
Chapter 5
Phase-Type Distributions

Philipp Reinecke, Levente Bodrog and Alexandra Danilkina

Abstract Both analytical (Chap. 6) and simulation- and experimentation-based
(Chap. 17) approaches to resilience assessment rely on models for the various phe-
nomena that may affect the system under study. These models must be both accurate,
in that they reflect the phenomenon well, and suitable for the chosen approach. Ana-
lytical methods require models that are analytically tractable, while methods for
experimentation, such as fault-injection (see Chap. 13), require the efficient gener-
ation of random-variates from the models. Phase-type (PH) distributions are a ver-
satile tool for modelling a wide range of real-world phenomena. These distributions
can capture many important aspects of measurement data, while retaining analytical
tractability and efficient random-variate generation. This chapter provides an intro-
duction to the use of PH distributions in resilience assessment. The chapter starts
with a discussion of the mathematical basics. We then describe tools for fitting PH
distributions to measurement data, before illustrating application of PH distributions
in analysis and in random-variate generation.

P. Reinecke (B) · A. Danilkina
Institute of Computer Science,
Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: philipp.reinecke@fu-berlin.de

L. Bodrog
Department of Telecommunications,
Budapest University of Technology and Economics,
Budapest 1521, Hungary
e-mail: bodrog@webspn.hit.bme.hu

A. Danilkina
e-mail: danilkin@zedat.fu-berlin.de

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 85
DOI: 10.1007/978-3-642-29032-9_5, © Springer-Verlag Berlin Heidelberg 2012

86 P. Reinecke et al.

5.1 Introduction

Phase-type (PH) distributions are an often-used type of model for many phenomena in
system evaluation, e.g., service-times, delays, and failure times. This chapter provides
a gentle introduction to the theory of PH distributions and their application in common
evaluation tasks.

As an illustrative example we consider resilience evaluation of a simple system
where clients are being served by a faulty server. The server uses multiple threads that
require access to shared resources, but resource contention may lead to a deadlock,
which manifests as a situation where no service is provided anymore. We assume
that we do not have the means to address the root of the problem in the server itself,
but might be able to reset the server once it has reached a deadlock. In order to
assess resilience of a system relying on this server to work, we want to model the
time between server crashes. We use PH distributions for this task, as they provide
good approximation of the time-to-failure distribution and are well-suited for both
analytical approaches and simulation.

The general workflow for applying phase-type distributions in evaluation tasks is
shown in Fig. 5.1: first, a PH distribution describing the phenomenon under study has
to be found. This can be achieved both with a white-box and a black-box approach.
With the white-box approach (Sect. 5.3), the structure of the system is used to directly
infer a PH distribution that describes the behaviour of the system. With the black-box
approach (Sect. 5.4), system behaviour is measured and the measurements are fitted
by a PH distribution. Both approaches result in a distribution that is a model for the
behaviour of the system. This distribution can then be used in analytical approaches
such as matrix-analytic methods (Sect. 5.5) and in simulation (Sect. 5.6).

We are going to show how to arrive at a PH distribution for the time-to-failure
distribution for our example system using both the white-box and the black-box
approach. We will then illustrate application of the distribution both in analytical
and in simulation approaches. First, however, we need to introduce the required
mathematical background and notation.

Simulation
(Section 6)

Analytical Approximation

Maximum-Likelihood
Approximation

System
Structure

Measurement
Data

Analytical Solution
(Section 5)

Explicit Modelling (Section 3)

PH Fitting (Section 4)

White-Box Approach

Black-Box Approach

Fig. 5.1 Typical workflow when applying phase-type distributions in system evaluation

5 Phase-Type Distributions 87

5.2 Mathematical Background

Continuous phase-type (PH) distributions represent the time to absorption in a
Continuous-Time Markov Chain (CTMC) with one absorbing state [683]. PH distri-
butions are commonly specified by a vector-matrix tuple (α,A), where

α = (α1, . . . , αn) ∈ IRn and A =
⎛
⎜⎝
λ11 · · · λ1n
...
. . .

...

λn1 · · · λnn

⎞
⎟⎠ ∈ IRn×n .

Definition 5.1 The size of the (α,A) representation is the size of the vector α, which
is equal to the size of the square matrix A.

Definition 5.2 The probability density function (PDF), cumulative distribution
function (CDF), Laplace-Stieltjes Transform (LST) of the CDF and kth moment,
respectively, are defined as follows [446, 683, 870]:

f (x) = αeAx a, (5.1)

F(x) = 1 − αeAx 1l, (5.2)

F̃(s) = αn+1 + α(sI − A)−1a, (5.3)

E
[

Xk
]

= k!α(−A)−k1l. (5.4)

where 1l is the column vector of ones of the appropriate size and a = −A1l. Note
that, since α is a row vector and both 1l and a are column vectors, the above equations
do indeed specify scalar values. Furthermore, observe that phase-type distributions
have rational LST and that the eigenvalues of the transient generator matrix are the
poles of the LST of the distribution [697].

The vector-matrix representation of a PH distribution is not unique. In general,
there exists another representation (α′,A′) of size m that represents the same phase-
type distribution. Different representations of a PH distribution may differ both in
size (n �= m) and in the contents of the tuples.

Another representation of the same size can be computed by a similarity transfor-
mation, as follows: when B is invertible and B1l = 1l, then (αB,B−1AB) is another
representation of the same distribution, since its CDF is

1 − αBeB−1ABx 1l = 1 − αBB−1eAx B1l = 1 − αeAx 1l.

It is also possible to generate representations of the same distribution with another
size, using a non-square matrix W.

An important property of PH distributions (and in fact one which distinguishes
them from larger classes such as the Matrix-Exponential (ME) distributions) is that
every PH distribution has a Markovian representation (α,A). This representation

88 P. Reinecke et al.

12 23 34 45

42

1 2 3 4

13

12 23 34 45

13

4321

Fig. 5.2 CTMC representations for general and acyclic phase-type distributions

admits an interpretation of the PH distribution as the distribution of absorption-times
in a Markov chain. With the Markovian representation, A describes the transient part
of the generator matrix of the associated CTMC,

A =
(

A a
0 0

)
,

and consequently fulfills the required properties: all off-diagonal elements are non-
negative (λi j ≥ 0 (1 ≤ i �= j ≤ n)), all diagonal elements are negative, and the
row-sums are non-negative (a = −A1l ≥ 0). The vector α is the vector of initial
probabilities of the transient states of the CTMC, and thus α ≥ 0 and α1l ≤ 1. In
the following, we focus on the Markovian representation of phase-type distributions,
where we assume that α1l = 1, i.e., there is no probability mass at zero.

5.2.1 PH Classes

Based on the structure of the underlying Markov chain, several classes of phase-type
distributions can be distinguished. These classes differ in the statistical properties
they can represent. Furthermore, the structure of a PH representation often has an
impact on its application, as some structures allow more efficient solutions.

The most important distinction is the one into Acyclic and General Phase-type
distributions: every acyclic phase-type (APH) distribution has at least one Markov-
ian representation without cycles in the sub-generator, while for general phase-type
distributions cycles are allowed. This is illustrated in Fig. 5.2: the distribution on
the left contains a cycle, that is, a backward transition from state 4 to state 2. The
distribution on the right does not contain this transition and therefore there are no
cycles.

Most approaches in fitting and application of PH distributions focus on the APH
class, as this class offers better tractability than the general PH class. Within APH,
we distinguish two important sub-classes: the first one is the class of Hyper-Erlang
distributions (HErD). Hyper-Erlang distributions are mixtures of Erlang-distributions
with different lengths and rates. They can be specified by a tuple (β,m,b,λ), where
β is the vector of initial probabilities of each Erlang branch, m is the number of
Erlang branches, b is the vector of the lengths of the Erlang branches, and λ is a
vector containing the rates. The size of a Hyper-Erlang distribution is given by the

5 Phase-Type Distributions 89

1

2 2

1

2

1 1
1

2

3

4

Fig. 5.3 CTMC representations for Hyper-Erlang and hyper-exponential distributions

sum of the lengths of the branches, i.e., n = b1l. The general structure is illustrated
in Fig. 5.3, where we show a hyper-Erlang distribution with m = 2 branches of
length b1 = 3 and b2 = 2, respectively. The initial probabilities and the transition
rates are given by β = (β1, β2) and λ = (λ1, λ2). The size of this representation is
n = b1 + b2 = 5. One important example is the Erlang distribution, i.e., a Hyper-
Erlang distribution with only one branch and initial probability β1 = 1.

The second sub-class of APH we consider is the class of Hyper-Exponential
distributions (HEx) of order n, specified by initial probability vector α and rate
vector λ. Figure 5.3 shows an example for a hyper-exponential distribution of size
n = 4. From this example, it is obvious that the hyper-exponential distributions are
a subclass of the hyper-Erlang distributions, as every hyper-exponential distribution
is a hyper-Erlang distribution with branch length vector b = 1l. Furthermore, setting
n = 1 and α1 = 1 yields the exponential distribution with rate λ1.

5.2.2 Canonical Representations

While in general representations for phase-type distributions are not unique, several
canonical forms have been defined. For each PH distribution, the canonical form of
a given size n is unique in the sense that there exists no representation of the same
size n with the structure of the canonical form, but different parameters. Therefore,
by comparing canonical forms, we can determine whether PH distributions given
by different representations are identical. More important, however, is the use of
canonical forms in fitting, analysis, and simulation, where their typically low number
of parameters and simple structure enable efficient methods.

In the following we discuss Cumani’s Canonical Form 1 (CF-1) [251] and the
Monocyclic form introduced in [659], as these are the most common ones.

5.2.2.1 The Canonical Form for APH Distributions

The Canonical Form 1 (CF-1) was defined in [251]. The structure of its underlying
CTMC is shown in Fig. 5.4: the Markov chain can be entered at any state i = 1, . . . , n
with probability αi , but the absorbing state can only be reached by traversing all
remaining states. For this structure, the associated generator A has a bi-diagonal
structure, that is, for i = 1, . . . , n − 1 and 1 ≤ j ≤ n,

−λi i = λi,i+1 and λi j = 0 for j �∈ i, i + 1.

90 P. Reinecke et al.

1 2 3 4
1 2 3 4

1 2 (1− 2) 22

2 2

2 31 4

Fig. 5.4 Canonical representations for phase-type distributions

It is often convenient to describe a bi-diagonal generator by the vector

Λ = (λ1, . . . , λn),

where λi = |λi i | for i = 1, . . . , n. The formal definition for the CF-1 form is then

Definition 5.3 [251] The Canonical Form 1 (CF-1 form) is a bi-diagonal Markovian
representation (α,Λ) where the elements of the diagonal, given in the vector Λ, are
ordered by absolute value.

In [251, 698] it has been shown that every acyclic phase-type distribution with
a Markovian representation of size n has a unique CF-1 representation of the same
size.1 The CF-1 form for an APH given as (α,A) can be obtained by a similarity
transformation. A procedure for constructing the similarity transformation matrix is
given in [422].

Note that transforming an APH representation of size n to the CF-1 form consid-
erably reduces the number of parameters: a general APH representation has n initial
probabilities α1, . . . , αn and n2 entries in the subgenerator matrix A, i.e., the number
of parameters is n + n2. In the CF-1 form A is an upper bi-diagonal matrix with
λi i = −λi+1,i . The CF-1 form therefore only requires the n rates on the diagonal
and the n entries in α, resulting in 2n parameters.

5.2.2.2 The Monocyclic Form for General PH Distributions

General PH distributions may have complex poles, and the poles of a PH distribution
are given by the eigenvalues of the subgenerator matrix A. As the eigenvalues of a
bi-diagonal representation (α,A) are equal to entries of the diagonal and A ∈ IRn×n

it is easy to see that a bi-diagonal structure like the CF-1 form cannot represent
phase-type distributions with complex poles.

For this reason, [659] proposed the Monocyclic form as a chain of Feedback-
Erlang (FE) blocks, defined as follows:

Definition 5.4 A Feedback-Erlang (FE) block is given by a tuple (b, λ, z) of the
length b, transition rate λ, and feedback probability z ∈ [0, 1). The Feedback-Erlang

1 Smaller CF-1 representations may exist if there is redundancy in the original representation [422,
683, 750].

5 Phase-Type Distributions 91

Fig. 5.5 Structure of a
Feedback-Erlang block

block consists of an Erlang-distribution with length b and rate λ and an additional
(feedback) transition from the last state of the block to the first state.

Figure 5.5 illustrates this concept. Note that the cases z = 0 and b = 1 are allowed.
For z = 0, the Feedback-Erlang is simply an Erlang of order b, while for b = 1 it
is an exponential distribution. The importance of this structure lies in the fact that
for z > 0 and b > 1 the block has a conjugate-complex pair of eigenvalues [659].
Therefore, a chain of FE blocks can be used to represent the complex eigenvalue
pairs of a general phase-type distribution.

Based on this observation, [659] define the Monocyclic representation as a chain
of Feedback-Erlang blocks:

Definition 5.5 A Monocyclic representation is given by the tuple (α,m,b,λ, z),
where the vector α ∈ IRb1l specifies the initial state probabilities, and b, λ and z
define the length, rate, and feedback probability of the m Feedback-Erlang blocks.

The FE blocks are positioned such that the absolute values of the dominant eigen-
values ri are in ascending order: ri ≤ ri+1.

Any PH distribution has a Monocyclic representation [659]. If the representation
of the PH distribution is PH-simple [698] and of size n, then the size of the Mono-
cyclic representation is n′ ≥ n. This potential size expansion makes the Monocyclic
representation less efficient in analytical studies, but its simple and still Markovian
structure makes it promising for simulation studies.

The structure of a Monocyclic representation is shown in Fig. 5.4. Note that if
zi = 0 for all FE blocks i = 1, . . . , b the Monocyclic form is equivalent to the CF-1
form. That is, the CF-1 form is actually a special case of the Monocyclic form.

5.2.3 Properties

Phase-type distributions exhibit a number of properties that make them attractive for
use in resilience evaluation. In particular, the support of PH distributions is the set of
non-negative real numbers. Therefore, they can be used to model typical system prop-
erties such as response-times, interarrival times, or inter-failure times. Furthermore,
the PH class is closed under important operations such as minimum, maximum, and
summation, i.e., PH distributed random variables can be combined without losing
the properties of PH distributions.

On the other hand, even though PH distributions are well-suited for fitting data
(see Sect. 5.4), two important limitations may affect their suitability for particular

92 P. Reinecke et al.

tasks. First, the density of a phase-type distribution is strictly positive [683]:

f (t) > 0, t > 0,

i.e., phase-type distributions can only approximate the density if it is close to zero,
and may require a large number of phases to do so, rendering models more complex.
Second, PH distributions are limited with respect to the moments they can express.
In particular, the feasible range of the squared coefficient of variation for the PH of
size n (PH(n)) is

cv2 ≥ 1

n
, (5.5)

where the equality holds for the Erlang distribution with n phases (Erl(n)) [260]. This
bound implies that in order to approximate data with low variation a large number
of phases is required.

For higher moments there is no general knowledge, however there are several
special cases for which some insights on the moment bounds exist, like e.g., the
moment bounds of the APH(2) ≡ PH (2) class [871] and the moment bounds of the
PH (3) class implied by the canonical form given in [447]. The bounds of the general
APH class within the PH class are known according to the APH canonical form and
there also exists a numerical method to determine the general PH bound in [448].

From the fitting perspective the reduced moment problem (when a distribution
function is determined based on its moments) can also be crucial. This problem is
only solved for the larger class of matrix-exponential distributions [907].

5.3 Explicit Modelling

We will now describe how a phase-type distribution can be obtained directly from the
structure of the system under study. Returning to our example with the faulty server,
recall that the server becomes unavailable due to resource contention between its
threads. A very intuitive way of thinking about resource contention is in terms of
the Dining Philosopher’s problem [292]2: at least two philosophers sitting around a
table want to eat a dish for which they require a fork in each hand. However, there
are only as many forks as philosophers. Each philosopher employs the following
strategy: if a fork is available either to the left or to the right, they wait a random
amount of time before taking it. Once they have one fork, they wait for the other
one, before they start eating. They eat for a random amount of time and then drop
both forks at the same time. It is immediately obvious that this strategy eventually
leads to the situation where each philosopher has one fork in his left (or right) hand

2 Note that we only use the general problem, given in [292], but do not assume a solution.

5 Phase-Type Distributions 93

Fig. 5.6 Stochastic Petri Net (SPN) model for the Dining Philosopher’s problem with four philoso-
phers

and is waiting for the other one, which, however, is in the corresponding hand of his
neighbour.

In terms of the server system, the philosophers represent the threads of the server
and the forks are the shared resources. If each thread has access to one of the resources,
but not to the other (each philosopher has one fork), the system is in the deadlock
situation and unable to serve clients (no philosopher can eat). The only way of leaving
this situation is to reset the system to the inital state where all resources are free (all
forks are on the table).

Based on the abstraction as a Dining Philospher’s problem, we can model our
faulty server using a Stochastic Petri Net (SPN), as shown in Fig. 5.6 for n = 4: a
marking on one of the four innermost places represents the respective fork resting
on the table. The eight outermost places represent the hands of the philosophers, i.e.,
a marking in one of these places models that the philosopher has picked up a fork
in this hand. The transitions leading from the inner places to the outer places model
the act of picking up a fork with that hand, while the transitions from the outside
to the inside model the laying down of both forks. We assume that both the times
before picking up a fork and the eating time have exponential distribution, i.e., the
transitions are Markovian.

The CTMC underlying this SPN possesses two absorbing states (the two deadlock
situations). Since in both cases no philosopher can eat, or, equivalently, the server
system cannot serve clients, both states describe the same situation and can be lumped

94 P. Reinecke et al.

into one absorbing state. Consequently, the time to absorption, i.e., the time to failure,
follows a phase-type (PH) distribution.

If we know the structure of the system and can build a CTMC model for it, using
e.g., an SPN, we can thus directly derive a PH distribution. This distribution can then
be used in further evaluation steps. Typically, however, the structure of the system
is not known, or, even if it is known, the system is too complex to allow direct
modelling. In this case, the black-box approach described in the next section is more
appropriate.

5.4 Fitting Measurement Traces with PH Distributions

In the previous section we assumed that we know the internal structure of the system,
and that it could be described based on the intuitive Dining Philosopher’s problem.
Typically, however, we will not know such details about the system under study,
and will be limited to outside observations and measurements. With our example,
we might not be able to observe why the system ran into deadlock, but we are
certainly able to measure the length of the intervals between successive deadlocks.
Similar situations often arise with measurements of delays, message lengths, or
other phenomena, where we do not know the underlying causes, but can measure
their effects. In such cases we can fit a phase-type distribution to the data in question,
and use this model in our evaluation.

Consider Fig. 5.7, where we show both a histogram of some data and the density
of a phase-type distribution approximating the data. Our aim is to approximate the
data as closely as possible, in order to obtain correct results when using the approxi-
mating distribution later on. In this section we provide the basics for fitting data sets
with phase-type distributions. We discuss costs, quality metrics, and introduce three
established fitting tools.

5.4.1 Costs of Fitting PH Distributions to Data

Since a PH distribution is defined by the tuple (α,A), the problem of fitting translates
to finding an initial probability vector α and a sub-generator matrix A of appropriate
size n. While, in general, higher-order PH distributions can provide a better approxi-
mation [124], they are more expensive in both analysis and simulation. Furthermore,
the time required for fitting a distribution increases with n, as more parameters have
to be fitted. Consequently, careful choice of n is important.

As will be shown in Sects. 5.5 and 5.6, the cost of using a PH distribution depends
not only on the size n, but also on the structure of the representation. The same
holds for the fitting problem. Here, the number of free parameters to be fitted can be
reduced significantly by choosing an appropriate representation: if we assume the
size n of the representation to be constant, then general phase-type distributions in an
arbitrary Markovian representation have n + n2 free parameters, as α is a row vector

5 Phase-Type Distributions 95

x

D
en

si
ty

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

histogram of a data sample and the approximated density

Fig. 5.7 Example data and its approximation with a phase-type distribution

of length n, and A is a matrix of size n × n. If we assume that the representation
is Monocyclic, we have a chain of m Feedback-Erlang blocks, each with a length
parameter b j , rate parameterλ j and feedback probability z j , and an initial probability
vector of size n. As m ≤ n, the upper limit for the number of free parameters is 3n+n.
Limiting ourselves to the APH class, we can utilise the CF-1 canonical form, which
has only 2n free parameters: n transition rates and n initial probabilities. Finally,
if we consider only HErD distributions in representations as shown in Fig. 5.3, the
number of free parameters reduces to 3m: m initial probabilities for the m Erlang
branches, m lengths for the Erlang branches, and m transition rates.

5.4.2 Quality Measures

Fitting a phase-type distribution to data requires careful choice of the right fitting
tool, as well as of fitting parameters such as sub-class and size. As just discussed,
the approximation problem becomes less complex if data is fitted with subclasses
of phase-type distributions, however, fitting quality may decrease as well, as sub-
classes cannot represent all properties of the general PH class. For example, hyper-
exponential distributions cannot approximate distributions with oscillating densities
[880].

In order to assess the quality of data approximation, quality measures are required.
An intuitive method consists in simply comparing the shape of the empirical PDF or
CDF to that of the approximating PH distribution. This gives a visual impression how

96 P. Reinecke et al.

Table 5.1 Performance measures defined in [572]

Performance measure Definition

Area difference between distribution functions ΔF ΔF = ∫ ∞
0 |F̂(x)− F(x)|dt

Area difference between densities Δ f Δ f = ∫ ∞
0 | f̂ (x)− f (x)|dt

Relative error in the first moment (mean c1) e1 = |ĉ1−c1|
c1

Relative error in the second central moment (variance c2) e2 = |ĉ2−c2|
c1

Relative error in the third central moment (skewness c3) e3 = |ĉ3−c3|
c3

well the approximating PH distribution reflects the shape of the empirical PDF/CDF.
For instance, in Fig. 5.7 the approximated density fits the data quite well.

While a visual impression often yields a good initial assessment, a more formal
approach requires exact definitions of quality measures. In the area of PH fitting
there exists a set of standard quality measures, as defined in [572]. These measures
are summarised in Table 5.1: the first two performance measures formalise the visual
comparison of empirical and approximated data, by computing the distance between
both curves. The last three measures capture how well the fitted distribution approx-
imates the empirical moments of the data. Based on these performance measures we
can decide which tool to use, and which fitting is most appropriate for the require-
ments and future application of approximation results. For instance, for use in a
stochastic model whose behaviour primarily depends on the first three moments, one
would aim to get small relative moment errors, while in other applications fitting the
shape of the density may be more important.

5.4.3 Introduction to PH-Fitting Tools

Here we outline three tools for data approximation with phase-type distributions:
Moment Matching, G-FIT and PhFit. They mainly differ with respect to the algo-
rithms they employ and the subclass of PH distributions they support. There are two
general and relevant classes of algorithms: analytical and statistical methods, where
the former relies on direct computation of the parameters and the latter is based on
iterative procedures for parameter estimation.

5.4.3.1 Analytic Approximation: Moment Matching

Analytic moment-matching methods have the advantage of being fast, easy to imple-
ment, and giving low errors in the moments. On the other hand, accuracy of the fitting
may be limited by the representation. We illustrate this using the method proposed
in [870], which can fit an APH(2) distribution to the first three moments of a data set.

5 Phase-Type Distributions 97

The approach proceeds by computing the approximation parameters directly from
the moments, as follows: An APH(2) in CF-1 form with α = (α1, 1 − α1) and

A =
(−λ1 λ1

0 −λ2

)
,

is defined by three parameters, λ1, λ2, and α1. Recall from Definition 5.4 the general
moments-generating function for a PH distribution. Writing the first three moments
explicitly:

E[X] = m1 = λ1 + α1λ2

λ1λ2
,

E[X2] = m2 = 2(λ2
1 + α1λ1λ2 + α1λ

2
2)

λ2
1λ

2
2

,

E[X3] = m3 = 6(λ3
1 + α1λ

2
1λ2 + α1λ1λ

2
2 + α1λ

3
2)

λ3
1λ

3
2

,

[870] obtain a system of three linear equations. Solving this system for λ1, λ2, α1
yields an APH(2) that matches the first three moments. However, possible solutions
are limited by the moment bounds for the APH(2) class (cf. Sect. 5.2.3). For com-
binations of moments outside the moment bounds, the system has no solution, i.e.,
data sets with these moments cannot be fitted exactly by an APH(2). For instance,
as follows from (5.5), the smallest SCV cv2 that can be represented by an APH(2) is

cv2 = 1

2
,

which puts constraints on the relation of the mean and variance. Data sets with
cv2 < 1

2 require PH distributions of higher order. Similar constraints exist for the
third moment, although in some cases the third moment can be approximated even
when no exact fitting is possible.

Iterative procedures for PH fitting have the advantage of providing more flexibility
than analytical moment-matching methods. On the other hand, they are usually slower
than the analytical approach. In the following we discuss two important tools of this
class.

5.4.3.2 G-FIT for Fitting Hyper-Erlang Distributions

The G-FIT tool [880] approximates data using Hyper-Erlang distributions. Recall
that the number of transition rates and the size of the initial vector of a Hyper-Erlang
distribution only depend on the number of Erlang branches. This enables an efficient

98 P. Reinecke et al.

fitting method: once the number m and length b of the Erlang branches have been
set, the parameters are

Θ = (β,λ).

In each iteration the Expectation Maximisation (EM) algorithm (cf. [281]) computes
parameters β and λwhich maximise the likelihood of the parameters, given the data.
G-FIT provides convergence checks based on the maximal change in Θ and on the
relative differences of the log-likelihood between successive iterations.

The user may specify the number and length of Erlang branches prior to fitting or
let G-FIT determine an optimal size. In the first case the user has to set a number of
Erlang branches and their length. The second option is more general and is useful for
the unexperienced user. It requires as input only a number of phases for the resulting
distribution. G-FIT will then estimate optimal number of Erlang branches and their
parameters, by trying all possible combinations.

G-FIT expects an input as a text file containing the data set. The first line should
be a number of data points in the data set followed by data points themselves, which
are given one per line. The output is also a text file, containing the number of Erlang
branches, number of phases, initial probabilities and transition rates for each Erlang
branch.

5.4.3.3 PhFit for Fitting APH Distributions

The PhFit tool [446] approximates data using acyclic phase-type distributions in
CF-1 form. It applies a variant of the Frank/Wolfe algorithm [355, 361] for con-
strained non-linear minimisation of the distance between the PH distribution and the
data. One major advantage is that the user can choose between different distance
measures, in order to obtain an optimal fitting. The distance measures supported by
PhFit are the relative entropy, PDF area distance, and CDF area distance, defined as

∞∫

0

f (t)log(
f (t)

f̂ (t)
)dt,

∞∫

0

|F̂(x)− F(x)|dt, and

∞∫

0

| f̂ (x)− f (x)|dt, respectively,

where f (t) denotes the probability density function (PDF) of the original distrib-
ution and f̂ (t) the PDF of the approximating distribution, F(t) the cummulative
distribution function (CDF) of the original distribution and F̂(t) the CDF of the
fitted distribution. Among the fitting tools we discuss, PhFit is the only one with
a graphical user interface. This feature is beneficial for finding appropriate fitting
parameters and evaluation of results.

PhFit computes optimal values for the distribution parameter (α,A) starting with
special initial values (α(0),A(0)) according to the distance measure. PhFit picks
optimal values from 1,000 randomly generated pairs of vectors. The distance measure

5 Phase-Type Distributions 99

defines the optimality criterion. The optimisation problem is solved by using the
iterative linearisation method. After linearisation in a local neighbourhood of the
current distribution parameters, the direction for optimisation of the distance measure
is determined by the Simplex algorithm. The algorithm stops computation once the
relative difference between

(α(i−1),A(i−1))

and

(α(i),A(i))

for iteration i is less than the predefined value, or if a maximum number of iterations
is reached.

PhFit provides separate fitting for body and tail. The body is the part of distribution
with the most mass, whereas the tail represents rare data points. The user can choose
the boundary where the tail begins. The tail is approximated with a heuristic method
that determines parameters for a hyper-exponential distribution. The body is then
approximated as described before. The resulting distribution is then given by the
CF-1 form and the hyper-exponential distribution.

PhFit requires as input a text file containing the data in ascending order. The
output consists of the initial probability vector α and the diagonal of the subgenerator
matrix. Note, however, that in contrast to the definition we gave in Definition 5.3,
PhFit considers the 0th state to be absorbing, instead of state (n + 1). That is, the
output of PhFit is reversed, compared to the notation used throughout this chapter.

5.5 Phase-Type Distributions in Model Analysis: Matrix Analytic
Methods

In the previous sections we discussed how a phase-type distribution modelling the
phenomenon of interest can be obtained either explicitly or by fitting measurement
traces. We will now illustrate how such a model can be used in analytical approaches.
Referring to our example with the faulty server, we may want to analyse the effect
of deadlocks on job processing in a queueing system. We assume that the server
is reset after a deadlock, but that the fault leading to the deadlock persists. Then,
the instances of deadlock can be fitted by a PH renewal process or a Markovian
Arrival Process (MAP). If the process starts from the same initial state each time
the process of deadlocks will be uncorrelated and forms a PH renewal process. In
case of correlated initial states the time between the deadlocks forms a MAP. In
this section we discuss matrix-analytic methods [579] for analysing complex models
using phase-type distributions.

100 P. Reinecke et al.

Matrix-analytic methods utilize the structure of the Markov chain which, in this
chapter, is two-dimensional. Both dimensions have their own characteristics. The first
dimension represents the—usually finite—number of phases J (t) of the process. The
second dimension, denoted by N (t), is the infinite counting process. This approach
results in an infinite, but well-structured, Markov chain on the block level where the
blocks describe the phase either with or without arrival. The same block structure
appears also in the generator matrix of the Markov chain which can be upper block-
bidiagonal or tridiagonal in our cases.

The examples of this section show how the matrix-analytic methods utilize the
analytic PH properties during the solution of complex Markov models. The result
can be either the short-term or the steady-state behavior. The methods also allow to
find the solution of infinite models by solving finite problems.

5.5.1 Processes with PH Marginal Distribution

A sequence of random variables—according to a given (marginal) distribution—
defines a stochastic process or simply process. Processes play an important role in
stochastic modeling thus it comes naturally to propose the process with PH marginal
distribution. Here we investigate both the independent identical distributed (iid) and
the correlated arrival process with PH marginal distribution. These are the PH renewal
process and the Markov arrival process (MAP) respectively.

Referring to the example in Sect. 5.3 a faulty server has PH distributed time to
deadlock if the relevant times are exponentially distributed. Furthermore if the system
restarts at deadlock situations then the resulting sequence of times to deadlock is a
stochastic process with PH marginal distribution.

5.5.1.1 PH Renewal Process

Given a phase-type distribution represented by the initial vector α and subgenerator
matrix A, the generator matrix

Q =

⎛
⎜⎜⎝

A aα 0

0 A aα 0 .

0 0 A aα 0
.

⎞
⎟⎟⎠ , (5.6)

defines the PH renewal process for which (α,A) is the marginal distribution.
a = −A1l is the vector of absorption rates of the marginal distribution. The blocks
on the diagonal describe the phase transitions of the PH marginal, and the blocks
in the upper co-diagonal describes the phase transitions belonging to the renewal
instances. The graph of the corresponding continuous time Markov chain (CTMC)
is depicted in Fig. 5.8.

5 Phase-Type Distributions 101

Fig. 5.8 The graph of the PH renewal process

The product in the upper co-diagonal blocks expresses that the initial distribution
of the next interarrival is always the same (α) after arrival (“absorption” in the PH
marginal) regardless of any of the other interarrivals, i.e., the process is uncorrelated.

The generator matrix of the phase process is H = A + aα. The steady state phase
distribution (π) is the solution of the linear system of equations

πH = 0

π1l = 1. (5.7)

The transient phase distribution is

π(t) = π(0)eHt (5.8)

which is a vector of elements πi (t) = Pr(J (t) = i) giving the probability that
the process is in phase i at time t. Using the transient phase behavior, at time t
the remaining time to the next arrival is distributed according to the phase-type
distribution (π(t),A).

Let the entries of the vector π(n, t) = (Pr(N (t) = n, J (t) = j)) give the proba-
bilities that at time t the number of arrivals is equal to n and the level process is in
phase j . With initial conditions π(0, 0) = α and π(i, 0) = 0 (i > 0), the transient
number of arrivals is given by the differential equation

dπ(i, t)

dt
= π(i, t)A + π(i − 1, t)aα, (5.9)

whose z-transform, with initial condition π(z, 0) = α, is

dπ(z, t)

dt
= π(z, t)A + zπ(z, t)aα = π(z, t) (A + zaα) . (5.10)

The solution of the differential equation, i.e., the transient distribution of the number
of arrivals, is

π(z, t) = αe(A+zaα)t . (5.11)

102 P. Reinecke et al.

Fig. 5.9 The graph of the Markov arrival process

Regarding to the example in Sect. 5.3, the results on the PH renewal processes can
be used to model the faulty server if the system restarts in the same (initial) state
after each deadlock situation.

5.5.1.2 Markov Arrival Process

In the PH renewal process the phase distribution is the same after every arrival. In
contrast, in the Markov Arrival Process (MAP) after each arrival an arbitrary phase
distribution may hold. This allows the modelling of correlated arrival processes. The
two-dimensional CTMC of the MAP process is also defined by the phase process
J (t), describing the phase of the marginal distribution, and by the counting process
N (t), giving the number of arrivals. Its graph is depicted in Fig. 5.9 and its generator
matrix is

Q =

⎛
⎜⎜⎝

D0 D1 0

0 D0 D1 0 .

0 0 D0 D1 0
.

⎞
⎟⎟⎠ , (5.12)

where the Markov arrival process is represented by D0—the phase transitions without
arrival—and D1—the phase transitions with one arrival. Such a MAP is denoted as
MAP (D0,D1) .

The interarrival times of the MAP (D0,D1) are PH (α0,D0) , PH (α1,D0) . . .

The—correlated—phase distribution embedded at arrival instances forms a discrete
time Markov chain (DTMC) with state transition probability matrix
P = (−D0)

−1 D1.

The joint probability density function of the interarrival times, X0 and Xk, is

fX0,Xk (x0, xk) = πeD0x0 D1Pk−1eD0xk D11l, (5.13)

5 Phase-Type Distributions 103

where π is the embedded stationary phase distribution at arrival instances, i.e., it is
the solution of the linear system of equations

πP = π

π1l = 1. (5.14)

The stationary interarrival time distribution is PH (π ,D0) with nth moment

E
[
Xn] = n!π (−D0)

−n 1l (5.15)

and the joint moment of two interarrivals is

E [X0 Xk] =
∫

x0

∫

xk

x0xkπeD0x0 D1Pk−1eD0xk D11ldx0dxk

= π (D0)
−1 Pk (D0)

−1 1l. (5.16)

The covariance of two interarrivals is

cov (X0, Xk) = E [X0 Xk] − E2 [X] (5.17)

and using (5.15)–(5.17) the lag k correlation of the MAP is

corr (X0, Xk) = cov (X0, Xk)

E
[
X2

] − E2 [X]
. (5.18)

The MAP can help to model the faulty server of Sect. 5.3 if the initial states of the
system (after restart) are correlated.

5.5.2 The Quasi Birth-Death Process

The quasi birth-death (QBD) process [579, 683] is also defined by the phase process
(J (t)) and the counting process (N (t)). But in case of the QBD process the counting,
or the “level”, process is allowed to be decreased by one as well as to stay on the same
level or to be increased by one. It is thus the “multiphase” extension of the birth-
death process which is for example the solution of the M/M/1 queueing system. The
generator matrix of the QBD process has block-tridiagonal form

Q =

⎛
⎜⎜⎝

L′ F 0 .. .

B L F 0 .

0 B L F 0
.

⎞
⎟⎟⎠ , (5.19)

104 P. Reinecke et al.

Fig. 5.10 The graph of the
quasi birth-death process

where the blocks or level transition matrices are

L′ local state transitions inside the first—irregular—block,
B backward (level) state transitions,
L local state transitions on the regular levels and
F forward (level) state transitions.

The graph of the QBD is depicted in Fig. 5.10.
We give the solution method of the QBD through the analysis of the MAP/PH/1

queueing system with arrival process MAP (D0,D1) and service time PH (α,A).
The level transition matrices are

L′ = D0 ⊗ I

B = I ⊗ aα

L = D0 ⊕ A

F = D1 ⊗ I,

where a = −A1l and I is the identity matrix of appropriate size. The operators ⊗
and ⊕ are the Kronecker product and sum, respectively.

The generator matrix of the phase process is H = B+L+F and if it is irreducible
then the steady state phase distribution is the solution of the linear system of equations

πH = 0

π1l = 1. (5.20)

The QBD process is stable if its stationary drift is less than zero

d = πF1l − πB1l < 0. (5.21)

The steady state solution of the QBD is the solution of the infinite system of linear
equations

νQ = 0

ν1l = 1. (5.22)

5 Phase-Type Distributions 105

Partitioning ν according to the blocks of Q is

ν = (
ν0 ν1 ν2 . . .

)

and substituting the partitions into (5.22) we get

ν0L′ + ν1B = 0 (5.23)

and

νi−1F + νi L + νi+1B = 0 ∀i ≥ 1. (5.24)

Assuming that the Markov chain is irreducible νi = νi−1R = ν0Ri (∀i), i.e., its
solution is the matrix geometric distribution, the general Eq. (5.24) can be rewritten
as

ν0Ri−1F + ν0Ri L + ν0Ri+1B = 0

ν0Ri−1
(

F + RL + R2B
)

= 0

with a solution determined by

F + RL + R2B = 0. (5.25)

If the QBD is stable there is one of the solutions of R whose eigenvalues are within
the unit circle on the complex plane.

As all the eigenvalues of the relevant R are within the unit circle there exists the
limit of the sum

∑∞
i=0 Ri = (I − R)−1 . Using the convergence the normalizing

condition of ν can be expressed as

ν1l =
∞∑

i=0

νi 1l =
∞∑

i=1

ν0Ri 1l = ν0

∞∑
i=1

Ri 1l = ν0 (I − R)−1 1l = 1. (5.26)

Now substituting R into (5.23) and using (5.26) we have a linear system of equations

ν0
(
L′ + RB

) = 0

ν0 (I − R)−1 1l = 1 (5.27)

for the zeroth block of ν. All the other blocks can be calculated using ν0 and R as

νi = ν0Ri , ∀i. (5.28)

106 P. Reinecke et al.

By these considerations the infinite problem of solving the QBD in (5.22) is reduced
to be the solution of the finite problems in (5.25), (5.27) and (5.28).

5.6 Phase-Type Distributions in Random-Variate Generation

While phase-type distributions enable efficient solutions for analytical models, they
have applications beyond analytical approaches. Their ability to provide good models
for many different empirical distributions makes them attractive in evaluation tech-
niques where observed phenomena must be represented accurately and efficiently. In
particular, they can be used both in discrete-event simulation of models that cannot be
solved by analytical methods, and in fault-injection-driven experiments in testbeds.
Referring back to our example, in addition to considering an analytical solution we
might want to explore the effect of the faulty server on the resilience of our system
by running a simulation or performing measurements in a testbed. Then, we need to
generate random variates from a PH distribution describing the times to deadlock.

Phase-type distributed samples may be generated by playing the CTMC until
absorption, and by numerical inversion of the distribution function [157]. In the
following we focus on methods that ‘play’ the CTMC. Note that these methods
require the Markovian representation.

The methods discussed in the following utilise random variates from the uniform,
exponential, Erlang, and geometric distributions. We assume that random variates
with uniform distribution on (0, 1) are given, and denote these by U . Using the
inversion method, a sample with exponential distribution with rate λ is then drawn
by

Exp(λ) = −1

λ
ln(U).

A sample from the Erlang distribution with degree b and rate λ is generated by

Erl(b, λ) = −1

λ
ln

(
b∏

i=1

Ui

)
.

Note that this way of sampling Erl(b, λ) is more efficient than the functional equiva-
lent of drawing b exponentially distributed samples and summing them up, because
the ln operation is applied only once. Finally, a sample from the geometric distribu-
tion (starting from 0) with parameter p is obtained by

Geo(p) =
⌊

ln(U)

ln(p)

⌋
.

The most natural way to generate a PH-distributed sample by playing the CTMC
proceeds as follows: first, we select a state i by drawing an integer sample distributed

5 Phase-Type Distributions 107

according to the initial probability vector α. Afterwards, in each step the next state
is selected according to the next-state probability vector, which is given by the i th
row of the embedded Markov chain of A,

S = I − diag(A)−1A.

In the following, let Si denote the i th row vector of S. The sojourn time for state i
is obtained as a sample from the exponential distribution with rate −λi i . Letting ei

denote the row vector with 1 at position i , and 0 everywhere else, the Play method
can be given in pseudocode as follows:

Procedure Play:

1) x := 0. Draw an α-distributed discrete sample i for the initial state.
2) The chain is in state i

– draw an Si -distributed discrete sample for the next state,
– x+ = Exp(−λi i),
– if the next state is the absorbing one (i = n + 1) go to 3), otherwise go

to 2)

3) Return x .

In [684], Neuts and Pagano point out that when traversing a state more than once,
the Play method adds up multiple samples from the same exponential distribu-
tion. The sum of ki exponential distributions of the same rate −λi i , however, is the
Erlang distribution with length ki and rate −λi i . As shown above, drawing a sample
from the Erlang distribution of length ki requires only one logarithm operation, as
opposed to ki logarithms when drawing individual exponential samples. Thus, Neuts
and Pagano propose the following method, which, instead of drawing exponential
samples for each visit to a state i , counts the number of visits and then draws one
Erlang-distributed sample for each state:

Procedure Count:

1) x := 0, ki := 0, (i = 1, . . . , n), Draw an α-distributed discrete sample i
for the initial state.

2) The chain is in state i

– ki += 1,
– draw an Si -distributed discrete sample for the next state,
– if the next state is the absorbing one go to 3) otherwise to 2)

3) for i = 1, . . . , n; do x += Erl(ki ,−λi i); done
4) Return x .

108 P. Reinecke et al.

If the distribution is in Monocyclic form, we can derive another method from the
structural properties of the Monocyclic representation. Recall that this representation
consists of a chain of Feedback-Erlang blocks. With such a chain, possible state
transitions are predetermined by the structure in two ways: First, when we leave a
Feedback-Erlang block j , the next state will be the first state of the next Feedback-
Erlang block j + 1. This implies that no new sample is required for choosing the
successor block. Second, recall from Fig. 5.5 that each FE block consists of a chain
of m j − 1 states with exactly one outgoing transition (to the next state), and only
one state with two outgoing transitions (the feedback state). Thus, within each FE
block the only state where the next state is not determined by the structure is the last
one. Furthermore, as the last state has only two outgoing transitions, the choice of
staying within block j or entering the next block j + 1 corresponds to a Bernoulli
experiment with parameter z j . Consequently, the number of ‘loops’ in each block
follows a geometric distribution with parameter z j . Therefore, in order to generate
the sample corresponding to the j th Feedback-Erlang block, we add a geometrically
distributed number of exponentially distributed random variates with the same rate
λ j . As discussed when introducing the Count method, an efficient way of doing
this is to draw a sample from an Erlang distribution of the appropriate length. These
considerations lead to the following method:

Procedure Monocyclic:

1) x := 0. Draw an α-distributed discrete sample for the initial state,
2) the chain is in state l of block i (for the left-most state of the block, l = bi)

– c = Geo(zi),
– x+ = Erl(cbi + l, λi)

– if the next block is the absorbing state go to 3), otherwise l = bi+1,
i = i + 1 and go to 2)

3) Return x .

The first three methods are applicable to general PH distributions. If we restrict
our attention to sub-classes, more efficient methods can be designed. First, consider
the APH class in CF-1 form. As a special case of the Monocyclic form, the CF-1 form
is a chain of states, where each state has exactly one successor state (cf. Fig. 5.4),
and thus the next state is not chosen randomly. Hence, once an initial state has been
selected, the random variate is simply the sum of exponentially distributed samples
from each of the successor states3:

3 Note that the transition rates in the CF-1 form are usually not identical, hence we cannot simply
draw an Erlang-distributed sample.

5 Phase-Type Distributions 109

Procedure Simpleplay:

1) x := 0. Draw an α-distributed discrete sample for the initial state.
2) The chain is in state i .

– x+ = Exp(−λi i),
– i+ = 1,
– if the next state is the absorbing state go to 3), otherwise go to 2).

3) Return x .

If we assume a Hyper-Erlang distribution, represented as shown in Fig. 5.3, we
can simplify the procedure Count, by using our knowledge that each of the branches
is an Erlang distribution:

Procedure SimpleCount:

1) Draw a β-distributed discrete sample to choose an Erlang branch i .
2) Return Erl(bi , λi).

5.6.1 Costs of Generating PH-Distributed Numbers

In the previous section we argue that the methods for generating random variates dif-
fer in their efficiency. We will now treat the costs of random number generation from
phase-type distributions in a more formal way. All of the algorithms use exponential
random variates for the sojourn times and uniform random variates for choosing the
initial state.Play and Count additionally use uniform random variates for choosing
successor states, while the Monocyclic algorithm needs geometrically distributed
numbers for the number of loops in each Feedback-Erlang block. In order to draw
from an exponential or geometric distribution, we need uniform random variates and
logarithm operations. Therefore, we define the following two metrics for measuring
algorithm complexity:

Definition 5.6 Let #uni be the number of uniform random variates that need to be
generated and let # ln be the number of logarithm operations that must be performed
for generating one PH-distributed random variate from a given PH distribution (α,A).

Using these metrics, we can compare the complexity of the algorithms. We con-
sider both worst-case and average costs.

110 P. Reinecke et al.

Table 5.2 Theoretical costs of generating PH distributed random variates from different PH classes
and using different PH representations (where ν = (n, n − 1, . . . , 1), n∗ = α(diag(A)−1QB)−11l)

PH Class Worst case Average case
#uni #ln #uni #ln

HEx(n) SimpleCount 2 1 2 1
HErD(n) SimpleCount max{bi + 1} 1 βbT + 1 1
APH(n) SimplePlay n + 1 n ανT + 1 ανT

PH(n) Play ∞ ∞ 2n̄ + 1 n̄
PH(n) Count ∞ n 2n̄ + 1 n

Monocyclic ∞ 3m ωϕT + αψT ωϑT

5.6.1.1 Worst-Case Costs

Let ñ denote the length of the longest possible path through the CTMC. For the Play
method, we draw one exponentially distributed random variate for each traversed
state, and hence need one logarithm and one uniform random variate per step, as
well as an additional uniform for choosing the next state. For this method, #uni and
#ln are proportional to ñ. However, ñ is not defined if there are cycles in the CTMC.
Therefore, worst-case costs are not defined for Play.

The same problem with the unknown maximum number of state traversals occurs
with the Count method. However, in this case we only draw Erlang-distributed
samples (one for each state). Therefore, the maximum number of logarithm opera-
tions is bounded by the number of states: #ln = n. Similarly, for the Monocyclic
method we draw one Erlang-distributed and one geometrically-distributed sample for
each Feedback-Erlang block. The latter requires another two logarithm operations,
in addition to the one for generating the Erlang sample. As the worst case occurs
when we start in the first block, the worst-case number of traversed FE blocks is m,
and thus #ln = 3m.

For APH in CF-1 form and using theSimplePlaymethod, the worst case is if the
chain is entered at state i = 1, since in that case we have to traverse the whole chain.
Thus, ñ = n. Obviously, for a Hyper-Erlang distribution in CF-1 form, ñ = n holds
as well. However, if we consider the Hyper-Erlang form and simulation using the
SimpleCount method, the worst case is equivalent to choosing the longest Erlang
branch. In that case, ñ = max{bi } ≤ n. The worst-case costs can be computed as
follows: With every class, we need one uniform random variate to choose the initial
state. When using the APH(n) class in CF-1 form we need ñ = n uniforms and ñ = n
logarithms for the consecutive phases. With the HErD class and the SimpleCount
method we need ñ = max{bi } additional random variates and one logarithm to obtain
an Erlang-distributed random number. We summarise these results in the left half of
Table 5.2.

5 Phase-Type Distributions 111

5.6.1.2 Average Costs

In general, we do not expect to have worst-case behaviour, but are more interested
in average costs. This measure is based on the average number of state transitions
up to absorption,

n̄ = α(diag(A)−1A)−11l.

Applying the Play method for the general PH class, in each step we need two
uniform random variates (one for the exponential sample and one for choosing the
next state, see above), and one logarithm operation. As before, applying the Count
procedure instead, the number of logarithms is #ln = n, while the number of uniforms
stays #uni = n̄.

Canonical forms enable explicit expressions for n̄. For Mono(α,m,b,λ, z) we
introduce vector ω of size m, whose i th element is the probability of starting from
Feedback-Erlang block i (e.g.,ω1 = ∑b1

j=1 α j), vectorϕ of size m, whose i th element

is ϕi = zi bi
1−zi

+ ∑m
j=i+1

b j
1−z j

(the mean number of steps spent in a Feedback-Erlang
block from the first feedback, i.e., excluding the steps from the initial state to the
feedback state in the first passage through the initial block), vectorψ of size n whose
i th element indicates how many phases are needed to reach the next Feedback-Erlang
block (e.g., if b1 ≥ 2 then ψ1 = b1, ψ2 = b1 − 1).

Using these notations the mean number of steps till absorption is

n̄ = ωϕT + αψT,

where αψT contains the number of steps if there is no feedback (i.e., if zi = 0, for
i = 1, . . . ,m) and ωϕT contains the additional number of steps due to the loops in
the Feedback-Erlang block.

The mean number of ln operations is

�∗ = ωϑT,

where ϑ is a row vector of size m whose i th element indicates the number of required
ln operations starting from block i . ϑi = ∑m

j=i (1 + 2 sgn(z j)), since a degenerate
Feedback-Erlang block with zi = 0 is Erlang(l, λi) distributed which requires one
ln operation and a non degenerate (zi > 0) Feedback-Erlang block requires three ln
operations, two ln operations for c = Geo(zi) and one for Erl(cbi + l, λi).

For the APH class in CF-1 form, there exists an even simpler expression, as
the number of traversed states depends only on the initial state, which in turn is
determined by the initial probability vector α. Thus, for APH in CF-1 form,

n̄ = ανT, where ν = (n, n − 1, . . . , 1).

112 P. Reinecke et al.

Equivalently, for the HErD class, n̄ is a weighted sum of the lengths of the Erlang
branches:

n̄ = αbT.

5.6.2 Optimisation

Considering the costs for the different methods discussed in the previous sections, it
becomes clear that both the representation of the distribution and the method have an
impact on the efficiency of PH random variate generation. One immediate question
is then: what is the optimal representation to generate random variates efficiently?
While the answer to this question is not yet available for the general PH case, [764]
presents the following result for APH in CF-1 form:

Lemma 1 [764] Given a Markovian representation (α,Λ) in CF-1 form, the repre-
sentation (α∗,Λ∗) that reverses the order of the rates is optimal with respect to n̄ if
α∗ is a stochastic vector. In this case, all bi-diagonal representations are Markovian.

The proof given in [764] relies on the observation that swapping two adjacent rates
λi , λi+1 moves probability mass towards the end of the chain only ifλi < λi+1. Thus,
reversing the CF-1 order (where λi ≤ λi+1 for all i) gives an initial probability vector
αwhere probability mass is concentrated at the higher indices. Recalling from above,
n̄ = ανT for APH, i.e., high probability for states close to absorption implies low
average costs.

Note, however, that reversing the CF-1 form may result in α with negative entries
[764]. In this case, the tuple (α∗,A∗) still represents the same distribution, but the
representation does not have a Markovian interpretation anymore, and thus n̄ is not
defined, nor can SimplePlay be applied. The optimal ordering can then be found
by exhaustive search over all n! possible orderings, or by heuristics that try to find
a Markovian representation that is as similar as possible to the reversed CF-1. The
heuristics presented in [764] either start from the CF-1 form and apply pair-wise
swappings until the result would be non-Markovian, or start from the reversed CF-1
and try to reach a Markovian representation.

5.7 Conclusion

In this chapter we introduced the basics of using phase-type distributions as tools in
resilience evaluation, discussing the complete workflow from explicit derivation and
fitting to application in both analytical and simulation methods. One application of
the methods described here is illustrated in Chap. 6, where PH distributions are used
to reduce the size of a stochastic model by modelling the behaviour of components
based on their delay distributions.

http://dx.doi.org/10.1007/978-3-642-29032-9_6

5 Phase-Type Distributions 113

Our goal was to provide our readers with the fundamentals to apply PH distribu-
tions in their own work. Of course, this means that we could only scratch the surface
of the vast amount of work available on phase-type distributions. We would like to
give a few pointers for further study to the reader interested in different aspects of the
topic. For readers interested in the mathematical background, we recommend [683],
where PH distributions were introduced, and the fundamental work in [251, 697, 698],
which provides the basics for many of the closure properties and canonical forms
used in the field. More information on PH fitting is available in the papers introducing
the fitting tools we discussed here [446, 870, 880], and in [59], where a fitting tool
for general PH distributions is described. [572] gives a survey of PH fitting tools that
were available at the time and have not been considered here. An in-depth discussion
of fitting heavy-tailed data is provided in [48]. Both [579, 683] provide good introduc-
tions to matrix-analytic methods. Lastly, with respect to random-variate generation
we would like to also point out the approach in [157], where the authors present
a method of generating random variates from Matrix-Exponential distributions, of
which the PH distributions are but a subclass. The approach is particularly interest-
ing because it differs from the methods discussed in this chapter in that it applies
numerical inversion of the distribution function instead of playing the Markov chain.

	5 Phase-Type Distributions
	5.1 Introduction
	5.2 Mathematical Background
	5.2.1 PH Classes
	5.2.2 Canonical Representations
	5.2.3 Properties

	5.3 Explicit Modelling
	5.4 Fitting Measurement Traces with PH Distributions
	5.4.1 Costs of Fitting PH Distributions to Data
	5.4.2 Quality Measures
	5.4.3 Introduction to PH-Fitting Tools

	5.5 Phase-Type Distributions in Model Analysis: Matrix Analytic Methods
	5.5.1 Processes with PH Marginal Distribution
	5.5.2 The Quasi Birth-Death Process

	5.6 Phase-Type Distributions in Random-Variate Generation
	5.6.1 Costs of Generating PH-Distributed Numbers
	5.6.2 Optimisation

	5.7 Conclusion

