
Chapter 14
Resilience Benchmarking

Marco Vieira, Henrique Madeira, Kai Sachs
and Samuel Kounev

Abstract Computer benchmarks are standard tools that allow evaluating and
comparing different systems or components according to specific characteristics
(performance, dependability, security, etc). Resilience encompasses all attributes
of the quality of ‘working well in a changing world that includes faults, failures,
errors and attacks’. This way, resilience benchmarking merges concepts from per-
formance, dependability, and security. This chapter presents an overview on the state-
of-the-art on benchmarking performance, dependability and security. The goal is to
identify the existing approaches, techniques and problems relevant to the resilience-
benchmarking problem.

14.1 Introduction

Benchmarks are standard tools that allow evaluating and comparing different systems
or components according to specific characteristics such as performance, depend-
ability, and security. While historical benchmarks were only a few hundreds lines

M. Vieira (B) · H. Madeira
DEI/CISUC, University of Coimbra,
Coimbra 3030-290, Portugal
e-mail: mvieira@dei.uc.pt

H. Madeira
e-mail: henrique@dei.uc.pt

K. Sachs
SAP AG, 69190 Walldorf, Germany
e-mail: kai.sachs@sap.com

S. Kounev
Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany
e-mail: kounev@kit.edu

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 283
DOI: 10.1007/978-3-642-29032-9_14, © Springer-Verlag Berlin Heidelberg 2012

284 M. Vieira et al.

long, modern benchmarks are composed of hundreds of thousands or millions of
lines of code. Compared to traditional software, the benchmark development process
has different goals and challenges. Unfortunately, even if an enormous number of
benchmarks exist, only a few contributions focusing on the benchmark concepts and
development process were published.

The best-known publication on benchmarking is Gray’s The Benchmark Handbook
[391]. Besides a detailed description of several benchmarks, the author discusses the
need for domain specific benchmarks and defines four important criteria, which a
domain-specific benchmark has to fulfill:

• Relevance: the benchmark result has to measure the performance of the typical
operation within the problem domain.

• Portability: it should be easy to implement on many different systems and archi-
tectures.

• Scalability: it should be scalable to cover small and large systems.
• Simplicity: the benchmark should be understandable to avoid lack of credibility.

Another work dealing with the criteria that a benchmark should fulfill is [457].The
questions, what a ‘good’ benchmark should look like and which aspects should be
kept in mind from the beginning of the development process, are discussed in detail
and five key criteria are presented:

• Relevance: the benchmark has to reflect something important.
• Repeatable: the benchmark result can be reproduced by rerunning the benchmark

under similar conditions with the same result.
• Fair & Portable: All systems compared can participate equally (e.g., portability,

‘fair’ design).
• Verifiable: There has to be confidence that documented results are real. This can,

e.g., be assured by reviewing results by external auditors.
• Economical: The cost of running the benchmark should be affordable.

The work on performance benchmarking has started long ago. Ranging from sim-
ple benchmarks that target a very specific hardware system or component to very
complex benchmarks focusing on complex systems (e.g., database management sys-
tems, operating systems), performance benchmarks have contributed to improve suc-
cessive generations of systems. Research on dependability benchmarking has been
boosted in the beginning of the millennium, having already led to the proposal of
several dependability benchmarks. Several works have been carried out by different
groups and following different approaches (e.g., experimental, modeling, fault injec-
tion). Due to the increasing relevance of security aspects, security benchmarking is
becoming an important research field.

Resilience encompasses all attributes of the quality of ‘working well in a
changing world that includes faults, failures, errors and attacks’ [127]. This way,
resilience benchmarking merges concepts from performance, dependability, and
security benchmarking. In practice, resilience benchmarking faces challenges related
to the integration of these three concepts and to the adaptive characteristics of the

14 Resilience Benchmarking 285

systems under benchmarking. This chapter overviews the state-of-the-art on bench-
marking performance, dependability and security, identifying the current approaches,
techniques and problems relevant to the resilience benchmarking problem.

The outline of this chapter is as follows. The next section introduces the concept
of performance benchmarking. Section 14.3 focuses on dependability benchmarking
and presents existing research work. Section 14.4 introduces the security benchmark-
ing problem. Section 14.5 discusses the current needs and challenges on resilience
benchmarking. An overview of further research trends is provided in Sect. 14.6.
Finally, Sect. 14.7 concludes the chapter and puts forward a potential research path
to accomplish existing resilience benchmarking challenges.

14.2 Performance Benchmarking

Performance benchmarks are standard procedures and tools aiming at evaluating
and comparing different systems or components in a specific domain (e.g., databases,
operating systems, hardware, etc.) according to specific performance measures. Stan-
dardization organizations such as the SPEC (Standard Performance Evaluation Cor-
poration) and the TPC (Transaction Processing Performance Council) use internal
guidelines covering the development process of such benchmarks. A short summary
of the keypoints of the SPEC Benchmark Development Process is provided in [573].
However, these guidelines mostly cover formal requirements, e.g., design of run rules
and result submission guidelines, not the benchmark development process itself.

In general, a performance benchmark must fulfill the following fundamental
requirements to be useful and reliable [545, 793, 794]:

• It must be based on a workload representative of real-world applications.
• It must exercise all critical services provided by platforms.
• It must not be tuned/optimized for a specific product.
• It must generate reproducible results.
• It must not have any inherent scalability limitations.

The major goal of a performance benchmark is to provide a standard workload
and metrics for measuring and evaluating the performance and scalability of a cer-
tain platform. In addition, the benchmark should provide a flexible framework for
performance analysis. To achieve this goal, the workload must be designed to meet
a number of workload requirements that can be grouped according to the following
five categories [793]:

1. Representativeness
2. Comprehensiveness
3. Focus
4. Configurability
5. Scalability

286 M. Vieira et al.

Representativeness No matter how well a benchmark is designed, it would be of
little value if the workload it is based on does not reflect the way platform services
are exercised in real-life systems. Therefore, the most important requirement for a
benchmark is that it is based on a representative workload scenario including a repre-
sentative set of interactions. The scenario should represent a typical transaction mix.
The goal is to allow users to relate the observed behavior to their own applications
and environments.
Comprehensiveness Another important requirement is that the workload is compre-
hensive in that it exercises all platform features typically used in the major classes
of applications. The features and services stressed should be weighted according to
their usage in real-life systems. There is no need to cover features of the platforms
that are used very rarely in practice.
Focus The workload should be focused on measuring the performance and scalability
of the platform under test. It should minimize the impact of other components and
services that are typically used in the chosen application scenario.
Configurability In addition to providing standard workloads and metrics, a bench-
mark aims to provide a flexible performance analysis framework which allows users
to configure and customize the workload according to their requirements. Many users
will be interested in using a benchmark to tune and optimize their platforms or to ana-
lyze the performance of certain specific features. Others could use the benchmark for
research purposes in academic environments where, for example, one might be inter-
ested in evaluating the performance and scalability of novel methods and techniques
for building high-performance servers. All these usage scenarios require that the
benchmark framework allows the user to precisely configure the workload and trans-
action mix to be generated. This configurability is a challenge because it requires
that interactions are designed and implemented in such a way that one could run
them in different combinations depending on the desired workload mix. The ability
to switch interactions off implies that interactions should be decoupled from one
another. On the other hand, it should be ensured that the benchmark, when run in
its standard mode, behaves as if the interactions were interrelated according to their
dependencies in the real-life application scenario.
Scalability Scalability should be supported in a manner that preserves the relation
to the real-life business scenario modeled. In addition, the user should be offered the
possibility to scale the workload in an arbitrary manner by defining an own set of
scaling points.

14.2.1 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) is one of the leading
standardization bodies for benchmarks. While the most known benchmarks published
by SPEC are the SPEC CPU series for the performance evaluation of CPUs, SPEC
published benchmarks in many other areas, such as High Performance Computing,
Java or Graphical Applications. Inside the SPEC, four groups exist [846]:

14 Resilience Benchmarking 287

• Open Systems Group (OSG) focuses on benchmarks for desktop systems, high-end
workstations and servers running open systems environments.
Example benchmarks: SPEC CPU2006 (CPU performance), SPECjms2007
(message-oriented middleware benchmark, SPECpower_ssj2008 (power and per-
formance benchmark), SPECvirt_sc2010 (virtualization benchmark) and SPEC-
jEnterprise2010 (JavaEE benchmark).

• High-Performance Group (HPG) published a suite of benchmarks that repre-
sent high-performance computing applications for standardized, cross-platform
performance evaluation.
Example benchmarks: OMPM2001 / OMPL2001 (benchmarks for OpenMP appli-
cations and shared-memory systems) and MPIM2001 / MPIL2001 (benchmarks
focusing on Message-Passing Interface (MPI) across a wide range of cluster and
SMP hardware).

• Graphics and Workstation Performance Group (GWPG) develops graphics and
workstation performance benchmarks.
Example benchmarks: SPECapc benchmark series (addresses graphics and work-
station performance evaluation based on actual software applications) and
SPECviewperf 11.

• Research Group (SPEC RG) promotes research on benchmarking methodologies
and tools facilitating the development of benchmark suites and performance analy-
sis frameworks for established and newly emerging technology domains.

14.2.2 TPC Benchmarks

The benchmarks of the Transaction Processing Performance Council (TPC) became
the de-facto standard in the database area [884]. Currently the TPC has three active
benchmarks, two in the area of transaction processing (TPC-E/TPC-C) and one for
benchmarking decision support. Their currently active benchmarks are based on a
static workload mix. Additionally, TPC published the TPC-Energy Specification,
which contains the rules and methodology for measuring and reporting an energy
metric in TPC Benchmarks. It is important to note that, unlike SPEC, TPC does
not provide implementations of its benchmarks. A TPC benchmark is essentially a
specification that defines an application and a set of requirements on the workload
that has to be run. The user is expected to implement the benchmark application and
workload on the platform to be tested.

Further, TPC has released two benchmarks that can be used for benchmarking
enterprise software systems. The first one is the TPC Benchmark W (TPC-W) [886],
which has been available since 2000. The second one is the TPC Benchmark App
(TPC-App) [885], which was released in December, 2004. However, both of these
benchmarks are obsolete and there is no active benchmark for enterprise software
systems.

288 M. Vieira et al.

14.2.3 EEMBC Benchmarks

The Embedded Microprocessor Benchmark Consortium (EEMBC) is developing
performance benchmarks for the hardware and software used in embedded systems
[325]. EEMBC microprocessor benchmark suites are targeting telecommunications,
networking, digital media, Java, automotive/industrial, consumer, and office equip-
ment products. Further, an additional suite that allows users to observe the energy con-
sumed by the processor when performing these algorithms and applications exists.
EEMBC also has a series of multicore-specific benchmarks that span multiple appli-
cation areas.

14.2.4 Other Performance Benchmarks

Besides industry-standard benchmarks, numerous proprietary performance bench-
marks for all kinds of systems have been developed and used in the industry and
research. Due to the lack of space and the high number (e.g., we are aware of more
than 15 benchmarks and performance tests suits for message-oriented middleware
[793]) we will not discuss them here in detail.

14.3 Dependability Benchmarking

The notion of dependability and its terminology have been established by the Inter-
national Federation for Information Processing (IFIP) Working Group 10.4. IFIP
WG 10.4 defines dependability as ’the trustworthiness of a computing system which
allows reliance to be justifiably placed on the service it delivers’. Dependability is an
integrative concept that includes the following attributes [576]: availability (readi-
ness for correct service), reliability (continuity of correct service), safety (absence
of catastrophic consequences on the user(s) and the environment), confidentiality
(absence of unauthorized disclosure of information), integrity (absence of improper
system state alterations), and maintainability (ability to undergo repairs and modifi-
cations).

A dependability benchmark can be defined as a specification of a standard pro-
cedure to assess dependability-related measures of a computer system or computer
component. The main components of a dependability benchmark are: measures (char-
acterize the performance and dependability of the system), workload (work that the
system must perform during the benchmark run), faultload (set of faults that emulate
real faults experienced in the field), and benchmark procedure and rules (description
of the procedures and rules that must be followed to run the benchmark).

Two classes of measures can be considered when assessing dependability
attributes:

14 Resilience Benchmarking 289

• Conditional measures: measures that characterize the system in a relative fashion
(i.e., measures that are directly related to the conditions disclosed in the benchmark
report) and are mainly meant to compare alternative systems (e.g., response time,
throughput, up-time, recovery time).

• Unconditional measures on dependability attributes: measures that characterize
the system in a global fashion taking into account the occurrence of the various
events impacting its behavior (i.e., reliability, availability, maintainability, safety,
etc.) [576].

The conditional measures are directly obtained as results of the benchmark exper-
iments. The unconditional measures on dependability attributes have to be calculated
using modeling techniques with the help of external data, such as fault rates, MTBF,
etc. This external data could be provided from field data or based on past experi-
ence considering similar systems. However, models of complex systems may be very
difficult to define and the external data difficult to obtain.

Dependability benchmarks typically focus on direct measures (conditional mea-
sures), following the traditional benchmarking philosophy based on a pure exper-
imental approach. These measures are related to the conditions disclosed in the
benchmark report and can be used for comparison or for system/component improve-
ment and tuning. This is similar to what happens with performance benchmark results,
as the performance measures do not represent an absolute measure of system perfor-
mance and cannot be used for capacity planning or to predict the actual performance
of the system in field.

The faultload represents a set of faults that emulates real faults experienced by
systems in the field. Among the main components needed to define a benchmark, the
faultload is clearly the most complex one due to the nature of faults. A faultload can
be based on three major classes of faults:

• Operator faults: operator faults are human mistakes. The great complexity of
administration tasks in some systems and the need of tuning and administration
in a daily basis, clearly explains why human faults (i.e., wrong human actions)
should be considered in a dependability benchmark.

• Software faults: software faults (i.e., program defects or bugs) are recognized as
an important source of system outages, and given the huge complexity of today’s
software the weight of software faults tends to increase.

• Hardware faults: includes traditional hardware faults, such as bit-flips and stuck-
at, and high-level hardware failures, such as hard disk failures or failures of the
interconnection network. Hardware faults are especially relevant in systems prone
to electrical interferences.

Concerning the definition of the workload, the job is considerably simplified by
the existence of workloads from performance benchmarks. Obviously, these already
established workloads are the natural choice for a dependability benchmark. How-
ever, when adopting an existing workload some changes may be required in order to
target specific system features. An important aspect to keep in mind when choosing

290 M. Vieira et al.

a workload is that the goal is not only to evaluate the performance but also assess
specific dependability features.

The procedures and rules define the correct steps to run a benchmark and obtain
the measures. These rules are, of course, dependent on the specific benchmark but
the following points give some guidelines on specific aspects needed in most of the
cases:

• Procedures for ‘translating’ the workload and faultload defined in the benchmark
specification into the actual workload and faultload that will apply to the system.

• Uniform conditions to build the setup and run the dependability benchmark.
• Rules related to the collection of the experimental results.
• Rules for the production of the final measures from the direct experimental results.
• Scaling rules to adapt the same benchmark to systems of very different sizes.
• System configuration disclosures required for interpreting the benchmark results.
• Rules to avoid optimistic or biased results.

The awareness of the importance of dependability benchmarks has increased in
the recent years and dependability benchmarking is currently the subject of strong
research. The following subsections present the recent advances on dependability
benchmarking, both at universities and computer industry sites.

14.3.1 Special Interest Group on Dependability
Benchmarking (SIGDeB)

The Special Interest Group on Dependability Benchmarking (SIGDeB) was created
by the International Federation for Information Processing (IFIP) Working Group
10.4 in 1999 to promote the research, practice, and adoption of benchmarks for
computer-related systems dependability. The work carried out in the context of the
SIGDeB is particularly relevant and merges contributions from both industry and
academia.

A preliminary proposal issued by the SIGDeB was in the form of a set of standard-
ized classes for characterizing the dependability of computer systems [934]. The goal
of the proposed classification was to allow the comparison among computer systems
concerning four different dimensions: availability, data integrity, disaster recovery,
and security. The authors have specifically developed the details of the proposal for
transaction processing applications. This work proposes that the evaluation of a sys-
tem should be done by answering a set of standardized questions or performing tests
that validate the evaluation criteria.

A very relevant effort in the context of SIGDeB is a book on dependability bench-
marking of computer systems [514]. This book presents several relevant benchmark-
ing initiatives carried out by different organizations, ranging from academia to large
industrial companies.

14 Resilience Benchmarking 291

14.3.2 DBench Project

The DBench project was funded by the European Commission, under the Information
Society Technologies Programme (IST), Fifth Framework Programme (FP5). The
main goal of DBench project was to devise benchmarks to evaluate and compare the
dependability of COTS and COTS-based systems, in embedded, real time, and trans-
actional systems. Several works on dependability benchmarking have been carried
out in the DBench project. The following subsections summarize those works.
General purpose operating systems The works presented in [502, 503, 511, 512]
address the problem of dependability benchmarking for general purpose operating
systems (OS), focusing mainly on the robustness of the OS (in particular of the OS
kernel) with respect to faulty applications.

The measures provided are: 1) OS robustness in the presence of faulty system calls,
2) OS reaction time for faulty system calls and 3) OS restart time after the activation
of faulty system calls. Three workloads are considered: 1) a realistic application that
implements the experiments control system of the TPC-C performance benchmark
[887]. 2) the PostMark [521] file system performance benchmark for operating sys-
tems and 3) the Java Virtual Machine (JVM) middleware. The faultload is based on
the corruption of systems call parameters.

Another research work on the practical characterization of operating systems
behaviour in the presence of software faults in OS components is presented in [312].
The methodology used is based on the emulation of software faults in device drivers
and the observation of the behaviour of the overall system regarding a comprehensive
set of failure modes analyzed according to different dimensions related to different
user perspectives.
Real time kernels in onboard space systems The work presented in [666] is a pre-
liminary proposal of a dependability benchmark for real time kernels for onboard
space systems. This benchmark, called DBench-RTK, focuses mainly on the assess-
ment of the predictability of response time of service calls in a Real-Time Kernel
(RTK).

The DBench-RTK dependability benchmark provides a single measure that rep-
resents the predictability of response time of the service calls of RTKs used in space
domain systems. The workload consists in an Onboard Scheduler (OBS) process
based on a functional model derived from the Packet Utilization Standard [864]. The
faultload consists of a set of faults that are injected into kernel functions calls at the
parameter level by corrupting parameter values.
Engine control applications in automotive systems The work presented in [790]
represents a preliminary proposal of a dependability benchmark for engine control
applications for automotive systems. This benchmark focuses on the robustness of the
control applications running inside the Electronic Control Units (ECU) with respect
to transient hardware faults.

This dependability benchmark provides a set of measures that allows the compar-
ison of the safety of different engine control systems. The workload is based on the
standards used in Europe for the emission certification of light duty vehicles [320].

292 M. Vieira et al.

The faultload consists of transient hardware faults that affect the cells of the memory
holding the software used in the engine control.
On-line transaction processing systems The DBench-OLTP dependability bench-
mark [917, 918] is a dependability benchmark for on-line transaction processing sys-
tems. The DBench-OLTP measures are divided in three groups: baseline performance
measures, performance measures in the presence of the faultload, and dependability
measures. The DBench-OLTP benchmark can be used considering three different
faultloads each one based on a different class of faults, namely: operator faults,
software faults and high-level hardware failures.

In [161] it is presented a preliminary proposal of another dependability bench-
mark for on-line transaction processing systems. The measures provided by this
dependability benchmark are the system availability and the total cost of failures.
These measures are based on both measurements obtained from experimentation
(e.g., percentages of the various failure modes) and external data (e.g., the failure
rates and the repair rates). The external data used to calculate the measures must be
provided by the benchmark user. The workload was adopted from the TPC-C per-
formance benchmark [887] and the faultload includes exclusively hardware faults,
such as faults in the storage hardware and in the network.
Web-servers The work presented in [316] proposes a dependability benchmark for
web-servers (the WEB-DB dependability benchmark). This dependability bench-
mark uses the basic experimental setup, the workload, and the performance measures
specified in the SPECWeb99 performance benchmark [845].

The measures reported by WEB-DB are grouped into three categories: baseline
performance measures, performance measures in the presence of the faultload, and
dependability measures. The WEB-DB benchmark uses two different faultloads:
one based on software faults that emulate realistic software defects (see [314]) and
another based on operational faults that emulate the effects of hardware and operator
faults.

14.3.3 Berkeley University

The work developed at Berkeley University has highly contributed to the progress of
research on dependability benchmarking in the last few years, principally on what
concerns benchmarking the dependability of human-assisted recovery processes.

A general methodology for benchmarking the availability of computer systems is
introduced in [155]. The workload and performance measures are adopted from exist-
ing performance benchmarks and the measure of availability of the system under test
is defined in terms of the service provided by the system. The faultload (called fault
workload by the authors) may be composed of a single-fault (single-fault workload)
or of several faults (multi-fault workload).

The work presented in [156] addresses human error as an important aspect in
system dependability, and proposes that human behaviour must be considered in
dependability benchmarks and system designs.

14 Resilience Benchmarking 293

A technique to develop dependability benchmarks that capture the impact of
human operators on the tested system is proposed in [154]. The workload and mea-
sures are adopted from existing performance benchmarks and the dependability of
the system can be characterized by examining how the performance measures deviate
from their normal values as the system is perturbed by injected faults. In addition to
faults injected using traditional fault injection, perturbations are generated by actions
of human operators that actually participate in the benchmarking procedure.

In [151] are presented the first steps towards the development of a dependability
benchmark for human assisted recovery processes and tools. This work proposes
a methodology to evaluate human-assisted failure recovery tools and processes in
server systems. This methodology can be used to both quantify the dependability of
single recovery systems and compare different recovery approaches, and combines
dependability benchmarking with human user studies.

14.3.4 Carnegie Mellon University

Vajra [674] is a research project whose goal is benchmarking the survivability in
distributed systems, focusing on the objective and quantitative comparison of the
runtime implementations of different Byzantine fault-tolerant distributed systems.
The benchmark uses as the point of injection APIs that are common across various
Byzantine fault-tolerant systems. A variety of accidental and malicious faults are
injected at various rates across the system.

Although not resulting in a formal benchmark proposal, the research on robustness
testing developed at the Carnegie Mellon University [540] has effectively set the basis
for robustness benchmarks of operating systems. This will be further discussed in
Chap. 16, which includes a survey on robustness testing techniques.

14.3.5 Sun Microsystems

Research at Sun Microsystems has defined a high-level framework [959] specifi-
cally dedicated to availability benchmarking of computer systems. The proposed
framework follows a hierarchical approach that decomposes availability into three
key components: fault/maintenance rate, robustness, and recovery. The goal was to
develop a suite of benchmarks, each one measuring an aspect of the availability of
the system. Within the framework proposed by [959], two specific benchmarks have
already been developed.

In [960] is proposed a benchmark for measuring a system’s robustness (degree
of protection that exists in a system against outage events) in handling maintenance
events, such as the replacement of a failed hardware component or the installation
of a software patch.

http://dx.doi.org/10.1007/978-3-642-29032-9_16

294 M. Vieira et al.

In [629] is proposed a benchmark for measuring system recovery in a non-
clustered standalone system. This benchmark measures three specific system events;
clean system shutdown (provides a baseline metric), clean system bootstrap (corre-
sponds to rebooting a system following a clean shutdown), and a system reboot after
a fatal fault event (provides a metric that represents the time between the injection
of a fault and the moment when the system returns to a useful state).

Another effort at Sun Microsystems are the Analytical RAS Benchmarks [324],
which consists of three analytical benchmarks that examine the Reliability, Avail-
ability, and Serviceability (RAS) characteristics of computer systems:

• The Fault Robustness Benchmark (FRB-A) allows assessing and comparing the
techniques used to enhance resiliency, including redundancy and automatic fault
correction.

• The Maintenance Robustness Benchmark (MRB-A) assesses how maintenance
activities affect the ability of the system to provide a continuous service.

• The Service Complexity Benchmark (SCB-A) examines the complexity of mechan-
ical components replacement.

14.3.6 Intel Corporation

Work at Intel Corporation has focused on benchmarking semiconductor technology.
The work presented in [236] shows the impact of semiconductor technology scaling
on neutron induced SER (soft error rate) and presents an experimental methodol-
ogy and results of accelerated measurements carried out on Intel Itanium micro-
processors. The proposed approach can be used as a dependability benchmarking
tool and does not require proprietary information about the microprocessor under
benchmarking.

Another study [236] presents a set of benchmarks that rely on environmental
test tools to benchmark undetected computational errors, also known as silent data
corruption (SDC). In this work, a temperature and voltage operating test (known as
the four corners test) is performed on several prototype systems.

14.3.7 IBM Autonomic Computing Initiative

At IBM, the Autonomic Computing initiative developed benchmarks to quantify a
system’s level of autonomic capability, which is defined as the capacity of the system
to react autonomously to problems and changes in the environment. The goal was to
produce a suite of benchmarks covering the four categories of autonomic capabilities:
self-configuration, self-healing, self-optimization, and self-protection.

14 Resilience Benchmarking 295

The first steps towards a benchmark for autonomic computing are described in
[589]. The benchmark addresses the four attributes of autonomic computing and is
able to test systems at different levels of autonomic maturity.

The work presented in [152] identifies the challenges and pitfalls that must be
taken into account in the development of benchmarks for autonomic computing
capabilities. This paper proposes the use of the workload and driver system from
performance benchmarks and the introduction of changes into benchmarking envi-
ronment in order to characterize a given autonomic capability of the system. The
paper proposes that autonomic benchmarks must quantify the level of the response,
the quality of the response, the impact of the response on the users, and the cost of
any extra resources needed to support the autonomic response.

14.4 Security Benchmarking

Theoretically, a security benchmark provides a metric (or small set of metrics) able
to characterize the degree to which security goals are met in a given piece of code
[483], allowing developers and administrators to make informed decisions. However,
one of the biggest difficulties in designing such metric is related to the fact that
security assessment is, usually, much more dependent on what is unknown about
the applications (e.g. unknown bugs, hidden vulnerabilities) than by what is known
(e.g., known features, existing security mechanisms).

Security metrics are hard to define and compute [883] because they involve mak-
ing isolated estimations about the ability of an unknown individual (e.g., a hacker)
to discover and maliciously exploit an unknown system characteristic (e.g., a vulner-
ability). A feasible alternative is to assume that such metrics can be obtained using
information about the system itself, without taking into account external factors. In
fact, a security benchmark based on such metrics would allow characterizing the
degree to which security goals are met in a given web application or component.
In practice, due to the difficulties of quantifying security, most works on security
benchmarking are based on analysis and qualification of configurations/systems.

Several security evaluation methods have been proposed in the past [232, 233,
288, 807]. The Orange Book [288] and the Common Criteria for Information Tech-
nology Security Evaluation [233] define a set of generic rules that allow developers
to specify the security attributes of their products and evaluators to verify if products
actually meet their claims. Another example is the red team strategy [807], which
consists of a group of experts trying to hack its own computer systems to evaluate
security. However, none of these security evaluation approaches is oriented towards
security benchmarking, as comparing security has been largely absent from these
security evaluation methods.

The work presented in [630] addresses the problem of determining, in a thorough
and consistent way, the reliability and accuracy of anomaly detectors. This work
addresses some key aspects that must be taken into consideration when benchmarking
the performance of anomaly detection in the cyber-domain.

296 M. Vieira et al.

The set of security configuration benchmarks created by the Center for Internet
Security (CIS) is a very interesting initiative. CIS is a non-profit organization formed
by several well-known academic, commercial, and governmental entities that has
created a series of security configuration documents for several commercial and open
source systems. These documents focus on the practical aspects of the configuration
of these systems and state the concrete values each configuration option should have
in order to enhance overall security of real installations. Although CIS refers to these
documents as benchmarks they mainly reflect best practices and are not explicitly
designed for systems assessment or comparison.

A practical way to characterize the security mechanisms in database systems
is proposed in [920]. In this approach database management systems (DBMS) are
classified according to a set of security classes ranging from Class 0 to Class 5
(from the worst to the best). Systems are classified in a given class according to the
security requirements satisfied. In [50] the authors analyze the security best practices
behind the many configuration options available in several well-known DBMS. These
security best practices are then generalized and used to define a set of configuration
tests that can be used to compare different database installations. An improved set
of best practices is then used in [52] to benchmark the security of database servers
configurations.

A benchmark that allows database administrators to assess and compare database
configurations is presented in [51]. The benchmark provides a trust-based security
metric, named minimum untrustworthiness, that expresses the minimum level of
distrust the DBA should have in a given configuration regarding its ability to prevent
attacks. The use of trust-based metrics as an alternative to security measurement is
discussed in [682].

14.5 Resilience Benchmarking

A resilience benchmark should provide generic ways for characterizing a system
behavior in the presence of perturbations. If a system is effective and efficient in
accommodating or adjusting to perturbations, avoiding failures as much as possible,
it is reasonable to consider it as being resilient [33]. This capability can be bench-
marked by submitting the system to various types of perturbations and by observ-
ing the failures (and their frequency), as well as time and resources dedicated to
avoid/recover from them. Still, the perturbations that the system has to face may lead
to performance and dependability attributes degradation without leading necessarily
to catastrophic system failures. Thus, we need to assess variations of the properties of
interest (e.g., performance, availability, integrity) when the system is under varying
context conditions, in order to characterize its behavior from a resilience perspective.

Evaluating resilience must consider the system and environment dynamics that
are beyond those typically addressed in the evaluation of performance and depend-
ability. While maintaining similar workloads, dependability benchmarks enhanced
performance benchmarks by introducing a faultload and dependability metrics, which

14 Resilience Benchmarking 297

include performance metrics under faulty conditions. A resilience benchmark must
comprise a more wide-ranging set of perturbations, which will certainly include (but
will be not limited to) faults. For instance, variations on the workload or in system
parameters should be part of those perturbations. New metrics for characterizing
resilience are also needed, although some will naturally be based on measures of
performance and dependability while facing changes.

In practice, resilience benchmarking includes performance, dependability, and
security aspects, and aims at providing generic, repeatable and widely accepted
methods for characterizing and quantifying the system (or component) behavior in
the presence of faults, and comparing alternative solutions [514]. Although many
works have been conducted in the area of performance and dependability bench-
marking, it is clear that many key issues must be addressed towards the definition of
concrete resilience benchmarks, which, theoretically, should include the following
main components:

• Benchmarking metrics: the benchmark metrics should allow characterizing and
quantifying the system behavior when facing perturbations (i.e., faults, attacks,
and operational environment variations). At first sight, resilience benchmarking
metrics must characterize performance, dependability and security.

• Workload: during the benchmark execution, the system under test must be submit-
ted to a representative set of tasks, which should be as close to real conditions as
possible. An important aspect is that a workload cannot be static and must exercise
the resilience capabilities of the system, as the real conditions would.

• Perturbations-load: a system may be subjected to distinct types of perturbations
during its operation, and a benchmark must try to emulate those as realistically as
possible. These perturbations may be of three different types: faults, attacks, and
perturbations related to system’s maintenance.

In the context of the AMBER Coordination Action, funded by the European
Union under the Seventh Framework Programme, a set of research needs related to
resilience benchmarking have been identified, namely (see details at [127]):

1. Agreed, cost effective, easy to use, fast and representative enough dependability
benchmarks for well defined domains.

2. Benchmark frameworks (components and tools) able to be reused to create
benchmarks in different benchmarking domains.

3. Inclusion of adequate design methodologies to facilitate benchmark implemen-
tation and configuration in future components, systems, and infrastructures.

4. Uniform (standardized) benchmarking process that can be applied by indepen-
dent organizations to offer certification of the dependability of COTS products
(like in the case of standards compliance testing).

These needs raise a set of research challenges that have to be addressed in order
to be able to define a (resilience) benchmark, namely (see [127] for details):

1. Defining benchmark domains (components, systems, application domains) in
order to divide the problem space in adequate/tractable segments.

298 M. Vieira et al.

2. Defining key benchmark elements such as measures, workload, faultload, models,
to ensure the necessary properties (e.g., representativeness, portability, scalabil-
ity, repeatability) that allow agreement on benchmark proposals.

3. Coping with highly complex, adaptable and evolving benchmark targets (com-
ponents, systems and services).

4. Coping with human factors in the definition and execution of benchmarks.
5. Assuring proper validation of dependability benchmarks in order to achieve the

necessary agreement to establish benchmarks. This implies the validation of the
different benchmark properties.

6. Assuring reusability of benchmark frameworks (components and tools) to create
benchmarks in different benchmarking domains.

7. Defining and agreeing on a domain-specific dependability benchmarking process
that can be accepted by the parties concerned (supplier, customer and certifier)
and can be adapted to different products in the domain (e.g., in a product line).

14.6 Further Trends in Benchmarking Research

Besides resilience benchmarking we see some further research trends in the area of
benchmarking, which we discuss in this section.

14.6.1 Benchmark Engineering

While developing benchmarks, we faced a lack of methodology that describes how
to develop good and meaningful benchmarks. Since benchmark development has
turned into a complex team effort, there is a need for a development methodology
taking the specifics of benchmarks into account. Compared to traditional software, the
development process has different goals and challenges. New concepts and processes
are needed which address the whole development and life-cycle management of
benchmarks. We refer to them including benchmark methodology and measurement
techniques with the term Benchmark Engineering [793]. First work is already in
progress. As example, SPEC is working on development guidelines.

14.6.2 Benchmarking of Large Scale Systems

Large scale, highly distributed systems are increasingly used in mainstream appli-
cations. However, for these systems traditional benchmarking approaches fail: how
can we benchmark a system with 500,000 nodes? What does a typical workload look
like and how does it scale? What should be the distribution of the faultload? etc.

14 Resilience Benchmarking 299

Since it is not feasible to run benchmarks in a realistic environment with thousands
of nodes, new methods are needed which allow us to benchmark large scale systems
in a realistic way on limited resources. As a consequence, we see a need for research
in the area of simulated benchmarks.

Similar questions are currently under discussion in several research areas. The
authors in [583] discuss requirements for peer-to-peer (P2P) benchmarking and
present two exemplary approaches to benchmark such systems. They point out the
challenges of developing P2P benchmarks compared to conventional benchmarks.

A very active community can be found in the area of cloud benchmarking. A dis-
cussion why traditional benchmarks are not sufficient for evaluating cloud services
can be found in [114]. The authors present some initial ideas how a cloud benchmark
should be designed including a list of requirements for such a benchmark. In [238]
the Yahoo! Cloud Serving Benchmark (YCSB) framework was introduced including
a core set of benchmarks. YCSB targets cloud data serving services, allows to create
new workloads and is extendible. Another example is the Cloudstone benchmark,
which consists of a social-events web application (with PHP and Ruby implementa-
tions) and a set of automation tools for load generation and performance measure-
ment [839]. When running the benchmark, the load is generated against the web
application, which in turn generates load on the underlying database.

There are still many open questions in the area of P2P and cloud benchmarking.
This is the reason, why the SPEC Research Group decided to launch two subcom-
mittees working on these topics.

14.6.3 Power Consumption

In the past, benchmarking focused mainly on computation performance. Since indus-
try and governments are increasingly concerned about the energy use of servers, there
is a need to reflect the power consumption in the result of a benchmark. The first
standard benchmark providing a metrics, which represents computation performance
as well as energy consumption was the SPECpower_ssj2008 benchmark. Nowadays,
more and more benchmarks include energy consumption in their result, such as SPEC
or TPC benchmarks. Consequently, the SPEC is working on the Server Efficiency
Rating Tool (SERT), a tool set to measure and evaluate the energy efficiency of
computer servers [889].

A metric for power consumption has to reflect both, traditional performance met-
rics in relation to the power consumption and not only peak performance is of inter-
est. However, energy consumption scenarios are only one example, where traditional
benchmark metrics fail or are hard to apply. A major challenge of future benchmark
development is the definition of meaningful metrics, which take other aspect than
performance and dependability into account (see also Sect. 14.5).

300 M. Vieira et al.

14.7 Conclusion

This chapter presented the state-of-the-art on benchmarking. The work on perfor-
mance benchmarking has started long ago and has contributed to improve successive
generations of systems. Dependability benchmarking efforts both at universities and
computer industry sites are quite recent. Security is a newcomer to the benchmarking
world and little work has been performed so far.

Although performance benchmarking is a very well established field, further work
on dependability benchmarking seems to be necessary in several application areas
(e.g., real-time systems, grid computing, parallel systems, etc). Additionally, no
dependability benchmark has achieved the status of a real benchmark endorsed by
a standardization body. This may be due to several reasons (that need to be studied)
but clearly shows that additional work is still needed.

In the area of security benchmarking, a lot of work is clearly needed, as this is
a new and quite challenging field for which little work has been developed so far.
A key issue is the definition of useful and meaningful security metrics. In fact, the
problem of security quantification is a longstanding one. A useful security metric
must portray the degree to which security goals are met in a given system, allowing
a system administrator to make informed decisions. One of the biggest difficulties
in designing such a metric is related to the fact that security is, usually, much more
dependent on what is unknown about the system than on what is known about it. In
fact, security metrics are hard to define and compute as they involve making isolated
estimations about the ability of an unknown individual (e.g., a hacker) to discover
and maliciously exploit an unknown system characteristic (e.g., a vulnerability).

To tackle the challenges related to the future implementation of resilience bench-
marks, the following research steps are foreseen:

1. Study the metrics that better characterize resilience.
2. Study the definition of dynamic workloads via field studies and analysis of

existing workloads.
3. Study the characterization of perturbation loads. This can be based on field

studies and on the analysis of already existing faultloads.
4. Define the steps needed for the execution of a resilience benchmark. These steps

define the benchmark procedure and should be as generic as possible to allow
the portability of the benchmarking approach.

5. Conduct benchmarking campaigns to demonstrate the benchmark and validate
its properties.

6. Generalize the resilience benchmarking approach to make possible its applica-
tion in different domains.

7. Disseminate the benchmarking approach. A key aspect is to identify the best way
to foster the adoption by industry and to facilitate the support by a standardization
body like TPC and SPEC.

14 Resilience Benchmarking 301

Acknowledgments The work of Marco Vieira and Henrique Madeira was partially funded by the
European Commission under project AMBER - Assessing, Measuring and Benchmarking Resilience,
IST - 216295, funded by the European Union, 2009. The work of Samuel Kounev was partially
funded by the German Research Foundation (DFG) under grant No. KO 3445/6-1.

	14 Resilience Benchmarking
	14.1 Introduction
	14.2 Performance Benchmarking
	14.2.1 SPEC Benchmarks
	14.2.2 TPC Benchmarks
	14.2.3 EEMBC Benchmarks
	14.2.4 Other Performance Benchmarks

	14.3 Dependability Benchmarking
	14.3.1 Special Interest Group on Dependability Benchmarking (SIGDeB)
	14.3.2 DBench Project
	14.3.3 Berkeley University
	14.3.4 Carnegie Mellon University
	14.3.5 Sun Microsystems
	14.3.6 Intel Corporation
	14.3.7 IBM Autonomic Computing Initiative

	14.4 Security Benchmarking
	14.5 Resilience Benchmarking
	14.6 Further Trends in Benchmarking Research
	14.6.1 Benchmark Engineering
	14.6.2 Benchmarking of Large Scale Systems
	14.6.3 Power Consumption

	14.7 Conclusion

