
Chapter 11
Field Studies on Resilience: Measurements
and Repositories

Joao Duraes, José Fonseca, Henrique Madeira and Marco Vieira

Abstract This chapter is devoted to field studies and the aspects related to this kind
of measurements. The importance of measurements collected from the operational
scenarios is discussed, and two case studies are presented. Field measurements are
closely tied to data repositories, and this chapter presents an overview of some field
data repositories available to the public.

11.1 Introduction

Field measurements refer to observations of systems in the operational phase, i.e.,
systems that are actually in use. The results obtained from these observations have
the very important characteristic of being realistic: the operation conditions and envi-
ronment, and the workload are not mere experimental approximations. Very often,
field studies are not representative as there is no guarantee that all possible, impor-
tant system configurations have been observed. Nevertheless, field measurements
and field data are a unique and very important source of information for researchers
when studying resilience properties, such as availability, reliability and robustness.

J. Duraes (B)

DEI/CISUC, Polytechnic Institute of Coimbra, 3030-290 Coimbra, Portugal
e-mail: jduraes@isec.pt

J. Fonseca
DEI/CISUC, University of Coimbra & UDI, Polytechnic Institute of Guarda,
3030-290 Coimbra, Portugal
e-mail: josefonseca@ipg.pt

H. Madeira · M. Vieira
DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal
e-mail: henrique@dei.uc.pt

M. Vieira
e-mail: mvieira@dei.uc.pt

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 213
DOI: 10.1007/978-3-642-29032-9_11, © Springer-Verlag Berlin Heidelberg 2012

214 J. Duraes et al.

There are basically two main driving forces behind the collection of field data:
development and research. The first is committed to the improvement of specific
systems and to solve problems on those specific systems that are discovered during
the operational phase. The second driving force aims to understand the issues related
to systems reliability and dependability and to propose new techniques to increase
the reliability of non-specific (non vendor-specific) systems. A third driving force
is a market-driven one, to promote awareness of a given product (e.g., network
providers, such as sprint and AT&T, publish their performance and dependability
data to promote the company and attract new customers). However, the first two
driving forces are those more relevant to research works.

The research driving force, although not tied to specific vendors or industry goals,
is necessarily dependent on the existence of data. These data is mainly that which
was collected by users or operators and is not related to any research goal. Thus,
so far, the main origin of field data is the occurrence of incidents. This fact has an
overwhelming impact on the nature of the available data, which is mainly related
to computer failures and security incidents. To demonstrate the importance of field
measurement and what can be achieved, in this chapter we present two case studies:
the first on software faults and the second related to security vulnerabilities.

The most complex and error prone components of computer-based systems are the
software. Understanding software faults is essential to devise mechanisms to mitigate
faults existing in software. Thus, the first case study presented in this chapter is a
field study on software faults aimed at the characterization of software faults for
emulation and fault injection purposes.

Security issues are currently one of the major concerns surrounding software
systems. Networking is one of the scenarios that most exposes a system to the general
public and potential malicious users and attacks, representing a high relation with
security-related incidents. Web-based systems are currently the basis of the majority
of network-enabled systems. The second case study presented is thus related to
security vulnerabilities.

Although field data (field measurements) are highly relevant to the research com-
munity to understand and improve computer-based systems robustness, reliability
and security, the availability of such data remains hard to guarantee. The few data
available are based on open-source projects and published research works. The impor-
tance of field data is widely recognized among researchers as shown in workshops
such as RAF07: Reliability Analysis of System Failure Data organized by Microsoft
Research in Cambridge and Darmstadt University in 2007. Each open-source devel-
opment team or research team presents its own data and its own view. One important
initiative to mitigate the scarcity and fragmented view of field data is the development
of public repositories, to store data and results based on that data originating from
many sources and teams. We include in this chapter a brief overview of available
data repositories.

The outline of the chapter is as follows. Section 11.2 presents a field study on
software faults. Section 11.3 presents a field study on security vulnerabilities. An
overview of field data repositories is presented in Sect. 11.4. Section 11.5 concludes
this chapter.

11 Field Studies on Resilience: Measurements and Repositories 215

11.2 Case Study 1: Field Data on Software Faults

This section presents a field study on real software faults. This case study was con-
ducted to understand the nature of faults, and to obtain a classification scheme usable
for fault injection. Injecting faults is a time-proved method of validating fault tolerant
mechanisms and assess system robustness. Given the relevance of software faults,
it is very relevant to be able to inject software faults. The usefulness of fault injec-
tion is tied to the representativeness of the faults injected. To that aim, we need to
understand what exactly is a software fault (a clear, but detailed description usable
for automated fault injection), and obtain information on the types of faults that rep-
resent the faults more common in the operational scenario. The case study presented
here is a summarized description of that field study. More details can be found in
[315]. A technique to emulate software faults at the binary executable was proposed
based on the findings of this study (G-SQFIT, see [315]), however, the details of such
technique do not fit in a field study description and it is not presented here.

Section 11.2.1 presents the source of the software faults used in this case study
and details the methodology used for the classification of the faults. Section 11.2.2
presents a first overview of the fault distribution and makes a comparative analysis
with the field study done by Christmansson and Chillarege in [213] using the ODC
classification [205, 206] scheme. Section 11.2.3 presents an overview of the details
classification of the collected faults. Some conclusions about this field study are
presented in Sect. 11.2.4.

11.2.1 Sources of Real Software Faults and Classification
Methodology

To address the representativeness issue of our study, we collected a large set of
real software faults from software used in the field. The goal was to improve the
knowledge about the exact nature of faults and their occurrence distribution using
data from the real operational scenario. More specifically, the software faults that are
pertinent to emulate by fault injection are those that originated in the coding phase
and eluded the testing procedures and go with the deployed product.

The information source used in our work was a set of diff/patch files for sev-
eral open source programs. The diff/patch files contain source code corrections for
faults discovered after the software was released. By manual inspection of those
files we were able to extract information to understand and classify software faults.
From those diff/patch files, a total of 668 faults were analyzed. Table 11.1 presents a
summary of the programs used in this study. It is worth noting that these programs
encompass a broad range of program types: both user programs (including interactive
and command line programs) and operating system (Linux kernels) were used.

The total number of faults collected for each program is dependent on the program
age, maturity and the user community size. Some of the programs (e.g. Bash) are

216 J. Duraes et al.

Table 11.1 Source of the field data

Programs Source location Description # faults

CDEX http://sourceforge.net/projects/cdexos/ CD Digital audio data extractor 11
Vim http://www.vim.org Improved version of the UNIX vi 249
FreeCiv http://www.freeciv.org Multiplayer strategy game 53
pdf2h http://sourceforge.net/projects/pdftohtml/ pdf to html format translator 20
GAIM http://sourceforge.net/projects/gaim/ All-in-one multi-protocol IM client 23
Joe http://sourceforge.net/projects/joe-editor/ Text editor similar to Wordstar� 78
ZSNES http://sourceforge.net/projects/zsnes/ SNES/Super Famicom emulator 3
Bash http://cnswww.cns.cwru.edu/~chet/bash/bas GNU Project’s Bourne Again 2
LKernel http://www.kernel.org Linux kernels 2.0.39 and 2.2.22 93
Firebird http://sourceforge.net/projects/firebird/ Cross-platform RDBMS engine 2
MingW http://www.mingw.org/ Minimalist GNU for Windows 60
ScummV http://sourceforge.net/projects/scummvm Iterpreter for adventure engines 74
Total faults collected 668

in a mature phase and have few recent faults; other programs (e.g. VIM) are still
in the maturation phase and have a large user community that provides many fault
reports. The notion of fault requires the notion of correctness. Generally speaking,
the software is correct if it conforms to the user needs, as specified in the software
requirements. However those might be wrong. For the purpose of this work, it was
assumed that the requirements and specification are correct. Thus, a software fault
means that the code is not correct somehow (i.e., it does not implement the specifi-
cation in some particular aspect) because the code does not contain the instructions
that should have.

The approach used to analyze and classify the faults was the following:

1. First we classified the faults according to the Orthogonal Defect Classification
scheme (ODC) [205, 206]. The use of general and well accepted fault classifi-
cation is the best way to make our results available for the research community
and it allows us to compare our results with previous field studies.

2. In a second step we grouped the faults in each ODC class according to the nature
of the defect, defined from a building block programming point of view. That
is, for each ODC class a software fault is further characterized by one or more
programming language constructs that is either missing, wrong or in excess. Pro-
gramming language constructs may be statements, expressions, function calls,
etc. A fault may then fall in one of three possible types: missing construct,
Wrong construct, and Extraneous construct. This is very relevant to fault emu-
lation/injection since emulating an omission (missing construct) is substantially
different from emulating a wrong construct (e.g., erroneous expression).

3. In a last step, faults were further described and grouped into specific types.
Each type is defined according to the language construct and program context
surrounding the fault location. This description refinement is also particularly
relevant for fault injection purposes since it helps (a) the identification of suitable

http://sourceforge.net/projects/cdexos/
http://www.vim.org
http://www.freeciv.org
http://sourceforge.net/projects/pdftohtml/
http://sourceforge.net/projects/gaim/
http://sourceforge.net/projects/joe-editor/
http://sourceforge.net/projects/zsnes/
http://cnswww.cns.cwru.edu/~chet/bash/bas
http://www.kernel.org
http://sourceforge.net/projects/firebird/
http://www.mingw.org/
http://sourceforge.net/projects/scummvm

11 Field Studies on Resilience: Measurements and Repositories 217

locations in the target code, and (b) the code modifications necessary to emulate
a given fault type.

The resulting final classification can be viewed as an extension to ODC and is used to
define fault emulation operators (each operator emulates one specific type of faults).

11.2.2 ODC Classification and General Analysis

According to the Orthogonal Defect Classification, a software fault is characterized
by the change in the code that is necessary to correct it, i.e., to put the code consistent
with the specification, which is assumed to be correct in our case. From the list of
ODC types, the following are directly related to the code and relevant to our work:

• Assignment: value(s) assigned incorrectly or not assigned at all.
• Checking: missing or incorrect validation of data and conditional statements, wher-

ever these checks and conditions may appear (e.g., an incorrect loop condition).
• Interface: errors in the interaction among components, modules, device drivers,

functions calls, and similar.
• Timing/serialization: missing or incorrect serialization of shared resources.
• Algorithm: incorrect or missing implementation that can be fixed only by

(re)implementing an algorithm or data structure without the need of a design
change.

• Function: affects a sizeable amount of code and refers to capability that is either
implemented incorrectly or not implemented at all.

As field data available to us did not include any information on timing or seri-
alization properties, we did not consider the Timing/serialization ODC type. The
mapping of the faults into one of the remaining ODC types was straightforward with
the exception of the Function type which required a more detailed analysis of the code
in order to figure out whether the correction of the fault has required a design change
or not. Due to the decentralized nature of the software development methodology
of open source projects, we didn’t have direct information on redesign decisions,
which forced us to a more detailed analysis of the faults identified as candidates for
the Function ODC type. Table 11.2 presents the distribution of faults across the five
ODC fault types addressed in this work.

One interesting topic to both the theme of field-based works and to the theme of
software faults is the comparison of our results with other available field studies that
also used ODC to classify field-discovered faults. We compared our fault distribution
with the one presented in [213] as that work is the one most closely related to our own.
Because that work included Time/Serialization faults, we removed that particular
type from the comparison and normalize all the percentages leaving so that a direct
comparison could be made. Table 11.2 presents this comparison (values shown in
parenthesis are those from [213] after normalization.

It is relevant that both our data and that presented in [213] show the same trend in
the fault distribution across ODC fault types: assignment faults have approximately

218 J. Duraes et al.

Table 11.2 Fault distribution across ODC types

ODC type # faults ODC distribution (%)

Assignment 143 21.4 (21.98)
Checking 167 25.0 (17.48)
Interface 49 7.3 (8.17)
Algorithm 268 40.1 (43.41)
Function 41 6.1 (8.74)

the same weight as Checking faults; Interface and Function faults are clearly the less
frequent ones; and Algorithm are the dominant faults. All ODC classes have approx-
imately the same weight in both works. The fact that independent research works
obtained a similar fault distribution suggests that this distribution is representative
of programs in general and gives us confidence in our results. Also, the programs
analyzed in [213] (large database and operating system code) were quite different
from the ones used in our study, suggesting that this fault distribution across ODC
types is reasonably independent from the nature of the program. Although more field
studies should be conducted to consolidate this conclusion, these results suggest that
fault injection experiments should take this fault distribution trend into consideration
to improve representativeness.

Table 11.3 presents the fault distribution observed for each individual program
used in this study. To observe a trend in fault distribution across programs, only those
programs with a significant number of faults should be considered (the number of
faults is presented in the first row). Nevertheless, we decided to show the results
for all the programs. We observed that the programs with a higher number of faults
show a similar ODC fault distribution; the only observed deviation was presented
by “Joe” program, which had more checking faults than the global trend. This trend
existing across programs reinforces the suggestion that software faults do follow a
clear pattern of distribution across ODC types.

11.2.3 Extended Classification and Discussion

For the purpose of fault injection the fault types provided by ODC are not practical
as they are too broad, meaning that many different faults fall in the same type and
the types themselves lack the fine details required by an automated tool to be able
to reproduce the fault in the target code. Clearly, further refining is needed, not in
the sense of an alternative classification but as an additional detail layer to ODC.
As explained in Sect. 11.2.1, we propose to achieve this extra layer by analyzing
faults from the point of view of the (program) context in which fault occur and relate
the faults with programming language constructs. Using this notion, a defect is then
one or more programming language constructs that are either missing, wrong or in
excess. A construct is any building block of the traditional programming languages:

11 Field Studies on Resilience: Measurements and Repositories 219

Ta
bl

e
11

.3
Fa

ul
td

is
tr

ib
ut

io
n

ac
ro

ss
O

D
C

ty
pe

s
by

in
di

vi
du

al
pr

og
ra

m
s

Pr
og

ra
m

s
C

D
E

X
V

im
FC

iv
Pd

f2
h

G
A

IM
Jo

e
Z

SN
E

S
B

as
h

L
K

er
ne

l
Fi

re
B

ir
d

M
in

gW
M

To
ta

l(
%

)
#

fa
ul

ts
11

24
9

53
20

23
78

3
2

93
2

60
74

66
8

O
D

C
ty

pe
A

ss
ig

nm
en

t(
%

)
18

.2
21

.3
11

.3
55

4.
3

25
.6

66
.7

10
0

22
.6

50
10

24
.3

21
.4

C
he

ck
in

g
(%

)
18

.2
22

.5
13

.2
5

52
.2

44
.9

0
0

25
.8

50
38

.3
8.

1
25

In
te

rf
ac

e
(%

)
54

.5
6.

4
7.

5
0

4.
3

14
.1

0
0

5.
4

0
5

4.
1

7.
3

A
lg

or
ith

m
(%

)
9.

1
44

.6
52

.8
40

26
.1

15
.4

33
.3

0
33

.3
0

46
.6

56
.8

40
.1

Fu
nc

tio
n

(%
)

0
5.

2
15

.1
0

13
0

0
0

12
.9

0
0

6.
8

6.
1

220 J. Duraes et al.

statements, expressions, function calls, etc. Following this idea, we classified each
fault according to its nature which can be one of these: missing construct, Wrong
construct, or Extraneous construct. Although this classification is orthogonal to ODC
and can be used alone (as is in Table 11.4), we used it as an extension to ODC fault
types to provide a refined view of the faults specifically aimed at emulation by fault
injection.

As we can see in Table 11.4, faults of the extraneous nature are clearly less frequent
than the other two. This was an expected result, as programmers are more prone to
forget to put something in the program, or to put it in a wrong way, than to insert
surplus code. We can also see that missing programming constructs seem to be the
dominant type of software fault. From the point of view of representativeness for
fault injection experiments, this information is valuable.

Table 11.5 presents the total number of missing, wrong or extraneous faults for
each of the five ODC fault types addressed in this study. We also provide some
examples of fault to help the reader understand what kind of fault is included in each
type (this will be detailed further on). As we can see from Table 11.5, there are once
again trends that we can use to achieve representativeness in the injection of software
faults, e.g., for the assignment and interface types, missing program construct faults
are less frequent than the wrong construct faults.

We then further detailed the description of faults describing exactly what con-
structs were missing, wrong or extraneous. We did this for all ODC types and obtained
a reasonable small list of fault types (for each ODC type). This is an interesting result,
as we do not want a small list of generically-described faults where many faults fit
and for which no practical tool can emulate those faults due to lack of details, and
we also do not want a long list of over-detailed description where each fault fits into
and only into its own type, rendering any effort of representativeness useless. The
complete list of fault types for all ODC types is outside the goal of this section and
chapter. We present here in Table 11.6 the list of faults for the ODC type algorithm
and refer the user to [315] for a detailed description of this work.

The faults listed in Table 11.6 are now described with a level of detail that is useful
for practical fault injection. For example, the type MFC—missing function call refers
to the omission of a call to a routine in the program. This is an easy understandable
description that can be easily emulated into the target code. Another important issue
is the identification of suitable location where a given fault can be injected. Using
the MFC fault type again, it is relatively easily to identify occurrences of function
call in the target, even in the binary code. It is worth noting that this study was part
of an effort to devise and implement a fault injection technique able to inject realistic
software fault directly into the binary code of the target, without requiring source
code (goal that was achieved). This scenario is relevant because many fault injection
applications involve common-of-the-shelf components for which there is no source
code available.

To help readers understand the level of details that is now used to describe faults,
we use another example from Table 11.6 . Fault MIFS—Missing if construct plus
statements. This fault refers to the omission of a conditional statement deciding if a
givel (small) block of statements is executed. In C language it is something like

11 Field Studies on Resilience: Measurements and Repositories 221

Ta
bl

e
11

.4
Fa

ul
td

is
tr

ib
ut

io
n

by
fa

ul
tn

at
ur

e

Fa
ul

tn
at

ur
e

C
D

E
X

V
im

FC
iv

Pd
f2

h
G

A
IM

Jo
e

Z
SN

E
S

B
as

h
L

K
er

ne
l

Fi
re

bi
rd

M
in

gW
Sc

um
V

M
To

ta
l

(
%

)

M
is

si
ng

co
ns

tr
uc

t
3

15
7

35
11

17
34

1
0

63
2

45
61

42
9

(
64

.2
)

W
ro

ng
co

ns
tr

uc
t

8
85

18
9

6
41

2
2

24
0

14
12

22
1

(
33

.1
)

E
xt

ra
ne

ou
s

co
ns

tr
uc

t
0

7
0

0
0

3
0

0
6

0
1

1
18

(
2.

7
)

222 J. Duraes et al.

Table 11.5 Fault nature totals across ODC types

ODCtype Nature Examples # faults % of total

Assignm. Missing A variable was not assigned a value, a
variable was not initialized

62 9.3

Wrong A wrong value (or expression result, etc)
was assigned to a variable

70 10.5

Extraneous A variable should not have been subject of
an assignment

11 1.6

Checking Missing An “if” construct is missing, part of a
logical condition is missing,etc

113 16.9

Wrong Wrong logical expression used in a
condition in brach and loop on struct
(if, while, etc.)

53 7.9

Extraneous An “if” construct is superfluous and
should not be present

1 0.1

Interface Missing A parameter in a function call was
missing; incomplete expression was
used as param.

11 1.6

Wrong Wrong information was passed to a
function call (value, expression result
etc)

38 5.7

Extraneous Surplus data is passed to a function (e.g.
one parameter too many in function
call)

0 0

Algorithm Missing Some part of the algorithm is missing (e.g.
function call, a iteration construct, etc)

222 33.2

Wrong Algorithm is wrongly coded or ill-formed 40 6
Extraneous The algorithm has surplus steps; A

function was being called
6 0.9

Function Missing New program modules were required 21 3.1
Wrong The code structure has to be redefined to

correct functionality
20 3

Extraneous Portions of code were completely
superfluous

0 0

If (cond) {statement1; statement2; …. }
Once again the identification of this type of construct is easily identifiable in

the target code and easily emulated through modification in said code. One very
important aspect of the information in Table 11.6 is the number of occurrences
for each fault type. The two fault types described here are much more common than
other types (e.g., MIEA). This is a very important information to build representative
faultloads for fault injection experiments. Table 11.7 presents a global view of all
the occurrences for all fault types (all ODC types and programs).

The information summarized in Table 11.7 is very relevant. It offers two conclu-
sions about software faults:

11 Field Studies on Resilience: Measurements and Repositories 223

Ta
bl

e
11

.6
D

et
ai

le
d

an
al

ys
is

of
al

go
ri

th
m

fa
ul

ts

Fa
ul

tn
at

ur
e

Fa
ul

ts
pe

ci
fic

ty
pe

s
C

D
E

X
V

im
FC

iv
pd

f2
h

G
A

IM
Jo

e
Z

SN
E

S
B

as
h

L
K

er
ne

lF
ir

eB
ir

d
M

in
G

W
Sc

um
V

M
To

ta
l

M
is

si
ng

M
is

si
ng

fu
nc

tio
n

ca
ll

(M
FC

)
28

7
1

1
5

4
2

23
71

co
ns

tr
uc

t
M

is
si

ng
If

co
ns

tr
uc

tp
lu

s
st

at
em

en
ts

(M
IF

S)
27

10
1

15
15

12
80

M
is

si
ng

if
-e

ls
e

co
ns

tr
uc

tp
lu

s
st

at
em

en
ts

(M
IE

S)
4

3
7

M
is

si
ng

if
co

ns
tr

uc
tp

lu
s

st
at

em
en

ts
pl

us
el

se
be

fo
re

st
at

em
en

ts
(M

IE
B

)
1

10
4

2
1

18

M
is

si
ng

if
co

ns
tr

uc
tp

lu
s

el
se

pl
us

st
at

em
en

ts
ar

ou
nd

st
at

em
en

ts
(M

IE
A

)
2

1
3

M
is

si
ng

ite
ra

tio
n

co
ns

tr
uc

ta
ro

un
d

st
at

em
en

t(
s)

(M
C

A
)

1
1

M
is

si
ng

ca
se

:s
ta

te
m

en
t(

s)
in

si
de

a
sw

itc
h

co
ns

tr
uc

t
(M

C
S)

1
1

M
is

si
ng

br
ea

k
in

ca
se

(M
B

C
)

3
1

4
M

is
si

ng
sm

al
la

nd
lo

ca
liz

ed
pa

rt
of

th
e

al
go

ri
th

m
(M

L
PA

)
9

4
2

1
1

5
1

23

M
is

si
ng

sp
ar

se
ly

sp
ac

ed
pa

rt
s

of
th

e
al

go
ri

th
m

(M
L

PS
)

5
1

6
M

is
si

ng
la

rg
e

pa
rt

of
th

e
al

go
ri

th
m

(M
L

PL
)

3
1

1
3

8
W

ro
ng

W
ro

ng
fu

nc
tio

n
ca

lle
d

w
ith

sa
m

e
pa

ra
m

et
er

s
(W

FC
S)

1
2

6
9

co
ns

tr
uc

t
W

ro
ng

fu
nc

tio
n

ca
lle

d
w

ith
di

ff
er

en
tp

ar
am

et
er

s
(W

FC
D

)
9

1
3

13

W
ro

ng
br

an
ch

co
ns

tr
uc

t—
go

to
in

st
ea

d
br

ea
k

(W
B

C
1)

1
1

2
W

ro
ng

al
go

ri
th

m
—

sm
al

ls
pa

rs
e

m
od

ifi
ca

tio
ns

(W
A

L
D

)
4

1
1

6
W

ro
ng

al
go

ri
th

m
—

co
de

w
as

m
is

pl
ac

ed
(W

A
L

R
)

5
3

1
9

W
ro

ng
co

nd
iti

on
al

co
m

pi
la

tio
n

de
fin

iti
on

s
(W

SU
C

)
1

1
E

xt
ra

ne
ou

s
E

xt
ra

ne
ou

s
fu

nc
tio

n
ca

ll
(E

FC
)

4
2

6
To

ta
lf

au
lts

1
##

28
8

6
12

1
0

31
0

28
42

26
8

fo
un

d

224 J. Duraes et al.

Table 11.7 The “Top-N” fault in this study by occurrence frequency

Fault types Description Fault coverage (%) ODC types

MIFS Missing “If (cond) { statement(s) }” 9.96 Algorithm
MFC Missing function call 8.64 Algorithm
MLAC Missing “AND EXPR” in expression used

as branch condition
7.89 Checking

MIA Missing “if (cond)” surrounding
statement(s)

4.32 Checking

MLPC Missing small and localized part of the
algorithm

3.19 Algorithm

MVAE Missing variable assignment using an
expression

3 Assignment

WLEC Wrong logical expression used as branch
condition

3 Checking

WVAV Wrong value assigned to a value 2.44 Assignment
MVAV Missing variable assignment using a value 2.25 Assignment
MVI Missing variable initialization 2.25 Assignment
WAEP Wrong arithmetic expression used in

parameter of function call
2.25 Interface

WPFV Wrong variable used in parameter of
function call

1.50 Interface

Total faults coverage (field data) 50.69

• There is a relatively small set of fault types that is responsible for a large portion
of all the fault occurrences. The 12 fault types in Table 11.7 put together are
responsible for 50 % of all the faults discovered in this field study.

• There are faults that are clearly more frequent than others, and this information is
important to build representative faultloads for fault injection scenarios.

The results of this field study are very interesting for research on software faults
and for the injection of software faults. It offers insight on fault details aimed at the
realistic emulation of faults, it offers information about the distribution of the most
common type of faults in the operational scenario aimed at generating representative
faultloads, and is the basis of the G-SWFIT technique for fault injection. These
results and this technique have been used on several research works (e.g., [315, 664,
665]), and the classification scheme is used as basis for different application areas
(still related to software faults), such as security (e.g., relate vulnerabilities with its
root cause faults).

To conclude the presentation of this field study we present here one example of
a software fault as classified and described in this field study (Fig. 11.1), and one
example of a fault emulation operator of the G-SWFIT fault injection technique
developed in the sequence of this field study (Fig. 11.2). We refer the reader to [315]
for more details.

11 Field Studies on Resilience: Measurements and Repositories 225

Fig. 11.1 Example of a diff/patch file (excerpt). In this example, the patch applies a “&& !eap-
>skip” that was missing. The fault type is MLAC—Missing “AND EXPR” in expression used as
branch cond

Operator Example Example with fault Search pattern Code change

OMIEB

if (expression)

{

statements-IF

}

else

{

statements-ELSE

}

… remaining code

if (expression)

{

statements-IF

}

else

{

statements-ELSE

}

… remaining code

flag-affecting instr.

jcond elsecode

… instrs (IF)

jmp after

elsecode:

… instrs (ELSE)

after:

… remaining code

- All the conditional

jumps to the address

loc01 are changed

into unconditional

jumps

- Call instructions and

stores to memory

existing between the

cond jumps are

removed

Notes
There may be several cond. jumps to elsecode if expressions is composed of several sub-expressions

The side-effects (if any) of the first sub-expression are not ommited

Fig. 11.2 Operator to emulate a fault OMIEB—missing if construct and the statements surrounded
by it plus an else statement. It is not one of the most common fault types, but it serves to illustrate
the changes at the high level code and its related modification at low level to emulate the fault, as
well as search pattern used to identify suitable fault locations

11.2.4 Considerations on the Case Study

In this case study a large number of software faults were analyzed to improve the
knowledge about the nature of software faults: its nature, the frequency of its occur-
rence frequency by fault types, and how they can be emulated through fault injec-
tion. The contributions of this case study were a fault classification scheme allowing

226 J. Duraes et al.

practical injection of software faults and the knowledge about the fault distribution
across fault type as they occur in the operational scenario. The source of the data
was a set of open-source programs, without which this study would have been much
harder if not impossible: in closed-source projects, the information regarding faults
and their correction is kept within the development team. As the correction of faults
(patch code) was directly used to conduct this field study, we stress the importance
of having data available for research purposes, even in closed-source projects. This
data can hardly be used for commercial purposes, and, excepting issues related to
security, a concerted effort should be made by academia to try and obtain data such
as the one used for this study. This effort should be articulated with the creation of
data repositories to help spreading the data and results of field data studies.

11.3 Case Study 2: Field data on Security Vulnerabilities

In this section we present the results of a field study on the most common vulnera-
bilities, which provides a truthful body of knowledge on real security vulnerabilities
that accurately emulate real world security problems. The data was obtained by ana-
lyzing past versions of representative web applications with known vulnerabilities
that have already been corrected. The main idea is to compare the piece of defective
code with the corrections made to secure it. This code change (or the lack of it in the
vulnerable application) can be viewed as the reason for the presence of the vulner-
ability. Note that this methodology can generically be used in other field studies to
obtain the characterization and distribution of the source code defects that originate
vulnerabilities in web applications.

The field study uses data from 655 SQL Injection and XSS security patches of
six widely used web applications. The detailed analysis of the code of the patches
shows that web application vulnerabilities result from software bugs affecting only a
restricted collection of statements, which greatly facilitates the emulation of vulner-
abilities through fault injection, as the effort can be concentrated on the emulation
of vulnerabilities in a small number of types of statements.

Sections 11.3.1 and 11.3.2 describe the methodology used to collect the field
data in this field study. Section 11.3.3 presents the systems addressed in the study,
and the vulnerabilities addressed are presented in Sect. 11.3.4. Section 11.3.5 details
the information gathered in the study and the results are presented in Sect. 11.3.6.
Section 11.3.7 summarizes this case study.

11.3.1 Vulnerability Analysis and Classification Methodology

When web application vulnerabilities are discovered, software developers correct the
problem releasing application updates or patches. In our study, we used these patches
to understand which code is responsible for security problems in web applications.

11 Field Studies on Resilience: Measurements and Repositories 227

With this approach, we can classify the code structures that cause real security flaws
and identify the most frequent types of vulnerabilities observed in the web applica-
tions considered in our field study.

For each web application under test, the methodology to classify the security
patches is the following:

1. Verification of the patch to obtain the right version of the web application where
it applies. We need to confirm the availability of the specific version of the web
application and obtain it for the rest of the process. It is mandatory to have both
the patch and the vulnerable source code to be able to analyze what code was
fixed and how, unless the patch file has all this information (which we found to
be unusual).

2. Analysis of the code with the vulnerability and compare it with the code after
being patched. The difference between the vulnerable and the secure piece of
code is what is needed to correct the vulnerability. This is what the software
developer should have done when he first wrote the program and this is what we
have to classify.

3. Classification of each code fix that is found in the patch. The absence of the
actions programmed in the patch represents what causes the vulnerability. For
example, if the patch replaces the variable $id with intval($id)1, we consider that
the vulnerability is caused by the absence of the intval function in the original
code. To be accurate, we followed the patch code analysis guidelines described
in the next section.

4. Loop through the previous steps until all available patches of the web application
have been analyzed.

11.3.2 Patch Code Analysis Guidelines

Web applications are developed using different coding practices and during the clas-
sification of the security patches we face different scenarios and have to make some
decisions that need to be clarified. To avoid classification mistakes and misinterpre-
tations the following guidelines are followed:

1. We assume that the information publicly disclosed in specialized sites is accurate
and that the fix developed by the programmer of the patch and made available
by the company that supports the web application solved the stated problem. We
do not test the presence of the vulnerability nor confirm its correction.

2. To correct a single vulnerability several code changes may be necessary. This
way, each code change was considered as a singular fix. For example, suppose
that two functions are needed to properly sanitize a variable. Missing any of these
functions makes the application vulnerable, so both of them must be taken into

1 The intval is a PHP function that returns the numeric value of a variable, or 0 on error.

228 J. Duraes et al.

account. In this case, if we want to simulate the vulnerability, we may remove
any of the singular fault type fixes.

3. When a patch can fix several vulnerability types simultaneously, each one is
accounted separately. This occurred naturally because we analyzed each vulner-
ability independently, as if we were doing several unrelated analyses, one for
each vulnerability type. For example, this occurs when a not properly sanitized
variable is used in a query (e.g. allowing SQL Injection) and later on is displayed
on the screen (e.g. allowing XSS). When this variable is properly sanitized, both
vulnerabilities are mitigated simultaneously, however this situation accounts for
the statistics of both XSS and SQL Injection vulnerabilities.

4. When a particular code change corrects several vulnerabilities of the same type,
each one is considered as a singular fix. For example, suppose that the value
assigned to a specific variable comes from two sources of external inputs; and
the variable is displayed in one place without ever being sanitized. We consider
that the application has two security vulnerabilities because it can be attacked
from two different inputs. However, to correct the problem all that is needed is
to sanitize the variable just before it is displayed. In this example we consider
that two security problems have been fixed, although only one code change was
needed.

5. A security vulnerability may affect several versions of the application. This
happens when the code is not changed for a long time, but it is vulnerable. The
patch to fix the problem is the same for all versions, and therefore it is considered
to be only one fix.

By following the previous guidelines, it was possible to classify almost all the code
fixes analyzed. However, in some situations, patching one or more vulnerabilities may
involve so many changes, including the creation of new functions or a change in the
structure of the overall piece of code, that it is too difficult to classify it properly. These
situations are usually associated with major code changes involving simultaneously
security and other bug fixes related to functional aspects. These occurrences were
quite marginal (5.4 %) and were not considered in our study because they are too
complex and difficult to analyze due to the lack of source code documentation.

11.3.3 Web Applications Analyzed

One mandatory condition for our field study is to have access to the source code of
the web applications under analysis. The code of previous versions and the associ-
ated security patches must also be accessible. The other mandatory condition is the
availability of information correlating the security fix and the specific version of the
web application.

The goal is to be sure that it is possible to access the source code (including the
code of older versions) in order to be able to analyze and understand the security

11 Field Studies on Resilience: Measurements and Repositories 229

vulnerability and how it was fixed. Actually, the way a given vulnerability is fixed is
a key aspect in the classification of the fault type originating the vulnerability.

For the present study we have selected six LAMP (Linux, Apache, MySQL and
PHP) web applications: PHP-Nuke [726], Drupal [307], PHP-Fusion [493] , Word-
Press [943], phpMyAdmin [728] and phpBB [727]. These are open source web appli-
cations that represent a large community of users and, fortunately, there is enough
information available about them to be researched. Additionally, they represent a
large slice of the web application market and have a large community of users:

• Drupal (winner of the first place at the 2007 and 2008 Open Source CMS Award),
PHP-Fusion (one of the five winner finalists at the 2007 Open Source CMS Award)
and phpBB (the most widely used Open Source forum solution and the winner of
the 2007 SourceForge Community Choice Awards for Best Project for Communi-
cations) are Web Content Management Systems (CMS). A CMS is an application
that allows an individual or a community of users to easily create and administrate
web sites that publish a variety of contents.

• PHP-Nuke is a well-known web based news automation system built as a commu-
nity portal. PHP-Nuke is one of the most notorious CMS and it has been down-
loaded from the official site over 8 and half million times.

• WordPress is a personal blog publishing platform that also supports the creation
of easy to administrate web sites. It is one of the most used blog platforms in the
World.

• phpMyAdmin is a web based MySQL administration tool. It is one of the most
popular PHP applications, is included in many Linux distributions, and was the
winner of the 2007 SourceForge Community Choice Awards for Best Tool or
Utility for SysAdmins.

The six web applications analyzed are so broadly used since several years ago
that they have a large number of vulnerabilities disclosed from previous versions,
which were the subject of analysis of the field study. It is important to emphasize
that a single vulnerability opens a door for hackers to successfully attack any of
the millions of web sites developed with a specific version of the web application.
Furthermore, it is common to find a single vulnerability in a specific version that
also affects a large number of previous versions. The overall situation is even worse
because web site administrators do not always update the software in due time when
new patches and releases are available.

11.3.4 Security Vulnerabilities Studied

In the present work we focus on two of the most critical vulnerabilities in web
applications: XSS and SQL Injection. A Cross Site scripting (XSS, but also known
as CSS) vulnerability allows the attacker to inject HTML and/or a scripting language
(usually JavaScript) into a vulnerable web page [710] . A SQL Injection vulnerability

230 J. Duraes et al.

allows the attacker to tweak the input fields of the web page in order to alter the query
sent to the back-end database [709].

Exploits of these vulnerabilities take advantage of unchecked input fields at user
interface, which allows the attacker to change the SQL commands that are sent to the
database server (SQL Injection), or allows the attacker to input HTML and a scripting
language (XSS). Two main points account for the popularity of these attacks:

• The easiness in finding and exploiting such vulnerabilities. They are very common
in web applications and within a web browser the attacker can probe for these
vulnerabilities tweaking GET and POST variables that are available in the HTML
page. The building of an exploit for fun or profit can be a bit more time consuming,
but there are plenty information and guides on how to do it (e.g. look at [409, 708]
for XSS and [408, 708, 720] for SQL Injection, just to mention a few).

• The importance of the assets they can disclose and the level of damage they may
inflict. In fact, SQL Injection and XSS allow attackers to access unauthorized
data (read, insert, change or delete), gain access to privileged database accounts,
impersonate another user (such as the administrator), mimicry web applications,
deface web pages, get access to the web server, malware injection, etc. [347].

11.3.5 Patch Code Sources

For all the applications analyzed, we collected the source code of both the vulnerable
and the patched versions. By comparing these two versions, we could understand the
characteristics of the vulnerability and classify what code was changed to correct it.

Software houses and developers follow their own policies in what concerns the
public availability of older versions of the software, particularly when they have
security problems. In some cases, they can be hard to find and even the access to
the past collection of vulnerability patches can be a cumbersome task. Furthermore,
most security announcements publicly available are so vague that it is too difficult
(or even impossible) to know which source files of the application are affected by a
particular vulnerability. Moreover, some of the disclosed information about security
problems is too generic and groups together several types of security vulnerabilities
(e.g., using the same document to refer to directory traversal, remote file inclusion
and COOKIE poisoning vulnerabilities), which makes it more difficult to map our
target vulnerabilities to the code fixing them.

In order to gather the actual code of security patches, we have to use several sources
of data, such as mirror web sites, other sites that provide the source code (mainly on
blogs or forums), online reviews, news sites, sites related to security, hacker sites,
change log files of the application, the version control system repository, etc.

For the purpose of this study, we just need the changes made to the code of the
application correcting the vulnerability problem (i.e., the source code of the entire
application is not required). However, as there is no standard way of providing the
data about the security vulnerability fix, different sources of information have to be

11 Field Studies on Resilience: Measurements and Repositories 231

considered, each one following its own specific format. The four main source types
used in the current work are the following:

1. Security patch files with information about the target version of the application.
In this case, we have the reference to the buggy version of the web application
and to the patch file that must be applied to mitigate the target vulnerability.

2. Updated version of the web application. Actually, this is a completely new
version of the application containing new features and bug fixes (including secu-
rity ones). This is the most common source of information we have found, but
it is also the one that needs more exploration work to be done.

3. Available security diff file. In this case, there is a diff file, which is a file containing
only the code differences between two other files with information about what
lines of the original file have been removed, added or changed. It has, therefore,
the precise code changes needed to fix a referenced vulnerability.

4. Version control system repository. Almost all relevant open source applications
are developed using a version control system to administer the contributions
of the large community of developers from around the world. This is the most
complete source of information we can have about the application, although it
may be difficult to find what we are looking for in such a vast collection of files
and versions.

Once the vulnerable code and the respective patch are obtained using one of the
previous sources of information, a differential analysis is performed to identify the
locations in the code where the defects are fixed. This operation is done mainly
through the use of diff utility. The Unix diff utility is a file comparison tool that
highlights the differences between two files using the algorithm to solve the longest
common subsequence problem [455]. A manual analysis of the code can be also
performed when the output of the diff utility is too complex due to a large number
of changes between the two versions of the source code, or when many corrections
are done in the same file. The manual analysis also helps grouping several security
corrections and discarding the code changes not related to security issues.

11.3.6 Field Study Results and Discussion

In the field study we classified 655 XSS and SQL Injection security fixes found
in the six web applications analyzed (PHP-Nuke, Drupal, PHP-Fusion, WordPress,
phpMyAdmin and phpBB). We followed a classification scheme based on the soft-
ware fault classification proposed in [314] and adapted the fault types specific to
XSS/SQL injection (e.g., MFC to MFCext).

The overall distribution of the fault types found in the six web applications ana-
lyzed is shown in Table 11.8. In this table we can see the individual results for
each fault type allowing us to understand how they are distributed along the web
applications analyzed.

A common belief is that vulnerabilities related to input validation are mainly due
to missing if constructs or even missing conditions in the if construct. However, our

232 J. Duraes et al.

Table 11.8 Detailed results of the field study on the most common software faults generating
vulnerabilities

Web app. PHP-Nuke Drupal PHP-Fusion WordPress phpMyAdmin phpBB

Fault type SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS %
MFCext. 120 133 4 39 6 13 6 94 1 51 3 27 76
WPFV 31 3 2 5 4 1 7
MIFS 5 2 2 7 6 10 2 5
WVAV 2 3 2 4 17 4
EFC 1 1 4 1
WFCS 3 1 1 13 3
MVIV 1 1 3 4 1
MLAC 1 2 4 2 1
MFC 2 1 1 1
MIA 1 1 0
MLOC 1 0
ELOC 1 0
Total faults 158 137 4 55 21 33 6 109 1 73 3 55 100

field study shows that this is not the case, as the overall “missing IF…” fault types
(MIFS and MIA: see Table 11.8) only have a weight of 5.5 %. As for the “missing
<condition>…” fault types (MLAC and MLOC), they represent only 1.52 % of all
the fault types. This suggests that programmers typically do not use if constructs to
validate the input data, and this may occur due to the complexity of the validation
procedures needed to avoid XSS and SQL Injection.

The typical approach we found in the field is the use of a function to clean the input
data and let it go through, instead of stopping the program and raise an exception (or
show an error page). This may be understood as a design goal trying to prevent the
disruption of the interaction of users to the least possible. In what concerns security,
it would be better to allow only inputs known as correct (white list) as this prevents
any input with suspicious characters to go any further and is more secure than just
cleaning the input from malicious characters and let the operation continue normally.

Analyzing the global distribution of web applications vulnerabilities we found
70.53 % of XSS and 29.47 % of SQL Injection showing that XSS is the most frequent
type by far. As shown, all the fault types account for XSS vulnerabilities but only
eight fault types report to SQL Injection, which might help justify the fact that XSS is
more prevalent than SQL Injection, confirming the results of the IBM X-Force®2008
Trend and Risk Report [819]. This trend is also confirmed by vulnerability reports
disclosed in CVE [657, 707]. However, the four fault types that do not contribute to
SQL Injection (MFC, MIA, MLOC and ELOC) only account for 1.22 % of all the
fault types. Obviously, we do not have enough sample values to conclude that SQL
Injection may not be derived from one of these fault types. We can only say that we
did not find them in our field study.

There are several factors that contribute to the prevalence of XSS. XSS is easier
to discover because it manifests directly in the tester web browser window. Every

11 Field Studies on Resilience: Measurements and Repositories 233

input variable of the application is a potential attack entry point for XSS, which is
not the case for SQL Injection, where only variables used in SQL queries matter.
Another factor that contributes to the prevalence of XSS is that SQL Injection alters
the database records and this cannot be always seen in the interface, at least so
explicitly as XSS. Moreover, the knowledge needed to test for XSS [409, 708] is
not as complex as for SQL Injection, for which the attacker needs to have deep
knowledge about the SQL language. Although the SQL language is usually based
on the SQL-92 standard [290], every database management system (DBMS) has its
own extensions and particularities [408, 708, 720], that need to be taken into account
when searching for SQL Injection.

The most representative and widespread fault type is the “Missing function call
extended (MFCext.)”. It represents 75.87 % (140 SQL Injection + 357 XSS out of
655 vulnerabilities studied) of all the fault types found. The high value observed for
the MFCext fault type comes from the massive use of specific functions to validate
or clean data that comes from the outside of the application (user inputs, database
records, files, etc.). In many cases, functions are also used to cast a variable to a
numeric value, therefore preventing string injection in numeric fields.

The next three most common fault types are “wrong variable used in parameter of
function call (WPFV)”, “missing IF construct plus statements (MIFS)”, and “wrong
value assigned to variable (WVAV)”.

A recurring problem is that, looking at several versions of the same program, we
frequently found the same regex string being slightly updated as new attacks are
discovered. These situations were found in WPFV and WVAV faults.

Excluding the faults types already discussed (MFCext., WPFV, MIFS and WVAV),
the remaining fault types correspond to only 7.63 % of the security vulnerabilities
found. These fault types are EFC, WFCS, MVIV, MLAC, MFC, MIA, MLOC and
ELOC.

11.3.7 Considerations on the Case Study

In this case study we presented a methodology for characterizing the most frequent
fault types associated with the most common web application vulnerabilities based
on a field study. We focused on XSS and SQL Injection vulnerabilities of six widely
used web applications, using 655 security fixes as the field data. Results show that
only a small subset of 12 generic software faults is responsible for all the XSS and
SQL Injection vulnerabilities analyzed.

One relevant outcome of the field study performed is referred to the distribution
of vulnerabilities by a reduced number of fault types. In fact, we observed that a
single fault type, the MFCext. (missing the function responsible for cleaning the
input variable), is responsible for about 76 % of all the security problems analyzed.
Previous studies on software fault types [212, 312] also show this large dependency
on a few bug types. Furthermore, this trend is not new in the security area: Microsoft
has already stated that fixing the top 20 % of the reported bugs eliminates around 80 %
of errors [785] and the Gartner Group reported that 20 % of security test rules uncover

234 J. Duraes et al.

80 % of errors [574]. This concentration of the responsibility of most vulnerabilities
on just a few fault types can be very important to address the web applications security
and makes it feasible to emulate vulnerabilities by means of fault injection, which
has already been started to be addressed by the research community [322, 342, 344,
815].

11.4 Overview of Data Repositories

Data repositories are an excellent resource to store and share information for research
purposes. One type of valuable information that can be shared through data reposi-
tories is the result from field data studies. Although data repositories to store failure
data and dependability experiments results are relatively rare (especially considering
the huge value of real failure data to help designers in improving computer systems),
several initiatives have been proposed and are currently available.

The Data & Analysis Center for Software (DACS) is a Department of the US
Defense Information Center supporting research on software reliability and quality. It
serves as centralized source for data related to software metrics. The DACS maintains
the Software Life Cycle Experience Database (SLED). This repository is intended
to support the improvement of the software development process. The SLED is
organized into nine data sets covering all phases and aspects of the software lifecycle
([253] and [477]). Examples of these datasets are:

• The DACS Productivity Dataset (collected from government and private industry
sources). This dataset consists of data on over 500 software projects and is mainly
oriented to software cost modelling and productivity analysis [678]. The data
represents software from early 60s to early 80s and includes software projects
ranging from avionics to off-the-shelf packages. The information in this dataset
includes the following: size of project, effort, language, schedule, errors.

• The NASA/SEL Dataset (contributed by the Software Engineering Laboratory
(SEL) at NASA Goddard Space Flight Center). This repository maintains data
on avionic applications since 1976. The dataset is available by request on disk
and it can be accessed through web browser. Using the latter, users have access
to analytical summaries including linear regression, scatter plots and histograms.
The analytical results are created dynamically per request during the HTTP session
and served to the user browser. The repository information is stored in a relational
database and the link between the data repository and the web server is supported
through Perl applications.

• The Software Reliability Dataset (collected at Bell Laboratories) [669]. This repos-
itory describes failures in a wide range of application domains including real time,
control, office, and military applications. This dataset was primarily aimed at the
validation of software reliability models and to assist software managers to mon-
itor and predict software tests. As in the NASA/SEL dataset, the information can
be obtained by request, and it can also be accessed through web interface.

11 Field Studies on Resilience: Measurements and Repositories 235

The Metrics Data Program (MDP) Repository is a database maintained by the NASA
Independent Verification and Validation facility [674]. The repository is aimed at the
dissemination of non-specific data to the software community and it is made available
to the general public at no cost. All the data available in the repository are sanitized
by the projects representatives, and all the necessary clearances are provided. Users
of the repository are free to analyze the data for their specific research goals.

The MDP repository is part of the MDP on-going effort to improve the ability to
predict error in software by improving the quality of the problem data related to soft-
ware (e.g., improve the quality of the information about the relationship of the error
and the development phase). To this effort, the MDP recruits the participations of
private-sector and public-sector projects. Recruited projects maintain complete con-
trol of data release and the level of participation in the program. The effort required
by the participating projects is minimal. The repository contains data on the software
projects that were collected and validated by the MDP program, spanning more than
8 years and including more than 2700 error reports. The information stored in the
repository consists of error data, software metrics data, and error data at the func-
tion/method level. The dataset enables data associations between products, metrics,
and errors classified according to the Orthogonal Defect Classification (ODC) [204].

The Software Reference Fault and Failure Data Project [689] is maintained by the
National Institute of Standards and Technology and is aimed at the development of
metrology, taxonomy and repository for reference data for software assurance. The
project maintains a repository on software fault data specifically aimed at helping
industry protect against releasing software systems with faults and to help assess
software systems quality by providing statistical methods and tools. The repository
is available to the public upon request. The access to the information online allows
users to view data and execute simple queries. Analytical and statistical use of the
data is possible through a program developed within the project and available to the
public (the EFFTool).

The Computer Failure Data Repository (CFDR) is a public repository on com-
puter failure data ([74] and [182]) supported by USENIX. The repository is aimed
at the acceleration of the research on system reliability with the ultimate goal of
reducing or avoiding downtime in computer systems. To this goal, the CDFR hopes
to remove the main difficulty faced by researchers, which is the lack of reliable and
precise information about computer failures. The CDFR repository is open to both
obtaining and contributing data. The repository comprises nine independent data-sets
focusing mainly on very large storage systems. The repository information covers
many aspects, including: software failures, hardware failures, operator errors, net-
work failures, and operational environment problems. The raw data are available to
the public [182] through web interface. The project does not offer online capability
for analytic and statistical data-processing.

The AMBER Raw Data Repository [32] is a repository of field data and raw results
from resilience assessment experiments. Its goal is to grant both the research and
IT industry communities with an infrastructure to gather, analyze and share field data
resulting from resilience assessments of systems and services, stimulating a better
coordination of high quality research in the area, and contributing to the promotion

236 J. Duraes et al.

of a standardization of resilience measurement, which will in turn have a positive
impact in the industry. While experimental and field data repositories are recogniz-
ably fundamental for supporting the advance of research and the dissemination of
knowledge, the research community still seems somewhat reluctant in embracing
such enterprises. This repository aims to encourage acceptance from the community
to share its data and promote the research involving several partners sharing data.

Publicly available vulnerability databases currently play a very important role in
making the information on vulnerabilities available to researchers and have com-
pletely reshaped the way software vulnerabilities are reported and disseminated in
recent years. Examples of popular vulnerability databases are the National Vulner-
ability Database [693] and The Open Source Vulnerability Database [705], which
provide comprehensive reports about discovered software vulnerabilities including
the nature of a vulnerability (its type, the component where it was located, the list of
vulnerable system versions, its discovery date, and so on) and include examples on
how to exploit it, as well as the patch or the workaround provided by system vendor
to fix it (when available). Additionally, to alert users about the severity and secu-
rity risk of reported vulnerabilities, these databases typically provide vulnerability
impact and exploitability levels assigned by security advisors. These databases also
provide a web-based interface that enables users to search vulnerabilities and browse
a list of the vulnerabilities reported for a given system.

11.5 Conclusion

The case studies presented in the chapter allow drawing some conclusions on field
measurements and field data studies. Although the focus of the chapter is software
faults and security vulnerabilities, these conclusions apply to any type of measure-
ment obtainable in the field. Important aspects that are self-evident are the represen-
tativeness of the measurements and results, the classification used to describe them
and manipulate data, and the mechanisms to make data and results available to the
research community and general public.

Concerning data on the robustness of the computer-based systems, field data is
mostly obtained from reports (bug reports, incident reports, security logs, and so on,
depending on the nature of the incident). These reports are filed by the users and
operators and are typically used by the system developers to solve the incidents and
improve the system.

Observations made in closed-source, proprietary systems are typically not avail-
able to the public. Observations originating from open-source systems are normally
made available to the community (e.g., stored in a repository). However, these repos-
itories are normally not oriented to a systematic storage and classification of the
discovered faults and remedies. Instead they are the result of the accumulation of
solution to problems resulting in a kind of logfile-like information about which prob-
lems were discovered (bug reports, many times repeated), and how were solved. The
exception to this are the repositories maintained by researchers in the context of

11 Field Studies on Resilience: Measurements and Repositories 237

long-term research in large companies, such as IBM. These are good initiatives, but
typically are very different from one another. It would be of great value to the research
community to have information on software faults available in a systematized and
uniform way. Repositories like the ones described in the chapter are good initiatives
in that direction.

Concerning security, the information pertinent to research is even harder to find
than those about software faults. It is not the case of data availability (as it is for
faults in closed-source systems). On the contrary, there is plenty of information. The
major problem is that there is too much information, scattered and mostly repeated,
and classified using different schemes. A given security issue may have been clas-
sified according to in scheme and given one value of severity, for instance, and in
another repository, the same vulnerability may appear with a different description
and different characterization.

The usefulness of public repositories to the research communities is demonstrated
by the existence of studies based on the information stored in publicly available
repositories (e.g. [32]). Nevertheless, and in spite of the different repository initia-
tives already available, the raw data from the vast majority of research works on
experimental dependability evaluation and on field failure data, among other exam-
ples, is not available in any repository. Hundreds of papers have been published but
the raw data that have led to the final results presented in those papers is not available.
Data repositories do seem a very promising initiative to provide the means to have
a uniform description of raw data and results and make this information available to
the public, and perhaps some more concerted effort should be placed towards creat-
ing and maintaining said repositories. One example among several is the AMBER
repository, which was built specifically to share data among different teams.

	11 Field Studies on Resilience: Measurements and Repositories
	11.1 Introduction
	11.2 Case Study 1: Field Data on Software Faults
	11.2.1 Sources of Real Software Faults and Classification Methodology
	11.2.2 ODC Classification and General Analysis
	11.2.3 Extended Classification and Discussion
	11.2.4 Considerations on the Case Study

	11.3 Case Study 2: Field data on Security Vulnerabilities
	11.3.1 Vulnerability Analysis and Classification Methodology
	11.3.2 Patch Code Analysis Guidelines
	11.3.3 Web Applications Analyzed
	11.3.4 Security Vulnerabilities Studied
	11.3.5 Patch Code Sources
	11.3.6 Field Study Results and Discussion
	11.3.7 Considerations on the Case Study

	11.4 Overview of Data Repositories
	11.5 Conclusion

