.

Stream Data Mining Using the MOA Framework 311

Fig. 2. Visualization tab of the clustering MOA graphical user interface

Multi-label Classification. Multi-label classification has seen considerable de-
velopment in recent years, but so far most of the work has been carried out in the
context of batch learning. MOA implements multi-label stream generators and
several state of the art methods: ECC Ensembles of classifier-chains, EPS En-
sembles of Pruning Sets, Multi-label Hoeffding Trees, and multi-label adaptive
bagging methods.

Graph Mining. MOA also contains a framework for studying graph pattern
mining on time-varying streams [3]. All methods work on coresets of closed
subgraphs, compressed representations of graph sets. The methods maintain
these sets in a batch-incremental manner, but use different approaches to address
potential concept drift. MOA implements IncGraphMiner,WinGraphMiner
and AdaGraphMiner.

2.1 Outlier Detection on Data Streams Using MOA

Outlier detection is an important task in stream data mining. Applications range
from fault detection in network or transaction data to event or error detection in
sensor networks and remote monitoring. Several approaches have been proposed
in the literature, which make use of different paradigms. In [2] a solution using
a hierarchy of clusterings is proposed, other solutions follow density based or
distance based approaches. We added an OutlierDetector interface to MOA,
which allows for easy inclusion of new or additional methods.

312 P. Kranen et al.

To evaluate the performance of these approaches it is essential to have a
comparison to established methods such as LOF or ABOD. We use the outlier
algorithms implemented in the ELKI open source framework1 [1] and make them
available in the MOA GUI. These methods can be seen as a baseline since they
do not impose any time restrictions on themselves and assume random access
to the data. The ELKI algorithms are run on a user defined history of point,
where the granularity of the evaluation and the length of the history can be
parameterized. As evaluation measures MOA currently provides three standard
ranking measures, namely Spearman rank coefficient (cf. Fig. 1), Kendall’s Tau
and AUC (Area Under the ROC Curve) for outlier detection on data streams.

2.2 Website, Tutorials, and Documentation

MOA can be found at http://moa.cs.waikato.ac.nz/. The website includes
a video and tutorials, an API reference, a user manual, and a general manual
about mining data streams. Several examples of how the software can be used
are available. We are currently working on extending the framework to include
data stream regression, and frequent pattern learning.

3 Demo Plan and Conclusions

In this demonstrator we focus on presenting the newly added algorithms for out-
lier detection and the corresponding evaluation on data streams. For researchers
MOA yields insights into advantages and disadvantages of different approaches
and allows for the creation of benchmark streaming data sets through stored,
shared and repeatable settings for the data feeds. Practitioners can use the frame-
work to easily compare algorithms and apply them to real world data sets and
settings. Besides providing algorithms and measures for evaluation and compari-
son, MOA is easily extensible with new contributions and allows for the creation
of benchmark scenarios.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University, Germany.

References

1. Achtert, E., Kriegel, H.-P., Reichert, L., Schubert, E., Wojdanowski, R., Zimek, A.:
Visual Evaluation of Outlier Detection Models. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 396–399. Springer,
Heidelberg (2010)

2. Assent, I., Kranen, P., Baldauf, C., Seidl, T.: Anyout: Anytime Outlier Detection on
Streaming Data. In: Lee, S.-G., et al. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238,
pp. 228–242. Springer, Heidelberg (2012)

1 ELKI: http://elki.dbs.ifi.lmu.de/ - MOA: http://moa.cs.waikato.ac.nz/

Stream Data Mining Using the MOA Framework 313

3. Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Mining frequent closed graphs
on evolving data streams. In: 17th ACM SIGKDD, pp. 591–599 (2011)

4. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:
Moa: Massive online analysis, a framework for stream classification and clustering.
Journal of Machine Learning Research - Proceedings Track 11, 44–50 (2010)

5. Hulten, G., Domingos, P.: VFML – a toolkit for mining high-speed time-changing
data streams (2003)

6. Klinkenberg, R.: Rapidminer data stream plugin. RapidMiner (2010),
http://www-ai.cs.uni-dortmund.de/auto?self=eit184kc

7. Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer,
B.: An effective evaluation measure for clustering on evolving data stream. In: 17th
ACM SIGKDD, pp. 868–876 (2011)

http://www-ai.cs.uni-dortmund.de/auto?self=eit184kc

Shot Classification Using Domain Specific

Features for Movie Management�

Muhammad Abul Hasan1, Min Xu1, Xiangjian He1, and Ling Chen2

1 Centre for Innovation in IT Services and Applications (iNEXT)
2 Centre for Quantum Computation and Intelligent Systems (QCIS)

University of Technology, Sydney
PO Box 123 Broadway, NSW 2007, Australia

{Muhammad.Hasan,Min.Xu,Xiangjian.He,Ling.Chen}@uts.edu.au

Abstract. Among many video types, movie content indexing and re-
trieval is a significantly challenging task because of the wide variety of
shooting techniques and the broad range of genres. A movie consists of
a series of video shots. Managing a movie at shot level provides a feasi-
ble way for movie understanding and summarization. Consequently, an
effective shot classification is greatly desired for advanced movie manage-
ment. In this demo, we explore novel domain specific features for effective
shot classification. Experimental results show that the proposed method
classifies movie shots from wide range of movie genres with improved
accuracy compared to existing work.

Keywords: movie management, context saliency, SVM classification.

1 Introduction

Since movie occupies a big portion of entertainment videos, effective movie data
management is greatly desired for multimedia database systems. A video shot
is a group of video frames with high similarity taken by a single camera at a
time. Video shots can be used as basic units for movie understanding and sum-
marization. According to [4], movie shots are determined by the characters’ size
in a frame. Primarily, movie shot types include: close shot (consists of extreme
close-up, medium close-up, full close-up, wide close-up and close shot), medium
close shot, medium shot, medium full shot, full shot, over the shoulder shot, cut
shot and establishing shot. Accurately classifying movie shots into these types
are difficulty because of the wide variety of shooting techniques as well as the
movie genres.

In this demo, we classify movie shots using keyframes. A keyframe of a movie
shot summarizes the contents of a shot. We consider the first frame of each shot
as the keyframe. There are two steps in our proposed method. The first step is
feature extraction. The second step is shot classification. Fig. 1 shows the demo
interface of our proposed method.

� This research was supported by National Natural Science Foundation of China No.
61003161 and UTS ECR grant.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 314–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Shot Classification Using Domain Specific Features for Movie Management 315

Fig. 1. Demo interface of our proposed method

The main contribution of this work is that we extracted a set of novel movie
domain specific features to classify movie shots. Especially, the Weighted Hue
Histogram and the Regions with Skin Colour are proposed as highly distinctive
features in movie shot classification.

2 Feature Extraction

A 48 dimensional feature vector is used in movie shot classification. We first in-
troduced the features which were employed by existing approaches before. Next,
we introduce the two novel domain specific features: Weighted Hue Histogram
and Regions with Skin Color.

Context Saliency Features. Context saliency maps [1] considers background
information and statistical information in computing saliency maps. Moreover,
it considers geometric context of the keyframe in producing effective saliency
maps. In our method, context saliency is firstly computed. Then, the context
saliency map is adopted. At the beginning, context saliency is computed. At
last, each local features are extracted. To do that, the context saliency map is
divided into 9 (3 × 3) local regions. From each local region, total magnitude of
the context saliencies is computed. Then, 9 local context saliency magnitude is
normalized by ĉrx,y =

crxy∑
x

∑
y crx,y

. Here ĉrx,y is the normalized local context

saliency and crx,y is local context saliency. x, y are local indexes and x ∈ [1 : 3]
and y ∈ [1 : 3].

Edge Feature. In close shots, objects are always in focus and backgrounds are
mostly out of focus. However, as the distance between camera and the focused
object increases, the degree of blurriness decreases. Therefore, amount of edge
energy varies greatly in different type of shots. We use Haar wavelet coefficients
to measure edge energy. There are two steps in measuring edge energy. 1) Haar
wavelet transform is applied on the keyframes and decomposed upto level 3. 2)
Edge energy map is computed by using Ei =

√
lh2

i + hl2i + hh2
i , where i ∈ [1 : 3]

316 M.A. Hasan et al.

represents the level of the edge map. After calculating edge energy of each pixel,
the edge energy map is segmented into 9 (3 × 3) local regions. We extract 9
features from each of these 9 local regions. From each local region, total magni-
tude of the edge energy is computed. Then, each local edge energy magnitude is
normalized by using total edge energy of the corresponding keyframe.

Entropy. For a given keyframe, 9 entropy features are computed from its
grayscale values. The keyframe is segmented into 3 × 3 local regions and each
region gray pixel histogram is computed. Using the histogram bins, local entropy
is computed using Erx,y = −

∑N
i=1 hi log(hi). Here i is index, N is number of

bins and hi is total number of counts in the histogram bin at index i. Finally,
local entropies are normalized using total entropy of the keyframe.

Weighted Hue Histogram. In this subsection, we propose a novel weighted
hue histogram scheme. In this scheme, the context saliency is combined with
hue histogram to assign importance to the hue bins belonging to salient regions.
Firstly, hue histogram of keyframe is computed. Then, the context saliency map
is thresholded using entropy thresholding [3] method. The thresholded context
saliency map is defined by Sx,y ∈ {0, 1}, where, x, and y represent the spatial
index of a pixel, 1 indicates that the pixel saliencies are higher than the threshold
value and 0 indicates the otherwise. Using Sx,y, we eliminate the hue value of the
keyframe as follows: θx,y = ∅, ∀Sx,y = 0. Next, we compute hue mean μθ and
hue standard deviation σθ. Using these parameters, a weighted hue histogram

is obtained using Hw(i) = H(i) × exp
(

− i−μθ

σ2
θ

)
, where H is hue histogram

and i is hue index. Hue histogram is a global feature of each keyframe. In our
classification method, we consider i = 12 bins in computing 12 features from
weighted hue histogram.

Regions with Skin Colour. In movies, skin colour varies significantly due to
the indoor, outdoor shootings and use of different light sources. In this work, we
use a simple and robust threshold based technique to segment regions with skin
colour. First, a multiview face detector (MVFD) [2] is used to identify the face
regions within the keyframes. Then, the mean μs = {μr, μg, μb} and covariance
matrix Σs of the facial region are computed from red, green and blue channels.
Then, each pixel of the corresponding keyframe is labeled as skin or non-skin
pixels as follows:

S(Ix,y) =

{
1 if dist(Ix,y,μs,Σs) < t

0 otherwise

where Ix,y is pixel colour in r, g, b, colour space. dist(Ix,y,μs,Σs) is Mahalanobis
distance and t is a predefined threshold. If a keyframe does not contain any face
then the previous keyframe’s parameters are used in determining pixels belonging
to skin. After that, 9 local features are extracted by dividing the frame into 9
(3 × 3) local regions. Then, total of skin pixels of each each local region is
computed and normalized using total number of pixels in the keyframe.

Shot Classification Using Domain Specific Features for Movie Management 317

3 Shot Classification

For shot classification, Support Vector Machine (SVM) is used. The training and
validation data collected form movies almost all kinds of movie genres. We use
radial basis function (RBF) as kernel function, K(xi, xj) = exp(−r‖xi − xj‖2),
r > 0, for SVM classification, and one against-all multi-class approach is used.
The training data are (xi, yi), i = 1, ..., l where xi ∈ Rn, y ∈ {1,+1}l. SVM
finds an optimal separating hyperplane that classifies the one class against all
by the minimum expected test error. The experiments are conducted using a
dataset of 5134 movie keyframes representing almost equal amount of frames
for each class of shots. We segment our dataset into two equal size training and
testing sets. The dataset is collected from all types of movie genres (e.g. action,
horror, romantic, drama, science fiction, comedy, thriller, adventure etc). The
ground truth of shot classes was labeled manually. Fig. 2 shows shot classification
accuracy rate and a comparison with an existing work. The experimental results

(a) Classification results of
proposed method

(b) Classification results pro-
posed in [5]

Fig. 2. Comparison of experimental results

are compared with [5]. The overall accuracy of the proposed method improves
significantly. The accuracy for close shot remains almost the same while a slight
improvement is noticed in medium and over the shoulder shots. However, a great
improvement is achieved in wide shots and cut shots.

4 Conclusion

Movie shot classification is very important in CBVIR application with many
challenges. In this demo, we have proposed a domain knowledge based movie
shot classification method. We represent the foreground region using context
saliency map. Optical effect of camera lens is modelled by edge energy. Back-
ground and foreground characteristics are modeled by using entropy and skin
features. Using weighted hue histogram, we put emphasis on the foreground re-
gion. Experiments demonstrate that the proposed classification method performs
better than existing works.

318 M.A. Hasan et al.

References

1. Shi, L., Wang, J., Xu, L., Lu, H., Xu, C.: Context saliency based image summariza-
tion. In: Proceedings of the IEEE ICME, pp. 270–273 (2009)

2. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view
face detection. In: Proceedings of the IEEE ICCV, vol. 1 (2005)

3. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture
Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics, and
Image Processing 29(3), 273–285 (1985)

4. Cantine, J., Lewis, B., Howard, S.: Shot by Shot; A Practical Guide to Filmmaking,
Pittsburgh Filmmakers (1995)

5. Xu, M., Wang, J., Hasan, M.A., He, X., Xu, C., Lu, H., Jin, J.S.: Using Context
Saliency for Movie Shot Classification. In: Proceedings of the IEEE ICIP (2011)

PA-Miner: Process Analysis Using Retrieval,

Modeling, and Prediction

Anca Maria Ivanescu, Philipp Kranen,
Manfred Smieschek, Philip Driessen, and Thomas Seidl

Data Management and Data Exploration Group
RWTH Aachen University, Germany

lastname@cs.rwth-aachen.de

Abstract. Handling experimental measurements is an essential part of
research and development in a multitude of disciplines, since these con-
tain information about the underlying process. Besides an efficient and
effective way of exploring multiple results, researchers strive to discover
correlations within the measured data. Moreover, model-based prediction
of expected measurements can be highly beneficial for designing further
experiments. In this demonstrator we present PA-Miner, a framework
which incorporates advanced database techniques to allow for efficient
retrieval, modeling and prediction of measurement data. We showcase
the components of our framework using the fuel injection process as an
example application and discuss the benefits of the framework for re-
searchers and practitioners.

1 Introduction

Experiments are an essential part of research and development in a multitude of
disciplines. In biology the reactions of organisms to different stimuli or environ-
mental conditions are investigated. In mechanical engineering and related areas
potentially complex test-benches are set up and observations are recorded for var-
ious input settings. The general scenario consists of setting a number of input vari-
ables, running the experiment and recording a number of output variables. Test-
ing all possible input settings is hardly ever possible due to limited resources in
terms of time, money, space or machinery hours. Having performed a series of ex-
periments, the following tasks are generally of interest: Retrieval - browse your
results efficiently to explore and compare different settings and outcomes; Mod-
eling - derive models from the experimental data to mathematically describe the
relationship between inputs and outputs; Prediction - use models to estimate
output values for new input settings to plan and steer further series of experiments.

Retrieval and exploration of results is in practice often done by browsing fold-
ers of result files and manually opening and comparing results, be it images or
numbers. Modeling and prediction are often replaced by guessing and intuition
to set up new series of experiments. In this paper we describe PA-Miner, an ex-
tensible software framework that combines database and data mining techniques
to provide a tool for efficient retrieval, modeling and prediction of experimental
measurement data. We detail the components of PA-Miner in Section 2, describe

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 319–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

320 A.M. Ivanescu et al.

the GUI along with an application example in Section 3 and state the objectives
of our demonstrator in Section 4.

2 PA-Miner Components

In order to use PA-Miner the experimental results have to be initially loaded
into the database. To this end an experiment has to be described in the XML
format shown in Figure 1(c). We refer to an experiment as an input setting
with the corresponding measurements of output variables. The main tag is the
experiment, which may contain several input tags with the input variable name
and unit and a measurement tag. Within the measurement tag the output tags

(a)

(b)

<?xml version="1.0" encoding="UTF-8" ?>
<experiment>

<input name="pressure" unit="bar">50</input>
...

- <measurement time="1" img="..." info="...">
<output name="spray width">0.87</output>
...

</measurement>
...

</experiment>

(c)

Fig. 1. PA-Miner components: (a) GUI - retrieval tab. (b) Modeling an output variable
as a piecewise linear function of two input variables using 6 models. (c) XML format
for the description of the experiments.

PA-Miner: Process Analysis Using Retrieval, Modeling, and Prediction 321

must be placed. These have a name attribute and optionally a unit. If for one
input setting the output variables are measured at several time steps, then several
measurement tags can be used (one for each time step) within the experiment
tag. PA-Miner loads all XML files from a user specified folder into the database.

The retrieval component allows the user to either load an external experiment
from an XML file or specify an input setting and load the corresponding exper-
iment from the database. In the case of a time series of measurements, the user
can then either select a single time step (single result) or the entire time series
and search for the most similar results in the data base. This is especially useful
for comparing simulation results to results from real experiments (cf. Section
3). For efficient retrieval and similarity search based on attribute values from a
single time step we use a regular R*-tree [3]. For similarity search on time series
of entire experiments PA-Miner allows for different distance functions, such as
dynamic time warping, and uses specialized indexes [2] as well as filter-and-refine
approaches [1] to speed up query processing.

Modeling the output variables as a linear function of the input variables based
on the experimental measurements can provide a useful insight into the process
and give hints for the design of further experiments [7]. To generate a model the
user selects an output to be modeled and can optionally restrict the inputs to be
fixed or varied individually. Nonlinear behavior can be approximated by allowing
a larger number of linear submodels. For modeling the PA-Miner currently uses
multiple regression for building linear models, and a simple model regression tree
[5] for the approximation of nonlinear models through several linear submodels.
Figure 1(b) exemplary shows the output modeled as a piecewise linear function
of a 2-dimensional input. The resulting models are visualized and additionally
displayed as parameterized equations.

The prediction component finally uses generated models to predict output
values for user specified input settings. Prediction can thereby play a significant
role in optimizing the design and setup for further experiments. This is especially
helpful when experiments are expensive or resources are limited (cf. Section 1).
As in the retrieval component the user can either perform a prediction for a
specified time step or let PA-Miner predict the entire time series.

3 GUI and Application Example

In this section we show an example application of PA-Miner in the heat and
mass transfer domain. Being responsible for the air-fuel mixture formation, the
fuel injection process sets the initial conditions for the subsequent combustion
process, and is thus a major research topic. The fuel injection process is examined
by carrying out experiments in a pressure chamber under different conditions and
employing optical measurement techniques [6]. A huge amount of data in form
of spray images is generated in this manner and used to analyze, control and
stabilize the fuel injection process. The goal is to investigate the impact of the
pressure conditions, number of injections as well as the injection time on the
overall spray shape (penetration length, spray width, vortex positions), from
which conclusions about the fuel injection strategies can be drawn.

322 A.M. Ivanescu et al.

PA-Miner offers support for the mechanical engineers to mine the experi-
mental data. The PA-Miner retrieval component for the fuel injection scenario,
illustrated in Figure 1(a), allows the user to specify a single spray image or an
entire experiment and look for the input values which deliver similar results
[4]. In the same way synthetically generated experiments can be loaded and the
most similar results from real experiments can be retrieved from the database.
Generally, if no images are available, the features are shown in a table instead.
The PA-Miner modeling component aims at offering support in understanding
the influence of the chamber pressure, and/or that of the injection time, on the
spray shape. The nonlinear process of fuel injection is visualized by a piecewise
linear function. The PA-Miner prediction component focuses on assisting me-
chanical engineers in approximating the spray shape or the entire time series
of spray shapes for some (not yet measured) input settings to effectively design
new series of experiments.

4 Demo Objectives and Conclusion

In our demonstrator we will showcase the three components of PA-Miner using
application data from the fuel injection process. The demonstrator will be inter-
esting for researchers developing advanced applications for database systems and
practitioners dealing with the analysis of experimental data. We hope to discuss
with the audience aspects both w.r.t using the framework for own experimental
data as well as integrating new methods for retrieval, modeling or prediction.

Acknowledgments. The authors gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center
SFB-686 ”Model-Based Control of Homogenized Low-Temperature Combustion”.

References

1. Assent, I., Kremer, H., Seidl, T.: Speeding Up Complex Video Copy Detection
Queries. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010.
LNCS, vol. 5981, pp. 307–321. Springer, Heidelberg (2010)

2. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The ts-tree: Efficient time series search
and retrieval. In: EDBT, pp. 252–263. ACM, New York (2008)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: SIGMOD, vol. 19, pp. 322–331
(1990)

4. Beecks, C., Ivanescu, A.M., Seidl, T., Martin, D., Pischke, P., Kneer, R.: Applying
similarity search for the investigation of the fuel injection process. In: Similarity
Search and Applications (SISAP), pp. 117–118 (2011)

5. Karalic, A.: Linear regresśIon in reegression tree leaves. In: International School for
Synthesis of Expert Knowledge (1992)

6. Martin, D., Stratmann, J., Pischke, P., Kneer, R.: Experimental investigation of
the interaction of multiple GDI injections using laser diagnostics. SAE Journal of
Engines 3, 372–388 (2010)

7. Paoletti, S., Juloski, A.L., Ferrari-trecate, G., Vidal, R.: Identification of hybrid
systems: a tutorial. European Journal of Control 513(2-3), 242–260 (2007)

Data Management Challenges and Opportunities

in Cloud Computing

Moderator: Kyuseok Shim1,
Panelists: Sang Kyun Cha1, Lei Chen2,
Wook-Shin Han3, Divesh Srivastava4,

Katsumi Tanaka5, Hwanjo Yu6, and Xiaofang Zhou7

1 Seoul National University, Korea
2 Hong Kong University of Science and Technology, Hong Kong

3 Kyungpook National University, Korea
4 AT&T Labs-Research, USA

5 Kyoyo University, Japan
6 POSTECH, Korea

7 University of Queensland, Australia

Abstract. Analyzing large data is a challenging problem today, as there
is an increasing trend of applications being expected to deal with vast
amounts of data that usually do not fit in the main memory of a single
machine. For such data-intensive applications, database research commu-
nity has started to investigate cloud computing as a cost effective option
to build scalable parallel data management systems which are capable of
serving petabytes of data for millions of users. The goal of this panel is to
initiate an open discussion within the community on data management
challenges and opportunities in cloud computing. Potential topics to be
discussed in the panel include: MapReduce framework, shared-nothing
architecture, parallel query processing, security, analytical data manage-
ment, transactional data management and fault tolerance.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, p. 323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Detecting Clones, Copying and Reuse

on the Web (DASFAA 2012 Tutorial)

Xin Luna Dong and Divesh Srivastava

AT&T Labs-Research, Florham Park NJ 07932, USA
{lunadong,divesh}@research.att.com

1 Introduction

The Web has enabled the availability of a vast amount of useful information in
recent years. However, the Web technologies that have enabled sources to share
their information have also made it easy for sources to copy from each other
and often publish without proper attribution. Understanding the copying rela-
tionships between sources has many benefits, including helping data providers
protect their own rights, improving various aspects of data integration, and fa-
cilitating in-depth analysis of information flow.

The importance of copy detection has led to a substantial amount of research
in many disciplines of Computer Science, based on the type of information con-
sidered. The Information Retrieval community has devoted considerable effort
to finding plagiarism, near-duplicate web pages and text reuse. The Multimedia
community has considered techniques for copy detection of images and video, es-
pecially in the presence of distortion. The Software Engineering community has
examined techniques to detect clones of software code. Finally, the Database
community has focused on mining and making use of overlapping information
between structured sources across multiple databases and more recently on copy
detection of structured data across sources.

In this seminar, we explore the similarities and differences between the tech-
niques proposed for copy detection across the different types of information. We
do this with illustrative examples that would be of interest to data management
researchers and practitioners. We also examine the computational challenges as-
sociated with large-scale copy detection, indicating how they could be detected
efficiently, and identify a range of open problems for the community.

2 Target Audience

The target audience for this seminar is anyone with an interest in understand-
ing information management across a huge number of data sources. In par-
ticular, this includes the attendees at database conferences like DASFAA. The
assumed level of mathematical sophistication will be that of the typical
conference attendees.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 324–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Detecting Clones, Copying and Reuse on the Web (DASFAA 2012 Tutorial) 325

3 Seminar Outline

Our seminar is example driven, and organized as follows.

Information Copying Examples (10 minutes): The seminar will start with
a variety of real-world examples illustrating the prevalence of information copy-
ing on the Web.

Common Themes in Copy Detection (10 minutes): Next, we overview
the common themes underlying copy detection techniques for various types of
data. The first common theme is to detect unexpected sharing of data fragments
under the no-copy assumption. The second common theme is to be tolerant to
distortion or modification of copied information.

Copy Detection for Unstructured Data (25 minutes): In this unit, we
present a variety of techniques proposed for detection of reuse in information
represented as text, images and video. At the heart of these techniques are
scalable algorithms for similarity detection, and we identify common techniques
explored across the different types of information.

Copy Detection for Structured Data (25 minutes): In this unit, we present
a variety of techniques proposed for copy detection when the information has a
richer structure than simple text. We consider approaches for both software code
and relational databases. In particular, for software code, we highlight the use of
tree structure and dependency graph for copy detection. For relational databases,
we differentiate between techniques that simply find overlapping information
between structured sources and those that are able to detect evidence of copying.
We will highlight the role of source quality metrics like accuracy and coverage
in copy detection.

Open Problems (20 minutes): We will present many open problems in copy
and plagiarism detection. In general, it is a challenging problem to perform Web-
scale copy detection, and exploit evidence from various types of information for
detecting copying between structured and unstructured sources. More specif-
ically, for relational data, such open problems include improving scalability of
copying detection, detecting copying in an open world where there can be hidden
sources, and combining copy detection with other integration techniques such as
schema mapping and record linkage for better detection results.

4 Conclusions

Copying of information is prevalent on the Web, and understanding the copying
relationships between sources is very important. We expect two main learning
outcomes from this seminar. In the short term, we expect that this seminar,
by comparing and contrasting the techniques used by different communities for
copy detection, will enable the audience to gain a unified understanding of the
topic. Taking a more long-term view, we hope that it will foster interactions
between researchers across these multiple disciplines to investigate and develop
more comprehensive and scalable techniques for copy detection on the Web.

Query Processing over Uncertain

and Probabilistic Databases

Lei Chen1 and Xiang Lian2

1 Department of Computer Science and Engineering, Hong Kong University
of Science and Technology, Hong Kong, China

leichen@cs.ust.hk
2 Department of Computer Science, University of Texas,

Pan American, Texas, U.S.A.
xlian@cs.utpa.edu

1 Introduction

Recently, query processing over uncertain data has become increasingly impor-
tant in many real applications like location-based services (LBS), sensor network
monitoring, object identification, and moving object search. In many of these ap-
plications, data are inherently uncertain and imprecise, thus, we can either assign
a probability to each data object or model each object as an uncertainty region.
Based on these models, we have to re-define and study queries over uncertain
data. In this tutorial, we will first introduce data models that are used to model
uncertain and probabilistic data. Then, we will discuss various types of queries
together with their query processing techniques. After that, we will introduce
recent trends on query processing over uncertain non-traditional databases, such
as sets and graphs. Finally, we will highlight some future research directions. The
tutorial aims to introduce the state-of-the-art query processing techniques over
uncertain and probabilistic data and discuss the potential research problems.

2 Tutorial Outline

The topics covered in this tutorial include:

1. Data models for uncertain and probabilistic data;
2. Query processing techniques over uncertain and probabilistic data;
3. Query processing techniques over uncertain non-traditional data;
4. Open Challenges and Future Directions.

2.1 Data Models for Uncertain and Probabilistic Data

Based on the correlations existed among uncertain data (objects), we can classify
the data uncertainty into two categories, independent uncertainty and correlated
uncertainty. For the independent uncertainty, we assume that all objects in un-
certain databases are independent of each other. That is, the existence of one

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 326–327, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Query Processing over Uncertain and Probabilistic Databases 327

object (or the attribute value of one object) would not affect that of another
object. In contrast, the correlated uncertainty indicates that the existence of
an object (or the attribute value of an object) may be correlated with that of
another object. As an example, the sensors deployed in a spatially close area
may report correlated sensory data such as temperature or humidity. Based on
the different types of uncertainty, we can propose different data models to model
uncertain and probabilistic data.

2.2 Query Processing Techniques over Uncertain and Probabilistic
Data

Due to the unique characteristic of uncertain and probabilistic data, efficient
query processing is quit challenging due to high computation cost on exponen-
tial number combinations of possible data instances. In order to reduce the
processing cost, the current works often employ a filter-and-refine frame work.
Specifically, before directly computing the query results, we first conduct effec-
tive pruning methods, including spatial pruning and probabilistic pruning, then
we refine the left candidates by direct computation or sampling solutions.

2.3 Query Processing Techniques over Uncertain Non-traditional
Data

In addition to probabilistic relational data and uncertain spatial data, recently,
many works have been conducted on queries over uncertain non-traditional data,
such as XML, graphs, strings, and time series data. Compared to their coun-
terparts, query processing over uncertain versions of these data is much more
challenges. We will present the related work in this area, mainly on pruning and
sampling methods.

2.4 Open Challenges and Future Directions

Though many works having been proposed to address the challenges of query
processing over uncertain or probabilistic data, there are still many opportunities
to explore. For example, query processing on distributed uncertain data, keyword
search over uncertain data, and quality measures of uncertain query results.

To summarize, this tutorial discusses the state-of-art query processing tech-
niques on various of uncertain and probabilistic data, we hope the tutorial can
give audience an overview of the research in this area and motivate more inter-
esting works in the future.

Acknowledgement. This work is supported in part by Hong Kong RGC
grants N HKU-ST612/09, National Grand Fundamental Research 973 Program
of China under Grant 2012CB316200.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 328–329, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tutorial: Data Stream Mining and Its Applications

Latifur Khan1 and Wei Fan2

1 University of Texas at Dallas
lkhan@utdallas.edu

2 IBM T.J. Watson Research
weifan@us.ibm.com

Abstract. Data streams are continuous flows of data. Examples of data streams
include network traffic, sensor data, call center records and so on. Their sheer
volume and speed pose a great challenge for the data mining community to
mine them. Data streams demonstrate several unique properties: infinite length,
concept-drift, concept-evolution, feature-evolution and limited labeled data.
Concept-drift occurs in data streams when the underlying concept of data
changes over time. Concept-evolution occurs when new classes evolve in
streams. Feature-evolution occurs when feature set varies with time in data
streams. Data streams also suffer from scarcity of labeled data since it is not
possible to manually label all the data points in the stream. Each of these prop-
erties adds a challenge to data stream mining.

Multi-step methodologies and techniques, and multi-scan algorithms, suita-
ble for knowledge discovery and data mining, cannot be readily applied to data
streams. This is due to well-known limitations such as bounded memory, high
speed data arrival, online/timely data processing, and need for one-pass tech-
niques (i.e., forgotten raw data) issues etc. In spite of the success and extensive
studies of stream mining techniques, there is no single tutorial dedicated to a
unified study of the new challenges introduced by evolving stream data like
change detection, novelty detection, and feature evolution. This tutorial presents
an organized picture on how to handle various data mining techniques in data
streams: in particular, how to handle classification and clustering in evolving
data streams by addressing these challenges. The importance and significance
of research in data stream mining has been manifested in most recent launch of
large scale stream processing prototype in many important application areas. In
the same time, commercialization of streams (e.g., IBM InfoSphere streams,
etc.) brings new challenge and research opportunities to the Data Mining (DM)
community. In this tutorial a number of applications of stream mining will be
presented such as adaptive malicious code detection, on-line malicious URL de-
tection, evolving insider threat detection and textual stream classification.

A Biographical Sketch of the Presenter(s):

• Latifur R. Khan is currently an Associate Professor in the Computer Science de-
partment at the University of Texas at Dallas (UTD), where he has taught and con-
ducted research since September 2000. He received his Ph.D. and M.S. degrees in
Computer Science from the University of Southern California (USC), USA in

 Tutorial: Data Stream Mining and Its Applications 329

August of 2000, and December of 1996 respectively. His research work is sup-
ported by grants from NASA, the Air Force Office of Scientific Research
(AFOSR), National Science Foundation (NSF), the Nokia Research Center, and
Raytheon. In addition, Dr. Khan's research areas cover data mining, multimedia in-
formation management, and semantic web. He has published more than 160 papers
in data mining, and database conferences, such as ICDM, ECML/PKDD, PAKDD,
AAAI, ACM Multimedia, and journals such as VLDB, TKDE, Bio Informatics,
KAIS etc. Dr. Khan has served a PC member of several conferences such as KDD,
ICDM, SDM, and PAKDD. Dr. Khan is currently serving on the editorial boards
of a number of journals including IEEE Transactions on Knowledge and Data En-
gineering (TKDE).

• Wei Fan received his PhD in Computer Science from Columbia University in 2001
and has been working in IBM T.J.Watson Research since 2000. He published more
than 90 papers in top data mining, machine learning and database conferences,
such as KDD, SDM, ICDM, ECML/PKDD, SIGMOD, VLDB, ICDE, AAAI,
ICML, IJCAI, TKDE, KAIS etc. Dr. Fan has served as Associate Editor of TKDD,
Area Chair, Senior PC of SIGKDD'06/10, SDM'08/10/11/12, ECML/PKDD/11/12
and ICDM'08/09/10, sponsorship co-chair of SDM'09, award committee member
of ICDM'09/11, His main research interests and experiences are in various areas of
data mining and database systems, such as, risk analysis, high performance compu-
ting, extremely skewed distribution, cost-sensitive learning, data streams, ensemble
methods, easy-to-use nonparametric methods, graph mining, predictive feature dis-
covery, feature selection, sample selection bias, transfer learning, novel applica-
tions and commercial data mining systems. His thesis work on intrusion detection
has been licensed by a start-up company since 2001. His co-teamed submission
that uses Random Decision Tree (www.dice4dm.com) has won the ICDM'08
Championship. His co-authored paper in ICDM'06 that uses "Randomized Deci-
sion Tree" to predict skewed ozone days won the best application paper award. His
co-authored paper in KDD'97 on distributed learning system "JAM" won the run-
ner-up best application paper award. He received IBM Outstanding Technical
Achievement Awards in 2010 for his contribution in building Infosphere Streams.

URLs of the Slides/Notes:

http://www.utdallas.edu/~lkhan/
DASFAATutorial2012Final.pptx

Storing, Querying, Summarizing, and Comparing
Molecular Networks: The State-of-the-Art

Sourav S. Bhowmick and Boon-Siew Seah

School of Computer Engineering, Nanyang Technological University, Singapore
Singapore-MIT Alliance, Nanyang Technological University, Singapore

{assourav,seah0097}@ntu.edu.sg

Abstract. A grand challenge of systems biology is to model the cell. The cell can
be viewed as an integrated network of cellular functions. Each cellular function is
defined by an interconnected ensemble of molecular networks and represent the
backbone of molecular activity within the cell. The critical role played by these
networks along with rapid advancement in high-throughput techniques has led to
explosion in molecular interaction data. In this tutorial we explore the data man-
agement and mining techniques that have been proposed in the literature for stor-
ing, querying, summarizing, and comparing molecular networks and pathways. It
offers an introduction to these issues and a synopsis of the state-of-the-art.

1 Tutorial Overview

In recent times, data on molecular interactions are increasing exponentially due to ad-
vances in technologies such as mass spectrometry, genome-wide chromatin immuno-
precipation, yeast two-hybrid assays, combinatorial reverse genetic screens, and rapid
literature mining techniques. Data on thousands of interactions in humans and most
model species have become available. This deluge of information presents exciting new
opportunities for comprehending cellular functions and disease in the future.

In this tutorial we explore the field of data management and mining techniques that
have been proposed in the literature for understanding molecular networks and path-
ways. We begin by introducing fundamental concepts related to molecular networks
data and the critical role interaction networks play in functioning of cells. Next, our
discussion focuses on the following five main components: (a) techniques for model-
ing and representing molecular network data, (b) techniques for storing and querying
molecular network data, (c) techniques for summarizing molecular networks, and (d)
molecular network comparison techniques. We conclude by identifying potential re-
search directions in the context of data management in this area. To the best of my
knowledge, the content of this tutorial has not been presented in any major conference.

2 Full Description of the Tutorial

The tutorial consists of the following topics.

Section 1: Introduction and Motivation. This section includes a brief overview on
the fundamentals of molecular networks. It serves as a tutorial for the audience to get
familiarize with molecular networks and related issues.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part II, LNCS 7239, pp. 330–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Storing, Querying, Summarizing, and Comparing Molecular Networks 331

Section 2: Modeling and Representing Molecular Network Data. In this section, we
discuss various graph data structures used to model molecular network data. We also
introduce to the audience XML-based formats such as SBML, PSI-MI, CellML, and
BioPAX that are widely used to represent and exchange molecular pathway informa-
tion. We compare these models and representations and highlight their differences.

Section 3: Storing and Querying Molecular Pathways. Centre to any endeavor of
managing molecular network or pathway data is the creation and maintenance of in-
teraction and pathway databases. Unfortunately, as is the case with many biological
data resource, interaction and pathway databases have unique data models, distinct ac-
cess methods, different file formats, and subtle semantic differences. This diversity of
implementation makes it extremely difficult to collect data from multiple sources, and
therefore slows down scientific research involving pathways. This has given rise to in-
creasing research activities to create integration, storage and querying techniques to
manage large volumes of heterogeneous biological network data. In this section, we
discuss a wide variety of such data management systems. We highlight the key features
of these systems as well as critically compare their advantages and disadvantages. We
also discuss query languages designed primarily for querying molecular pathways.

Section 4: Molecular Network Summarization. The amount of information contained
within large biological networks can often overwhelm researchers, making systems
level analysis of these networks a daunting task. As majority of function annotation
and high throughput or curated interaction data are encoded at protein or gene level,
higher-order abstraction (summary) maps such as complex-complex or process-process
functional landscapes, are crucial. Such summary information is invaluable as it not
only allows one to ask questions about the relationships among high-level modules,
such as processes and complexes, but also allows one to visualize higher order patterns
froma bird’s eye perspective. In this section, we discuss state-of-the-art approaches for
summarizing biological networks.

Section 5: Molecular Network Comparison. Molecular network comparison is the
process of aligning and contrasting two or more interaction networks, representing dif-
ferent species, conditions, interaction types or time points. This process aims to answer
a number of fundamental biological questions: which proteins, protein interactions and
groups of interactions are likely to have equivalent functions across species? Based on
these similarities, can we predict new functional information about proteins and interac-
tions that are poorly characterized? In this section, we introduce the notion of molecular
network comparison and discuss various state-of-the-art techniques and algorithms that
have been proposed recently in literature to compare a set of molecular networks.

3 Speakers

Sourav S Bhowmick and Boon-Siew Seah (doctoral student) have published sev-
eral papers in the area of biological network analytics. One of their papers re-
ceived the best paper award at the ACM BCB 2011. They have also developed a
state-of-the-art biological network summarization system called FUSE which was re-
cently demonstrated in ACM SIGHIT 2012. Biography of Sourav can be found at
www.ntu.edu.sg/home/assourav.

www.ntu.edu.sg/home/assourav

Author Index

Asai, Tatsuya II-213
Assent, Ira I-228
Aufaure, Marie-Aude II-250

Bai, Mei II-17
Baig, Muzammil M. I-320
Baldauf, Corinna I-228
Balke, Wolf-Tilo II-33
Bao, Zhifeng I-95, I-172
Bellam, Haritha II-111
Bhowmick, Sourav S. I-110, I-156,

II-330
Bifet, Albert II-309

Cai, Hongyun I-440
Cao, Jinli II-1
Cao, Yu II-304
Cha, Sang Kyun I-2, II-323
Chan, Tak-Ming I-470
Chang, Ya-Hui I-185
Chang, Yu-Kai I-185
Chen, Chunan II-126
Chen, Gang I-544
Chen, Jidong II-304
Chen, Kejia I-428
Chen, Kunjie II-126
Chen, Lei I-367, II-323, II-326
Chen, Ling II-314
Chen, Xueping I-428
Chen, Yueguo I-141
Chen, Ziyang I-95, I-172
Cheng, Hong I-197
Chien, Po-Hsien I-185
Choi, Ho-Jin I-258, I-303

Demiryurek, Ugur I-526
Ding, Guohui I-79
Ding, Linlin II-150
Ding, Xiaofeng I-320
Ding, Zhiming I-576
Domps, Richard II-261
Dong, Fang I-18
Dong, Han I-79
Dong, Xin Luna II-324
Driessen, Philip II-319

Du, Fang I-141
Du, Xiaoyong I-141
Dyreson, Curtis I-156

Eavis, Todd II-185
Elghazel, Haytham I-33
Endres, Markus II-81

Fan, Wei II-328
Fei, Hongliang I-197
Feng, Haitang II-261

Gao, Yunjun I-544
Gong, Xueqing II-287
Guan, Jihong II-65
Güntzer, Ulrich II-33
Guo, Limin I-576
Guo, Xiaoyan II-304

Hacid, Mohand-Sáıd I-33, II-261
Haerder, Theo I-126
Han, Hyeok II-234
Han, Jingyu I-428
Han, Wook-Shin II-323
Hasan, Muhammad Abul II-314
He, Xiangjian II-314
Hikida, Satoshi II-138
Holmes, Geoff II-309
Hong, Seokjin II-224
Hu, Haibo I-351
Huan, Jun I-197
Huang, Hung-Hsuan II-282
Huang, Shan II-150
Huang, Xin I-197
Huang, Yan II-126
Huang, Yi I-351
Huang, Zi I-440
Huo, Zheng I-351

Inakoshi, Hiroya II-213
Ishikawa, Yoshiharu II-65
Ivanescu, Anca Maria II-319

Jansen, Timm II-309
Jeong, Byeong-Soo I-258, I-303
Jiang, Dawei I-428

334 Author Index

Jiang, Tao I-544
Jin, Jiahui I-18
Jin, Seong-il II-234
Jing, Yinan II-126

Karim, Md. Rezaul I-258, I-303
Katoh, Takashi II-213
Kawagoe, Kyoji II-282
Kawano, Yu I-382
Khan, Latifur II-328
Kießling, Werner II-81
Kim, Jaeho I-3
Kim, Myoung Ho I-3
Kim, Younghoon I-414
Kranen, Philipp I-228, II-309, II-319
Kremer, Hardy II-309
Krestel, Ralf II-295
Kriegel, Hans-Peter II-299
Kuchmann-Beauger, Nicolas II-250

Lan, Guoxiang I-172
Le, Hieu Hanh II-138
Le, Thanh-Huy I-33
Le, Trieu Minh Nhut II-1
Le, Van Bao Tran I-48
Lee, Changhan II-243
Lee, JongHyeok I-482
Leonardi, Erwin I-110
Leung, Carson Kai-Sang I-272
Leung, Kenneth Wai-Ting I-397
Leung, Kwong-Sak I-470
Li, Aiping I-494
Li, Fengrong I-110
Li, Jiuyong I-320
Li, Juanzi I-213
Li, Qing I-544
Li, Xiao-Li I-243, II-48
Li, Xue I-440
Lian, Xiang II-326
Liang, Xin I-509
Lim, Sungjoon II-243
Lin, Qianlu I-494
Lin, Xudong I-172
Lin, Xuemin I-455, I-509
Ling, Tok Wang I-95, I-172
Link, Sebastian I-48
Liu, Bingbing II-169
Liu, Chengfei I-63, I-126, I-576
Liu, Dongqi I-560
Liu, Jixue I-126, I-320

Liu, Peng II-96
Liu, Qing I-544
Liu, Weimo II-126
Liu, Xiangyu I-335
Lofi, Christoph II-33, II-295
Lumineau, Nicolas II-261
Luo, Junzhou I-18

Mai, Hai Thanh I-3
Mandal, Supriya II-224
Mandl, Stefan II-81
Memari, Mozhgan I-48
Meng, Xiaofeng I-351, I-560, II-169
Moens, Marie-Francine I-213
Morikawa, Hiroaki II-213

Ng, See-Kiong I-243
Ng, Wilfred I-397
Ngamakeur, Kan I-63
Nguyen, Minh Nhut I-243
Nishii, Shunsuke II-203
Norvag, Kjetil II-299
Ntoutsi, Irene II-299

Ohshima, Hiroaki I-382

Park, Il-Pyung II-224
Pfahringer, Bernhard II-309

Qian, Weining II-287
Qin, Yongrui II-96

Rahul, Saladi II-111
Rajan, Krishnan II-111
Rashid, Md. Mamunur I-258, I-303
Read, Jesse II-309
Roocks, Patrick II-81

Sahu, Rana Prasad II-224
Sakaguchi, Shinichi II-282
Sakon, Yuki II-282
Schewe, Klaus-Dieter I-288
Seah, Boon-Siew II-330
Seidl, Thomas I-228, II-309, II-319
Seo, Taesul II-243
Shahabi, Cyrus I-526
Shao, Jie I-440
Shi, Yingjie II-169
Shim, Kyuseok I-414, II-323
Shin, Soungsoo II-243

Author Index 335

Smieschek, Manfred II-319
Song, Aibo I-18
Srikanth, M.R. II-224
Srivastava, Divesh I-1, II-323, II-324
Stefanidis, Kostas II-299
Sun, Weiwei II-96, II-126
Sun, Xiling I-576
Suzumura, Toyotaro II-203

Tago, Shinichiro II-213
Taleb, Ahmad II-185
Tanaka, Katsumi I-382, II-323
Tanbeer, Syed K. I-272
Tang, Jie I-213
Tao, Vinh Thanh I-482
Thollot, Raphaël II-250
Toth, David II-272
Truong, Ba Quan I-156

Upadhyaya, Sujatha R. II-272

Vosecky, Jan I-397

Wang, Guoren I-79, II-17, II-150
Wang, Hua I-320
Wang, Qing I-288
Wang, Yuxiang I-18
Wong, Man-Hon I-470
Wong, Po-Yuen I-470
Woo, Kyoung-Gu II-224
Wu, Jingjing II-96

Xia, Huan I-213
Xiao, Chuan I-455
Xin, Junchang II-17, II-150
Xu, Jiajie I-576
Xu, Jing I-509
Xu, Min II-314
Xu, Yanwei II-65

Yang, Jiong I-197
Yang, Mengdong II-304
Yang, Xiaochun I-335
Yap, Ghim-Eng II-48
Yokota, Haruo II-138
Yongchareon, Sira I-63
Yu, Hwanjo II-323
Yu, Jeffery Xu I-126, I-197
Yu, Philip S. II-48
Yuan, Mingxuan I-367

Zhang, Jinzeng I-560
Zhang, Weiming II-287
Zhang, Wenjie I-455, I-494, I-509
Zhang, Ying I-494, I-509
Zheng, Baihua II-96
Zhou, Aoying II-287
Zhou, Junfeng I-95, I-172
Zhou, Xiaofang II-323
Zhou, Xuan I-560
Zhu, Gaoping I-455
Zhu, Ke I-455

	7239
	Preface
	Organization
	Table of Contents
	Top-k and Skyline Query Processing
	Top-k Best Probability Queries on Probabilistic Data
	Introduction
	Motivation
	Contributions

	Preliminary
	Calculation Top-k Probability
	Calculation of Top-k Probability with Generation Rules

	The Top-k Best Probability Queries
	Definition of the Top-k Best Probability
	Finding Top-k Best Probability and Pruning Rules
	The Top-k Best Probability Algorithm

	Significance of Top-k Best Probability Query
	Dominating Concept for Semantic Answers
	Threshold vs. BestPr
	Semantics Ranking Properties

	Experimental Study
	Conclusions
	References

	Probabilistic Reverse Skyline Query Processing over Uncertain Data Stream
	Introduction
	Related Work
	Problem Statement
	Optimization Probabilistic Reverse Skyline
	Preliminaries
	OPRS Algorithm

	Experimental Evaluation
	Conclusions
	References

	Malleability-Aware Skyline Computation on Linked Open Data
	Introduction
	Related Work
	Theoretical Foundations of Malleability-Aware Skylines
	Implications for Algorithm Design

	Malleability-Aware Skylines
	Malleability-Aware Skylines with Individual Attribute Malleability
	Computing Non-transitive Skylines

	Evaluations
	Evaluating General Malleability-Aware Skylines
	Malleability-Aware Skylines with a Single Malleable Attribute

	Summary and Outlook
	References

	Information Retrieval and Recommendation
	Effective Next-Items Recommendation via Personalized Sequential Pattern Mining
	Introduction
	Related Works
	Problem Definition
	Personalized Sequential Pattern Mining-Based Recommendation
	The Predictive Power and Support of Patterns
	Sequence Weight Learning
	Exploiting the Sequence Weight Knowledge for Next-Items Recommendation

	Experimental Evaluation
	Experimental Setup
	Evaluating the Framework Efficacy
	Accuracy of the Next-Items Recommendation

	Conclusions
	References

	Scalable Top-k Keyword Search in Relational Databases
	Introduction
	Preliminaries
	Top-k Keyword Search
	Evaluating CNs Using Lattice
	Candidate Network Clustering
	Pipelined Evaluation of the Lattice
	Caching Joined Tuples

	Experimental Study
	Related Work
	Conclusion
	References

	Composition and Efficient Evaluation of Context-Aware Preference Queries
	Introduction and Related Work
	Preference Modeling
	Context-Aware Preference Generation
	A Constructive Approach for Preference Generation
	Context-Aware Generators
	Constructing Preference Terms from Generators
	The Context Model in Practice

	Context-Aware Preference Query Evaluation
	Optimization of Preference Queries
	Practical Performance Tests

	Summary and Outlook
	References

	Indexing and Search Systems
	An Automaton-Based Index Scheme for On-Demand XML Data Broadcast
	Introduction
	Related Work
	Deterministic Finite Automaton-Based Index (DFAI)
	Compression Strategy
	Experiments and Evaluation
	Conclusion
	References

	Colored Range Searching on Internal Memory
	Introduction
	Related Work
	Existing Techniques to Solve OCRS
	Base-line Algorithms
	Existing Theoretical Solutions

	Proposed Algorithm
	Data Structure
	Query Algorithm
	Handling Updates

	Experimental Setup
	Results and Performance Evaluation
	Comparision of Space Occupied
	Number of Colors ()
	Size of Query Box
	Effect of Data Distribution

	Conclusions and Future Work
	References

	Circle of Friend Query in Geo-Social Networks
	Introduction
	Related Work
	Problem Definition
	Circle of Friend Query (CoFQ) in Social Networks
	Geo-Social Circle of Friend Query (gCoFQ)
	NP-Hard Proof

	Algorithm for Circle of Friend Query (CoFQ)
	Find the Upper Bound and the Lower Bound
	-approximate Algorithm
	Optimized -approximate Algorithm

	Algorithm for Geo-Social Circle of Friend Query (gCoFQ)
	The Geo-Social kNN Algorithm
	The Algorithm for gCoFQ

	Experiment
	CoFQ on Social Networks
	Geo-Social CoF Query

	Conclusion
	References

	A Power Saving Storage Method That Considers Individual Disk Rotation
	Introduction
	 Disk Drive Power Consumption Model
	RAPoSDA
	 RAPoSDA Configuration
	Handling Write Requests
	Handling Read Requests

	Disk Array Simulator
	Evaluation
	Power Consumption and Power Reduction Rate
	Average Response Time

	Related Studies
	Conclusions
	References

	Cloud Computing and Scalability
	ComMapReduce: An Improvement of MapReduce with Lightweight Communication Mechanisms
	Introduction
	ComMapReduce Framework
	MapReduce Analysis In-depth
	ComMapReduce Overview
	ComMapReduce Availability
	ComMapReduce Scalability

	ComMapReduce Communication Strategies
	Lazy Communication Strategy
	Eager Communication Strategy
	Hybrid Communication Strategy

	Optimizations
	Prepositive Optimization Strategy
	Postpositive Optimization Strategy

	Experiments
	Experimental Setup
	Experiments of Top-k Query
	Experiments of kNN Query
	Experiments of Skyline Query

	Related Work
	Conclusions
	References

	Halt or Continue: Estimating Progress of Queries in the Cloud
	Introduction
	Related Work
	Problem Modeling and Stochastic Characteristics
	Why stochastic PERT?
	PERT Modeling
	The Stochastic Characteristics

	Proposed Solution
	Constructing the PERT network
	Computing the Critical Path
	Estimating the Progress
	Reacting to Failures

	Evaluation
	Experimental Setup and DataSet
	Accuracy Evaluate
	Robustness to Failures

	Conclusion and Future Work
	References

	Towards a Scalable, Performance-Oriented OLAP Storage Engine
	Introduction
	Related Work
	The Data Cube Model
	Encoding the Database
	Dimension Table Storage
	Fact Structures

	Cube Consolidation
	Supporting DBMS Components

	Query Processing Logic
	Experimental Results
	Non-hierarchical Attributes: FastBit Bitmap Versus Standard B-tree
	Cube Construction
	Query Performance

	Conclusions
	References

	Industrial Papers I: Memory-Based Query Processing
	Highly Scalable Speech Processing on Data Stream Management System
	Introduction
	Related Work
	System S
	Speech Recognition with Data Stream Processing
	Outline of Speech Recognition
	Beam Search

	Design and Implementation of Highly Scalable Speech Recognition System
	Extensibility and Scalability
	Mechanism of Beam Width Management
	Batch Processing vs. Sequential Processing
	The Structure of the System
	Supplementary Explanation

	Evaluation
	Experimental Environment
	Recognition Models and Julius Parameters
	Test Data Set
	Evaluation of Scale-Out Property
	Evaluating Beam Width Manager

	Concluding Remarks and Future Work
	References

	EVIS: A Fast and Scalable Episode Matching Engine for Massively Parallel Data Streams
	Introduction
	Related Work
	Preliminaries
	Processing Model
	Interval-Constrained Episode Matching Detection Model
	Stream-Constrained Episode Matching Detection Model

	Experimental Results
	Conclusion
	References

	Real-Time Analysis of ECG Data Using Mobile Data Stream Management System
	Introduction
	Preliminaries and Related Work
	Portable Arrhythmia Detection System
	System Architecture
	Continuous Query Language for Arrhythmia Detection

	Mobile Data Stream Management System
	MDSMS Architecture
	Features of MDSMS
	Optimization techniques.
	Lightweight Scheduler.
	User Defined Components.
	Local/Remote Persistent Store.

	Experimental Result
	Conclusion and Future Work
	References

	A Main Memory Based Spatial DBMS: Kairos
	Introduction
	The Emergence Background of Spatial DBMS
	The Characteristics of Spatial DBMS
	Kairos Spatial : A Main Memory Based Spatial DBMS
	Case Study : u-Statistical System of Statistics Korea
	Conclusion
	References

	Industrial Papers II: Semantic and Decision Support Systems
	Study on the International Standardization for the Semantic Metadata Mapping Procedure
	Introduction
	Previous Studies for Metadata Interoperability
	Semantic Metadata Mapping Procedure
	General
	Identifying Metadata Element Sets
	Grouping Data Elements
	Semantic Mapping

	Example for SMMP
	Conclusions
	References

	Semantics and Usage Statistics for Multi-dimensional Query Expansion
	Introduction
	Semantics of Multi-dimensional Domain Models
	Measures and Dimensions
	Functional Dependencies and Hierarchies

	Usage Statistics in BI Documents
	Structure of BI Documents and Co-occurrence
	Personal Co-occurrence Measure
	Collaborative Co-occurrence Measure

	Personalized Query Expansion
	User Preferences
	Query Expansion

	Experimentation: Auto-Completion in a Query Designer
	Related Work
	Conclusion and Future Work
	References

	Hierarchy-Based Update Propagation in Decision Support Systems
	Introduction
	Problem Statement and Motivations
	Current Solution
	Update Propagation Algorithm
	Experiments
	Conclusion
	References

	An Experiment with Asymmetric Algorithm: CPU Vs. GPU
	Introduction
	Background and Literature
	Frequent Sequence Algorithm
	Data Representation
	Algorithm

	Parallelization on GPU
	Experiments with Sequential and Parallel Algorithm
	Conclusions
	References

	Demo Papers I: Social Data
	Tag Association Based Graphical Password Using Image Feature Matching
	Introduction
	Tag Association Based Graphical Password (TAB)
	TAB Using Image Feature Matching
	Demonsrtation System and Overview
	Demo Scenario
	Conclusion
	References

	Acarp: Author-Centric Analysis of Research Papers
	Introduction
	System Overview
	Paper Organization

	Author Prediction
	Modeling of a Research Paper
	Features
	Learning to Rank

	Extensions and Summary of Results
	Are Double-Blind Reviewers Really Blind?
	Continuity Analysis
	Diversity of Interests

	Demonstration Outline
	Result Query Part
	Interactive Part

	References

	iParticipate: Automatic Tweet Generation from Local Government Data
	Introduction
	Automatic Tweet Generator
	System Architecture

	Summary and Outlook
	References

	gRecs: A Group Recommendation System Based on User Clustering
	Introduction
	The gRecs Group Recommendations Framework
	gRecs System Overview
	Demonstration
	References

	Demo Papers II: Data Mining
	PEACOD: A Platform for Evaluation and Comparison of Database Partitioning Schemes
	Introduction
	System Overview
	Demonstration Scenarios
	Conclusion
	References

	Stream Data Mining Using the MOA Framework
	Introduction
	The MOA Framework
	Outlier Detection on Data Streams Using MOA
	Website, Tutorials, and Documentation

	Demo Plan and Conclusions
	References

	Shot Classification Using Domain Specific Features for Movie Management
	Introduction
	Feature Extraction
	Shot Classification
	Conclusion
	References

	PA-Miner: Process Analysis Using Retrieval, Modeling, and Prediction
	Introduction
	PA-Miner Components
	GUI and Application Example
	Demo Objectives and Conclusion
	References

	Panel
	Data Management Challenges and Opportunities in Cloud Computing

	Tutorials
	Detecting Clones, Copying and Reuse on the Web (DASFAA 2012 Tutorial)
	Introduction
	Target Audience
	Seminar Outline
	Conclusions

	Query Processing over Uncertain and Probabilistic Databases
	Introduction
	Tutorial Outline
	Data Models for Uncertain and Probabilistic Data
	Query Processing Techniques over Uncertain and Probabilistic Data
	Query Processing Techniques over Uncertain Non-traditional Data
	Open Challenges and Future Directions

	Tutorial: Data Stream Mining and Its Applications
	Storing, Querying, Summarizing, and Comparing Molecular Networks: The State-of-the-Art
	Tutorial Overview
	Full Description of the Tutorial
	Speakers

	Author Index

