
Chapter 8
Software Aging and Rejuvenation for Increased
Resilience: Modeling, Analysis and Applications

Alberto Avritzer, Ricardo M. Czekster, Salvatore Distefano
and Kishor S. Trivedi

Abstract Software aging and rejuvenation research has shown that the application
of approaches for software aging modeling, monitoring, and rejuvenation has the
potential to significantly increase software resilience. In this chapter, we present an
overview of important analytical models and measurement approaches for software
aging and rejuvenation. We start by describing the Markov based approaches and
renewal process based approaches for software aging and rejuvenation modeling. In
addition, we present measurement based approaches using both online and offline
methods for software rejuvenation. We conclude by presenting a categorization of
the approaches and by presenting a brief overview of applicability of each of the
approaches presented in this chapter.

A. Avritzer (B)

Siemens Corporate Research and Technology, 755 College Road East,
Princeton NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

R. M. Czekster
PUCRS/Faculdade de Informatica, Avenida Ipiranga, 6681, Predio 32,
Sala 505, CEP 90619-900 Porto Alegre, Brazil
e-mail: ricardo.czekster@pucrs.br

S. Distefano
Dipartimento di Elettronica e Informazione (DEI),
Politecnico di Milano, Piazza L. da Vinci, 32,
20133 Milan, Italy
e-mail: distefano@elet.polimi.it

K. S. Trivedi
Department of Electrical and Computer Engineering, Duke University, Durham
NC 27708, USA
e-mail: kst@ee.duke.edu

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 167
DOI: 10.1007/978-3-642-29032-9_8, © Springer-Verlag Berlin Heidelberg 2012



168 A. Avritzer et al.

8.1 Introduction

The introduction of software for monitoring and control of mission-critical systems
has created a need for the validation of the resilience and safety of these systems. The
activities required for the assessment and enforcement of these systems reliability and
availability include requirements, architecture, modeling, testing, online monitoring,
and software rejuvenation.

In this chapter we present models, algorithms and applications of software reju-
venation to increase software resilience. This chapter is closely related to the chapter
on resilience assessment based on performance testing, where performance measure-
ment results of smoothly degrading systems were presented. Smooth performance
degradation has been also called software aging and is a consequence of the exhaus-
tion of system resources, such as system memory or kernel structures, invalid point-
ers, the accumulation of round off errors, database deadlocks, and the contention
for a pool of limited software resources. Therefore, transient application faults and
operating system faults can be a major source of system performance degradation.
Examples of operating system related faults are invalid allocation or deallocation
of memory, kernel data corruption, and incorrect or sub-optimal kernel resource
management [369, 895, 905].

Software aging research was initially directed towards the implementation of data
collection tools for monitoring of application and operating system resources [72,
73, 181, 369, 895]. The development of stochastic models of software aging and
the parameterization of these models with the time to failure distribution, the input
workload, and its influence on software aging were presented in [303, 585, 905].
The xSeries Software Rejuvenation Agent (SRA) [181] is a tool introduced by IBM
and Duke University to monitor system resources and to calculate the expected time
to resource exhaustion. Approaches to monitor a customer-affecting metric, such
as response time, to detect software aging due to resource exhaustion or security
intrusions were introduced in [65–68].

The types of software faults that cause software aging have been shown to be
very difficult to test, reproduce, and correct [392]. Some examples of major software
outages that were attributed to software aging were reported in [111, 400]. The Patriot
anti-missile software aging event allowed a Scud missile to penetrate US defenses,
when the Patriot software started to miscalculate routes. This software aging event led
to the death of U.S. soldiers during the Gulf War [401, 625]. The event investigation
concluded that the problem was caused by a numerical accumulation error that was
never caught during testing. Therefore, the system was deployed in production with
the faulty software. The investigation report recommendation was to periodically
restart the guiding system every eight hours of continuous operation to reset the
accumulated variables to their initial valid states.

Software Rejuvenation is a mechanism to proactively and efficiently counteract
the effects of software aging [72, 74, 449, 799, 895, 906]. Software rejuvenation
architecture artifacts are a good match for complex industrial mission-critical appli-
cations that are susceptible to software aging. For example, the process of quickly



8 Software Aging and Rejuvenation 169

shutting down and restarting a given process is a successful strategy to clear internal
data structures and replenish system resources to their original specification. The
main purpose of introducing software rejuvenation into the architecture of mission-
critical systems is to proactively restore the critical system resources to full capacity
before a customer impacting failure occurs. Software rejuvenation functions as pre-
ventive maintenance to ensure high availability. Software rejuvenation cost effective-
ness depends on the state of the environment [74], the state of the mission [68], and
the extent of system degradation. The addition of monitoring for software aging, and
software rejuvenation as architecture artifacts, have been shown to be a cost-effective
approach to increase the resilience of large industrial mission-critical systems [41,
86, 304, 305]. These systems are susceptible to software aging because of their com-
plexity and the high cost of finding and correcting transient software faults. Software
rejuvenation architecture artifacts have been applied to telecommunication billing
and provisioning data [74, 449], transaction processing system [368], operating sys-
tems [904, 905], cluster systems [903], cable modem termination systems [599], web
Servers [585], worm mitigation in tactical MANETs [67], and virtualization [828].
Dynamic software rejuvenation algorithms that are based on online monitoring of the
environment and of the real-time system performance, can outperform static algo-
rithms, for systems where mission success is dependent on real-time performance
[66]. In addition, several empirical studies have identified relevant customer affecting
metrics and the best software rejuvenation trigger interval for different applications
[41, 86, 304, 305].

Examples of software rejuvenation approaches are the rebooting of a process,
releasing of memory, clearing of a deadlock, or performing any other fast action
that would prevent software aging from manifesting itself as a system wide failure
that could lead to a system crash. These system wide crashes can cause significant
damage to the mission the software is controlling and to the infrastructure that is
being used to support the software system. For example, a database corruption could
take significant time to recover from.

In this chapter, we present models of software aging and different algorithms that
were developed to counter aging and security intrusions by applying the so called
software rejuvenation techniques.

The outline of the chapter is as follows. Section 8.2 presents a review of the
analytical models that were developed for capturing the effects of software aging and
for providing recommendations for the best times to trigger software rejuvenation.
Section 8.3 presents measurement based studies of software aging and rejuvenation.
Section 8.4 presents our conclusions.

8.2 Analytical Models

One of the aims of developing analytic models of software aging is to determine
optimal times to perform software rejuvenation to maximize software availability, to
minimize the probability of loss, to minimize the mean response time of a transaction



170 A. Avritzer et al.

Fig. 8.1 Basic two-step
software rejuvenation model
proposed by Huang et al. [449]

(e.g., transaction processing system), or to minimize maintenance costs. Performance
optimization is particularly important for business-critical applications for which
adequate response times can be as important as system uptime. Modeling and analysis
of software aging is done for different kinds of software systems exhibiting varied
failure/aging characteristics.

8.2.1 Markov Models

8.2.1.1 Continuous-Time Markov Chain

Markov models have been often used in the representation and investigation of soft-
ware aging and rejuvenation policies [449]. Although the software aging phenom-
enon is characterized in analytical terms by increasing failure rate (IFR), the first
attempts at representing software aging and rejuvenation were based on homoge-
neous Markov chains [366, 449, 552, 808].

The Markov model used to represent software aging and software rejuvenation
is based on a phase-type expansion, where software aging is discretized into a finite
number of states of the Markov chain, each characterized by a specific degradation
level and a transition rate to the next state. For example, the Markov chain models
proposed in [366, 449] restrict the time to failure to be hypo-exponentially distributed.
This approach was initially introduced in [449], where a two-step failure model was
used with only one degraded state between the initial state (State 0) and the failed
state (State 2), as shown in Fig. 8.1. State 1 represents the failure probable state,
where a failure would take the system to state 2 and a software rejuvenation trigger
would take the system to state 3. The authors solved the model to compute the costs
that would be accrued by software rejuvenation and by downtime after a hard failure
event. The authors concluded that for the parameters evaluated, software rejuvenation
costs would have to be less than 2% of the costs of a hard failure, for software
rejuvenation to be cost effective. From this Markov model, the system availability
and subsequently the optimal rejuvenation trigger interval was computed.



8 Software Aging and Rejuvenation 171

Fig. 8.2 Subordinated non-homogeneous continuous-time Markov chain of [368]

In [808] a single node system was introduced to investigate the effects of software
aging on two different operating systems. The authors compared the effectiveness of
several software rejuvenation policies, considering a few alternatives and different
system degradation levels (till 10). In this work, system performance degradation
was assessed in terms of the system resource utilizations, as for example, processor,
memory, and thread utilizations.

8.2.1.2 Non-Homogeneous Continuous-Time Markov Chain

An alternative modeling approach to represent the increased failure rate of the
software aging process employs non-homogeneous continuous-time Markov chain
model. Non-homogeneous continuous-time Markov chains have been traditionally
used for software reliability modeling, and have also been successfully applied to
solve software aging and rejuvenation problems [85, 86, 368, 554]. In [368] Garg
et al. analyzed a queueing system with preventive maintenance as a mathematical
model for a transaction-based software system. The proposed non-homogeneous
continuous-time Markov chain model [368] used a time-to-failure function that was
generally distributed and a time-varying failure rate to capture the effects of load
on software aging. Two software rejuvenation schemes based on the cumulative
operation time (before or after the idle time) were investigated. The authors were
able to derive the optimal rejuvenation interval T ∗ under the two policies so as
to maximize the steady-state availability, minimize the transactions probability loss,
and/or minimize the upper bound on the mean response time. The non-homogeneous
continuous-time Markov chain with K states is shown in Fig. 8.2, where the state
definition represents the number of transactions queued including the one in service.
K > 1 is the maximum capacity of the transaction buffer. In Fig. 8.2, λ represents
the transaction arrival rate, μ(·) represents the software service rate as an arbitrary
function, as it can be constant, or a function of time, load dependent, or a combination
of these factors. ρ(·) represents the software failure rate, which is also an arbitrary
function. The model is able to capture aging and performance degradation of systems
that lose transactions due to software failures.



172 A. Avritzer et al.

Fig. 8.3 Markov reward
model of [958]

0 1 4

2 3 6

5 7 8

2p

P

p

r

p

2r

S

2

p

2

S

S

The main goal of [554] was to study the overall behaviour of a software system
by modeling the time-dependent rejuvenation rates and deriving an optimal rejuve-
nation policy using a cyclic non-homogeneous Markov chain. A non-homogeneous
continuous-time Markov chain was built to assess the tradeoff between system degra-
dation and software rejuvenation cost.

8.2.1.3 Markov Decision Process and Reward Model

Another Markov modelling framework that was applied to assess software aging and
rejuvenation is the Markov decision process. In [726] the authors developed a Markov
decision process based framework to compute optimal rejuvenation schedules. The
optimal rejuvenation schedule solved the optimal stopping problem, as applied to
software aging and rejuvenation, by the use of a gradual decrease of the failure rate.
The authors have also considered the impact of using realistic cost assumptions and
simple rules that could yield an optimal software rejuvenation schedule.

In [958] the authors extended the mathematical characterization of common
software-aging-related faults introduced in [449] with a Markov reward model rep-
resenting a redundant fault-tolerant software system, which is modeled using the
software aging and rejuvenation approach introduced in [449]. The proposed model
is shown in Fig. 8.3 and represents the states of the joint state of the two parallel
software systems, where each individual software system can be in the states defined
in [449]. For example, in state 0 both systems are operating correctly. In state 1 one
software system is operating correctly and the other one is in the failure probable
state. In state 3 both software systems are in the failure probable state, while in state
2 one of the software systems is operating correctly and the other has failed. The
other states are derived similarly.



8 Software Aging and Rejuvenation 173

8.2.2 Renewal Processes

Non-Markovian processes shall be employed when the exponential distribution for
the time to failure is not sufficient to model the system under study. Renewal the-
ory provides the tools to adequately represent more complex aging processes or
rejuvenation policies. Semi-Markov and Markov regenerative processes have been
widely used for representing software aging and software rejuvenation.

8.2.2.1 Semi-Markov Process

In [304] the authors developed a semi-Markov model by generalizing the continuous-
time Markov chain approach introduced in [449]. The optimal software rejuvenation
schedules were analytically derived to optimize the steady-state availability objective
and the average cost expended by the software rejuvenation approach. In addition,
non-parametric statistical algorithms to estimate the optimal software rejuvenation
schedules were also developed.

In [85, 86] the authors used a semi-Markov model to represent a high-level
proactive fault management approach. The main contribution of this work was
the development of an hierarchical modeling approach composed of a lower level
non-homogeneous continuous-time Markov chain and an upper level semi-Markov
model. The hierarchical software rejuvenation model triggers different software reju-
venation actions depending on the degradation level that the system has experienced,
the time elapsed since the last software rejuvenation event, or any other specific crite-
rion that needs to be modeled [85, 86]. The first-level software rejuvenation, or partial
rejuvenation, consists of stopping and rejuvenating certain applications, while the
second-level software rejuvenation, or full rejuvenation, consists of stopping all the
running applications and restarting the system. Therefore, the first-level software
rejuvenation incurs lower cost as measured by system downtime than the second-
level software rejuvenation. The hierarchical model proposed in [85, 86] allows for
decomposition of the analysis by first evaluating the impact of resource leakage and
then assessing the effectiveness of software rejuvenation on the metric of interest.

The tradeoff between using the partial or the full software rejuvenation approach
is studied in [553], where a computer system with one standby redundant node
was evaluated. The authors considered five different software rejuvenation models
for the redundant system, evaluating the steady-state behaviour and the asymptotic
availability for each rejuvenation model.

A semi-Markov (SMP) process has been used in [717] to model the availability of
personal computer-based active/standby cluster system with software rejuvenation to
handle software related system failures. Software rejuvenation and switchover states
were mapped into a semi-Markov model whose analysis provided the steady-state
availability.



174 A. Avritzer et al.

Fig. 8.4 The MRGP proposed
in [423]

8.2.2.2 Markov Regenerative Process

Markov regenerative processes have been successfully applied in several software
rejuvenation studies. For example, the focus of [423] was to solve the problem
of system unavailability caused by the restart operation in the rejuvenation phase.
The authors proposed a software rejuvenation model of a hot standby architecture,
implementing the software restart by switching between the active copy and the
backup copy. The Markov regenerative process availability model was created by
changing the Markov chain model of [449] by using two states to represent two dif-
ferent software rejuvenation policies, as shown in Fig. 8.4. The authors have validated
their model by comparing the system availability obtained using the model of [449]
with the system availability with the proposed hot standby architecture.

Examples of the application of Markov regenerative process software aging and
rejuvenation are [309, 368, 926]. As discussed above, in [368] the Markov regener-
ative process is used on top of a non-homogeneous continuous time Markov chain
thus composing a hierarchical model. In [926] three time-based rejuvenation poli-
cies used to improve the performability measures of a cluster system under varying
workload were evaluated. Similarly, in [309] Markov regenerative process has been
used to evaluate the software aging process that was studied by the authors.

In [120] a fine grained software degradation model was proposed, where the
current software degradation level could be observed based on the monitoring of a
system parameter. In this work, the degradation process consists of a sequence of
additive random shocks. The system is considered out of service as soon as the appro-
priate parameter reaches an assigned threshold level. The system model is a complex
reward-renewal processes that is analyzed using the theory of renewal processes with
cost/rewards. The approach was used to analyze the impact of system parameters and
two alternative rejuvenation policies on a redundant database management system
unavailability.



8 Software Aging and Rejuvenation 175

8.2.3 Petri Nets

Petri nets are one of the modeling frameworks used to evaluate software aging and
software rejuvenation approaches, because Petri net models can accurately incor-
porate the most common characteristics of computer systems like concurrency,
synchronization, sequencing, and queueing for multiple resources.

Petri nets have been mainly used as a modeling notation. The underlining sto-
chastic processes are derived by using specific techniques. Markov chains, renewal
theory, phase type expansions, simulation and similar solution techniques have been
used in the evaluation of the Petri nets underlying processes.

Several different Petri net variations have been used to model software aging char-
acteristics and software rejuvenation approaches. One of the specific requirements of
software aging modeling is the ability to represent non-Markovian behaviors. Mod-
eling of software aging processes have to take into account the age/history of the
software, which can be approximated using Markov models [400].

8.2.3.1 Stochastic Petri Nets

One of the first attempts to apply Petri nets in software rejuvenation is reported in
[367]. The authors used the Markov regenerative stochastic Petri net of Fig. 8.5a to
deal with a deterministic software rejuvenation trigger interval. The system is fully
operational in the place Pup. When the T f prob transition fires, which represents soft-
ware aging, a token reaches the place Pf prob, where the system is the failure probable
state. The system is in the crash state after the firing of transition Tdown . While the
system is restarting, all transactions are suspended, as shown by the inhibitor arc
from Pdown to the Tclock transition, which models the periodic software rejuvenation
trigger. Tclock fires when the clock expires, if it has not been inhibited. The other
transitions are understood similarly.

Another interesting model was described in [117], where the fluid stochastic
Petri net shown in Fig. 8.5a was used. The Petri net formalism allows the modeler
to represent software aging and software rejuvenation in systems that use specific
techniques for software rejuvenation, restoration, and checkpointing. Specifically, a
fluid flow approximation approach can be used to model the software aging process
also taking into account the workload condition, where the fluid level at a certain
time t represents the extent of system degradation that has occurred up to t .

Another type of Petri net often used to model software aging and rejuvenation is the
deterministic stochastic Petri net, used for representing the cluster system described
in [926]. The performability metric was evaluated by the numerical analysis of the
underlying subordinated Markov chain. The software rejuvenation policies was there
evaluated by considering both the historical data and the current running state of the
system.



176 A. Avritzer et al.

(a)

(b)

Fig. 8.5 MRSPN (a) and FSPN (b) software-aging/rejuvenation models proposed in [117, 367],
respectively

8.2.3.2 Stochastic Reward Nets

Another Petri net notation used in the software aging and software rejuvenation
context is the stochastic reward notation. Stochastic reward nets are particularly
suitable to model software aging and rejuvenation approaches, since this formalism
allows for modeling the software aging process by using reward rates and guards,



8 Software Aging and Rejuvenation 177

Fig. 8.6 The SRN proposed in [903] for evaluating cluster systems software rejuvenation policies

among other features. Therefore, stochastic reward nets can be used to represent com-
plex aging processes rejuvenation policies and other quantities such as, for example,
the cost [181, 489, 598, 903, 946, 951].

In [903] an evaluation of the application of software rejuvenation to cluster sys-
tems was performed. The stochastic reward net introduced in [903] is shown in
Fig. 8.6. Software rejuvenation was shown to significantly improve the evaluated
system availability and productivity. Both time-based and prediction-based software
rejuvenation techniques were there evaluated by modeling, using stochastic reward
nets. In [181] the application of software rejuvenation to cluster systems using a real
case study related to the xSeries IBM cluster was presented.

Stochastic reward net models were applied to study the cable modem termination
system cluster in [598]. Capacity-oriented availability and downtime cost with and
without deploying software rejuvenation were evaluated showing significant avail-
ability improvement and downtime cost reduction when time-based and condition-
based (a prediction-based) rejuvenation strategies were used.

Fan Xin-yuan et al. [946] analyzed the dispatch-worker based cluster system and
proposed a Stochastic Reward net model for dispatch-worker based architectures
with prediction-based software rejuvenation.

In [951], dependencies among cluster nodes were taken into account in the evalua-
tion of software aging and time/prediction-based software rejuvenation strategies by
using a stochastic reward net. The authors evaluated the impact of these rejuvenation
strategies on the cluster system reliability by minimizing the software rejuvenation
cost, while considering the comprehensive relations between nodes in the entire
system.



178 A. Avritzer et al.

Table 8.1 Applicability domain of the software aging and rejuvenation model types

Model type Observations

Continuous time Markov chains (CTMC) First attempt to describe software aging and
rejuvenation, cost model [449, 552, 808]

Non-homogeneous CTMC (NHCTMC) Derivation of optimal rejuvenation intervals
[85, 86, 368, 554]

Queueing networks (QN) Classic approach to performance evaluation
Markov decision processes (MDP) Compute optimal rejuvenation schedules

[726, 958]
Petri nets (PN) Higher level representation of models that

incorporate synchronization, sequencing,
queueing and concurrency [400]

Stochastic Petri nets (SPN) Could be used to compute fluid flow
approximations [117, 367, 926]

Markov regenerative processes (MRP) Represent different time-based rejuvenation
policies [120, 303–305, 309, 423, 926]

Markov regenerative SPN (MRSPN) Representation of aging for software with two
or more components

Markov reward models (MRM) Describe models that calculate costs of
different rejuvenation policies [958]

Stochastic reward networks (SRN) [181, 489, 599, 903, 946, 951]
Semi-Markov process (SMP) Hierarchical modeling of rejuvenation and

switchover states; allows specification of
renewal states in contrast to NHCTMCs;
SMPs overcome the NHCTMC models
lack in representing rejuvenation,
allowing to specify renewal states [717]

Semi-Markov reward models (SMRM) Ability to model aging with rewards [85, 86]

In [489] a mixed time and prediction based software rejuvenation policy was
evaluated using a stochastic reward net. The model was used to evaluate the system
availability and downtime cost. The authors were able to show that under the same
conditions, a mixed time and prediction based software rejuvenation policy could
achieve higher availability and lower downtime cost than either one of the time-based
and prediction-based software reliability policies.

Table 8.1 presents a summary of different models presented in this section with a
brief description of the domain of applicability of each model.

8.3 Measurement Based Approaches

The software aging and rejuvenation analytical models either assume that the time
to failure distribution of the software is known (in case of time-based software reju-
venation) or that the degradation level of the software system is known (in case of
inspection-based software rejuvenation). To facilitate the latter approach, measure-



8 Software Aging and Rejuvenation 179

ment based approaches monitor and collect data on the attributes responsible for
determining the health of the executing software. The data is then analyzed to obtain
predictions about possible impending failures due to resource exhaustion. The data
analysis can be executed online or offline.

In this section we describe measurement-based approaches for detection and
validation of the existence of software aging.

Garg et al. [369] introduced an approach for the detection and the estimation of
aging in the UNIX operating system. An SNMP-based distributed resource moni-
toring tool was used to collect operating system resource usage and system activity
data from nine heterogeneous UNIX workstations connected by an Ethernet LAN at
Duke University. A central monitoring station was used to run the manager program,
which was used to send get requests periodically to each of the agent programs run-
ning on the monitored workstations. The agent programs in turn obtained data for
the manager from their respective machines by executing various standard UNIX
utility programs like pstat, iostat and vmstat. For quantifying the effect of aging in
operating system resources the metric Estimated time to exhaustion was proposed.
The objective of the study was to detect aging or a long term trend (increasing or
decreasing) in the measured values. This approach assumed that the accumulated
depletion of a resource over a time period depended only on the elapsed time. How-
ever, it is intuitive that the rate at which a resource is depleted is also dependent on
the current workload. An approach to estimate the rate of exhaustion of operating
system resources as a function of both time and the system workload was presented
in [905, 906].

A methodology based on time-series analysis was used to detect and estimate
resource exhaustion times due to software aging in a web server while subjecting it
to an artificial workload [585]. The experiments were conducted on an Apache web
server running on the Linux platform. The analysis was done using two different
approaches: (1) building a univariate model for each of the outputs or, (2) build-
ing only one multivariate model with seven outputs. Seven univariate models were
built and then combined into a single multivariate model. First, the parameters were
analyzed and incorporated into the model with one output and four inputs for each
parameter as follows: connection rate, linear trend, periodic series with a period of
one week, and periodic series with a period of one day. The autocorrelation function
(ACF) and the partial autocorrelation function (PACF) for the output were computed.
The ACF and the PACF were used to select the appropriate model for the data [825].
The autoregressive multiple input single output (MISO) model of order 1 (AR(1)) is
considered for the single multivariate model, also taking into account the inputs above
identified, an autoregressive model with the exogenous input of order 1 (ARX(1))
is specified for each of them, and obtaining seven ARX(1) models. In summary, the
models have been combined into a single multiple input multiple output (MIMO)
ARX(1) model. The next step after determination of the model orders is to estimate
the coefficients of the model by using the least squares method. The first half of the
data is used to estimate the parameters and the rest of the data is then used to verify
the model. The obtained results show that the predicted values are very close to the
measured values.



180 A. Avritzer et al.

In [85] a model was developed to account for the gradual loss of system resources,
specifically, the memory resource. The model is able to represent both the correct
system operation with no memory leakage and the faulty system operation when
a memory leak fault is present. The model relates system degradation to resource
request, resource release, or resource holding intervals, and memory leaks. These
quantities can be monitored and modeled directly from the system data measurements
[585].

Cassidy et al. [180] have developed an approach for software rejuvenation of
large online transaction processing servers. The authors monitored various system
parameters over a period of time and were able to determine that 13 of these para-
meters deviate from normal behavior just prior to a crash, thus providing sufficient
warning to warrant the initiation of software rejuvenation. A feedback control loop
approach for software rejuvenation in a web server was presented in [487].

Machine learning [34], Support Vector Machines (SVM) and similar techniques
have also been applied to analyze software aging data [443]. Accelerated life testing
and accelerated degradation testing techniques have been applied to reduce the time
needed for aging approximations [627].

Algorithms for online monitoring of a defined customer-affecting metric have
been applied to the security domain. In [68] the effectiveness of the basic bucket-
based online monitoring algorithm introduced in [67] was assessed for mission-
critical systems by computing the probability of mission success. The analysis results
showed that online monitoring and software rejuvenation are very effective in ensur-
ing a high probability of mission success, when the mission-critical system is under
attack by a worm infection.

In [71] an application of the basic bucket-based online monitoring algorithm
using known system performance signatures was used to detect security intrusions.
The research presented in [71] uncovered a significant difference between the per-
formance signatures associated with failure events and the performance signatures
associated with security attacks. The performance signatures obtained from the analy-
sis of system failures showed significant system degradation, i.e., CPU values of up
to 100%. In contrast, the performance signatures obtained from the analysis of the
execution of security test suites, showed that the observed CPU usage values were
constrained to a narrow band. A new version of the bucket-based online monitoring
algorithm, which was introduced in [71], was able to successfully distinguish between
software aging that results from failure events and software aging that results from
security intrusion events.

8.4 Conclusions

We have presented in this chapter an overview of several software rejuvenation
approaches that can be used to increase software resilience by using analytical mod-
eling, offline and online system measurements.



8 Software Aging and Rejuvenation 181

Different analytical models have been applied to the evaluation of software aging
and rejuvenation. We have categorized these models according to the stochastic
process and the technique used in the analysis. Software can be modeled as a degrad-
ing system that is characterized by the software age. The selection of the stochastic
process used to represent software aging and rejuvenation policies is driven by the
need to incorporate the software age into the model. Markov models are used in
software aging as an approximation where software age is represented by using dif-
ferent degradation states. Approximated models that implement a phase type-like
discretization of the software degradation into two or more degradation states have
been introduced in [449, 552, 808]. One of the benefits of using Markov models
to represent software aging is the reduced model solution cost for simple models.
However, a large number of degradation states may be required to model the problem
with high accuracy, thus increasing the Markov model solution cost.

Non-homogeneous Markov chains have been used to model software aging [85,
86, 368, 554] but to adequately model software rejuvenation more complex models
are required as a single global clock will not provide accurate results. Therefore, semi-
Markov and the Markov regenerative processes are required to adequately represent
software rejuvenation [85, 86, 120, 303–305, 309, 368, 553, 717, 926]. Specifically,
semi-Markov processes can be used to specify renewal states. However, semi-Markov
processes cannot adequately represent the aging that occurs between regeneration
epochs. As a consequence, Markov regenerative processes are used to model software
aging in software hierarchies composed of two or more components, by separately
modeling each individual component age.

Markov reward models and variants have been often used when different rejuve-
nation policies have to be evaluated and compared to establish the optimal software
rejuvenation policy [958]. The rewards associated with the Markov model states are
used to represent and quantify the cost of the software rejuvenation policies being
evaluated.

The Petri net formalism can be considered as a higher level of modeling represen-
tation, which can be used to provide clarity to the software modeling process. Petri
nets have been used to model software aging and rejuvenation problems, because of
their compactness and expressiveness [367, 926]. Specifically, stochastic reward nets
have been used when software rejuvenation policies have to be compared in terms
of their costs to investigate the optimal software rejuvenation policy [181, 489, 598,
903, 946, 951].

Measurement based approaches rely on data collection and analysis for determin-
ing system health and the best time to trigger the software rejuvenation routines.
Online monitoring of system resources and/or of a customer affecting metric were
shown to be a cost-effective approach to ensure software resilience.

Software aging has been originally observed in the telecommunications domain
[70, 72, 111, 449], because of strict engineering efforts that were conducted by
telecommunication companies to assess service reliability. The detection of smooth
degradation of the available resources or software aging, and the periodic workload
characteristics of telecommunication applications, led to the development of tech-
niques to counteract aging that were called software rejuvenation. These software



182 A. Avritzer et al.

Fig. 8.7 Software rejuvenation techniques classification

Table 8.2 Bibliography classification based on Fig. 8.7

Open-loop
Elapsed time [55, 85, 117, 120, 304, 367, 449, 553, 554, 717, 726, 808, 958]
Elapsed time and load [86, 309, 366, 368, 423, 926]
Closed-loop

Offline
Time analysis [85, 120, 180, 304, 369, 627]
Time and load analysis [585, 905, 906]
Failure data [34, 85, 443]

Online [66–68, 71, 487, 649, 825]
Open/closed-loop
Time/prediction based [181, 489, 598, 903, 946, 951]

rejuvenation techniques were shown to be cost effective to increase system resilience,
when the system contains soft faults or is a victim of security attacks. Therefore, we
expect that the software aging and rejuvenation approaches described in this chapter
will see increased deployment in systems that are designed for resilience.

Figure 8.7 presents a classification of software aging and rejuvenation approaches.
The software aging and rejuvenation approaches can be divided broadly into time-
based (open loop) and prediction-based (closed loop) approaches. Time-based tech-
niques are usually used in the early stages of software development process and are
often implemented by analytical models, as discussed in Sect. 8.2.

In the classification shown in Fig. 8.7, we further characterized the time-based
class in terms of the quantities and the parameters taken into account in the model,
such as time and load.

On the other hand, in the prediction-based approach, the objective is to monitor and
collect data on the attributes responsible for determining the health of the executing
software. The data is then analyzed to obtain predictions about possible impending
failures due to resource exhaustion. The data analysis can be executed online or
offline. Offline techniques have been further characterized according to the type of
data available and used in the evaluation:



8 Software Aging and Rejuvenation 183

• time analysis—time parameters,
• time and load analysis—time and load data,
• failure data—for reliability analysis.

Statistical techniques are used to collect and process the data as discussed in Sect. 8.3.
Table 8.2 presents a summary of some of the techniques discussed in the chapter.

Acknowledgments We like to thank Dr. Fumio Machida, Ermeson Andrade and Dr. Jing Zhao for
their useful comments.


	8 Software Aging and Rejuvenation for Increased Resilience: Modeling, Analysis and Applications
	8.1 Introduction 
	8.2 Analytical Models 
	8.2.1 Markov Models
	8.2.2 Renewal Processes
	8.2.3 Petri Nets

	8.3 Measurement Based Approaches 
	8.4 Conclusions 


