

Resilience Assessment and Evaluation
of Computing Systems

Katinka Wolter • Alberto Avritzer
Marco Vieira • Aad van Moorsel
Editors

Resilience Assessment and
Evaluation of Computing
Systems

123

Editors
Katinka Wolter
Institute of Computer Science
Free University Berlin
Berlin, Germany

Alberto Avritzer
Siemens Corporate Research and

Technology
Princeton, NJ, USA

Marco Vieira
Faculdade de Ciências e Tecnologia
Departamento de Engenharia Informática
Universidade de Coimbra
Coimbra, Portugal

Aad van Moorsel
Newcastle University
Newcastle upon Tyne, UK

ISBN 978-3-642-29031-2 ISBN 978-3-642-29032-9 (eBook)
DOI 10.1007/978-3-642-29032-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012941627

ACM Computing Classification (1998): C.4, G.3, D.2

� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This Springer Verlag book is a natural consequence of the workshop on Resilience
Assessment and Evaluation organized in the seminar series of Schloss Dagstuhl in
July 2010. As such, the book got its inspiration from the high quality and serene
professional facilities at the Leibniz Centre for Informatics and the relaxing and
inspiring Saarland country side near the Dagstuhl castle. For one week, about 25
scientists and engineers in resilience assessment and evaluation came together at
Dagstuhl and discussed the latest trends in the field, in highly informal manner.
You can find information about the original seminar by googling for ‘Dagstuhl
seminar10292’.

The aim of the book is to provide an extensive overview of past, current, and
future trends in resilience assessment and evaluation. Most participants at the
seminar have contributed to this book, discussing case studies, general concepts,
and their latest research. This book also leverages another effort that ran for the 2
years preceding the seminar, namely the EU FP7 sponsored coordination action
AMBER: Assessing, Measuring and Benchmarking Resilience. AMBER aimed at
providing a research agenda for the EU in resilience assessment and evaluation.
Several chapters in this book are extensions of earlier versions that were made
available publicly in the form of deliverables in the AMBER project.

We perceived the need for a book that targets engineers in dependable computer
systems as well as academics and their PhD and MSc students. Modern-day
computer systems integrate increasingly many components and systems, with
growing demands from users and increasingly diverse failure and attack modes
from which the system requires to be protected. This holds in varying degrees for
our home and entertainment networks, for increasingly integrated enterprise sys-
tems, for safety critical computers in planes and plants, and for the critical
infrastructure that serves us water, energy, communication, and other basic ele-
ments of our daily lives.

Our society would want us to be able to assess the resilience of these computer
systems: what types of accidental failures and malicious attacks are these systems
subject to, and how do they deal with the failures and attacks? Can we quantify and
measure the resulting resilience for a system in a meaningful way, and if we can

v

quantify it, can we already predict it at design time, before we deploy and run the
systems? These are the main questions researchers and engineers in resilience
assessment try to answer, trying to invent and improve methods, techniques, and
tools to answer these questions.

The process in creating this book. At the Dagstuhl workshop the participants
created an outline table of contents for the book, subdivided into main parts and
individual chapters. An open call for contributions was then launched and sent to
the resilience community through widespread e-mails. The editors of this book
selected the chapters that they considered the best fit with the purpose of this book
and invited the authors to submit their proposed paper for peer review. Two rounds
of peer review were used to assure the quality of the contributions. The result, we
believe, is a set of high-quality papers that cover the most important aspects of
resilience assessment and evaluation.

How to use this book? The accompanying diagram in Fig. 1 sketches the
structure of this book, and should help the student and general reader in making
use of this book. The book is divided in seven parts, I–VII.

Each part provides a natural grouping of related topics, such as challenges in
Part I and Testing in Part V. Moreover, the parts can be grouped further as given in
Fig. 1. The core of the book is a set of 12 chapters on Techniques, as depicted in
the box on the upper right-hand side. These have been organized into four blocks,
which we will comment on in some more detail.

The techniques are both motivated and demonstrated two times by three chapters
on Case Studies for a number of areas highly relevant in modern times. The case
studies are grouped together on the left-hand side of Fig 1. For each case study

I. Requirements
Mobile networks

Critical infrastructures
Cloud

II. Modelling

Phase-type distributions
Scalable stochastic

modelling
III. Model-Driven

Prediction
Model-based assessment

Case Studies

Techniques

I. Foundations
Meanings of resilience

VI. Assessments
Mobile networks

Critical infrastructures
(electric power systems)

Cloud

VII. Future Research
Research roadmap for resilience assessment and evaluation

Rejuvenation
Online predictionIV. Measurement

Metrology
Field measurement

Failure diagnosis
Fault injection
Benchmarking

V. Testing
Performance testing
Robustness testing

Fig. 1 How to use this book

vi Preface

(mobile, critical infrastructure, and cloud) there is a chapter on resilience assess-
ment challenges in Part I as well as a chapter on assessment results in Part VI.

Each of the chapters is stand-alone, that is, a reader will be able to learn from
each individual chapter without having to consult any of the other chapters. As a
consequence, the reader can consult chapters in somewhat arbitrary order. This
makes the book particularly suitable for seminar series or group reading discus-
sions. With respect to the case studies, it would be natural to read the challenges and
results in tandem, although to appreciate how results have been derived, a deeper
study of the techniques discussed in the other part is recommended for those
wanting to penetrate deeper into the material. The arrows back and forth between
Case Studies and Techniques illustrate that chapters from both parts can be read in
various orders depending on the specific needs and background of the reader.

The set of techniques and case studies then culminates in the chapter on Future
Research, which presents a version of the research roadmap delivered by the
AMBER EU coordination action. The material discussed in the research roadmap
chapter is immediately accessible to the experienced resilience engineer. However,
for a general audience, the diagram shows a directed arrow pointing from Case
Studies to the Future Research box. We believe that for more novice readers the
discussion on future research is especially useful once the reader has gained some
appreciation for the challenges and advances discussed in the chapters on tech-
niques and case studies.

Preface vii

Acknowledgments

Many people have contributed to the process of creating this book and deserve our
gratitude. First of all, we thank all contributors for their effort and endurance, the
technical contributions, and also the organizational effort needed to assemble the
chapters and the time invested for cross-reviewing chapters for quality control.

We owe many thanks to Springer Verlag for publishing this manuscript as a
book and we especially thank Ralf Gerstner for his steady support and endless
patience. The anonymous reviewers of the book proposal and Boudewijn Haver-
kort have made many helpful comments that improved the book and its
organization.

Similarly, we thank Marc Herbstritt and his team at Dagstuhl castle for hosting
us for one week in July 2010. It was a stimulating time that started our work on this
book.

It is clear that we as editors could not have succeeded in producing this book
and assuring the quality of this book without the help of the reviewers of the
chapters. We sincerely thank the following colleagues who were willing to spend
some of their valuable time on creating this book and help achieving the necessary
quality through their reviewing efforts:

Ermeson Andrade; Alberto Avritzer; Vlastimil Babka; Andre Bondi; Andrea
Ceccarelli; Lucia Cloth; Ricardo Czekster; Alexandra Danilkina; Felicita Di
Giandomenico; Nicholas Dingle; Salvatore Distefano; João Durães; José Fonseca;
Rahul Ghosh; Stephen Gilmore; Gabor Horvath; Nikolaus Huber; Kaustubh Joshi;
Leila Kloul; Samuel Kounev; Istvan Majzik; Zoltan Micskei; Philipp Reinecke;
Anne Remke; Martin Riedl; Kai Sachs; Francesca Saglietti; Johann Schuster;
Markus Siegle; Kishor Trivedi; Jing Zhao;

We are much indebted to Philipp Reinecke from Freie Universität Berlin for
technical and organization support, setting up the SVN version control site and
helping in many stages of putting together this book. In addition to that, in what
probably was his remaining spare time, Philipp managed also to contribute to
several technical chapters. Philipp: we have greatly appreciated your enthusiastic
support!

ix

We also sincerely thank Johari Abdullah and Rob Cain from Newcastle Uni-
versity for their help in the unification of a very heterogenously created set of
chapters into proper latex-type setting.

We have received solid technical support from the IT staff at Freie Universität
Berlin that allowed us to maintain a version control to aid collaboration of a group
of 52 authors who have been working on this book.

Finally, we like to thank you, the reader, for your interest in this book. We hope
that you will find the collection of articles inspiring and useful for your work or
study and will use the book as a lasting source of information on resilience
engineering.

Berlin, Germany Katinka Wolter
Princeton, NJ, US Alberto Avritzer
Coimbra, Portugal Marco Vieira
Newcastle upon Tyne, UK Aad van Moorsel

December 2011

x Acknowledgments

Contents

Part I Introduction and Motivating Examples

1 Fault Tolerance and Resilience: Meanings, Measures
and Assessment . 3
Lorenzo Strigini

2 Resilience in Mobile Networks: A Need and a Challenge 25
Alberto Avritzer, Luca Berardinelli, Vittario Cortellessa,
Leïla Kloul, Carlo Rosa and Katinka Wolter

3 Assessing Dependability and Resilience in Critical
Infrastructures: Challenges and Opportunities 41
Alberto Avritzer, Felicita Di Giandomenico,
Anne Remke and Martin Riedl

4 Providing Dependability and Resilience in the Cloud:
Challenges and Opportunities . 65
Samuel Kounev, Philipp Reinecke, Fabian Brosig,
Jeremy T. Bradley, Kaustubh Joshi, Vlastimil Babka,
Anton Stefanek and Stephen Gilmore

Part II Modelling Techniques

5 Phase-Type Distributions . 85
Philipp Reinecke, Levente Bodrog and Alexandra Danilkina

6 Scalable Stochastic Modelling for Resilience 115
Jeremy T. Bradley, Lucia Cloth, Richard A. Hayden, Leïla Kloul,
Philipp Reinecke, Markus Siegle, Nigel Thomas and Katinka Wolter

xi

http://dx.doi.org/10.1007/978-3-642-29032-9_1
http://dx.doi.org/10.1007/978-3-642-29032-9_1
http://dx.doi.org/10.1007/978-3-642-29032-9_2
http://dx.doi.org/10.1007/978-3-642-29032-9_3
http://dx.doi.org/10.1007/978-3-642-29032-9_3
http://dx.doi.org/10.1007/978-3-642-29032-9_4
http://dx.doi.org/10.1007/978-3-642-29032-9_4
http://dx.doi.org/10.1007/978-3-642-29032-9_5
http://dx.doi.org/10.1007/978-3-642-29032-9_6

Part III Model-Driven Prediction

7 Modelling and Model-Based Assessment 153
Andrea Bondavalli, Paolo Lollini, István Majzik
and Leonardo Montecchi

8 Software Aging and Rejuvenation for Increased Resilience:
Modeling, Analysis and Applications . 167
Alberto Avritzer, Ricardo M. Czekster, Salvatore Distefano
and Kishor S. Trivedi

9 Online Prediction: Four Case Studies . 185
Katja Gilly, Fabian Brosig, Ramon Nou,
Samuel Kounev and Carlos Juiz

Part IV Measurement and Metrics

10 Foundations of Metrology in the Observation
of Critical Systems . 205
Andrea Bondavalli, Andrea Ceccarelli, Lorenzo Falai
and Michele Vadursi

11 Field Studies on Resilience: Measurements and Repositories 213
Joao Duraes, José Fonseca, Henrique Madeira and Marco Vieira

12 Failure Diagnosis of Complex Systems . 239
Soila P. Kavulya, Kaustubh Joshi, Felicita Di Giandomenico
and Priya Narasimhan

13 Fault Injection . 263
Raul Barbosa, Johan Karlsson, Henrique Madeira and Marco Vieira

14 Resilience Benchmarking . 283
Marco Vieira, Henrique Madeira, Kai Sachs and Samuel Kounev

Part V Testing Techniques

15 Resilience Assessment Based on Performance Testing 305
Alberto Avritzer and Andre B. Bondi

xii Contents

http://dx.doi.org/10.1007/978-3-642-29032-9_7
http://dx.doi.org/10.1007/978-3-642-29032-9_8
http://dx.doi.org/10.1007/978-3-642-29032-9_8
http://dx.doi.org/10.1007/978-3-642-29032-9_9
http://dx.doi.org/10.1007/978-3-642-29032-9_10
http://dx.doi.org/10.1007/978-3-642-29032-9_10
http://dx.doi.org/10.1007/978-3-642-29032-9_11
http://dx.doi.org/10.1007/978-3-642-29032-9_12
http://dx.doi.org/10.1007/978-3-642-29032-9_13
http://dx.doi.org/10.1007/978-3-642-29032-9_14
http://dx.doi.org/10.1007/978-3-642-29032-9_15

16 Robustness Testing Techniques and Tools 323
Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István Majzik,
Marco Vieira and Nuno Antunes

Part VI Case Studies

17 Case Study: Mobile Networks . 343
Samir Bellahsene, Leïla Kloul, Philipp Reinecke and Katinka Wolter

18 Case Study on Critical Infrastructures: Assessment
of Electric Power Systems. 365
Silvano Chiaradonna, Felicita Di Giandomenico and Paolo Lollini

19 Providing Dependability and Performance in the Cloud:
Case Studies . 391
Nikolaus Huber, Fabian Brosig, Nicholas Dingle,
Kaustubh Joshi and Samuel Kounev

Part VII Conclusions and Outlook

20 Future of Resilience Assessment: The AMBER
Research Roadmap. 415
Andrea Bondavalli, Henrique Madeira and Paolo Lollini

References . 441

Contents xiii

http://dx.doi.org/10.1007/978-3-642-29032-9_16
http://dx.doi.org/10.1007/978-3-642-29032-9_17
http://dx.doi.org/10.1007/978-3-642-29032-9_18
http://dx.doi.org/10.1007/978-3-642-29032-9_18
http://dx.doi.org/10.1007/978-3-642-29032-9_19
http://dx.doi.org/10.1007/978-3-642-29032-9_19
http://dx.doi.org/10.1007/978-3-642-29032-9_20
http://dx.doi.org/10.1007/978-3-642-29032-9_20

Contributors

Nuno Antunes CISUC, Department of Informatics Engineering, University of
Coimbra, Coimbra, Portugal, e-mail: nmsa@dei.uc.pt

Alberto Avritzer Siemens Corporate Research and Technology, Princeton, NJ,
USA, e-mail: alberto.avritzer@siemens.com

Vlastimil Babka Faculty of Mathematics and Physics, Charles University in
Prague, Prague, Czech Republic, e-mail: babka@d3s.mff.cuni.cz

Raul Barbosa Faculty of Sciences and Technology, University of Coimbra,
Coimbra, Portugal, e-mail: rbarbosa@dei.uc.pt

Samir Bellahsene PRiSM, Université de Versailles, Versailles, France, e-mail:
sabe@prism.uvsq.fr

Luca Berardinelli Dipartimento di Informatica, Università dell’Aquila, Italy,
e-mail: luca.berardinelli@univaq.it

Levente Bodrog Department of Telecommunications, Budapest University of
Technology and Economics, Budapest, Hungary, e-mail: bodrog@webspn.hit.
bme.hu

Andrea Bondavalli University of Firenze, Italy, e-mail: bondavalli@unifi.it

Andre B. Bondi Siemens Corporate Research and Technology, Princeton, NJ,
USA, e-mail: andre.bondi@siemens.com

Jeremy T. Bradley Imperial College London, London, UK, e-mail: jb@doc.ic.
ac.uk

Fabian Brosig Karlsruhe Institute of Technology, Karlsruhe, Germany, e-mail:
fabian.brosig@kit.edu

xv

Andrea Ceccarelli University of Firenze, Firenze, Italy, e-mail: andrea.
ceccarelli@unifi.it

Silvano Chiaradonna ISTI Department, Italian National Research Council, Pisa,
Italy, e-mail: chiaradonna@isti.cnr.it

Lucia Cloth Department of Applied Information Technology, GU Tech, Oman,
e-mail: lucia.cloth@gutech.edu.om

Vittorio Cortellessa Dipartimento di Informatica, Università dell’Aquila, Italy,
e-mail: vittorio.cortellessa@univaq.it

Ricardo M. Czekster PUCRS/Faculdade de Informatica, Avenida Ipiranga,
6681, Predio 32, Sala 505, CEP 90619-900 Porto Alegre, Brazil, e-mail: ricardo.
czekster@pucrs.br

Alexandra Danilkina Institute of Computer Science, Free University Berlin,
Germany, e-mail: danilkin@zedat.fu-berlin.de

Nicholas Dingle School of Mathematics, University of Manchester, Manchester,
UK, e-mail: nicholas.dingle@manchester.ac.uk

Salvatore Distefano University of Messina Engineering Faculty, Messina, Italy,
e-mail: sdistefano@unime.it

Joao Duraes DEI/CISUC, Polytechnic Institute of Coimbra, Coimbra, Portugal,
e-mail: jduraes@isec.pt

Lorenzo Falai Resiltech S.R.L, Pontedera (Pisa), Italy, e-mail: lorenzo.falai@
resiltech.com

José Fonseca DEI/CISUC, University of Coimbra & UDI, Polytechnic Institute
of Guarda, Coimbra, Portugal, e-mail: josefonseca@ipg.pt

Felicita Di Giandomenico ISTI Department, Italian National Research Council,
Italy, e-mail: digiandomenico@isti.cnr.it

Katja Gilly Universidad Miguel Hernandez, Elche, Spain, e-mail: katya@umh.es

Stephen Gilmore University of Edinburgh, Edinburgh, UK, e-mail: Stephen.
Gilmore@ed.ac.uk

Richard Hayden Imperial College London, London, UK, e-mail: rh@doc.
ic.ac.uk

Nikolaus Huber Karlsruhe Institute of Technology, Germany, e-mail: nikolaus.
huber@kit.edu

Kaustubh Joshi AT&T Labs Research, Florham Park, NJ, USA, e-mail:
kaustubh@research.att.com

xvi Contributors

Carlos Juiz Universitat de les Illes Balears, Palma, Spain, e-mail: cjuiz@uib.es

Johan Karlsson Department of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg, Sweden, e-mail: johan@chalmers.se

Soila P. Kavulya Carnegie Mellon University, Pittsburgh, PA, USA, e-mail:
spertet@ece.cmu.edu

Leïla Kloul PRiSM, Université de Versailles, Versailles, France, e-mail:
kle@prism.uvsq.fr

Samuel Kounev Karlsruhe Institute of Technology, Karlsruhe, Germany, e-mail:
kounev@kit.edu

Paolo Lollini University of Firenze, Italy, e-mail: lollini@unifi.it

Henrique Madeira DEI/CISUC, Polytechnic Institute of Coimbra, Coimbra,
Portugal, e-mail: henrique@dei.uc.pt

István Majzik Budapest University of Technology and Economics, Budapest,
Hungary, e-mail: majzik@mit.bme.hu

Zoltán Micskei Budapest University of Technology and Economics, Budapest,
Hungary, e-mail: micskeiz@mit.bme.hu

Leonardo Montecchi University of Firenze, Firenze, Italy, e-mail: lmontecchi@
unifi.it

Priya Narasimhan Carnegie Mellon University, Pittsburgh, PA, USA, e-mail:
priya@cs.cmu.edu

Ramon Nou Barcelona Supercomputing Center, Barcelona, Spain, e-mail:
ramon.nou@bsc.es

Philipp Reinecke Institute of Computer Science, Free University Berlin,
Germany, e-mail: philipp.reinecke@fu-berlin.de

Anne Remke University of Twente, Enschede, The Netherlands, e-mail:
anne@cs.utwente.nl

Martin Riedl Department of Computer Science, Universität der Bundeswehr
München, Neubiberg, Germany, e-mail: martin.riedl@unibw.de

Carlo Rosa Dipartimento di Informatica, Università dell’Aquila, Italy, e-mail:
carlo.rosa@univaq.it

Kai Sachs SAP AG, Walldorf, Germany, e-mail: kai.sachs@sap.com

Markus Siegle Department of Computer Science, Universität der Bundeswehr
München, Neubiberg, Germany, e-mail: markus.siegle@unibw.de

Anton Stefanek Imperial College London, London, UK, e-mail: as1005@
doc.ic.ac.uk

Contributors xvii

Lorenzo Strigini Centre for Software Reliability, City University London,
London, UK, e-mail: Strigini@csr.city.ac.uk

Nigel Thomas School of Computing Science, Newcastle University, Newcastle,
UK, e-mail: nigel.thomas@ncl.ac.uk

Kishor S. Trivedi Department of Electrical and Computer Engineering, Duke
University, Durham, NC, USA, e-mail: kst@ee.duke.edu

Marco Vieira DEI/CISUC, Polytechnic Institute of Coimbra, Coimbra, Portugal,
e-mail: mvieira@dei.uc.pt

Michele Vadursi University of Naples ‘‘Parthenope’’, Centro Direz. Is. C4,
Naples, Italy, e-mail: michele.vadursi@uniparthenope.it

Katinka Wolter Institute of Computer Science, Free University Berlin, Germany,
e-mail: katinka.wolter@fu-berlin.de

xviii Contributors

Part I
Introduction and Motivating Examples

Chapter 1
Fault Tolerance and Resilience: Meanings,
Measures and Assessment

Lorenzo Strigini

Abstract To assess in quantitative terms the “resilience” of systems, it is necessary
to ask first what is meant by “resilience”, whether it is a single attribute or several,
which measure or measures appropriately characterise it. This chapter covers: the
technical meanings that the word “resilience” has assumed, and its role in the debates
about how best to achieve reliability, safety, etc.; the different possible measures for
the attributes that the word designates, with their different pros and cons in terms of
ease of empirical assessment and suitability for supporting prediction and decision
making; the similarity between these concepts, measures and attached problems in
various fields of engineering, and how lessons can be propagated between them.

1.1 Introduction

Measuring or assessing a quality for any object, e.g., “resilience” for a system,
requires clarity about what this quality is.

The word “resilience” has become popular in recent years in the area of informa-
tion and communication technology (ICT) and policy related to ICT, as part of a more
general trend (for instance, the word “resilience” is in favour in the area of critical
infrastructure protection). The increasing use of this word creates the doubt whether
it is just a new linguistic fashion, for referring to what is commonly studied, pursued
and assessed under names like “fault tolerance”, “dependability” (a term mostly
restricted to ICT usage), “security”, “reliability, availability, maintainability and
safety” (RAMS), “human reliability”, and so on, or it actually denotes new con-
cepts. While there may be a component of fashion, the increased use of the word

L. Strigini (B)

Centre for Software Reliability,
City University London,
Northampton Square, London EC1V 0HB, UK
e-mail: strigini@csr.city.ac.uk

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 3
DOI: 10.1007/978-3-642-29032-9_1, © Springer-Verlag Berlin Heidelberg 2012

4 L. Strigini

“resilience” is often meant to highlight either novel attention to these problems or a
plea for a shift of focus in addressing them. It is useful to consider what these new
foci may be and whether they require new concepts and new measures. Technical,
and especially quantitative, reasoning about “resilience” requires clear definitions of
these concepts, whether old or new.

Without reviewing in detail the multiple uses of “resilience”, it is useful to recog-
nise how the technical problems and debates in which it appears in different areas
of application are related, highlighting similarities and differences in the problems
they pose for quantitative reasoning, including measurement and benchmarking, and
retrospective assessment as well as prediction.

The word “resilience”, from the Latin verb resilire (re-salire: to jump back),
means literally the tendency or ability to spring back, and thus the ability of a body
to recover its normal size and shape after being pushed or pulled out of shape, and
therefore figuratively any ability to recover to normality after a disturbance. Thus
the word is used technically with reference to materials recovering elastically after
being compressed, and also in a variety of disciplines to designate properties related
to being able to withstand shocks and deviations from the intended state and go back
to a pre-existing, or a desirable or acceptable, state. Other engineering concepts that
are related to resilience therefore include for instance fault tolerance, redundancy,
stability, feedback control.

A review of scientific uses of the word “resilience” for the European project
ReSIST (“Resilience for Survivability in IST”) [770] identified uses in child psychol-
ogy and psychiatry, ecology, business and industrial safety. In many cases, this word
is used with its general, everyday meaning. Some users, however, adopt specialised
meanings, to use “resilience” as a technical term.

The premise for calling for an everyday word to be used with a new specialised
meaning is that there is a concept that needs to have its own name, for convenience
of communication, and lacks one. The concept is sometimes a new one (“entropy”,
for instance), or a new refinement of old concepts (“energy”, for instance), or just a
concept that needs to be referred to more often than previously (because the problems
to be discussed have evolved) and thus requires a specialised word. Sometimes, the
motivation is that words previously used for the same concept have been comman-
deered to denote, in a certain technical community, a more restricted meaning: for
instance, after the word “reliability” acquired a technical meaning that was much
more restrictive than its everyday meaning, the word “dependability” came to be
used, by parts of the ICT technical community, to denote the everyday meaning of
“reliability” [63].

For the word “resilience”, a tendency has been to use it, in each specific commu-
nity, to indicate a more flexible, more dynamic and/or less prescriptive approach to
achieving dependability, compared to common practices in that community. Thus the
above-cited document [770], for instance, concluded that a useful meaning to apply
to “resilience” for current and future ICT is “ability to deliver, maintain, improve ser-
vice when facing threats and evolutionary changes”: that is, the important extension
to emphasise in comparison with words like “fault tolerance” was the fact that the
perturbations that current and future systems have to tolerate include change. While

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 5

existing practices of dependable design deal reasonably well with achieving and pre-
dicting dependability in ICT systems that are relatively closed and unchanging, the
tendency to making all kinds of ICT systems more interconnected, open, and able to
change without new intervention by designers, is making existing techniques inade-
quate to deliver the same levels of dependability. For instance, evolution itself of the
system and its uses impairs dependability: new components “create” system design
faults or vulnerabilities by feature interaction or by triggering pre-existing bugs in
existing components; likewise, new patterns of use arise, new interconnections open
the system to attack by new potential adversaries, and so on [769].

For a comparison with another field of engineering, a document on “infrastruc-
ture resilience” [632] identifies “resilience” as an extension of “protection”. As an
example of the direction for this extension, this paper questions whether burying the
cables of a power distribution grid to prevent hurricane damage is “resilience”, but
suggests that installing redundant cabling is.

An important specialised use of the word “resilience” has emerged with “resilience
engineering”, a movement, or a new sub-discipline, in the area of safety (or, more
generally, performance under extreme conditions) of complex socio-technical sys-
tems. Here, the word “resilience” is used to identify enhanced ability to deal with the
unexpected, or a more flexible approach to achieving safety than the current main-
stream approaches. The meaning is somewhat different between authors, which need
not cause confusion if we consider “resilience engineering”, rather than “resilience”,
as the focal concept for these researchers, and actually a neologism, designating an
area of studies and the ongoing debate about it. This area will be further discussed
below.

From the viewpoint of the problems of quantitative assessment, measurement and
benchmarking, the goals of these activities and the difficulties they present, there
is no sharp boundary between the socio-technical systems that are of concern to
ICT specialists and those addressed by “resilience engineering”. There are undoubt-
edly differences in the typical scales of the systems considered, but the progress
in ICT towards the “future Internet” and greater interconnection of ICT with other
infrastructures and activities are cancelling these differences [769]. Most dependabil-
ity problems in ICT have always involved some social and human factors influencing
dependability, for instance through design methods and constraints, or through the
maintenance or use of technical systems. In this sense, ICT dependability is about
socio-technical systems. As ICT becomes more pervasive and interlaced with human
activities, the dependability of the technical components in isolation may become a
minor part of the necessary study of dependability and thus of resilience. For exam-
ple, this occurs in a hospital or air traffic control system, where automated and human
tasks interact, and contribute redundancy for each other, on a fine-grain scale. It also
occurs where large scale systems involve networks of responsibilities across multi-
ple organisations, as in the provision of services (possibly through open, dynamic
collaboration) on the present or future Internet.

In view of these similarities and disappearing boundaries between different cat-
egories of systems, this short survey, written from the vantage point of practices in
the technical side of ICT dependability assessment, tries to emphasise the possible

6 L. Strigini

new problems, or desirable new viewpoints, that may come from the progressive
extension of the domain that ICT specialists have to study towards systems with a
more important and more complex social component.

1.2 The “Resilience Engineering” Movement

The title “resilience engineering” has been adopted recently by a movement, or
emerging discipline or community, started around a set of safety experts dealing
mostly with complex socio-technical systems, like for instance industrial plant, rail-
ways, hospitals. A few symposia have taken place focusing on this topic and books
have been published. This movement uses the term “resilience engineering” to des-
ignate “a new way of thinking about safety” [767]. The focus of these researchers is
on moving beyond limitations they see in the now-established forms of the pursuit of
safety: too much focus on identifying all possible mechanisms leading to accidents
and providing pre-planned defences against them; too little attention to the potential
of people for responding to deviations from desirable states and behaviours of the
system. Thus the resilience engineering authors underscore the needs for reactivity
and flexibility, e.g., “The traits of resilience include experience, intuition, improvisa-
tion, expecting the unexpected, examining preconceptions, thinking outside the box,
and taking advantage of fortuitous events. Each trait is complementary, and each has
the character of a double-edged sword” [681].

In using the term “resilience”, there is a range between authors focusing on
the resilient behaviour of the socio-technical system—its visibly rebounding from
deviations and returning to (or continuing in) a desirable way of functioning—and
those who focus on the characteristics they believe the system must have in order to
exhibit such behaviour, like for instance the cultural characteristics and attitudes in
the above quote. This degree of ambiguity need not cause confusion if we simply
use the “resilience engineering” phrase to designate a set of related concerns, rather
than “resilience” as a specific technical term. It points, however, at the variety of
attributes—whatever we may call them—that are inevitably of interest to measure
or predict.

Importantly, authors in “resilience engineering” underscore the difference
between “resilience” and “safety”, the former being just one of the possible means
to achieve the latter. Their concern is often one of balance, as they see excessive
emphasis on (and perhaps complacency about the effectiveness of) static means for
achieving safety, designed in response to accidents, while they see a need for a culture
of self-awareness, learning how things really work in the organisation (real processes
may be very different from the designed, “official” procedures), taking advantage
of the workers’ resourcefulness and experience in dealing with anomalies, paying
attention to the potential for unforeseen risks, fostering fresh views and criticism
of an organisation’s own model of risk, and so on. On the other hand, safety can
be achieved in organisations that do not depend on “resilience” in this sense of the
word, but on rigid, pre-designed and hierarchical approaches [405].

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 7

1.3 The Appeal of Resilience and Fault Tolerance

Before discussing issues of measurement and quantitative assessment, it is useful
to identify some concepts and historical changes that are common to the various
technical fields we consider.

When something is required to operate dependably (in a general sense, includ-
ing “being secure against intentional harm”), the means available for ensuring this
dependability include mixes of what in the ICT world are often called “fault avoid-
ance” and “fault tolerance” [63]. The former means making components (including,
by a stretch of the word “component”, the design of the system, with its potential
defects that may cause failures of the system) less likely to contain or develop faults,
the latter means making the system able to tolerate the effects of these faults.

1.3.1 Historical Shifts Between “Fault Avoidance” and “Fault
Tolerance”

Historically, the balance between the two approaches is subject to shifts, as is the
level of system aggregation at which fault tolerance is applied. For instance, to
protect the services delivered by a computer, a designer may add inside the computer
redundant component(s) to form a fault-tolerant computer. Alternatively, the designer
of a system using the computer (say, an automated assembly line) might provide a
rapid repair service, or stand-by computers to be switched in by manual intervention,
or manual controls for operators to take control if the computer fails: all these latter
provisions make the control function of the assembly line fault-tolerant (to different
degrees). This is a case of shift from fault tolerance in the architecture of a system
component (the computer) to fault tolerance in the architecture of the system (the
assembly line).

Fault tolerance (for various purposes, e.g., masking permanently disabled com-
ponents, preventing especially severe effects of failures,1 recovering from undesired
transients) is a normal feature of much engineering design as well as organisation
design. Fault tolerance against some computer-caused problems is nowadays a nor-
mal feature within computer architecture, but over time, as computers in an organ-
isation or engineered plant become more numerous, the space for forms of fault
tolerance “outside the computer” increased. Much of the computer hardware and
software is obtained off-the-shelf, meaning that for the organisation achieving great
confidence in their dependability may be unfeasible or expensive, but on the other
hand there is a choice of alternatives for error confinement and degraded or recon-
figured operation (relying on mixes of people and technology) if only some of these

1 Including “system design failures”: all components function as specified, but it turns out that in
the specific circumstances the combination of these specified behaviours ends in system failure: the
system’s design was “faulty”.

8 L. Strigini

components fail, and for selectively deploying redundant automation (or redundant
people) where appropriate.

Shifts of balance between fault tolerance and fault avoidance, and across levels
of application of fault tolerance, occur over time with changes in technology, system
size and requirements. Shifts away from fault tolerance are naturally motivated by
components becoming more dependable, or their failure behaviour better known
(so that fault tolerance is revealed to be overkill), or the system dependability
requirements becoming (or being recognised to be) less stringent. Shifts towards
more fault tolerance are often due to the observation that fault avoidance does
not seem to deliver sufficient dependability, or has reached a point of diminishing
returns, and in particular that good fault tolerance will tolerate a variety of different
anomalous situation and faults, including unexpected ones. Thus, fault tolerance for
instance often proves to be an effective defence against faults that the designers of
components do not know to be possible and thus would not have attempted to avoid.

Examples of these factors recur in the history of computing, and can be traced
to some extent through the arguments presented at the time to argue that the state
of technology and application demanded a shift of emphasis: for instance in the
papers by Avizienis in the 1970s [61] arguing for a return to more fault tolerance
in computers; those of the “Recovery Oriented Computing” project in the early
years of the twenty-first century [109] arguing for attention to more dynamic fault
tolerance, in systems comprising multiple computers and operators. In the area of se-
curity, similar reasons motivated arguments for more of a “fault tolerance” oriented
approach [302], later reinforced by concerns about the inevitable use of off-the-
shelf computers and operating systems [63]. Similar considerations have applied to
the proposals for fault tolerance against software faults [191, 740]. More recently,
a call for papers on “Resiliency in High Performance Computing” [768] points at
how the scaling up of massively parallel computations implies that the likelihood of
at least one component failing during the computation has become too high if the
computation is not able to tolerate such failures; similar considerations have arisen
for the number of components in chips, or networks, etc, repeatedly over the years.
For an example in larger systems that go beyond ICT, we may consider titles like
“Moving from Infrastructure Protection to Infrastructure Resilience” [383], advo-
cating a shift from a perceived over-emphasis on blocking threats before they affect
critical infrastructure (e.g., electrical distribution grids) to making the latter better
able to react to disruption. All these arguments must rely implicitly on some quantifi-
cation of the risk involved by each alternative defensive solution—a sound argument
about which solution entails the least risk, even without giving explicit numerical
risk estimates for the individual solutions—although this quantification is not very
visible in the literature.

1.3.2 Evolving versus Unchanging Redundancy

A related, recurrent line of debate is that advocating more flexible and powerful
fault tolerance, in which fault tolerance mechanisms, rather than following narrowly

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 9

pre-defined strategies, can react autonomously and even evolve in response to new
situations, like the human mind or perhaps the human immune system [15, 62].
Some of the recent “autonomic computing” literature echoes these themes [454].
The trade-off here is that one may have to accept a risk that the fault-tolerant mech-
anisms themselves will exhibit, due to their flexibility and complexity, unforeseen
and sometime harmful behaviour, in return for an expectation of better ability to deal
with variable, imperfectly known and evolving threats. The challenge is to assess
this balance of risks, and to what extent a sound quantitative approach is feasible.

In the social sciences’ approach to these problems, observations about the
importance of redundancy and flexibility underpin the literature about “high reliabil-
ity organisations” [783] and to some extent about “safety cultures”. In this picture,
the “resilience engineering” movement could be seen as just another shift in which
dynamic reaction (fault tolerance) to anomalies is seen as preferable to prior pro-
visions against them, as a precaution against unexpected anomalies. Its claim to
novelty with respect to the community where it originated is in part a focus on
the importance of the unexpected. This summary of course does not do justice to
the wealth of specific competence about safety in organisations in the “resilience
engineering” literature, or about computer failure, human error, distribution networks
etc to be found in the other specialised literature mentioned above. Our goal here is
to identify broad similarities and differences and their implications on assessment,
measuring and benchmarking.

Much current emphasis in “resilience engineering” is about flexibility of people
and organisations, not just in reacting to individual incidents and anomalous sit-
uations, but also in learning from them and thus developing an ability to react to
the set of problems concretely occurring in operation, even if not anticipated by
designers of the machinery or of the organisation. There is for instance an empha-
sis, marking recent evolution in the “human factors” literature, on the importance
of understanding work practices as they are, as opposed as to how they have been
designed to be via procedures and automation of tasks. The real practices include for
instance “workarounds” for problems of the official procedures, and may contribute
to resilience and/or damage it, by creating gaps in the defences planned by design-
ers and managers. It is appropriate to consider differences identified by “resilience
engineering” authors between the “resilience engineering” and the older “high reli-
ability organisation” movement. Perhaps the most cited paper [783] from the latter
discussed how flight operations on U.S. Navy aircraft carriers achieved high success
rates with remarkably good safety. This paper focused on four factors: “self-design
and self-replication” (processes are created by the people involved, in a continu-
ous and flexible learning process), the “paradox of high turnover” (turnover of staff
requires continuous training and conservatism in procedures—both seen as gener-
ally positive influences—but also supports diffusion of useful innovation), “author-
ity overlays” (distributed authority allowing local decisions by low-ranking people
as well as producing higher level decisions through co-operation and negotiation),
“redundancy” (in the machinery and supplies but also in overlapping responsibilities
for monitoring and in built-in extra staffing with adaptability of people to take on
different jobs as required). In contrast, a paper about how “resilience engineering”

10 L. Strigini

[680] differs from this approach refers to healthcare organisations and how their cul-
ture and lack of budgetary margins severely limit the applicability of the four factors
claimed to be so important on aircraft carriers; it points at the potential for improv-
ing resilience by, for instance, IT systems that improve communication within the
organisation and thus distributed situational awareness and ability to react to distur-
bances. Another valuable discussion paper [586] emphasises the steps that lead from
the general sociological appreciation of common issues—exemplified by the “high
reliability organisation” literature—to an engineering approach with considerations
of cost and effectiveness in detail.

1.4 Resilience and Fault Tolerance Against the Unexpected

We see that a frequently used argument for both fault tolerance (or “resilience”,
seen as going beyond standard practices of fault tolerance in a given community)
in technical systems and more general “resilience” in socio-technical systems is
based on these being broad-spectrum defences. Given uncertainty about what faults
a system may contain or what external shocks and attacks it has to deal with, it
seems better to invest in flexible, broad-spectrum defensive mechanisms to react to
undesired situations during operation, rather than in pre-operation measures (stronger
components, more design verification) that are necessarily limited by the designers’
incomplete view of possible future scenarios.

1.4.1 Competing Risks; the Risk of Complex Defences

This argument can, however, be misleading. It is true that general-purpose redun-
dancy and/or increased resources (or attention) dedicated to coping with disturbances
as they arise, or to predicting them, can often deal with threats that designers had not
included in their scenarios. But there will also be threats that bypass these more flex-
ible defences, or that are created by them. An example can be found in the evolution
of modular redundancy at the level of whole computers. The “software implemented
fault tolerance” (SIFT) concept in the 1970s [384], the precursor of many current
fault-tolerant solutions, responded to the fact that one could affordably replicate en-
tire computations running on separate computers, so that the resulting system would
tolerate any failure of any hardware or software component within a single computer
(or communication channel). This was certainly a more general approach than either
more expenditure on fault avoidance without redundancy, or ad-hoc fault tolerance
for foreseen failures of each component in a single computer. It was a more powerful
approach in that it may well tolerate the effects of more faults, e.g., some design faults
in the assembly of the computer or in its software (thanks to loose synchronisation
between the redundant computers [390]). But the SIFT approach also ran into the
surprise of “inconsistent failures”: the same loose, redundant organisation that gives

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 11

the system some of its added resilience makes it vulnerable to a specific failure mode.
A faulty unit, by transmitting inconsistent messages to other units, could prevent the
healthy majority of the system from enforcing correct system behaviour. To tolerate
a single computer failure might require four-fold redundancy (and a design that took
into account this newly discovered problem) rather than three-fold as previously
believed. This was an unexpected possibility, although now, with experience grown
from its discovery, it is easy to demonstrate it, using a simple model of how such a
system could operate.

Other events that may surprise designers may be unexpected hardware failure
modes; operators performing specific sequences of actions that trigger subtle design
faults; new modes of attack that “create” new categories of security vulnerabilities;
threats that bypass the elaborate defences created by design (ultra-high availability
systems go down because maintenance staff leave them running on backup batteries
until they run out, testing at a nuclear power plant involves overriding safety systems
until it is too late for avoiding an accident (the Chernobyl disaster), attackers circum-
vent technical security mechanisms in ICT via social engineering); in short, anything
that comes from outside the necessarily limiting model of the world that the designers
use. Some such surprises arise from incomplete analysis of the possible behaviours
of a complex system and its environment (cf the Ariane V first-flight accident [592]).
Perhaps the incompleteness of analysis is inevitable given complexity, and indeed
there is a now common claim that accidents—at least in “mature” organisations and
engineered systems—tend to originate from subtle combinations of circumstances
rather than direct propagation from a single component failure [722]).2 On the other
hand, designers also choose “surprises” to which their systems will be vulnerable:
they explicitly design fault tolerance that will not cope with those events that they
consider unlikely, trading off savings in cost or complexity against increases in risk
that are (to their knowledge) acceptable.

In the ICT area, it is tempting to see “surprises” as manifestations of designer
incompetence, and indeed, in a rapidly evolving field with rapidly increasing markets,
many will be ignorant about what for others is basic competence. But there is also a
component of inevitable surprises. In other areas of engineering it has been observed
that the limits of accepted models and practices are found via failure [725, 921],
usually of modest importance (prototype or component tests showing deviations
from model predictions, unexpected maintenance requirements in operation, etc),
but sometimes spectacular and catastrophic (the popular textbook examples—the
Tacoma Narrows bridge, the De Havilland Comet).

2 Although many authors point out that accidents caused by single component failures are still
common. A component failure occurs in a system design that happens to omit those defences that
would prevent that specific failure from causing an accident.

12 L. Strigini

1.4.2 Quantifying Surprises?

Thus, the argument that a more “resilient” design—more open-ended forms of
redundancy—offers extra protection is correct, but when it comes to estimating how
much extra protection, or which form of redundancy will be more effective—when
we need measurement and quantitative assessment—there is a difference between
threats. There is a range of degrees to which quantitative reasoning is useful, perhaps
best illustrated via examples. For a well known and frequent hardware failure mode,
we may be able to trust predictions of its frequency, and thus predict the system
reliability gain afforded by a specific redundant design, if some other modelling
assumptions are correct. For other forms of failure, we may have very imprecise
ideas about their frequency—for instance, this usually applies, at the current state
of practice, to software failures in highly reliable systems—and yet, we can decide
which designs will tolerate specific failure patterns, and via probabilistic modelling
even decide whether a design is more resilient than another one given certain plau-
sible assumptions. Last, there are surprises that violate our modelling assumptions.
Designers can try to reduce them by keeping an open mind, and making the system
itself “keep an open mind”, but have no indication of how successful they are going
to be. In the case of organisations, it may well be, for instance, that organisational
choices that improve resilience against certain disturbances will be ineffective or
counterproductive against others [933].

Insofar as resilience is obtained by making available extra resources, limits on
resources demand that designers choose against which threats they will deploy more
redundant resources. Limits on resources also recommend more flexible designs, in
which these resources can deal with more different challenges. Again, these quali-
tative considerations demand, to be applicable to concrete decisions, quantification
(at least adequate to support rough comparisons) of the risk and costs of different
solutions.

This set of considerations has highlighted many areas where measurement and
assessment of resilience or fault tolerance are desirable, and started to evoke a pic-
ture of measures that may be useful and of the difficulties they may involve. The
discussion that follows looks at choices of attributes to measure, and difficulties of
measurement and prediction, in some more detail, taking a viewpoint inspired by
“hard” quantification approaches in engineering and considering some of the issues
created by extension towards more complex socio-technical systems.

1.5 Quantifying Resilience: Its Attributes, and Their Possible
Measures

In quantitative assessment there are always two kinds of potential difficulties: defining
measures that usefully characterise the phenomena of interest; and assessing the
values (past or future) of these measures.

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 13

About the first difficulty, dependability and resilience are broad concepts encom-
passing multiple attributes, so that there are multiple possible measures. The discus-
sion that follows will take for granted that there are many dependability attributes of
potential interest, which are different and may well be in conflict under the specific
constraints of a certain system: for instance, pursuing safety—ability to avoid spe-
cific categories of mishaps—may conflict with the pursuit of availability—the ability
to deliver service for a high fraction of the time (see for instance [63] for a high-level
set of definitions). Irrespective of the specific dependability attribute of interest, we
will summarily characterise categories of measures related to fault tolerance and
resilience, with some discussion of their uses and difficulties in measurement and
prediction.

The categories will be introduced in terms of “systems” (meaning anything from a
small gadget to a complex organisation) that have to behave properly despite “distur-
bances” (an intentionally generic term, to cover component faults inside the system,
shocks from outside, overloads, anomalous states, no matter how reached).

The sections that follow

• first discuss categories of measures in common use in quantitative reasoning about
ICT, both as measures at whole-system level and as parameters, describing com-
ponents and their roles, in mathematical models for deriving such whole-systems
measures:

– measures of dependability in the presence of disturbances, which may be esti-
mated empirically in operation or in a laboratory, or through probabilistic models
(as functions of measures at component level), as discussed in other chapters of
this book

– measures of the amount of disturbances that a system can tolerate, typically
obtained from analysing a system’s design

– measures of probability of correct service given that a disturbance occurred
(“coverage factors”), typically estimated empirically, often in a laboratory

• and then proceed to examine more speculative areas:

– proposed predictors of resilience in socio-technical systems
– more detailed measures that discriminate between different forms of “resilient”

behaviours.

While pointing out differences between categories of systems and types of
“resilience”, the discussion will identify problems that they share and that may rec-
ommend importing insights from some areas of study to others.

1.5.1 Measures of Dependable Service Despite Disturbances

The first category of measures that give information about resilience are simply
measures of dependability of the service delivered by a system that is subject to
disturbances. The better the system worked despite them, the more resilient it was.

14 L. Strigini

Indeed, a question is why we would want to measure “resilience” or “fault toler-
ance” attributes, rather than “dependability” attributes. The former are just means
for achieving the latter.

For instance, an availability measure for a function of a system, obtained over
a long enough period of use in a certain environment (pattern of usage, physical
stresses, misuse, attacks etc), will be a realistic assessment of how well that function
tolerates, or “is resilient” to, that set of stresses and shocks.3

This kind of measure is certainly useful when applied to documenting past depend-
ability. It will be useful, for instance, in invoking a penalty clause in a contract, if the
achieved availability falls short of the level promised. It will also have some uses in
prediction. Suppose that the system is a computer workstation used for well-defined
tasks in a relatively unchanging environment. A robust measure of past availability
(“robust” may imply for instance repeating the measure over multiple workstations
of the same type, to avoid bias from variation between individual instances) will
be trusted to be a reasonable prediction of future availability (if the environment
does not change). Measures on two types of workstations will be trusted to indicate
whether one will offer substantially better availability than the other.

The Difficulty of Extrapolation

If we wish to compare systems (workstations, in this example), that have not been
operated in the same environment, we will sometimes define a reference load (of
usage as well as stresses etc)—a “benchmark” workload and stress (or fault) load,
in the current IT parlance (see Chap. 14). Here, the broader “resilience” literature
about engineering and socio-technical systems has to confront difficulties that are also
evident for strict computer dependability evaluation [616], but with differences of
degree. These difficulties can be generally characterised as limits to the extrapolation
of measures to environments that are different from those where the measures were
obtained. If a system copes well in the presence of one type of disturbances but

3 A conceptual problem arises here, which will recur in different guises throughout this discussion.
To use an example, suppose that two computers are made to operate in an environment with high
levels of electromagnetic noise. Of the two, computer A is heavily shielded and mostly immune to the
noise. The other one, computer B, is not, and suffers frequent transient failures, but always recovers
from them so that correct service is maintained. The two thus prove equally dependable under this
amount of stress, but many would say that only B is so dependable thanks to its “resilience”: A
just avoids disturbances; only B “bounces back” from them. Should we prefer B over A? Suppose
that over repeated tests, B sometimes fails unrecoverably, but A does not. Clearly, A’s lack of
“resilience” is then not a handicap. Why then should we focus on assessing “resilience”, rather than
dependability? Or at least, should we not define the quality of interest (whether we call it “resilience”
or not) in terms of “correct behaviour despite pressure to behave incorrectly”? An answer might be
that the resilience mechanisms that B has demonstrated to have will probably help it in situations
in which A’s single-minded defence (heavy shielding) will not help. But then the choice between
A and B becomes an issue of analysing how much better than A B would fare in various situations,
and how likely each situation is. Measures of “resilience” in terms of recovery after faltering are
just useful information towards estimating measures of such “dependability in a range of different
situations”.

http://dx.doi.org/10.1007/978-3-642-29032-9_14

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 15

less well with another type, changing the relative weights of these two types of
disturbances will change the degree of dependability that will be observed. There
will not even be a single indicator of “stressfulness” of an environment, so that
we can say that if a system exhibited—say—99% availability under the benchmark
stress, it will exhibit at least 99% availability in any “less stressful” environment
[739]. Likewise, we won’t be able to trust that if system A is more dependable
(from the viewpoint of interest: e.g., more reliable) than system B in the benchmark
environment, it will still be more dependable in another environment. An extreme,
but not unusual case of the extrapolation problem is the difficulty of predictions about
systems that are “one of a kind” (from a specific configuration of a computer system,
to a specific ship manned by a specific crew, to a specific spontaneous, temporary
alliance of computers collaborating on a specific task in the “future internet”) or will
be exposed to “one of a kind” situations: that is (to give a pragmatic definition),
systems or situations for which we have no confidence that the measures taken
elsewhere, or at a previous time, will still prove accurate. Again, extreme examples
are easily found for the human component of systems: an organisation that appears
unchanged, after some time from a previous observation, in terms of staff roles,
machinery, procedures, may in reality have changed heavily due to staff turnover,
or ageing, or even just the experience accumulated in the meantime (for instance, a
period without accidents might reduce alertness). Here arises the first reason for going
beyond whole-system dependability measures: they do not produce an understanding
of why a system exhibits a certain level of dependability in a given environment—how
each part of the system succumbed or survived the disturbances, which behaviours
of which parts accomplished recovery, why they were effective—which could turn
into a model for predicting dependability as a function of the demands and stresses
in other environments.

Another problem with extrapolation is often created intentionally, as a necessary
compromise. If we want a benchmark to exercise the whole set of defences a sys-
tem has, we need the environment to “attack” these defences. This may require the
benchmark load to condense in a short time many more stress events than are to be
expected in real use; but some aspects of resilience are affected by the frequency
of stresses. If the system being “benchmarked” includes people, their alertness and
fatigue levels are affected. If it involves slow recovery processes (say, background
processes that check and correct large bodies of data), an unrealistically high fre-
quency of disturbances may defeat these mechanisms, although they would work
without problems in most realistic environments.

Last, there is the problem of resilience against endogenous stresses. These exist in
all kinds of systems: a computer may enter an erroneous state due to a software design
fault being activated or an operator entering inappropriate commands; a factory may
suffer from a worker fainting, or from a fire in a certain piece of machinery; and
so on. If we wish a common benchmark to measure resilience against these kinds
of disturbance, it will need to include some simulation of such events. But this may
produce unfair, misleading measures. Perhaps a computer that has very little tolerance
to errors caused by internal design faults has been designed this way for the right
reasons, since it has no design faults of the types that it cannot tolerate; the less a

16 L. Strigini

computer interface tends to cause operator errors, the less the computer needs to
tolerate them; the less a factory tends to cause workers to become ill on the job, the
less it needs to operate smoothly through such events; etc.

This unfairness also has a beneficial aspect, though: it allows a benchmark to give
at least some information about resilience against the unexpected or unplanned-for
disturbances. The benchmark deals with hypothetical situations. What if in a factory
where nobody ever becomes ill, one day somebody does? What if the computer does
have unsuspected design flaws? Likewise, modern regulations require many safety
measures for all systems of a certain kind, irrespective of the probability, for a specific
system, of the situations in which they would be useful. In these circumstances, a
dependability or safety “benchmark” (from a fault injection experiment in a computer
to an emergency drill in a factory) verifies that certain precautions are in place, and
thus certain stresses are likely be tolerated if they were ever to happen. However,
engineering for better dependability under a benchmark situation does not necessarily
improve dependability in any operational situation different from the benchmark.

1.5.2 Measures of Tolerable Disturbances

A type of attributes that often allow simple and intuitive measures, and thus are
heavily used, is the extent of deviation (or damage or disturbance) that a system can
tolerate while still later returning to the desired behaviour or state (or still preserving
some invariant property about its behaviour, e.g., some safety property: choosing
different invariants will define different measures).

Thus, in ICT it is common to characterise a certain fault-tolerant computer design
as able to mask4 (without repair) up to k faulty components; or a communication
code as able to detect (or to reconstruct the original message despite) up to t single-bit
errors; or that a user interface will tolerate up to m erroneous inputs in one transaction;
etc. Likewise, in the world of larger systems, we can rate a ship as being able to self-
right from a tilt of so many degrees from the upright position; or a factory’s staffing
level as being calculated to allow for so many absences without loss of productivity.
In ecology, a proposed measure of “resilience” of an environment is the size of a basin
of attraction, in its state space: the distance by which the environment’s state may be
moved from a stable point without becoming unstable and moving into another basin
of attraction (this distance measure is proposed to be used with a complementary
measure of “resistance”: the “force” needed for a given shift in the state space) [174].

To generalise, this set of attributes, and their measures, are about how far the
object of interest can be pushed without losing its ability to rebound or recover; or
how quickly it will rebound, or how closely its state after rebounding will resemble
the state before the disturbance. To reason properly about these attributes of a system,
it is important to recognise them as separate: system A may be “more resilient” than

4 “Masking” usually meaning that the externally observed behaviour of the system shows no effect
of the fault.

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 17

system B from one of these viewpoints, and “less resilient” from another one; for
instance, A may be slower than B in recovering from a disturbance of a certain size,
but able to recover from a more extreme disturbance than B can.

A great advantage of this type of measures is that for many ICT systems they are
easy to obtain directly from their designs: so long as the implementation matches the
design in some essential characteristics, we know that certain patterns of faults or dis-
turbances are tolerated. These measures are also typically robust to the extrapolation
problem.

If “measuring” on the design is unsatisfactory (for instance we expect the
implementation to have flaws; or the required measure is too complex to calcu-
late), we would rely on observations of the system in operation. There may be dif-
ficulties in obtaining enough observations of “disturbances” close to the limit, in
knowing where the limit is (for systems that should not be tested to destruction), and
in deciding whether the system’s resilient reaction is deterministic, that is, whether
observing successful recovery from a certain extent of disturbances allows us to infer
100 % probability of recovery. Again, socio-technical systems offer the most striking
examples of the doubts that can affect estimates of these measures.

A limitation of these “maximum tolerable disturbance” measures, even for sys-
tems where they are easy to obtain, is that we may well be interested in characterising
how well a system rebounds from smaller disturbances. For instance, given a form
of fault tolerance that allows for some degradation of service, we may then want to
measure not just how far the system can be pushed before failing altogether, but the
relationship between the size of disturbances and the degradation of performance.
For instance, for a network (of any kind) one might measure the residual throughput
(or other measure of performance) as a function of the amount of network compo-
nents lost (or other measure of faults or disturbances); this kind of function has been
proposed [365] for resilience of critical infrastructures, leaving open the question
of which single-number characterisation (if any) of these curves would be useful in
practice. We will return later to characterisations of resilience as a function rather
than a single, synthetic measure.

1.5.3 Measures of “Coverage Factors”

If we recognise that for most systems of interest the resilient behaviour is non-
deterministic in practice,5 we are no longer interested in whether the system will
rebound from a disturbance but in the probability of it successfully rebounding;
or perhaps the distribution of the time needed for it to return to a desired state;
or other probabilistic measures. Thus in fault-tolerant computing we talk about the

5 That is, even for many deterministic systems, their behaviour is complex enough that the knowl-
edge we can build about them is only statistical or probabilistic. For instance, many software
systems (deterministic in intention) have a large enough state space that many failures observed
in operation appear non-deterministic—they cannot be reproduced by replicating the parts of the
failure-triggering state and inputs that are observable [390].

18 L. Strigini

“coverage” factor of a fault-tolerant mechanism, defined as the probability of the
mechanism successfully performing its function in response to a disturbance (e.g.,
detecting a data error, or recovering from it), conditional on the disturbance (e.g., the
data error) occurring; or we talk about the probability distribution of the latency of a
component fault (i.e. of the time needed to detect it) rather than of a single numerical
estimate.

Coverage factors are especially attractive as true measures of resilience. For
instance, if we estimate a probability of a disturbance being tolerated so as not
to cause system failure (a coverage factor, c), and know the frequency f of distur-
bances, then, in a simple scenario with rare disturbances, (1 − c) ∗ f would give us
the frequency of system failures. The frequency of system failures is a measure of
dependability (reliability), and one can see, for instance, that to improve reliability in
this scenario one needs either to reduce the frequency of disturbances or to increase
the coverage factor: the latter does indeed represent resilience, how well the system
responds to adversity. And, as a concrete advantage, this relationship between a cov-
erage factor and failure frequency seems to support extrapolation of dependability
assessment to a different environment: I could estimate the former in the laboratory,
usually with artificially frequent disturbances, to make measurement easier, and then
I could extrapolate to any environment where the same disturbances occur more or
less frequently. This is the basis for the predictive use of fault injection as described
in Chap. 13 or dependability benchmarking as described in Chap. 14.

Even with complex systems in which multiple components and mechanisms
co-operate to achieve resilience, probabilistic models, as described elsewhere in this
volume, allow predictions of the probability of successfully resilient behaviour and
hence of dependability measures as functions of coverage factors and of frequency
of disturbances (internal faults or externally generated shocks).

However, this possibility of extrapolation is actually severely limited. Importantly,
the probability of tolerating a disturbance will be a function of the type disturbance
that occurred. So, all “coverage” measures have to be defined with respect to some
stated type, or mix, of faults or disturbances; and the difficulties of extrapolation
that characterised measures of dependability under stress also affect, in principle,
measures of coverage. In particular, the desirability but also the limits of “bench-
mark” scenarios apply when estimating coverage factors just as when measuring a
dependability measure [739].

1.5.4 Measures of Socio-Technical Resilience

Since we are comparing the understanding of resilience with respect to different
categories of systems, and the categorisation above is derived from examples at the
simple end of the spectrum, it is useful to compare with proposed measures in the
areas of complex socio-technical systems. We take as an example the list of attributes
of resilience in socio-technical systems proposed by Woods [941]; we can relate them

http://dx.doi.org/10.1007/978-3-642-29032-9_13
http://dx.doi.org/10.1007/978-3-642-29032-9_14

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 19

to the categories given above, as well as consider how amenable they are to precisely
defined measures. These attributes are:

• “buffering capacity”, which is essentially an “extent of tolerable disturbances” as
discussed above. The potential difficulties only concern how easily this can be
captured in practically usable measures;

• “flexibility versus stiffness: the system’s ability to restructure itself in response
to external changes or pressures”. It is not clear how this could be measured. For
instance, to measure flexibility in the observed operation of a system, we would
need to decide which forms of “restructuring” were actually useful, without the
benefit of checking how the crisis would develop if the restructuring had not taken
place. So, the literature tends to describe this form of “flexibility” through scenarios
or anecdotes;

• “margin: how closely or how precarious the system is currently operating relative
to one or another kind of performance boundary”, again related to “extent of
tolerable disturbances”. This has often useful definitions in technical systems, for
instance we can define an acceptable maximum load on a network before it goes
into congestion, or the minimum required set of functioning components necessary
for basic services, while in socio-technical systems it is often difficult to identify
what terms like “stretched to breaking point” may mean, and what measures of
“distance” from this point may be appropriate;

• “tolerance: how a system behaves near a boundary—whether the system gracefully
degrades as stress/pressure increase or collapses quickly when pressure exceeds
adaptive capacity”. This has parallels in many technical areas, and certainly in
ICT, where “graceful degradation” is a frequent requirement, but for which no
textbook, standardised measure exists.

1.5.5 Measuring the Supposed Determinant Factors of Resilience

When trying to assess dependability (and resilience) in the face of threats that can-
not be predicted in detail, a proposed approach relies on identifying factors that
are believed to enhance resilience. When dealing with well-understood risks, this
exercise may take the form of simple design analysis. In many cases, assessment can
rely on the combination—via a probabilistic model—of analysing which defensive
mechanisms are in place, estimates of their coverage factors, and estimates of the
probability distributions of disturbances to which they will need to react. There are
of course difficulties with all these estimates, which qualify the confidence one can
have in predictions obtained this way. But when dealing with the human and social
determinants of system behaviour, the conjectured determinant factors of resilience
often have a “softer” or at least more complex character. The coverage and com-
ponent reliability parameters of a model for a complex socio-technical system, and
even the model itself, would be often too difficult to establish with any confidence.
Only empirical observations of system resilience would then be trusted.

20 L. Strigini

A concern in the “resilience engineering” literature is that one tends to judge
organisations on their past performance, but these “measures of outcomes” may lack
predictive power: success in the past is no guarantee of success in the future, due to
the extreme extrapolation problems mentioned above. Hence a search for “leading
indicators” that can be used to assess future resilience. Many of these are cited in the
literature. For instance, a review [432] lists measures of “Management commitment,
Just culture, Learning culture, Opacity, Awareness, Preparedness and Flexibility”, of
“Empowerment, Individual responsibility, Anonymous reporting, Individual feed-
back, […]” for individual workers and of “Organizational structure, Prioritizing for
safety, Effective communication” for organisations (citing [388]); and others.

Such factors are commonly believed to be important in determining how well an
organisation will perform from the safety and resilience viewpoints. So, informed
judgements about how “resiliently” organisations will react to stresses will benefit
from considering these “indicators”; if the indicators were reliable, an organisation
might want to identify reasonable target values and levels of trade-offs among them.
But objective measures of such attributes are difficult to define. Different systems can
be ranked on ordinal scales with regard to attributes of interest, or specific numerical,
objective measures can be used as proxy measures if shown empirically to correlate
with desired behaviours. For instance, [389], studying the safety of ship operation,
reports a massive effort in which factors believed to indicate “safety culture” were
estimated by anonymous surveys of individuals; the research goal is to check how
well these proxy measures correlate to observed safety performance (such as records
of accidents, near misses, negative reports by competent authorities). If good corre-
lation were found, some function of the “leading indicators” could be used for early
warnings of accidents being too likely on a certain ship. On the other hand, predictive
models akin to those described in this volume (e.g., Chap. 7), based on such measures
and suitable for informing design of these systems, for instance answering questions
like “To what extent should power be devolved to workers in this system so that the
positive effects outweigh the negative effects?”, appear unfeasible.

Precedents for emphasis on “determinant factors” of desired characteristics
exist in all areas of engineering, as sets of mandated or recommended practices.
A pertinent example is in standards for safety-critical computing, e.g., [461], where
sets of good practices are recommended or required to be applied in developing and
verifying software, as a function of the criticality of the software’s functions. This
is a reasonable approach, in principle, and yet checking that these practices were
applied is a poor substitute for directly checking that the product has acceptably low
probability of behaving unsafely: the former (good practice) does not imply the latter
(safe enough behaviour). The difficulties are twofold: there is no clear knowledge
of how much these practices, and their possible combinations, tend to help; and we
should expect that (comparable) systems that are equal in the extent of application of
these practices may still differ in the achieved results (the levels of dependability).

Indeed, many authors in the “resilience engineering” literature are wary of
attempts at quantification, applied to complex systems, as liable to oversimplify the
issues and divert management effort towards achieving required values of measures
that have the “advantage” of concrete measurement procedures but no guaranteed

http://dx.doi.org/10.1007/978-3-642-29032-9_7

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 21

relationship to outcomes. Others have used quantitative modelling for illustration
and general insight, borrowing physics-inspired formalisms for modelling complex
systems at a macroscopic level [311].

1.5.6 More Detailed Characterisations of Resilience

Two important topics that have emerged in the discussion so far are: the differ-
ence between tolerance/resilience for “design base”, expected disturbances and for
unexpected or extraordinary (excluded by design assumption) ones; and the possible
need to characterise not just the size of the tolerable stresses, but more detail about
the resilient behaviour in response to different levels or patterns of stresses.

In this latter area, one can look for measures like performability, defined [646]
as the set of probabilities of the “levels of accomplishment” of a system’s function,6

or functions like network throughput as a function of loss of components. These
options are no sharp departure from dependability modelling approaches that are
well established in ICT.

While these measures are meaningful, authors have been looking, as exemplified
in the previous section, for ways to characterise “resilient” behaviour in a more
detailed fashion, although accepting that the result may be qualitative insight rather
than models suitable for prediction.

To discuss the various parameters that may characterise resilience in an organi-
sation, Woods and Wreathall [942] use the “stress-strain” diagram used in material
science, as in Fig. 1.1. With materials, the y axis represents the “stress” applied to a
sample of the material (e.g., tensile force stretching a bar of metal), and the x axis
represents the degree of stretch in the material (“strain”). When tested, the typical
building material will exhibit a first region of linear response (the stretch is pro-
portional to the force applied), followed by a less-than-linear region, and finally by
quick yielding that leads to breaking. As it moves from the linear to the sub-linear
region, the material also moves from elastic behaviour, where the original size will
be regained when the stress is removed, to permanent deformation. A qualitative
analogy with organisations is made, in terms of “a uniform region where the organi-
zation stretches smoothly and uniformly in response to an increase in demands; and
an extra region (x-region) where sources of resilience are drawn on to compensate
for non-uniform stretching (risks of gaps in the work) in response to increases in
demands”. Thus in the “extra region” it is assumed that an organisation that suc-
cessfully self-modifies shifts onto a new curve, that departs from the now-decreasing
main curve and gives some extra amount of increase in tolerated “stress” for extra
“strain”, so as to be able to tolerate stresses beyond its “normal” maximum.

So, these authors identify a region of “orderly” adaptation to increasing stress
(in some cases one might identify measures of both stress and strain with an

6 If “accomplishment” has a numerical measure, e.g., throughput of a system, the system’s per-
formability is defined by the probability distribution function of this measure.

22 L. Strigini

Fig. 1.1 Stress-strain
diagram

approximately linear relationship, e.g., increased inflow of patients to a hospital
being covered by increasing work hours within established procedures). Beyond this
maximum, the cost-effectiveness of use of resources decreases and a maximum ex-
ists, beyond which extra stress can only be tolerated by some kind of reconfiguration
of the organisation, e.g., mustering extra resources or freeing them by changes of
operation mode.

This view suggests sets of attributes that can be measured to characterise the
response of the system, like the size of the “uniform” range, and the extra stress that
can be tolerated before the degeneration into failure. The above authors identify as
especially important the ability of an organisation to manage smoothly transitions
between regions, and its “calibration”, defined as its ability to recognise in which
region it is operating, so that reconfiguration is invoked when necessary (and presum-
ably not too often: we note that in many real situations, the ability to assess how well
calibrated they were for past decisions is limited. One cannot always tell whether a
decision to restructure to avoid catastrophic failure was really necessary—especially
in view of the uncertainty that the decision maker normally faces in predicting the
future). They rightly claim that the stress-strain analogy for organisation behaviour
is a first step in clarifying some of the attributes that characterise resilient behaviour
(hence also a first step towards quantitative modelling) and importantly highlight the
difference between “first-order” and “second-order” adaptive behaviour—the “nor-
mal stretching” of the organisation’s design in the uniform region, versus the more
radical restructuring to work beyond the “normal” limit—but note the limitation of
representing “stress” as a unidimensional attribute, and the need for further work.
A limitation that seems important is that this kind of graph implicitly assumes that
the stress-strain relationship can be plotted as independent of time. This matches
well those measurement processes for the strength of materials in which stress is in-
creased slowly, moving between states of equilibrium at least up to the maximum of
the curve. If the timing of the applied stimulus (as e.g., with sharp impact or repetitive
stress) makes a difference in how the material reacts, additional properties can be
studied, possibly requiring additional measures. In organisations (or for that matter
in computers), many of the stresses may need to be characterised in terms of dynamic

1 Fault Tolerance and Resilience: Meanings, Measures and Assessment 23

characteristics, or need to be defined in practice in terms of timing characteristics of
events.

Considering the time factor may also bring into play other aspects of self-stabilis-
ation, and other necessary design trade-offs, which can be illustrated by analogy with
other engineering examples, outside the science of materials. For instance, making
a ship more “stable” (increasing its metacentric height, so that it will self-right more
promptly after heeling to one side) makes it also more liable to roll at higher frequency
following the tilt of the waves, a characteristic that can reduce the effectiveness of
the crew, make a warship unable to use its weapons, etc. Likewise, all “resilience”
that relies on detecting (or predicting) component failures or shocks must strike a
compromise between the risk of being too “optimistic”—allowing the situation to
deteriorate too far before reacting—or too “pessimistic”—reacting too promptly, so
that false alarms, or reactions to disturbances that would resolve themselves without
harm, become too much of a drain on performance or even damage resilience itself.

1.6 Conclusions

A theme running through this survey has been that as fault tolerance (or resilience),
that is, dynamic defences, exist in all kinds of systems, the measures that may be
appropriate for studying them also belong to similar categories and the difficulties
in defining measures, in performing measurements, and in predicting the values of
measures also belong to common categories. Interest in studying and/or in extend-
ing the use of fault tolerance or resilience has expanded of late in many areas,7 and
we can all benefit from looking at problems and solutions from different technical
areas. I gave special attention to the “resilience engineering” area of study, since its
choice of topic problems highlights extreme versions of measurement and predic-
tion problems about the effectiveness of “resilience” that exist in the ICT area. In all
these areas there are spectra of prediction problems from the probably easy to the
intractable. The “resilience engineering” movement has raised important issues re-
lated to the measurement and prediction of “resilience” attributes. One is simply the
recognition of the multi-dimensionality of “resilience”. For instance, Westrum [933]
writes: “Resilience is a family of related ideas, not a single thing. [...] A resilient
organization under Situation I will not necessarily be resilient under Situation III
[these situations are defined as having different degrees of predictability]. Similarly,
because an organization is good at recovery, this does not mean that the organization
is good at foresight”.

The boundaries between strict technical ICT systems and socio-technical systems
are fuzzy, and for many applications the recognition of social components in deter-

7 U.S. Navy aircraft carriers exploited redundancy for safety long before Rochlin and his
co-authors studied it. On the other hand, their study prompted more organisations to recognise
forms of redundancy in their operation, and protect them during organisational changes, and/or to
consider applying redundancy.

24 L. Strigini

mining meaningful assessment of dependability is important [769]. Concerns about
improving measurement and quantitative prediction are often driven by the concrete
difficulties in applying existing methods in new systems: just as increasing levels of
circuit integration and miniaturisation made it unfeasible to monitor circuit operation
at a very detailed level via simple probes and oscilloscopes, so the deployment of
services over large open networks and through dynamic composition may create new
difficulties in measuring their dependability. More general problems may arise, how-
ever: do we need to choose appropriate new measures for characterising the qualities
of real interest? If they are amenable to measurement in practice, to what extent will
they support trustworthy predictions? To what extent may the benefit of “reasonably
good” measures (perhaps acceptable proxies for the “truly important” ones) be offset
by natural but undesirable reactions to their adoption: designers and organisations
focusing on the false target of achieving “good” values of these measures, perhaps
to the detriment of the actual goal of dependability and resilience?

These questions underlie all assessment of resilience and dependability, but more
markedly so as the socio-technical systems studied become less “technical” and more
“social”. Authors in “resilience engineering” have identified research problems in
better characterising, even at a qualitative, descriptive level, the mechanisms that
affect resilience. Quantitative measurement may follow. Quantitative predictive
models may or may not be feasible, using results from the abundant research in
modelling—at various levels of detail—the dependability of complex infrastructure
and ICT; quantitative approaches from mathematical physics [311] may also yield
insight even without predictive power. Research challenges include both pushing
the boundary of the decision problems that can be addressed by sound quantitative
techniques, and finding clearer indicators for these boundaries. There are enough
historical examples of quantitative predictions proving misleading, and perhaps mis-
guided, but we often see these with the benefit of hindsight. Perhaps most important
would be to define sound guidance for “graceful degradation” of quantitatively driven
decision making when approaching these limits: more explicit guidance for exploit-
ing the advantages of measurement and quantitative prediction “as far as they go” but
avoiding potential collapse into unrealistic, “pure theory”—driven decision making.

Acknowledgments This work was supported in part by the “Assessing, Measuring, and Bench-
marking Resilience” (AMBER) Co-ordination Action, funded by the European Framework
Programme 7, FP7-216295. This article is adapted from Chap. 15 of the “State of the Art” report
produced by AMBER, June 2009.

Chapter 2
Resilience in Mobile Networks:
A Need and a Challenge

Alberto Avritzer, Luca Berardinelli, Vittorio Cortellessa, Leïla Kloul,
Carlo Rosa and Katinka Wolter

Abstract In this chapter, we describe the most important network protocols
supporting modern applications in mobile cellular networks, wireless sensor net-
works (WSN) and mobile ad hoc networks (MANETs). We first focus on the handover
procedure in mobile cellular networks and the network failures due this procedure.
The current solutions to enable seamless handover in the existing networks tech-
nologies are presented. We then present, in the context of WSN, a framework for
model-based design and performance analysis of WSN software applications. WSN
are often used for applications with strict non-functional requirements. They, thus,
require solid modelling approaches for non-functional attributes of WSN software
applications. We finally discuss approaches and cross-layer protocols addressing the
problems of security, wireless communications, and network topology changes in

A. Avritzer
Siemens Corporate Research and Technology, 755 College Road East,
Princeton, NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

L. Berardinelli · V. Cortellessa · C. Rosa
Dipartimento di Informatica, Università dell’Aquila,
Via Vetoio 1, Coppito, AQ, Italy
e-mail: luca.berardinelli@univaq.it

V. Cortellessa
e-mail: vittorio.cortellessa@univaq.it

C. Rosa
e-mail: carlo.rosa@univaq.it

L. Kloul (B)

PRiSM, Université de Versailles, 45 Avenue des Etats Unis,
78000 Versailles, France
e-mail: kle@prism.uvsq.fr

K. Wolter
Institute of Computer Science, Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: katinka.wolter@fu-berlin.de

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 25
DOI: 10.1007/978-3-642-29032-9_2, © Springer-Verlag Berlin Heidelberg 2012

26 A. Avritzer et al.

MANETs before presenting a framework which aims to study both the benefits of
increased awareness between software layers on the same node (inter-layer aware-
ness) and between the same layer over different nodes (intra-layer awareness), and
the combination of new/existing protocols designed with a cross-layer criterion.

2.1 Introduction

Modern mobile networks are being engineered to support applications with very
different quality of service requirements for performance, reliability, and security. For
example, some of these applications require support for different quality of service
types: voice over IP, video streams generated from cameras and/or from video servers,
real-time short messages for real-time communication, reliable message delivery
mechanisms to support distributed systems middleware, and best effort message
delivery supporting notification, or e-mail service.

The frame sizes, traffic shape, and quality of service/resilience requirements of
these applications are very different. Mobility and wireless transmission protocols
introduce additional challenges for supporting these quality of service/resilience
requirements, such as, impact of power transmission on mobile network perfor-
mance, interference from hidden terminals, shadows, cost of wireless licenses, and
interference when using unlicensed bands. In addition, wireless roaming from access
point to access point require resources (e.g., channel allocation) and time (e.g., allo-
cation of new IP address) that can impact the quality of service offered by the network
infrastructure to the application.

Therefore, understanding the domain of applicability of different wireless network
protocols and developing new wireless protocols supporting broadband have been
some of the major areas of activity of the IEEE 802 LAN/MAN standards commit-
tee (http://www.ieee802.org). The detailed specifications of IEEE 802.11 and IEEE
802.16 can be obtained from IEEE at http://www.ieee802.org/11 and at http://www.
ieee802.org/16.

The ubiquitity of the low cost 802.11g, WiFi, at 54 mbps rates has motivated many
users to consider deploying multi-media applications supporting mission-critical
systems, without consideration to the ability of WiFi of supporting traffic shaping,
priority, and quality of service of shared voice and video applications. However,
801.11g has no provisions to enforce priorities among data streams, which makes it
very challenging to support the required quality of service requirement for voice and
video over a mobile 802.11g network.

In contrast, 802.11P defines eight priorities classes for data streams originating
from a given station. The priority hierarchy is to give top priority to voice data streams,
followed by video stream, voice control streams, best effort streams, transaction data,
and bulk data. These eight priorities are aggregated into four major priority classes:
voice, video, best effort, and background. 802.11P priority schemes cannot guarantee
quality of service requirements of the different data streams, because of the lack of

http://www.ieee802.org
http://www.ieee802.org/11
http://www.ieee802.org/16
http://www.ieee802.org/16

2 Resilience in Mobile Networks: A Need and a Challenge 27

central bandwidth control, as 802.11P is based on multiple access-collision avoidance
(CSMA-CA) algorithm.

802.16, WiMAX, Worldwide Interoperability for Microwave Access, is an IEEE
standard that was designed to provide broadband access, while guaranteeing the con-
tracted quality of service requirements. The 802.16 standard is a family supporting
several design options for the physical layer, media access layer, frequency bands,
etc. 802.16 was initially designed to support broadband using fixed wireless access.
However, it was extended to support mobility. WiMax is able to enforce quality of
service guarantees because the WiMax base station has as one of its architecture fea-
tures the task of managing and controlling all connections under its supervision. The
performance characteristics of each connection can be managed through bandwidth
allocation per user, variable size frames, and frame aggregation/deaggregation from
different connections to improve overall system performance. WiMax defines five
quality of service classes that can support applications that are sensitive to delay and
jitter, like voice over IP. However, WiMax based mobile networks can also suffer
from roaming delays and lack of resources if the network is not carefully engineered
to support the quality of service and scale of the application to be deployed. For exam-
ple, some of the handover mechanisms supported by WiMax may introduce handover
delays of up to 1 s, which is unacceptably high for mission-critical applications.

Therefore, requirements specifications, architecture, modelling, design, and test-
ing of the application ecosystem that will be sharing the wireless mobile environment
is the recommended engineering approach to ensure that the required quality of ser-
vice, resilience, and scale is provided to customers.

In this chapter we illustrate some of the needs and challenges for resilience assess-
ment in mobile networks in three different domains: mobile cellular networks, sensor
networks and mobile ad-hoc networks.

In Sect. 2.2 we describe mobility management and time-synchronisation in cellu-
lar networks. In Sect. 2.3 we describe the software design and deployment support
provided by sensor networks. In Sect. 2.4 we describe cross-layer protocols support
for mobile ad-hoc networks. Section 2.5 contains our conclusions.

2.2 Mobile Cellular Networks

Following the development of electronic and computer technologies, new multimedia
applications such as real-time conversational video conferences and interactive video
games, have been developed. These applications which are, by nature, bandwidth
consumers are made available over mobile networks that have finite resources and
may experience some end-to-end transmission delays.

The advent of new mobile technologies, like long term evolution (LTE) in the side
of 3rd generation partnership project (3GPP) and IEEE 802.16m in WiMAX forum’s
side introduce new access technologies that offer a high bandwidth rate and reduce
both transmission delays and error ratio. However, the call dropping rate, which is
an important quality of service (QoS) index in mobile networks, mostly related to

28 A. Avritzer et al.

the users mobility, remains a challenging issue. The changes of radio channel during
movement of mobile users between network cells, namely handovers, impose short
sessions disconnection. Unfortunately, for some classes of traffic such as multimedia
applications, handovers are not transparent to mobile subscribers and the continuity
of users session are not guaranteed. Consequently, offering these services is not an
easy task to achieve and remains the current challenge in mobile networking.

In the following we focus on the network failures due to the handover procedure.
We first give more details on the notion of handover in mobile cellular networks and
present the current solutions to enable seamless handover in the existing networks
technologies.

2.2.1 Handover and the Quality of Service

The handover is defined as the change of radio channel used by a wireless terminal.
The new radio channel can be either with the same base station (intracell handover)
or with a new base station (intercell handover). In the case of intercell handover, for
example, where the subscriber crosses cell boundaries and moves to an adjacent cell
while the call is in progress, the call must be handed off to the new cell in order to
provide uninterrupted service to the mobile subscriber. If the new cell does not have
enough channels to support the handover, or if the session disconnection between
the mobile user and the old base station lasts longer than a critical time while the
connection with the new base station is not established yet, the call is dropped.

Globally, the handover procedure is the same in all the existing mobile technolo-
gies but the network signalling and the involved network entities differ [97]. The
handover procedure consists of three main phases: the measurement, the decision
and the execution phases. During the measurement phase, the mobile terminal scans
the received signals from all the neighbouring cells and a measurement report is
established. This report is then used to make the handover decision and to select
the next cell to which the mobile terminal will be connected. In the case of LTE
architecture [317], the handover decision is made directly by the base station, that
is the evolved node B (eNB). However, in UMTS and WiMAX technologies, higher
entities are responsible of this task. In UMTS [899], the decision is made by the radio
network controller (RNC), whereas the access serving network gateway (ASN-GW)
is responsible for this decision in WiMAX [4].

Once the handover decision is made and the handover request is accepted by
the target cell, the execution phase is initiated. During this phase, the admission
control and required resources configuration are performed in the target cell. The
user terminal detaches from the source cell and synchronises with the new serving
cell.

The handover procedure is considered as a break-before-make approach, that is
the connection of a mobile terminal with its serving cell is interrupted before being
connected to a new cell. Failures due to the handover procedure are more notice-
able by a mobile subscriber in urban areas because of the high coverage density;

2 Resilience in Mobile Networks: A Need and a Challenge 29

the number of cells in the neighbourhood of each cell is very important. Thus, for
a given cell, measuring the signal quality of all its neighbouring cells, during the
measurement phase of the handover procedure, may be time-consuming. In these
conditions, respecting the QoS requirements of real-time services, such as real-time
conversational audio services, may become impossible. The result is either the degra-
dation of the offered service quality or simply the communication dropping. Thus, the
handover procedure has an important effect on the performances of the system and
the probability of forced communication termination must be limited because from
the point of view of a mobile user, forced termination of an ongoing communication
is less acceptable than blocking a new one.

2.2.2 Handover Failure Resilience

In order to reduce the failure rate of the handover procedure and guarantee a certain
service continuity, several solutions have been proposed [97]. One solution to enable
soft handover consists in maintaining a simultaneous connection between the mobile
terminal and a set of selected serving base stations called the diversity set. The
selection of the base stations to be included in the set is based on the signal quality
criteria. This solution, which is known as the macro diversity handover (MDHO) [4],
has been proposed in the context of WiMAX. A similar idea is used in the fast base
station switching (FBSS) [4], another solution proposed in the context of WiMAX
architecture. However, in this solution, the mobile terminal is connected to a single
base station from the diversity set, during a frame period. If the signal quality is not
good enough to maintain an acceptable connection, the mobile terminal may change
its serving base station from the diversity set.

In both MDHO and FBSS, continuous measurements should be made in order
to maintain the diversity set. These measurements result in an important number of
control messages exchanged between the user terminal, the base stations in the diver-
sity set, and ASN-GW for the authentication and registration procedures. Moreover,
maintaining simultaneous connections between one user terminal and several base
stations increases the blocking probability of the new calls.

In order to speed up the handover procedure and thus reduce the network failure
rate in the context of LTE architecture, a new interface, called X2, between the base
stations (eNBs) has been introduced [317]. This interface is dedicated to signalisa-
tion message exchanges and data forwarding during the handover procedure. Such
an interface allows improving the execution phase of the handover and the com-
munications between eNBs. However, there is still a need of regular signal quality
measurements and this introduces delays in the mobile communications.

Mobility prediction, if well performed, may constitute the solution to enable
seamless handovers and reduce the call dropping rate. It anticipates the preparation of
the handover in the next cell to be visited by a mobile user, avoiding any disconnection
of the mobile terminal from its current serving cell before it gets connected to the new
cell (make-before-break approach). The efficiency of a mobility prediction model

30 A. Avritzer et al.

relies on both the model itself, and the network and the mobile user data used in
this model. Among the data used in the different mobility prediction approaches
developed, we have the mobility history of the user, and the signal strength. When a
prediction model fails to predict the next cell to be likely visited by the mobile the
handover multicast is the ultimate solution to enable seamless handovers. In this case,
instead of one cell, a group of cells is predicted. The network prepares, in advance,
the handover of user to all the cells belonging to this group. A mobility prediction
approach is presented in Chap. 17.

2.2.3 Resilient Network Services

Computer networks provide a large and diverse set of services. When considering
mobile cellular networks, as done in the previous sections, issues such as handover of
calls can be resolved reliably only if the backhaul network is dependable and highly
resilient. Resilience of the network is a challenge since mobile backhaul networks
carry not only traffic necessary to operate the cellular network but also different
types of user initiated load. From the perspective of network operation, the network
payload can be considered background load that causes impairments on the network
management packets travelling through the backhaul network.

Time and frequency synchronisation can be considered a service operated in the
backhaul network that is especially relevant for seamless handover of calls. In modern
packet-switched networks time and frequency synchronisation is no longer achieved
using dedicated wires but rather through efficient and reliable protocols. Such pro-
tocols rely on time stamps transmitted with dedicated small data packets and hence
they are sensitive to poor network conditions. High load causes delays, and, even
worse, increases the variance in transmission delays. To counteract such problems,
the resilient network must either avoid situations of high load or offer mechanisms
that allow the proper operation of the time and frequency synchronisation service in
the presence of disturbances.

High accuracy requirements therefore seem to translate into the demand for a
highly resilient network. The precision time protocol (PTP) according to the stan-
dard IEEE 1588 has been designed to achieve extremely precise time and frequency
synchronisation even in an unresilient network. The main features of the protocol are
simple and straightforward. Accuracy is implemented using high priority for small
timing packets versus low priority for all background traffic, i.e., network payload.
Timing packets are usually sent at a rate of 32 packets per second, assuming that
they will not notably load the network. An interesting and important question is
whether these priorities can assure resilience of the time and frequency synchroni-
sation service when the underlying network is not resilient. According to statements
from industry, the experimental analysis of the protocol is difficult and expensive,
since emulation of realistic conditions requires considerable effort and the neces-
sary oscillators and measurement equipment are very expensive and exist only in a
few experimental laboratories world-wide. But the question can be addressed using

http://dx.doi.org/10.1007/978-3-642-29032-9_17

2 Resilience in Mobile Networks: A Need and a Challenge 31

model-based techniques. However, since a high level of detail in the model is required,
analytical models are not suitable and even the simulation models exhibit extremely
long runtimes. This demands for suitable approximation methods as illustrated in
Chap. 6. As will be shown in the case study in Chap. 17, detailed simulation stud-
ies reveal that the desired accuracy of frequency synchronisation in an unresilient
network can only be achieved with suitable network or protocol design.

2.3 Sensor Networks

The potential of model-driven engineering (MDE) techniques in software develop-
ment has been largely demonstrated in many application domains [537], whereas
model-driven approaches have started to appear only recently in the wireless sensor
networks (WSN) domain [359, 382]. This is probably related to the fact that software
(and model-driven) engineering experts have addressed their interest to this domain
since short time, although it is evident the key role that software plays in WSN.

For example, the battery consumption of sensor nodes is one of the most critical
problems, so the nodes have to be managed by “energy saving” algorithms and
protocols. A badly designed algorithm or protocol could inhibit the use of the whole
WSN. As another example, the network stack is not immutable and independent
from the applications, as in traditional distributed systems. It is partly integrated in
the WSN software applications, and strictly linked to the network topology.

In addition, “code-and-fix” approaches, that are mostly followed for the WSNs
software development, limit the maintainability and reusability of software and rep-
resent a barrier towards the applicability of (model-based) non-functional analysis
approaches. In [730] the need of adopting a standard process to drive the development
of the WSNs software is strongly highlighted, as well as the fact that this goal can
be naturally achieved with the application of software engineering and model-driven
engineering techniques.

Sensors are devices with limited resource capabilities, although in many cases
quite complex computational tasks are assigned to them. Also, communication and
coordination are notoriously critical tasks in WSN, so they have to be efficiently man-
aged. In addition, WSN are often utilised for applications with strict non-functional
requirements (e.g., eHealth, alarm systems, etc.). All these motivations claim for
solid approaches to the modelling and analysis of non-functional attributes of WSN
software applications.

We retain that model-driven engineering techniques can be very helpful for this
goal in the WSN context, as well as they do in other contexts [83]. Nevertheless,
still very few approaches have appeared to tackle non-functional issues in WSN
with model-based techniques [876]. Whereas in the functional world model-based
approaches are typically aimed at automated code generation, model checking,
model-based testing, etc., in the non-functional world a typical benefit of model-based
approaches is to enable model transformations that can generate non-functional mod-
els (e.g., for reliability, performance, etc.) conforming to the original design model.

http://dx.doi.org/10.1007/978-3-642-29032-9_6
http://dx.doi.org/10.1007/978-3-642-29032-9_17

32 A. Avritzer et al.

Fig. 2.1 The proposed approach

The automated generation of non-functional models undertakes the most common
obstacles to the adoption of non-functional validation of software, that are: (i) the
extra-time needed to build by scratch a non-functional model, and (ii) the special
skills needed to accurately do this task (i.e., to build “by scratch” a model that con-
forms to the design model).

In this section we briefly describe a framework for model-based design and per-
formance analysis of software applications for WSN. It makes use of UML design
models extended with a UML profile strongly inspired to the NesC programming
language. Besides, thanks to MARTE 1 (i.e., the UML standard profile for modelling
performance and other non-functional elements) the UML models are further anno-
tated with performance parameters. Following the experience and the results achieved
for general purpose [239] and context-aware software applications [108], transforma-
tions can be applied to this augmented UML model to generate performance models.
Finally, the performance model solution provides the indices of interest.

Our approach is depicted in Fig. 2.1. The UML model comprises two views:

• a structural view includes the software architecture in terms of components and
connectors, and the hardware platform where such components are deployed;

• a dynamic view illustrates the system functionalities as a set of component-based
interactions.

We use a reduced set of UML modelling elements or language packages: com-
ponents and deployments for the structural view, use cases and interactions for the
dynamic view. Such elements are then depicted on their appropriate UML diagrams,
as follows.

The component diagram includes components, ports and connectors. A port spec-
ify a distinct interaction point that contains all the interfaces a component offers
to/requires from its environment. Then a connector wires ports by establishing
a correspondence between provided and required interfaces. The component dia-
gram in our approach comprises both NesC/TinyOS-based components and generic
components.

1 http://www.omgmarte.org/

http://www.omgmarte.org/

2 Resilience in Mobile Networks: A Need and a Challenge 33

The deployment diagram describes the hardware platform where the executables
are deployed. The DD of a wireless sensor network should represent motes including
their specific hardware components (e.g., sensors, radio module, CPU, battery and
timer). Similarly to CD, the DD also comprises other generic execution hosts and
communication networks.

Besides a structural description, the system functionalities have been represented
as component-based interactions in the dynamic view. Each sequence diagram (SD)
specifies the behaviour of a system functionality.

Beside this, UML provides an extension mechanism, named profiling, to tailor it
to specific domains. Domain specific elements are introduced through the definition
of stereotypes, tagged-values and constraints. Our framework exploits this mecha-
nism to combine three different domains: (i) the software modelling of NecS/TinyOS
applications, (ii) the hardware modelling of WSNs and (iii) the performance mod-
elling.

The UML profile for modelling and analysis of real-time and embedded systems
(MARTE) is used to represent the latter two domains. It is an OMG standard profile
that specialises UML by adding domain-specific concepts to support the modelling
and analysis of real-time and embedded systems like WSNs are. It is organised in
several related sub-profiles that can be individually tailored for specific purposes. In
particular, a working collection of MARTE sub-profiles that fits our modelling and
analysis needs includes:

• the general resource model (GRM) suitably specialised for static and dynamic
modelling of software (SRM) and hardware (HRM) resources;

• the generic quantitative analysis model (GQAM), that supports the representation
of hw/sw resource usages by the system, and different sub-profiles devoted to
specific non-functional analyses (e.g., PAM for performance);

• the textual value specification language for the annotation of quantitative and
qualitative tagged values of non-functional properties (NFP).

Then we devised a new UML profile, named NesC-WSN, to suitably specialise
UML for the modelling of (i) NesC/TinyOS-based applications through the soft-
ware architecture model sub-profile and (ii) hardware through the hardware platform
model sub-profile (see Fig. 2.2).

The former sub-profile is used for annotating both the structural (CD, DD) and
dynamic views (SD) of NesC [371] applications. The latter introduces few WSN-
specific hardware stereotypes, like «mote» and «nodeGroup», for distinguishing
them from generic nodes.

In particular the NesC-WSN profile includes two model libraries, TinyOS and
motes. They contain a set of ready-to-use stereotyped model elements that are
intended to be imported in any NesC/TinyOS annotated UML models (similarly
to classes of a software library in some programming languages) to speed up the
modelling activity. In particular TinyOS includes «configuration» and «module»
components whereas motes contains a ready-to-use set of «mote» nodes.

Table 2.1 summarises the envisaged mappings between the NesC keywords and
WSN concepts on the one side, and UML metaclasses on the other side: whenever

34 A. Avritzer et al.

Fig. 2.2 NesC-WSN and MARTE profiles

domain specific elements cannot be clearly identified in UML “as is”, a new stereo-
type has been devised. For example «command» and «event» are used for distin-
guishing NesC-specific from generic operations as well as «mote» and «sensor» are
used for characterising WSN specific hardware elements.

The peculiarity of our NesC-WSN profile is that it depends on MARTE (see
Fig. 2.2): the latter is always required and applied to a UML Model whenever our
new profile is used. Indeed the rightmost column of Table 2.1 contains the MARTE
stereotypes that should be applied together with the corresponding NesC-WSN ones.
Such a combination results in a UML Model that is ready to be transformed in a
queueing network [239].

The performance analysis we base on requires the following additional informa-
tion to be annotated on sequence and deployment diagrams:

• The workload («GaWorkloadEvent») for each functionality.
• The resource demand vector («GaAcqStep») that represents the amount of resources

(e.g., the number of CPU instructions executed or the amount of data transferred)
that a NesC call requires to be completed.

• The multiplicity (resMult tag) and performance capabilities of hardware resources
such as «motes» and «hwProcessors».

Moreover the stereotypes of the hardware platform model sub-profile are applied
on the DD: (i) to logically group nodes performing similar tasks («nodeGroup»),
(ii) to identify and quantify the number of «mote»nodes and their inner hardware
components (e.g., «sensor»).

Finally, NesC/TinyOS components are annotated on the CD. Their operations are
«command»that directly implement the provided interfaces («module») or delegate
the implementation to wired components («configuration»).

2 Resilience in Mobile Networks: A Need and a Challenge 35

Table 2.1 NesC-WSN, UML and MARTE mappings

Keywords UML NesC-WSN profile Marte profile
Base class Stereotype Stereotype

Software architecture model
Call Message «call» «GaAcqStep»
Command Operation «command» «GaStep»
Configuration Component «configuration»
Event Operation «event» «GaStep»
Module Component «module»
Hardware platform model
Node group Node «nodeGroup» «resource»
Mote Node «mote» «HwReosurce»
Sensor Node «sensor» «HwI/O»

The same operations are invoked in the SD. Since a «call» is also a «GaAcqStep»in
UML MARTE, the amount of resources that need to be acquired by the receiving
component to execute the «call» can be annotated on each of them.

Once the UML model has been annotated, execution graphs can be obtained from
the annotated component and sequence diagrams following PRIMAUML [239]. An
execution graph (EG) is a model that represents the software dynamics along with
their resource demands.

The generation of the QN model consists instead of two steps (Fig. 2.1):

1. A QN topology (QNt) is firstly obtained from the annotated DD: indeed the
service centers of the QN represent CPUs and disks whereas network connections
are represented by delay centers.

2. A complete QN (QNc) is obtained by adding the workload and a set of service
requests for each class of jobs. In [837] an algorithm is provided to transform
the resource requests of an EG into service time requests to QN service centers.

Performance indices of interest can be obtained from analytical solution or sim-
ulation of a complete QN.

In conclusion, the WSN domain presents very suitable aspects for a successful
application of such techniques. The WSN software applications are quite complex
because they run on heterogeneous (and sometime open) platforms, but from a mod-
elling viewpoint only the components running on sensor nodes and the surrounding
devices are actually new. When the elaboration reaches canonical network nodes
(such as gateways, servers, etc.), performance modelling can be based on existing
well-assessed techniques. Hence, the introduction of modelling instruments to rep-
resent, let say, the NesC part of WSN applications can be sufficient to enable the
realization of models of the whole system architecture. Being limited the world to be
modelled, it seems not too ambitious to envision a library of WSN-related modelling
bricks, each representing a specific element type of a WSN, that can be instantiated
and composed in larger models of WSN applications. The same applies to interme-
diate layers of the network stack, such as WSN middleware.

36 A. Avritzer et al.

2.4 Mobile Ad Hoc Networks

A mobile ad hoc network (MANET) is a network made of wireless devices, also
referred as nodes. A device can join a MANET and be part of it until it falls within the
radio range of one o more devices belonging to the MANET. Each device can move at
variable speed depending on the transportation mean that carries it. No infrastructure
is assumed in MANETs, both physical (e.g., firewalls, routers, etc.) and/or logical
(e.g., Certification Authorities, addressing/name assignment authorities, etc.).

Due to absence of physical infrastructure, each node can communicate directly
with its neighbours (i.e., devices that are in the node radio range) and needs the
collaboration of other nodes to carries its messages to non-neighbour destinations.
Furthermore, the lack of a logical infrastructure devoted to node identity, both in
assignment and control, makes the MANET nodes essentially anonymous. Finally
the nodes can be resource-limited in terms of CPU power, wireless transmission
range, power unit life, etc.

Hence MANETs suffer of several problems mainly related to security weakness,
wireless communications, and network topology change. Typical approaches to these
issues either are based on relaxing some specific constraints of MANETs (e.g., they
assume the existence of a trusted certification authority), or they show successful
results only for limited ranges of their parameters (such as density, speed and num-
ber of nodes). From a software viewpoint, most approaches aim at reusing in a
wireless environment the software interfaces of the TCP/IP stack layers used in a
wired environment. They basically tackle the above issues by modifying the internal
mechanisms of certain layers.

Cross-layer protocols have been introduced to address the above problems in
MANET, and they lay on a common design idea: the exchange of additional infor-
mation between layers enables better strategies due to an increase of awareness
among layers.

This idea is not new by itself, because several existing approaches exploit aware-
ness between network and transport layers [861, 862, 953, 961]. However in these
approaches the TCP protocols always play a passive role in that they are explicitly
notified about the network events from the routing protocols, like path losses, traffic
congestion, packet salvaged, etc. More recently, cross-layer design has been applied
between network and MAC layers, where more evident performance improvements
can be achieved (see, for example, [140]).

In this section we briefly introduce a framework aimed to study not only the
benefits of increased awareness between software layers on the same node (inter-
layer awareness) and between the same layer over different nodes (intra-layer aware-
ness), but also the combination of new/existing protocols designed with a cross-layer
criterion.

Although intended to address performance issues, this framework is also based on
considerations among the MANET availability. For availability we intend that each
node, regardless its resource capabilities, would have some probability of success
in joining any existent MANET. MANETs composed by nodes running the same

2 Resilience in Mobile Networks: A Need and a Challenge 37

routing and transport protocol, that agree on some security mechanism are out of
our design due to two reasons: (i) at each software level it does not exist the optimal
solution but only solutions that work well in a fixed range of nodes mobility, nodes
resource capability, network size, etc.; all parameters that can appreciably vary on
different MANETs, on different areas of the same MANET and on the same one area
during the MANET life; (ii) nodes, perhaps constrained by its resource capabilities,
that cannot adopt an unique, and not necessarily optimal, MANET strategy could not
join to it. Furthermore we remove the assumption of the existence of an out of line
authority that assigns identities to nodes, because this can be a particular instance of
a MANET2 but this assumption is unrealistic in general. So in our view the nodes are
essentially anonymous and the distributed solutions (IDS and/or reputation-based
control) loose most of their effectiveness.

Apart the above assumptions, cross layer projects are natural approaches in the
MANET environment, also if the stack layer interfaces have to be modified with
respect to the well-assessed standards used in wired networks. Such augmented
intra-layer awareness brings relevant advantages in MANETs, where very often an
event can be detected at some layer and profitably consumed in a different layer, as
illustrated in the following examples.

First, in order to acquire more channel capacity, a node can break near commu-
nication paths by forging and sending a message with a source MAC address of a
victim node. Only the MAC layer of the victim node can detect this event, whereas it
may be useful at the network layer to be aware of this event in order to support finer
security policies (e.g., the victim node could start a key exchange with neighbours
for sake of authentication).

Second, a node, through a violation of the MAC protocol, can carry a rough jam
attack and destroy all communication around it for a radius depending on the power
of its antenna. Even worse it can jam only packets containing transport data and pass
through packets devoted to search or update paths. Similarly to the previous example,
only the MAC layers of victims have the capability to detect this event, but the only
solution would be to move the victims out of the radio influence of attacker. In order
to implement such solution this event awareness should reach the user of the victim
node.

Third, the paths established between two peers in a MANET are (by definition)
time limited. One case of path removal is due to node mobility that can break the
link connection between two adjacent nodes, thus causing all paths containing this
link to become useless. If the MAC layer informs the network layer about the failure
of packets transmission toward its neighbours (i.e., a RTS/CTS failure in the MAC
protocol) the latter can decide if the link, and all paths containing it, have to be
considered useless. Then the network layer can try to repair the paths and/or notify
the event to the interested peers. Furthermore, the data link will keep trying to send
packets in its queue across the broken link, so wasting the channel capacity and
delaying other packets that have a higher probability to be successfully transmitted.

2 Such as a MANET conference deployed in absence of infrastructure, where each newcomer gets
its certificate in the conference secretariat before joining it.

38 A. Avritzer et al.

An enhanced awareness between data link and network layers would allow to drop
these packets or suspend their transmission while waiting for a new next hop in the
path.

A diverse type of augmented awareness regards information exchanged by
the same layer deployed on different nodes (inter-layer approach). An inter-layer
approach can be “local” when the information is directly exchanged between cou-
ples of nodes, as examples in [818], where queue information is exchanged by the
MAC layers of neighbour nodes in order to decouple the single channel constraint
in multiradio option. A deeper inter-layer approach regards information generated at
some point of network and carried toward other nodes in distributed IDS (es. [752])
or in routings protocols generally during the maintenance and repair phase. This lat-
ter information is subject to modification message attack and needs strong security
mechanisms.

Figure 2.3 schematically shows our framework. Transport and routing layers are
equipped with a certain number of modules and a manager. A module can be devoted
to implement: (i) a specific protocol (e.g., the transport protocol X), (ii) a stub proto-
col, that is a procedure that decides how to process messages sent with a protocol that
is not currently deployed on the node, (iii) a certain type of decisional policy (e.g.,
a policy to decide when discarding a certain path), or (iv) a simple software connec-
tor between different modules.3 Each manager coordinates the operations within its
layer.

Other frameworks have been developed in order to allow cross-layer interactions
in MANET. In Mobileman framework [237] cross-layer interaction is implemented
through a shared area. At this purpose a vertical component is added to the clas-
sical stack, where all protocols layer (i.e., MAC, network, transport, middleware,
application) can accede. This approach allows to add or remove protocols belonging
to different layer without modifying other layers. In MANETKit [760] the authors
claim that “no single protocol is well suited to a subset of operating conditions to be
found in any given MANET environment at any given time”, thus this framework
permits to hold more routing protocols and to switch from each others at run time.
Other frameworks have the simple goal of simplifying the protocol development and
testing on real systems (e.g., [169, 525]). At this purpose they offer the set of APIs
necessary to running the routing protocol in user space. This framework entails all
stack layers and each module is allocated in its appropriate layer, instead of being
constructed on the top of the application layer.

2.5 Conclusion

Following the development of electronic and computer technologies, new applica-
tions such as real-time conversational video conferences and interactive video games,

3 In the figure only the first two types of modules have been shown, because they represent the main
focus of our work.

2 Resilience in Mobile Networks: A Need and a Challenge 39

Fig. 2.3 The structure of our framework

have been developed. These applications which are, by nature, bandwidth consumers
are made available over mobile networks that have finite resources and may experi-
ence some end-to-end transmission delays.

In this chapter, we have described the most important network protocols sup-
porting modern applications in mobile cellular networks, wireless sensor networks
(WSN) and mobile ad hoc networks (MANETs). We first focussed on the handover
procedure in mobile cellular networks and the network failures due to this break-
before-make approach as during a handover the connection of a mobile terminal with

40 A. Avritzer et al.

its serving cell is interrupted before being connected to a new cell. We presented the
current solutions to enable seamless handover in the existing networks technologies,
pointing out the importance of a dependable and highly resilient backhaul network
to this issue.

Sensors are devices with limited resource capabilities, although in many cases
quite complex computational tasks are assigned to them. Moreover, WSN are often
used for applications with strict non-functional requirements. These networks require
solid modelling approaches for non-functional attributes of WSN software applica-
tions. Thus, in the second part of this chapter, a framework for model-based design
and performance analysis of software applications for WSN was presented.

Due to absence of physical infrastructure, MANETs suffer of several problems
mainly related to security weakness, wireless communications, and network topology
change. Typical approaches and cross-layer protocols to address these issues were
discussed in the last part of this chapter before presenting a framework which aims
to study both the benefits of increased awareness between software layers on the
same node (inter-layer awareness) and between the same layer over different nodes
(intra-layer awareness), and the combination of new/existing protocols designed with
a cross-layer criterion.

Acknowledgments Leïla Kloul is supported by the European Celtic project HOMESNET [8].
Katinka Wolter is partly supported by the German Research Council under grant number Wo
898/3-1.

Chapter 3
Assessing Dependability and Resilience
in Critical Infrastructures: Challenges
and Opportunities

Alberto Avritzer, Felicita Di Giandomenico, Anne Remke
and Martin Riedl

Abstract Critical infrastructures (CI) are very complex and highly interdependent
systems, networks and assets that provide essential services in our daily life. Most
CI are either built upon or monitored and controlled by vulnerable information and
communication technology (ICT) systems. Critical infrastructures are highly inter-
connected systems and often use common ICT components and networks. Therefore,
cascading faults and failures are likely events in critical infrastructures. Moreover,
such failures can easily spread to other infrastructures and can possibly span to other
countries or even continents. Assessing resilience is thus a cornerstone for improving
the dependability in critical infrastructures. Due to the complexity and interdepen-
dency of such systems many different challenges and opportunities surface when
developing methods and tools for resilience assessment. During the last decade both
academia and industry developed an increased interest in this research area and a
variety of projects with different focus started to emerge. This chapter gives an
overview about the main requirements for resilience assessment and discusses the
state of the art and emerging research directions. To exemplify the diversity of this

A. Avritzer (B)

Siemens Corporate Research and Technology,
755 College Road East, Princeton, NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

F. Di Giandomenico
ISTI Department, Italian National Research Council,
via Moruzzi 1, 56124 Pisa, Italy
e-mail: digiandomenico@isti.cnr.it

A. Remke
University of Twente,
Enschede, The Netherlands
e-mail: anne@cs.utwente.nl

M. Riedl
Universität der Bundeswehr München,
Neubiberg, Germany
e-mail: martin.riedl@unibw.de

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 41
DOI: 10.1007/978-3-642-29032-9_3, © Springer-Verlag Berlin Heidelberg 2012

42 A. Avritzer et al.

research area a special focus is put on different sub-fields with increasing granularity
from the fairly general interdependency modeling to the reliability modeling of a
Smart-Grid distributed automation network.

3.1 Introduction

More and more, our society and economy rely on the well-operation of a num-
ber of infrastructures, which regulate critical processes and provide vital services.
Critical infrastructures (CI) span a number of critical sectors, including: public health
and safety, energy, water, information and telecommunications, emergency services,
agriculture and food, transportation, banking and finance, government, and many
others. Over the last 10–15 years, the role of information and communication tech-
nology (ICT) in society has dramatically changed. Where some 15 years ago, ICT
supported some business and stand-alone office processes, ICT now forms the heart
of these processes. Moreover, ICT now plays an important role in most processes
and services in our economy, however, often hidden behind a non-ICT-like user
interface. A key example of the latter is the role of ICT in critical infrastructures.
The non-functioning of critical infrastructures has a vast impact on economic and
social welfare. Hence, for such infrastructures it is essential to be resilient against
faults and failures and to survive catastrophic events.

This chapter focuses on ICT-based critical infrastructures from the point of view of
their dependability and resilience assessment. As reported in the “critical infrastruc-
ture resilience final report and recommendations” produced by the US NIAC [677],
resilience has become an important dimension of the critical infrastructure protec-
tion mission, and a key element of the value proposition for partnership with the
government because it recognizes both the need for security and the reliability of
business operations. Although each critical infrastructure sector operates differently,
a common definition of infrastructure resilience is needed for public policies and
governance to be effective. Toward this end, the NIAC has developed the following
definition based on discussions with executives and security experts across many
sectors: infrastructure resilience is the ability to reduce the magnitude and/or dura-
tion of disruptive events. The effectiveness of a resilient infrastructure or enterprise
depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from
a potentially disruptive event.

Research has shown that many critical infrastructures are interrelated. Especially
ICT infrastructures play an important role in the vitality of other infrastructures,
e.g., the transport infrastructure does not operate properly without a reliable ICT
infrastructure. These dependencies can cause cascades of failures that start with
simple defects in one type of system, and may finally lead to disasters in other
infrastructures. Therefore, there is a growing need to analyze the chains of influence
that cross multiple sectors and that can induce potentially unforeseen secondary
effects. This reinforces the importance to consider dependability and resilience as

3 Assessing Dependability and Resilience in Critical Infrastructures 43

a component of critical infrastructure protection strategy and to devise appropriate
methodologies and techniques to promote its analysis and assessment.

This chapter on critical infrastructures points out the requirements for resilience
assessment of this challenging and crucial sector, pointing out relevant studies already
performed and indicating promising directions for future work. A more concrete
approach to resilience analysis in the CI field is provided in the Chap. 18 in this
book.

The outline of the remainder of the chapter is as follows. Section 3.2 discusses the
requirements for resilience assessment of critical infrastructures. Section 3.3 presents
an overview of the literature on critical infrastructures assessment approaches. A
significant effort is nowadays devoted to interdependencies modeling and analysis.
Section 3.4 reviews some relevant studies in this field. Section 3.5 focuses on how
stochastic hybrid models can be used for the dependability evaluation of fluid
critical infrastructures. This section provides an interesting example of the similar
feature characteristics between critical infrastructures in different domains. Increas-
ing the level of detail, Sect. 3.6 presents a concrete case study to illustrate a reliability
assessment approach for a distributed automation smart-grid distribution network.
Emerging directions for research in critical infrastructures are presented in Sect. 3.7.

3.2 Requirements for Resilience Assessment of Critical
Infrastructures

Critical infrastructures are often controlled by a supervisory control and data
analysis (SCADA) [857] system, which is potentially vulnerable to attacks and mis-
use. SCADA systems consist of sensors, actuators, controllers and a human-machine
interface (HMI) through which human operators control the physical process. It is
important to correctly capture interdependencies that arise between the SCADA net-
work and the physical network, but also interdependencies between different critical
infrastructures. Interdependency assessment is discussed in Sect. 3.2.1. Modeling
formalisms have to be able to capture the complex nature of critical infrastructures;
requirements with respect to, e.g., scalability, heterogeneity and compositionality
are presented in Sect. 3.2.2. Measures that can be used to evaluate the resilience of
such systems have to be defined in a sound and unambiguous way. Different types of
evaluation are highlighted in Sect. 3.2.3. Possible faults range from the malfunction-
ing of SCADA components to cyber attacks and are summarized in Sect. 3.2.4.

3.2.1 Interdependencies

There is a consensus in the literature on critical infrastructures that interdependency
analysis is of paramount importance to improve the resilience, survivability and

http://dx.doi.org/10.1007/978-3-642-29032-9_18

44 A. Avritzer et al.

security of these vital systems. An interdependency is a bidirectional relationship
between two infrastructures through which the state of each infrastructure influences
or is correlated to the state of the other [778]. Infrastructure interdependencies can
be categorized according to various dimensions in order to facilitate their identifica-
tion, understanding and analysis. Among the most important dimensions identified
in [778] are: (a) the couplings among the infrastructures and their effects on their
response behaviour (loose or tight, inflexible or adaptive), (b) the state of opera-
tion (normal, stressed, emergency, repair), and (c) the type of failure affecting the
infrastructures (common-cause, cascading, escalating).

Interdependencies increase the vulnerability of the corresponding infrastructures
as they give rise to multiple error propagation channels from one infrastructure to
another that increase their exposure to accidental as well as to malicious threats.
Consequently, the impact of component failures in critical infrastructures can be
exacerbated due to interdependencies and the overall severity of a failure is generally
much larger and more difficult to foresee, compared to failures confined to single
infrastructures. As reported in [742], past major power grid blackouts have been
initiated by a single event (or multiple related events such as an equipment failure
of the power grid that is not properly handled by the SCADA system) that gradually
led to cascading outages and eventually to the collapse of the entire system.

Analyzing interdependencies allows a greater understanding of the effects of
failures. Three types of failures are of particular interest when analyzing interdepen-
dent infrastructures: (1) cascading failures, (2) escalating failures, and (3) common
cause failures. Cascading failures occur when a failure in one infrastructure causes
the failure of one or more component(s) in a second infrastructure. Escalating fail-
ures occur when an existing failure in one infrastructure exacerbates an independent
failure in another infrastructure, increasing its severity or the time for recovery and
restoration from this failure. Finally, common cause failures occur when two or more
infrastructures are affected simultaneously because of some common cause.

3.2.2 Modeling Formalism

The large and complex nature of critical infrastructures with a multiplicity of interac-
tions and types of interdependencies involved requires a very flexible compositional
modeling framework that is able to accommodate different levels of abstraction. To
analyze their safety and survivability in the presence of disasters advanced structur-
ing, monitoring and assessment methods are necessary. From the modelling point of
view, abstraction layers and modular, hierarchical and compositional approaches are
viable directions to cope with these aspects. New model classes and languages are
necessary to accurately describe the structure and behavioral dependencies in criti-
cal infrastructures. Which modeling methods are suitable for which infrastructure?
Which are the crucial system issues to accurately model per infrastructure? Expert
knowledge will be necessary to establish critical subsystems and sensible parameters
settings; sensitivity analyses can be used to distinguish the crucial parameters, thereby

3 Assessing Dependability and Resilience in Critical Infrastructures 45

continuous variables

essential

properties of CI requirements research directions

large

complex

interdependencies

scalability

hierarchical

modular

abstraction

compositionality

heterogeneous

vulnerable discrete variables

randomness

stochastic
hybrid
models

expensive
cost structures rewards

Fig. 3.1 Properties of critical infrastructures, requirements for modeling and emerging research
directions

keeping the state space of the models as small as possible. As critical ICT infrastruc-
tures are very big systems, scalability is an important issue in modeling and analysis.

Figure 3.1 illustrates how the most prominent properties of critical infrastructures
lead to certain modeling requirements and hence, to research directions that are
expected to improve the state of the art in the field. Details are given in the following.

When modeling these complex systems [300] not all parameters and not all usage
patterns are known exactly. Moreover specific details of vulnerabilities and failures
will be unknown at design time, such as the mean time to failure and the impact of
a given vulnerability. In such cases it is appropriate to make stochastic assumptions
about the system and the disaster behavior. Hence, modeling formalisms that have
been shown useful to model large-scale computer and communication systems, e.g.,
stochastic process algebra and stochastic Petri net, can be used to formally describe
critical infrastructures, their inter-dependencies, and their cost structure.

The heterogeneity of typical critical infrastructures may require a combination
of different formalisms/techniques to describe the various components of a system
and their dependencies. For example, the combination of continuous and discrete
phenomena may need to be captured in the modeling framework. Examples of dis-
crete quantities are the number of spare parts and the state of sensors, actuators
and ICT-components, whereas the continuous variables represent quantities, like the
amount of produced energy, or the quality of treated water in terms of temperature
and pressure. Hence, a modeling formalism is needed that allows describing both
discrete and continuous quantities. Due to the flexible combination of discrete and
continuous state components, Stochastic Hybrid Models (SHMs) can be a natural
choice to accurately model both the process automation and the production process
which is the essential part of several critical infrastructures.

The cooperation among subsystems of different nature inside the same Critical
Infrastructure or among cooperating critical infrastructures requires advanced
methods to reconcile different aspects under a common development and assessment
framework. In this context, the studied infrastructures are assembled from many

46 A. Avritzer et al.

heterogeneous subsystems with different specifications, operation phases, and
regimes. Therefore, a common framework has to be able to combine the different
structural and quantitative aspects of critical infrastructures. Compositional model-
ing [141, 859] can simplify the modeling process and can lead to intuitive formalisms.
Compositional analysis reduces the complexity of verification. Changes in the system
then only affect the modified component and not the complete model. Compositional
analysis is a challenging topic that requires additional research.

3.2.3 Type of Evaluation

The Evaluation of critical infrastructures has to address functional properties like
inter-dependencies, deadlocks, etc., as well as extra-functional (quantitative) prop-
erties. As an example of the latter, what is the probability that 10 min after the
occurrence of a given disaster, a basic service level is again available for 80 % of the
user population? Not all infrastructures are critical and not all critical infrastructures
have the same level of criticality. An evaluation process is required to identify vul-
nerabilities, interdependencies and interoperabilities between systems, to understand
what specific assets of the addressed CI are utmost critical and need to be protected
the most. Following this evaluation, steps can be taken to mitigate the identified vul-
nerabilities. For example, if an electric substation is damaged leading to a blackout,
complications are experienced by a number of other systems/infrastructures and by
the services they provide, like railroad operations causing a decreased movement of
commodities and potential complications for emergency services. Thus, that elec-
tric substation must be protected not only for the Energy Sector, but also for the
safeguarding of other sectors’ infrastructure. Clearly, properties to be considered as
indicators of the resilience of the Critical Infrastructure under study may vary sig-
nificantly depending on the specificity of the targeted sector. The evaluation method
should therefore be able to specify and assess resilience indicators according to the
sector’s needs, addressing both the interest of system designers and operators as well
as users requesting services to the infrastructure.

Safety is defined as the absence of catastrophic consequences on the user(s) in
their environment [63]. Safety analysis of vital infrastructures encompasses the clas-
sification of different types of disasters, according to their probability of occurrence
and their effect on the controlled process; one can think of the degree of damage
regarding time, space and monetary costs, in addition to the probability of cascading
failures. Generally speaking, disasters can also be the result of malicious attacks
or even terrorism. Thus, security of critical infrastructures is an important issue to
deal with. Hence, combining the necessary expertise on network security (especially
intrusion detection) and on system modeling and analysis is necessary to forecast the
consequences of security attacks. This will help in finding the right counter measures
and to develop recovery strategies.

Dependability has been defined as the ability to deliver service that can justifiably
be trusted [63]. Given detailed models of the critical infrastructures, the dependabil-

3 Assessing Dependability and Resilience in Critical Infrastructures 47

Fig. 3.2 Building a more
resilient infrastructure comes
at a certain cost

ity of the system can be evaluated with analytical techniques or using simulations. It
is of utmost importance to use clear and formally defined notions of dependability.
For example, survivability [300] is defined as a system’s ability to recover predefined
levels of service in a timely manner. Survivability evaluation then encompasses the
evaluation of the probability (distribution) that predefined service levels are reached
within a certain time, given the recent occurrence of a disaster of some form. Sur-
vivability evaluation deliberately only addresses the system recovery process; the
process toward the disaster is explicitly not modeled, but taken as given. After the
classification of disasters through safety analysis, a so-called Given Occurrence Of
Disaster (GOOD) model of the system under study can be built and used for sur-
vivability analysis. Clearly, the recovery following a disaster highly depends on the
type and extent of the disaster as well as on the affected infrastructure and built-in
recovery mechanisms.

Other approaches from the field of dependable system design to achieve high-
dependability (reliability and availability) can be useful in the context of criti-
cal infrastructures, such as implementing smart recovery strategies or introducing
redundancy of some form [543]. As introduced in [677], it can be useful to divide
resilience into robustness, recoverability and resourcefulness. Clearly, building a
more resilient system comes at a higher price, so what is the relation between
increased costs and increased resilience? Where does the point of diminishing returns
lie? What is technically possible at which costs?

Figure 3.2 illustrates the relationship between a system’s extra-functional require-
ments/properties, i.e., (what), the architecture features that are constructed to make
the system more resilient, i.e., (how), and the associated costs to build a resilient
system, i.e., (how much). As an example of this tradeoff, one might consider
intrusion tolerance techniques and compare them to the objective of completely
avoiding intrusions. Intrusion tolerance techniques are more likely to be success-
ful in practice and may be less costly and more practical to implement, e.g. through
redundancy. The implementation of a more practical approach increases the system’s
robustness and can be measured, e.g., in safety and security. Minimizing the time to
recovery through smart repair schedules increases the recoverability of the sys-
tem and will lead to higher availability and survivability. Comparing infrastructure
designs alternatives with respect to their survivability and dependability will lead to
more informed design decisions and hence, to more resourceful infrastructures.

48 A. Avritzer et al.

3.2.4 Type of Faults

For each vital infrastructure a variety of possible disasters has to be considered.
In case of a network infrastructure, a disaster can be a power outage, or it can be
an explosion demolishing parts of the system. Both accidental and malicious faults
need to be accounted for in the analysis. In previous decades, accidental threats were
basically the only real threats facing infrastructure, especially natural disasters, which
tend to be localized to one region and have a fixed and, at times, predictable duration.
Until the bombing of the Murrah Federal Building in Oklahoma City in 1994, low
attention was devoted to malicious acts targeting these critical components. In more
recent years, preparation for Y2K (2000), fall-out from post-9/11 events, and a series
of blackouts of the power systems experienced both in the US and in Europe have all
reinforced the evidence of how vulnerable these systems are or can become to human
attacks. Cyber attacks to the ICT systems that are controlling critical infrastructures
are becoming more and more prominent. As an example, consider what happened in
Australia [754] in 2001: a hacker broke into the network of a water treatment plant,
opened an emergency valve and started to pump one million liters of raw sewage into
the city parks. We could provide many other similar examples, such as the recent
Stuxnet-worm [331, 520] which poses a serious thread to computers controlling
industrial processes in the energy sector, or the Aurora attack on power generators
[645] where the system could hurt itself via unauthorized SCADA commands.

A so-called threat or failure model [495] can be built, encompassing information
on the type of failures that can be expected, their frequency, their duration and their
intensity (e.g., computational strength). Because failures may be dependent on the
system state, such a dependence has to be formulated as part of the model as well.
Similarly, countermeasure models can be created, taking into account the incurred
costs (monetary, or otherwise) of taking the countermeasure and its effect on the
productivity of the infrastructure.

Heterogeneity also needs to be addressed at the level of vulnerability exposed by
the different subsystems composing a critical infrastructure, e.g. the use of subsys-
tems, such as Wireless SCADA, which are known to be typically vulnerable to error
and misuse. In fact, advances in technology and SCADA systems have enhanced crit-
ical sector operations but created additional vulnerabilities, which must be addressed
to adequately protect the critical infrastructure.

3.3 State of the Art in Resilience Assessment of CI: General
Overview

The last decade saw significant research opportunities in resilience assessment of
critical infrastructures. One of the important characteristics of critical infrastructure
that contributes to its complexity is heterogeneity. Therefore, related work focuses
on different aspects, such as the spatial distribution, interdependencies, uncertainty,

3 Assessing Dependability and Resilience in Critical Infrastructures 49

non-linearity or hybrid systems. The evaluation is mainly focused on vulnerability,
risk, and recoverability. It is performed using qualitative and quantitative assessment
methodologies.

In the following we overview existing methods and techniques for CI assessment,
providing a rough classification into qualitative and quantitative approaches. Due
to the sheer amount of related work, completeness cannot be achieved - for more
overview papers, please refer to [339, 376, 962].

Qualitative assessment approaches are discussed in Sect. 3.3.1 and quantitative
approaches in Sect. 3.3.2. Section 3.3.3 gives an overview of ongoing projects in
critical infrastructures.

3.3.1 Qualitative Assessment Approaches

Qualitative assessment approaches are descriptive in nature and aim at an in-depth
understanding of the critical infrastructure under study. In the following, we discuss
several approaches for qualitative vulnerability and risk assessment.
Qualitative vulnerability assessment can help to better understand the nature of
vulnerabilities and to identify common causes of major failures. In the following
we present two approaches to illustrate the application of qualitative vulnerability
assessment to water cleaning systems and to electric power systems.

The Infrastructure Vulnerability Assessment Model (I-VAM) [328] proposes a
qualitative treatment of the vulnerability of water cleaning systems. System experts
have to establish value functions and weights and they have to assess protection
measures of the system. Simulation (Monte-Carlo and Latin Hypercube) is used to
analyze the sensitivity of the model and to obtain a vulnerability density function.

In [45] it is claimed that blackouts in electrical power systems are seldom caused by
the failure of a single equipment but instead caused by cascading effects that cannot be
predicted. There, structural vulnerability is classified into node- (e.g., substation) and
plain vulnerability (e.g., transmission line). Moreover, different types of vulnerability
indices are proposed for different kind of operating parameters based on over-limit
information, regulating information, loss of load, and sensitivity analysis. The authors
provide methods to calculate different kinds of indices to assess an electrical power
system concerning its vulnerability after an out of service condition for a substation
or a group of tie lines.
Qualitative risk assessment aims to identify the qualitative value of risk
regarding a certain situation and threat under certain assumptions and uncertainties.
Qualitative risk assessment approaches are often used to identify targeted threats, e.g.,
cyber-attacks. In the following we present a review of related work on inductive and
deductive risk assessment, fault and attack trees, tableau-based and ontology-based
approaches.

Inductive risk assessment methods, such as event tree analysis (ETA), start from
certain observations (e.g., a particular hazard) within the system and try to inductively
find its consequences. In [16] event tree analysis has been applied as a systematic

50 A. Avritzer et al.

approach to investigate scenarios within a 3-step methodology. There, the conse-
quences of the event of hurricane Hazel have been modeled. Each branch of the
tree leads from a prior event to more specific outcome. The elements rainfall, flood
and wind have been depicted in the first level, resulting in consequences concern-
ing certain rivers or infrastructural damage. Based on the insights a flooding model
for the Humber river has been developed based on GIS information (i.e., digital
elevation maps). Moreover a knowledge base with interdependency relations has
been developed.

Deductive risk assessment methods on tree-based structures (e.g., fault-tree,
attack-tree effect, tree analysis, cause-consequence analysis) work in the opposite
way, i.e., from general to more specific. In [874] a new algorithm based on attack-
trees as simplified methodologies for impact analysis has been developed for the
evaluation of cyber-security incorporating password policies and port auditing. The
root node represents the ultimate goal (e.g., getting access) of an attack. Different
subgoals can be formulated as intermediate nodes that are combined over “AND” and
“OR” nodes. A leaf node can be an element of an intrusion scenario including defense
nodes as successors. First, cyber-security conditions are measured corresponding to
a number of assumed values reflecting the severity of vulnerability. Then, the attack
tree is formulated concerning the identified attack objectives, cyber-security con-
ditions and countermeasures. Finally, the system vulnerability is derived from the
computed leaf vulnerabilities of the attack tree and the specific scenario associated
with the attack.

To incorporate both random failures and deliberate acts, [672] combines fault-
trees and attack trees. Fault-trees are traditionally used to calculate the reliability
of systems, whereas attack trees enrich the fault tree by malicious attack patterns.
Attacks can cause several types of events that are classified as basic, intermediate,
or top events, depending on the event position in the attack tree. Top events result in
an overall critical infrastructure failure. The authors argue that an attack tree goal is
equivalent to a fault tree event, where the difference lies in its origin (i.e., originated
by a malicious agent or random events). To use extended fault-trees, the measures
resulting from the attack trees must be quantified in terms of event probabilities. This
is done by deriving the probability of basic events from assumptions concerning the
motivation and resources of threat agents, environmental conditions and subjective
probabilities associated to the elements of the attack tree.

Often, simple tableau-based approaches are used for qualitative risk assessment.
For example, in [13] the FEMA defines a tableau based approach to mitigate terrorist
attacks against buildings. Global vulnerability is quantified according to a reference
scale. Asset values are assessed based on a parameters scaling between very low and
very high. Event profiles for terrorism and technological hazards are defined and a
matrix representation of the asset vulnerability is presented. The tools provided can
help decision makers decide which types of threats they want to counter after risk
assessment is made for each threat.

There is also work available that uses ontology-based decision support tools for
critical infrastructures, i.e., with underlying description logics. Ontologies provide a
way to represent domain knowledge in the form of classifications and relationships.

3 Assessing Dependability and Resilience in Critical Infrastructures 51

Automated deduction algorithms allow for reasoning about potential vulnerabili-
ties and threats. In [211] such an ontology-based approach is taken as part of the
INSPIRE project, which aims to increase security and protection through infrastruc-
ture resilience. Vulnerabilities due to the integration of IT and SCADA systems are
explored together with connections, dependencies, and security aspects of SCADA
systems (e.g., inherent vulnerabilities and effects). An OWL-DL ontology represent-
ing physical and logical assets, safeguards, threats, sources of attack, and vulnerabil-
ities is described. These elements are connected through different types of relations
(e.g., Vulnerability “is exploited by” Threats, Asset “has vulnerability”
Vulnerability). Instances of certain CI infrastructures can be developed and
queried using a query language by applying the underlying deduction algorithms.
One example of a query language is SWRL. Questions such as “If I have resources
A,B and C what kinds of attacks should I expect?” can be posed and answered by
the implemented query mechanism.

3.3.2 Quantitative Assessment Approaches

Quantitative assessment uses measurable data to analyze and improve resilience
or aims at computing quantitative performance measures, such as survivability,
reliability, or efficiency. In the following, we review some quantitative assessment
approaches using statistical analysis, stochastic models, and testbeds.
Statistical analysis. Critical infrastructure disruption events that cascaded across
CI boundaries are examined in [612]. A disruption event database has been built
as an empirical database, using publicly available data, which can be used for the
understanding of cascading effects. It has been established that such effects mainly
originate from energy and telecommunication. The dependencies are very focused
and directional. The authors therefore question the domino theory since they only
found very rare events which result in deep level cascades.

An extension to data farming is used in [280] to generate different types of network
topologies. Simulation experiments with random and targeted terrorist attacks are
performed. The results show that most networks start to fail when the number of
attacks is larger than an empirically defined measure of node connectivity. Random
network topologies seem not to be as robust as scale-free networks.
Stochastic models. An important formalism used in stochastic modeling is
Stochastic Activity Networks [805]. This formalism has been applied in [115] as an
approach for quantitative interdependency analysis in the context of large and com-
plex CIs. The papers focus is on how the occurrence and size of cascades changes,
when the strength of interdependencies is varied. The Möbius tool [225] is used to
simulate the Stochastic Activity Network models using event-driven Monte-Carlo
Simulation. The modeling process consists of determining the distribution of the
cascade size, followed by an assessment of the impact of model abstraction and
refinement on the quality of the results obtained in the analysis.

52 A. Avritzer et al.

In [873] the risk of cyber attacks on the power system is calculated as the product
of two factors: the probability of a successful intrusion and the impact of the intrusion
as loss of power due to an unexpected loss of electric load. The two risk factors are
evaluated by two separate techniques. The cyber layer underlying the substation
control systems is analysed through stochastic firewall and password models, while
the impact factor for the attack upon a SCADA system is measured by the ratio loss
of load/total load through power flow simulation. Experiments are conducted on a
case study via simulation of the power flow and dynamic analysis. The integration
of the cyber and power models is based on the simplifying assumption that cyber
attacks can provoke unexpected opening of circuit breakers and the associated loss
of electric load.

The assessment of survivability of a network with virtual connections exposed to
node failures is discussed in [424]. Survivability modeling assumes that an undesired
event already has occurred and therefore the frequency of such an event is dispens-
able. Survivability models objective is to quantify the level of service degradation
during system recovery periods. Both a time-space decomposed analysis based on
continuous time Markov chains (CTMCs) and a simulative approach have been used
to cross validate. A number of scenarios with different network sizes have then been
analyzed with respect to the survivability of the network.
Testbeds are used to conduct empirical studies of resilience assessment. A security
testbed [753] has been built to emulate a SCADA network that is going through
a Denial of Service (DoS) attack. Several national and international collaborative
approaches for testbed implementations exist [212]. Testbeds have also been devel-
oped and evaluated as part of ongoing research programs on critical infrastructures,
such as CRUTIAL [112, 247] and IRRIIS [470].
Network theory and graph-based representations of the infrastructures’ topology
are often applied to study interdependencies and relevant properties of the structure
of a system. Such representations can be used for both qualitative and quantitative
approaches.

The focus of [28] is on data survivability in pipeline systems. Two weighted graphs
are constructed, one representing the pipeline structure and the other representing
the set of sensors and their interconnections. Different types of constraints have to be
respected such as source/sink balance, flow conservation, maximum bandwidth, and
the availability of energy. The optimal network topology problem is solved using
known algorithms for the solution of the Maximum Concurrent Multicommodity
Flow problem.

In [863] a graph-based approach is used in combination with statistical analysis.
Directed multigraphs augmented by response functions represent the interactions
between the network components, and are used to analyze the interdependent
effects of random failures and targeted attacks. Graph elements exist for non-storable
resources (e.g., in the electric grid network), storable resources (e.g., in gas or oil
pipeline), reliability (e.g., in the telephony transport layer), types of failures, repair
time, and logistic delay. Graph statistics and analytical approaches are used to iden-
tify critical components. The simulation experiments show that a failure in the gas

3 Assessing Dependability and Resilience in Critical Infrastructures 53

distribution network leads to a total failure in the telecommunication network and to
reduced functionality of the power distribution network.

The authors of [126] conduct a structural analysis of the power transmission grid
by applying a topological approach that extends the traditional metrics derived from
complex network theory (e.g., degrees of nodes and global efficiency) with two new
metrics, the entropic degree and net-ability. The new metrics account for the physical
and operational behavior of power grids in terms of real power-flow allocation over
lines and line flow limits. This approach can be used to assess structural vulnerabilities
in power systems in contrast to traditional, purely topological metrics. The impact
analysis of control systems availability on managing power contingencies is not
supported by this extended topological approach.
More techniques to cope with CI models naturally exist, such as agent-based
[882] and Monte-Carlo simulation approaches [115, 788]. High Level Architecture
(HLA) or spatial reasoning using GIS [557] can be applied to distributed simulation.
Exhaustive methods such as model-checking or performance evaluation approaches
can also be applied. Multiformalism modeling [340] incorporates different mod-
eling formalisms and applies dedicated solvers to obtain results in heterogeneous
environments.

3.3.3 Current Programs

There are a number of ongoing projects in the field of critical infrastructures that
mainly focus on quantitative analysis and interdependency analysis of the power
grid using simulation models. For example, Trustworthy Cyber-Infrastructure for
Power (TCIP) [868, 869] models trust and security issues for power and SCADA
systems. Placing SCADA data communication on the Internet creates an environment
where providing a reliable computing base is a challenge. Therefore, TCIP connects
simulation models and tools developed for the power grid with those developed for
the internet. Quantitative and qualitative evaluation constitute major research efforts
in TCIP [801], with focus on means to model, simulate, emulate, and experiment with
the various subsystems in the power grid. A variety of evaluation tools are adopted
to enable validation, including PowerWorld, RINSE, formal logic, PowerWeb and
APT.

In the CRitical UTility InfrastructurAL resilience (CRUTIAL) project [112, 247],
the emphasis lies on ICT infrastructures for electric power grids, the study of
interdependencies and the analysis of critical scenarios. The Integrated Risk Reduc-
tion for Information Based Infrastructure Systems (IRRIIS) project [470] focuses on
simulation approaches, with emphasis on interdependencies in information-based
infrastructure systems. Both projects focus on the analysis of interdependencies and
will be discussed in more detail in Sect. 3.4.

Vital Infrastructure Threats and Assurance (VITA) [747] aims to raise awareness
to the vulnerabilities of critical infrastructures by creating simulations and using
role-plays. The project developed methods, tools and techniques for infrastructure

54 A. Avritzer et al.

protection and a demonstrator experiment with a focus on energy that can be used to
gain insight into protection mechanisms on an international level.

The focus of the reliable infrastructures sub-project of the Next Generation
Infrastructures project [745] is on the design approach for damage prevention to
infrastructures and on the avoidance of system instabilities in the presence of fail-
ures. For example, the research on distribution centers security aims at ensuring
the survivability of vital nodes in a networked information infrastructure to prevent
system-wide failures. Another goal of the research is the protection of integrated ICT
departments.

The Power Systems Engineering Research Center (PSERC) [746] does research
on power markets, power systems, transmission and distribution technologies. This
research aims at increasing the efficiency and reliability of increasingly complex
and dynamic power systems through modeling, evaluation, and control. One area
of research is the development of estimation techniques that use past system-wide
failure data to help in the prediction of future system-wide failure events.

3.4 Focus on Interdependencies Modeling and Analysis

As already discussed in Sect. 3.2.1, strong dependencies exist among infrastructures,
which can easily become a vehicle through which faults, errors and attacks propagate.
If not controlled, these dependencies can create a multiplicative effect, leading to
cascading and escalating failures of one or more critical infrastructures. It is thus
extremely important to understand the associated relationships, for the prevention and
limitation of threats and vulnerability propagation, and for recovery and continuity
in critical scenarios.

Among the most recent efforts in addressing the modeling and analysis of inter-
dependencies in critical infrastructures, we briefly recall the activities developed in
the context of the European initiatives IRRIIS [740] and CRUTIAL [245], and some
other works from the literature.

3.4.1 The CRUTIAL Approach

The CRUTIAL project [245] has addressed new networked systems based on ICT
for the management of the electric power grid, in which artefacts controlling the
physical process of electricity transportation need to be connected with information
infrastructures, through corporate networks (intra-nets) that are in turn connected to
the Internet.

The project has developed new architectural patterns that are resilient to both
accidental failures and malicious attacks, and comprehensive modelling approaches,
supported by measurement based experiments, to analyse critical scenarios in which

3 Assessing Dependability and Resilience in Critical Infrastructures 55

faults in the information infrastructure provoke a serious impact on the controlled
electric power infrastructure.

In CRUTIAL the interdependencies between infrastructures have been investi-
gated by means of models at different abstraction levels: (i) from a very abstract
view expressing the essence of the typical phenomena due to the presence of inter-
dependencies, (ii) to an intermediate level of detail representing in a rather abstract
way the structure of the infrastructures, in some scenarios of interest, (iii) to a quite
detailed level where the system components and their interactions are investigated at
a finer grain, considering elementary events occurring at the components level and
analyzing their impact at the system level. Accordingly, the proposed framework
is based on a hierarchical modelling approach that accommodates the composition
of different types of models and formalisms, including generalized stochastic Petri
nets (GSPNs), fault trees (FT), Stochastic Well formed Nets (SWN), and Stochastic
Activity Networks (SAN). Each of these formalisms brings particular benefits that
motivated its selection into the CRUTIAL modelling approach. However, this choice
is not exclusive, and other formalisms with equivalent characteristics could also be
used. Significant contributions have been obtained by CRUTIAL considering the
qualitative description of interdependencies related-failures (mainly, unified models
considering accidental and malicious threats in a integrated way) and the quantita-
tive assessment of their impacts on the dependability and security of electrical power
systems services [247].

The approach has coped with the lack of data representing realistic probability
estimates of the occurrence of cyber threats and consequent failure modes by creating
two complementary testbeds. These have been set up to run controlled experiments
and to collect otherwise unavailable data related to cyber misbehaviours on grid tele-
operation and micro grid control scenarios. One platform, the telecontrol testbed,
consisted of power station controllers on a real-time control network, interconnected
to corporate and control centre networks. The other platform, the microgrid testbed,
was based on power electronic converters controlled from PCs, interconnected over
an open communication network. Both testbeds integrated elements from the elec-
trical infrastructure as well as from the ICT infrastructure, in order to focus on their
interdependencies, and specifically on the vulnerabilities that occur in the electric
power system when a part of the information infrastructure breaks down [248].

3.4.2 The IRRIIS Approach

The IRRIIS project [470] aims at increasing dependability, survivability and
resilience of EU ICT-based critical information infrastructures. The basis for this
work is the knowledge elicitation focused on interdependencies between the two
infrastructures “electricity” and “telecommunication including Internet”. Several
approaches have been pursued to model and analyze the interdependencies.

A theoretical framework has been developed in [689], where an approach equiva-
lent to process modeling is adopted, which views a CI as a process and dependencies

56 A. Avritzer et al.

that are modeled as response functions. Quantitative interdependency analysis, in
the context of large complex critical infrastructures, is presented in [115], where a
discrete state-space continuous-time stochastic process is used to model the opera-
tion of the critical infrastructure, taking interdependencies into account. Of primary
interest to the model are the implications of the level of abstraction and parame-
terization for the study of dependencies on the distribution of cascade-sizes within
and across infrastructures. The Leontief input-output economical model represent-
ing market dynamics has been exploited and adapted to model critical infrastructures
dependencies [471]. In addition, an empirical approach [612] has been applied to
analyse a large set of critical infrastructures failure data to discover patterns across
infrastructures failures.

The IRRIIS consortium has developed Simulation for Critical Infrastructure
Protection (SimCIP), an agent-based simulation environment for controlled exper-
imentation with a special focus on CIs interdependencies [536]. The simulator is
intended to be used to deepen the understanding of critical infrastructures and their
interdependencies and to identify possible problems. It is intended to be used to val-
idate and test architectural solutions aiming at enhancing the dependability of large
critical information infrastructures. The network model for SimCIP is based on a
multi-layer simulation approach (technical, cyber, management).

3.4.3 Other Studies

In addition to the work reported in the previous sections, several other simulation
models have been proposed to analyze interdependencies, in the context of Elec-
tric Power Systems [42, 190] and in connection with telecommunication networks
[42, 282, 782, 787]. A study to identify the state-of-the-art in critical infrastructures
interdependency modelling and analysis and the government/industry requirements
for related tools and services has been described in [116], where a strategy aiming to
bridge the gaps between existing capabilities and UK government/industry require-
ments is also presented. In the report [720], the field of infrastructure interdependency
analysis is first presented, then a survey on modeling and simulation techniques used
for the infrastructure and interdependencies is introduced together with the leading
research efforts. Data was collected from open source material and when possible
through direct contact with the individuals leading the research. The issue of identi-
fying appropriate metrics for quantifying the strength of interdependencies has also
been addressed in a few studies, such as [177, 791].

3.5 Focus on Fluid Infrastructures

Since different infrastructures have different characteristics, this section provides a
survey of the modeling requirements for so-called fluid critical infrastructures, i.e.,

3 Assessing Dependability and Resilience in Critical Infrastructures 57

water, gas and oil treatment and distribution. In contrast to e.g., power transmission
and distribution networks, fluid infrastructures have mainly linear characteristics
and as opposed to power, the fluid can be easily stored. Taking these specifics into
account, it is possible to come up with a suitable and scalable modeling formalism
and analysis technique for fluid infrastructures, as presented in [393] and summarized
below.

A recent report of TNO Defence and Security [610] analyzes the current situation
in the water sector and found a large number of vulnerabilities. Based on this research
a number of detailed measures have been proposed [611] to increase security in the
water sector. Given the severe consequences of successful attacks on SCADA sys-
tems, it is very important to analyze the trade-off between the cost and the efficiency
of such measures, already in the design process. The efficiency of these measures
can be expressed in terms of survivability, i.e., the time it takes after a successful
attack, before the system recovers to an acceptable level of service.

An example critical infrastructure that intensively uses SCADA systems for
process control are wastewater-management systems. Water is cleaned in several
chemical and physical cleaning steps, before it is distributed to the end users. A
suitable modeling formalism for such systems needs to take into account continuous
and discrete quantities, as well as random failure and repair times. SHMs combine
discrete and continuous variables with stochastics, hence, allow to model random
phenomena in a natural way. On the one hand, a very nice theory has been developed
that takes into account the full expressiveness of Stochastic Hybrid Models [737].
However, the industrial application that we are considering is by far too large for
state-of-the-art approaches; hence the focus of the presented approach is on scala-
bility. On the other hand, several formalisms supporting SHMs have been defined
[263, 395, 444], where each of them is suitable only in some very specific domain,
and suffers from limitations that prevent it from being used in other applications.

Recall, that interdependencies between the physical process and the ICT con-
trol infrastructure are crucial in critical infrastructures. Therefore critical infrastruc-
tures are very big and complex systems and scalability is of utmost importance.
State-of-the-art analysis methods from the area of SHM, however, do not scale. The
systems under consideration are characterized by deterministic fluid transportation,
however, with rates that change according to a stochastic process. Hence, Fluid
Stochastic Petri Nets (FSPNs) [395, 444] and Piece-wise Deterministic Markov
Processes (PDMPs) [263] appear to be suitable. However, the memory of continuous
variables in PDMPs is lost upon stochastic transitions. Hence, they are not suitable
to model the physical behaviour of fluid critical infrastructures. First and second
order Fluid stochastic Petri nets (FSPNs) [395, 444] have a sound mathematical
basis allowing for a completely formalized characterization of the state-evolution in
terms of differential equations. However, such equations can be solved only when
there are at most one or two continuous variables. Simulation is the only available
alternative when considering larger models [221, 394]. Another limitation of current
FSPN approaches is the lack of efficient compositional techniques.

The above clearly shows the need for a modeling and analysis framework that
is specifically tailored towards fluid critical infrastructures. To tackle the issue of

58 A. Avritzer et al.

scalability, a new approach based on Hybrid Petri nets [261] was proposed, where
the deterministic evolution is separated from the stochastic behaviour of the system
[393], by exploiting the quasi-deterministic behaviour of the system under study,
given that failure and repair events are stochastic. Therefore, there are relatively
few stochastic transitions, which allows for separating the deterministic and the
stochastic evolution of the system, using a conditioning/deconditioning argument.
This will speed up the reachability analysis and will allow for a large number of
continuous variables in the model, as opposed to previous approaches.

The Hybrid Petri Net formalism with General one-shot transitions (HPNG) as pro-
posed in [393] is specifically tailored towards fluid critical infrastructures. It allows
for an arbitrary number of continuous variables that can be connected via fluid transi-
tions. These transitions can be controlled by discrete places that can be connected via
deterministic and generally distributed transitions. Generally distributed transitions
must respect the constraint that they can fire only once during the evolution of the
model: for this reason we call them one-shot transitions.

Gribaudo and Remke [393] also introduces a new and efficient computation
scheme for all reachable states of a model: parametric reachability analysis. This
technique separates the deterministic and the stochastic components of a HPNG by
conditioning the deterministic evolution on the samples drawn from the probabil-
ity distributions associated to the general transitions. After all reachable parametric
locations have been computed, important performance metrics (such as the distrib-
ution of fluid) can be derived by a deconditioning procedure. As opposed to similar
SHM solution algorithms, the presented technique allows for an arbitrary number of
fluid variables.

The algorithm as described in [393] presents a first step in the analysis of HPNGs
and needs to be extended in several ways to realistically model and analyze fluid
critical infrastructures. Currently, the algorithm only allows for one general one-shot
transition, resulting in an underlying state-space of parametric locations that depend
on the sample of the one general transition. The approach used can be made more
scalable by extending the algorithm to allow for more generally distributed transitions
resulting in parametric locations that depend on as many samples.

In [393] the effect of different failure and different repair time distributions is
shown for a model of a water treatment facility. Possible results include the distri-
bution of fluid during the recovery process and the probability to reach an unsafe
state after a failure or attack. This helps system engineers to dimension storage tanks
in a way that failures do not influence the continuity of water delivery. In industry,
there is currently a trend towards combining the processing of drinking, surface
and waste water into one integrated water network, which makes the system even
more complex and hence, more vulnerable. Moreover, due to legal constraints in the
Netherlands, by 2014 the operation of the water treatment and distribution has to be
fully automated without direct human control. This requires the a priori development
of optimal repair strategies. Hence, water companies are very interested in evaluating
the dependability of their infrastructures and in comparing design alternatives based
on a cost/benefit analysis.

3 Assessing Dependability and Resilience in Critical Infrastructures 59

3.6 Case Study: Reliability Modeling of a Smart-Grid
Distributed Automation Network

This section illustrates a reliability assessment approach for a distributed automation
Smart-Grid network. Specifically, we present the computation of the System Aver-
age Interruption Duration Index (SAIDI) metric for one specific power distribution
circuit, which consists of 7200 feet of the main distribution line, encompassing 117
transformers and serving a total of 780 customers [931].

SAIDI is one of the most important performance metric for power utilities, as it
evaluates the utilities’ performance after a sustained power interruption. For example,
SAIDI is used in the United States by public service commissions to monitor and
control power utilities performance.

Some regions in the United States determine utility power rates based on the
utility performance as measured by SAIDI and other metrics that are related to the
time to restore power after a failure event and the number of customers affected
by a power failure. Therefore, utilities are required to measure and report SAIDI
to the controlling public service commissions. The public service commission has
the power to investigate failure events and to order the power utility to improve
performance [930].

The main circuit line is equipped with a distributed generator system at the end of
the line that can be switched on when faults are detected on the main line or to provide
an additional source of load. The peak load of the main line is 1692 KW, measured
in August, i.e., during a hot midweek summer day. The distributed generator is
designed to provide 100 % of the circuit load, i.e 1692 KW. The distribution network
is composed of 34 feeder lines that are connected to the main circuit feeder. Figure 3.3
shows one feeder line divided into 40 sections. The back-up generator connects to
the main feeder line through a Tie switch, not shown in Fig. 3.3. Each main feeder
line can be divided into several sections, at a significant cost for construction and
maintenance per section. The added benefit of increased number of sections is the
increased level of granularity of power control.

Currently, the main feeder line is not divided into sections, so if a fault occurs
on the main line, all the customers on the main feeder line would be impacted.
The objective of implementing a Smart-Grid distributed automation approach is to
decrease the customer impact of power failure events as assessed by the expected
value to the SAIDI metric.

In a distributed automation approach, after a power failure event, the faulty section
is switched off the main line, and the substation powers the upstream part of the feeder,
while the distributed generator powers the downstream part of the feeder, reducing
the outage impact only to the customers that are supported by the now isolated failed
section. Therefore, while the customers in the faulty section still see an outage with
an average repair time of 4 h, the other customers that are served by the main feeder
line, experience a power interruption that will last only about 2 min. The tradeoff
in this distributed automation design is the cost and complexity of having many

60 A. Avritzer et al.

Fig. 3.3 Architecture model of one main feeder line divided into 40 sections

sections, against the large customer impact of the failure of a large section, if too few
circuit sections are implemented.

In this example we use hours as the unit for the failures and repair rates. SAIDI is
defined as

∑
(ri · Ni)/NT , where ri is the actual service restoration time in hours, Ni

is the total number of customer interrupted, and NT is the total number of customers
[930].

Figure 3.4 presents a Markov reward model of the states a given section can be in,
due to failures, repairs, and section line switches, that are needed to isolate the failed
section from the main circuit feeder line. Each state is described by a three tuple,
where the first entry captures the power state (on/off), the second entry represents
the state of the smart-grid communications network (on/off), and the third entry
characterizes whether the section is currently in-line or out-of-line.

When the distributed automated network is operating correctly, the Markov chain
is in state s = (1, 1, I N), which is state 1 in Fig. 3.4. We have to consider two
different types of failures:

• A power failure with impact on the section under study occurs with rate f1 and
the Markov chain will transition to state s = (0, 1, I N). The power failure has to
be repaired in stages. If the smart-grid automated repair is functioning properly,
the Markov chain moves to state s = (0, 1, I N), after the power failure. Next, the
Markov chain moves with rate sw1 to state s = (0, 1, OU T), where the section is
removed from the line. In this state all customers upwards and downwards from
the failed section already have their service restored. Typically, the average time
to switch a section off-line is between 1 and 2 min. The average time to repair a
power failure manually is between 1 and 4 h, depending on several factors like,
urban density, traffic congestion, cause of equipment failure, and the extent of the
damage to the equipment [736]. In this example, we assume the average switching

3 Assessing Dependability and Resilience in Critical Infrastructures 61

Fig. 3.4 Markov reward model, describing failures and repairs in a distributed automation power
network

time, 1/sw1, to be equal to 2 min, and the average manual power failure repair
time,1/r1 to be equal to 4 h. When the power failure is corrected manually, the
Markov chain moves to state s = (1, 1, OU T), with rate r1 and from this state the
section is switched back on with rate sw1. Then, the customers from the affected
section have their power restored.

• A smart-grid failure occurs with rate f2 and which impacts the section under
study, the Markov chain will transition to state s = (1, 0, I N). In this state there
is no impact on the power-grid service to the power customers. However, if a
power failure occurs in this state, with rate f1, the Markov chain moves to state
s = (0, 0, I N). In this state all customers in the main feeder line suffer from
the power failure and the line has to be manually switched off, with rate sw2,
to isolate the section from the main feeder line. From state s = (0, 0, OU T) a
manual repair brings the Markov chain to state s = (1, 0, OU T) and a manual
smart-grid repair brings the Markov chain to state s = (1, 0, I N). In this state
the power is restored for all customers but the automated Smart-grid recovery is
still not repaired. When the Smart-Grid is repaired the Markov chain moves to the
initial state s = (1, 1, I N). The other transitions follow a similar pattern and are
shown in Fig. 3.4.

One of the challenges in Reliability modeling is the expression of the system
reliability degradation as a function of time, which is often overlooked. Therefore,
we solved the Markov chain model with rewards using the Tangram-II [272] transient
analysis solver. A Markov chain with rewards analysis was used to represent one year
of operation. The model captures only one section failure at a time. Therefore, an
important assumption used in this Markov modeling example is that the smart-grid is
designed to automatically restore one section failure at a time, and that the probability
of occurrence of a second power failure while the first one is being repaired is very
small.

62 A. Avritzer et al.

Table 3.1 SAIDI after 1 year of operations for several section designs, for 0.1 power fail-
ures/km/year and 1/20, 000 failures per hour communications network equipment, manual repair
time of 4 h, automated section switching time of 2 min, manual line switching of 1 h, total number
of customers served by main feeder line equal to 780

Number of sections Customers impacted f1 f2 SAIDI

5 156 0.000005 0.00005 0.036
20 39 0.000001252 0.00005 0.0025
40 20 0.000000627 0.00005 0.00074

Table 3.1 presents the computed SAIDI metric for different alternatives of section
designs after one year of operation. These results are derived from the solution of
a transient Markov reward model for a section failure rate of 0.1 failures per km
per year. This analysis is useful for the engineering of the topology of distribution
automation networks, where the engineer needs to tradeoff between the investment
in number of sections and the distribution automation reliability.

The empirical results shown in Table 3.1 illustrate the tradeoff between increased
reliability and the additional cost of designing a larger number of sections into the
main feeder line. Table 3.1 shows that to achieve increased reliability a larger number
of sections has to be built, at additional cost for construction and maintenance. The
benefit obtained from the construction of sections that control a smaller number of
users that can be isolated quickly in the case of power failures is the improved power
reliability, which is demonstrated by the smaller values of the SAIDI metrics for the
main line feeder design when the feeder line is divided into 40 sections.

3.7 Conclusions and Emerging Research Directions

Following the more comprehensive approach of CI resilience as presented in [677],
state of the art resilience assessment approaches for CIs should help improve the
robustness of CIs. The increase in robustness of CIs can be achieved by increasing
their absorptive capacity, their resourcefulness or their recoverability. The absorptive
capacity, for example, can be improved by adding more redundancy. Resourcefulness
is the ability of using the available resources efficiently in the presence of failures
and disasters. It depends mainly on the adaptive capacity of the system. Optimized
repair schedules can improve the resourcefulness of critical infrastructures. Finally,
recoverability can be optimized by minimizing repair times. On one hand, improve-
ments to the robustness of critical infrastructures come at a certain cost. On the other
hand increased robustness will reduce costs due to systems down time. Hence, the
resilience of critical infrastructures should be evaluated under a cost-minimization
criteria.

The variety of initiatives in resilience assessment of critical infrastructures, some
of which are briefly overviewed in this chapter, testify to the paramount role of

3 Assessing Dependability and Resilience in Critical Infrastructures 63

resilience assessment in several critical sectors. However, when comparing require-
ments for resilience assessment, as identified in Sect. 3.2, with existing approaches,
as discussed in Sect. 3.3, it becomes clear that further research is still required.
Most of the modeling research in CIs uses simple handcrafted reliability block dia-
grams, fault-trees, or simplistic stochastic Petri nets. Recent research on fluid critical
infrastructures suggests that stochastic hybrid systems can be tailored toward this
new application field. The application of stochastic methods captures the continu-
ous dynamics of the physical world and the discrete characteristics of the control
infrastructure. However, further research is necessary to ensure the scalability of
hybrid approaches.

Advances in industrial control systems and technology, such as SCADA sys-
tems, enhance sector operations but create additional vulnerabilities and increase
interdependencies, whose effects are hard to detect and to mitigate. To make these
systems resilient, research must integrate an understanding of resilience, security,
human interaction, and complex network design to address the threats. The large-
ness and diversity of critical infrastructures and the different characteristics of their
parts requires a compositional integrated formalism. The necessity of continuous
assessment activities calls for a composite (i.e., holistic) evaluation framework, where
the synergies and complementaries among several evaluation methods can be fruit-
fully exploited.

Further research is required to develop coherent resilience properties in different
sectors of CIs. Sound and rigorous definitions of measures, such as recoverabil-
ity and survivability, can be cast into temporal logics, e.g., continuous stochastic
logic [228]. Research into recently developed methods for stochastic model checking
needs to be adapted for the use within critical infrastructures. The use of abstraction,
bi-simulation reduction, and symbolic state space representation techniques can help
to tackle large state-spaces. In addition, the use of simulation-based statistical model
checking can be a applied to the assessment of resilience of CIs.

Chapter 4
Providing Dependability and Resilience
in the Cloud: Challenges and Opportunities

Samuel Kounev, Philipp Reinecke, Fabian Brosig, Jeremy T. Bradley,
Kaustubh Joshi, Vlastimil Babka, Anton Stefanek and Stephen Gilmore

Abstract Cloud Computing is a novel paradigm for providing data center resources
as on-demand services in a pay-as-you-go manner. It promises significant cost savings
by making it possible to consolidate workloads and share infrastructure resources
among multiple applications resulting in higher cost- and energy-efficiency. How-
ever, these benefits come at the cost of increased system complexity and dynamicity
posing new challenges in providing service dependability and resilience for appli-
cations running in a Cloud environment. At the same time, the virtualization of

S. Kounev (B) · F. Brosig
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
e-mail: kounev@kit.edu

F. Brosig
e-mail: fabian.brosig@kit.edu

P. Reinecke
Institute of Computer Science, Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: philipp.reinecke@fu-berlin.de

J. T. Bradley · A. Stefanek
Imperial College, London, UK
e-mail: jb@doc.ic.ac.uk

A. Stefanek
e-mail: as1005@doc.ic.ac.uk

K. Joshi
AT&T Labs Research, Florham, Park NJ, USA
e-mail: kaustubh@research.att.com

V. Babka
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
e-mail: babka@d3s.mff.cuni.cz

S. Gilmore
University of Edinburgh, Edinburgh, UK
e-mail: Stephen.Gilmore@ed.ac.uk

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 65
DOI: 10.1007/978-3-642-29032-9_4, © Springer-Verlag Berlin Heidelberg 2012

66 S. Kounev et al.

physical resources, inherent in Cloud Computing, provides new opportunities for
novel dependability and quality-of-service management techniques that can poten-
tially improve system resilience. In this chapter, we first discuss in detail the chal-
lenges and opportunities introduced by the Cloud Computing paradigm. We then
provide a review of the state of the art in dependability and resilience management in
Cloud environments, and conclude with an overview of emerging research directions.

4.1 Introduction

In today’s data centers, IT services and applications are typically hosted on dedicated
hardware in order to provide dependability guarantees. Server capacity is typically
over-dimensioned to ensure adequate Quality-of-Service (QoS) under variable work-
loads and load fluctuations. The use of dedicated hardware with over-dimensioned
capacity not only leads to poor resource efficiency, but also makes it hard to react to
changes and conflicting demands in operating conditions, business processes or use
practices. Moreover, the adoption of new applications and the increasing demand for
IT services leads to an exponential growth in the number of servers and the required
network infrastructure. Servers in data centers nowadays are estimated to have aver-
age utilization ranging from 5 to 20% [761, 826] which corresponds to their lowest
energy-efficiency region [91]. The growing number of underutilized servers, often
referred to as “server sprawl”, translates into increasing data center operating costs
including system management costs and power consumption costs of the server, net-
work and cooling infrastructure. According to a study at Lawrence Berkley National
Labs (2007), power consumption in data centers doubled from 2000 to 2005, and in
2006, the USA alone spent an estimated 61 TW-h in data centers. By 2025, power
consumption in data centers is projected to grow by 1600% and energy will become
the major factor in the Total-Cost-of-Ownership (TCO) for IT [922]. Already today,
according to IDC, over 40% of data center customers report power demand out-
stripping supply, while cooling capacities at their threshold have become a limiting
factor in deploying new systems [810]. In addition to driving costs up, the rising
energy consumption of the ICT sector will have a significant impact on the global
CO2 emissions. While today, ICT accounts for 2–4% of the global CO2 emissions,
it is projected to reach 10% in 5–10 years [517]. Thus, reducing the costs of ICT and
their environmental footprint while keeping a high growth rate of IT services is one
of today’s greatest challenges for society.

Driven by the pressure to improve energy efficiency and reduce data center
operating costs, industry is looking towards Cloud Computing, which is a novel
paradigm for providing data center resources (computing, network and storage) as
on-demand services over a private or public network in a pay-as-you-go manner.
Cloud Computing is normally considered at three different levels: i) Infrastructure-
as-a-Service (IaaS) where raw compute, storage, and network resources are provided,
ii) Platform-as-a-Service (PaaS) where an application environment on top of the bare
bones infrastructure is provided, iii) and Software-as-a-Service (SaaS) where a work-

4 Providing Dependability and Resilience in the Cloud: 67

ing application is provided (e.g., NetSuite and SalesForce.com). Cloud Computing
makes it possible for enterprises to consolidate their IT resources internally or to
completely outsource their IT infrastructure taking advantage of the economies of
scale of a shared infrastructure. In both cases, some substantial reductions in the
TCO for IT can be achieved. Virtualization plays a key role in this process since it
makes it possible to significantly reduce the number of servers in data centers by
having each server host multiple independent virtual machines (VMs) managed by a
Virtual Machine Monitor (VMM) often referred to as a Hypervisor. By enabling the
consolidation of multiple applications on a smaller number of physical servers, vir-
tualization promises significant cost savings resulting from higher energy efficiency
and lower system management costs. Moreover, virtualization facilitates system evo-
lution by enabling adaptability and scalability of service infrastructures.

With investments of billions of dollars, the fortunes of dozens of companies, and
major research initiatives staked on its success, it is clear that Cloud Computing is
here to stay. Cloud-based infrastructures are rapidly becoming a destination of choice
to host a varify of applications ranging from high-availability enterprise services and
online TV stations, to batch-oriented scientific computations. However, it is not yet
clear whether Cloud services can be a dependable alternative to dedicated infrastruc-
ture. In the context of this chapter, we consider dependability to be the ability of a
system to provide dependable services in terms of availability, responsiveness and
reliability. As part of dependability, resilience is understood as the system’s abil-
ity to continue providing available, responsive and reliable services under external
perturbations such as security attacks, accidents, unexpected load spikes or fault-
loads.The remainder of this chapter explores this question and is organized as follows.
Section 4.2 describes the challenges and opportunities in providing dependability and
resilience in the Cloud. In Sect. 4.3, we review the state of the art in dependability,
performance and security management in Cloud infrastructures. An overview of the
emerging research directions in Cloud Computing is provided in Sect. 4.4

4.2 Challenges and Opportunities

The increased complexity and dynamicity induced by Cloud Computing pose new
challenges and opportunities in providing service dependability and resilience. On
one hand, availability and privacy are serious challenges for applications hosted on
Cloud infrastructure. On the other hand, a Cloud provider’s economies of scale allow
levels of investment in redundancy and dependability that are difficult to match for
smaller operators. Furthermore, the ability to monitor large numbers of applications
and users can enable “wisdom of crowds” approaches to provide enhanced security
much in the same way that network providers have been able to do with worms and
DDoS attacks.

68 S. Kounev et al.

4.2.1 Challenges

In spite of the many benefits Cloud Computing promises, today, the lack of trust in
shared virtualized infrastructures is a major showstopper for its widespread adop-
tion. According to [7], 74% of technological and financial decision makers in the
UK would not put mission-critical applications in the Cloud. Service unavailability,
performance unpredictability, and security risks are frequently cited as major rea-
sons for the lack of trust [5, 58]. Some recent stress tests conducted by Sydney-based
researchers revealed that the infrastructure-on-demand services offered by Amazon,
Google and Microsoft suffer from regular performance and availability issues [936].
Response times of services varied by a factor of twenty depending on the time of
day the services were accessed.Throttling, power failures and deliberate design con-
straints were among the reasons for the unpredictability. According to [58], concerns
of organizations about service availability is the number one obstacle to the adoption
of Cloud Computing. Service overload, hardware failures and software errors as well
as operator errors are among the most common causes of service unavailability as
experience with Google’s AppEngine, GMail and Amazon’s AWS services shows
[12, 936].

The lack of trust in shared virtualized infrastructures is a major impediment which
applies both to public and private Clouds. Indeed, virtualization comes at the cost of
increased system complexity and dynamicity. The increased dynamicity is caused by
the introduction of virtual resources and the lack of direct control over the underlying
physical hardware. The increased complexity is caused by the complex interactions
between the applications and workloads sharing the physical infrastructure. The in-
ability to predict such interactions and adapt the system accordingly makes it hard to
provide dependability guarantees in terms of availability and responsiveness as well
as resilience to external perturbations such as security attacks. Thus, virtualization
introduces new sources of failure and threats degrading the dependability and trust-
worthiness of Cloud Computing infrastructures. Service providers are faced with the
following challenges:

• How much resources (e.g., CPUs, main memory, storage capacity, network
bandwidth) should be allocated to a new application deployed in the Cloud in-
frastructure and how should the application be configured to satisfy its require-
ments for dependability (availability and reliability) and responsiveness avoiding
the pitfalls of underprovisioning or overprovisioning resources?

• How much and at what rate and granularity (e.g., CPU cycles, cluster nodes)
should resources be added or removed proactively to avoid Service Level Agree-
ment(SLA) violations or inefficient resource usage due to varying customer work-
loads and load fluctuations?

Moreover, the consolidation of workloads translates into higher utilization of physical
resources which makes the system much more vulnerable to threats resulting from
unforeseen load fluctuations, hardware and software failures, and network attacks.
The Cloud provider is faced with the challenge of how to efficiently share physical

4 Providing Dependability and Resilience in the Cloud: 69

resources among hosted applications in the face of highly variable and unpredictable
resource demands as well as operational failures.

An environment with a few large Cloud infrastructure providers not only increases
the risk of common-mode outages affecting a large number of applications, but also
provides highly visible targets for attackers. Community-driven sites such as [3] track
outages in major Cloud providers and have documented a number of outages and
security vulnerabilities over the last two years affecting hundreds of Internet sites.

Sharing of Cloud resources by entities that engage in a wide range of behaviors and
employ best practices to varying degrees can expose Cloud applications to increased
risk levels. For example, on April 26 2008, Amazon’s Elastic Cloud (EC2) had an
outage [1] across several instances due to a single customer applying a very large set
of unusual firewall rules and instantiating a large number of instances at the same
time, thereby triggering a performance degradation bug in Amazon’s distributed
firewall.

Multiple administrative domains between the application and infrastructure
operators reduces end-to-end system visibility and error propagation information,
thus making problem detection and diagnosis very difficult. Additionally, for com-
petitive reasons, Cloud infrastructure providers may not provide full disclosure re-
garding the cause of outages or other detailed infrastructure design information,
raising the question of the verifiability of claims regarding dependability.

The hosting of data on outsourced and shared infrastructure that may be in a
different legal jurisdiction than the owner of the data has serious legal and pri-
vacy implications. Corporate accountability legislation such as the Sarbanes-Oxley
Act (SOX) of 2002 and privacy clauses included in legislation such as the Health
Insurance Portability and Accountability Act (HIPAA) of 1996 and the Telecommu-
nications Act of 1996 create obstacles to the applicability of Cloud solutions in the
financial, healthcare, and telecom industries. For example, BusinessWeek reported
in Aug 2008 [535] that ITricity, a European provider of Cloud computing capac-
ity, could not offer services to such companies until it began offering owner-hosted
private Cloud services. The recently formed industrial consortium called the Cloud
Security Alliance [2] includes in its charter several issues regarding the interplay of
Cloud Computing and legal requirements.

4.2.2 Opportunities

Cloud computing enables economies of scale leading to large redundancy levels
and wide geographical footprints. For example, Amazon’s EC2 currently supports
two regions in the US and Europe, each split into independent “availability zones”,
while AT&T’s Synaptic Cloud computing offering provides five “super IDCs” lo-
cated across the world. These can be leveraged through techniques such as virtual
machine migration and cloning to provide better fault tolerance and disaster recov-
ery, especially for operators of smaller applications that may not have been able to
afford such capabilities.

70 S. Kounev et al.

New security and reliability services can be enabled or strengthened by virtue of
being located in the Cloud. For example, popular cloud-based email services such as
GMail amplify manual feedback from some users to provide automatic spam filtering
for all users. Oberheide et al. describe in [696] a Cloud-based anti-virus solution that
can not only utilize multiple vendors to provide better coverage, but also compares
data blocks across users to improve efficiency and provides an archival service for
forensic analysis.

Managed Cloud services that include OS level support can result in improved
reliability and security due to consistent centralized administration and timely appli-
cation of patches and upgrades.

4.3 State-of-the-Art Review

In this section, we provide an overview of the state of the art in dependability and
resilience for Cloud Computing. We start with a discussion of dependability as-
sessment techniques and then survey methods for managing dependability. The ap-
proaches in the first section cover the issue of how Cloud system dependability could
be assessed, while the second section comprises methods that are used to manage
the system with the goal of improving dependability.

4.3.1 Approaches for Dependability Assessment

Availability, performance and security can be evaluated using measurements on real
deployments, measurements on test-beds, simulations, and analysis of models. While
a lot of work exists in these areas, approaches specifically targeting Cloud systems
are still rare.

Measurement studies on real Cloud systems are undertaken in order to understand
the effect of the Cloud on the application. In [378], resilience of an Infrastructure-
as-a-Service (IaaS) cloud is quantified as job rejection rate and response delay in
situations where the cloud is subjected to changes in demand and available capacity.
However, most existing studies focus on performance. The typical approach in such
studies is to generate a workload and measure various performance indicators. The
tools used and the indicators of interest depend on the application that the authors fo-
cus on. [322, 481, 673, 705, 924] serve as examples for evaluation of the performance
of applications for scientific computing. These studies employ tools that generate a
typical High Performance Computing (HPC) workload, and measure run-times. In
[705], the authors also evaluate the time required for allocating and releasing vir-
tual machines. Since flexible resource allocation is a major selling-point of Cloud
systems, this aspect should not be ignored when considering overall performance.
Furthermore, [705] studies the performance of disk I/O operations performed on
virtualized disks. The findings in [279, 322, 481] show that applications running

4 Providing Dependability and Resilience in the Cloud: 71

on Cloud systems have run-times that are longer and exhibit more variance than
applications running on native systems. The authors of [705], however, state that
extensive caching in a Cloud system may result in significantly faster disk I/O op-
erations, compared to a native system. On the other hand, [705] also shows that a
quick performance drop occurs once the cache size is exceeded.

Experimentation on test-beds is seldom performed for Cloud systems, since the
complexity and costs of setting up a Cloud environment of realistic size become pro-
hibitively large. Existing approaches thus tend to focus on special aspects of Cloud
systems, in particular, specific programming models and virtualization technology.
In [460], the performance of an application using MapReduce is evaluated on a small
cluster of physical machines, each of which runs several virtual machines. The au-
thors point out that performance may suffer from virtual machines competing for the
physical I/O resources. As virtualization is a key component in Cloud Computing,
its impact on dependability must be understood. Virtualization is rather amenable to
experiments in test-beds. Existing work [452, 453, 637, 831] focuses on studying the
performance impact of configuration options and workloads through experiments
with benchmarks and standard performance measurement tools. Performance indi-
cators are typically throughput and benchmark-specific aggregated metrics.

Benchmarks for virtualized server consolidation, i.e., benchmarks measuring ag-
gregated server performance when physical resources are virtualized and shared,
include vConsolidate [49], VMMark [430] and recently SPECvirt_sc2010 [841].
Benchmarks for virtualized servers are still a subject of discussion, as there is a lack
of consensus for a metric describing consolidated server performance [143, 373]. The
authors of [372] propose new metrics taking into account per-VM performance along
with total system throughput. The authors of [143] emphasize that particularly for
benchmarking database performance, the consolidation of resource-intensive work-
loads is of crucial importance. None of the virtual benchmarks available today mea-
sure database-centric properties adequately [143].

Unlike virtualized server consolidation, Cloud Computing lacks well-established
benchmark suites [398], although benchmarks such as TeraSort, Cloudstone or Mal-
Stone exist, and traditional high-performance computing benchmarks have been used
(e.g., [322, 481, 705]). In [114], it is argued that the established TPC-W benchmark
[838] is not appropriate for Cloud Computing, because Cloud scalability invalidates
its metrics, TPC-W relies on database properties often not supported in the Cloud,
and because TPC-W does not provide metrics for important Cloud properties such
as scalability, pay-per-use pricing, and fault-tolerance. The authors of [114] propose
desirable properties of a Cloud benchmark; similarly, [238] proposes a benchmark-
ing framework specific to Cloud data serving systems. Resilience benchmarking in
general is further discussed in Chap. 14.1

Several simulation approaches for Cloud systems have been proposed. These
methods differ in whether they focus on special applications or allow simulation
of Cloud systems in general. The simulation framework MRPerf [926] instruments
the discrete-event network simulator NS-2 [693] for studying performance and de-

1 “Resilience Benchmarking”

http://dx.doi.org/10.1007/978-3-642-29032-9_14

72 S. Kounev et al.

pendability of MapReduce [275]. The framework models node, network, and disk
behavior in high detail and thus allows evaluating the impact of network topology
choices and node/network failures, but is limited to applications that use MapReduce.
In contrast, the CloudSim toolkit [167] is a discrete-event simulation toolkit for gen-
eral Cloud systems. The toolkit models, among other aspects, virtual machines and
VM scheduling, storage, network, and computing resources.

Analytical approaches for the evaluation of dependability and performance of
Cloud systems usually focus on the impact of virtualization.

Reliability block diagrams to model system reliability at the host level have been
proposed in [759]. These models do not consider the behavior of the underlying
hardware and software components. More detailed models based on CTMCs are
presented in [878], but these models still only capture behavior at the VM level.
The two-level hierarchical approach in [534] uses fault-trees in the upper level and
CTMCs in the lower level in order to capture software failures at the VMM, VM,
and application level as well as hardware failures. Finally, combinatorial modeling
to analyze design choices with a single physical server hosting multiple VMs was
proposed in [759].

Virtualized resources shared between VM instances have a non-trivial impact on
performance. Due to this overhead, traditional design-time model-based approaches,
as surveyed in e.g., [83, 556] may yield imprecise results when used as-is. A typical
approach (e.g., [101, 639]) is to construct traditional queueing network models and
apply a slowdown factor to capture the effects of virtualization. Another approach is
applied in [560], where artificial neural networks are used to predict performance of
virtualized applications from a set of observable or controllable parameters related
to CPU, memory, disk and network usage.

Prediction of resource utilization is required for dimensioning and workload place-
ment decisions. The work in [940] focuses on predicting CPU utilization of both a
VM and the Dom-0 (which hosts the network and disk drivers). The prediction model
is automatically derived from a set of microbenchmarks consisting of synthetic CPU,
network and disk workloads, using a robust stepwise linear regression between sev-
eral metrics obtained in native and virtualized microbenchmark executions. Further
parametrizations of the model are based on measurements of the application executed
natively. Simple models for core utilization and effective shared space allocation are
developed in [476, 881]. The authors also note that for some shared resources (such
as the cache space), online measurement and modeling is not possible today, due to
a lack of appropriate performance counters.

As has long been accepted for dependability, complex systems can never be per-
fectly secure. Therefore, only quantitative measures allow comparisons between
systems with respect to their security. While quantification of security has long
been recognized as an important problem [593, 594] and several approaches have
been made in recent years [356, 469, 484, 571, 614, 688, 830], the area is still
under-explored and subject to dispute [912]. Still, various security metrics have been
proposed [30, 186, 356, 484, 618], and experimental studies have been performed
[469].

4 Providing Dependability and Resilience in the Cloud: 73

For security evaluation of Cloud systems, even less work exists. In fact, quantita-
tive security evaluation of Cloud systems is still in its infancy. The analytical approach
by [808] exemplifies some of the difficulties in quantitative security assessment. In
this approach, risk is computed as a weighted sum of the impact of a security inci-
dent and its probability. Both incident probabilities and impacts, however, are hard
to measure. While the authors of [809] argue that probabilities can be obtained from
published incidence reports and impacts can be estimated based on expert opinions,
such data may be invalid due to biased report and subjective opinions. Furthermore,
taking the weighted sum assumes that security is a static property, whereas it seems
likely that the probability of security incidents and their impact changes over time,
as both the system, the attacker, and the value of the system to the user evolve.

4.3.2 Approaches for Managing Dependability and Performance

There are many research challenges with respect to managing dependability and per-
formance in Cloud systems (see Sect. 4.3). On the one hand, virtualization provides
opportunities to improve these properties, on the other hand, Cloud Computing poses
a complex resource allocation problem.

4.3.2.1 Virtualization for Improving Dependability and Performance

Techniques that take advantage of virtualization to improve system dependability
have been the focus of recent research [250, 332, 551, 667, 877, 878]. Two lines of
research can be distinguished: i) virtualization-based software rejuvenation and ii)
using VM replication as a basis for failure recovery.

Software rejuvenation is a proactive fault management technique aimed at clean-
ing up the system’s internal state to prevent occurrence of severe failures due to the
phenomena of software aging or caused by transient failures [895]. A detailed intro-
duction to rejuvenation is given in Chap. 8.2 The approach has been applied to Cloud
Computing and virtualization. In [877], a technique that can increase availability of
application servers through the use of virtualization, clustering and software rejuve-
nation is presented. Analytical models are used to analyze multiple design choices
when a single physical server and dual physical servers are used to host multiple
VMs. It is shown that by integrating virtualization, clustering and software rejuvena-
tion, it is possible to benefit from increased availability, manageability and savings
from server consolidation through virtualization without decreasing uptime of criti-
cal services. A similar approach based on automated self-healing techniques claimed
to induce zero downtime for most of the cases is proposed in [667]. Software aging
and transient failures are detected through continuous monitoring of system data

2 “Software Aging and Rejuvenation for Increased Resilience: Modeling, Analysis and Applica-
tions”

http://dx.doi.org/10.1007/978-3-642-29032-9_8

74 S. Kounev et al.

and performability metrics of the application server. A further virtualization-based
rejuvenation technique for application servers using stochastic models was proposed
in [878]. The authors present a stochastic model of a single physical server used to
host multiple virtual machines (VMs) configured with the proposed technique. The
model is intended as a general model capturing the application server characteristics,
failure behavior, and performability measures. Finally, in [551], the authors present
a technique called warm-VM reboot for fast rejuvenation of VMMs that enables effi-
ciently rebooting only a VMM by suspending and resuming VMs without accessing
the memory images. The technique is based on two mechanisms, on-memory sus-
pend/resume of VMs and quick reload of VMMs. The technique is claimed to reduce
downtime and prevent the performance degradation due to file cache misses after the
reboot. In [895], stochastic models that help to detect software aging and determine
optimal times to perform rejuvenation are proposed. Models are constructed using
workload and resource usage data collected from the UNIX operating system over
a period of time. The measurement-based models are intended to help development
of strategies for software rejuvenation triggered by actual measurements.

Accounting for failures by dynamically creating replicas is a common strategy
to improve overall dependability. For instance, [748] uses regeneration of new data
objects to account for reduction in redundancy and the Google File System [375]
similarly creates new file “chunks” when the number of available copies is reduced
below a threshold. Even commercial tools such as VMWare High Availability (HA)
[923] allow a virtual machine on a failed host to be reinstantiated on a new machine.
However, the placement of replicas becomes especially challenging when they are
components in a multi-tier application. Recent work on performance optimization of
multi-tier applications (e.g., [102, 252, 498, 901]) addresses the performance impact
of resource allocation on such multi-tier applications, but does not combine perfor-
mance modeling with availability requirements and dynamic regeneration of failed
components. The tradeoff between availability and performance is always present
in dependability research since increasing availability (by using more redundancy)
typically increases response time. Examples of work that explicitly address this issue
include [271] and [823], both of which consider the problem of when to invoke a
(human) repair process to optimize various metrics of cost and availability defined
on the system. In both cases, the “optimal policies” that specify when the repair is
to be invoked (as a function of system state) are computed offline through solution
of Markov Decision process models of the system.

As far as failure recovery mechanisms are concerned, in [332], the authors intro-
duce an extensible grammar that classifies the states and transitions of VM images
and can be used to create rules for recovery and high availability exploiting vir-
tualization for simplified fault tolerance. In [250], a fail-over technique based on
asynchronous VM replication is proposed that asynchronously propagates changed
state to a backup host at frequencies as high as forty times a second, and uses spec-
ulative execution to concurrently run the active VM slightly ahead of the replicated
system state. In case of a failure, automatic fail-over with only seconds of downtime
is provided while preserving host state such as active network connections. Finally, in
[671], a proactive fault tolerance technique for Message Passing Interface(MPI) ap-

4 Providing Dependability and Resilience in the Cloud: 75

plications is presented exploiting Xen’s live migration mechanism to migrate an MPI
task from a health-deteriorating node to a healthy one without stopping the MPI task
during most of the migration. Experimental results demonstrate that live migration
hides migration costs and limits the overhead to only a few seconds. Some further
general approaches for leveraging virtualization to improve system dependability are
surveyed in [608, 759]. In [657], a high-level approach for autonomic management
of system availability including real-time evaluation, monitoring and management
is sketched. The authors suggest using analytical models (non-state space or state
space models) parametrized using monitoring data collected during operation. The
approach, however, is targeted at static system architectures and assumes that the
underlying availability models are built manually at system design time.

4.3.2.2 Self-Adaptive Capacity and Power Management in Virtualized Data
Centers Including Trade-Offs.

We first describe general approaches to a self-adaptive capacity and power manage-
ment. Afterwards, approaches specifically targeted at virtualized environments are
reviewed.

A number of self-adaptive approaches have been proposed that automatically
adapt resource allocations in response to changes in application workloads in a way
that utility is maximized, e.g., QoS requirements are satisfied while resources are
used efficiently. Existing work mostly focuses on performance as QoS property and
utility functions are based on assigning rewards for satisfied SLAs and penalties
for violated SLAs (e.g., [18, 252, 601, 641]). In recent years, given the rising cost
of energy, capacity management strategies aiming at improving the power usage
effectiveness have received increasing attention (e.g., [193, 496, 913]).

Existing approaches to self-adaptive capacity management are typically based
on: i) control theory feedback loops, ii) machine learning techniques or iii) gen-
eral utility-based optimization techniques. Approaches based on feedback loops and
control theory (e.g., [17, 31]), can normally guarantee system stability by capturing
the transient system behavior [31]. Machine learning techniques, without a need for
an a priori analytical model of the system, base their learning sessions on live sys-
tems. Such techniques have been used to tackle resource allocation problems [875]
as well as the coordination of multiple autonomic managers [479]. In utility-based
approaches, the system is typically modeled by means of a performance model em-
bedded within an optimization framework aiming at optimizing multiple criteria such
as different QoS metrics [497, 647, 914].

Utility-based optimization frameworks differ in the way in which they trigger
adaptations. There are reactive and proactive approaches. The former react on certain
events observed in the system, the latter try to anticipate the future system behavior
and thus require forecasting mechanisms: a model that allows utility predictions and
a way to forecast model input parameters. For workload forecasting, established
time series analysis techniques [147] are used, e.g., Brown’s quadratic exponential
smoothing or general AutoRegressive-Moving Average (ARMA) models have been

76 S. Kounev et al.

implemented in [647] and [194, 499], respectively. Regarding performance modeling,
existing work mainly uses predictive performance models that capture the temporal
system behavior (e.g., queueing networks) where the platform is normally abstracted
as a “black-box” (e.g., [18, 102, 194, 901, 956]). Applications are modeled by a
single queue with a single workload class [193] or multiple workload classes [102]. In
[956], multi-tier applications are modeled using queueing networks where one queue
represents one tier. All these models are solved analytically, e.g., in the latter case
based on mean-value analysis (MVA). In [498], layered queueing models (LQNs)
are solved by means of simulation. A different approach uses fuzzy-logic models to
model the resource needs of an application for a given workload intensity [947]. The
fuzzy-logic models need to be trained under dynamically changing workloads.

Resource allocation problems have been studied in the literature, frequently using
techniques including bin packing (e.g., [122, 497]), multiple knapsack problems, and
multi-dimensional knapsack problems [526]. For dynamic resource allocation appli-
cations, previous studies address this problem using linear optimization techniques
[519] or non-linear optimization strategies based on simulated annealing [929], fuzzy
logic [947], or other heuristics [20]. There are approaches to formulate the optimiza-
tion problem as a network flow problem [601], to solve it with genetic algorithms
[646], or to automatically change deployments using profiles capturing experts’
knowledge of scaling different types of applications [950]. The above studies differ
in the objective of the optimization and the type of applications on which they focus.

In virtualized environments, due to the introduction of virtual resources, the re-
source allocation problem is more complex. The studies in [637, 749] validate a
performance inference in virtualized environments. There are strategies that explic-
itly make use of VMM configurations or recent CPU technologies. For instance,
the authors of [641, 676] propose to exploit the min, max and shares parameters
(respectively CPU priorities) for VM placement and power consolidation in data
centers. In [363], the power-to-frequency relationship of dynamic voltage and fre-
quency techniques is leveraged to distribute available power among the servers in
order to get maximum performance. Some recent work on capacity management
in Cloud infrastructures, based on LQN models, considers both performance and
power as well as adaptation costs (incl. live migration costs) [497, 498]. To estimate
the power consumption, utilization-based models from previous studies [559] are
used. The following adaptation actions are considered: adapt a VM’s CPU capacity,
add/remove a VM, live-migrate a VM between hosts, and shut down/restart a host
[497]. For the optimization there are two algorithms: a bin packing algorithm opti-
mizing the power/performance tradeoff and an A∗ graph search algorithm that takes
adaptation costs as well as search costs into account. The case study shows promis-
ing results, however, it is based on a simple multi-tier application with read-only
transactions and a fixed web tier.

4 Providing Dependability and Resilience in the Cloud: 77

4.4 Emerging Research Directions

In this section, we outline emerging research directions targeting resilience and de-
pendability management in Cloud infrastructures. At first, we discuss the question
of how the flexible allocation mechanisms available in virtualized environments can
be used to tackle scalability and consolidation issues. Afterwards, we capture the re-
search challenge of finding representative predictive models and model parameters.
Finally, we examine the trade-off decisions between performance and energy con-
sumption and highlight the need for self-aware management techniques that enable
a continuous application of management activities during system operation.

4.4.1 A Question of Scale

By 2015, it is predicted that more than 75% of computer infrastructure will be
purchased from virtualized service providers [362]. Such services are hosted in Cloud
environments with computation and network resources multiplexed between many
distinct services. Although functionally, services may not impact each other, there
is good evidence to suggest that performance stress from one virtual machine can
indeed be noticed by another virtual machine instance [294].

Cloud administrators, like software developers, are increasingly responsible for
the reliable and performance-driven provision of these software and hardware ser-
vices. They face difficult quantitative scalability questions, often focused around
service-level response-time goals. Being able to create accurate predictive models
of such services is a major challenge in performance engineering and stochastic
analysis.

Clearly servers could be over-provisioned in an effort to obtain high throughput,
availability or resilience for all services. However, this is not a viable solution. The
economics of virtualized service provision dictate that a sufficient level of shared or
multiplexed computation is in fact a requirement. The energy consumed for unneces-
sary servers and extra air-conditioning will render a policy of server over-provisioning
unsustainable financially, even if in doing so it was able to satisfy a strict service
level requirement.

This is one of the major challenges facing Cloud Computing—how can many
services be multiplexed in a virtualized environment and how to guarantee service
level agreements imposed upon those services while minimizing the energy costs
and maximizing the revenue of the overall cloud environment.

78 S. Kounev et al.

4.4.2 Parameter Sweeping

Here are some examples of the quantitative scalability questions and requirements
that a virtualized environment might face. Maintaining a predictive model of a Cloud
environment will mean both sustaining an accurate behavioral model of the services
and virtualized architecture but also addressing the key scalability and configuration
issues, for example:

• How many servers does a Cloud cluster need in order to execute 4000 jobs every
minute at least 95% of the time?

• Under the predicted traffic profile, at what rate can a Cloud environment hibernate
its servers to save energy, given the time penalty involved in power-cycling a host
and relocating virtual instances?

• How many virtual machines can be launched on a host (for the same/different
service) while maintaining a service level requirement of 96.7% of service requests
actioned within 0.88 s?

These are all examples of performance evaluation questions where the result is
contingent on specific model parameters. Potentially, small fluctuations in a set of
key parameters in the model will have an enormous effect on the overall performance
and even functional behavior of the whole system. Discerning which parameters have
the most prominent effect on a given performance goal is a question of sensitivity
analysis and can be a highly computationally intensive task even for small models.

Where such questions are not asked, or not rigorously answered, the consequences
are very familiar. Systems are delivered which fail to win the trust of users because
their performance is too unpredictable. Those systems which do deliver the required
level of service often have excessively high running costs because their architects
over-provisioned the hardware requirements in an attempt to mask failings due to
uncertain software performance. There is a growing understanding that the running
costs of a system greatly outweigh the development costs and that it is false economy
to buy more hardware to cut software costs.

For these reasons, precise query-driven performance evaluation of computer sys-
tems and specifically virtualized computer systems is an important practical concern.
In the next section we will highlight some of these energy-computation tradeoffs in
the context of a simple multi-client, multi-server environment. Achieving this for a
more complex Cloud environment with many possible services will require a step
change in modeling and analysis approaches.

4.4.3 Trade-off Between Energy Consumption and Performance

We demonstrate the sort of energy/performance trade-off on a simple massively
parallel client-server system. It serves to demonstrate the synergy of several crit-
ical issues that will need to be considered in a more complex model of a Cloud

4 Providing Dependability and Resilience in the Cloud: 79

environment: scalability analysis via parameter sweeping, energy modeling and
server hibernation.

The model consists of a large number of clients and a large number of servers
cooperating together. The clients access the servers in two stages: first the client
requests some data of the server and then the client receives the data from the server
in response; the client goes on to process this data individually before restarting.
The servers, in addition to serving clients, can hibernate to save energy and can also
break. Broken servers are repaired. The details of this stochastic model and analysis
can be found in Stefanek et al. [848]. A reward architecture is deployed to keep track
of energy consumption and a fluid analysis technique [420] is used to calculate a
service level agreement.

In this client/server model, we might be interested in the optimal number of servers
that have to be employed in order to guarantee given performance requirements while
minimizing the associated running costs. The performance requirements are often
given in terms of a Service Level Agreement (SLA) for each client. In the context of
this model, a suitable SLA might require that a client finishes its first request cycle
within a given time period with a given high probability, for example within 4.0 s
with probability being at least 0.9. Considering only the configurations that satisfy
such an SLA, the feasible configurations, we can look for those that minimize the
energy expended over the operation of the system.

Figure 4.1 is generated by the Grouped PEPA Analyzer (GPA) tool [847] and
shows an example where we vary the number of servers and the rate with which they
are hibernated. For each configuration we calculate the energy used and plot a point
on the surface only if that configuration satisfies the SLA requirement mentioned
above. We are able to find the configuration (84 servers and a hibernation rate of
0.37) which minimizes the energy consumption in the system. Intuitively, increasing
the number of servers and decreasing the hibernation rate increases the probability
of a client finishing early, but also raises the energy cost of running the system.
Although, at this stage we are not capturing issues such as virtualization, multiple
services or server classes in the model, this example illustrates the power of predictive
modeling in being able to identify so-called sweet spots in operation.

4.4.4 Self-Aware Systems

As discussed in the previous sections, managing system resources in Cloud envi-
ronments to ensure acceptable end-to-end application QoS and efficient resource
utilization is a challenge. Modern enterprise software systems have highly distrib-
uted architectures composed of loosely-coupled services that operate and evolve
independently, and are subjected to time-varying workloads.

The presented challenges call for novel systems engineering methodologies en-
abling the engineering of so-called self-aware software systems [547, 549]. The latter
should have built-in online QoS prediction and self-adaptation capabilities used to
enforce QoS requirements in a cost- and energy-efficient manner. Self-awareness in

80 S. Kounev et al.

Fig. 4.1 Global optimization
of the energy consumption
of the server components
from [847]. Configurations
satisfying the SLA are those
in the upper plane

this context is defined by the combination of three properties that systems should
possess:

• Self-reflective: aware of their software architecture, execution platform and the
hardware infrastructure on which they are running as well as of dynamic changes
that occur during operation,

• Self-predictive: able to predict the effect of dynamic changes (e.g., changing user
workloads) as well as predict the effect of possible adaptation actions,

• Self-adaptive: proactively adapting as the environment evolves in order to ensure
that their non-functional requirements (e.g., availability, performance and reliabil-
ity) and respective SLAs are continuously satisfied in a cost- and energy-efficient
manner.

Self-aware systems engineering is a newly emerging research area at the intersection
of several computer science disciplines including software architecture, computer
systems modeling, autonomic computing, distributed systems, and more recently,
Cloud Computing and Green IT [548].

4.5 Conclusion

We have provided an overview of the research challenges and opportunities in provid-
ing dependability and resilience in Cloud Computing environments. State-of-the-art
approaches for dependability assessment and for managing dependability, perfor-
mance and security were presented, including approaches to self-adaptive capacity
and power management in virtualized data centers. The identification of the exist-
ing gaps led to an overview of the emerging research directions. It is still an open
question, how a set of services should be multiplexed in a virtualized environment
while SLAs are guaranteed in such a way that the revenue of the overall Cloud
environment is maximized. In particular, modeling the trade-offs between energy
consumption/costs and application QoS remains a challenge.

4 Providing Dependability and Resilience in the Cloud: 81

As shown in this chapter, there are many challenges in assessing and manag-
ing dependability and performance in the Cloud. Their solution requires techniques
dealing with very large and complex systems, including monitoring, modeling, and
online prediction, all discussed in other chapters of this book. An introduction to
monitoring and failure diagnosis of complex systems is given in Chap. 12.3 Model-
ing of large systems is required for both online and offline management decisions,
but highly-complex systems quickly run into the state-space explosion problem. Ap-
proaches for solving this problem are presented in (Chap. 64). Online prediction,
which is necessary to manage the high dynamicity of Cloud systems, is discussed in
Chap. 9.5 The application of these techniques to Cloud systems is demonstrated on
the case-studies in Chap. 19.6

Acknowledgments The work of the first author was funded by the German Research Founda-
tion (DFG) under grant No. KO 3445/6-1. Jeremy Bradley and Anton Stefanek are supported by
the UK Engineering and Physical Sciences Research Council on the AMPS project (reference
EP/G011737/1). Vlastimil Babka is supported by the Czech Science Foundation project GACR
P202/10/J042.

3 “Failure Diagnosis of Complex Systems”
4 “Scalable Stochastic Modelling”
5 “Online Prediction”
6 “Providing Dependability and Resilience in the Cloud: Case Studies”

http://dx.doi.org/10.1007/978-3-642-29032-9_12
http://dx.doi.org/10.1007/978-3-642-29032-9_6
http://dx.doi.org/10.1007/978-3-642-29032-9_9
http://dx.doi.org/10.1007/978-3-642-29032-9_19

Part II
Modelling Techniques

Chapter 5
Phase-Type Distributions

Philipp Reinecke, Levente Bodrog and Alexandra Danilkina

Abstract Both analytical (Chap. 6) and simulation- and experimentation-based
(Chap. 17) approaches to resilience assessment rely on models for the various phe-
nomena that may affect the system under study. These models must be both accurate,
in that they reflect the phenomenon well, and suitable for the chosen approach. Ana-
lytical methods require models that are analytically tractable, while methods for
experimentation, such as fault-injection (see Chap. 13), require the efficient gener-
ation of random-variates from the models. Phase-type (PH) distributions are a ver-
satile tool for modelling a wide range of real-world phenomena. These distributions
can capture many important aspects of measurement data, while retaining analytical
tractability and efficient random-variate generation. This chapter provides an intro-
duction to the use of PH distributions in resilience assessment. The chapter starts
with a discussion of the mathematical basics. We then describe tools for fitting PH
distributions to measurement data, before illustrating application of PH distributions
in analysis and in random-variate generation.

P. Reinecke (B) · A. Danilkina
Institute of Computer Science,
Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: philipp.reinecke@fu-berlin.de

L. Bodrog
Department of Telecommunications,
Budapest University of Technology and Economics,
Budapest 1521, Hungary
e-mail: bodrog@webspn.hit.bme.hu

A. Danilkina
e-mail: danilkin@zedat.fu-berlin.de

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 85
DOI: 10.1007/978-3-642-29032-9_5, © Springer-Verlag Berlin Heidelberg 2012

86 P. Reinecke et al.

5.1 Introduction

Phase-type (PH) distributions are an often-used type of model for many phenomena in
system evaluation, e.g., service-times, delays, and failure times. This chapter provides
a gentle introduction to the theory of PH distributions and their application in common
evaluation tasks.

As an illustrative example we consider resilience evaluation of a simple system
where clients are being served by a faulty server. The server uses multiple threads that
require access to shared resources, but resource contention may lead to a deadlock,
which manifests as a situation where no service is provided anymore. We assume
that we do not have the means to address the root of the problem in the server itself,
but might be able to reset the server once it has reached a deadlock. In order to
assess resilience of a system relying on this server to work, we want to model the
time between server crashes. We use PH distributions for this task, as they provide
good approximation of the time-to-failure distribution and are well-suited for both
analytical approaches and simulation.

The general workflow for applying phase-type distributions in evaluation tasks is
shown in Fig. 5.1: first, a PH distribution describing the phenomenon under study has
to be found. This can be achieved both with a white-box and a black-box approach.
With the white-box approach (Sect. 5.3), the structure of the system is used to directly
infer a PH distribution that describes the behaviour of the system. With the black-box
approach (Sect. 5.4), system behaviour is measured and the measurements are fitted
by a PH distribution. Both approaches result in a distribution that is a model for the
behaviour of the system. This distribution can then be used in analytical approaches
such as matrix-analytic methods (Sect. 5.5) and in simulation (Sect. 5.6).

We are going to show how to arrive at a PH distribution for the time-to-failure
distribution for our example system using both the white-box and the black-box
approach. We will then illustrate application of the distribution both in analytical
and in simulation approaches. First, however, we need to introduce the required
mathematical background and notation.

Simulation
(Section 6)

Analytical Approximation

Maximum-Likelihood
Approximation

System
Structure

Measurement
Data

Analytical Solution
(Section 5)

Explicit Modelling (Section 3)

PH Fitting (Section 4)

White-Box Approach

Black-Box Approach

Fig. 5.1 Typical workflow when applying phase-type distributions in system evaluation

5 Phase-Type Distributions 87

5.2 Mathematical Background

Continuous phase-type (PH) distributions represent the time to absorption in a
Continuous-Time Markov Chain (CTMC) with one absorbing state [683]. PH distri-
butions are commonly specified by a vector-matrix tuple (α,A), where

α = (α1, . . . , αn) ∈ IRn and A =
⎛

⎜
⎝

λ11 · · · λ1n
...
. . .

...

λn1 · · · λnn

⎞

⎟
⎠ ∈ IRn×n .

Definition 5.1 The size of the (α,A) representation is the size of the vector α, which
is equal to the size of the square matrix A.

Definition 5.2 The probability density function (PDF), cumulative distribution
function (CDF), Laplace-Stieltjes Transform (LST) of the CDF and kth moment,
respectively, are defined as follows [446, 683, 870]:

f (x) = αeAx a, (5.1)

F(x) = 1 − αeAx 1l, (5.2)

F̃(s) = αn+1 + α(sI − A)−1a, (5.3)

E
[

Xk
]

= k!α(−A)−k1l. (5.4)

where 1l is the column vector of ones of the appropriate size and a = −A1l. Note
that, since α is a row vector and both 1l and a are column vectors, the above equations
do indeed specify scalar values. Furthermore, observe that phase-type distributions
have rational LST and that the eigenvalues of the transient generator matrix are the
poles of the LST of the distribution [697].

The vector-matrix representation of a PH distribution is not unique. In general,
there exists another representation (α′,A′) of size m that represents the same phase-
type distribution. Different representations of a PH distribution may differ both in
size (n �= m) and in the contents of the tuples.

Another representation of the same size can be computed by a similarity transfor-
mation, as follows: when B is invertible and B1l = 1l, then (αB,B−1AB) is another
representation of the same distribution, since its CDF is

1 − αBeB−1ABx 1l = 1 − αBB−1eAx B1l = 1 − αeAx 1l.

It is also possible to generate representations of the same distribution with another
size, using a non-square matrix W.

An important property of PH distributions (and in fact one which distinguishes
them from larger classes such as the Matrix-Exponential (ME) distributions) is that
every PH distribution has a Markovian representation (α,A). This representation

88 P. Reinecke et al.

12 23 34 45

42

1 2 3 4

13

12 23 34 45

13

4321

Fig. 5.2 CTMC representations for general and acyclic phase-type distributions

admits an interpretation of the PH distribution as the distribution of absorption-times
in a Markov chain. With the Markovian representation, A describes the transient part
of the generator matrix of the associated CTMC,

A =
(

A a
0 0

)

,

and consequently fulfills the required properties: all off-diagonal elements are non-
negative (λi j ≥ 0 (1 ≤ i �= j ≤ n)), all diagonal elements are negative, and the
row-sums are non-negative (a = −A1l ≥ 0). The vector α is the vector of initial
probabilities of the transient states of the CTMC, and thus α ≥ 0 and α1l ≤ 1. In
the following, we focus on the Markovian representation of phase-type distributions,
where we assume that α1l = 1, i.e., there is no probability mass at zero.

5.2.1 PH Classes

Based on the structure of the underlying Markov chain, several classes of phase-type
distributions can be distinguished. These classes differ in the statistical properties
they can represent. Furthermore, the structure of a PH representation often has an
impact on its application, as some structures allow more efficient solutions.

The most important distinction is the one into Acyclic and General Phase-type
distributions: every acyclic phase-type (APH) distribution has at least one Markov-
ian representation without cycles in the sub-generator, while for general phase-type
distributions cycles are allowed. This is illustrated in Fig. 5.2: the distribution on
the left contains a cycle, that is, a backward transition from state 4 to state 2. The
distribution on the right does not contain this transition and therefore there are no
cycles.

Most approaches in fitting and application of PH distributions focus on the APH
class, as this class offers better tractability than the general PH class. Within APH,
we distinguish two important sub-classes: the first one is the class of Hyper-Erlang
distributions (HErD). Hyper-Erlang distributions are mixtures of Erlang-distributions
with different lengths and rates. They can be specified by a tuple (β,m,b,λ), where
β is the vector of initial probabilities of each Erlang branch, m is the number of
Erlang branches, b is the vector of the lengths of the Erlang branches, and λ is a
vector containing the rates. The size of a Hyper-Erlang distribution is given by the

5 Phase-Type Distributions 89

1

2 2

1

2

1 1
1

2

3

4

Fig. 5.3 CTMC representations for Hyper-Erlang and hyper-exponential distributions

sum of the lengths of the branches, i.e., n = b1l. The general structure is illustrated
in Fig. 5.3, where we show a hyper-Erlang distribution with m = 2 branches of
length b1 = 3 and b2 = 2, respectively. The initial probabilities and the transition
rates are given by β = (β1, β2) and λ = (λ1, λ2). The size of this representation is
n = b1 + b2 = 5. One important example is the Erlang distribution, i.e., a Hyper-
Erlang distribution with only one branch and initial probability β1 = 1.

The second sub-class of APH we consider is the class of Hyper-Exponential
distributions (HEx) of order n, specified by initial probability vector α and rate
vector λ. Figure 5.3 shows an example for a hyper-exponential distribution of size
n = 4. From this example, it is obvious that the hyper-exponential distributions are
a subclass of the hyper-Erlang distributions, as every hyper-exponential distribution
is a hyper-Erlang distribution with branch length vector b = 1l. Furthermore, setting
n = 1 and α1 = 1 yields the exponential distribution with rate λ1.

5.2.2 Canonical Representations

While in general representations for phase-type distributions are not unique, several
canonical forms have been defined. For each PH distribution, the canonical form of
a given size n is unique in the sense that there exists no representation of the same
size n with the structure of the canonical form, but different parameters. Therefore,
by comparing canonical forms, we can determine whether PH distributions given
by different representations are identical. More important, however, is the use of
canonical forms in fitting, analysis, and simulation, where their typically low number
of parameters and simple structure enable efficient methods.

In the following we discuss Cumani’s Canonical Form 1 (CF-1) [251] and the
Monocyclic form introduced in [659], as these are the most common ones.

5.2.2.1 The Canonical Form for APH Distributions

The Canonical Form 1 (CF-1) was defined in [251]. The structure of its underlying
CTMC is shown in Fig. 5.4: the Markov chain can be entered at any state i = 1, . . . , n
with probability αi , but the absorbing state can only be reached by traversing all
remaining states. For this structure, the associated generator A has a bi-diagonal
structure, that is, for i = 1, . . . , n − 1 and 1 ≤ j ≤ n,

−λi i = λi,i+1 and λi j = 0 for j �∈ i, i + 1.

90 P. Reinecke et al.

1 2 3 4
1 2 3 4

1 2 (1− 2) 22

2 2

2 31 4

Fig. 5.4 Canonical representations for phase-type distributions

It is often convenient to describe a bi-diagonal generator by the vector

Λ = (λ1, . . . , λn),

where λi = |λi i | for i = 1, . . . , n. The formal definition for the CF-1 form is then

Definition 5.3 [251] The Canonical Form 1 (CF-1 form) is a bi-diagonal Markovian
representation (α,Λ) where the elements of the diagonal, given in the vector Λ, are
ordered by absolute value.

In [251, 698] it has been shown that every acyclic phase-type distribution with
a Markovian representation of size n has a unique CF-1 representation of the same
size.1 The CF-1 form for an APH given as (α,A) can be obtained by a similarity
transformation. A procedure for constructing the similarity transformation matrix is
given in [422].

Note that transforming an APH representation of size n to the CF-1 form consid-
erably reduces the number of parameters: a general APH representation has n initial
probabilities α1, . . . , αn and n2 entries in the subgenerator matrix A, i.e., the number
of parameters is n + n2. In the CF-1 form A is an upper bi-diagonal matrix with
λi i = −λi+1,i . The CF-1 form therefore only requires the n rates on the diagonal
and the n entries in α, resulting in 2n parameters.

5.2.2.2 The Monocyclic Form for General PH Distributions

General PH distributions may have complex poles, and the poles of a PH distribution
are given by the eigenvalues of the subgenerator matrix A. As the eigenvalues of a
bi-diagonal representation (α,A) are equal to entries of the diagonal and A ∈ IRn×n

it is easy to see that a bi-diagonal structure like the CF-1 form cannot represent
phase-type distributions with complex poles.

For this reason, [659] proposed the Monocyclic form as a chain of Feedback-
Erlang (FE) blocks, defined as follows:

Definition 5.4 A Feedback-Erlang (FE) block is given by a tuple (b, λ, z) of the
length b, transition rate λ, and feedback probability z ∈ [0, 1). The Feedback-Erlang

1 Smaller CF-1 representations may exist if there is redundancy in the original representation [422,
683, 750].

5 Phase-Type Distributions 91

Fig. 5.5 Structure of a
Feedback-Erlang block

block consists of an Erlang-distribution with length b and rate λ and an additional
(feedback) transition from the last state of the block to the first state.

Figure 5.5 illustrates this concept. Note that the cases z = 0 and b = 1 are allowed.
For z = 0, the Feedback-Erlang is simply an Erlang of order b, while for b = 1 it
is an exponential distribution. The importance of this structure lies in the fact that
for z > 0 and b > 1 the block has a conjugate-complex pair of eigenvalues [659].
Therefore, a chain of FE blocks can be used to represent the complex eigenvalue
pairs of a general phase-type distribution.

Based on this observation, [659] define the Monocyclic representation as a chain
of Feedback-Erlang blocks:

Definition 5.5 A Monocyclic representation is given by the tuple (α,m,b,λ, z),
where the vector α ∈ IRb1l specifies the initial state probabilities, and b, λ and z
define the length, rate, and feedback probability of the m Feedback-Erlang blocks.

The FE blocks are positioned such that the absolute values of the dominant eigen-
values ri are in ascending order: ri ≤ ri+1.

Any PH distribution has a Monocyclic representation [659]. If the representation
of the PH distribution is PH-simple [698] and of size n, then the size of the Mono-
cyclic representation is n′ ≥ n. This potential size expansion makes the Monocyclic
representation less efficient in analytical studies, but its simple and still Markovian
structure makes it promising for simulation studies.

The structure of a Monocyclic representation is shown in Fig. 5.4. Note that if
zi = 0 for all FE blocks i = 1, . . . , b the Monocyclic form is equivalent to the CF-1
form. That is, the CF-1 form is actually a special case of the Monocyclic form.

5.2.3 Properties

Phase-type distributions exhibit a number of properties that make them attractive for
use in resilience evaluation. In particular, the support of PH distributions is the set of
non-negative real numbers. Therefore, they can be used to model typical system prop-
erties such as response-times, interarrival times, or inter-failure times. Furthermore,
the PH class is closed under important operations such as minimum, maximum, and
summation, i.e., PH distributed random variables can be combined without losing
the properties of PH distributions.

On the other hand, even though PH distributions are well-suited for fitting data
(see Sect. 5.4), two important limitations may affect their suitability for particular

92 P. Reinecke et al.

tasks. First, the density of a phase-type distribution is strictly positive [683]:

f (t) > 0, t > 0,

i.e., phase-type distributions can only approximate the density if it is close to zero,
and may require a large number of phases to do so, rendering models more complex.
Second, PH distributions are limited with respect to the moments they can express.
In particular, the feasible range of the squared coefficient of variation for the PH of
size n (PH(n)) is

cv2 ≥ 1

n
, (5.5)

where the equality holds for the Erlang distribution with n phases (Erl(n)) [260]. This
bound implies that in order to approximate data with low variation a large number
of phases is required.

For higher moments there is no general knowledge, however there are several
special cases for which some insights on the moment bounds exist, like e.g., the
moment bounds of the APH(2) ≡ PH (2) class [871] and the moment bounds of the
PH (3) class implied by the canonical form given in [447]. The bounds of the general
APH class within the PH class are known according to the APH canonical form and
there also exists a numerical method to determine the general PH bound in [448].

From the fitting perspective the reduced moment problem (when a distribution
function is determined based on its moments) can also be crucial. This problem is
only solved for the larger class of matrix-exponential distributions [907].

5.3 Explicit Modelling

We will now describe how a phase-type distribution can be obtained directly from the
structure of the system under study. Returning to our example with the faulty server,
recall that the server becomes unavailable due to resource contention between its
threads. A very intuitive way of thinking about resource contention is in terms of
the Dining Philosopher’s problem [292]2: at least two philosophers sitting around a
table want to eat a dish for which they require a fork in each hand. However, there
are only as many forks as philosophers. Each philosopher employs the following
strategy: if a fork is available either to the left or to the right, they wait a random
amount of time before taking it. Once they have one fork, they wait for the other
one, before they start eating. They eat for a random amount of time and then drop
both forks at the same time. It is immediately obvious that this strategy eventually
leads to the situation where each philosopher has one fork in his left (or right) hand

2 Note that we only use the general problem, given in [292], but do not assume a solution.

5 Phase-Type Distributions 93

Fig. 5.6 Stochastic Petri Net (SPN) model for the Dining Philosopher’s problem with four philoso-
phers

and is waiting for the other one, which, however, is in the corresponding hand of his
neighbour.

In terms of the server system, the philosophers represent the threads of the server
and the forks are the shared resources. If each thread has access to one of the resources,
but not to the other (each philosopher has one fork), the system is in the deadlock
situation and unable to serve clients (no philosopher can eat). The only way of leaving
this situation is to reset the system to the inital state where all resources are free (all
forks are on the table).

Based on the abstraction as a Dining Philospher’s problem, we can model our
faulty server using a Stochastic Petri Net (SPN), as shown in Fig. 5.6 for n = 4: a
marking on one of the four innermost places represents the respective fork resting
on the table. The eight outermost places represent the hands of the philosophers, i.e.,
a marking in one of these places models that the philosopher has picked up a fork
in this hand. The transitions leading from the inner places to the outer places model
the act of picking up a fork with that hand, while the transitions from the outside
to the inside model the laying down of both forks. We assume that both the times
before picking up a fork and the eating time have exponential distribution, i.e., the
transitions are Markovian.

The CTMC underlying this SPN possesses two absorbing states (the two deadlock
situations). Since in both cases no philosopher can eat, or, equivalently, the server
system cannot serve clients, both states describe the same situation and can be lumped

94 P. Reinecke et al.

into one absorbing state. Consequently, the time to absorption, i.e., the time to failure,
follows a phase-type (PH) distribution.

If we know the structure of the system and can build a CTMC model for it, using
e.g., an SPN, we can thus directly derive a PH distribution. This distribution can then
be used in further evaluation steps. Typically, however, the structure of the system
is not known, or, even if it is known, the system is too complex to allow direct
modelling. In this case, the black-box approach described in the next section is more
appropriate.

5.4 Fitting Measurement Traces with PH Distributions

In the previous section we assumed that we know the internal structure of the system,
and that it could be described based on the intuitive Dining Philosopher’s problem.
Typically, however, we will not know such details about the system under study,
and will be limited to outside observations and measurements. With our example,
we might not be able to observe why the system ran into deadlock, but we are
certainly able to measure the length of the intervals between successive deadlocks.
Similar situations often arise with measurements of delays, message lengths, or
other phenomena, where we do not know the underlying causes, but can measure
their effects. In such cases we can fit a phase-type distribution to the data in question,
and use this model in our evaluation.

Consider Fig. 5.7, where we show both a histogram of some data and the density
of a phase-type distribution approximating the data. Our aim is to approximate the
data as closely as possible, in order to obtain correct results when using the approxi-
mating distribution later on. In this section we provide the basics for fitting data sets
with phase-type distributions. We discuss costs, quality metrics, and introduce three
established fitting tools.

5.4.1 Costs of Fitting PH Distributions to Data

Since a PH distribution is defined by the tuple (α,A), the problem of fitting translates
to finding an initial probability vector α and a sub-generator matrix A of appropriate
size n. While, in general, higher-order PH distributions can provide a better approxi-
mation [124], they are more expensive in both analysis and simulation. Furthermore,
the time required for fitting a distribution increases with n, as more parameters have
to be fitted. Consequently, careful choice of n is important.

As will be shown in Sects. 5.5 and 5.6, the cost of using a PH distribution depends
not only on the size n, but also on the structure of the representation. The same
holds for the fitting problem. Here, the number of free parameters to be fitted can be
reduced significantly by choosing an appropriate representation: if we assume the
size n of the representation to be constant, then general phase-type distributions in an
arbitrary Markovian representation have n + n2 free parameters, as α is a row vector

5 Phase-Type Distributions 95

x

D
en

si
ty

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

histogram of a data sample and the approximated density

Fig. 5.7 Example data and its approximation with a phase-type distribution

of length n, and A is a matrix of size n × n. If we assume that the representation
is Monocyclic, we have a chain of m Feedback-Erlang blocks, each with a length
parameter b j , rate parameterλ j and feedback probability z j , and an initial probability
vector of size n. As m ≤ n, the upper limit for the number of free parameters is 3n+n.
Limiting ourselves to the APH class, we can utilise the CF-1 canonical form, which
has only 2n free parameters: n transition rates and n initial probabilities. Finally,
if we consider only HErD distributions in representations as shown in Fig. 5.3, the
number of free parameters reduces to 3m: m initial probabilities for the m Erlang
branches, m lengths for the Erlang branches, and m transition rates.

5.4.2 Quality Measures

Fitting a phase-type distribution to data requires careful choice of the right fitting
tool, as well as of fitting parameters such as sub-class and size. As just discussed,
the approximation problem becomes less complex if data is fitted with subclasses
of phase-type distributions, however, fitting quality may decrease as well, as sub-
classes cannot represent all properties of the general PH class. For example, hyper-
exponential distributions cannot approximate distributions with oscillating densities
[880].

In order to assess the quality of data approximation, quality measures are required.
An intuitive method consists in simply comparing the shape of the empirical PDF or
CDF to that of the approximating PH distribution. This gives a visual impression how

96 P. Reinecke et al.

Table 5.1 Performance measures defined in [572]

Performance measure Definition

Area difference between distribution functions ΔF ΔF = ∫ ∞
0 |F̂(x)− F(x)|dt

Area difference between densities Δ f Δ f = ∫ ∞
0 | f̂ (x)− f (x)|dt

Relative error in the first moment (mean c1) e1 = |ĉ1−c1|
c1

Relative error in the second central moment (variance c2) e2 = |ĉ2−c2|
c1

Relative error in the third central moment (skewness c3) e3 = |ĉ3−c3|
c3

well the approximating PH distribution reflects the shape of the empirical PDF/CDF.
For instance, in Fig. 5.7 the approximated density fits the data quite well.

While a visual impression often yields a good initial assessment, a more formal
approach requires exact definitions of quality measures. In the area of PH fitting
there exists a set of standard quality measures, as defined in [572]. These measures
are summarised in Table 5.1: the first two performance measures formalise the visual
comparison of empirical and approximated data, by computing the distance between
both curves. The last three measures capture how well the fitted distribution approx-
imates the empirical moments of the data. Based on these performance measures we
can decide which tool to use, and which fitting is most appropriate for the require-
ments and future application of approximation results. For instance, for use in a
stochastic model whose behaviour primarily depends on the first three moments, one
would aim to get small relative moment errors, while in other applications fitting the
shape of the density may be more important.

5.4.3 Introduction to PH-Fitting Tools

Here we outline three tools for data approximation with phase-type distributions:
Moment Matching, G-FIT and PhFit. They mainly differ with respect to the algo-
rithms they employ and the subclass of PH distributions they support. There are two
general and relevant classes of algorithms: analytical and statistical methods, where
the former relies on direct computation of the parameters and the latter is based on
iterative procedures for parameter estimation.

5.4.3.1 Analytic Approximation: Moment Matching

Analytic moment-matching methods have the advantage of being fast, easy to imple-
ment, and giving low errors in the moments. On the other hand, accuracy of the fitting
may be limited by the representation. We illustrate this using the method proposed
in [870], which can fit an APH(2) distribution to the first three moments of a data set.

5 Phase-Type Distributions 97

The approach proceeds by computing the approximation parameters directly from
the moments, as follows: An APH(2) in CF-1 form with α = (α1, 1 − α1) and

A =
(−λ1 λ1

0 −λ2

)

,

is defined by three parameters, λ1, λ2, and α1. Recall from Definition 5.4 the general
moments-generating function for a PH distribution. Writing the first three moments
explicitly:

E[X] = m1 = λ1 + α1λ2

λ1λ2
,

E[X2] = m2 = 2(λ2
1 + α1λ1λ2 + α1λ

2
2)

λ2
1λ

2
2

,

E[X3] = m3 = 6(λ3
1 + α1λ

2
1λ2 + α1λ1λ

2
2 + α1λ

3
2)

λ3
1λ

3
2

,

[870] obtain a system of three linear equations. Solving this system for λ1, λ2, α1
yields an APH(2) that matches the first three moments. However, possible solutions
are limited by the moment bounds for the APH(2) class (cf. Sect. 5.2.3). For com-
binations of moments outside the moment bounds, the system has no solution, i.e.,
data sets with these moments cannot be fitted exactly by an APH(2). For instance,
as follows from (5.5), the smallest SCV cv2 that can be represented by an APH(2) is

cv2 = 1

2
,

which puts constraints on the relation of the mean and variance. Data sets with
cv2 < 1

2 require PH distributions of higher order. Similar constraints exist for the
third moment, although in some cases the third moment can be approximated even
when no exact fitting is possible.

Iterative procedures for PH fitting have the advantage of providing more flexibility
than analytical moment-matching methods. On the other hand, they are usually slower
than the analytical approach. In the following we discuss two important tools of this
class.

5.4.3.2 G-FIT for Fitting Hyper-Erlang Distributions

The G-FIT tool [880] approximates data using Hyper-Erlang distributions. Recall
that the number of transition rates and the size of the initial vector of a Hyper-Erlang
distribution only depend on the number of Erlang branches. This enables an efficient

98 P. Reinecke et al.

fitting method: once the number m and length b of the Erlang branches have been
set, the parameters are

Θ = (β,λ).

In each iteration the Expectation Maximisation (EM) algorithm (cf. [281]) computes
parameters β and λwhich maximise the likelihood of the parameters, given the data.
G-FIT provides convergence checks based on the maximal change in Θ and on the
relative differences of the log-likelihood between successive iterations.

The user may specify the number and length of Erlang branches prior to fitting or
let G-FIT determine an optimal size. In the first case the user has to set a number of
Erlang branches and their length. The second option is more general and is useful for
the unexperienced user. It requires as input only a number of phases for the resulting
distribution. G-FIT will then estimate optimal number of Erlang branches and their
parameters, by trying all possible combinations.

G-FIT expects an input as a text file containing the data set. The first line should
be a number of data points in the data set followed by data points themselves, which
are given one per line. The output is also a text file, containing the number of Erlang
branches, number of phases, initial probabilities and transition rates for each Erlang
branch.

5.4.3.3 PhFit for Fitting APH Distributions

The PhFit tool [446] approximates data using acyclic phase-type distributions in
CF-1 form. It applies a variant of the Frank/Wolfe algorithm [355, 361] for con-
strained non-linear minimisation of the distance between the PH distribution and the
data. One major advantage is that the user can choose between different distance
measures, in order to obtain an optimal fitting. The distance measures supported by
PhFit are the relative entropy, PDF area distance, and CDF area distance, defined as

∞∫

0

f (t)log(
f (t)

f̂ (t)
)dt,

∞∫

0

|F̂(x)− F(x)|dt, and

∞∫

0

| f̂ (x)− f (x)|dt, respectively,

where f (t) denotes the probability density function (PDF) of the original distrib-
ution and f̂ (t) the PDF of the approximating distribution, F(t) the cummulative
distribution function (CDF) of the original distribution and F̂(t) the CDF of the
fitted distribution. Among the fitting tools we discuss, PhFit is the only one with
a graphical user interface. This feature is beneficial for finding appropriate fitting
parameters and evaluation of results.

PhFit computes optimal values for the distribution parameter (α,A) starting with
special initial values (α(0),A(0)) according to the distance measure. PhFit picks
optimal values from 1,000 randomly generated pairs of vectors. The distance measure

5 Phase-Type Distributions 99

defines the optimality criterion. The optimisation problem is solved by using the
iterative linearisation method. After linearisation in a local neighbourhood of the
current distribution parameters, the direction for optimisation of the distance measure
is determined by the Simplex algorithm. The algorithm stops computation once the
relative difference between

(α(i−1),A(i−1))

and

(α(i),A(i))

for iteration i is less than the predefined value, or if a maximum number of iterations
is reached.

PhFit provides separate fitting for body and tail. The body is the part of distribution
with the most mass, whereas the tail represents rare data points. The user can choose
the boundary where the tail begins. The tail is approximated with a heuristic method
that determines parameters for a hyper-exponential distribution. The body is then
approximated as described before. The resulting distribution is then given by the
CF-1 form and the hyper-exponential distribution.

PhFit requires as input a text file containing the data in ascending order. The
output consists of the initial probability vector α and the diagonal of the subgenerator
matrix. Note, however, that in contrast to the definition we gave in Definition 5.3,
PhFit considers the 0th state to be absorbing, instead of state (n + 1). That is, the
output of PhFit is reversed, compared to the notation used throughout this chapter.

5.5 Phase-Type Distributions in Model Analysis: Matrix Analytic
Methods

In the previous sections we discussed how a phase-type distribution modelling the
phenomenon of interest can be obtained either explicitly or by fitting measurement
traces. We will now illustrate how such a model can be used in analytical approaches.
Referring to our example with the faulty server, we may want to analyse the effect
of deadlocks on job processing in a queueing system. We assume that the server
is reset after a deadlock, but that the fault leading to the deadlock persists. Then,
the instances of deadlock can be fitted by a PH renewal process or a Markovian
Arrival Process (MAP). If the process starts from the same initial state each time
the process of deadlocks will be uncorrelated and forms a PH renewal process. In
case of correlated initial states the time between the deadlocks forms a MAP. In
this section we discuss matrix-analytic methods [579] for analysing complex models
using phase-type distributions.

100 P. Reinecke et al.

Matrix-analytic methods utilize the structure of the Markov chain which, in this
chapter, is two-dimensional. Both dimensions have their own characteristics. The first
dimension represents the—usually finite—number of phases J (t) of the process. The
second dimension, denoted by N (t), is the infinite counting process. This approach
results in an infinite, but well-structured, Markov chain on the block level where the
blocks describe the phase either with or without arrival. The same block structure
appears also in the generator matrix of the Markov chain which can be upper block-
bidiagonal or tridiagonal in our cases.

The examples of this section show how the matrix-analytic methods utilize the
analytic PH properties during the solution of complex Markov models. The result
can be either the short-term or the steady-state behavior. The methods also allow to
find the solution of infinite models by solving finite problems.

5.5.1 Processes with PH Marginal Distribution

A sequence of random variables—according to a given (marginal) distribution—
defines a stochastic process or simply process. Processes play an important role in
stochastic modeling thus it comes naturally to propose the process with PH marginal
distribution. Here we investigate both the independent identical distributed (iid) and
the correlated arrival process with PH marginal distribution. These are the PH renewal
process and the Markov arrival process (MAP) respectively.

Referring to the example in Sect. 5.3 a faulty server has PH distributed time to
deadlock if the relevant times are exponentially distributed. Furthermore if the system
restarts at deadlock situations then the resulting sequence of times to deadlock is a
stochastic process with PH marginal distribution.

5.5.1.1 PH Renewal Process

Given a phase-type distribution represented by the initial vector α and subgenerator
matrix A, the generator matrix

Q =

⎛

⎜
⎜
⎝

A aα 0

0 A aα 0 .

0 0 A aα 0
.

⎞

⎟
⎟
⎠ , (5.6)

defines the PH renewal process for which (α,A) is the marginal distribution.
a = −A1l is the vector of absorption rates of the marginal distribution. The blocks
on the diagonal describe the phase transitions of the PH marginal, and the blocks
in the upper co-diagonal describes the phase transitions belonging to the renewal
instances. The graph of the corresponding continuous time Markov chain (CTMC)
is depicted in Fig. 5.8.

5 Phase-Type Distributions 101

Fig. 5.8 The graph of the PH renewal process

The product in the upper co-diagonal blocks expresses that the initial distribution
of the next interarrival is always the same (α) after arrival (“absorption” in the PH
marginal) regardless of any of the other interarrivals, i.e., the process is uncorrelated.

The generator matrix of the phase process is H = A + aα. The steady state phase
distribution (π) is the solution of the linear system of equations

πH = 0

π1l = 1. (5.7)

The transient phase distribution is

π(t) = π(0)eHt (5.8)

which is a vector of elements πi (t) = Pr(J (t) = i) giving the probability that
the process is in phase i at time t. Using the transient phase behavior, at time t
the remaining time to the next arrival is distributed according to the phase-type
distribution (π(t),A).

Let the entries of the vector π(n, t) = (Pr(N (t) = n, J (t) = j)) give the proba-
bilities that at time t the number of arrivals is equal to n and the level process is in
phase j . With initial conditions π(0, 0) = α and π(i, 0) = 0 (i > 0), the transient
number of arrivals is given by the differential equation

dπ(i, t)

dt
= π(i, t)A + π(i − 1, t)aα, (5.9)

whose z-transform, with initial condition π(z, 0) = α, is

dπ(z, t)

dt
= π(z, t)A + zπ(z, t)aα = π(z, t) (A + zaα) . (5.10)

The solution of the differential equation, i.e., the transient distribution of the number
of arrivals, is

π(z, t) = αe(A+zaα)t . (5.11)

102 P. Reinecke et al.

Fig. 5.9 The graph of the Markov arrival process

Regarding to the example in Sect. 5.3, the results on the PH renewal processes can
be used to model the faulty server if the system restarts in the same (initial) state
after each deadlock situation.

5.5.1.2 Markov Arrival Process

In the PH renewal process the phase distribution is the same after every arrival. In
contrast, in the Markov Arrival Process (MAP) after each arrival an arbitrary phase
distribution may hold. This allows the modelling of correlated arrival processes. The
two-dimensional CTMC of the MAP process is also defined by the phase process
J (t), describing the phase of the marginal distribution, and by the counting process
N (t), giving the number of arrivals. Its graph is depicted in Fig. 5.9 and its generator
matrix is

Q =

⎛

⎜
⎜
⎝

D0 D1 0

0 D0 D1 0 .

0 0 D0 D1 0
.

⎞

⎟
⎟
⎠ , (5.12)

where the Markov arrival process is represented by D0—the phase transitions without
arrival—and D1—the phase transitions with one arrival. Such a MAP is denoted as
MAP (D0,D1) .

The interarrival times of the MAP (D0,D1) are PH (α0,D0) , PH (α1,D0) . . .

The—correlated—phase distribution embedded at arrival instances forms a discrete
time Markov chain (DTMC) with state transition probability matrix
P = (−D0)

−1 D1.

The joint probability density function of the interarrival times, X0 and Xk, is

fX0,Xk (x0, xk) = πeD0x0 D1Pk−1eD0xk D11l, (5.13)

5 Phase-Type Distributions 103

where π is the embedded stationary phase distribution at arrival instances, i.e., it is
the solution of the linear system of equations

πP = π

π1l = 1. (5.14)

The stationary interarrival time distribution is PH (π ,D0) with nth moment

E
[
Xn] = n!π (−D0)

−n 1l (5.15)

and the joint moment of two interarrivals is

E [X0 Xk] =
∫

x0

∫

xk

x0xkπeD0x0 D1Pk−1eD0xk D11ldx0dxk

= π (D0)
−1 Pk (D0)

−1 1l. (5.16)

The covariance of two interarrivals is

cov (X0, Xk) = E [X0 Xk] − E2 [X] (5.17)

and using (5.15)–(5.17) the lag k correlation of the MAP is

corr (X0, Xk) = cov (X0, Xk)

E
[
X2

] − E2 [X]
. (5.18)

The MAP can help to model the faulty server of Sect. 5.3 if the initial states of the
system (after restart) are correlated.

5.5.2 The Quasi Birth-Death Process

The quasi birth-death (QBD) process [579, 683] is also defined by the phase process
(J (t)) and the counting process (N (t)). But in case of the QBD process the counting,
or the “level”, process is allowed to be decreased by one as well as to stay on the same
level or to be increased by one. It is thus the “multiphase” extension of the birth-
death process which is for example the solution of the M/M/1 queueing system. The
generator matrix of the QBD process has block-tridiagonal form

Q =

⎛

⎜
⎜
⎝

L′ F 0 .. .

B L F 0 .

0 B L F 0
.

⎞

⎟
⎟
⎠ , (5.19)

104 P. Reinecke et al.

Fig. 5.10 The graph of the
quasi birth-death process

where the blocks or level transition matrices are

L′ local state transitions inside the first—irregular—block,
B backward (level) state transitions,
L local state transitions on the regular levels and
F forward (level) state transitions.

The graph of the QBD is depicted in Fig. 5.10.
We give the solution method of the QBD through the analysis of the MAP/PH/1

queueing system with arrival process MAP (D0,D1) and service time PH (α,A).
The level transition matrices are

L′ = D0 ⊗ I

B = I ⊗ aα

L = D0 ⊕ A

F = D1 ⊗ I,

where a = −A1l and I is the identity matrix of appropriate size. The operators ⊗
and ⊕ are the Kronecker product and sum, respectively.

The generator matrix of the phase process is H = B+L+F and if it is irreducible
then the steady state phase distribution is the solution of the linear system of equations

πH = 0

π1l = 1. (5.20)

The QBD process is stable if its stationary drift is less than zero

d = πF1l − πB1l < 0. (5.21)

The steady state solution of the QBD is the solution of the infinite system of linear
equations

νQ = 0

ν1l = 1. (5.22)

5 Phase-Type Distributions 105

Partitioning ν according to the blocks of Q is

ν = (
ν0 ν1 ν2 . . .

)

and substituting the partitions into (5.22) we get

ν0L′ + ν1B = 0 (5.23)

and

νi−1F + νi L + νi+1B = 0 ∀i ≥ 1. (5.24)

Assuming that the Markov chain is irreducible νi = νi−1R = ν0Ri (∀i), i.e., its
solution is the matrix geometric distribution, the general Eq. (5.24) can be rewritten
as

ν0Ri−1F + ν0Ri L + ν0Ri+1B = 0

ν0Ri−1
(

F + RL + R2B
)

= 0

with a solution determined by

F + RL + R2B = 0. (5.25)

If the QBD is stable there is one of the solutions of R whose eigenvalues are within
the unit circle on the complex plane.

As all the eigenvalues of the relevant R are within the unit circle there exists the
limit of the sum

∑∞
i=0 Ri = (I − R)−1 . Using the convergence the normalizing

condition of ν can be expressed as

ν1l =
∞∑

i=0

νi 1l =
∞∑

i=1

ν0Ri 1l = ν0

∞∑

i=1

Ri 1l = ν0 (I − R)−1 1l = 1. (5.26)

Now substituting R into (5.23) and using (5.26) we have a linear system of equations

ν0
(
L′ + RB

) = 0

ν0 (I − R)−1 1l = 1 (5.27)

for the zeroth block of ν. All the other blocks can be calculated using ν0 and R as

νi = ν0Ri , ∀i. (5.28)

106 P. Reinecke et al.

By these considerations the infinite problem of solving the QBD in (5.22) is reduced
to be the solution of the finite problems in (5.25), (5.27) and (5.28).

5.6 Phase-Type Distributions in Random-Variate Generation

While phase-type distributions enable efficient solutions for analytical models, they
have applications beyond analytical approaches. Their ability to provide good models
for many different empirical distributions makes them attractive in evaluation tech-
niques where observed phenomena must be represented accurately and efficiently. In
particular, they can be used both in discrete-event simulation of models that cannot be
solved by analytical methods, and in fault-injection-driven experiments in testbeds.
Referring back to our example, in addition to considering an analytical solution we
might want to explore the effect of the faulty server on the resilience of our system
by running a simulation or performing measurements in a testbed. Then, we need to
generate random variates from a PH distribution describing the times to deadlock.

Phase-type distributed samples may be generated by playing the CTMC until
absorption, and by numerical inversion of the distribution function [157]. In the
following we focus on methods that ‘play’ the CTMC. Note that these methods
require the Markovian representation.

The methods discussed in the following utilise random variates from the uniform,
exponential, Erlang, and geometric distributions. We assume that random variates
with uniform distribution on (0, 1) are given, and denote these by U . Using the
inversion method, a sample with exponential distribution with rate λ is then drawn
by

Exp(λ) = −1

λ
ln(U).

A sample from the Erlang distribution with degree b and rate λ is generated by

Erl(b, λ) = −1

λ
ln

(
b∏

i=1

Ui

)

.

Note that this way of sampling Erl(b, λ) is more efficient than the functional equiva-
lent of drawing b exponentially distributed samples and summing them up, because
the ln operation is applied only once. Finally, a sample from the geometric distribu-
tion (starting from 0) with parameter p is obtained by

Geo(p) =
⌊

ln(U)

ln(p)

⌋

.

The most natural way to generate a PH-distributed sample by playing the CTMC
proceeds as follows: first, we select a state i by drawing an integer sample distributed

5 Phase-Type Distributions 107

according to the initial probability vector α. Afterwards, in each step the next state
is selected according to the next-state probability vector, which is given by the i th
row of the embedded Markov chain of A,

S = I − diag(A)−1A.

In the following, let Si denote the i th row vector of S. The sojourn time for state i
is obtained as a sample from the exponential distribution with rate −λi i . Letting ei

denote the row vector with 1 at position i , and 0 everywhere else, the Play method
can be given in pseudocode as follows:

Procedure Play:

1) x := 0. Draw an α-distributed discrete sample i for the initial state.
2) The chain is in state i

– draw an Si -distributed discrete sample for the next state,
– x+ = Exp(−λi i),
– if the next state is the absorbing one (i = n + 1) go to 3), otherwise go

to 2)

3) Return x .

In [684], Neuts and Pagano point out that when traversing a state more than once,
the Play method adds up multiple samples from the same exponential distribu-
tion. The sum of ki exponential distributions of the same rate −λi i , however, is the
Erlang distribution with length ki and rate −λi i . As shown above, drawing a sample
from the Erlang distribution of length ki requires only one logarithm operation, as
opposed to ki logarithms when drawing individual exponential samples. Thus, Neuts
and Pagano propose the following method, which, instead of drawing exponential
samples for each visit to a state i , counts the number of visits and then draws one
Erlang-distributed sample for each state:

Procedure Count:

1) x := 0, ki := 0, (i = 1, . . . , n), Draw an α-distributed discrete sample i
for the initial state.

2) The chain is in state i

– ki += 1,
– draw an Si -distributed discrete sample for the next state,
– if the next state is the absorbing one go to 3) otherwise to 2)

3) for i = 1, . . . , n; do x += Erl(ki ,−λi i); done
4) Return x .

108 P. Reinecke et al.

If the distribution is in Monocyclic form, we can derive another method from the
structural properties of the Monocyclic representation. Recall that this representation
consists of a chain of Feedback-Erlang blocks. With such a chain, possible state
transitions are predetermined by the structure in two ways: First, when we leave a
Feedback-Erlang block j , the next state will be the first state of the next Feedback-
Erlang block j + 1. This implies that no new sample is required for choosing the
successor block. Second, recall from Fig. 5.5 that each FE block consists of a chain
of m j − 1 states with exactly one outgoing transition (to the next state), and only
one state with two outgoing transitions (the feedback state). Thus, within each FE
block the only state where the next state is not determined by the structure is the last
one. Furthermore, as the last state has only two outgoing transitions, the choice of
staying within block j or entering the next block j + 1 corresponds to a Bernoulli
experiment with parameter z j . Consequently, the number of ‘loops’ in each block
follows a geometric distribution with parameter z j . Therefore, in order to generate
the sample corresponding to the j th Feedback-Erlang block, we add a geometrically
distributed number of exponentially distributed random variates with the same rate
λ j . As discussed when introducing the Count method, an efficient way of doing
this is to draw a sample from an Erlang distribution of the appropriate length. These
considerations lead to the following method:

Procedure Monocyclic:

1) x := 0. Draw an α-distributed discrete sample for the initial state,
2) the chain is in state l of block i (for the left-most state of the block, l = bi)

– c = Geo(zi),
– x+ = Erl(cbi + l, λi)

– if the next block is the absorbing state go to 3), otherwise l = bi+1,
i = i + 1 and go to 2)

3) Return x .

The first three methods are applicable to general PH distributions. If we restrict
our attention to sub-classes, more efficient methods can be designed. First, consider
the APH class in CF-1 form. As a special case of the Monocyclic form, the CF-1 form
is a chain of states, where each state has exactly one successor state (cf. Fig. 5.4),
and thus the next state is not chosen randomly. Hence, once an initial state has been
selected, the random variate is simply the sum of exponentially distributed samples
from each of the successor states3:

3 Note that the transition rates in the CF-1 form are usually not identical, hence we cannot simply
draw an Erlang-distributed sample.

5 Phase-Type Distributions 109

Procedure Simpleplay:

1) x := 0. Draw an α-distributed discrete sample for the initial state.
2) The chain is in state i .

– x+ = Exp(−λi i),
– i+ = 1,
– if the next state is the absorbing state go to 3), otherwise go to 2).

3) Return x .

If we assume a Hyper-Erlang distribution, represented as shown in Fig. 5.3, we
can simplify the procedure Count, by using our knowledge that each of the branches
is an Erlang distribution:

Procedure SimpleCount:

1) Draw a β-distributed discrete sample to choose an Erlang branch i .
2) Return Erl(bi , λi).

5.6.1 Costs of Generating PH-Distributed Numbers

In the previous section we argue that the methods for generating random variates dif-
fer in their efficiency. We will now treat the costs of random number generation from
phase-type distributions in a more formal way. All of the algorithms use exponential
random variates for the sojourn times and uniform random variates for choosing the
initial state.Play and Count additionally use uniform random variates for choosing
successor states, while the Monocyclic algorithm needs geometrically distributed
numbers for the number of loops in each Feedback-Erlang block. In order to draw
from an exponential or geometric distribution, we need uniform random variates and
logarithm operations. Therefore, we define the following two metrics for measuring
algorithm complexity:

Definition 5.6 Let #uni be the number of uniform random variates that need to be
generated and let # ln be the number of logarithm operations that must be performed
for generating one PH-distributed random variate from a given PH distribution (α,A).

Using these metrics, we can compare the complexity of the algorithms. We con-
sider both worst-case and average costs.

110 P. Reinecke et al.

Table 5.2 Theoretical costs of generating PH distributed random variates from different PH classes
and using different PH representations (where ν = (n, n − 1, . . . , 1), n∗ = α(diag(A)−1QB)−11l)

PH Class Worst case Average case
#uni #ln #uni #ln

HEx(n) SimpleCount 2 1 2 1
HErD(n) SimpleCount max{bi + 1} 1 βbT + 1 1
APH(n) SimplePlay n + 1 n ανT + 1 ανT

PH(n) Play ∞ ∞ 2n̄ + 1 n̄
PH(n) Count ∞ n 2n̄ + 1 n

Monocyclic ∞ 3m ωϕT + αψT ωϑT

5.6.1.1 Worst-Case Costs

Let ñ denote the length of the longest possible path through the CTMC. For the Play
method, we draw one exponentially distributed random variate for each traversed
state, and hence need one logarithm and one uniform random variate per step, as
well as an additional uniform for choosing the next state. For this method, #uni and
#ln are proportional to ñ. However, ñ is not defined if there are cycles in the CTMC.
Therefore, worst-case costs are not defined for Play.

The same problem with the unknown maximum number of state traversals occurs
with the Count method. However, in this case we only draw Erlang-distributed
samples (one for each state). Therefore, the maximum number of logarithm opera-
tions is bounded by the number of states: #ln = n. Similarly, for the Monocyclic
method we draw one Erlang-distributed and one geometrically-distributed sample for
each Feedback-Erlang block. The latter requires another two logarithm operations,
in addition to the one for generating the Erlang sample. As the worst case occurs
when we start in the first block, the worst-case number of traversed FE blocks is m,
and thus #ln = 3m.

For APH in CF-1 form and using theSimplePlaymethod, the worst case is if the
chain is entered at state i = 1, since in that case we have to traverse the whole chain.
Thus, ñ = n. Obviously, for a Hyper-Erlang distribution in CF-1 form, ñ = n holds
as well. However, if we consider the Hyper-Erlang form and simulation using the
SimpleCount method, the worst case is equivalent to choosing the longest Erlang
branch. In that case, ñ = max{bi } ≤ n. The worst-case costs can be computed as
follows: With every class, we need one uniform random variate to choose the initial
state. When using the APH(n) class in CF-1 form we need ñ = n uniforms and ñ = n
logarithms for the consecutive phases. With the HErD class and the SimpleCount
method we need ñ = max{bi } additional random variates and one logarithm to obtain
an Erlang-distributed random number. We summarise these results in the left half of
Table 5.2.

5 Phase-Type Distributions 111

5.6.1.2 Average Costs

In general, we do not expect to have worst-case behaviour, but are more interested
in average costs. This measure is based on the average number of state transitions
up to absorption,

n̄ = α(diag(A)−1A)−11l.

Applying the Play method for the general PH class, in each step we need two
uniform random variates (one for the exponential sample and one for choosing the
next state, see above), and one logarithm operation. As before, applying the Count
procedure instead, the number of logarithms is #ln = n, while the number of uniforms
stays #uni = n̄.

Canonical forms enable explicit expressions for n̄. For Mono(α,m,b,λ, z) we
introduce vector ω of size m, whose i th element is the probability of starting from
Feedback-Erlang block i (e.g.,ω1 = ∑b1

j=1 α j), vectorϕ of size m, whose i th element

is ϕi = zi bi
1−zi

+ ∑m
j=i+1

b j
1−z j

(the mean number of steps spent in a Feedback-Erlang
block from the first feedback, i.e., excluding the steps from the initial state to the
feedback state in the first passage through the initial block), vectorψ of size n whose
i th element indicates how many phases are needed to reach the next Feedback-Erlang
block (e.g., if b1 ≥ 2 then ψ1 = b1, ψ2 = b1 − 1).

Using these notations the mean number of steps till absorption is

n̄ = ωϕT + αψT,

where αψT contains the number of steps if there is no feedback (i.e., if zi = 0, for
i = 1, . . . ,m) and ωϕT contains the additional number of steps due to the loops in
the Feedback-Erlang block.

The mean number of ln operations is

�∗ = ωϑT,

where ϑ is a row vector of size m whose i th element indicates the number of required
ln operations starting from block i . ϑi = ∑m

j=i (1 + 2 sgn(z j)), since a degenerate
Feedback-Erlang block with zi = 0 is Erlang(l, λi) distributed which requires one
ln operation and a non degenerate (zi > 0) Feedback-Erlang block requires three ln
operations, two ln operations for c = Geo(zi) and one for Erl(cbi + l, λi).

For the APH class in CF-1 form, there exists an even simpler expression, as
the number of traversed states depends only on the initial state, which in turn is
determined by the initial probability vector α. Thus, for APH in CF-1 form,

n̄ = ανT, where ν = (n, n − 1, . . . , 1).

112 P. Reinecke et al.

Equivalently, for the HErD class, n̄ is a weighted sum of the lengths of the Erlang
branches:

n̄ = αbT.

5.6.2 Optimisation

Considering the costs for the different methods discussed in the previous sections, it
becomes clear that both the representation of the distribution and the method have an
impact on the efficiency of PH random variate generation. One immediate question
is then: what is the optimal representation to generate random variates efficiently?
While the answer to this question is not yet available for the general PH case, [764]
presents the following result for APH in CF-1 form:

Lemma 1 [764] Given a Markovian representation (α,Λ) in CF-1 form, the repre-
sentation (α∗,Λ∗) that reverses the order of the rates is optimal with respect to n̄ if
α∗ is a stochastic vector. In this case, all bi-diagonal representations are Markovian.

The proof given in [764] relies on the observation that swapping two adjacent rates
λi , λi+1 moves probability mass towards the end of the chain only ifλi < λi+1. Thus,
reversing the CF-1 order (where λi ≤ λi+1 for all i) gives an initial probability vector
αwhere probability mass is concentrated at the higher indices. Recalling from above,
n̄ = ανT for APH, i.e., high probability for states close to absorption implies low
average costs.

Note, however, that reversing the CF-1 form may result in α with negative entries
[764]. In this case, the tuple (α∗,A∗) still represents the same distribution, but the
representation does not have a Markovian interpretation anymore, and thus n̄ is not
defined, nor can SimplePlay be applied. The optimal ordering can then be found
by exhaustive search over all n! possible orderings, or by heuristics that try to find
a Markovian representation that is as similar as possible to the reversed CF-1. The
heuristics presented in [764] either start from the CF-1 form and apply pair-wise
swappings until the result would be non-Markovian, or start from the reversed CF-1
and try to reach a Markovian representation.

5.7 Conclusion

In this chapter we introduced the basics of using phase-type distributions as tools in
resilience evaluation, discussing the complete workflow from explicit derivation and
fitting to application in both analytical and simulation methods. One application of
the methods described here is illustrated in Chap. 6, where PH distributions are used
to reduce the size of a stochastic model by modelling the behaviour of components
based on their delay distributions.

http://dx.doi.org/10.1007/978-3-642-29032-9_6

5 Phase-Type Distributions 113

Our goal was to provide our readers with the fundamentals to apply PH distribu-
tions in their own work. Of course, this means that we could only scratch the surface
of the vast amount of work available on phase-type distributions. We would like to
give a few pointers for further study to the reader interested in different aspects of the
topic. For readers interested in the mathematical background, we recommend [683],
where PH distributions were introduced, and the fundamental work in [251, 697, 698],
which provides the basics for many of the closure properties and canonical forms
used in the field. More information on PH fitting is available in the papers introducing
the fitting tools we discussed here [446, 870, 880], and in [59], where a fitting tool
for general PH distributions is described. [572] gives a survey of PH fitting tools that
were available at the time and have not been considered here. An in-depth discussion
of fitting heavy-tailed data is provided in [48]. Both [579, 683] provide good introduc-
tions to matrix-analytic methods. Lastly, with respect to random-variate generation
we would like to also point out the approach in [157], where the authors present
a method of generating random variates from Matrix-Exponential distributions, of
which the PH distributions are but a subclass. The approach is particularly interest-
ing because it differs from the methods discussed in this chapter in that it applies
numerical inversion of the distribution function instead of playing the Markov chain.

Chapter 6
Scalable Stochastic Modelling for Resilience

Jeremy T. Bradley, Lucia Cloth, Richard A. Hayden, Leïla Kloul, Philipp
Reinecke, Markus Siegle, Nigel Thomas and Katinka Wolter

Abstract This chapter summarises techniques that are suitable for performance and
resilience modelling and analysis of massive stochastic systems. We will introduce
scalable techniques that can be applied to models constructed using DTMCs and
CTMCs as well as compositional formalisms such as stochastic automata networks,
stochastic process algebras and queueing networks. We will briefly show how tech-

J. T. Bradley and R. A. Hayden (B)
Imperial College, London, UK
e-mail: jb@doc.ic.ac.uk

R. A. Hayden
e-mail: rh@doc.ic.ac.uk

L. Cloth
Department of Applied Information Technology,
GU Tech, Oman, Muscat
e-mail: lucia.cloth@gutech.edu.om

L. Kloul
Laboratoire PRiSM, Université de Versailles, Versailles France
e-mail: Leila.Kloul@prism.uvsq.fr

P. Reinecke and K. Wolter
Institute of Computer Science, Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: philipp.reinecke@fu-berlin.de

K. Wolter
e-mail: katinka.wolter@fu-berlin.de

M. Siegle
Department of Computer Science,
Universität der Bundeswehr München, Neubiberg, Germany
e-mail: markus.siegle@unibw.de

N. Thomas
School of Computing Science, Newcastle University,
Newcastle, UK
e-mail: nigel.thomas@ncl.ac.uk

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 115
DOI: 10.1007/978-3-642-29032-9_6, © Springer-Verlag Berlin Heidelberg 2012

116 J. T. Bradley et al.

niques such as mean value analysis, mean-field analysis, symbolic data structures
and fluid analysis can be used to analyse massive models specifically for resilience
in networks, communication and computer architectures.

6.1 Introduction

The techniques presented in this chapter represent the state of the art in performance
and resilience analysis when it comes to coping with massive state-space models.
Many existing analysis techniques rely on generating underlying stochastic models,
such as continuous-time Markov chains. Where there is too close a correspondence
between the state space of the model and that of the underlying stochastic process,
the state-space explosion in the former can lead to intractability in the latter. The
presented techniques in this chapter were chosen as they represent instances of the
main approaches to state-space reduction in stochastic systems: aggregation, decom-
position, symbolic representation and continuum approximation.

We realise that accurate resilience analysis relies on a detailed and complex model.
This kind of model generates huge state spaces and computation time if handled
naïvely. In this chapter, we are specifically interested in analysis techniques that
side-step the state space explosion problem by making use of efficient representation
mechanisms. This is necessary if we are to make headway in directly analysing
problems in mobile networks, critical infrastructures and Cloud systems.

We summarise the techniques presented below. In each case, we indicate what type
of analysis result can be expected to be obtained using this method. It is important
to understand how these techniques are relevant and useful to the understanding
of resilience of a system. The types of analysis that can be tackled using these
techniques can broadly be put into three categories. In the context of resilience
analysis: steady state distributions are useful for calculating the probability that
a fault state is ever reached; transient distributions are useful for calculating the
probability that a fault state is entered in a particular time window; and response or
passage time analysis is used to specify service level agreements, along the lines of
The round-trip response of a service request to a virtualised environment should be
less that 1.8s, with probability 0.95.

Decomposition and phase-type representation We start with a technique which
combines simulation and decomposition, to generate simple approximate mod-
els based on phase-type representation of key portions of a system’s operation
(Sect. 6.2). A grey-box technique such as this avoids explicit investigation or rep-
resentation of individual states in the system. This will be a useful technique for
deriving some aggregate steady-state and transient measures but will probably be
most widely used for response-time results.
Product forms and MVA In Sect. 6.3, we explore two powerful techniques from
queueing theory, product form and mean value analysis (MVA). These powerful
techniques can be applied to very large or infinite state systems. They explore

6 Scalable Stochastic Modelling for Resilience 117

balanced flows of traffic between components and in doing so permit compositional
rather than system-wide analysis. Product forms will tend to lead to rapid steady-
state distribution results, while MVA can calculate mean throughput, response
time and job occupancy measures in a system.
Tensor representation Sect. 6.4 presents a decomposition technique which avoids
the construction of the underlying explicit state space of a continuous-time Markov
chain. Instead smaller submatrices are constructed which broadly reflect the com-
ponents of the stochastic automata network. Analysis techniques exist which main-
tain the decomposed tensor representation while producing accurate steady-state
distribution results.
Symbolic representation The symbolic representation of a stochastic model is
described in Sect. 6.5. Multi-terminal Binary Decision Diagrams are used to encode
efficiently the real rate values of a variety of stochastic models, including CTMCs,
DTMCs and MDPs (Markov Decision Processes). Steady-state analysis, transient
analysis and passage-time analysis are all possible using exclusively MTBDD-
based algorithms.
Mean-field analysis In Sect. 6.6, we present developments in mean-field analysis
as applied to massively distributed systems that are made up of identical com-
municating components. Applied to discrete-time systems, mean-field techniques
generate sets of deterministic mean-difference equations (MDEs). Solving these
MDEs gives access to both transient and passage-time measures. They provide an
interesting comparison to the continuous counterpart, fluid analysis, described in
the next section.
Fluid analysis Finally, in Sect. 6.7, we show how a continuum approximation of the
dynamics of a stochastic system can be encoded in a system of ordinary differential
equations (ODEs). Fluid analysis can be applied to large distributed systems that
are comprised of groups of components of different types. Usually generated from a
higher level formalism such as a stochastic process algebra, the ODEs can encode
steady-state, transient and passage time questions. Higher moments of various
model quantities are also available to capture measure accuracy.

6.2 Efficient Model Representation and Simulation

Discrete-event simulation is a widely-used approach for evaluating system properties
such as response-time. Compared to analytical closed-form approaches, discrete-
event simulation has the advantage of allowing the construction and evaluation of
highly-detailed models where the modelled behaviour is not limited by the constraints
of the formalism.

Unfortunately, the ability to easily build highly-detailed models often leads to
scalability problems. While simulations modelling simple scenarios can be evaluated
efficiently, increasing the complexity of the scenario quickly results in simulation
models whose evaluation takes too long for the results to be useful. In this case,
one obvious solution would be to start from scratch with a less detailed model with

118 J. T. Bradley et al.

Fig. 6.1 Example decompo-
sition of a simulation

Subsystem B1System A

Subsystem B1

System B

better scalability. However, this solution is often not desirable, since the results from
a less detailed model may not be sufficiently accurate, and because of time and cost
constraints on the modelling process itself.

Increasing model complexity is a well-known problem with analytical approaches
as well. These approaches often suffer from state-space explosion as the system to
be studied becomes more complex. Various solutions for this problem have been
proposed [854]. In particular, decomposition/aggregation methods allow the solu-
tion of highly-complex models by splitting the model into submodels, solving the
submodels independently, and aggregating the submodel solutions into a solution for
the whole system. This approach may be used to reduce both processing time and
memory requirements.

The general idea of decomposition and aggregation can also be applied to discrete-
event simulations. In this section we describe a hybrid approach that combines de-
composition and approximation using stochastic models to allow faster evaluation
of discrete-event simulation models. With this approach, the simulation model is
split into blocks whose behaviour can be approximated by phase-type (PH) distrib-
utions (Chapter 5). The phase-type distributions replace the approximated blocks in
the simulation. The behaviour of the approximated blocks can then be reproduced
by drawing random variates from the approximating phase-type distributions. Since
this is more efficient than detailed discrete-event simulation, simulation of the whole
system becomes much faster. This method can be applied when delay metrics are to
be determined. Whether the method also applies for other metrics, such as through-
put, availability or state probabilities in general, is as of yet unknown. The approach
consists of the following steps:

1. Decomposition of the simulation model into blocks that affect the metrics.
Starting from the complete simulation, one must identify parts that can be ap-
proximated by phase-type distributions. These blocks should satisfy a number
of criteria: it should be simple to separate the simulation into the blocks, and the
blocks should be chosen such that increasing the complexity of the simulation
corresponds to multiple application of identical blocks. This step is shown in
Fig. 6.1, where block A of the simulation is affected by block B: The effect of
block B on the metrics depends on its internal block B1. Increasing the size of
system B corresponds to using multiple instances of B1 within B.

2. Evaluation of simulation blocks. In order to approximate the behaviour of the
simulation blocks identified in step 1 by phase-type distributions, data is needed
that shows the effect of the blocks. Typically, this data will be obtained from
detailed simulations of the individual blocks, but if a block corresponds to a
system where data from measurements is available, such data can also be used.

http://dx.doi.org/10.1007/978-3-642-29032-5

6 Scalable Stochastic Modelling for Resilience 119

Fig. 6.2 Data stream in
packet-switched network with
tree topology

Source

Destination

Packet−Switched Network

3. Approximation using phase-type distributions. The data obtained in step 2
is approximated by a phase-type distribution. The general process and tools for
fitting PH distributions to data sets is described in detail in Chap. 5. For the appli-
cation in the hybrid approach, the focus should be on capturing those properties
well that strongly affect the metric. Furthermore, one should choose phase-type
distributions that enable efficient random-variate generation, so as to be able to
reproduce the behaviour of the approximated building-blocks efficiently.

4. Integration of the phase-type distributions into the simulation model. The
phase-type models must be integrated into the simulation. For delay metrics,
this requires drawing random variates from the distribution and delaying events
caused by the approximated system blocks according to these variates. For com-
mon discrete-event simulation toolkits such as NS-2 [693] and OMNeT++ [911],
the libphprng [765] library provides the necessary routines for generating PH-
distributed random numbers.

5. System evaluation. The whole system can now be evaluated. In order to scale
system size/complexity, the number of blocks containing the approximating PH
distribution is increased. As random-variate generation from a PH distribution is
typically more efficient than detailed simulation of the blocks, the model can be
expected to scale much better to higher numbers of building-blocks. On the other
hand, the approximation process introduces an error, since the PH distribution
does not represent all behaviour of the detailed model.

6.2.1 Illustrative Example

In [938] we have investigated timing behaviour in a tree-structured network across
a variable number of identical switches. The topology is shown in Fig. 6.2 and each
data stream is transmitted in a straight feed-forward fashion.

Let us illustrate the approximation technique for the given example. In this ex-
ample, the transmission delays encountered on the path between the source and the
destination are investigated. More precisely, the metric of interest is the 1% quantile

http://dx.doi.org/10.1007/978-3-642-29032-5

120 J. T. Bradley et al.

of packet delay variation (PDV)1 of the high-priority packets in a network transport-
ing two types of packets, the high priority traffic and the low priority background
data. This implies that the subsystem models must only represent transmission de-
lays, and we can abstract away from other aspects of the network, such as correctness
of the content of transmitted messages.

In order to evaluate this scenario, a simulation has been built using the discrete-
event network simulator NS-2 [693]. In this simulation, we model the internal behav-
iour of switches in a detailed manner, and generate streams of high and low priority
packets. Then the time is observed that it takes for high-priority packets to traverse
the network from the source to the destination. As illustrated by the upper curve in
Fig. 6.4a, simulation run-times with this approach increase quickly as the number of
switches is increased. Therefore the approximation method is applied as follows:

1. Decomposition of the simulation model into blocks that affect the metrics.
In this scenario, the obvious block is the individual switch. For simplicity, we
assume that the network consists of switches whose behaviour with respect to
transmission delay is identical.

2. Evaluation of simulation blocks. The transmission delays incurred by each
switch must be assessed. As a network consisting of only one switch can still be
simulated within an acceptable time, transmission delays for a long simulation
run with only one such switch between source and destination are obtained.

3. Approximation using phase-type distributions. We fit an acyclic phase-type
distribution using the PhFIT tool [446] to the transmission delay of the high-
priority stream such that the resulting distribution represents the 1% quantile
well. See Chap. 5 for more details on phase-type distributions. The phase-type
distribution obtained here represents the transmission delay distribution of a
single switch. Figure 6.3a shows the packet delay distribution from step 2 and
the cumulative density function of the phase-type distribution fitted to the data.
Note that the distribution fits the lower quantiles well and tends to diverge only
on the higher quantiles.

4. Integration of the phase-type distributions into the simulation model. Now,
the phase-type distribution for the packet delay of the switch can be used to
simulate the behaviour of the switch. To this end, we build a simple queueing
station whose service-time distribution is given by the phase-type distribution
fitted to the data. Packets entering the station system are delayed according to the
service-time distribution. Note that the presence of a queue is only dictated by the
fact that we cannot drop packets, and that this queue does not correspond to any
part of the original model. In the considered scenario high-priority packets are
sent very infrequently, and therefore queueing is highly unlikely. If the arrival
rate of high-priority packets was higher, queueing might occur. The resulting
queueing delay would increase the error caused by the approximation, since this
queueing is not part of the original simulation.

1 Packet delay variation is defined as the difference between the shortest and the longest transmission
time, where lost packets are ignored.

http://dx.doi.org/10.1007/978-3-642-29032-5

6 Scalable Stochastic Modelling for Resilience 121

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)
Detailed Simulation
Approximating PH distribution

50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)

Detailed Simulation
PH Approximation

(a)

(b)

Fig. 6.3 Comparison of simulation data and PH approximation. a CDF of simulation data for 1
switch and associated PH approximation. b CDF of simulation data and PH approximation with 20
links using full simulation and PH approximation

5. System evaluation. The system can now be simulated by transmitting high-
priority packets from the source to the destination. Note that it is not necessary
to simulate the low-priority stream anymore, since its effect on the packet delay
variation is already captured in the service-time distribution.

The advantages of the hybrid approach can be evaluated using a scenario where
the number of switches that the data stream has to traverse is increased from 1 to 20.

Figure 6.4a shows run-times for the detailed and approximating simulations for
increasing number n of links. Note that the run-times for the detailed simulation
increase sharply and reach values in the order of days, while run-times with PH

122 J. T. Bradley et al.

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

tim
e

(s
ec

on
ds

)

Number of network links

runtime full simulation
simulation runtime with PH approximation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

tim
e

(n
an

o-
se

co
nd

s)

Number of network links

PDV using simulation
PDV using PH approximation

absolute PDV error
relative PDV error

(a)

(b)

Fig. 6.4 Evaluation of simulation time and the error introduced by approximation. a Simulation
runtimes for full simulation and with PH approximation. b PDV error for full simulation and with
PH approximation

approximation stay in the order of hours, even for a high number of links. Figure 6.4b
illustrates the error incurred by using PH approximations for the switches instead of
simulating them in detail. As expected, the error does increase with n, but it seems
to converge, and the relative error even decreases.

6 Scalable Stochastic Modelling for Resilience 123

6.2.2 Outlook

The decomposition and approximation approach should be extended in various di-
rections. This has not been done yet and there might arise problems that cannot be
foreseen. First, the system model need not be a simulation model. Any stochastic
discrete event model, such as a CTMC, should be applicable too. Second, the ap-
proximation technique need not be a PH distribution. Simpler approximations could
consist in Bernoulli variables, and more sophisticated approximation may use cor-
related stochastic processes, that are still smaller than the original model. Third,
metrics other than timing metrics should be considered. Often of interest are system
or service availability, throughput, or failure characteristics.

6.3 Product-Form Solution and Mean Value Analysis

One approach to tackling the state space explosion problem common to all compo-
sitional modelling techniques is to break the model into smaller parts that can then
be solved separately and the solutions combined in some way to give measures for
the whole system. This approach is generally known as model decomposition.

One of the most powerful model decomposition techniques are so called, product-
form solutions. Essentially, a product-form is a decomposed solution where the steady
state distribution of a whole system can be found by multiplying the marginal distri-
butions of its components. Thus, for a system described by the pair {S1, S2}, where
Si is the local state of component Ci a product form solution would have the form

π(S1, S2) = 1

B
π(S1)π(S2)

where 1/B is the normalising constant (B ≤ 1), which is necessary if there are
combinations of possible local states which are prohibited in the system evolution.

The conditions for such a solution to exist are clearly going to be restrictive, and as
such product-form solutions are applicable only in a relatively small number of cases.
Despite the restrictions, product-forms are extremely powerful and so the quest for
new solutions in stochastic networks has been a major research area in performance
modelling for over 30 years, giving rise to a number of seminal results, such as
Jackson queueing networks [480] and the BCMP result [93] for closed queueing
networks.

A Jackson network is a simple open queueing network with Poisson arrivals,
negative exponentially distributed service times and unbounded FCFS queues, where
the routing of jobs from one node to another is strictly a priori. For stability it is
also required that the utilisation at each node is strictly less than one. In such a
network each node can be considered as an independent FCFS M/M/k queue and
the steady state probability of being in any given system state can be found simply
by multiplying together the marginal probabilities of each node’s local state.

124 J. T. Bradley et al.

Jackson’s result does not apply to closed networks of M/M/k queues (where no
jobs may enter or leave the network) because the population of a closed network
is bounded. This restriction was overcome by Gordon and Newell [386], with the
introduction of the normalising constant 1/G(K), where K is the population size.
If the state is described by the tuple S = {S1, . . . , Sn} then G(K) is given by,

G(K) =
∑

S

n∏

i=1

π(Si)

The results of Jackson and Gordon and Newell were subsequently generalised by
Baskett, Chandy, Muntz and Palacios [93] to allow four possible classes of net-
work for which the product-form solution holds. The first class is FCFS queues with
negative exponentially distributed service times. The service rate may be state de-
pendent, which allows the network to be open or closed. The subsequent classes
slightly relax the condition of negative exponentially distributed service times, as
long as the queueing discipline is either processor sharing, infinite server or LCFS
with pre-emptive resume.

The BCMP characterisation of product-form networks greatly extended the poten-
tial for applying product-form solutions to real world problems. Subsequently there
have been many further results extending the class of queueing networks amenable
to product-form solution under specific conditions, for different kinds of queueing
network and for different properties. One case worthy of special mention is the
work on product-form G-networks by Gelenbe [372]. G-networks are a variant of
queueing networks that allow so-called negative customers. A negative customer
may potentially remove a job from the queue into which it arrives. As well as having
external arrivals of negative customers, a normal (or positive) customer may become
a negative customer with some probability following completion of service. Sub-
ject to similar conditions as Jackson’s result described above, a G-network can be
shown to exhibit a product form solution. This result is more surprising than it might
naively appear, as previously it was assumed that there was a relationship between
the product-form solution and the existence of partial balance. Partial balance does
not hold in G-networks, and so the proof of the product form solution changed the
understanding of the conditions for product-form solution.

Most attention has been given to queueing networks and their variants (such as G-
networks), but there have also been other significant examples, for example [82, 144,
425]. Many of the approaches to efficiently solving stochastic process algebra mod-
els have been based on concepts of decomposition originally derived for queueing
networks [437]. Applying such approaches to stochastic process algebra allows the
concepts to be understood in a more general modelling framework and applied to non-
queueing models. More recently the Reversed Compound Agent Theorem (RCAT)
has been developed [412]. RCAT is a compositional result that finds the reversed
stationary Markov process of a cooperation between two interacting components,
under syntactically checkable conditions [412, 413]. From this a product-form fol-

6 Scalable Stochastic Modelling for Resilience 125

lows simply. RCAT thereby provides an alternative methodology that unifies many
product-forms, far beyond those for queueing networks.

Even when a product-form solution exists, or an approximation to a product-form
can be derived, obtaining a numerical solution may still be computationally expen-
sive. In particular, finding the normalising constant can be costly in general. Mean
value analysis (MVA) [766] depends on the application of the arrival theorem, first
derived independently by Sevcik and Mitrani [821] and Lavenberg and Reiser [580].
This theorem states that, subject to certain conditions, a job arriving in a queue will,
on average, observe the queue to be in its steady state average behaviour. Combining
the arrival theorem with Little’s law gives rise to a method for deriving average per-
formance metrics based on steady state averages directly from the queueing network
specification, without the need to derive any of the underlying Markov chain.

Stated simply, the basic MVA algorithm, when the population size is N , is as
follows:

1. Set the population size, n, to be 1.
2. Compute the delay this single job will experience at each node as it traverses the

otherwise empty network (i.e. the average service time for one job).
3. Hence compute the probability that this job will be at any given node at a ran-

domly observed instant. This gives the average queue length at each node when
the total population consists of one job.

4. Increment the population size, n.
5. Compute the delay an arriving job will experience at each node (i.e. the average

service time for one job plus average service time for the average number of jobs
in the queue when the population is n − 1).

6. Hence compute the average queue length at each node when the total population
consists of n jobs.

7. If n < N then go back to step 4.

As such it is relatively computationally efficient as long as the population size is
not excessively large. The computational cost for solving a network with a given
structure grows linearly with N .

There are many generalisations and approximate solutions of the original mean
value analysis algorithm. MVA has been applied to many classes of queueing net-
work, as well as other formalisms, including stochastic process algebra [879]. The
key observation in applying MVA to stochastic process algebra is that repeated in-
stances of a component in parallel may be treated as jobs in a queueing network. If
the interaction of these components with other components conforms to some sim-
ple set of restrictions, then a version of the arrival theorem can be derived relating a
component evolving between derivatives (or behaviours) to the steady state solution
of a system with one fewer instance of the component.

126 J. T. Bradley et al.

6.4 Tensor Representation

The tensor representation or compact representation has been used for some time
as a means to address the problem of state space explosion to which state-based per-
formance modelling formalisms are prone. This technique which aims to keep the
size of the model representation as small as possible falls into the largeness avoid-
ance category of techniques which also includes techniques such as decomposition,
aggregation and symbolic encodings [891]. However, unlike the aggregation which
can result in a significant reduction in the size of the state space, the tensor repre-
sentation is not a state space reduction method, but rather an alternative approach
to state space explosion which handles the model solution in a decomposed form.
The matrix representation of the Markov process underlying a performance model
may be decomposed so that the state space of the model, and its dynamics, are not
represented by a single matrix but by a number of smaller matrices. Nevertheless
the model is solved as a single entity and the solution is exact, unlike the decompo-
sition technique which, generally, gives rise to approximate solution of the original
model [243].

The tensor representation has been developed for several state-based modelling
formalisms. The pioneering work in this area was carried out, in 1984, by Plateau on
Stochastic Automata Networks (SANs) [733]. Using a technique based on tensor or
Kronecker algebra, it has been proved [732, 733, 735] that this method automatically
provides an analytic derivation of a decomposed form of the generator matrix called
the descriptor. Compared to a monolithic description of the generator, the struc-
ture of this descriptor leads to a considerable reduction in memory requirements
during the model solution. Moreover, solution techniques have been adapted to this
representation [103, 105, 337].

In the following, we present the tensor representation in the context of the SAN
approach and show how to derive the descriptor expression for the SAN model of
the leacky bucket, an admission control mechanism in ATM networks. We finally
discuss the impact of the tensor representation on both the memory requirements and
the computation time of the matrix-vector multiplications when solving the model,
and this regardless of the modelling formalism used.

6.4.1 Stochastic Automata Networks

In the SAN approach, a system is represented by a number of automata, each au-
tomaton capturing the dynamic behaviour of a component of the system. Within an
individual automaton, the behaviour of a component is captured as a set of states
and events causing transition from one state to another. A label associated with each
transition allows us to specify the type of the event, and its occurrence date and
probability [736]. The transitions in the network can be of two types: local or syn-
chronised. A local transition occurs only in an automaton whereas a synchronised
transition occurs in several automata at the same time.

6 Scalable Stochastic Modelling for Resilience 127

More formally, a SAN is a set of N automata in which each automaton Ai ,
1 ≤ i ≤ N , is defined by the tuple (Si , L , Qi) where

• Si is the set of states of the automaton,
• L is the set of labels. Each label l ∈ L is a list that may contain either a function
τ , or a list of tuples (e, τe, pe), or both of them such that:

– e is the name of a synchronising event or synchronisation,
– τ and τe are the transition rates, functions defined from �N

i=1Si to R
+,

– pe is the probability transition function defining a conditional routing probability
on e between local states.

• Qi is the transition function which associates a label from L with every arc of
automaton Ai .

A label on an edge allows us to specify the type and the rate of the transition as
follows:

• If Qi (xi , yi) contains a function τ , then we have a local transition to Ai between
states xi and yi . If τ is not a constant, the transition is still local to automaton Ai ,
but its rate depends on the state of other automata of the network.

• If (e, τe, pe(xi , yi)) ∈ Qi (xi , yi), then the transition between states xi and yi is a
synchronised transition, e and τe being the name and the rate of the transition of
the synchronising event. pe(xi , yi) is the routing probability between local states
xi and yi . The distinction between the rate and the probability is required because
the first must be unique for a given synchronising event, thus the same on all
concerned automata, whilst the probabilities may, and generally will, differ. The
rate of synchronising events are determined at the global level.

6.4.2 The Descriptor

In the seminal paper [732], Plateau proved that the generator matrix of the Markov
process underlying a SAN model can be analytically represented using Kronecker
algebra. This matrix is automatically derived from the SAN description, using the
individual automata to generate the sub-matrices in the tensor expression. It has
been proved in [732, 733, 736] that, if the states are in a lexicographic order, then the
generator matrix Q of the Markov process associated with a continuous-time SAN
model is given by:

Q =
N⊕

i=1

Fi +
∑

e∈ε
τe

(
N⊗

i=1

Ri,e −
N⊗

i=1

Ri,e

)

(6.1)

where

• N is the total number of automata in the network.
• ε is the set of synchronisations.

128 J. T. Bradley et al.

Fig. 6.5 The leaky bucket
mechanism

λc

λt

C 1 Cell + 1 Tokenμ

T

Tokens

Cells

• Fi is the local transition matrix of automaton Ai without synchronisations.
• Ri,e is the transition matrix of automaton Ai due to synchronisation e whose rate

is τe.
• Ri,e is a matrix representing the normalisation associated with the synchronisation

e on automaton Ai .
• ⊕

and
⊗

denote the tensor sum and product, respectively.

Unlike the local transition matrices Fi , the synchronising matrices Ri,e are not
generators, that is their rows do not sum to zero. The diagonal corrector matrices
Ri,e have been introduced to normalise these synchronising matrices.

In discrete-time, the transition matrix of the Markov process underlying a SAN
model is given by an expression similar to equation (6.1) where the tensor sum

⊕
is

replaced by the tensor product
⊗

. Applying the tensor product on the local transition
matrices Fi allows us to catch the phenomenon characterising the discrete-time, that
is the occurrence of several events at the same time.

In both the continuous and discrete-time, the solution of the model, that is the
steady-state distribution, can then be achieved via the corresponding tensor expres-
sion of sub-matrices; the complete generator or transition matrix does not need to be
generated.

6.4.3 Application

The leaky bucket is the admission control mechanism developed for ATM net-
works [222]. Its simplest version [538] consists of two buffers Bc and Bt (see Fig. 6.5).
Whilst the former is used to store the user’s data cells (packets), the latter is dedicated
to the tokens. At its arrival to the access buffer, a cell is either lost if the buffer is
full or stored before being served. The service of a cell consists of assigning to it a
token taken from buffer Bt . For the cell, this token constitutes its access permit to
the network.

6 Scalable Stochastic Modelling for Resilience 129

The generation rate of the tokens is equal to either the average throughput or the
peak cell rate characterising the user’s stream. Therefore, if there are no tokens in Bt

while data cells are still arriving to Bc, then the user’s throughput does not conform
to the throughput he has initially specified. The cells in Bc will have to wait until
new tokens are generated and all the cells arriving while Bc is full are lost.

6.4.3.1 The SAN Model

As the data packets (cells), in ATM networks, have the same size, a discrete-time
performance analysis of the leacky-bucket would be more appropriate. However, in
order to keep the global automata simple, the SAN model is built in continuous-time.
The model parameters are the following:

• cell arrivals to Bc according to a Poisson process of parameter λc,
• token arrivals to Bt according to a constant distribution of parameter λt ,
• cell service times exponentially distributed with rate μ.

The SAN modelling the leaky bucket mechanism consists of two automata, A1
and A2 [538]. Automaton A1 models the number of cells in Bc and A2 models the
number of tokens in Bt . We assume the buffer size limited to two cells. This size
remains however sufficient to represent all possible transitions. Thus both A1 and
A2 have three states, noted s0, s1 and s2.

In the modelled system, the possible events are of three types: the cell arrival with
rate λc, the token arrival with rate λt and the simultaneous departure of a cell and a
token with rate μ. Whilst the two first types of events are local events to automaton
A1, and A2 respectively, the third type of events, noted et , is a synchronising event
between A1 and A2, since it has an impact on both the number of cells in Bc and the
number of tokens in Bt . The SAN model {A1, A2} is depicted in Fig. 6.6.

6.4.3.2 The Descriptor Matrices

We first build F1 and F2, the matrices of the local transitions associated with au-
tomaton A1 and A2, respectively. These matrices are the following:

F1 =
⎛

⎝
−λc λc 0

0 −λc λc

0 0 0

⎞

⎠ F2 =
⎛

⎝
−λt λt 0

0 −λt λt

0 0 0

⎞

⎠

As only one synchronising event has an impact on automaton A1, we have only
a single matrix of synchronised transitions, noted R1,et , for this automation. By
considering the associated normalisation matrix R1,et , we have:

130 J. T. Bradley et al.

μ μμ μ

λ t λ t

s0 s1 s2

(e , , 1)t (e , , 1)t

A :2

λ cλ c

s0 s1 s21A :

(e , , 1)t (e , , 1)t

Fig. 6.6 The SAN model

R1,et =
⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ R1,et =
⎛

⎝
0 0 0
0 −1 0
0 0 −1

⎞

⎠

Similarly, only one synchronising event has an impact on automaton A2. Thus we
have a single matrix of synchronised transitions, noted R2,et for this automation.

R2,et =
⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ R2,et =
⎛

⎝
0 0 0
0 −1 0
0 0 −1

⎞

⎠

Note that the transition rate of the synchronising event et , that is τet = μ in the
descriptor equation 6.1, is not reported in matrices Ri,et , i = 1, 2; only the transition
probabilities are reported. As in continuous-time, the rate of a synchronising event is
unique, and thus the same on all automata involved in the synchronisation, this rate
appears only once, when the tensor product of matrices Ri,et , i = 1, 2, is performed.

Once all the matrices built, the elements of the generator associated with the SAN
model {A1, A2} can be computed, using equation 6.1. Thus the complete generator,
which is the 9 × 9 matrix given below, does not need to be generated.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2
0, 0 −λ λt λc

0, 1 −λ λt λc

0, 2 −λc λc

1, 0 −λ λt λc

1, 1 μ −(λ+ μ) λt λc

1, 2 μ −(λc + μ) λc

2, 0 −λt λt

2, 1 μ −(λt + μ) λt

2, 2 μ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In this representation, where λ = λc + λt , a global state (C, T) consists of the
number of cells C and the number of tokens T . Thus, state (1, 2), for example, refers
to the system global state when there are 1 cell in Bc and 2 tokens in Bt . Note that
all the global states are reachable.

6 Scalable Stochastic Modelling for Resilience 131

6.4.4 Memory Requirements

Following the development of the tensor representation for the SAN models, Kro-
necker representation techniques have been proposed for several other state-based
performance modelling formalisms such as Petri net based-formalisms [163, 170,
215, 219, 306, 307, 531] and stochastic process algebra [162, 439]. In all these
models, the size of the state space is open to several interpretations:

– the physical space T needed to store the model using the tensor representation;
– the size of the state space Ŝ of the cartesian product of the model components;
– the size of the reachable state space S.

In general, in the Kronecker representation, the cartesian product space Ŝ is repre-
sented, not the reachable state space S. When |S| = |Ŝ|, the benefit of using the tensor
representation may be enormous compared to an explicit saving of the generator as
a sparse matrix. Consider, for example, a model which consists of N components
and where ni is the size of component i , i = 1, . . . , N . If the generator is full (no
zero elements), the memory needs of the tensor representation are given by

∑N
i=1 n2

i
whereas the memory requirements of the sparse matrix representation are of the order
of (�N

i=1ni)
2.

When |S| � |Ŝ|, the benefit of the tensor representation may be lost because
of the unreachable states. If the probability vectors used in the vector-descriptor
multiplications are the extended vectors π̂ , that is with an entry for each unreachable
state in Ŝ, the benefit of the tensor representation is lost not memory-wise only, but
also because of unnecessary computations when solving the model. Therefore, the
probability vectors used in the vector-descriptor multiplications must be reduced to
the reachable states entries only (π). While the sparse matrix representation avoids
unnecessary computations when solving the model, it remains a memory consuming
representation, specially when dealing with big models.

In all the performance modelling formalisms for which a tensor representation
has been developed (for instance, SAN, GSPN, PEPA), the model components are
connected by synchronisations and/or functions. From previous work on SAN, we
know that the use of functions has a positive effect on both the size of the tensor
representation and the size of the product state space. In particular, if we remove a
function it is generally necessary to introduce an additional component. If the new
component has two or more states then we increase both spaces T and Ŝ. However
this should not change the reachable state space S. To do so fundamental changes
have to be considered in the model.

Sometimes, the use of functions, like in process algebra PEPA [440], allows the
tensor representation to be more direct and similar to the one obtained by Plateau for
the SANs. The functional dependency on the state of a component can capture the
different apparent rates that the component may express with respect to an action type.
There is an implicit assumption that an action type uniquely defines a synchronisation
event at the transition system level. This will not generally be the case without
restrictions on the use of types within cooperation sets [439, 440].

132 J. T. Bradley et al.

6.4.5 The Model Solution

The space efficiency of the tensor representation is obtained at the expense of an
increased computation time. Moreover, the presence of functional rates in the com-
ponents of a model introduces an extra computing time during the matrix-vector
multiplications. Indeed when a model contains functional rates, an appropriate nu-
merical value has to be recomputed each time a functional rate is needed. Thus the
presence of the functional rates may constitute a determinant factor in the computing
time requirements.

In [336, 337, 732], an efficient vector-descriptor multiplication algorithm, known
as the shuffle algorithm has been developed to be used when solving the stationary
distribution. This algorithm is the basic step in iterative methods such as the Power
method and Generalised Minimum Residual (GMRES) method [853]. However, the
algorithm, which is very efficient when |S| = |Ŝ|, requires the use of probabil-
ity vectors π̂ . In [219], the reachability states are stored using MDD (Multi-valued
Decision Diagrams) while matrix diagrams are used to store the Kronecker repre-
sentation. The numerical results show that solving the model using a technique such
as Gauss–Seidel requires less iterations and less time per iteration than the shuffle
algorithm. However, the matrix diagram solution requires twice the memory size
required by the basic Kronecker representation. Alternative approaches have been
developed [530, 531, 713]. In these approaches, the reachable state space S is first
computed and the model is solved using the reduced probability vectors π . The al-
gorithm proposed in [530, 531] is based on a permutation which reorders the states
according to their reachability, and the use of π .

Recently, a new version of the shuffle algorithm called FR-Sh (Fully Reduced
Shuffle) has been proposed in [103, 105]. This algorithm, which uses the probability
vectors π , improves the memory needs and the computation time when there are a
lot of unreachable states. It has been proved that the algorithm allows an important
reduction in the memory requirements, in particular when using iterative methods
such as Arnoldi and GMRES.

In [267], iterative methods based on splittings, such as Jacobi and Gauss–Seidel,
are proved to be better than the Power method.

6.4.6 Outlook

Currently there is a great need for a comparison between the different algorithms.
In [219], a comparison between matrix diagrams and the original shuffle algorithm
showed a substantial advantage of the matrix diagrams in terms of computation
time. Several versions of the shuffle algorithms have been investigated in [103, 105],
among which the PR-Sh (Partially Reduced Shuffle) and the FR-Sh algorithms. These
new versions, in particular the FR-Sh algorithm, improve considerably the original
shuffle algorithm. These results will be fully validated if the FR-Sh algorithm, for

6 Scalable Stochastic Modelling for Resilience 133

example, is compared to the alternative approaches in the literature. Moreover, it will
be interesting to consider in the future a combination of the shuffle algorithms and
elaborated data structures such as decision diagrams [105]. Such approaches may
allow the analysis of larger systems.

6.5 Symbolic Data Structures in CTMCs and SPAs

This section summarises the state-of-the-art of symbolic approaches to state space
representation. In this context, the term “symbolic”—which was originally coined
in the context of model checking [636]—refers to the use of decision diagrams
as a graph-based data structure for compactly encoding sets of states or transition
systems of various kinds. This approach has the potential to handle very large models
efficiently while utilising only small amounts of memory.

6.5.1 Introduction to BDDs

A Binary Decision Diagram (BDD) [160] is a symbolic representation of a Boolean
function f : IBn �→ IB. Its graphical interpretation is a rooted directed acyclic
graph with one or two terminal vertices, marked 1 and 0 (for “true” and “false”).
Each non-terminal vertex x is associated with a Boolean variable var(x) and has
two successor vertices, denoted by then(x) and else(x). The graph is ordered in the
sense that on each path from the root to a terminal vertex, the variables are visited
in the same order. A reduced BDD is essentially a collapsed binary decision tree in
which isomorphic subtrees are merged and “don’t care” vertices are skipped (a vertex
is called “don’t care” if the truth value of the corresponding variable is irrelevant for
the truth value of the overall function). Reduced ordered BDDs are known to be a
canonical representation of Boolean functions.

As a simple example, Fig. 6.7a shows the full binary decision tree for the function
(a ∧ t) ∨ (a ∧ s ∧ t), where all vertices drawn at one level are labelled by the same
Boolean variable, as indicated at the left of the graph. The edge from vertex x to
then(x) represents the case where var(x) is true; conversely, the edge from x to
else(x) the case where var(x) is false. (In the graphical representation, then-edges
are drawn solid, else-edges dashed.) Part (b) of the figure shows the corresponding
reduced BDD which can be obtained from the decision tree by merging isomorphic
subgraphs and leaving out don’t care vertices. For instance, in the diagrams shown
in Fig. 6.7, if a = 0 then s is a don’t care variable. As shown in Fig. 6.7c, in the
graphical representation of a BDD, for reasons of simplicity, the terminal vertex 0
and its adjacent edges are usually omitted. In all three graphs shown in Fig. 6.7,
the function value for a given truth assignment can be determined by following the
corresponding edges from the root until a terminal vertex is reached.

134 J. T. Bradley et al.

(a) (b) (c)

Fig. 6.7 a Binary decision tree, b reduced BDD and c simplified graphical representation for the
Boolean function (a ∧ t) ∨ (a ∧ s ∧ t)

A finite set, e.g. the reachability set of a state-based model, can be represented by
a BDD via its characteristic functions, i.e. a function yielding one or zero, depending
on whether the corresponding state—encoded as a bitstring—is in the set or not.
Similarly, a finite transition system can be represented by a BDD, as illustrated by
the following example:

Example: Fig. 6.8 (left) shows the labelled transition system (LTS) of a simple
finite-buffer queueing process. The middle of the figure shows the way transitions
are encoded, and the resulting BDD is depicted on the right. Action labels enq and
deq are encoded with the help of two Boolean variables2 a1 and a2. In particular, the
encodings of action enq resp. deq is set to (0,1) resp. (1, 0). The LTS has four states,
therefore two bits are needed to represent the state number. Note that this BDD uses
a special “interleaved” ordering of the Boolean variables encoding the source and
target state. This interleaved ordering is a proven heuristics for obtaining small BDD
sizes in the context of compositional model construction [327].

6.5.2 Related Decision Diagram Data Structures

Over the years, several variants of the basic BDD data structure have been developed,
mostly initiated by the wish to find a data structure perfectly suited to a particular ver-
ification or analysis problem. In this sections, the most prominent ones are discussed
briefly.

A Multi-terminal BDD (MTBDD) is a symbolic representation of a pseudo-
Boolean function f : IBn �→ ID, where ID is an arbitrary domain [227]. MTBDDs
are constructed similarly to BDDs, but—as the name implies—there may be more
than two terminal vertices carrying the function values. If one wishes to encode
labelled Markov chains symbolically, MTBDDs can be used, where the transition

2 Since there are only two distinct actions in the LTS, one bit would be enough to encode the action.
However, the encoding 0 is often reserved for the special internal action τ , and in any case it is not
mandatory to use the smallest possible number of bits.

6 Scalable Stochastic Modelling for Resilience 135

Fig. 6.8 Queue LTS, transition encoding and corresponding BDD

rate of each encoded transition is stored in the corresponding terminal vertex of the
MTBDD.

Example: As an example, consider the queueing process from Fig. 6.8, now with
arrival rate λ and service rate μ, as depicted in Fig. 6.9 (left). Its MTBDD represen-
tation is shown in Fig. 6.9 (right). The set of paths leading to a non-zero vertex is
of course the same as in Fig. 6.8, but the graph now has two branches, one for the
enq- and one for the deq- transitions. We now consider a scaling of this model: The
queueing system shown in Fig. 6.8 has a capacity of 3 customers. It can be gener-
alised to an M/M/1 queue with capacity c = 2k − 1, which means that the labelled
Markov chain has 2k states. One can show that the MTBDD representation of this
Markov chain only requires 10k − 2 MTBDD vertices (by the same argument as the
one used in [428]), which means that for a family of models whose state space grows
exponentially, MTBDDs provide a representation which only grows linearly! This
nice result is of course related to the perfect regularity of the M/M/1 model (in partic-
ular if the state space is a power of 2), but many case studies have demonstrated the
space efficiency of MTBDD representations for a large class of models, especially
if used in a compositional context (see Sect. 6.5.3 below).

An orthogonal strand of research has led to the class of zero-suppressed binary de-
cision diagrams (ZBDD). It is based on the observation that some Boolean functions
whose set of minterms contains many negated variables do not have very compact
BDD representations. However, if one changes the reduction rules for the decision
diagram, more compact representations can be obtained. So, instead of eliminating
don’t care vertices (as in BDDs), in ZBDDs those vertices are eliminated whose
then-successor is the terminal 0-vertex [651]. In other words, if a variable level is
skipped from the root to the terminal 1-vertex, this means that the corresponding
variable carries the value 0 (in a BDD setting this situation would mean that the cor-
responding variable is don’t care). The use of ZBDDs and their multi-valued variants

136 J. T. Bradley et al.

Fig. 6.9 Labelled Markov chain and corresponding MTBDD

has been shown to be beneficial for the analysis of Markov reward models [568]. A
recent overview of zero-suppressed decision diagrams can be found in [570].

Working with decision diagrams, the branching decision taken at every vertex of
the graph does not necessarily have to be a binary decision. This observation led to a
large class of multi-valued (or multiway) decision diagrams (MDD) [505], originally
employed for logic synthesis and verification. Multiway decision diagrams are also
very well suited to encode the reachability set of a decomposed Petri net (i.e. a Petri
net whose set of places is partitioned into subsets). The local marking of a subnet is
hereby encoded as an integer, and there is a one-to-one correspondence between the
subnets and the levels of the decision diagram. The maximum branching factor at a
certain level is thus given by the number of reachable markings of that subnet [653].

6.5.3 Model Generation and Manipulation

Starting from a high-level model description, such as a Generalized Stochastic Petri
Net (GSPN) or a stochastic process algebra model, efficient procedures are needed
for generating the symbolic representation of the underlying labelled Markov chain.
For Markovian stochastic process algebra, symbolic semantics have been developed
which map a given process algebraic model directly to its underlying MTBDD-
representation, without generating an intermediate labelled transition system in ex-
plicit form [561]. The key point of this mapping consists of the exploitation of the
compositional structure of the SPA model at hand: Given M1 and M2, the MTBDD
representations of two SPA processes P1 and P2, the MTBDD representation of their
parallel composition P1|[S]|P2 is obtained as

M = (M1 · S) · (M2 · S)
+ M1 · (1 − S) · Id2
+ M2 · (1 − S) · Id1

(6.2)

6 Scalable Stochastic Modelling for Resilience 137

Fig. 6.10 A tandem queueing
network µ1

λ
µµ2

a1

b1

k c reachable transitions MTBDD size
states monolithic compositional

3 7 128 378 723 148
4 15 512 1,650 1,575 197
7 127 32,768 113,538 11,480 341
10 1,023 2,097,152 7.3308e+06 – 485
14 16,383 5.36871e+08 1.8789e+09 – 677

Fig. 6.11 Statistics for the tandem queueing network

where S is the BDD-encoding of the synchronisation set S, and the Idi are BDDs
denoting stability of processes Pi . This construction guarantees that the size of the
resulting MTBDD M is linear in the sizes of the operand MTBDDs and the num-
ber of action labels, which is a major source for the compactness of the symbolic
representation [427].

Example: As an extension of our previous example, consider the tandem queue-
ing network shown in Fig. 6.10, where an upstream queue with Coxian service is
connected to a downstream queue with exponential service (the downstream queue
is actually the one already considered in Sect. 6.5.2). Each of the queues has finite
capacity of c = 2k − 1, yielding a scalable model with altogether 2k · 2k · 2 = 22k+1

states (the last factor of 2 is due to the two Coxian phases). Fig. 6.11, cited from
[427], shows the growth of this model and of the associated MTBDDs. The last two
columns give the numbers of MTBDD vertices for two variants of the symbolic repre-
sentation. The numbers in column “monolithic” were obtained by directly encoding
the labelled Markov chain of the overall model. Clearly, this approach does not lead
to compact MTBDDs. In contrast, the numbers in column “compositional” were ob-
tained by constructing the overall MTBDD in a compositional fashion, which means
that two MTBDDs (one for the Coxian queue and one for the Markovian queue)
were composed according to (6.2). This yields MTBDDs which grow only linearly
with the parameter k, although the state space grows exponentially!

It is important to note that the above construction (6.2) yields an encoding of the so-
called potential transition system which may also include transitions emanating from
non-reachable states of the product state space. Symbolic reachability algorithms are
employed to determine the set of reachable states. A mapping similar to (6.2) from
the high-level model description to the symbolic representation of the underlying
labelled Markov chain is employed in the probabilistic model checker PRISM [564],
where users specify their models with the help of a guarded command language,
based on Reactive Modules, which also features synchronisation between modules.
In PRISM, not only CTMCs but also DTMCs and Markov decision processes can
be specified, all of which are internally represented using MTBDDs.

138 J. T. Bradley et al.

In contrast to these structure-oriented approaches, the activity-local state graph
generation scheme [569] does not need any a priori structure information and is
therefore applicable to a general class of Markovian models. It creates its own, very
fine structure, by considering the local effect of every activity (i.e. event) within the
model. Since it is a round-based scheme, where reachability analysis needs to be
performed in every round, an efficient variant of symbolic reachability analysis was
developed as part of this approach. The activity-local approach is implemented (using
zero-suppressed multi-terminal BDDs) in the framework of the Moebius modelling
environment [276].

The saturation algorithm, first described in [217] also uses a fixpoint iteration
scheme. Several variants of it have been described in the literature which work on
different types of decomposition of the high-level model, see e.g. [925]. As the
underlying data structures, these algorithms use extensible versions of multi-valued
decision diagrams and matrix diagrams [219, 652].

For models with both Markovian and immediate transitions, elimination of the so-
called vanishing states is a prerequisite for numerical analysis. An efficient symbolic
elimination algorithm, which is implemented in the tool CASPA, has been described
in [76]. It consists of three steps: 1. Some precomputations (including a realisation of
the maximal progress assumption, i.e. the priority of an immediate transition over any
timed transition). 2. The main fully symbolic round-based elimination algorithm. 3.
A semi-symbolic post-processing for eliminating transitions that form an immediate
loop or cycle (of which there are usually very few).

Since numerical analysis of large models is expensive (in terms of processing time
and memory, see Sect. 6.5.4), it is desirable to reduce the size of the state space, if
anyway possible. Bisimulation minimisation is a fundamental concept on which such
a reduction can be based, whereby exact performance and dependability measures
of the modelled system are preserved (in the context of Markov chains, bisimulation
is known as lumpability). An early approach to symbolic bisimulation minimisation
was described in [430], and more recently some very efficient symbolic bisimulation
algorithms have been developed [289, 935]. All of these algorithms follow the basic
principle of partition-refinement, where initially all states are considered equivalent,
and at every step the current state space partitioning is refined according to some
lumpability criterion, until stability is reached. However, the representation tech-
niques used by these algorithms for encoding the state space partitions as BDDs are
very different, resulting in a runtime-memory tradeoff between the different algo-
rithms.

6.5.4 Numerical Analysis Based on the Structure of the
Decision Diagram

For computing the desired performance or dependability measures of the modelled
system, numerical analysis of the underlying stochastic process needs to be per-
formed. In the case of CTMCs, this means that the vector of stationary probabilities

6 Scalable Stochastic Modelling for Resilience 139

has to be computed, which is typically done using iterative numerical methods such as
Jacobi or Gauss-Seidel or their overrelaxed variants (or the well-known uniformiza-
tion algorithm in case of transient state probabilities). In principle, such numerical
calculations—which involve matrix-vector calculations as their basic operations—
could work exclusively on symbolic data structures [360]. However, storing vec-
tors of state probabilities symbolically (e.g. as an MTBDD) has proved to be nei-
ther memory-efficient nor time-efficient. Therefore, a hybrid scheme was developed
[718], where only the matrix of transition rates is stored symbolically as an MTBDD
while the vector of probabilities (of only the reachable states) is stored in explicit
form as an array. Even with this approach, the probability vector (and not the storage
of the matrix) is still the memory-bottleneck for large models! For speeding up the
traversal of the MTBDD (which is done for looking up the transition rates), parts
of it are sometimes replaced by sparse matrix data structures, which yields a typ-
ical time-space tradeoff. Parallel versions of symbolic numerical algorithms have
also been developed [565]. In [814], a symbolic version of the multilevel algorithm
(a recursive aggregation/disaggregation scheme) was described. Since the MTBDD
possesses a recursive block-structure (due to the nature of its composition) this type
of algorithm matches very well with the structure of the MTBDD. The multilevel
scheme has also been combined with sparse representations of both terminal and
intermediate blocks of the matrix, and some further accelerations of the calculations
have been developed [815]. Numerical solution algorithms based on different types
of matrix-diagrams have been implemented in the tool SMART [219, 652], as well
as approximate algorithms for stationary solution [654].

6.5.5 Outlook

The “symbolic” approach described in this section is now a mature method imple-
mented in several successful tools (e.g. PRISM [564], SMART [652] and CASPA
[76]). It supports all phases of modelling, from state space generation to various
forms of (qualitative and quantitative) analysis. Decision-diagram-based techniques
are capable of dealing with very large state spaces, thus alleviating the problem of
state space explosion. They are therefore among the methods of choice for construct-
ing and analysing detailed and scalable resilience models. However, there are still
many remaining research problems, for instance the question of how to further im-
prove the numerical analysis of very large models with the help of approximations
or bounding methods.

6.6 Mean-Field Approximation

Mean-field methods were first used in Physics to describe the interaction of particles
in systems like plasma or dense gases. Instead of providing a detailed model, the
influence of the mean environment on a single particle is studied. Subsequently

140 J. T. Bradley et al.

mean-field methods were introduced to many other topics, for an overview see the
introduction of [80].

The idea of aggregating the influence of the environment can also help in dealing
with the state space explosion problem. We consider large networks of identical com-
ponents, for example, computers in the Internet running the same piece of protocol
software. Modelling each component and its interaction with the other components
explicitly results in an intractable state space. Instead we focus on an approximat-
ing model where only the average impact of the complete system on the evolution
of a component is considered. Results for this mean-field approximation model are
cheap to compute (matrix-vector multiplications). It allows for statements about the
average behaviour of the underlying original model, especially when the number of
components is large.

6.6.1 Computing the Mean-Field

In the following we describe the process of mean-field approximation for discrete-
time Markov models. We then illustrate this process with an example.

6.6.1.1 Discrete-Time Model for Single Component

At the beginning of the process we have to determine a discrete-time probabilistic
model for a single component. It will typically have a relatively small set of states
S. The transition probabilities are allowed to depend on N , the total number of
components in the system, and on the so-called occupancy measure m, a vector
containing the fraction of components in each state. The model is then determined
by a local probability matrix P N (m).

6.6.1.2 The Underlying Stochastic Process

Even though we are never going to explicitly construct it, we have to consider some
properties of the stochastic process for the complete system. It consists of the parallel
composition of the models for all N components. If the model for a single component
has K states, the state space for the composed system would have K N states. Since
all components behave identically, we can aggregate the state space to the occupancy
measure where we only keep track of the fraction of components in each state. The
state space still would consist of

(K+N−1
K−1

)
states. The mean-field method gives us an

approximation for the transient occupancy measure, that is, the occupancy measure
at a given point in time t .

6 Scalable Stochastic Modelling for Resilience 141

6.6.1.3 The Deterministic Limit Process

Under certain convergence requirements [146] the local probability matrix has a limit
if N goes to infinity:

P(m) = lim
N→∞ P N (m)

For a given initial occupancy measure μ(0), the matrix P(m) defines a deterministic
process

μ(t + 1) = μ(t) · P(μ(t))

This deterministic process approximates the occupancy measure for large N . The val-
ues of μ(t) for t ∈ N are easily determined by simple matrix-vector multiplications.
Note that the matrix P(μ(t)) has to be recalculated in each step.

6.6.1.4 Interpretation of Results

The mean-field method gives us a deterministic approximation of the occupancy
measure. For each point in time it predicts a distribution of components over the dif-
ferent possible states. If we evaluated the underlying stochastic process we would get
a different type of result: it would result in a distribution over all possible occupancy
measures, that is, a distribution of possible distributions. However, the larger N is,
the more deterministic the occupancy measure becomes (Central Limit Theorem). It
is therefore justified to use the deterministic mean-field approximation of the number
of components N is large. Even for small N the approximation gives valuable insight
into the average behaviour of the system.

6.6.2 Illustrating Example

We consider a very simple information dissemination protocol. A large number of
network nodes communicates in order to distribute a small but important piece of
information. The communication protocol is completely decentralised which makes
it robust even if some of the involved network nodes fail. To increase security, a
node only accepts and redistributes the information after it has received it twice.
This prevents the distribution of incorrect data, resulting from transmission errors or
malicious insertion. Figure 6.12 shows the state-transition diagram for nodes. Each
node can be in one of three states: it can be ignorant (state 0), it can be waiting for
confirmation (state 1), or it can be knowing (state 2). A node can move from ignorant
to waiting state with a certain probability. From here it either moves on to knowing,
or, if it does not receive the piece of information a second time, it returns to ignorant.
Once knowing, it will never get ignorant again—it never forgets.

142 J. T. Bradley et al.

Fig. 6.12 Data stream in
packet-switched network with
tree topology

The probabilities in the model depend on two parameters that can change over
the evolution of the system: firstly, it depends on the total number N of nodes in
the network, secondly, it depends on m2, the fraction of already knowing nodes.
Additionally there is a gossip parameter g ∈ [0, 1] that reflects the probability that
an informed node is going to pass on the information, and a parameter ε ∈ [0, 1] that
governs the return to state 0 from state 1.

The probability for a single ignorant node to move from state 0 to state 1 then is

pN (m2) = g · m2 · N

N − 1

which is proportional to the fraction of knowing nodes among the remaining nodes,
and g. The higher the fraction of already knowing nodes is in the network, the higher
is the probability, that a yet ignorant node gets the information.

A waiting node (state 1) moves to the knowing state again with probability
pN (m2). It returns to state 0 with probability ε(1 − pN (m2)). The parameter ε
can be interpreted as the probability for discarding the first receipt of the data.

To represent all transition probabilities in the model, we state a probability
matrix that is local to each node. It depends on N and the occupancy measure
m = (m0,m1,m2).

P N (m) =

⎛

⎜
⎜
⎝

1 − pN (m2) pN (m2) 0

ε(1 − pN (m2)) (1 − ε)(1 − pN (m2)) pN (m2)

0 0 1

⎞

⎟
⎟
⎠

Considering all N network nodes in parallel would result in a state space with 3N

states. Even if we only recorded the occupancy measure, the state space would still
have N (N+1)(N+2)

2 states—for three-state components!
Two avoid this blowup, we consider the mean-field limit for the occupancy mea-

sure. The limit of the local probability matrix is

P(m) = lim
N→∞ P N (m) =

⎛

⎝
1 − g · m2 g · m2 0
ε(1 − g · m2) (1 − ε)(1 − g · m2) g · m2

0 0 1

⎞

⎠

6 Scalable Stochastic Modelling for Resilience 143

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

t

fraction ignorant components (state 0)
fraction waiting components (state 1)
fraction knowing components (state 2)

Fig. 6.13 Mean-field approximation for the illustrating example

For a given initial occupancy measure μ(0) we can then approximate the transient
evolution of the occupancy measure by the deterministic process [79, 146]

μ(t + 1) = μ(t) · P(μ(t))

Figure 6.13 shows the deterministic occupancy measure μ(t) for t ∈ [0, 400] when
at the beginning the fraction of ignorant nodes is 99 % and the fraction of knowing
nodes is 1%, that is, μ(0) = (0.99, 0, 0.01). The figure represents the behaviour
that could be expected: the fraction of ignorant nodes decreases continually while
the number of knowing nodes increases. Since all nodes have to move through the
intermediate waiting state, the fraction of nodes in this state first increases and then
decreases again.

The mean-field approximation does not give us information about the possible
deviations from the computed deterministic value. However, the results depicted in
Fig. 6.13 allow a statement about the approximate time at which we expect all nodes
to be knowing with high probability.

6.6.3 Outlook

Very often we encounter real-world systems that consist of a large number of identical
replicas of the same component. In this section we have shown how the mean-
field approximation method can be employed if the components are represented
by discrete-time models. The core computation for transient measures then boils
down to a series of cheap matrix-vector multiplications. Mean-field analysis is not
restricted to discrete-time models. It can also be applied to continuous-time Markov

144 J. T. Bradley et al.

chains [118, 146], to Markov decision processes [370], and probably to many other
probabilistic or stochastic modelling classes.

6.7 Fluid Analysis in CTMCs and SPAs

Representing the explicit state space of performance models has inherent difficulties.
Just as the state-space explosion effects functional correctness evaluation, so it can
also be easily a problem in performance models. In particular, classical Markov chain
analysis of any variety requires exploration of the global state space and, even for a
simple system, this quickly becomes computationally infeasible. One technique that
attempts to side-step the state-space explosion is so-called fluid analysis.

In the discrete-time world of performance modelling, such techniques have al-
ready been used by Benaïm and Le Boudec [100] to good effect in mean-field analy-
sis of performance models. Similarly, Bakhshi et al. [79, 80] have developed some
discrete-time model-specific analysis techniques for gossip protocols using the mean-
field technique.

In the field of stochastic process algebras, Hillston developed fluid-flow analy-
sis [438] to make first-order approximations of massively parallel PEPA models.
Bortolussi [142] presented a formulation for the stochastic constraint programming
language, sCCP. Cardelli has a first-order fluid analysis translation to ordinary dif-
ferential equations (ODEs) for the π -calculus [172]. Petriu and Woodside [724] have
successfully used Mean Value Analysis of hierarchical queueing models such as Lay-
ered Queueing Networks (LQNs) to obtain mean response time results over large
component-based systems.

In this section, we briefly outline a fluid analysis technique that is applied to a
variety of the PEPA language known as Grouped PEPA (or GPEPA) [420]. It has the
advantage over the original fluid approximation for PEPA or π -calculus of having
higher moment results available. These can be used to calculate variance informa-
tion and give a notion of accuracy of the first-order prediction. Additionally, higher
moments can also be used to create bounding approximations on some varieties of
passage-time distribution [419].

6.7.1 GPEPA

Grouped PEPA (GPEPA) [420] is a simple syntactic extension to PEPA which allows
the straightforward identification of models that can be analysed using fluid tech-
niques. Specifically, the component grouping in GPEPA identifies the abstraction
level at which the fluid analysis will take place. By adding component group labels
to these structures, we also benefit from being able to identify uniquely components
in particular states in particular parts of the model structure.

6 Scalable Stochastic Modelling for Resilience 145

For a detailed summary of PEPA process algebra syntax and operational meaning
we refer to the reader to the many papers that have been published discussing and
using PEPA. The following is a small selection of such work [226, 352, 381, 436].

A GPEPA model is formed by composing multiple labelled component groups
together. The grammar for a GPEPA model G is:

G::=G ��
L

G | Y {D} (6.3)

where Y is a group label, unique to each component group. The term G ��
L

G
represents synchronisation over action types in the set L , where L ⊆ A is a set of
possible action types in the model.

In this context, a component group is a parallel cooperation of a normally large
number of fluid components. A fluid component is one whose state changes can be
captured by a random variable and ultimately a set of differential equations. Parallel,
in this setting, means that there is no synchronisation between individual members
of the component group. A component group D is specified as follows:

D: := D ‖ D | P (6.4)

where P is a fluid component, a standard PEPA process algebra term. The combinator
‖ represents parallel, unsynchronised cooperation between fluid components.

6.7.2 A Client–Server Example of a Fluid model

To illustrate more clearly how component groups and fluid components are used
together to construct GPEPA models, we consider a GPEPA model of a simple
client/server system from [419]. The type of model we wish to consider in this
section is one which exhibits massive parallelism. We present a simple system with
n clients and m servers. The system uses a 2-stage fetch mechanism: a client requests
data from the pool of servers; one of the servers receives the request, another server
may then fetch the data for the client. At any stage, a server in the pool may fail.
Clients may also timeout when waiting for data after their initial request. We could
capture this scenario of n clients cooperating on the request and data actions with m
resources with the following GPEPA system equation:

CS(n,m)
def= Clients{Client[n]} ��

L
Servers{Server[m]} (6.5)

where L = {request, data} and C[n] represents n parallel cooperating copies of
component C . Each client is represented as a Client component and each server as a
Server component. Each client operates forever in a loop, completing three tasks in
sequence: request, data and then think; and they may also perform a timeout action

146 J. T. Bradley et al.

when waiting for data:

Client def= (request, rr).Client_waiting

Client_waiting def= (data, rd).Client_think + (timeout, rtmt).Client

Client_think def= (think, rt).Client

The servers on the other hand first complete a request action followed by a data
action in cooperation with the clients but at either stage they may perform a break
action and enter a broken state in which a reset action is required before the server
can be used again:

Server def= (request, rr).Server_get + (break, rb).Server_broken

Server_get def= (data, rd).Server + (break, rb).Server_broken

Server_broken def= (reset, rrst).Server

The request and data actions are shared actions between the clients and servers in
order to model the fact that clients must perform these actions by interacting with a
server. The actions timeout, think, break and reset on the other hand are completed
independently.

6.7.3 Generating ODEs for Fluid Analysis

Fluid analysis is used to approximate the mean dynamics of a GPEPA model. That
is, at a time t , fluid analysis will tell you how many components in each named
component group there are on average. As the size of the component groups increases,
so the approximation can be shown to improve [419]. This convergence can also be
demonstrated for higher moments of component counts [849].

In this section, we analyse the client/server model of Sect. 6.7.2 to show mean
component counts for particular client and server states, Figs. 6.14a and 6.14c. We
show the standard deviation of the component counts for the client/server model in
Figs. 6.14b and 6.14d. Where there is a local deviation from the simulated results,
this is due to the synchronisation model used in PEPA rather than fluid analysis in
particular [420, 849].

We will skip any further preamble and write down the generating equation for a
set of ODEs that gives a first-order fluid analysis of a GPEPA model. The higher
order fluid analysis (that gives quantities can such as variance, standard deviation
and skewness) can be found in [420].

Let G be a GPEPA model. We define the evolution of the number of components
of type P in group H over time, by vH,P (t). This quantity is defined by a system of
first-order coupled ODEs:

6 Scalable Stochastic Modelling for Resilience 147

(a) (b)

(d)(c)

Fig. 6.14 Fluid analysis of the number of components in a Client/Server model. Simulations are
given as dashed plots. a Mean number of Clients b Standard deviation of number of Clients c Mean
number of Servers d Standard deviation of number of Servers

v̇H,P (t) =
∑

α∈A

⎛

⎝
∑

Q∈B(G,H)
pα(Q, P)Rα(G, V (t), H, Q)

⎞

⎠

︸ ︷︷ ︸
incoming rate

−Rα(G, V (t), H, P)
︸ ︷︷ ︸

exit rate

(6.6)
for all component group/component state pairs (H, P) in the GPEPA model G. That
is, we generate one ODE for each local state in the compositional model. Hence we
avoid any association with the global state space.

This can broadly be explained by slitting (6.6) into two parts, the incoming rate
and the exit rate. The incoming rate part describes the total rate of the model that
increases the number of components of type P in group H for a given action α. This
is calculated from the product of two quantities:

1. Rα(G, V (t), H, Q), the overall rate that component type Q enables doing ac-
tions of type α, where Q is also in group H , and;

148 J. T. Bradley et al.

Fig. 6.15 Fluid passage time
analysis of a Client response
time in the Client/Server
model of Sect. 6.7.2

2. pα(Q, P), the probability that Q can evolve to become component type P doing
an action α (it could perform an α and lead to another component type).

This is summed over all possible component types Q in group H to give the incoming
rate to P for an action α.

The exit rate from P in group H for an action α is simply Rα(G, V (t), H, P),
overall rate that component type P enables doing actions of typeα. The full definition
of the component rate function Rα(·) is given in [420].

Finally, the aggregate rate of change of components of type of P in group H can
be shown to equal to the total incoming rate minus the total exit rate, summed over
all possible action types α.

We have shown how first order fluid analysis of large stochastic processes can be
used to create passage and response time distributions and related measures [419,
421]. This is done by performing the sort of fluid analysis described here on an
appropriately modified model. Figure 6.15 shows a single Client response time dis-
tribution (from steady-state) given all the synchronisations in the system. As with all
fluid analysis, as the model gets larger, the distribution predicted by the fluid analysis
(black line) becomes more accurate.

6.7.4 Outlook

Further developments in fluid analysis have shown how other types of passage time
distribution can be extracted from massively parallel systems [421]. Additionally,
real-valued rewards can be accumulated over the lifetime of a process model to cap-
ture quantities such as cost and energy consumption. For smaller scale models, these
can be analysed using discrete-state Markov Reward Models [872]; fluid analysis can

6 Scalable Stochastic Modelling for Resilience 149

be used here also to analyse larger scale reward models [848] which would otherwise
have a prohibitive state space size.

6.8 Conclusion

In this chapter we have presented a number of efficient representation and analysis
techniques that can aid resilience and performance analysis of large and complex
systems. It is worth saying that there is no one best technique in all cases. As with
many modelling and analysis problems, the best tool for the job will often depend
on the problem being tackled and the type of answer being sought. Some of the
techniques discussed can be used to tackle many types of performance and resilience
problem, while some are better suited to a particular type of analysis. Some of the
techniques will allow the user to recover an explicit state representation, while others
consider many model states in aggregation.

For a particular problem a modeller will wish to select those techniques that can
produce the desired analysis. However, beyond that, it will be worth the modeller’s
while to attempt a few of the remaining techniques to see which scales best to their
needs. They will find dramatic differences in operation and those differences (in
execution time and memory usage) will reflect many issues, such as how the model
is originally represented, how many and indeed whether parameters are available to
the modeller and the level of complexity that the modeller wishes to capture in their
model.

Finally, we would like to emphasise that these descriptions are by necessity brief
summaries of much more involved techniques. These topic introductions should be
treated as such and many references have been provided for the reader to follow up
if more information is required.

Acknowledgments Jeremy Bradley, Richard Hayden and Nigel Thomas are supported by the
UK Engineering and Physical Sciences Research Council on the AMPS project (reference EP/
G011737/1). Leïla Kloul is supported by the European Celtic project HOMESNET [8], Philipp
Reinecke and Katinka Wolter are supported by the German Research Council under grant Wo
898/3-1.

Part III
Model-Driven Prediction

Chapter 7
Modelling and Model-Based Assessment

Andrea Bondavalli, Paolo Lollini, István Majzik and Leonardo Montecchi

Abstract This chapter provides an overview of the state of knowledge related to
stochastic model-based assessment approaches, which are most commonly used for
resiliency evaluation of current computing systems. The chapter first introduces a
set of representative surveys developed in recent European projects, and then it pro-
vides a deeper description of common techniques used in model-based assessment
of resilient systems. The most widely used modelling formalisms are reviewed, with
a particular focus on state-based formalisms like Stochastic Petri Nets and its exten-
sions. Techniques used in model construction and solution are also discussed, as well
as the different classes of analysis tools and frameworks. The techniques analyzed
in the chapter span from largeness avoidance and largeness tolerance techniques to
more comprehensive modelling approaches that are integrated in the system’s devel-
opment and assessment process. Some of these techniques try to cope with system’s
complexity by automatically deriving the analysis models from engineering models
like UML or AADL. Other approaches attack the complexity issue combining differ-
ent evaluation methods, exploiting their possible complementarities and synergies.
A discussion on the open research challenges in model-based resilience assessment
is finally provided in the last part of the chapter, based on the reviewed techniques
and on the activities carried out within the AMBER Coordination Action.

A. Bondavalli (B) · P. Lollini · L. Montecchi
University of Firenze,
Viale Morgagni 65, 50134 Firenze, Italy
e-mail: bondavalli@unifi.it

P. Lollini
e-mail: lollini@unifi.it

L. Montecchi
e-mail: lmontecchi@unifi.it

I. Majzik
Budapest University of Technology and Economics,
Magyar Tudósok krt. 2, Budapest, Hungary
e-mail: majzik@mit.bme.hu

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 153
DOI: 10.1007/978-3-642-29032-9_7, © Springer-Verlag Berlin Heidelberg 2012

154 A. Bondavalli et al.

7.1 Introduction

As defined in [81], a model is an abstraction of a system “that highlights the important
features of the system organization and provides ways of quantifying its properties
neglecting all those details that are relevant for the actual implementation, but that
are marginal for the objective of the study”. There exist several types of models, and
the choice of a proper model depends on many factors, like the complexity of the
system, the specific aspects to be studied, the attributes to be evaluated, the required
accuracy, the questions to be answered about the system, and the available resources
for the study.

Models play a primary role in the resilience assessment process of modern comput-
ing systems. First of all, they allow an “a posteriori” resiliency analysis, to understand
and learn about specific aspects, to detect possible design weak points or bottlenecks,
to perform a late validation of the dependability requirements and to suggest sound
solutions for future releases or modifications of the systems. Furthermore, assessing
the resilience of composite systems, often including a dynamic mixture of com-
ponents built by different parties and for different purposes, is a difficult task that
may require the combination of several assessment methods and approaches. In this
perspective, models can be profitably used as support for experimentation and vice-
versa. On one side, modelling can help in selecting the features and measures of
interest to be evaluated experimentally, as well as the right inputs to be provided for
experimentation. On the other side, the measures assessed experimentally can be used
as parameters in the models, and the features identified during the experimentation
may impact the semantics of the dependability model.

This chapter provides an overview of the state of knowledge related to stochastic
model-based assessment approaches, which are most commonly used for resiliency
evaluation of current computing systems. An overview of the history in model-based
assessment research, as well as current directions, is sketched in Fig. 7.1.

The approaches presented in this figure will be explained and discussed in the
next sections. The introduction of Fault Tree Analysis (FTA) and Petri Nets (PN) in
the early 1960s had a great impact on the formalization of model-based assessment
practice. For several years, model-based assessment was based on these formalisms,
as well as on the early theories of Markov Chains and Queuing Networks. Later these
formalisms, Petri Nets and Markov Chains in particular, have inspired many other
higher-level formalisms (Stochastic PN, Generalized Stochastic PN, etc.) which are
currently widely used for model-based analyses. The largeness and complexity of the
models rapidly became a challenging issue to be addressed, and in the beginning of the
1980s researchers started focusing on the development of methodologies, techniques
and tools to avoid or tolerate model complexity, also (from the early 1990s) exploiting
the synergies and complementarities among several evaluation methods. In the same
years, stochastic extensions to process algebras started to appear in the literature, most
notably with the introduction of Performance Evaluation Process Algebra (PEPA) in
the mid 1990s. Finally, in the last ten years, another research direction has focused on
the use of engineering languages (UML, AADL, etc.) to facilitate the construction

7 Modelling and Model-Based Assessment 155

Fig. 7.1 Historical timeline of advances in modelling and model-based assessment

of the models by designers, and on the development of transformation techniques
and tools to translate such high-level models to analysis models for dependability
evaluation.

Detailed surveys giving a comprehensive overview of model-based assessment
can be found in publications of recent European projects, discussed from different
perspectives and applied to different system contexts. In HIDENETS [435], a state
of the art of evaluation techniques, methodologies and tools is presented, focusing on
distributed applications and mobility-aware services, in ubiquitous communication
scenarios (see [603]). Individual quantitative evaluation techniques that are suitable
to analyze HIDENETS-like systems are reported, as well as existing work describing
combinations of them. In the context of the ReSIST NoE [773], the research challenge
required for providing scalable resilience of policies, algorithms and mechanisms has
been identified. In particular, the state of knowledge and ongoing research on methods
and techniques for resilience evaluation are summarized in [774], taking into account
the scaling challenges of large and evolving systems considered in the project. In
CRUTIAL [246], a state of knowledge [500] was presented, focusing on the existing
model-based methodologies, techniques and tools that can be useful to address the
challenges raised in the context of interdependent critical infrastructures in general,
and electric power system infrastructures in particular. Finally, an overview on the
model-based methodologies elaborated for the quantitative evaluation of safety crit-
ical applications, in particular of safety critical railway systems, has been produced
in the SAFEDMI [796] project, and reported in [797].

The remainder of the chapter is structured as follows. In Sect. 7.2 the available
and commonly used modelling formalisms are outlined. Strategies to build and
solve models in a time and space-efficient way are briefly discussed in Sect. 7.3,
while Sect. 7.4 gives an overview of existing modelling and solution tools support-
ing model-based assessment. Section 7.5 discusses the methodologies used to derive
dependability models based upon engineering models, and Sect. 7.6 surveys works

156 A. Bondavalli et al.

that combine different modelling approaches. Open research challenges for model-
based resilience assessment are finally discussed in Sect. 7.7.

7.2 Modelling Formalisms

A system designer has in his or her possession a wide range of analytical mod-
elling techniques to choose from. Each of these techniques has its own strengths and
weaknesses in terms of accessibility, ease of construction, efficiency and accuracy of
solution algorithms, and availability of supporting software tools. The most appro-
priate type of model depends upon the complexity of the system, the questions to be
answered, the accuracy required, and the resources available to the study.

Analytical models can be broadly classified into non-state space (combinatorial)
models and state space models.

7.2.1 Non-State-Space Models

Reliability block diagrams (RBD), fault trees (FT) and reliability graphs (RG) are
non-state-space models commonly used to study the dependability of systems. They
are concise, easy to understand, and have efficient solution methods. However, real-
istic features such as interrelated behaviour of components, imperfect coverage,
nonzero reconfiguration delays, and combination with performance can not be cap-
tured by these models. These arguments led to the development of new formalisms,
such as dynamic fault trees (DFT) and dynamic reliability block diagrams (DRBD),
to model reliability interactions among components or subsystems. A brief overview
of traditional non-state-space models can be found in [688], while some of their
‘dynamic’ extensions are outlined in [298].

7.2.2 State-Space Models

State-space models, in particular homogeneous continuous time Markov chains (e.g.,
see [893] for full details) are commonly used for dependability modelling of comput-
ing systems. They are able to capture various functional and stochastic dependencies
among components and allow evaluation of various measures related to dependability
and performance (performability) based on the same model, when a reward structure
is associated to them. Unfortunately, not all the existing systems and their features
can be captured properly by Markov processes, since these processes require the
strong assumption that the holding time in any state of the system is exponentially
distributed. In some cases this assumption may be very unrealistic and to properly
represent the system behaviour more general processes (e.g., semi-Markov, Markov

7 Modelling and Model-Based Assessment 157

Regenerative or even non-Markovian processes) must be used. When dealing with
such processes, complex and costly analytical solution techniques may have to be
used. If analytic solution methods do not exist, discrete-event simulation must be
used to solve the models thus providing only estimates of the measures of interest.
Especially for dependability metrics such as reliability and availability, simulation
may however be time consuming because of the rare event problem: events of interest
occur so rarely that very lengthy simulations are necessary to obtain reliable results.
Alternatively, one can approximate an underlying non-Markovian process with a
Markov process, and thus represent a non-exponential transition with an appropriate
network of exponential ones (phased-type approach). The price to pay following this
approach is a significant increase in the number of states of the resulting Markov
model. The work in [894] reviews the existing state space models (as well as com-
binatorial ones) and it discusses the benefits and the limitations of each.

To facilitate the generation of state-space models based on Markov chains and
their extensions, higher-level modelling formalisms like Stochastic Petri Nets (SPN)
are commonly used. These formalisms allow a more compact model representation
because they support concurrency. In [216], the authors explore and discuss a hierar-
chy of SPN classes where modelling power is reduced in exchange for an increasingly
efficient solution, focusing on Generalized Stochastic Petri Nets (GSPN), Deter-
ministic and Stochastic Petri Nets (DSPN), Semi-Markovian Stochastic Petri Nets
(SMSPN), Timed Petri Nets (TPN), and Generalized Timed Petri Nets (GTPN).
Other widely used modelling formalisms are Stochastic Reward Nets [119], Sto-
chastic Activity Networks (SAN) [805] and Markov Regenerative Stochastic Petri
Nets (MRSPN) [210].

Other modelling formalisms exist that allow to provide a high-level representation
of Markov Chain models, e.g., Stochastic Automata Networks (SAN) [734] or mod-
els based on Stochastic Process Algebras. Such formalisms are extensions of basic
Process Algebras, which are enriched with the ability to associate probabilities and/or
time delays to the execution of actions. These extensions allow performing quantita-
tive analysis on the model. Several stochastic process algebra languages have been
introduced, the most influencing one in dependability analysis has been Performance
Evaluation Process Algebra (PEPA). Similarly to Petri Net extensions, some of these
formalisms are Markovian, e.g., PEPA, or Markovian Time Processes for Perfor-
mance Evaluation (MTIPP) [429], therefore having evaluation techniques that rely
on Markov chains. Other formalisms allow more general probability distributions,
e.g., SPADES [414] or MoDeSt [257], and therefore have evaluation techniques that
rely on more general stochastic processes, or discrete-event simulation.

7.3 Model Construction and Solution Approaches

The main problem in using state-based models to realistically represent the behav-
iour of a complex system is the explosion in the number of states (often referred to
as state-space explosion problem). Significant progress has been made in addressing

158 A. Bondavalli et al.

the challenges raised by the large size of models both in the model construction
and model solution phase, using a combination of techniques that can be catego-
rized with respect to their purpose: largeness avoidance and largeness tolerance, see
[501, 603, 688] for three comprehensive surveys.

Largeness avoidance techniques try to circumvent the generation of large models
using, for example, state truncation methods [189], state lumping techniques [529],
hierarchical model solution methods [798], fixed point iterations [623], hybrid mod-
els that judiciously combine different model types [678] and the fluid flow approxi-
mation [438, 444].

However, these techniques may not be sufficient as the resulting model may still
be large. Thus, largeness tolerance techniques are needed to facilitate the generation
and the solution of large state space models.

Largeness tolerance techniques propose new algorithms and/or data structures
to reduce the space and time requirements of the model. This is usually achieved
through the use of structured model composition approaches, where the basic idea
is to build the system model from the composition of sub-models describing system
components and their interactions. Generic rules are then defined for the elaboration
of the sub-models and their interconnection. Following the approach proposed in
[732], for example, the generator matrix of a CTMC is not entirely stored, but it is
implicitly represented as Kronecker product of a number of smaller matrices. In [220]
largeness is tolerated using Multivalued Decision Diagram (MDD) data structures
to efficiently explore large state spaces.

Other techniques try to reduce the complexity of the model making use of con-
cepts borrowed from the model checking theory. A first approach combines process
algebras with Markov chains, to take advantage of their powerful and well-defined
composition operators, leading to the Input/Output Interactive Markov Chains
(I/O-IMC) formalism [145].

Rather than focusing on model composition, another approach concentrates on
the definition of the dependability measures of interest to be evaluated. In fact, many
sophisticated formalisms exist for specifying complex system behaviours, but meth-
ods for specifying performance and dependability variables remain quite primitive.
To cope with this problem, modellers often must augment system models with extra
state information and event types to support particular variables. To address this prob-
lem the so-called path-based reward variables have been introduced [695]. Numerical
methods to compute such reward variables, defined with the Continuous Stochas-
tic Logic (CSL), are given in [78], while in [417] the model checking approach is
illustrated through a workstations cluster example.

Other approaches try to tolerate model largeness using model decomposition
and aggregation of the partial results. The basic idea is to decouple the model into
simpler and more tractable sub-models, and the measures obtained from the solu-
tion of the sub-models are then aggregated to compute those concerning the overall
model. A survey on decomposition/aggregation approaches can be found in [602].
In the same paper, the authors also propose a general modelling framework that
adopts three different types of decomposition techniques to deal with model com-
plexity: at functional, temporal, and model-level. The key point is that the approach is

7 Modelling and Model-Based Assessment 159

non-domain-specific, i.e., not specifically developed for a particular class of systems
or tailored for a specific modelling formalism or solution technique. Other large-
ness tolerance techniques also exist, such as disk-based approaches [278], where
the model structure is stored in the disk thus allowing larger models to be solved,
or on-the-fly approaches [277] which completely avoid the storage of structures in
memory, generating them iteratively while computing the solution.

Even if these techniques are used, solving large state-space models is still a difficult
task. Moreover, under certain conditions model solution may be a challenge even for
models having only a few states. In particular, a large difference between the rates
of occurrences of events leads to the stiffness problem. Stiff models cause problems
in the numerical solution, because they require the use of an integration step of the
order of the smallest time constants even though the analysis is to be carried out
for an interval consistent with the largest time constants. Stiffness usually arises
when dependability and performance models are mixed into a single model, but
stiffness may also arise in a simple failure/repair model because of the different
orders of magnitude between failure and repair rates. Stiffness may be avoided using
aggregation and decomposition techniques in which the resulting sub-problems are
non-stiff (e.g., see [121]), or it may be tolerated using special numerical solvers (e.g.,
see [668, 910]).

It is important to note that all the above techniques (largeness avoidance/tolerance
and stiffness avoidance/tolerance) are complementary and all may be needed at the
model construction and model solution levels, when detailed and large dependability
models need to be generated and processed to evaluate metrics characterizing the
resilience of real life systems.

7.4 Modelling and Solution Tools

Several software tools developed over the last thirty years address dependability
and performability modelling and evaluation. Surveys of the problems related to
techniques and tools for dependability and performance evaluation can be found for
example in [176, 418, 763, 802]. Tools can be grouped in two main classes:

• Single-formalism/multi-solution tools, which are built around a single formalism
and one or more solution techniques. They are very useful inside a specific domain,
but their major limitation is that all parts of a model must be built in the single
formalism supported by the tool. In the following we cite two sets of tools. The first
set of tools is based on Stochastic Petri Nets formalism and its extensions. They
all provide analytic/numerical solution of a generated state-level representation
and, in some cases, support simulation-based solution as well. This set includes
DSPNexpress [591], GreatSPN [208], SURF-2 [107], DEEM [133], TimeNET
[374], UltraSAN [806]. Other tools are based on Stochastic Process Algebra mod-
els; they provide numerical solutions and in some cases simulation-based results as
well. This set includes for example the PEPA Eclipse Plugin [888], CASPA [562],

160 A. Bondavalli et al.

PEPS [104], and PRISM [564]. Another set of tools uses other model specification
approaches, sometimes tailored to a particular application domain, and includes
HIMAP [844] and TANGRAM-II [173].

• Multi-formalism/multi-solution tools, which support multiple modelling
formalisms, multiple model solution methods, and several ways to combine the
models, also expressed in different formalisms. They can be distinguished with
respect to the level of integration between formalisms and solution methods they
provide. In particular, some tools try to unify several different single-formalism
modelling tools into a unique software environment. Examples are the following:
IMSE [738], IDEAS [357], FREUD [909], DRAWNET++ [354]. In other tools,
new formalisms, composition operators and solvers are actually implemented
within a unique comprehensive tool. Though more difficult than building a soft-
ware environment out of existing tools, this approach has the potential to much
more closely integrate models expressed in different modelling formalisms. To the
best of our knowledge, there are five main tools having these attributes: SHARPE
[890], SMART [218], DEDS [95], POEMS [22] and MÖBIUS [256].

The solution is considered as a computation of a measure by using one of the fol-
lowing classes of techniques:

• Closed form solutions, which yield exact measures but can be obtained for only a
limited class of models.

• Direct analytical techniques, like matrix inversion, which still yield exact measures
but can be obtained for only a limited class of models.

• Iterative numerical techniques (it is important to note that no general guarantees of
convergence of iterative methods do exist for some problems, and the determination
of a suitable error bound for termination is not easy).

• Simulation techniques, which provide an estimate with a confidence interval for
the result, but may be costly in terms of run time.

In a large number of scenarios, steady-state solutions by themselves are insufficient.
Two prominent examples for that are (1) scenarios in which steady-state does not
exist at all, and (2) systems that can only be described by a homogeneous model for a
very limited time during which steady-state behaviour cannot be observed. Transient
analysis is frequently performed in simulation models although there exist a number
of methods (supported by several tools) for analytical models as well.

7.5 Deriving Dependability Models from Engineering Models

The emergence of model-based engineering methodologies and the elaboration of
automated model transformation techniques have opened up new ways to integrate
model-based assessment into the development process. Model-Driven Engineering
(MDE) refers to the systematic use of models as primary artefacts throughout the
engineering lifecycle [811]. Precise, albeit informal or semi-formal engineering lan-
guages (like UML—the Unified Modeling Language, BPEL—the Business Process

7 Modelling and Model-Based Assessment 161

Execution Language, AADL—the Architecture Analysis and Design Language, etc.)
allow not only a reasonable unambiguous specification and design but also serve as
the input for subsequent development steps like code generation, formal verifica-
tion, evaluation, and testing. One of the core technologies supporting model-based
engineering is model transformation [253]. Transformations can be used to refine
models, apply design patterns, and project design models to various mathematical
analysis domains in a precise and automated way.

These initiatives and technologies influenced model-based assessment as well,
since they offered an efficient and integrated approach to derive dependability analy-
sis models from engineering models. Resilience assessment requires specific support
for the specification and description of non-functional aspects of the system (like
reliability, safety), which are not properly covered by the common engineering lan-
guages, as these focus primarily on functional aspects. Recently, significant effort
has been spent in the definition of standard languages that support the high-level
specification of non-functional properties of systems; the UML profile for QoS and
fault tolerance [703], the UML profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) [704], the Error Model Annex for AADL [795],
and the Dependability Analysis Modeling (DAM) profile [110] are the most notable
examples. However, there are not comprehensive high-level languages that support
MDE dependability evaluation yet, since most of the existing approaches are tailored
to a specific analysis method, or to a specific application domain. Properly addressing
dependability concerns in this context is still a challenge (e.g., see [662] for further
details) and it is actually one of the objectives of the ongoing ARTEMIS-JU CHESS
project [199].

Different approaches for the automated derivation of dependability models have
appeared in literature, often using ad-hoc language extensions:

• Direct modelling of dependability related behaviour: system designers use the
extended engineering language to directly describe failure and repair/recovery
processes (e.g., occurrence of different failure modes, error propagation) and
also the corresponding properties of components (e.g., error rates, propaga-
tion probabilities). A good example is the usage of the AADL Error Model
Annex: the behaviour of the components can be described in presence of inter-
nal faults and repair events, as well as in presence of external propagations. The
dependability evaluation toolset constructs the analysis models by mapping the
dependability related behaviour to the analysis formalism and then computes
system-level dependability measures. A stepwise approach for GSPN dependabil-
ity modelling on the basis of AADL is presented in [789]. As another example,
in [714] UML is used as a language to describe error propagation and module
substitution, that is then mapped to dynamic fault trees.

• Modular construction of system-level models using predefined generic sub-models:
dependability experts construct analysis sub-models that represent the generic
structure of both the failure/recovery processes of the different types of compo-
nents and the error propagation among them. System designers use the language
extensions just to identify the component types and assign local dependability

162 A. Bondavalli et al.

parameters to hardware and software artefacts in the engineering model. These
dependability parameters (typically available from component handbooks or from
component level evaluation) are used to parameterize the generic sub-models.
The dependability model construction tools (1) apply pattern matching and model
transformation to assemble the relevant parameterized sub-models in a modular
way on the basis of the architecture design, and then (2) invoke solution algo-
rithms to solve the system level model. In a UML based approach [134], language
extensions are defined as a UML profile (stereotypes and tagged values), analysis
sub-models are assigned to architectural components and relations, and then com-
posed as a system level Stochastic Reward Net (SRN). Modular model construction
is supported by automated tools [619]. In case of web service based process mod-
els [385], web service language extensions are utilized, the services are mapped to
DSPN sub-models, and then integrated into a Multiple Phased System model. An
MDE transformation workflow for the quantitative evaluation of dependability-
related metrics has been recently presented in [663]. The workflow is integrated
in a more comprehensive modelling framework that is currently developed within
the CHESS project, which combines MDE philosophy with component-based
development techniques.

• Integration of various aspects from different models: in complex, dynamic distrib-
uted systems the dependability model shall be constructed from several engineer-
ing models that capture various aspects of the system at different hierarchy levels.
Typically user, application, architecture and network levels are distinguished. For
example, in case of large, critical mobile systems and infrastructures [135], the
construction of the dependability model for computing user-level dependability
attributes is based on (1) the workflow model of the user activities, (2) the topol-
ogy models of the network connections in the various phases of the user activities
(also constructed automatically from user mobility traces), and (3) the application-
service-resource dependency models. This way a complex evaluation tool-chain
is required to integrate the different mapping, abstraction, model transformation,
and solution steps [555].

The automated derivation of dependability analysis models from the engineering
models (that were created during the model based development process) has the
advantage that—besides the application of certain model extensions—there is no
need to learn and use specific dependability analysis formalisms, and modelling
efforts can be saved. This is definitely a benefit if dependability analysis necessitates
the creation of state-based dependability models in complex systems, as these models
require higher learning and modelling effort than traditional combinatorial methods.

7.6 Works Combining Different Evaluation Approaches

The largeness and complexity of current real-life systems call for a composite verifi-
cation and validation (V&V) framework, where the synergies and complementarities
among several evaluation methods can be fruitfully exploited. For example, it is well

7 Modelling and Model-Based Assessment 163

established and widely recognized that modelling and experimentation complement
each other, at least at the conceptual level, but the two approaches are infrequently
combined in the literature to evaluate real-life systems.

An interesting area of research is the construction of analysis models on the basis
of measurements performed in a running prototype or in a full deployment. The most
comprehensive method was developed for performance and performability analysis:
software performance models of distributed applications are extracted from traces
recorded during execution [474]. A similar approach is recording error propagation
traces induced by fault injection experiments [54] to support the construction of error
propagation models [207]. Other works (e.g., [53]) derive high-level behavioural
models using experimental measurements obtained from fault injection experiments,
while in other papers (e.g., [229]) the values obtained from field data are used to setup
parameters of analytical models.

Other attempts in exploiting the potential interactions among different evaluation
approaches were reported in the context of recent European projects. In DBench
[268], a framework for dependability benchmarking tailored for on-line transac-
tional systems was established (see [513] for more details). One of the benchmarks
developed in the project was based on both modelling and experimentation; the two
final measures evaluated from such benchmark are the stationary system availability
and the total cost of failures. The measures are evaluated by combining measures
obtained from experimentation on the target system (e.g., the percentages of the var-
ious failure modes) and information from outside the benchmark experimentation
(e.g., the failure rate, the repair rate and the cost of each failure mode).

A major research line of the European project CRUTIAL [246] focused on the
development of a model-based methodology for the dependability and security analy-
sis of the power grid information infrastructures. Within electric power systems,
changes in the system’s state (e.g., component failures) may propagate in a cascad-
ing fashion, following complex power flow equations. To accurately represent this
behaviour, the modelling framework developed within the project combined a Sto-
chastic Activity Networks (SAN) model with ad-hoc external mathematical functions
(see [95, 202, 203]). The overall model that represents the organization and topol-
ogy of the power grid was built using the SAN formalism, and it interacted with
external functions to evaluate the effects on the complete power grid of environment
variations.

HIDENETS [435] addressed the provisioning of available and resilient distrib-
uted applications and mobile services in highly dynamic environments characterized
by unreliable communications and components, mostly concerning the field of car-
to-car and car-to-infrastructure communications. One of its main achievements was
the definition of a holistic evaluation framework (see [135]) where the synergies
and complementarities of the different evaluation approaches could be fruitfully
exploited. In the quantitative assessment of complex systems, like those targeted by
the HIDENETS project, a single evaluation technique is not capable of tackling the
whole problem, i.e., the dependability evaluation of end-to-end scenarios. To mas-
ter complexity, the application of the holistic approach allows defining a “common
strategy” using different evaluation techniques applied to the different components

164 A. Bondavalli et al.

and sub-systems, thus exploiting their potential interactions. The idea underlying the
holistic approach follows a “divide and conquer” philosophy: the original problem is
decomposed into simpler sub-problems that can be solved using appropriate evalua-
tion techniques. Then the solution of the original problem is obtained from the partial
solutions of the sub-problems, exploiting their interactions. The different evaluation
techniques may interact in different ways, including (1) cross validation, if a par-
tial solution validates some assumptions introduced to solve another sub-problem, or
validates another partial solution; (2) cross-fertilization, if a partial solution obtained
solving a sub-problem is used as input to solve another sub-problem, possibly using
a different technique; and (3) problem refinement, if a partial solution gives some
additional knowledge that leads to a problem refinement. In [135, 136], for example,
a highway scenario has been modelled, and the impact of user mobility on the QoS of
UMTS communication has been evaluated combining a Stochastic Activity Network
(SAN) model with a mobility simulator, exploiting this way the cross-fertilization
of the techniques. The model of the users’ behaviour and of the UMTS network
has been provided using the SAN formalism, while the mobility of the users within
the scenario has been accurately represented by the mobility simulator. A specific
SAN submodel took charge of progressively reading the traces produced as output
by the simulator, and synchronizing the states of the two models. The integration
of the output produced by the mobility simulator into the modelling process itself
allowed to capture system characteristics at a more detailed level, thus enabling a
more refined analysis that could be hardly obtained using a single technique.

7.7 Open Research Challenges

As discussed in this chapter, a wide literature exists on the use of models for the
assessment of dependability-related indicators of a system and, in general, for fault-
forecasting, that is to probabilistically estimate the occurrence of faults and their
impact on the ability of the system to provide a proper service. Nevertheless, the
modelling and analysis of complex (large, dynamic, heterogeneous, ubiquitous) sys-
tems still needs continued research, both in model construction and in model solution.
A crucial point in this context is also to assess the approximations introduced in the
modelling and solution process to manage the system complexity, as well as their
impact on the final results.

The role of modelling in a more comprehensive assessment process is, on the
contrary, not well addressed in the literature. The largeness, dynamicity, heterogene-
ity and ubiquity of current computing systems actually calls for the development of
a composite and trustable assessment framework including complementary evalua-
tion techniques, covering modelling and experimental measurements. Mechanisms
are needed to ensure the cooperation and the integration of these techniques, in order
to provide realistic assessments of architectural solutions and of systems in their
operational environments.

7 Modelling and Model-Based Assessment 165

Of increased significance is also the use of quantitative evaluation methods to
support the effective use of adaptation mechanisms in current systems. Efficient
on-line mechanisms are needed to monitor the environment conditions of the system
and to dynamically adapt to their changes.

Besides assessing the impact of accidental threats, extensions are also needed
to quantify the impact of malicious threats. Quantitative evaluation techniques have
been mainly used to evaluate the impact of accidental faults on systems dependability,
while the evaluation of security has been mainly based on qualitative evaluation
criteria. Therefore, there is a need for a comprehensive modelling framework that
can be used to assess the impact of accidental faults as well as malicious threats in
an integrated way.

Acknowledgments The authors acknowledge the support given by the European Commission
to the AMBER Coordination Action [38]. This work has been partially supported by the Italian
Ministry for Education, University, and Research (MIUR) in the framework of the Project of National
Research Interest (PRIN) “DOTS-LCCI: Dependable Off-The-Shelf based middleware systems for
Large-scale Complex Critical Infrastructures”.

Chapter 8
Software Aging and Rejuvenation for Increased
Resilience: Modeling, Analysis and Applications

Alberto Avritzer, Ricardo M. Czekster, Salvatore Distefano
and Kishor S. Trivedi

Abstract Software aging and rejuvenation research has shown that the application
of approaches for software aging modeling, monitoring, and rejuvenation has the
potential to significantly increase software resilience. In this chapter, we present an
overview of important analytical models and measurement approaches for software
aging and rejuvenation. We start by describing the Markov based approaches and
renewal process based approaches for software aging and rejuvenation modeling. In
addition, we present measurement based approaches using both online and offline
methods for software rejuvenation. We conclude by presenting a categorization of
the approaches and by presenting a brief overview of applicability of each of the
approaches presented in this chapter.

A. Avritzer (B)
Siemens Corporate Research and Technology, 755 College Road East,
Princeton NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

R. M. Czekster
PUCRS/Faculdade de Informatica, Avenida Ipiranga, 6681, Predio 32,
Sala 505, CEP 90619-900 Porto Alegre, Brazil
e-mail: ricardo.czekster@pucrs.br

S. Distefano
Dipartimento di Elettronica e Informazione (DEI),
Politecnico di Milano, Piazza L. da Vinci, 32,
20133 Milan, Italy
e-mail: distefano@elet.polimi.it

K. S. Trivedi
Department of Electrical and Computer Engineering, Duke University, Durham
NC 27708, USA
e-mail: kst@ee.duke.edu

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 167
DOI: 10.1007/978-3-642-29032-9_8, © Springer-Verlag Berlin Heidelberg 2012

168 A. Avritzer et al.

8.1 Introduction

The introduction of software for monitoring and control of mission-critical systems
has created a need for the validation of the resilience and safety of these systems. The
activities required for the assessment and enforcement of these systems reliability and
availability include requirements, architecture, modeling, testing, online monitoring,
and software rejuvenation.

In this chapter we present models, algorithms and applications of software reju-
venation to increase software resilience. This chapter is closely related to the chapter
on resilience assessment based on performance testing, where performance measure-
ment results of smoothly degrading systems were presented. Smooth performance
degradation has been also called software aging and is a consequence of the exhaus-
tion of system resources, such as system memory or kernel structures, invalid point-
ers, the accumulation of round off errors, database deadlocks, and the contention
for a pool of limited software resources. Therefore, transient application faults and
operating system faults can be a major source of system performance degradation.
Examples of operating system related faults are invalid allocation or deallocation
of memory, kernel data corruption, and incorrect or sub-optimal kernel resource
management [369, 895, 905].

Software aging research was initially directed towards the implementation of data
collection tools for monitoring of application and operating system resources [72,
73, 181, 369, 895]. The development of stochastic models of software aging and
the parameterization of these models with the time to failure distribution, the input
workload, and its influence on software aging were presented in [303, 585, 905].
The xSeries Software Rejuvenation Agent (SRA) [181] is a tool introduced by IBM
and Duke University to monitor system resources and to calculate the expected time
to resource exhaustion. Approaches to monitor a customer-affecting metric, such
as response time, to detect software aging due to resource exhaustion or security
intrusions were introduced in [65–68].

The types of software faults that cause software aging have been shown to be
very difficult to test, reproduce, and correct [392]. Some examples of major software
outages that were attributed to software aging were reported in [111, 400]. The Patriot
anti-missile software aging event allowed a Scud missile to penetrate US defenses,
when the Patriot software started to miscalculate routes. This software aging event led
to the death of U.S. soldiers during the Gulf War [401, 625]. The event investigation
concluded that the problem was caused by a numerical accumulation error that was
never caught during testing. Therefore, the system was deployed in production with
the faulty software. The investigation report recommendation was to periodically
restart the guiding system every eight hours of continuous operation to reset the
accumulated variables to their initial valid states.

Software Rejuvenation is a mechanism to proactively and efficiently counteract
the effects of software aging [72, 74, 449, 799, 895, 906]. Software rejuvenation
architecture artifacts are a good match for complex industrial mission-critical appli-
cations that are susceptible to software aging. For example, the process of quickly

8 Software Aging and Rejuvenation 169

shutting down and restarting a given process is a successful strategy to clear internal
data structures and replenish system resources to their original specification. The
main purpose of introducing software rejuvenation into the architecture of mission-
critical systems is to proactively restore the critical system resources to full capacity
before a customer impacting failure occurs. Software rejuvenation functions as pre-
ventive maintenance to ensure high availability. Software rejuvenation cost effective-
ness depends on the state of the environment [74], the state of the mission [68], and
the extent of system degradation. The addition of monitoring for software aging, and
software rejuvenation as architecture artifacts, have been shown to be a cost-effective
approach to increase the resilience of large industrial mission-critical systems [41,
86, 304, 305]. These systems are susceptible to software aging because of their com-
plexity and the high cost of finding and correcting transient software faults. Software
rejuvenation architecture artifacts have been applied to telecommunication billing
and provisioning data [74, 449], transaction processing system [368], operating sys-
tems [904, 905], cluster systems [903], cable modem termination systems [599], web
Servers [585], worm mitigation in tactical MANETs [67], and virtualization [828].
Dynamic software rejuvenation algorithms that are based on online monitoring of the
environment and of the real-time system performance, can outperform static algo-
rithms, for systems where mission success is dependent on real-time performance
[66]. In addition, several empirical studies have identified relevant customer affecting
metrics and the best software rejuvenation trigger interval for different applications
[41, 86, 304, 305].

Examples of software rejuvenation approaches are the rebooting of a process,
releasing of memory, clearing of a deadlock, or performing any other fast action
that would prevent software aging from manifesting itself as a system wide failure
that could lead to a system crash. These system wide crashes can cause significant
damage to the mission the software is controlling and to the infrastructure that is
being used to support the software system. For example, a database corruption could
take significant time to recover from.

In this chapter, we present models of software aging and different algorithms that
were developed to counter aging and security intrusions by applying the so called
software rejuvenation techniques.

The outline of the chapter is as follows. Section 8.2 presents a review of the
analytical models that were developed for capturing the effects of software aging and
for providing recommendations for the best times to trigger software rejuvenation.
Section 8.3 presents measurement based studies of software aging and rejuvenation.
Section 8.4 presents our conclusions.

8.2 Analytical Models

One of the aims of developing analytic models of software aging is to determine
optimal times to perform software rejuvenation to maximize software availability, to
minimize the probability of loss, to minimize the mean response time of a transaction

170 A. Avritzer et al.

Fig. 8.1 Basic two-step
software rejuvenation model
proposed by Huang et al. [449]

(e.g., transaction processing system), or to minimize maintenance costs. Performance
optimization is particularly important for business-critical applications for which
adequate response times can be as important as system uptime. Modeling and analysis
of software aging is done for different kinds of software systems exhibiting varied
failure/aging characteristics.

8.2.1 Markov Models

8.2.1.1 Continuous-Time Markov Chain

Markov models have been often used in the representation and investigation of soft-
ware aging and rejuvenation policies [449]. Although the software aging phenom-
enon is characterized in analytical terms by increasing failure rate (IFR), the first
attempts at representing software aging and rejuvenation were based on homoge-
neous Markov chains [366, 449, 552, 808].

The Markov model used to represent software aging and software rejuvenation
is based on a phase-type expansion, where software aging is discretized into a finite
number of states of the Markov chain, each characterized by a specific degradation
level and a transition rate to the next state. For example, the Markov chain models
proposed in [366, 449] restrict the time to failure to be hypo-exponentially distributed.
This approach was initially introduced in [449], where a two-step failure model was
used with only one degraded state between the initial state (State 0) and the failed
state (State 2), as shown in Fig. 8.1. State 1 represents the failure probable state,
where a failure would take the system to state 2 and a software rejuvenation trigger
would take the system to state 3. The authors solved the model to compute the costs
that would be accrued by software rejuvenation and by downtime after a hard failure
event. The authors concluded that for the parameters evaluated, software rejuvenation
costs would have to be less than 2% of the costs of a hard failure, for software
rejuvenation to be cost effective. From this Markov model, the system availability
and subsequently the optimal rejuvenation trigger interval was computed.

8 Software Aging and Rejuvenation 171

Fig. 8.2 Subordinated non-homogeneous continuous-time Markov chain of [368]

In [808] a single node system was introduced to investigate the effects of software
aging on two different operating systems. The authors compared the effectiveness of
several software rejuvenation policies, considering a few alternatives and different
system degradation levels (till 10). In this work, system performance degradation
was assessed in terms of the system resource utilizations, as for example, processor,
memory, and thread utilizations.

8.2.1.2 Non-Homogeneous Continuous-Time Markov Chain

An alternative modeling approach to represent the increased failure rate of the
software aging process employs non-homogeneous continuous-time Markov chain
model. Non-homogeneous continuous-time Markov chains have been traditionally
used for software reliability modeling, and have also been successfully applied to
solve software aging and rejuvenation problems [85, 86, 368, 554]. In [368] Garg
et al. analyzed a queueing system with preventive maintenance as a mathematical
model for a transaction-based software system. The proposed non-homogeneous
continuous-time Markov chain model [368] used a time-to-failure function that was
generally distributed and a time-varying failure rate to capture the effects of load
on software aging. Two software rejuvenation schemes based on the cumulative
operation time (before or after the idle time) were investigated. The authors were
able to derive the optimal rejuvenation interval T ∗ under the two policies so as
to maximize the steady-state availability, minimize the transactions probability loss,
and/or minimize the upper bound on the mean response time. The non-homogeneous
continuous-time Markov chain with K states is shown in Fig. 8.2, where the state
definition represents the number of transactions queued including the one in service.
K > 1 is the maximum capacity of the transaction buffer. In Fig. 8.2, λ represents
the transaction arrival rate, μ(·) represents the software service rate as an arbitrary
function, as it can be constant, or a function of time, load dependent, or a combination
of these factors. ρ(·) represents the software failure rate, which is also an arbitrary
function. The model is able to capture aging and performance degradation of systems
that lose transactions due to software failures.

172 A. Avritzer et al.

Fig. 8.3 Markov reward
model of [958]

0 1 4

2 3 6

5 7 8

2p

P

p

r

p

2r

S

2

p

2

S

S

The main goal of [554] was to study the overall behaviour of a software system
by modeling the time-dependent rejuvenation rates and deriving an optimal rejuve-
nation policy using a cyclic non-homogeneous Markov chain. A non-homogeneous
continuous-time Markov chain was built to assess the tradeoff between system degra-
dation and software rejuvenation cost.

8.2.1.3 Markov Decision Process and Reward Model

Another Markov modelling framework that was applied to assess software aging and
rejuvenation is the Markov decision process. In [726] the authors developed a Markov
decision process based framework to compute optimal rejuvenation schedules. The
optimal rejuvenation schedule solved the optimal stopping problem, as applied to
software aging and rejuvenation, by the use of a gradual decrease of the failure rate.
The authors have also considered the impact of using realistic cost assumptions and
simple rules that could yield an optimal software rejuvenation schedule.

In [958] the authors extended the mathematical characterization of common
software-aging-related faults introduced in [449] with a Markov reward model rep-
resenting a redundant fault-tolerant software system, which is modeled using the
software aging and rejuvenation approach introduced in [449]. The proposed model
is shown in Fig. 8.3 and represents the states of the joint state of the two parallel
software systems, where each individual software system can be in the states defined
in [449]. For example, in state 0 both systems are operating correctly. In state 1 one
software system is operating correctly and the other one is in the failure probable
state. In state 3 both software systems are in the failure probable state, while in state
2 one of the software systems is operating correctly and the other has failed. The
other states are derived similarly.

8 Software Aging and Rejuvenation 173

8.2.2 Renewal Processes

Non-Markovian processes shall be employed when the exponential distribution for
the time to failure is not sufficient to model the system under study. Renewal the-
ory provides the tools to adequately represent more complex aging processes or
rejuvenation policies. Semi-Markov and Markov regenerative processes have been
widely used for representing software aging and software rejuvenation.

8.2.2.1 Semi-Markov Process

In [304] the authors developed a semi-Markov model by generalizing the continuous-
time Markov chain approach introduced in [449]. The optimal software rejuvenation
schedules were analytically derived to optimize the steady-state availability objective
and the average cost expended by the software rejuvenation approach. In addition,
non-parametric statistical algorithms to estimate the optimal software rejuvenation
schedules were also developed.

In [85, 86] the authors used a semi-Markov model to represent a high-level
proactive fault management approach. The main contribution of this work was
the development of an hierarchical modeling approach composed of a lower level
non-homogeneous continuous-time Markov chain and an upper level semi-Markov
model. The hierarchical software rejuvenation model triggers different software reju-
venation actions depending on the degradation level that the system has experienced,
the time elapsed since the last software rejuvenation event, or any other specific crite-
rion that needs to be modeled [85, 86]. The first-level software rejuvenation, or partial
rejuvenation, consists of stopping and rejuvenating certain applications, while the
second-level software rejuvenation, or full rejuvenation, consists of stopping all the
running applications and restarting the system. Therefore, the first-level software
rejuvenation incurs lower cost as measured by system downtime than the second-
level software rejuvenation. The hierarchical model proposed in [85, 86] allows for
decomposition of the analysis by first evaluating the impact of resource leakage and
then assessing the effectiveness of software rejuvenation on the metric of interest.

The tradeoff between using the partial or the full software rejuvenation approach
is studied in [553], where a computer system with one standby redundant node
was evaluated. The authors considered five different software rejuvenation models
for the redundant system, evaluating the steady-state behaviour and the asymptotic
availability for each rejuvenation model.

A semi-Markov (SMP) process has been used in [717] to model the availability of
personal computer-based active/standby cluster system with software rejuvenation to
handle software related system failures. Software rejuvenation and switchover states
were mapped into a semi-Markov model whose analysis provided the steady-state
availability.

174 A. Avritzer et al.

Fig. 8.4 The MRGP proposed
in [423]

8.2.2.2 Markov Regenerative Process

Markov regenerative processes have been successfully applied in several software
rejuvenation studies. For example, the focus of [423] was to solve the problem
of system unavailability caused by the restart operation in the rejuvenation phase.
The authors proposed a software rejuvenation model of a hot standby architecture,
implementing the software restart by switching between the active copy and the
backup copy. The Markov regenerative process availability model was created by
changing the Markov chain model of [449] by using two states to represent two dif-
ferent software rejuvenation policies, as shown in Fig. 8.4. The authors have validated
their model by comparing the system availability obtained using the model of [449]
with the system availability with the proposed hot standby architecture.

Examples of the application of Markov regenerative process software aging and
rejuvenation are [309, 368, 926]. As discussed above, in [368] the Markov regener-
ative process is used on top of a non-homogeneous continuous time Markov chain
thus composing a hierarchical model. In [926] three time-based rejuvenation poli-
cies used to improve the performability measures of a cluster system under varying
workload were evaluated. Similarly, in [309] Markov regenerative process has been
used to evaluate the software aging process that was studied by the authors.

In [120] a fine grained software degradation model was proposed, where the
current software degradation level could be observed based on the monitoring of a
system parameter. In this work, the degradation process consists of a sequence of
additive random shocks. The system is considered out of service as soon as the appro-
priate parameter reaches an assigned threshold level. The system model is a complex
reward-renewal processes that is analyzed using the theory of renewal processes with
cost/rewards. The approach was used to analyze the impact of system parameters and
two alternative rejuvenation policies on a redundant database management system
unavailability.

8 Software Aging and Rejuvenation 175

8.2.3 Petri Nets

Petri nets are one of the modeling frameworks used to evaluate software aging and
software rejuvenation approaches, because Petri net models can accurately incor-
porate the most common characteristics of computer systems like concurrency,
synchronization, sequencing, and queueing for multiple resources.

Petri nets have been mainly used as a modeling notation. The underlining sto-
chastic processes are derived by using specific techniques. Markov chains, renewal
theory, phase type expansions, simulation and similar solution techniques have been
used in the evaluation of the Petri nets underlying processes.

Several different Petri net variations have been used to model software aging char-
acteristics and software rejuvenation approaches. One of the specific requirements of
software aging modeling is the ability to represent non-Markovian behaviors. Mod-
eling of software aging processes have to take into account the age/history of the
software, which can be approximated using Markov models [400].

8.2.3.1 Stochastic Petri Nets

One of the first attempts to apply Petri nets in software rejuvenation is reported in
[367]. The authors used the Markov regenerative stochastic Petri net of Fig. 8.5a to
deal with a deterministic software rejuvenation trigger interval. The system is fully
operational in the place Pup. When the T f prob transition fires, which represents soft-
ware aging, a token reaches the place Pf prob, where the system is the failure probable
state. The system is in the crash state after the firing of transition Tdown . While the
system is restarting, all transactions are suspended, as shown by the inhibitor arc
from Pdown to the Tclock transition, which models the periodic software rejuvenation
trigger. Tclock fires when the clock expires, if it has not been inhibited. The other
transitions are understood similarly.

Another interesting model was described in [117], where the fluid stochastic
Petri net shown in Fig. 8.5a was used. The Petri net formalism allows the modeler
to represent software aging and software rejuvenation in systems that use specific
techniques for software rejuvenation, restoration, and checkpointing. Specifically, a
fluid flow approximation approach can be used to model the software aging process
also taking into account the workload condition, where the fluid level at a certain
time t represents the extent of system degradation that has occurred up to t .

Another type of Petri net often used to model software aging and rejuvenation is the
deterministic stochastic Petri net, used for representing the cluster system described
in [926]. The performability metric was evaluated by the numerical analysis of the
underlying subordinated Markov chain. The software rejuvenation policies was there
evaluated by considering both the historical data and the current running state of the
system.

176 A. Avritzer et al.

(a)

(b)

Fig. 8.5 MRSPN (a) and FSPN (b) software-aging/rejuvenation models proposed in [117, 367],
respectively

8.2.3.2 Stochastic Reward Nets

Another Petri net notation used in the software aging and software rejuvenation
context is the stochastic reward notation. Stochastic reward nets are particularly
suitable to model software aging and rejuvenation approaches, since this formalism
allows for modeling the software aging process by using reward rates and guards,

8 Software Aging and Rejuvenation 177

Fig. 8.6 The SRN proposed in [903] for evaluating cluster systems software rejuvenation policies

among other features. Therefore, stochastic reward nets can be used to represent com-
plex aging processes rejuvenation policies and other quantities such as, for example,
the cost [181, 489, 598, 903, 946, 951].

In [903] an evaluation of the application of software rejuvenation to cluster sys-
tems was performed. The stochastic reward net introduced in [903] is shown in
Fig. 8.6. Software rejuvenation was shown to significantly improve the evaluated
system availability and productivity. Both time-based and prediction-based software
rejuvenation techniques were there evaluated by modeling, using stochastic reward
nets. In [181] the application of software rejuvenation to cluster systems using a real
case study related to the xSeries IBM cluster was presented.

Stochastic reward net models were applied to study the cable modem termination
system cluster in [598]. Capacity-oriented availability and downtime cost with and
without deploying software rejuvenation were evaluated showing significant avail-
ability improvement and downtime cost reduction when time-based and condition-
based (a prediction-based) rejuvenation strategies were used.

Fan Xin-yuan et al. [946] analyzed the dispatch-worker based cluster system and
proposed a Stochastic Reward net model for dispatch-worker based architectures
with prediction-based software rejuvenation.

In [951], dependencies among cluster nodes were taken into account in the evalua-
tion of software aging and time/prediction-based software rejuvenation strategies by
using a stochastic reward net. The authors evaluated the impact of these rejuvenation
strategies on the cluster system reliability by minimizing the software rejuvenation
cost, while considering the comprehensive relations between nodes in the entire
system.

178 A. Avritzer et al.

Table 8.1 Applicability domain of the software aging and rejuvenation model types

Model type Observations

Continuous time Markov chains (CTMC) First attempt to describe software aging and
rejuvenation, cost model [449, 552, 808]

Non-homogeneous CTMC (NHCTMC) Derivation of optimal rejuvenation intervals
[85, 86, 368, 554]

Queueing networks (QN) Classic approach to performance evaluation
Markov decision processes (MDP) Compute optimal rejuvenation schedules

[726, 958]
Petri nets (PN) Higher level representation of models that

incorporate synchronization, sequencing,
queueing and concurrency [400]

Stochastic Petri nets (SPN) Could be used to compute fluid flow
approximations [117, 367, 926]

Markov regenerative processes (MRP) Represent different time-based rejuvenation
policies [120, 303–305, 309, 423, 926]

Markov regenerative SPN (MRSPN) Representation of aging for software with two
or more components

Markov reward models (MRM) Describe models that calculate costs of
different rejuvenation policies [958]

Stochastic reward networks (SRN) [181, 489, 599, 903, 946, 951]
Semi-Markov process (SMP) Hierarchical modeling of rejuvenation and

switchover states; allows specification of
renewal states in contrast to NHCTMCs;
SMPs overcome the NHCTMC models
lack in representing rejuvenation,
allowing to specify renewal states [717]

Semi-Markov reward models (SMRM) Ability to model aging with rewards [85, 86]

In [489] a mixed time and prediction based software rejuvenation policy was
evaluated using a stochastic reward net. The model was used to evaluate the system
availability and downtime cost. The authors were able to show that under the same
conditions, a mixed time and prediction based software rejuvenation policy could
achieve higher availability and lower downtime cost than either one of the time-based
and prediction-based software reliability policies.

Table 8.1 presents a summary of different models presented in this section with a
brief description of the domain of applicability of each model.

8.3 Measurement Based Approaches

The software aging and rejuvenation analytical models either assume that the time
to failure distribution of the software is known (in case of time-based software reju-
venation) or that the degradation level of the software system is known (in case of
inspection-based software rejuvenation). To facilitate the latter approach, measure-

8 Software Aging and Rejuvenation 179

ment based approaches monitor and collect data on the attributes responsible for
determining the health of the executing software. The data is then analyzed to obtain
predictions about possible impending failures due to resource exhaustion. The data
analysis can be executed online or offline.

In this section we describe measurement-based approaches for detection and
validation of the existence of software aging.

Garg et al. [369] introduced an approach for the detection and the estimation of
aging in the UNIX operating system. An SNMP-based distributed resource moni-
toring tool was used to collect operating system resource usage and system activity
data from nine heterogeneous UNIX workstations connected by an Ethernet LAN at
Duke University. A central monitoring station was used to run the manager program,
which was used to send get requests periodically to each of the agent programs run-
ning on the monitored workstations. The agent programs in turn obtained data for
the manager from their respective machines by executing various standard UNIX
utility programs like pstat, iostat and vmstat. For quantifying the effect of aging in
operating system resources the metric Estimated time to exhaustion was proposed.
The objective of the study was to detect aging or a long term trend (increasing or
decreasing) in the measured values. This approach assumed that the accumulated
depletion of a resource over a time period depended only on the elapsed time. How-
ever, it is intuitive that the rate at which a resource is depleted is also dependent on
the current workload. An approach to estimate the rate of exhaustion of operating
system resources as a function of both time and the system workload was presented
in [905, 906].

A methodology based on time-series analysis was used to detect and estimate
resource exhaustion times due to software aging in a web server while subjecting it
to an artificial workload [585]. The experiments were conducted on an Apache web
server running on the Linux platform. The analysis was done using two different
approaches: (1) building a univariate model for each of the outputs or, (2) build-
ing only one multivariate model with seven outputs. Seven univariate models were
built and then combined into a single multivariate model. First, the parameters were
analyzed and incorporated into the model with one output and four inputs for each
parameter as follows: connection rate, linear trend, periodic series with a period of
one week, and periodic series with a period of one day. The autocorrelation function
(ACF) and the partial autocorrelation function (PACF) for the output were computed.
The ACF and the PACF were used to select the appropriate model for the data [825].
The autoregressive multiple input single output (MISO) model of order 1 (AR(1)) is
considered for the single multivariate model, also taking into account the inputs above
identified, an autoregressive model with the exogenous input of order 1 (ARX(1))
is specified for each of them, and obtaining seven ARX(1) models. In summary, the
models have been combined into a single multiple input multiple output (MIMO)
ARX(1) model. The next step after determination of the model orders is to estimate
the coefficients of the model by using the least squares method. The first half of the
data is used to estimate the parameters and the rest of the data is then used to verify
the model. The obtained results show that the predicted values are very close to the
measured values.

180 A. Avritzer et al.

In [85] a model was developed to account for the gradual loss of system resources,
specifically, the memory resource. The model is able to represent both the correct
system operation with no memory leakage and the faulty system operation when
a memory leak fault is present. The model relates system degradation to resource
request, resource release, or resource holding intervals, and memory leaks. These
quantities can be monitored and modeled directly from the system data measurements
[585].

Cassidy et al. [180] have developed an approach for software rejuvenation of
large online transaction processing servers. The authors monitored various system
parameters over a period of time and were able to determine that 13 of these para-
meters deviate from normal behavior just prior to a crash, thus providing sufficient
warning to warrant the initiation of software rejuvenation. A feedback control loop
approach for software rejuvenation in a web server was presented in [487].

Machine learning [34], Support Vector Machines (SVM) and similar techniques
have also been applied to analyze software aging data [443]. Accelerated life testing
and accelerated degradation testing techniques have been applied to reduce the time
needed for aging approximations [627].

Algorithms for online monitoring of a defined customer-affecting metric have
been applied to the security domain. In [68] the effectiveness of the basic bucket-
based online monitoring algorithm introduced in [67] was assessed for mission-
critical systems by computing the probability of mission success. The analysis results
showed that online monitoring and software rejuvenation are very effective in ensur-
ing a high probability of mission success, when the mission-critical system is under
attack by a worm infection.

In [71] an application of the basic bucket-based online monitoring algorithm
using known system performance signatures was used to detect security intrusions.
The research presented in [71] uncovered a significant difference between the per-
formance signatures associated with failure events and the performance signatures
associated with security attacks. The performance signatures obtained from the analy-
sis of system failures showed significant system degradation, i.e., CPU values of up
to 100%. In contrast, the performance signatures obtained from the analysis of the
execution of security test suites, showed that the observed CPU usage values were
constrained to a narrow band. A new version of the bucket-based online monitoring
algorithm, which was introduced in [71], was able to successfully distinguish between
software aging that results from failure events and software aging that results from
security intrusion events.

8.4 Conclusions

We have presented in this chapter an overview of several software rejuvenation
approaches that can be used to increase software resilience by using analytical mod-
eling, offline and online system measurements.

8 Software Aging and Rejuvenation 181

Different analytical models have been applied to the evaluation of software aging
and rejuvenation. We have categorized these models according to the stochastic
process and the technique used in the analysis. Software can be modeled as a degrad-
ing system that is characterized by the software age. The selection of the stochastic
process used to represent software aging and rejuvenation policies is driven by the
need to incorporate the software age into the model. Markov models are used in
software aging as an approximation where software age is represented by using dif-
ferent degradation states. Approximated models that implement a phase type-like
discretization of the software degradation into two or more degradation states have
been introduced in [449, 552, 808]. One of the benefits of using Markov models
to represent software aging is the reduced model solution cost for simple models.
However, a large number of degradation states may be required to model the problem
with high accuracy, thus increasing the Markov model solution cost.

Non-homogeneous Markov chains have been used to model software aging [85,
86, 368, 554] but to adequately model software rejuvenation more complex models
are required as a single global clock will not provide accurate results. Therefore, semi-
Markov and the Markov regenerative processes are required to adequately represent
software rejuvenation [85, 86, 120, 303–305, 309, 368, 553, 717, 926]. Specifically,
semi-Markov processes can be used to specify renewal states. However, semi-Markov
processes cannot adequately represent the aging that occurs between regeneration
epochs. As a consequence, Markov regenerative processes are used to model software
aging in software hierarchies composed of two or more components, by separately
modeling each individual component age.

Markov reward models and variants have been often used when different rejuve-
nation policies have to be evaluated and compared to establish the optimal software
rejuvenation policy [958]. The rewards associated with the Markov model states are
used to represent and quantify the cost of the software rejuvenation policies being
evaluated.

The Petri net formalism can be considered as a higher level of modeling represen-
tation, which can be used to provide clarity to the software modeling process. Petri
nets have been used to model software aging and rejuvenation problems, because of
their compactness and expressiveness [367, 926]. Specifically, stochastic reward nets
have been used when software rejuvenation policies have to be compared in terms
of their costs to investigate the optimal software rejuvenation policy [181, 489, 598,
903, 946, 951].

Measurement based approaches rely on data collection and analysis for determin-
ing system health and the best time to trigger the software rejuvenation routines.
Online monitoring of system resources and/or of a customer affecting metric were
shown to be a cost-effective approach to ensure software resilience.

Software aging has been originally observed in the telecommunications domain
[70, 72, 111, 449], because of strict engineering efforts that were conducted by
telecommunication companies to assess service reliability. The detection of smooth
degradation of the available resources or software aging, and the periodic workload
characteristics of telecommunication applications, led to the development of tech-
niques to counteract aging that were called software rejuvenation. These software

182 A. Avritzer et al.

Fig. 8.7 Software rejuvenation techniques classification

Table 8.2 Bibliography classification based on Fig. 8.7

Open-loop
Elapsed time [55, 85, 117, 120, 304, 367, 449, 553, 554, 717, 726, 808, 958]
Elapsed time and load [86, 309, 366, 368, 423, 926]
Closed-loop

Offline
Time analysis [85, 120, 180, 304, 369, 627]
Time and load analysis [585, 905, 906]
Failure data [34, 85, 443]

Online [66–68, 71, 487, 649, 825]
Open/closed-loop
Time/prediction based [181, 489, 598, 903, 946, 951]

rejuvenation techniques were shown to be cost effective to increase system resilience,
when the system contains soft faults or is a victim of security attacks. Therefore, we
expect that the software aging and rejuvenation approaches described in this chapter
will see increased deployment in systems that are designed for resilience.

Figure 8.7 presents a classification of software aging and rejuvenation approaches.
The software aging and rejuvenation approaches can be divided broadly into time-
based (open loop) and prediction-based (closed loop) approaches. Time-based tech-
niques are usually used in the early stages of software development process and are
often implemented by analytical models, as discussed in Sect. 8.2.

In the classification shown in Fig. 8.7, we further characterized the time-based
class in terms of the quantities and the parameters taken into account in the model,
such as time and load.

On the other hand, in the prediction-based approach, the objective is to monitor and
collect data on the attributes responsible for determining the health of the executing
software. The data is then analyzed to obtain predictions about possible impending
failures due to resource exhaustion. The data analysis can be executed online or
offline. Offline techniques have been further characterized according to the type of
data available and used in the evaluation:

8 Software Aging and Rejuvenation 183

• time analysis—time parameters,
• time and load analysis—time and load data,
• failure data—for reliability analysis.

Statistical techniques are used to collect and process the data as discussed in Sect. 8.3.
Table 8.2 presents a summary of some of the techniques discussed in the chapter.

Acknowledgments We like to thank Dr. Fumio Machida, Ermeson Andrade and Dr. Jing Zhao for
their useful comments.

Chapter 9
Online Prediction: Four Case Studies

Katja Gilly, Fabian Brosig, Ramon Nou, Samuel Kounev and Carlos Juiz

Abstract Current computing systems are becoming increasingly complex in nature
and exhibit large variations in workloads. These changing environments create
challenges to the design of systems that can adapt themselves while maintaining
desired Quality of Service (QoS), security, dependability, availability and other non-
functional requirements. The next generation of resilient systems will be highly
distributed, component-based and service-oriented. They will need to operate in
unattended mode and possibly in hostile environments, will be composed of a
large number of interchangeable components discoverable at run-time, and will
have to run on a multitude of unknown and heterogeneous hardware and network
platforms. These computer systems will adapt themselves to cope with changes in
the operating conditions and to meet the service-level agreements with a minimum of
resources. Changes in operating conditions include hardware and software failures,
load variation and variations in user interaction with the system, including security
attacks and overwhelming situations. This self adaptation of next resilient systems
can be achieved by first online predicting how these situations would be by obser-
vation of the current environment. This chapter focuses on the use of online predicting

K. Gilly (B)

Universidad Miguel Hernandez, 03202 Elche, Spain
e-mail: katya@umh.es

F. Brosig · S. Kounev
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
e-mail: fabian.brosig@kit.edu

S. Kounev
e-mail: kounev@kit.edu

R. Nou
Barcelona Supercomputing Center, 08034 Barcelona, Spain
e-mail: ramon.nou@bsc.es

C. Juiz
Universitat de les Illes Balears, 07004 Palma, Spain
e-mail: cjuiz@uib.es

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 185
DOI: 10.1007/978-3-642-29032-9_9, © Springer-Verlag Berlin Heidelberg 2012

186 K. Gilly et al.

methods, techniques and tools for resilient systems. Thus, we survey online QoS
adaptive models in several environments as grid environments, service-oriented
architectures and ambient intelligence using different approaches based on queueing
networks, model checking, ontology engineering among others.

9.1 Introduction

New resilient systems have to consider QoS variations that occur and then react
to these changes online acting accordingly to maintain a certain Service Level
Agreement (SLA). Consequently, these systems need to predict these variations
found even at the risk of being wrong on a certain value.

Predictions are based on a model that has to be representative in the sense that
it reflects the system’s QoS-relevant behaviour. Typically, the user behaviour is
an input of such a model. Thus, the user behaviour has to be predicted as well
when obtaining model predictions to anticipate QoS problems. In the context of
performance predictions, user behaviour prediction is often referred to as workload
forecasting. For workload forecasting, established time series analysis techniques
[147] are often used. For instance, Brown’s quadratic exponential smoothing or
general AutoRegressive—Moving Average (ARMA) models have been implemented
in [194, 499].

Concerning online performance prediction, in [640, 642], the authors describe
a framework using analytic performance models in the design of self configurable
and self-managing computer systems. An general overview on performance models
that can be evaluated efficiently, is provided in, e.g., [125]. Typically, these models
are based on queuing networks and markov chains. A different approach is applied
in [588], where the online performance prediction is based on a machine-learning
approach.

In this chapter, we consider four different case studies in order to show how
online prediction could help in this way to the resilience of systems. The first case
study shows how detailed architecture-level performance models can be extracted
and maintained automatically at run-time based on on-line monitoring data. Even
though the current version of the extraction method is not 100 % automated, and
there are some prediction error yet, the case study demonstrated that the existing
gap between low-level monitoring data and high-level performance models can be
closed. In the second case, we augmented the Grid middleware with an online perfor-
mance prediction mechanism that can be called at run-time to predict the Grid perfor-
mance for a given resource allocation and load-balancing strategy, demonstrating the
benefits of online performance prediction for run-time performance management. In
the third example, we include an adaptive time slot scheduling based on a burstiness
metric, that permits to control the monitoring frequency of the system depending on
the burstiness levels detected by the algorithm. This means a considerable decrease
of the overhead of the monitoring process, whose frequency can be adapted to the
stress detected at the entry point of the system. This technique is used in the fourth

9 Online Prediction: Four Case Studies 187

Java EE Application

Stateless
EJB

WebLogic Server

JRockit
Java Virtual Machine

Operating System

Hardware

Monitoring
Data

Runtime
Analyzer

Data
Harvester

Model
Extraction

Tool

Palladio Component Model

Stateful EJB

Stateless
EJBMsgDriven

EJB

Instrumentation
Component

Fig. 9.1 Model extraction tool architecture

case to build an admission control and load balancing algorithm that is based on
throughput prediction for a Web system. These cases studies are just four individual
examples, but they illustrate how on-line predictions increase the resilience of any
kind of system performance problem. All of them are related one to the others, in
several ways that coincide with three general questions to face off during their design:
first, the necessity of gathering data from either monitoring or measurements in order
to predict the future; second, the dynamicity of the on-line decisions based on partial
temporal information and finally, the overhead of doing both procedures is the price
to be paid in order to get the on-line predictions. The challenge in all cases is how to
reduce overhead time as the QoS problem permits.

9.2 Automatic Model Extraction at Run-Time

As a proof-of-concept for automatic model extraction at run-time, we conducted a
case study with a complex Java EE application. The case study shows how detailed
architecture-level performance models can be extracted and maintained automati-
cally at run-time based on online monitoring data [150], The Java EE application we
considered was a beta version of the new SPECjEnterprise2010 standard benchmark.
We deployed the benchmark on Oracle WebLogic Server (WLS) and used the
WebLogic Diagnostics Framework (WLDF) as a monitoring and instrumentation
tool (Fig. 9.1). The considered architecture-level performance model was the Palladio
Component Model (PCM).

The PCM is a domain-specific modelling language for describing performance-
relevant aspects of component-based software architectures [96]. In PCM,
a component specification normally includes a definition of which interfaces the
component provides and requires together with a set of Resource Demanding Service
Effect Specifications (RDSEFFs). Each RDSEFF describes the performance-relevant

188 K. Gilly et al.

Fig. 9.2 Example: extracted RDSEFF

internal behaviour of a provided component service in an abstract manner. The control
flow and the resource consumption of the service can be modelled probabilisti-
cally as well as depending on the input parameters. Figure 9.2 shows a component
service’s RDSEFF in a notation similar to the notation of UML activity diagrams.
The RDSEFF consists of an internal action abstracting component-internal resource
demanding instructions, followed by a loop action containing a further internal
action and an external call action to a required service. The loop iteration number
of LoopAct_985 is specified as a probability mass function (PMF). The PMF
states that the loop iterates one time with a probability of 20 % and ten times with a
probability of 80 %.

The extraction method for Java EE applications was implemented using the WLDF
monitoring tool that is provided with Oracle WebLogic Server (WLS). The three main
steps of the model extraction process are: i) the extraction of the application archi-
tecture, ii) the extraction of performance-relevant control flow and iii) the extraction
of resource demands.

In the first step, the effective application architecture is extracted. The latter refers
to the set of components and connections between components that are effectively
used during operation. The components and connections are identified on the basis of
trace data reflecting the observed call paths during execution.Based on the call paths,
the effective connections among components can be determined, i.e., required inter-
faces of components can be bound to components providing the respective services. In
the second extraction step, the tracing technique is applied to extract the performance-
relevant control flow inside the components. We focus on monitoring the effective
control flow and therefore extract probabilities of different call paths in contrast
to extracting explicit parametric dependencies. Figure 9.2 shows an RDSEFF that
has been extracted from trace data generated by WLDF. To estimate the resource
demands of individual internal actions, we investigated two approaches: i) approx-
imate resource demands with measured response times, ii) estimate resource demands
based on measured utilization and throughput data. While the first approach is only

9 Online Prediction: Four Case Studies 189

Fig. 9.3 Validation of the scheduleworkorder performance models

applicable during phases of low resource utilization, i.e., <20 %, the second approach
can be applied during an observation period with medium to high load.

We applied the model extraction method to a beta version of the new SPECjEn-
terprise2010 benchmark. The benchmark workload is generated by an application
that is modelled after a real-world business scenario. We deployed the benchmark
in a system environment consisting of three machines. The JavaEE application was
deployed on an Oracle WebLogic Server (WLS) instance. As a database server (DBS),
Oracle Database 11 g was installed on the second machine. The benchmark driver
was running on the third machine. The machines all have Intel Pentium Dual Core
E2180 CPUs (2x2.0 GHz), 3 GB of RAM and are connected using a 1 GBit Ethernet.

To validate the extraction method, we compared predictions derived from the
extracted PCM models with measurements on the real system. We considered
two different models: i) Model A—PCM model in which resource demands were
approximated with measured response times, ii) Model B—PCM model in which
resource demands were estimated based on utilization and throughput data. We
analysed the extracted models my means of simulation [96]. As performance metrics,
we considered the average response times of business operations as well as the
average utilization of the WLS CPU and the DBS CPU. We analysed scenarios
under low load conditions, medium load conditions and high load conditions.

In the scenario we consider here, the workload consisted of the business operation
ScheduleWorkOrder. Figure 9.3 shows the results. Predictions based on Model B
perform slightly better than predictions based on Model A. For the highest considered
throughput level, both models deliver no performance predictions. This is because
the system as represented by the models is not able to sustain the injected load
since the WLS CPU utilization is overestimated to be 100 %. Both models overes-
timate the WLS CPU utilization while underestimating the DBS CPU utilization. The
modelling prediction error for CPU utilization is mostly about 20 %. The modelling
prediction error for response times increases with the throughput level. The higher
the CPU utilization, the bigger the impact of the overestimated WLS CPU demands
on the predicted response times. We assume that the overestimation of the WLS CPU
demands is due to the instrumentation overhead during resource demand extraction.

190 K. Gilly et al.

Fig. 9.4 Grid QoS-aware resource manager architecture

We considered a number of different scenarios, on the one hand, varying the
operation mix and throughput level under which the PCM models were extracted,
and on the other hand, varying the operation mix and throughput level for which
performance predictions were made. The extracted models consisted of up to six
components, eight RDSEFFs and 13 internal actions annotated with WLS CPU
demand or DBS CPU demand estimations [150]. The results were similar to the
ones presented here. The prediction error was between 20 and 30 %. Even though
the current version of the extraction method is not 100 % automated, the case study
demonstrated that the existing gap between low-level monitoring data and high-level
performance models can be closed.

9.3 Autonomic QoS-Aware Grid Resource Managers

As a second proof-of-concept demonstrating the benefits of online performance
prediction for run-time performance management, we conducted a case study of
a SOA application running in a service-oriented Grid computing environment [550,
691, 692]. The latter was implemented using the Globus Toolkit [349] middleware
which is based on open Web Services standards and can be seen as an incarnation
of SOA. We augmented the Grid middleware with an online performance prediction
mechanism that can be called at run-time to predict the Grid performance for a given
resource allocation and load-balancing strategy. The online performance prediction
mechanism was used as a basis for building a novel QoS-aware Grid resource manager
architecture depicted in Fig. 9.4. A resource manager is responsible for managing
access to a set of Grid servers each offering some Grid services. The resource manager
keeps track of the available Grid resources and mediates between clients and servers
to make sure that SLAs are continuously satisfied. Before a Grid server can be used,

9 Online Prediction: Four Case Studies 191

it must register with the resource manager providing information on the services
it offers, their resource requirements and the server capacity made available to the
Grid. The Grid server must provide an architecture-level performance model that
captures the information relevant to predicting the performance of the services it
offers. For a client to be able to use a service, it must first send a session request to
the resource manager. The session request specifies the type of service addressed, the
frequency with which the client will send requests for the service, and the required
average response time (SLA). The resource manager tries to find a distribution of
the workload among the available servers that would provide the requested QoS. For
each client session, a certain number of threads (from 0 to unlimited) is allocated on
each Grid server offering the respective service. Incoming service requests are then
load-balanced across the servers according to thread availability.

The resource manager considers different configurations in terms of thread
allocation and for each of them it generates a predictive performance model (more
specifically, a queueing Petri net model [546]) based on the architecture-level
performance models of the involved services. The generated model reflects the
current system environment in terms of available server resources and active client
sessions. The model is analysed through simulation and used to predict the perfor-
mance of the system in order to ensure that the client SLAs are satisfied. If no config-
uration can be found that satisfies the client SLAs, the session request is rejected or
a counter offer with lower throughput or higher response time is sent back to the
client.

We now present some experimental results that demonstrate the effectiveness
of the above approach. Three sample services each with different behaviour and
resource demands were run as part of the experiments. The services use the Grid to
execute some business logic requiring a given amount of CPU time. The business
logic includes calls to external (third-party) service providers which are not part of
the Grid environment. Figure 9.5 shows the results from an experiment in which 99
session requests were sent to the resource manager over a period of 2 h. The average
session duration was 18 min in which 92 service requests were sent on average. We
compare the behaviour of the system in two different configurations: i) with basic
overload control and ii) with QoS control. In the first configuration, the resource
manager simply load-balances the incoming requests over the Grid servers without
considering SLAs, however, requests that arrive during periods in which both Grid
servers are saturated are automatically rejected. In the second configuration, the
resource manager uses its online performance prediction mechanism as described
above to ensure that SLAs are satisfied. As we can see, without QoS control, the SLAs
of the majority of accepted sessions were not fulfilled, whereas with QoS control, the
response times of accepted sessions were much lower and all SLAs were fulfilled.
The experiment was repeated for a number of different workload configurations
varying the transaction mix, the average session length and the server utilization.
The results were of similar quality as the ones presented here and they confirmed the
effectiveness of our online performance prediction mechanism.

So far we have assumed that when a Grid server is registered with the resource
manager, information on the service resource demands (i.e., CPU service times) is

192 K. Gilly et al.

35

30

25

20

15

Sessions

Response Time SLA

Response Time with Overload Control

Response Time with QoS Control

R
es

po
ns

e
T

im
e

(s
ec

)

10

5

0

Fig. 9.5 Response time results for 99 sessions over a period of 2 h

provided as part of the supplied architecture-level performance models. In case the
resource demands are not known in advance, a simple method for estimating them
on-the-fly based on monitoring data can be used. The method, described in detail in
[691], is applicable for services with no internal parallelism. The method is conserv-
ative in that it starts with conservative estimates of the resource demands and refines
them iteratively as requests are processed. We consider three different configurations
in an experiment with 85 sessions over a period of 2 h: i) Basic overload control;
ii) QoS control with resource demands available in advance; iii) QoS control with
resource demands estimated on-the-fly.

The experiment was conducted in a virtualised setup with 9 Grid servers. Table 9.1
presents a break down of the client sessions into: i) sessions for which the client SLA
was observed, ii) sessions for which the client SLA was violated and iii) sessions that
were rejected by the resource manager. Without QoS control, 96 % of the requested
sessions were admitted, however, the client SLAs were observed in only 22 % of
them. In contrast to this, in all configurations with QoS control, the SLAs were
observed for nearly 100 % of the accepted sessions. Indeed, only two sessions had
their SLAs violated and the violation was by a tiny margin. The price for estimating
resource demands on-the-fly was that 14 sessions more were rejected which amounts
to 16 % of the total number of sessions.

Finally, we extended the resource manager architecture to support adding Grid
servers on demand as well as dynamically reconfiguring the system after a server
failure. Whenever the QoS requested by a client cannot be provided using the
currently available server resources, the extended algorithm considers to launch an
additional server to accommodate the new session. At the same time, each time a

9 Online Prediction: Four Case Studies 193

Table 9.1 Summary of
session SLA compliance

Configuration SLA fulfilled SLA violated Rejected

1 19 63 3
2 46 2 37
3 34 0 51

server failure is detected, the resource manager reconfigures all sessions that had
threads allocated on the failed server. Existing sessions might have to be cancelled in
case there are not enough resources available to provide adequate QoS. The extended
algorithm was subjected to an extensive experimental evaluation the results of which
are available in [691]. The results showed that adding servers on demand does not
have a significant impact on the performance of the resource manager despite of the
decreased flexibility in distributing the workload.

9.4 Adaptive Time Slot Scheduling

The advantages of predicting the performance of a system online can also be
applied to generic distributed algorithms. As a third proof-of-concept we include
an adaptive time slot scheduling based on a burstiness metric, that permits to control
the monitoring frequency of the system depending on the burstiness levels detected by
the algorithm. This means a considerable decrease of the overhead of the monitoring
process, whose frequency can be adapted to the stress detected at the entry point of
the system.

Considering a locally distributed cluster-based Web information system, a funda-
mental aim is the monitoring of some Web servers’ parameters in an adaptive way in
order to reduce the algorithm overhead. Some of the Web servers’ parameters likely
to be monitored are the arrival rate, the CPU/disk utilization, I/O performance, etc.
The performance of the nodes that compound the Web system have to be monitored
continuously in order to know their status and make the appropriate decisions in
case of overload to avoid a possible congestion situation. This can be done in several
ways: (i) each time a request arrives at the front-end of the Web system; (ii) at
fixed times by using static time slot scheduling; or (iii) at non-fixed times by using
dynamic time slot scheduling. The overhead introduced by option (i) is the biggest
because each time a request arrives at the Web system, Web node parameters are
monitored. While option (ii) introduces a constant overhead, option (iii) monitors
the system at non-fixed intervals, hence, its overhead will depend on the frequency of
those intervals. The drawback of defining monitoring in a constant duration interval
schedule (option (ii)) is the choice of monitoring time interval. It is very difficult
to set a duration interval that fits with all possible Internet arrival rates at the Web
system due to its heavy tailed pattern.

We have considered six different approaches to define burstiness factors in order
to compare their behaviour and detect their benefits or drawbacks under the same

194 K. Gilly et al.

Fig. 9.6 Arrival rate and burstiness factors: a BF1; b BF2; c BF3 with j = 3; d BF3 with j = 4;
e BF3 with j = 10; f BF4 with j = 3; g BF4 with j = 4; h BF4 with j = 10; i BF5; j BF6

circumstances. All the burstiness factor values are defined in [0, 1]. The precise
definition of the burstiness factors can be found in [379]. Instead of defining them
formally, let us describe them visually in Fig. 9.6, where the arrival rate to the system
is also shown.

Burstiness Factor 1 (BF1) smooths the arrival rate curve. Figure 9.6a illustrates
that it follows the arrival rate but does not accurately represent its quick variations.

9 Online Prediction: Four Case Studies 195

We consider that the burstiness factor should alert the system as quickly as possible
of an increase in the arrival rate, and this factor increases or decreases along with the
increasing or decreasing arrival rate trend but very slowly and delayed.

We propose the direct inclusion of the arrival rate value in the burstiness factor in
the next proposal, as a way to modify it quantitatively. Figure 9.6b shows that, in this
case, BF2 also varies with the variations of the arrival rate. Nevertheless, there are
some peaks in the arrival rate that are not followed by the factor. In the next proposal
we introduce a penalisation when detecting a consecutive number of bursty slots.

Figure 9.6c–e represent the results obtained with BF3 and a record of 3, 4 and
10 slots, respectively. It can be observed that as the number of slots considered
increases, the burstiness factor penalisation also increases. We need to check if this
penalisation leads to an increase in the system performance or otherwise, decreases
its performance because of an overreaction to the arrival rate.

The BF4 values are shown in Fig. 9.6f–h, representing the results obtained with
a maximum record of 3, 4 and 10 slots. We can observe that the resulting curves
of BF4 are similar to the BF3 curves, but in this case the burstiness factor is also
sensitive to changes in the arrival rate.

Figure 9.6i shows the results obtained with this burstiness factor and the resulting
curve can be observed as being even smoother than the one obtained from the original
BF1.

In Fig. 9.6j, it can be observed that the BF6 curve does not accurately follow the
arrival rate changes. The BF6 curve decreases in some points of Fig. 9.6j when the
arrival rate curve increases. The main drawback of this burstiness factor is the fact
that its calculation is made for each incoming HTTP request and then it needs a huge
computational effort, which leads to a considerable overhead compared to the other
proposals.

In order to define the adaptive time slot scheduling, we divide the total observation
time T of the experiment in several slots of variable duration. While the experiment
is simulated, the duration of the slot changes based on the value obtained by the
burstiness factor. Hence, the duration of the slot k + 1 is dependent on the burstiness
of the two previous slots, b(k) and b(k − 1), as follows:

d(k + 1) = d(k)

1 + b(k) + b(k − 1)
, if b(k) ≥ b(k − 1) (9.1)

d(k + 1) = d(k)

1 + b(k) − b(k − 1)
, if b(k) < b(k − 1)

Therefore, the number of slots defined during the simulation time is also variable.
We can calculate the total number of slots that divide the observation time T during
each slot. Considering the duration of the slot k + 1, the frequency of slots is defined
as:

e(k + 1) = T

d(k + 1)

196 K. Gilly et al.

10
20

30
40

50

A
rr

iv
al

 r
at

e
(r

eq
/s

)

0.
40

0.
45

0.
50

B
ur

st
in

es
s

fa
ct

or

800 900 1000 1100 1200 1300 1400

9.
4

9.
8

10
.4

Time (s)

S
lo

t d
ut

at
io

n
(s

)
Arrival rate (req/s)
Burstiness factor

zoom

Slot number: k

Duration (s): d(k)

Detail of some slots:

 100 101 102 103 104 105 106

 9.66 9.62 9.58 9.54 9.50 9.46 9.42

Fig. 9.7 Arrival rate monitored following adaptive time slot scheduling and detail of some of the
slots using the BF1

As the duration of the following slot is defined by the value of the burstiness factor
on the current slot, when a burstiness increase is detected, the following testing time
is brought nearer in order to check the incoming arrival rate early enough and then
tune again the algorithm parameters. If a decrease in burstiness is perceived, the
duration of the following slot is enlarged to reduce the overhead. By controlling the
burstiness in the arrival rate, and then the duration of testing slots, a sudden reduction
in the future performance of the Web servers may be forecasted.

An example of adaptive time slot scheduling is depicted in Fig. 9.7. In the upper
part of the figure the arrival rate and the burstiness factor curve are drawn following
adaptive time slot scheduling. As the arrival rate increases from time instant 910 s,
the burstiness factor also increases. We have used BF1 to illustrate burstiness factor
behaviour in this case. Below this figure, the slot duration is represented in another

9 Online Prediction: Four Case Studies 197

Fig. 9.8 Adaptive admission
control and load balancing
algorithm overview

Algorithm invocation time - slot k

2) Get throughput,CPU utilisation and service
 time monitored values from server nodes

3) Predict the throughput of the next slot k+1

4) Predict the utilisation of the next slot k+1

5) Allocate the resources based on the SLA
 for the next slot k+1

A
pp

ly
 th

e
ad

m
is

si
on

 c
on

tr
ol

 a
nd

 lo
ad

ba
la

nc
in

g
de

ci
si

on
s

til
l t

he
 n

ex
t s

lo
t

1) Compute the burstiness factor of slot k

6) Compute the duration of the next slot k+1

scale. It can be observed how the duration of the slots decreases when the arrival rate
increases. Some slots have been zoomed in to detail the decrease of their durations.

The adaptive time slot scheduling has been implemented in an OPNET Modeler
scenario and the complete simulation results can be found in [379].

9.5 Admission Control and Load Balancing Algorithm

In this section we want to describe an admission control and load balancing algorithm
that is based on throughput prediction for a Web system as a fourth case study of
online prediction. The invocation times of the algorithm are planned based on the
adaptive time slot scheduling described in previous section.

This algorithm is adaptive because it is invoked adaptively depending on the
arrival rate. Each time it is invoked, some computations need to be done in order to
take the admission control and load balancing decisions that will remain till the next
invocation. The period of time between invocations is considered a slot.

Figure 9.8 depicts the general steps that are taken by the algorithm. Once the
burstiness factor has been computed and the monitored throughput, CPU utilisation
and service time values obtained from the server nodes, the throughput that the nodes
will get during the next slot is predicted. Five throughput predictors are defined in
order to give us the trend of the system behaviour. These predictors permit the

198 K. Gilly et al.

algorithm to take decisions about the distribution of the load in the Web system to
maintain the performance of the system independently of the congestion level of the
server nodes. Different classes of requests with different priorities are considered
in this work. Depending on the priority of each request, we set a fraction of the
utilisation of the whole Web system to be used by that request class. The SLA of
the requests is defined in terms of CPU utilisation of the Web servers. Therefore,
we consider a set of classes, C = {c1, c2, . . . , cr }, and define for them a normalised
utilisation value in a decreasing order. Hence, the class of requests that represent c1
have more priority than the class c2, and so on. Finally, the resource allocation policy
establishes how the utilisation of the server nodes is assigned to attend each class of
requests that may arrive to the Web system.

The system architecture proposed is based on Web cluster-based network servers
and includes a front-end Web switch. A layer-7 Web switch is normally described as a
content-aware switch that can de-encapsulate the requests up to the application level
and classify them on the basis of this information, but it can easily be the bottleneck of
the Web system. This problem is easily solved by transferring the request distribution
mechanism to the back-end nodes and replacing the content-aware Web switch with
a content-blind Web switch.

The cluster of Web servers is locally connected to the Web switch in a two-tier
organisation (Web server and App/DB server), as it is shown in Fig. 9.9. We have
considered five sets of Web and App/DB servers. Each Web server attends the requests
that ask for static files, namely static requests and the App/DB server is accessed
when the request asks for a Web page that needs to retrieve dynamic content (dynamic
requests).

The six throughput predictors (P1–P6) are defined and completely detailed in
[380]. We have implemented our algorithm in the simulation tool OPNET Modeler
which facilitates accurate simulation of the layers of the TCP/IP stack. We consider
two different service classes, named c1 and c2, in all the simulations. Each service
class contains two types of applications: one that asks for dynamic content and
another that asks for static content. Static requests are attended by the Web servers
while dynamic requests require access to the App/DB server.

As an admission control algorithm is going to be tested, we need to overload the
system. The workload is generated in the Web system by 30, 40, 50, 60, 70, 80, 90
and 100 Web clients, as we are interested in stressing the system to test the algorithm
with an increasingly high workload. So, the Web system starts rejecting requests
when it is overloaded.

We configure two workloads in order to test the algorithm more accurately. Both
are basically the same, the only difference is in the user think time. In Fig. 9.10, we
can observe that the arrival rate increases up to 350 Web requests per second for 100
clients during these 30 s periods.

The response time of dynamic requests, represented in Fig. 9.11, is more meaningful
than the one obtained by static requests because the App/DB servers are more
congested with the increase of traffic. If we analyse the case of Workload 1 in
Fig. 9.11a, we can note some differences among the response time obtained by the
predictors. Focusing on the last case, 100 clients, we can detect that the predictors

9 Online Prediction: Four Case Studies 199

Web clients

HTTP
requests

Web Cluster System

Internet

Load
Balancer

.

.

.

.

.

.

Web Servers Back-End Servers

Router

HTTP
responses

Fig. 9.9 The Web architecture is made up of several mirrored Web servers and their corresponding
database servers. The model architecture is one-way, which means that the incoming HTTP requests
go through the front–end node but their HTTP responses use a different way to prevent a system
bottleneck in this node

Fig. 9.10 Workload 1 and
Workload 2 generated by 100
clients

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

W
eb

re
qu

es
ts

re
ce

iv
ed

/s

Workload 1 Wokload 2

Time (s)

P1, P2 and P3 obtain a higher response time than predictors P4 and P5. This is also
depicted in Fig. 9.11b, which represents the response time for Workload 2. We can
also observe that the maximum response time for both workloads is around 2.5 s, that
means that our algorithm achieves an extra goal, that is the limitation of the response
time regardless of the amount of traffic arriving to the system. The predictor that
shows a good response time and the most stable behaviour is P4, as P5 shows some

200 K. Gilly et al.

Fig. 9.11 95th percentile of
the response time for dynamic
requests: a Workload 1; b
Workload 2

(a)

(b)

variability in 70, 80, 90 and 100 clients for Workload 1. We can also observe that
there is not any differentiation in the response times obtained by class-1 and class-2
traffic, as we do not distinguish different queues in the Web and App/DB servers in
order to keep the approach simple.

The response time of dynamic Web pages obtained from the simulations leads
us to the conclusion that P4 is the most suitable predictor for our admission control
and load balancing algorithm. However, we would like to remark that the predictors
P1, P2 and P3 do also obtain good performance results and that have an important
advantage: they are easily obtained from the throughput of the two previous slots and
that do not need a record of more previous slot throughput values as predictors P4 and
P5, which are more complicated to compute (please, see [380] for more information).

9 Online Prediction: Four Case Studies 201

Number of clients

30

34
35

ut
ili

sa
tio

n
C

2
(d

yn
)

ut
ili

sa
tio

n
C

1
(d

yn
)

36
37

38
35

45
55

65

40 50 1009080

P1
P2 P4

P5P3

P3_per

P1
P2 P4

P5P3

P3_per

7060

Fig. 9.12 95th percentile of the App/DB server utilisation for dynamic requests

In order to show the benefits of the adaptive time slot scheduling (described in
previous Section), the algorithm has been configured to be executed on a fixed time
slot scheduling. The predictor chosen for these simulations is P3. The workload
chosen for this comparison is Workload 2.

The 95th percentile of the App/DB server utilisation is represented in Fig. 9.12.
The results obtained when invoking the algorithm periodically are named as “P3_per”
in the figure. Here we observe that the utilisation level of the App/DB servers is lower
for P3_per in the first points of the x-axis of the graph. In the case of class-1 traffic,
the servers seem to be less loaded for 30, 40 and 50 clients with P3_per. The case of
30 clients also reaches a lower utilisation level for class-2 traffic.

However, if we analyse the P3_per utilisation level of class-2 traffic after 40 clients,
we can also observe that it is slightly greater that the rest of the simulations. In fact,
this indicates to us that the fixed time slot scheduling introduces some errors in the
utilisation level reached for each traffic class. That also means that the algorithm is
less accurate in its reservations and that the SLA is less guaranteed.

9.6 Conclusion

Although the use of online prediction methods and techniques are not yet generalised
to all systems, it is clear that resilient systems should consider different strategies
to ensure a certain QoS, despite failures, overwhelming services and other inconve-

202 K. Gilly et al.

niences that usually occur at run-time. In this chapter, we have tried to show through
four practical examples how to use simple tools to bring interesting benefits, thanks
to online predictions. However, it is much research in this direction, especially in
finding common methodologies for building resilient systems considering the online
prediction of the future and react accordingly by adjusting the prediction over time.
These methodologies should consider not only the techniques presented here but
other appropriate to each level of design abstraction and at each layer of the system
during operation. We hope these four case studies illuminate the reader about these
possibilities.

Acknowledgments The work of Samuel Kounev was partially funded by the German Research
Foundation (DFG) under grant No. KO 3445/6-1. The work of Carlos Juiz was partially funded by
the Spanish Ministry of Science and Technology under grant TIN2007-60440.

Part IV
Measurement and Metrics

Chapter 10
Foundations of Metrology in the Observation
of Critical Systems

Andrea Bondavalli, Andrea Ceccarelli, Lorenzo Falai
and Michele Vadursi

Abstract The scientific literature as well as the industrial practice shows that the
observation of a system when it operates in its real environment is a common and
attractive option to obtain highly accurate measurements of the system’s performance
and monitor its behavior. Methodology and tools for the performance evaluation and
monitoring of distributed systems can successfully take advantage of the method-
ological approach and the mathematical tools and techniques which are typical of
metrology, the science of measurement. We approach metrology from the perspec-
tive of an expert in evaluation and monitoring of critical systems, and we address the
issues of the importance and of the concrete applicability of the main practices and
notions from metrology to the observations of dependability properties of critical
systems. We review the foundations of measurement theory and analyze the aware-
ness of such concepts in the observations of critical systems, and the main open
research challenges in this area.

A. Bondavalli (B) · A. Ceccarelli
University of Firenze, Viale Morgagni 65, I-50134
Firenze, Italy
e-mail: bondavalli@unifi.it

A. Ceccarelli
e-mail: andrea.ceccarelli@unifi.it

L. Falai
Resiltech S.R.L. Piazza Nilde Iotti 25,
I-56025 Pontedera (Pisa), Italy
e-mail: lorenzo.falai@resiltech.com

M.Vadursi
University of Naples, “Parthenope” Centro Direz. Is. C4,
I-80143 Naples, Italy
e-mail: michele.vadursi@uniparthenope.it

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 205
DOI: 10.1007/978-3-642-29032-9_10, © Springer-Verlag Berlin Heidelberg 2012

206 A. Bondavalli et al.

10.1 Introduction

The past years have seen a growing interest in methods for studying the behavior of
computer-based systems. The scientific literature, as well as the industrial practice,
shows that measuring resilience and dependability attributes is a key issue: in par-
ticular, experimental measurement is an attractive option for evaluating an existing
system or prototype, because it allows observing the real execution of the system in
its real environment to obtain highly accurate measurements of the system.

Performing measurements on computing systems in their real operating environ-
ment is useful in several contexts. It is done mainly to achieve two goals:

• to monitor their actual behavior (e.g., to on-line react to events);
• to evaluate their behavior (e.g., to quantitatively assess a system).

In both these contexts, the more accurate the observation of the system is, the
more reliable the collected results are, and the more effective the decisions that can
be consequently taken. In fact,

• in on-line monitoring, it is possible to react in a more appropriate way;
• in the performance evaluation, it is possible to take (off-line) decisions, on the

basis of more accurate information.

The observation of systems is typically performed relying on tools. Tools that are
used to experimentally assess and monitor resilience and dependability properties of
critical systems should be treated for what they really are: measurement instruments.
Methodology and tools for evaluation and monitoring of systems, and especially
distributed systems (which respect to the centralized ones they typically suffer of
additional challenges for their observation as increased complexity and absence of
central control), can thus successfully take advantage of the methodological approach
and the mathematical tools and techniques which are typical of metrology, the science
of measurement.

First of all, since measuring a quantity (the measurand) consists in quantitatively
characterizing it, a clear and univocal definition of the measurands is of uttermost
importance. Metrology has developed theories and good practice rules to make mea-
surements, to evaluate measurements results and to characterize measuring instru-
ments. The main metrological properties (uncertainty, repeatability, resolution and
intrusiveness) should be precisely identified in each methodology (and supporting
tool) for experimental assessment and monitoring of resilience and dependability
properties of computing system.

In a similar way, the results obtained using a tool should include uncertainty
evaluation and, when comparing results achieved through different measurement
methods, compatibility of measurement results should be assessed.

Dependability and resilience measurements on computing systems involve a wide
variety of measures, from discrete measures, such as number of source code lines,
packet size in packet-switched networks, to continuous measures which include
delays experienced in an end-to-end connection, quality of clock synchronization,

10 Foundations of Metrology in the Observation of Critical Systems 207

quality of service metrics, etc. A closer look at this class highlights the crucial role
of time measurements: dependability-related measurements are very often based
on time measurements, for example because the measurand is a time interval, or
because the measurement result is obtained through indirect measurements based on
timestamps.

Issues with the way measurement is applied in assessing computer dependability,
and the need for giving practice a better theoretical basis, were first raised with
respect to software reliability assessment. Problems were identified separately in
two communities of research and practice: software reliability [149] and software
metrics [334]. There were three sets of inter-related issues: confusion about the
meaning of a measure (leading for instance to redefining software “reliability” as
a count of bugs in a piece of code, or to seeking scalar measures for inherently
multi-dimensional attributes), confusion between problems of measurement and of
prediction (leading for instance to naïve methods for inference from observed failures
to future reliability), and insufficient fitness for purpose of the metrics [335].

More recently, the problem of awareness of measurement theory in evaluating
dependability attributes of computing systems has been raised [128]. In the paper,
a set of well-known tools for experimental assessment of dependability, and papers
describing results of experimental evaluations are analyzed, identifying whether and
to what extent the most important metrological properties and attributes, which will
be explained in the next section, namely uncertainty, repeatability, resolution, intru-
siveness and results compatibility, are taken into account. Up to now, it is the only
document that presents a deep state-of-the-art in this area.

Considering the metrology research community, some works on the performance
assessment of distributed measurement systems and computer networks, mainly in
terms of the evaluation of some specific network parameters (e.g., one-way delay,
packet loss ratio, jitter) have been published [43, 44, 88]. Some papers concerning
fault diagnosis in electronic and automotive systems and some others related to
the design of distributed measurement systems for specific applications, such as
power quality measurements, are also available in the literature [415, 558, 898].
Nevertheless, the problem of measuring and assessing resilience of critical systems
with a strict and systematic metrological approach has never been faced.

A methodological approach for the observation of critical systems is thus needed.
In distributed systems things are even more complex, for the lack of central control,
and for the difficulties in obtaining a precise global time and an accurate view of
the global state of the system. Dependability issues are very rarely addressed in the
major conferences and scientific journals in the area, and resilience is practically not
considered at all.

In the following we investigate the awareness and correct application of the main
metrological concepts in literature when designing tools and experiments for the
assessment of dependability and resilience properties.

A complete presentation of the basic concepts and definitions in metrology science
can be found in [493].

The rest of the work is organized as follows. In Sect. 10.2 we focus on the main
results in the dependability community regarding the problem of awareness and

208 A. Bondavalli et al.

applications of measurement theory; results of this section greatly overlap with the
ones presented in [128]. In Sect. 10.3 some papers involving dependability and re-
silience issues, included in the major Instrumentation and Measurement conference
proceedings and journals are enlisted, and the way dependability and resilience are
defined and studied is discussed. In Sect. 10.4 we conclude the paper highlighting
which are the main open research challenges of this area.

10.2 Awareness of Metrology in the Academic Dependability
Research Community

In a recent paper, the authors catalogue tools and experiments on the basis of the
characteristics of the systems on which the tools were executed or the experiments
were performed [128]. The identified classification is the following: real-time/non
real-time systems, centralized/distributed systems, safety critical/non-safety critical
systems.

Before discussing the results of such classification, we briefly introduce the main
metrological properties considered there (uncertainty, intrusiveness, resolution, re-
peatability):

• It is well known that any measurement system perturbs the measurand, determin-
ing a modification of its value. Minimizing such perturbation, that is minimizing
the system’s intrusiveness, is therefore desirable when designing a measurement
system.

• Resolution is the ability of a measuring system to resolve among different states of
a measurand. It is the smallest variation of the measurand that can be appreciated,
i.e., that determines a perceptible variation of the instrument’s output.

• Repeatability is the property of a measuring system to provide closely similar
indications in the short period, for replicated measurements performed i) indepen-
dently on the same measurand through the same measurement procedure, ii) by
the same operator, and iii)in the same place and environmental conditions.

• Uncertainty provides quantitative information on the dispersion of the quantity
values that could be reasonably attributed to the measurand and it has to be included
as part of the measurement result. Ref. [492] contains a comprehensive guideline
for the evaluation and the expression of uncertainty in measurements.

It is important to observe that uncertainty is not just something that should be
evaluated a posteriori. On the contrary, it is advisable (if possible) to design the
measurement system and procedure to keep uncertainty below a given threshold
(target uncertainty) [613].

Table 10.1 describes the importance of several metrological properties for the
different categories of systems introduced above. Accordingly, it also describes the
most important metrological properties that should be considered when measurement
tools that shall provide reliable results are designed. A rank of the importance of

10 Foundations of Metrology in the Observation of Critical Systems 209

Table 10.1 Relevance of main metrological properties in measuring different kinds of systems
System Topology Uncertainty Intrusiveness Resolution Repeatability

Centralized Non R-T Non-Crtitical Recomm. Recomm. Recomm.
Centralized Non R-T Non-Crtitical Recomm. Recomm. Recomm. Recomm.
Centralized Real Time Non-Crtitical Mandatory Mandatory Recomm.
Centralized Real Time Non-Crtitical Mandatory Mandatory Mandatory Recomm.
Distributed Non R-T Non-Crtitical Recomm. Recomm.
Distributed Non R-T Crtitical Recomm. Recomm. Recomm.
Distributed Real Time Non-Crtitical Mandatory Mandatory Recomm.
Distributed Real Time Non-Crtitical Mandatory Mandatory Recomm. Recomm.

assessing metrological properties in each configuration is provided by classifying
properties as “Recommended” or “Mandatory”.

Looking at Table 10.1, intrusiveness is considered a parameter of fundamental im-
portance in the evaluation of computing systems, in particular for real-time systems:
a tool being able to collect sufficiently reliable data in a non real-time environment,
may collect unreliable data in a hard real-time environment.

Intrusiveness is thus particularly critical in hard real-time systems, where timing
predictability may be altered by the additional overhead of monitoring tasks, or other
mechanisms e.g., fault injection probes.

Intrusiveness and uncertainty are related to each other since intrusiveness has
consequences on uncertainty. This explains why in Table 10.1 all the rows in which
intrusiveness is mandatory exhibit the same importance for uncertainty.

Time resolution may be critical in real-time systems since it needs to be much
lower than the imposed time deadline to allow useful quantitative evaluations of time
or dependability metrics. In computing systems, it can be generally assumed that the
resolution of the time interval measurements is equal to that of the clock used in the
experiment. In a centralized context it can happen that resolution is of the same order
of magnitude of the measure, and it is thus of great importance to evaluate it. On the
other hand, when experiments are performed on distributed systems, uncertainty is
usually far greater than resolution; in such cases, the evaluation and the control of
resolution may be less crucial.

Repeatability is often not achievable when measurements are carried out on com-
puter systems. In fact it can be hard to guarantee the same environmental conditions,
especially in distributed systems, where differences among local clocks, in addition
to the problems of thread scheduling and timing of events, enormously increase the
difficulty of designing repeatable experiments.

The difficulty of reaching a satisfactory level for repeatability has been taken
into account in some of the surveyed papers, but the ability to design repeatable
experiments is generally occluded by limits on accurate time stamping.

Conclusive remarks from the work surveyed in [128] are that in general a full
awareness of all metrological properties is lacking, and an exhaustive analysis of
measurement parameters is performed only in a few cases. There is a wide-spread

210 A. Bondavalli et al.

consciousness of the importance of intrusiveness, but there are few efforts that try to
evaluate it with a rigorous approach. Regarding resolution, it is frequently not con-
sidered, even if it is usually the easiest parameter to estimate: the reason is probably
that it is often considered not important, at least if compared with intrusiveness and
uncertainty.

Moreover, the approach followed to quantitatively assess algorithms and systems
is not univocal, but generally varies from a paper to another, making the comparison
among different results quite difficult, if not meaningless (in the surveyed tools and
experiments, results are never dealt with in terms of compatibility).

10.3 Resilience Measurement, Assessment and Benchmarking in
the Field of Academic Metrology Research

A survey of the most important and representative world congresses and international
journals in the metrology field shows that the concept of dependability and resilience
are not commonly addressed in the metrology research community.

Some years ago, in the most important conference of the field, IEEE Instrumen-
tation and Measurement Technology Conference (IMTC), a paper was presented,
which analyzed some possible failures of a distributed measurement or control
architecture [88]. The paper was still preliminary, as it only took into considera-
tion reliability of the measurement system, and seems to have had no continuation.
In 2005, the editor of the IEEE Instrumentation & Measurement Magazine, wrote
a short article, entitled “Dependability”, introducing some basic dependability con-
cepts to the instrumentation and measurement community [353]. He focused on
dependable (electronic) system design, and stressed the role of testing. The fact that
such a “general” article is so recent and practically has had no evolution gives an idea
of how little is the penetration of dependability concepts in the metrology research
community.

Even less spread is the concept of resilience. In the very few cases in which the
word resilience is mentioned, it either refers to a very specific concept [415] or it is
not well defined [558, 898].

In particular, the work in [415] deals with the error resilience of some compressed
codes used for telecommunication device testing. Error resilience is defined as the
capability of a compressed test data stream, which is transferred from automatic test
equipment to the device under test, to tolerate errors. The effects of errors, such as
bit flips, on the test data are analyzed and error resilience is evaluated.

In [898], the authors analyze the resilience of hard disks to vibrations. In this
case, resilience of the hard disk was not clearly defined, but they simply checked if
vibrations prevent the hard disk from transferring data; in other words, by hard disk
resilience it is meant the ability to complete data transfer. What is interesting, the
authors pay much attention to be as less intrusive as possible when experimentally
measuring resilience.

10 Foundations of Metrology in the Observation of Critical Systems 211

Also in [558], the authors present a theoretical model to calculate the perfor-
mance/resilience of optimized multipath routing in variable network topology. They
deal with resilience of routing algorithms, but again do not clearly define what they
mean by resilience.

10.4 Conclusions: Recent Advances and Open Research
Problems

The previous analysis has focused mainly on time-related dependability and
resilience attributes. While time appears the most critical factor, many algorithms
may have additional continuous attributes other than time that may suffer from
the unawareness of the metrological properties previously described (e.g., location
algorithms, which suffer from space uncertainty).

The results of the survey presented in [128] show that some general awareness
about some metrological issues is indeed present, but the followed approaches are
quite intuitive, and usually quite incomplete, as well. In particular, there is a lack of (i)
a common systematic approach, (ii) wide-spread studies on feasibility of repeatable
experiments, and (iii) diffusion of comparable results.

A preliminary result in the field of designing tools for measuring dependability
properties of distributed systems is [329], where the author defines a conceptual
framework for experimental evaluation and monitoring activities that supports a
rigorous (from a metrological point of view) observation of distributed systems.

Most recently, a paper has appeared in the most relevant journal of the Instru-
mentation and Measurement community [129]. It presents a tool for dependability
measurements in distributed systems that is capable of evaluating the uncertainty of
measurement results based on distributed time measurements, and can consequently
discard the results characterized by the largest uncertainty. After synthesizing the
results of the survey presented in detail in [128], which has constituted the starting
point for the development of the new tool, the paper describes the tool and includes
the results of two case studies.

In conclusion, we can say that some awareness on the importance of making
measurements and assessments on critical systems and comparing their results in a
rigorous and fair way, according to the best practices and the theoretical findings of
metrology is spreading, but still not as largely as it should. There is still much to do
in this way, and probably we may succeed if we put the accent on the usefulness and
fairness of such an approach.

Acknowledgments This work has been partially supported by the European Community through
the Coordination Action FP7-ICT-216295 (AMBER - Assessing, Measuring and Benchmarking
Resilience).

Chapter 11
Field Studies on Resilience: Measurements
and Repositories

Joao Duraes, José Fonseca, Henrique Madeira and Marco Vieira

Abstract This chapter is devoted to field studies and the aspects related to this kind
of measurements. The importance of measurements collected from the operational
scenarios is discussed, and two case studies are presented. Field measurements are
closely tied to data repositories, and this chapter presents an overview of some field
data repositories available to the public.

11.1 Introduction

Field measurements refer to observations of systems in the operational phase, i.e.,
systems that are actually in use. The results obtained from these observations have
the very important characteristic of being realistic: the operation conditions and envi-
ronment, and the workload are not mere experimental approximations. Very often,
field studies are not representative as there is no guarantee that all possible, impor-
tant system configurations have been observed. Nevertheless, field measurements
and field data are a unique and very important source of information for researchers
when studying resilience properties, such as availability, reliability and robustness.

J. Duraes (B)

DEI/CISUC, Polytechnic Institute of Coimbra, 3030-290 Coimbra, Portugal
e-mail: jduraes@isec.pt

J. Fonseca
DEI/CISUC, University of Coimbra & UDI, Polytechnic Institute of Guarda,
3030-290 Coimbra, Portugal
e-mail: josefonseca@ipg.pt

H. Madeira · M. Vieira
DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal
e-mail: henrique@dei.uc.pt

M. Vieira
e-mail: mvieira@dei.uc.pt

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 213
DOI: 10.1007/978-3-642-29032-9_11, © Springer-Verlag Berlin Heidelberg 2012

214 J. Duraes et al.

There are basically two main driving forces behind the collection of field data:
development and research. The first is committed to the improvement of specific
systems and to solve problems on those specific systems that are discovered during
the operational phase. The second driving force aims to understand the issues related
to systems reliability and dependability and to propose new techniques to increase
the reliability of non-specific (non vendor-specific) systems. A third driving force
is a market-driven one, to promote awareness of a given product (e.g., network
providers, such as sprint and AT&T, publish their performance and dependability
data to promote the company and attract new customers). However, the first two
driving forces are those more relevant to research works.

The research driving force, although not tied to specific vendors or industry goals,
is necessarily dependent on the existence of data. These data is mainly that which
was collected by users or operators and is not related to any research goal. Thus,
so far, the main origin of field data is the occurrence of incidents. This fact has an
overwhelming impact on the nature of the available data, which is mainly related
to computer failures and security incidents. To demonstrate the importance of field
measurement and what can be achieved, in this chapter we present two case studies:
the first on software faults and the second related to security vulnerabilities.

The most complex and error prone components of computer-based systems are the
software. Understanding software faults is essential to devise mechanisms to mitigate
faults existing in software. Thus, the first case study presented in this chapter is a
field study on software faults aimed at the characterization of software faults for
emulation and fault injection purposes.

Security issues are currently one of the major concerns surrounding software
systems. Networking is one of the scenarios that most exposes a system to the general
public and potential malicious users and attacks, representing a high relation with
security-related incidents. Web-based systems are currently the basis of the majority
of network-enabled systems. The second case study presented is thus related to
security vulnerabilities.

Although field data (field measurements) are highly relevant to the research com-
munity to understand and improve computer-based systems robustness, reliability
and security, the availability of such data remains hard to guarantee. The few data
available are based on open-source projects and published research works. The impor-
tance of field data is widely recognized among researchers as shown in workshops
such as RAF07: Reliability Analysis of System Failure Data organized by Microsoft
Research in Cambridge and Darmstadt University in 2007. Each open-source devel-
opment team or research team presents its own data and its own view. One important
initiative to mitigate the scarcity and fragmented view of field data is the development
of public repositories, to store data and results based on that data originating from
many sources and teams. We include in this chapter a brief overview of available
data repositories.

The outline of the chapter is as follows. Section 11.2 presents a field study on
software faults. Section 11.3 presents a field study on security vulnerabilities. An
overview of field data repositories is presented in Sect. 11.4. Section 11.5 concludes
this chapter.

11 Field Studies on Resilience: Measurements and Repositories 215

11.2 Case Study 1: Field Data on Software Faults

This section presents a field study on real software faults. This case study was con-
ducted to understand the nature of faults, and to obtain a classification scheme usable
for fault injection. Injecting faults is a time-proved method of validating fault tolerant
mechanisms and assess system robustness. Given the relevance of software faults,
it is very relevant to be able to inject software faults. The usefulness of fault injec-
tion is tied to the representativeness of the faults injected. To that aim, we need to
understand what exactly is a software fault (a clear, but detailed description usable
for automated fault injection), and obtain information on the types of faults that rep-
resent the faults more common in the operational scenario. The case study presented
here is a summarized description of that field study. More details can be found in
[315]. A technique to emulate software faults at the binary executable was proposed
based on the findings of this study (G-SQFIT, see [315]), however, the details of such
technique do not fit in a field study description and it is not presented here.

Section 11.2.1 presents the source of the software faults used in this case study
and details the methodology used for the classification of the faults. Section 11.2.2
presents a first overview of the fault distribution and makes a comparative analysis
with the field study done by Christmansson and Chillarege in [213] using the ODC
classification [205, 206] scheme. Section 11.2.3 presents an overview of the details
classification of the collected faults. Some conclusions about this field study are
presented in Sect. 11.2.4.

11.2.1 Sources of Real Software Faults and Classification
Methodology

To address the representativeness issue of our study, we collected a large set of
real software faults from software used in the field. The goal was to improve the
knowledge about the exact nature of faults and their occurrence distribution using
data from the real operational scenario. More specifically, the software faults that are
pertinent to emulate by fault injection are those that originated in the coding phase
and eluded the testing procedures and go with the deployed product.

The information source used in our work was a set of diff/patch files for sev-
eral open source programs. The diff/patch files contain source code corrections for
faults discovered after the software was released. By manual inspection of those
files we were able to extract information to understand and classify software faults.
From those diff/patch files, a total of 668 faults were analyzed. Table 11.1 presents a
summary of the programs used in this study. It is worth noting that these programs
encompass a broad range of program types: both user programs (including interactive
and command line programs) and operating system (Linux kernels) were used.

The total number of faults collected for each program is dependent on the program
age, maturity and the user community size. Some of the programs (e.g. Bash) are

216 J. Duraes et al.

Table 11.1 Source of the field data

Programs Source location Description # faults

CDEX http://sourceforge.net/projects/cdexos/ CD Digital audio data extractor 11
Vim http://www.vim.org Improved version of the UNIX vi 249
FreeCiv http://www.freeciv.org Multiplayer strategy game 53
pdf2h http://sourceforge.net/projects/pdftohtml/ pdf to html format translator 20
GAIM http://sourceforge.net/projects/gaim/ All-in-one multi-protocol IM client 23
Joe http://sourceforge.net/projects/joe-editor/ Text editor similar to Wordstar� 78
ZSNES http://sourceforge.net/projects/zsnes/ SNES/Super Famicom emulator 3
Bash http://cnswww.cns.cwru.edu/~chet/bash/bas GNU Project’s Bourne Again 2
LKernel http://www.kernel.org Linux kernels 2.0.39 and 2.2.22 93
Firebird http://sourceforge.net/projects/firebird/ Cross-platform RDBMS engine 2
MingW http://www.mingw.org/ Minimalist GNU for Windows 60
ScummV http://sourceforge.net/projects/scummvm Iterpreter for adventure engines 74
Total faults collected 668

in a mature phase and have few recent faults; other programs (e.g. VIM) are still
in the maturation phase and have a large user community that provides many fault
reports. The notion of fault requires the notion of correctness. Generally speaking,
the software is correct if it conforms to the user needs, as specified in the software
requirements. However those might be wrong. For the purpose of this work, it was
assumed that the requirements and specification are correct. Thus, a software fault
means that the code is not correct somehow (i.e., it does not implement the specifi-
cation in some particular aspect) because the code does not contain the instructions
that should have.

The approach used to analyze and classify the faults was the following:

1. First we classified the faults according to the Orthogonal Defect Classification
scheme (ODC) [205, 206]. The use of general and well accepted fault classifi-
cation is the best way to make our results available for the research community
and it allows us to compare our results with previous field studies.

2. In a second step we grouped the faults in each ODC class according to the nature
of the defect, defined from a building block programming point of view. That
is, for each ODC class a software fault is further characterized by one or more
programming language constructs that is either missing, wrong or in excess. Pro-
gramming language constructs may be statements, expressions, function calls,
etc. A fault may then fall in one of three possible types: missing construct,
Wrong construct, and Extraneous construct. This is very relevant to fault emu-
lation/injection since emulating an omission (missing construct) is substantially
different from emulating a wrong construct (e.g., erroneous expression).

3. In a last step, faults were further described and grouped into specific types.
Each type is defined according to the language construct and program context
surrounding the fault location. This description refinement is also particularly
relevant for fault injection purposes since it helps (a) the identification of suitable

http://sourceforge.net/projects/cdexos/
http://www.vim.org
http://www.freeciv.org
http://sourceforge.net/projects/pdftohtml/
http://sourceforge.net/projects/gaim/
http://sourceforge.net/projects/joe-editor/
http://sourceforge.net/projects/zsnes/
http://cnswww.cns.cwru.edu/~chet/bash/bas
http://www.kernel.org
http://sourceforge.net/projects/firebird/
http://www.mingw.org/
http://sourceforge.net/projects/scummvm

11 Field Studies on Resilience: Measurements and Repositories 217

locations in the target code, and (b) the code modifications necessary to emulate
a given fault type.

The resulting final classification can be viewed as an extension to ODC and is used to
define fault emulation operators (each operator emulates one specific type of faults).

11.2.2 ODC Classification and General Analysis

According to the Orthogonal Defect Classification, a software fault is characterized
by the change in the code that is necessary to correct it, i.e., to put the code consistent
with the specification, which is assumed to be correct in our case. From the list of
ODC types, the following are directly related to the code and relevant to our work:

• Assignment: value(s) assigned incorrectly or not assigned at all.
• Checking: missing or incorrect validation of data and conditional statements, wher-

ever these checks and conditions may appear (e.g., an incorrect loop condition).
• Interface: errors in the interaction among components, modules, device drivers,

functions calls, and similar.
• Timing/serialization: missing or incorrect serialization of shared resources.
• Algorithm: incorrect or missing implementation that can be fixed only by

(re)implementing an algorithm or data structure without the need of a design
change.

• Function: affects a sizeable amount of code and refers to capability that is either
implemented incorrectly or not implemented at all.

As field data available to us did not include any information on timing or seri-
alization properties, we did not consider the Timing/serialization ODC type. The
mapping of the faults into one of the remaining ODC types was straightforward with
the exception of the Function type which required a more detailed analysis of the code
in order to figure out whether the correction of the fault has required a design change
or not. Due to the decentralized nature of the software development methodology
of open source projects, we didn’t have direct information on redesign decisions,
which forced us to a more detailed analysis of the faults identified as candidates for
the Function ODC type. Table 11.2 presents the distribution of faults across the five
ODC fault types addressed in this work.

One interesting topic to both the theme of field-based works and to the theme of
software faults is the comparison of our results with other available field studies that
also used ODC to classify field-discovered faults. We compared our fault distribution
with the one presented in [213] as that work is the one most closely related to our own.
Because that work included Time/Serialization faults, we removed that particular
type from the comparison and normalize all the percentages leaving so that a direct
comparison could be made. Table 11.2 presents this comparison (values shown in
parenthesis are those from [213] after normalization.

It is relevant that both our data and that presented in [213] show the same trend in
the fault distribution across ODC fault types: assignment faults have approximately

218 J. Duraes et al.

Table 11.2 Fault distribution across ODC types

ODC type # faults ODC distribution (%)

Assignment 143 21.4 (21.98)
Checking 167 25.0 (17.48)
Interface 49 7.3 (8.17)
Algorithm 268 40.1 (43.41)
Function 41 6.1 (8.74)

the same weight as Checking faults; Interface and Function faults are clearly the less
frequent ones; and Algorithm are the dominant faults. All ODC classes have approx-
imately the same weight in both works. The fact that independent research works
obtained a similar fault distribution suggests that this distribution is representative
of programs in general and gives us confidence in our results. Also, the programs
analyzed in [213] (large database and operating system code) were quite different
from the ones used in our study, suggesting that this fault distribution across ODC
types is reasonably independent from the nature of the program. Although more field
studies should be conducted to consolidate this conclusion, these results suggest that
fault injection experiments should take this fault distribution trend into consideration
to improve representativeness.

Table 11.3 presents the fault distribution observed for each individual program
used in this study. To observe a trend in fault distribution across programs, only those
programs with a significant number of faults should be considered (the number of
faults is presented in the first row). Nevertheless, we decided to show the results
for all the programs. We observed that the programs with a higher number of faults
show a similar ODC fault distribution; the only observed deviation was presented
by “Joe” program, which had more checking faults than the global trend. This trend
existing across programs reinforces the suggestion that software faults do follow a
clear pattern of distribution across ODC types.

11.2.3 Extended Classification and Discussion

For the purpose of fault injection the fault types provided by ODC are not practical
as they are too broad, meaning that many different faults fall in the same type and
the types themselves lack the fine details required by an automated tool to be able
to reproduce the fault in the target code. Clearly, further refining is needed, not in
the sense of an alternative classification but as an additional detail layer to ODC.
As explained in Sect. 11.2.1, we propose to achieve this extra layer by analyzing
faults from the point of view of the (program) context in which fault occur and relate
the faults with programming language constructs. Using this notion, a defect is then
one or more programming language constructs that are either missing, wrong or in
excess. A construct is any building block of the traditional programming languages:

11 Field Studies on Resilience: Measurements and Repositories 219

Ta
bl

e
11

.3
Fa

ul
td

is
tr

ib
ut

io
n

ac
ro

ss
O

D
C

ty
pe

s
by

in
di

vi
du

al
pr

og
ra

m
s

Pr
og

ra
m

s
C

D
E

X
V

im
FC

iv
Pd

f2
h

G
A

IM
Jo

e
Z

SN
E

S
B

as
h

L
K

er
ne

l
Fi

re
B

ir
d

M
in

gW
M

To
ta

l(
%

)
#

fa
ul

ts
11

24
9

53
20

23
78

3
2

93
2

60
74

66
8

O
D

C
ty

pe
A

ss
ig

nm
en

t(
%

)
18

.2
21

.3
11

.3
55

4.
3

25
.6

66
.7

10
0

22
.6

50
10

24
.3

21
.4

C
he

ck
in

g
(%

)
18

.2
22

.5
13

.2
5

52
.2

44
.9

0
0

25
.8

50
38

.3
8.

1
25

In
te

rf
ac

e
(%

)
54

.5
6.

4
7.

5
0

4.
3

14
.1

0
0

5.
4

0
5

4.
1

7.
3

A
lg

or
ith

m
(%

)
9.

1
44

.6
52

.8
40

26
.1

15
.4

33
.3

0
33

.3
0

46
.6

56
.8

40
.1

Fu
nc

tio
n

(%
)

0
5.

2
15

.1
0

13
0

0
0

12
.9

0
0

6.
8

6.
1

220 J. Duraes et al.

statements, expressions, function calls, etc. Following this idea, we classified each
fault according to its nature which can be one of these: missing construct, Wrong
construct, or Extraneous construct. Although this classification is orthogonal to ODC
and can be used alone (as is in Table 11.4), we used it as an extension to ODC fault
types to provide a refined view of the faults specifically aimed at emulation by fault
injection.

As we can see in Table 11.4, faults of the extraneous nature are clearly less frequent
than the other two. This was an expected result, as programmers are more prone to
forget to put something in the program, or to put it in a wrong way, than to insert
surplus code. We can also see that missing programming constructs seem to be the
dominant type of software fault. From the point of view of representativeness for
fault injection experiments, this information is valuable.

Table 11.5 presents the total number of missing, wrong or extraneous faults for
each of the five ODC fault types addressed in this study. We also provide some
examples of fault to help the reader understand what kind of fault is included in each
type (this will be detailed further on). As we can see from Table 11.5, there are once
again trends that we can use to achieve representativeness in the injection of software
faults, e.g., for the assignment and interface types, missing program construct faults
are less frequent than the wrong construct faults.

We then further detailed the description of faults describing exactly what con-
structs were missing, wrong or extraneous. We did this for all ODC types and obtained
a reasonable small list of fault types (for each ODC type). This is an interesting result,
as we do not want a small list of generically-described faults where many faults fit
and for which no practical tool can emulate those faults due to lack of details, and
we also do not want a long list of over-detailed description where each fault fits into
and only into its own type, rendering any effort of representativeness useless. The
complete list of fault types for all ODC types is outside the goal of this section and
chapter. We present here in Table 11.6 the list of faults for the ODC type algorithm
and refer the user to [315] for a detailed description of this work.

The faults listed in Table 11.6 are now described with a level of detail that is useful
for practical fault injection. For example, the type MFC—missing function call refers
to the omission of a call to a routine in the program. This is an easy understandable
description that can be easily emulated into the target code. Another important issue
is the identification of suitable location where a given fault can be injected. Using
the MFC fault type again, it is relatively easily to identify occurrences of function
call in the target, even in the binary code. It is worth noting that this study was part
of an effort to devise and implement a fault injection technique able to inject realistic
software fault directly into the binary code of the target, without requiring source
code (goal that was achieved). This scenario is relevant because many fault injection
applications involve common-of-the-shelf components for which there is no source
code available.

To help readers understand the level of details that is now used to describe faults,
we use another example from Table 11.6 . Fault MIFS—Missing if construct plus
statements. This fault refers to the omission of a conditional statement deciding if a
givel (small) block of statements is executed. In C language it is something like

11 Field Studies on Resilience: Measurements and Repositories 221

Ta
bl

e
11

.4
Fa

ul
td

is
tr

ib
ut

io
n

by
fa

ul
tn

at
ur

e

Fa
ul

tn
at

ur
e

C
D

E
X

V
im

FC
iv

Pd
f2

h
G

A
IM

Jo
e

Z
SN

E
S

B
as

h
L

K
er

ne
l

Fi
re

bi
rd

M
in

gW
Sc

um
V

M
To

ta
l

(
%

)

M
is

si
ng

co
ns

tr
uc

t
3

15
7

35
11

17
34

1
0

63
2

45
61

42
9

(
64

.2
)

W
ro

ng
co

ns
tr

uc
t

8
85

18
9

6
41

2
2

24
0

14
12

22
1

(
33

.1
)

E
xt

ra
ne

ou
s

co
ns

tr
uc

t
0

7
0

0
0

3
0

0
6

0
1

1
18

(
2.

7
)

222 J. Duraes et al.

Table 11.5 Fault nature totals across ODC types

ODCtype Nature Examples # faults % of total

Assignm. Missing A variable was not assigned a value, a
variable was not initialized

62 9.3

Wrong A wrong value (or expression result, etc)
was assigned to a variable

70 10.5

Extraneous A variable should not have been subject of
an assignment

11 1.6

Checking Missing An “if” construct is missing, part of a
logical condition is missing,etc

113 16.9

Wrong Wrong logical expression used in a
condition in brach and loop on struct
(if, while, etc.)

53 7.9

Extraneous An “if” construct is superfluous and
should not be present

1 0.1

Interface Missing A parameter in a function call was
missing; incomplete expression was
used as param.

11 1.6

Wrong Wrong information was passed to a
function call (value, expression result
etc)

38 5.7

Extraneous Surplus data is passed to a function (e.g.
one parameter too many in function
call)

0 0

Algorithm Missing Some part of the algorithm is missing (e.g.
function call, a iteration construct, etc)

222 33.2

Wrong Algorithm is wrongly coded or ill-formed 40 6
Extraneous The algorithm has surplus steps; A

function was being called
6 0.9

Function Missing New program modules were required 21 3.1
Wrong The code structure has to be redefined to

correct functionality
20 3

Extraneous Portions of code were completely
superfluous

0 0

If (cond) {statement1; statement2; …. }
Once again the identification of this type of construct is easily identifiable in

the target code and easily emulated through modification in said code. One very
important aspect of the information in Table 11.6 is the number of occurrences
for each fault type. The two fault types described here are much more common than
other types (e.g., MIEA). This is a very important information to build representative
faultloads for fault injection experiments. Table 11.7 presents a global view of all
the occurrences for all fault types (all ODC types and programs).

The information summarized in Table 11.7 is very relevant. It offers two conclu-
sions about software faults:

11 Field Studies on Resilience: Measurements and Repositories 223

Ta
bl

e
11

.6
D

et
ai

le
d

an
al

ys
is

of
al

go
ri

th
m

fa
ul

ts

Fa
ul

tn
at

ur
e

Fa
ul

ts
pe

ci
fic

ty
pe

s
C

D
E

X
V

im
FC

iv
pd

f2
h

G
A

IM
Jo

e
Z

SN
E

S
B

as
h

L
K

er
ne

lF
ir

eB
ir

d
M

in
G

W
Sc

um
V

M
To

ta
l

M
is

si
ng

M
is

si
ng

fu
nc

tio
n

ca
ll

(M
FC

)
28

7
1

1
5

4
2

23
71

co
ns

tr
uc

t
M

is
si

ng
If

co
ns

tr
uc

tp
lu

s
st

at
em

en
ts

(M
IF

S)
27

10
1

15
15

12
80

M
is

si
ng

if
-e

ls
e

co
ns

tr
uc

tp
lu

s
st

at
em

en
ts

(M
IE

S)
4

3
7

M
is

si
ng

if
co

ns
tr

uc
tp

lu
s

st
at

em
en

ts
pl

us
el

se
be

fo
re

st
at

em
en

ts
(M

IE
B

)
1

10
4

2
1

18

M
is

si
ng

if
co

ns
tr

uc
tp

lu
s

el
se

pl
us

st
at

em
en

ts
ar

ou
nd

st
at

em
en

ts
(M

IE
A

)
2

1
3

M
is

si
ng

ite
ra

tio
n

co
ns

tr
uc

ta
ro

un
d

st
at

em
en

t(
s)

(M
C

A
)

1
1

M
is

si
ng

ca
se

:s
ta

te
m

en
t(

s)
in

si
de

a
sw

itc
h

co
ns

tr
uc

t
(M

C
S)

1
1

M
is

si
ng

br
ea

k
in

ca
se

(M
B

C
)

3
1

4
M

is
si

ng
sm

al
la

nd
lo

ca
liz

ed
pa

rt
of

th
e

al
go

ri
th

m
(M

L
PA

)
9

4
2

1
1

5
1

23

M
is

si
ng

sp
ar

se
ly

sp
ac

ed
pa

rt
s

of
th

e
al

go
ri

th
m

(M
L

PS
)

5
1

6
M

is
si

ng
la

rg
e

pa
rt

of
th

e
al

go
ri

th
m

(M
L

PL
)

3
1

1
3

8
W

ro
ng

W
ro

ng
fu

nc
tio

n
ca

lle
d

w
ith

sa
m

e
pa

ra
m

et
er

s
(W

FC
S)

1
2

6
9

co
ns

tr
uc

t
W

ro
ng

fu
nc

tio
n

ca
lle

d
w

ith
di

ff
er

en
tp

ar
am

et
er

s
(W

FC
D

)
9

1
3

13

W
ro

ng
br

an
ch

co
ns

tr
uc

t—
go

to
in

st
ea

d
br

ea
k

(W
B

C
1)

1
1

2
W

ro
ng

al
go

ri
th

m
—

sm
al

ls
pa

rs
e

m
od

ifi
ca

tio
ns

(W
A

L
D

)
4

1
1

6
W

ro
ng

al
go

ri
th

m
—

co
de

w
as

m
is

pl
ac

ed
(W

A
L

R
)

5
3

1
9

W
ro

ng
co

nd
iti

on
al

co
m

pi
la

tio
n

de
fin

iti
on

s
(W

SU
C

)
1

1
E

xt
ra

ne
ou

s
E

xt
ra

ne
ou

s
fu

nc
tio

n
ca

ll
(E

FC
)

4
2

6
To

ta
lf

au
lts

1
##

28
8

6
12

1
0

31
0

28
42

26
8

fo
un

d

224 J. Duraes et al.

Table 11.7 The “Top-N” fault in this study by occurrence frequency

Fault types Description Fault coverage (%) ODC types

MIFS Missing “If (cond) { statement(s) }” 9.96 Algorithm
MFC Missing function call 8.64 Algorithm
MLAC Missing “AND EXPR” in expression used

as branch condition
7.89 Checking

MIA Missing “if (cond)” surrounding
statement(s)

4.32 Checking

MLPC Missing small and localized part of the
algorithm

3.19 Algorithm

MVAE Missing variable assignment using an
expression

3 Assignment

WLEC Wrong logical expression used as branch
condition

3 Checking

WVAV Wrong value assigned to a value 2.44 Assignment
MVAV Missing variable assignment using a value 2.25 Assignment
MVI Missing variable initialization 2.25 Assignment
WAEP Wrong arithmetic expression used in

parameter of function call
2.25 Interface

WPFV Wrong variable used in parameter of
function call

1.50 Interface

Total faults coverage (field data) 50.69

• There is a relatively small set of fault types that is responsible for a large portion
of all the fault occurrences. The 12 fault types in Table 11.7 put together are
responsible for 50 % of all the faults discovered in this field study.

• There are faults that are clearly more frequent than others, and this information is
important to build representative faultloads for fault injection scenarios.

The results of this field study are very interesting for research on software faults
and for the injection of software faults. It offers insight on fault details aimed at the
realistic emulation of faults, it offers information about the distribution of the most
common type of faults in the operational scenario aimed at generating representative
faultloads, and is the basis of the G-SWFIT technique for fault injection. These
results and this technique have been used on several research works (e.g., [315, 664,
665]), and the classification scheme is used as basis for different application areas
(still related to software faults), such as security (e.g., relate vulnerabilities with its
root cause faults).

To conclude the presentation of this field study we present here one example of
a software fault as classified and described in this field study (Fig. 11.1), and one
example of a fault emulation operator of the G-SWFIT fault injection technique
developed in the sequence of this field study (Fig. 11.2). We refer the reader to [315]
for more details.

11 Field Studies on Resilience: Measurements and Repositories 225

Fig. 11.1 Example of a diff/patch file (excerpt). In this example, the patch applies a “&& !eap-
>skip” that was missing. The fault type is MLAC—Missing “AND EXPR” in expression used as
branch cond

Operator Example Example with fault Search pattern Code change

OMIEB

if (expression)

{

statements-IF

}

else

{

statements-ELSE

}

… remaining code

if (expression)

{

statements-IF

}

else

{

statements-ELSE

}

… remaining code

flag-affecting instr.

jcond elsecode

… instrs (IF)

jmp after

elsecode:

… instrs (ELSE)

after:

… remaining code

- All the conditional

jumps to the address

loc01 are changed

into unconditional

jumps

- Call instructions and

stores to memory

existing between the

cond jumps are

removed

Notes
There may be several cond. jumps to elsecode if expressions is composed of several sub-expressions

The side-effects (if any) of the first sub-expression are not ommited

Fig. 11.2 Operator to emulate a fault OMIEB—missing if construct and the statements surrounded
by it plus an else statement. It is not one of the most common fault types, but it serves to illustrate
the changes at the high level code and its related modification at low level to emulate the fault, as
well as search pattern used to identify suitable fault locations

11.2.4 Considerations on the Case Study

In this case study a large number of software faults were analyzed to improve the
knowledge about the nature of software faults: its nature, the frequency of its occur-
rence frequency by fault types, and how they can be emulated through fault injec-
tion. The contributions of this case study were a fault classification scheme allowing

226 J. Duraes et al.

practical injection of software faults and the knowledge about the fault distribution
across fault type as they occur in the operational scenario. The source of the data
was a set of open-source programs, without which this study would have been much
harder if not impossible: in closed-source projects, the information regarding faults
and their correction is kept within the development team. As the correction of faults
(patch code) was directly used to conduct this field study, we stress the importance
of having data available for research purposes, even in closed-source projects. This
data can hardly be used for commercial purposes, and, excepting issues related to
security, a concerted effort should be made by academia to try and obtain data such
as the one used for this study. This effort should be articulated with the creation of
data repositories to help spreading the data and results of field data studies.

11.3 Case Study 2: Field data on Security Vulnerabilities

In this section we present the results of a field study on the most common vulnera-
bilities, which provides a truthful body of knowledge on real security vulnerabilities
that accurately emulate real world security problems. The data was obtained by ana-
lyzing past versions of representative web applications with known vulnerabilities
that have already been corrected. The main idea is to compare the piece of defective
code with the corrections made to secure it. This code change (or the lack of it in the
vulnerable application) can be viewed as the reason for the presence of the vulner-
ability. Note that this methodology can generically be used in other field studies to
obtain the characterization and distribution of the source code defects that originate
vulnerabilities in web applications.

The field study uses data from 655 SQL Injection and XSS security patches of
six widely used web applications. The detailed analysis of the code of the patches
shows that web application vulnerabilities result from software bugs affecting only a
restricted collection of statements, which greatly facilitates the emulation of vulner-
abilities through fault injection, as the effort can be concentrated on the emulation
of vulnerabilities in a small number of types of statements.

Sections 11.3.1 and 11.3.2 describe the methodology used to collect the field
data in this field study. Section 11.3.3 presents the systems addressed in the study,
and the vulnerabilities addressed are presented in Sect. 11.3.4. Section 11.3.5 details
the information gathered in the study and the results are presented in Sect. 11.3.6.
Section 11.3.7 summarizes this case study.

11.3.1 Vulnerability Analysis and Classification Methodology

When web application vulnerabilities are discovered, software developers correct the
problem releasing application updates or patches. In our study, we used these patches
to understand which code is responsible for security problems in web applications.

11 Field Studies on Resilience: Measurements and Repositories 227

With this approach, we can classify the code structures that cause real security flaws
and identify the most frequent types of vulnerabilities observed in the web applica-
tions considered in our field study.

For each web application under test, the methodology to classify the security
patches is the following:

1. Verification of the patch to obtain the right version of the web application where
it applies. We need to confirm the availability of the specific version of the web
application and obtain it for the rest of the process. It is mandatory to have both
the patch and the vulnerable source code to be able to analyze what code was
fixed and how, unless the patch file has all this information (which we found to
be unusual).

2. Analysis of the code with the vulnerability and compare it with the code after
being patched. The difference between the vulnerable and the secure piece of
code is what is needed to correct the vulnerability. This is what the software
developer should have done when he first wrote the program and this is what we
have to classify.

3. Classification of each code fix that is found in the patch. The absence of the
actions programmed in the patch represents what causes the vulnerability. For
example, if the patch replaces the variable $id with intval($id)1, we consider that
the vulnerability is caused by the absence of the intval function in the original
code. To be accurate, we followed the patch code analysis guidelines described
in the next section.

4. Loop through the previous steps until all available patches of the web application
have been analyzed.

11.3.2 Patch Code Analysis Guidelines

Web applications are developed using different coding practices and during the clas-
sification of the security patches we face different scenarios and have to make some
decisions that need to be clarified. To avoid classification mistakes and misinterpre-
tations the following guidelines are followed:

1. We assume that the information publicly disclosed in specialized sites is accurate
and that the fix developed by the programmer of the patch and made available
by the company that supports the web application solved the stated problem. We
do not test the presence of the vulnerability nor confirm its correction.

2. To correct a single vulnerability several code changes may be necessary. This
way, each code change was considered as a singular fix. For example, suppose
that two functions are needed to properly sanitize a variable. Missing any of these
functions makes the application vulnerable, so both of them must be taken into

1 The intval is a PHP function that returns the numeric value of a variable, or 0 on error.

228 J. Duraes et al.

account. In this case, if we want to simulate the vulnerability, we may remove
any of the singular fault type fixes.

3. When a patch can fix several vulnerability types simultaneously, each one is
accounted separately. This occurred naturally because we analyzed each vulner-
ability independently, as if we were doing several unrelated analyses, one for
each vulnerability type. For example, this occurs when a not properly sanitized
variable is used in a query (e.g. allowing SQL Injection) and later on is displayed
on the screen (e.g. allowing XSS). When this variable is properly sanitized, both
vulnerabilities are mitigated simultaneously, however this situation accounts for
the statistics of both XSS and SQL Injection vulnerabilities.

4. When a particular code change corrects several vulnerabilities of the same type,
each one is considered as a singular fix. For example, suppose that the value
assigned to a specific variable comes from two sources of external inputs; and
the variable is displayed in one place without ever being sanitized. We consider
that the application has two security vulnerabilities because it can be attacked
from two different inputs. However, to correct the problem all that is needed is
to sanitize the variable just before it is displayed. In this example we consider
that two security problems have been fixed, although only one code change was
needed.

5. A security vulnerability may affect several versions of the application. This
happens when the code is not changed for a long time, but it is vulnerable. The
patch to fix the problem is the same for all versions, and therefore it is considered
to be only one fix.

By following the previous guidelines, it was possible to classify almost all the code
fixes analyzed. However, in some situations, patching one or more vulnerabilities may
involve so many changes, including the creation of new functions or a change in the
structure of the overall piece of code, that it is too difficult to classify it properly. These
situations are usually associated with major code changes involving simultaneously
security and other bug fixes related to functional aspects. These occurrences were
quite marginal (5.4 %) and were not considered in our study because they are too
complex and difficult to analyze due to the lack of source code documentation.

11.3.3 Web Applications Analyzed

One mandatory condition for our field study is to have access to the source code of
the web applications under analysis. The code of previous versions and the associ-
ated security patches must also be accessible. The other mandatory condition is the
availability of information correlating the security fix and the specific version of the
web application.

The goal is to be sure that it is possible to access the source code (including the
code of older versions) in order to be able to analyze and understand the security

11 Field Studies on Resilience: Measurements and Repositories 229

vulnerability and how it was fixed. Actually, the way a given vulnerability is fixed is
a key aspect in the classification of the fault type originating the vulnerability.

For the present study we have selected six LAMP (Linux, Apache, MySQL and
PHP) web applications: PHP-Nuke [726], Drupal [307], PHP-Fusion [493] , Word-
Press [943], phpMyAdmin [728] and phpBB [727]. These are open source web appli-
cations that represent a large community of users and, fortunately, there is enough
information available about them to be researched. Additionally, they represent a
large slice of the web application market and have a large community of users:

• Drupal (winner of the first place at the 2007 and 2008 Open Source CMS Award),
PHP-Fusion (one of the five winner finalists at the 2007 Open Source CMS Award)
and phpBB (the most widely used Open Source forum solution and the winner of
the 2007 SourceForge Community Choice Awards for Best Project for Communi-
cations) are Web Content Management Systems (CMS). A CMS is an application
that allows an individual or a community of users to easily create and administrate
web sites that publish a variety of contents.

• PHP-Nuke is a well-known web based news automation system built as a commu-
nity portal. PHP-Nuke is one of the most notorious CMS and it has been down-
loaded from the official site over 8 and half million times.

• WordPress is a personal blog publishing platform that also supports the creation
of easy to administrate web sites. It is one of the most used blog platforms in the
World.

• phpMyAdmin is a web based MySQL administration tool. It is one of the most
popular PHP applications, is included in many Linux distributions, and was the
winner of the 2007 SourceForge Community Choice Awards for Best Tool or
Utility for SysAdmins.

The six web applications analyzed are so broadly used since several years ago
that they have a large number of vulnerabilities disclosed from previous versions,
which were the subject of analysis of the field study. It is important to emphasize
that a single vulnerability opens a door for hackers to successfully attack any of
the millions of web sites developed with a specific version of the web application.
Furthermore, it is common to find a single vulnerability in a specific version that
also affects a large number of previous versions. The overall situation is even worse
because web site administrators do not always update the software in due time when
new patches and releases are available.

11.3.4 Security Vulnerabilities Studied

In the present work we focus on two of the most critical vulnerabilities in web
applications: XSS and SQL Injection. A Cross Site scripting (XSS, but also known
as CSS) vulnerability allows the attacker to inject HTML and/or a scripting language
(usually JavaScript) into a vulnerable web page [710] . A SQL Injection vulnerability

230 J. Duraes et al.

allows the attacker to tweak the input fields of the web page in order to alter the query
sent to the back-end database [709].

Exploits of these vulnerabilities take advantage of unchecked input fields at user
interface, which allows the attacker to change the SQL commands that are sent to the
database server (SQL Injection), or allows the attacker to input HTML and a scripting
language (XSS). Two main points account for the popularity of these attacks:

• The easiness in finding and exploiting such vulnerabilities. They are very common
in web applications and within a web browser the attacker can probe for these
vulnerabilities tweaking GET and POST variables that are available in the HTML
page. The building of an exploit for fun or profit can be a bit more time consuming,
but there are plenty information and guides on how to do it (e.g. look at [409, 708]
for XSS and [408, 708, 720] for SQL Injection, just to mention a few).

• The importance of the assets they can disclose and the level of damage they may
inflict. In fact, SQL Injection and XSS allow attackers to access unauthorized
data (read, insert, change or delete), gain access to privileged database accounts,
impersonate another user (such as the administrator), mimicry web applications,
deface web pages, get access to the web server, malware injection, etc. [347].

11.3.5 Patch Code Sources

For all the applications analyzed, we collected the source code of both the vulnerable
and the patched versions. By comparing these two versions, we could understand the
characteristics of the vulnerability and classify what code was changed to correct it.

Software houses and developers follow their own policies in what concerns the
public availability of older versions of the software, particularly when they have
security problems. In some cases, they can be hard to find and even the access to
the past collection of vulnerability patches can be a cumbersome task. Furthermore,
most security announcements publicly available are so vague that it is too difficult
(or even impossible) to know which source files of the application are affected by a
particular vulnerability. Moreover, some of the disclosed information about security
problems is too generic and groups together several types of security vulnerabilities
(e.g., using the same document to refer to directory traversal, remote file inclusion
and COOKIE poisoning vulnerabilities), which makes it more difficult to map our
target vulnerabilities to the code fixing them.

In order to gather the actual code of security patches, we have to use several sources
of data, such as mirror web sites, other sites that provide the source code (mainly on
blogs or forums), online reviews, news sites, sites related to security, hacker sites,
change log files of the application, the version control system repository, etc.

For the purpose of this study, we just need the changes made to the code of the
application correcting the vulnerability problem (i.e., the source code of the entire
application is not required). However, as there is no standard way of providing the
data about the security vulnerability fix, different sources of information have to be

11 Field Studies on Resilience: Measurements and Repositories 231

considered, each one following its own specific format. The four main source types
used in the current work are the following:

1. Security patch files with information about the target version of the application.
In this case, we have the reference to the buggy version of the web application
and to the patch file that must be applied to mitigate the target vulnerability.

2. Updated version of the web application. Actually, this is a completely new
version of the application containing new features and bug fixes (including secu-
rity ones). This is the most common source of information we have found, but
it is also the one that needs more exploration work to be done.

3. Available security diff file. In this case, there is a diff file, which is a file containing
only the code differences between two other files with information about what
lines of the original file have been removed, added or changed. It has, therefore,
the precise code changes needed to fix a referenced vulnerability.

4. Version control system repository. Almost all relevant open source applications
are developed using a version control system to administer the contributions
of the large community of developers from around the world. This is the most
complete source of information we can have about the application, although it
may be difficult to find what we are looking for in such a vast collection of files
and versions.

Once the vulnerable code and the respective patch are obtained using one of the
previous sources of information, a differential analysis is performed to identify the
locations in the code where the defects are fixed. This operation is done mainly
through the use of diff utility. The Unix diff utility is a file comparison tool that
highlights the differences between two files using the algorithm to solve the longest
common subsequence problem [455]. A manual analysis of the code can be also
performed when the output of the diff utility is too complex due to a large number
of changes between the two versions of the source code, or when many corrections
are done in the same file. The manual analysis also helps grouping several security
corrections and discarding the code changes not related to security issues.

11.3.6 Field Study Results and Discussion

In the field study we classified 655 XSS and SQL Injection security fixes found
in the six web applications analyzed (PHP-Nuke, Drupal, PHP-Fusion, WordPress,
phpMyAdmin and phpBB). We followed a classification scheme based on the soft-
ware fault classification proposed in [314] and adapted the fault types specific to
XSS/SQL injection (e.g., MFC to MFCext).

The overall distribution of the fault types found in the six web applications ana-
lyzed is shown in Table 11.8. In this table we can see the individual results for
each fault type allowing us to understand how they are distributed along the web
applications analyzed.

A common belief is that vulnerabilities related to input validation are mainly due
to missing if constructs or even missing conditions in the if construct. However, our

232 J. Duraes et al.

Table 11.8 Detailed results of the field study on the most common software faults generating
vulnerabilities

Web app. PHP-Nuke Drupal PHP-Fusion WordPress phpMyAdmin phpBB

Fault type SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS %
MFCext. 120 133 4 39 6 13 6 94 1 51 3 27 76
WPFV 31 3 2 5 4 1 7
MIFS 5 2 2 7 6 10 2 5
WVAV 2 3 2 4 17 4
EFC 1 1 4 1
WFCS 3 1 1 13 3
MVIV 1 1 3 4 1
MLAC 1 2 4 2 1
MFC 2 1 1 1
MIA 1 1 0
MLOC 1 0
ELOC 1 0
Total faults 158 137 4 55 21 33 6 109 1 73 3 55 100

field study shows that this is not the case, as the overall “missing IF…” fault types
(MIFS and MIA: see Table 11.8) only have a weight of 5.5 %. As for the “missing
<condition>…” fault types (MLAC and MLOC), they represent only 1.52 % of all
the fault types. This suggests that programmers typically do not use if constructs to
validate the input data, and this may occur due to the complexity of the validation
procedures needed to avoid XSS and SQL Injection.

The typical approach we found in the field is the use of a function to clean the input
data and let it go through, instead of stopping the program and raise an exception (or
show an error page). This may be understood as a design goal trying to prevent the
disruption of the interaction of users to the least possible. In what concerns security,
it would be better to allow only inputs known as correct (white list) as this prevents
any input with suspicious characters to go any further and is more secure than just
cleaning the input from malicious characters and let the operation continue normally.

Analyzing the global distribution of web applications vulnerabilities we found
70.53 % of XSS and 29.47 % of SQL Injection showing that XSS is the most frequent
type by far. As shown, all the fault types account for XSS vulnerabilities but only
eight fault types report to SQL Injection, which might help justify the fact that XSS is
more prevalent than SQL Injection, confirming the results of the IBM X-Force®2008
Trend and Risk Report [819]. This trend is also confirmed by vulnerability reports
disclosed in CVE [657, 707]. However, the four fault types that do not contribute to
SQL Injection (MFC, MIA, MLOC and ELOC) only account for 1.22 % of all the
fault types. Obviously, we do not have enough sample values to conclude that SQL
Injection may not be derived from one of these fault types. We can only say that we
did not find them in our field study.

There are several factors that contribute to the prevalence of XSS. XSS is easier
to discover because it manifests directly in the tester web browser window. Every

11 Field Studies on Resilience: Measurements and Repositories 233

input variable of the application is a potential attack entry point for XSS, which is
not the case for SQL Injection, where only variables used in SQL queries matter.
Another factor that contributes to the prevalence of XSS is that SQL Injection alters
the database records and this cannot be always seen in the interface, at least so
explicitly as XSS. Moreover, the knowledge needed to test for XSS [409, 708] is
not as complex as for SQL Injection, for which the attacker needs to have deep
knowledge about the SQL language. Although the SQL language is usually based
on the SQL-92 standard [290], every database management system (DBMS) has its
own extensions and particularities [408, 708, 720], that need to be taken into account
when searching for SQL Injection.

The most representative and widespread fault type is the “Missing function call
extended (MFCext.)”. It represents 75.87 % (140 SQL Injection + 357 XSS out of
655 vulnerabilities studied) of all the fault types found. The high value observed for
the MFCext fault type comes from the massive use of specific functions to validate
or clean data that comes from the outside of the application (user inputs, database
records, files, etc.). In many cases, functions are also used to cast a variable to a
numeric value, therefore preventing string injection in numeric fields.

The next three most common fault types are “wrong variable used in parameter of
function call (WPFV)”, “missing IF construct plus statements (MIFS)”, and “wrong
value assigned to variable (WVAV)”.

A recurring problem is that, looking at several versions of the same program, we
frequently found the same regex string being slightly updated as new attacks are
discovered. These situations were found in WPFV and WVAV faults.

Excluding the faults types already discussed (MFCext., WPFV, MIFS and WVAV),
the remaining fault types correspond to only 7.63 % of the security vulnerabilities
found. These fault types are EFC, WFCS, MVIV, MLAC, MFC, MIA, MLOC and
ELOC.

11.3.7 Considerations on the Case Study

In this case study we presented a methodology for characterizing the most frequent
fault types associated with the most common web application vulnerabilities based
on a field study. We focused on XSS and SQL Injection vulnerabilities of six widely
used web applications, using 655 security fixes as the field data. Results show that
only a small subset of 12 generic software faults is responsible for all the XSS and
SQL Injection vulnerabilities analyzed.

One relevant outcome of the field study performed is referred to the distribution
of vulnerabilities by a reduced number of fault types. In fact, we observed that a
single fault type, the MFCext. (missing the function responsible for cleaning the
input variable), is responsible for about 76 % of all the security problems analyzed.
Previous studies on software fault types [212, 312] also show this large dependency
on a few bug types. Furthermore, this trend is not new in the security area: Microsoft
has already stated that fixing the top 20 % of the reported bugs eliminates around 80 %
of errors [785] and the Gartner Group reported that 20 % of security test rules uncover

234 J. Duraes et al.

80 % of errors [574]. This concentration of the responsibility of most vulnerabilities
on just a few fault types can be very important to address the web applications security
and makes it feasible to emulate vulnerabilities by means of fault injection, which
has already been started to be addressed by the research community [322, 342, 344,
815].

11.4 Overview of Data Repositories

Data repositories are an excellent resource to store and share information for research
purposes. One type of valuable information that can be shared through data reposi-
tories is the result from field data studies. Although data repositories to store failure
data and dependability experiments results are relatively rare (especially considering
the huge value of real failure data to help designers in improving computer systems),
several initiatives have been proposed and are currently available.

The Data & Analysis Center for Software (DACS) is a Department of the US
Defense Information Center supporting research on software reliability and quality. It
serves as centralized source for data related to software metrics. The DACS maintains
the Software Life Cycle Experience Database (SLED). This repository is intended
to support the improvement of the software development process. The SLED is
organized into nine data sets covering all phases and aspects of the software lifecycle
([253] and [477]). Examples of these datasets are:

• The DACS Productivity Dataset (collected from government and private industry
sources). This dataset consists of data on over 500 software projects and is mainly
oriented to software cost modelling and productivity analysis [678]. The data
represents software from early 60s to early 80s and includes software projects
ranging from avionics to off-the-shelf packages. The information in this dataset
includes the following: size of project, effort, language, schedule, errors.

• The NASA/SEL Dataset (contributed by the Software Engineering Laboratory
(SEL) at NASA Goddard Space Flight Center). This repository maintains data
on avionic applications since 1976. The dataset is available by request on disk
and it can be accessed through web browser. Using the latter, users have access
to analytical summaries including linear regression, scatter plots and histograms.
The analytical results are created dynamically per request during the HTTP session
and served to the user browser. The repository information is stored in a relational
database and the link between the data repository and the web server is supported
through Perl applications.

• The Software Reliability Dataset (collected at Bell Laboratories) [669]. This repos-
itory describes failures in a wide range of application domains including real time,
control, office, and military applications. This dataset was primarily aimed at the
validation of software reliability models and to assist software managers to mon-
itor and predict software tests. As in the NASA/SEL dataset, the information can
be obtained by request, and it can also be accessed through web interface.

11 Field Studies on Resilience: Measurements and Repositories 235

The Metrics Data Program (MDP) Repository is a database maintained by the NASA
Independent Verification and Validation facility [674]. The repository is aimed at the
dissemination of non-specific data to the software community and it is made available
to the general public at no cost. All the data available in the repository are sanitized
by the projects representatives, and all the necessary clearances are provided. Users
of the repository are free to analyze the data for their specific research goals.

The MDP repository is part of the MDP on-going effort to improve the ability to
predict error in software by improving the quality of the problem data related to soft-
ware (e.g., improve the quality of the information about the relationship of the error
and the development phase). To this effort, the MDP recruits the participations of
private-sector and public-sector projects. Recruited projects maintain complete con-
trol of data release and the level of participation in the program. The effort required
by the participating projects is minimal. The repository contains data on the software
projects that were collected and validated by the MDP program, spanning more than
8 years and including more than 2700 error reports. The information stored in the
repository consists of error data, software metrics data, and error data at the func-
tion/method level. The dataset enables data associations between products, metrics,
and errors classified according to the Orthogonal Defect Classification (ODC) [204].

The Software Reference Fault and Failure Data Project [689] is maintained by the
National Institute of Standards and Technology and is aimed at the development of
metrology, taxonomy and repository for reference data for software assurance. The
project maintains a repository on software fault data specifically aimed at helping
industry protect against releasing software systems with faults and to help assess
software systems quality by providing statistical methods and tools. The repository
is available to the public upon request. The access to the information online allows
users to view data and execute simple queries. Analytical and statistical use of the
data is possible through a program developed within the project and available to the
public (the EFFTool).

The Computer Failure Data Repository (CFDR) is a public repository on com-
puter failure data ([74] and [182]) supported by USENIX. The repository is aimed
at the acceleration of the research on system reliability with the ultimate goal of
reducing or avoiding downtime in computer systems. To this goal, the CDFR hopes
to remove the main difficulty faced by researchers, which is the lack of reliable and
precise information about computer failures. The CDFR repository is open to both
obtaining and contributing data. The repository comprises nine independent data-sets
focusing mainly on very large storage systems. The repository information covers
many aspects, including: software failures, hardware failures, operator errors, net-
work failures, and operational environment problems. The raw data are available to
the public [182] through web interface. The project does not offer online capability
for analytic and statistical data-processing.

The AMBER Raw Data Repository [32] is a repository of field data and raw results
from resilience assessment experiments. Its goal is to grant both the research and
IT industry communities with an infrastructure to gather, analyze and share field data
resulting from resilience assessments of systems and services, stimulating a better
coordination of high quality research in the area, and contributing to the promotion

236 J. Duraes et al.

of a standardization of resilience measurement, which will in turn have a positive
impact in the industry. While experimental and field data repositories are recogniz-
ably fundamental for supporting the advance of research and the dissemination of
knowledge, the research community still seems somewhat reluctant in embracing
such enterprises. This repository aims to encourage acceptance from the community
to share its data and promote the research involving several partners sharing data.

Publicly available vulnerability databases currently play a very important role in
making the information on vulnerabilities available to researchers and have com-
pletely reshaped the way software vulnerabilities are reported and disseminated in
recent years. Examples of popular vulnerability databases are the National Vulner-
ability Database [693] and The Open Source Vulnerability Database [705], which
provide comprehensive reports about discovered software vulnerabilities including
the nature of a vulnerability (its type, the component where it was located, the list of
vulnerable system versions, its discovery date, and so on) and include examples on
how to exploit it, as well as the patch or the workaround provided by system vendor
to fix it (when available). Additionally, to alert users about the severity and secu-
rity risk of reported vulnerabilities, these databases typically provide vulnerability
impact and exploitability levels assigned by security advisors. These databases also
provide a web-based interface that enables users to search vulnerabilities and browse
a list of the vulnerabilities reported for a given system.

11.5 Conclusion

The case studies presented in the chapter allow drawing some conclusions on field
measurements and field data studies. Although the focus of the chapter is software
faults and security vulnerabilities, these conclusions apply to any type of measure-
ment obtainable in the field. Important aspects that are self-evident are the represen-
tativeness of the measurements and results, the classification used to describe them
and manipulate data, and the mechanisms to make data and results available to the
research community and general public.

Concerning data on the robustness of the computer-based systems, field data is
mostly obtained from reports (bug reports, incident reports, security logs, and so on,
depending on the nature of the incident). These reports are filed by the users and
operators and are typically used by the system developers to solve the incidents and
improve the system.

Observations made in closed-source, proprietary systems are typically not avail-
able to the public. Observations originating from open-source systems are normally
made available to the community (e.g., stored in a repository). However, these repos-
itories are normally not oriented to a systematic storage and classification of the
discovered faults and remedies. Instead they are the result of the accumulation of
solution to problems resulting in a kind of logfile-like information about which prob-
lems were discovered (bug reports, many times repeated), and how were solved. The
exception to this are the repositories maintained by researchers in the context of

11 Field Studies on Resilience: Measurements and Repositories 237

long-term research in large companies, such as IBM. These are good initiatives, but
typically are very different from one another. It would be of great value to the research
community to have information on software faults available in a systematized and
uniform way. Repositories like the ones described in the chapter are good initiatives
in that direction.

Concerning security, the information pertinent to research is even harder to find
than those about software faults. It is not the case of data availability (as it is for
faults in closed-source systems). On the contrary, there is plenty of information. The
major problem is that there is too much information, scattered and mostly repeated,
and classified using different schemes. A given security issue may have been clas-
sified according to in scheme and given one value of severity, for instance, and in
another repository, the same vulnerability may appear with a different description
and different characterization.

The usefulness of public repositories to the research communities is demonstrated
by the existence of studies based on the information stored in publicly available
repositories (e.g. [32]). Nevertheless, and in spite of the different repository initia-
tives already available, the raw data from the vast majority of research works on
experimental dependability evaluation and on field failure data, among other exam-
ples, is not available in any repository. Hundreds of papers have been published but
the raw data that have led to the final results presented in those papers is not available.
Data repositories do seem a very promising initiative to provide the means to have
a uniform description of raw data and results and make this information available to
the public, and perhaps some more concerted effort should be placed towards creat-
ing and maintaining said repositories. One example among several is the AMBER
repository, which was built specifically to share data among different teams.

Chapter 12
Failure Diagnosis of Complex Systems

Soila P. Kavulya, Kaustubh Joshi, Felicita Di Giandomenico
and Priya Narasimhan

Abstract Failure diagnosis is the process of identifying the causes of impairment in
a system’s function based on observable symptoms, i.e., determining which fault led
to an observed failure. Since multiple faults can often lead to very similar symptoms,
failure diagnosis is often the first line of defense when things go wrong - a prerequisite
before any corrective actions can be undertaken. The results of diagnosis also provide
data about a system’s operational fault profile for use in offline resilience evaluation.
While diagnosis has historically been a largely manual process requiring significant
human input, techniques to automate as much of the process as possible have sig-
nificantly grown in importance in many industries including telecommunications,
Internet services, automotive systems, and aerospace. This chapter presents a survey
of automated failure diagnosis techniques including both model-based and model-
free approaches. Industrial applications of these techniques in the above domains are
presented, and finally, future trends and open challenges in the field are discussed.

S. P. Kavulya (B) · P. Narasimhan
Carnegie Mellon University, PA, USA
e-mail: spertet@ece.cmu.edu

P. Narasimhan
e-mail: priya@cs.cmu.edu

K. Joshi
e-mail: kaustubh@research.att.com

F. Di Giandomenico
ISTI Department, Italian National Research Council, via Morazzi 1,
I-56124, Pisa Italy
e-mail: felicita.digiandomenico@isti.cnr.it

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 239
DOI: 10.1007/978-3-642-29032-9_12, © Springer-Verlag Berlin Heidelberg 2012

240 S. P. Kavulya et al.

12.1 Introduction

The issue of diagnosing hardware and software failures to find the underlying causes
has existed for as long as computers have been around. Using the fault, error, and
failure nomenclature of [576], failure diagnosis is the process of identifying the fault
that has led to an observed failure of a system or its constituent components. In
any sufficiently large computing system, many types of faults are often not directly
visible for a number of reasons-either due to the characteristics of the fault itself,
due to fault-tolerance mechanisms built into the system that hide the expression of
the fault, or as is most often the case, the lack of detailed monitoring functionalities
that can detect and report on the occurrence of the fault directly. In some cases,
monitoring systems may provide only an indication that a fault has occurred, but
may not provide sufficient information to precisely locate it.

Failure diagnosis is a technically challenging endeavor because the relationship
between faults, failures, and their observable symptoms is a complex one; single
faults often produce multiple symptoms in different parts of a system, e.g., a mis-
configuration fault in a critical network component such as a Dynamic Host Con-
figuration Protocol (DHCP) server can cause all client computers on the network to
fail; conversely, similar symptoms may be caused by many different types of faults,
e.g., the failure of a networked computer to receive an IP address can have several
causes including, but not limited to, packet loss in the physical network, a client mis-
configuration, or a problem with the DHCP server. As operational systems become
more mature, the failures they encounter often transition from easy to detect “hard
failures” that cause a significant impairment to the system’s primary function, to
“soft failures” such as those due to performance bottlenecks or transient faults that
are much harder to detect. Therefore, the process of diagnosis often also includes
the identification of anomalous conditions that are symptoms of the occurrence of
faults.

In addition to its essential role as the precursor to any remediation actions for main-
taining a system’s health at runtime, failure diagnosis also serves several important
roles in resilience assessment of complex systems. Since it is only the symptoms
of a fault that are usually observed at runtime, diagnosis is essential for the accu-
rate cataloguing of fault occurrences in the field. Conversely, any data that reports
on occurrences of actual system faults is by definition the product of a diagnostic
process, whether it is a simple one (in case of a one-to-one mapping between faults
and symptoms), a complex manual process, or an automatic one. Understanding this
process is important for understanding the biases and limitations of the field data.
Diagnosis is also important for discovering new fault types that can then be used
to drive fault injection campaigns as discussed in Chap. 13 .In fact, diagnosis is the
converse process of fault injection. In fault injection, one injects faults into a system
according to a predefined fault model in order to analyze the resulting symptoms,
or if the system tolerates the fault, the absence of any symptoms. In diagnosis, one
infers the faults from the observed symptoms. Finally, diagnosis is also important in
the emerging field of online resilience assessment as described in Chap. 15. In this

http://dx.doi.org/10.1007/978-3-642-29032-9_13
http://dx.doi.org/10.1007/978-3-642-29032-9_15

12 Failure Diagnosis of Complex Systems 241

area, diagnosis can be used, under the label of fault localization, to infer the true
health of complex distributed systems, including what components have actually
failed, by eliminating those failure symptoms that are a result of error propagation
to an otherwise operational part of the system.

Due to the complexity of computing systems and difficulty of formalizing the
scope of the diagnosis task itself, diagnosis has historically been a largely manual
process requiring significant human input. However, techniques to automate as much
of the process as possible have significantly grown in importance. In domains such
as communication networks and Internet services, the sheer scale of modern systems
and the high volumes of impairments they face drive such trends, while in domains
such as embedded systems and spacecraft, it is increasing complexity together with
the need for autonomic operation (i.e., self-healing) when human expertise is not
available, that are the drivers. Due to the diversity of the domains, a variety of failure
diagnosis techniques drawing from diverse areas of computing and mathematics such
as artificial intelligence, machine learning, statistics, stochastic modeling, Bayesian
inference, rule-based inference, information theory, and graph theory have been stud-
ied in the literature. Finally, when automated techniques fail, approaches that assist
humans perform diagnosis more efficiently via the use of visualization aides have also
been widely deployed. While a comprehensive survey of this broad topic can provide
sufficient material for a book of its own, in this chapter, we provide a summary of the
most important techniques, and provide references to more in-depth surveys where
available. This chapter is organized as follows: Sect. 12.2 discusses types of problem
diagnosis techniques using illustrative examples; Sect. 12.3 highlights practical uses
of these diagnosis techniques in industrial applications; Sect. 12.4 presents future
trends and open challenges in diagnosis; and Sect. 12.5 concludes.

12.2 Techniques

Automated problem diagnosis techniques localize the most likely sources of a prob-
lem to a set of metrics, e.g., anomalous CPU usage, a set of nodes, e.g., anomalous
web server, or a type of problem, e.g., misconfiguration. Operators use the output
of automated problem diagnosis to guide root-cause analysis by analyzing source-
code, or hardware and software settings at the identified culprits. For example, an
examination of the source-code at the web server might show that the anomalous
CPU activity at the web server was due to an infinite loop in a scheduling function.
Automated diagnosis techniques are not perfect and they can either fail to detect a
problem resulting in a false negative, or indict the wrong component resulting in
a false positive. These techniques rely on tuning to minimize the number of false
negatives and false positives generated. Visualization tools complement automated
problem diagnosis tools by allowing operators to visualize anomalies and explore
different hypotheses on the root-cause of problems. Table 12.1 provides a summary
of the techniques described in this chapter. For each technique, we first use an illustra-
tive example to highlight its application, before delving into the different approaches

242 S. P. Kavulya et al.

Table 12.1 Summary of diagnosis techniques

Technique Limitations

Rule-based techniques rely on expert
knowledge expressed as a set of
predefined rules to diagnose problems
(Sect. 12.2.1).

Rules are human-interpretable and extensible.
However, they cannot diagnose
unforeseen problems, and large
knowledge bases are difficult to maintain.

Model-based techniques define a
mathematical representation of a system,
testing the observed state against the
model to see if it conforms (Sect. 12.2.2).

Model-based techniques are well suited for
diagnosing application-level problems.
However, building models requires a deep
understanding of the system.

Statistical techniques summarize and
interpret empirical data using techniques
such as correlation, histogram comparison
and probability theory, for diagnosis
(Sect. 12.2.3).

Statistical techniques require little expert
knowledge or detailed models on system
internals. However, they have difficulties
distinguishing legitimate changes in
behavior such as workload changes, from
illegitimate changes such as performance
problems.

Machine-learning techniques identify
patterns in behavior using clustering, or
use training data to determine if the
system is unhealthy and the likely cause
(Sect. 12.2.4).

Machine-learning techniques automatically
learn profiles of system behavior, but can
suffer from the curse of dimensionality
that reduces accuracy when the number
of features is large.

Count-and-threshold techniques allow
discrimination between transient and
intermittent faults (Sect. 12.2.5).

Diagnosis accuracy strongly depends on
proper parameter calibration. However,
solutions for parameter tuning based on
rigorous mathematical formulations and
analytical models are available.

Visualization techniques allow operators to
visualize trends in data and spot
anomalous behavior (Sect. 12.2.6).

Visualization tools allow operators to explore
different hypotheses on the root-cause of
problems. However, they do not
automatically identify they source of
problems.

proposed in the research literature. We conclude each discussion with a critique of
the technique that highlights its strengths and limitations.

12.2.1 Rule-Based

Rule-based techniques rely on expert knowledge expressed as a set of predefined
directives, i.e. rules, to diagnose problems. The rules are typically formatted as a
set of if-then statements where the if-part of the rule is called the premise, and the
then-part of the rule is the conclusion. An example of a rule used for diagnosis is
“if CPU utilization exceeds 90% then node is overloaded”. Rule-based techniques
for diagnosis typically rely on forward-chaining inference mechanisms [850] to syn-
thesize results when multiple rules fire. Forward inference processes events, such as

12 Failure Diagnosis of Complex Systems 243

high CPU and memory utilization, and uses the triggered rules to draw conclusions
on the root-cause of the problem.
Illustrative example Chopstix [113], a lightweight monitoring tool, relies on a small
collection of rules to guide diagnosis in production systems. They describe a recurrent
problem at a production system that caused nodes to crash every 1–7 days. Shortly
before such crashes they observed that ssh sessions to nodes would stall for tens
of seconds. They observed that the symptoms of this problem matched the rule “if
combined value of CPU utilization for processes is low, and scheduling delay is high
then kernel bottleneck is likely”. This rule led them to trace the problem to a tight
loop in kernel’s scheduler.

12.2.1.1 Types of Rule-Based Techniques

One approach for representing rules is codebooks [326, 952] which map each problem
to a unique signature consisting of symptoms in both the faulty component where
the problem occurs, and related components affected by the original problem. The
codebook is instantiated as a dependency matrix where the columns represent the
problems, and the rows represent the symptoms. Problems are uniquely diagnosable
if all the columns are different. Codebooks diagnose the underlying problem by
identifying the closest match to the observed symptoms.

Other diagnosis tools, such as Chopstix [113] and Vertical Profiling [416] rely
on a small collection of rules based on the semantics of the application, and the
underlying behavior of the operating system to map changes in system performance
on individual nodes to known problems. These tools provide an intuitive approach
for diagnosing problems on individual nodes, however they currently do not correlate
metrics across multiple nodes and do not address problems that can propagate across
the network in distributed systems.

Diagnosis tools that analyze large sets of rules require more sophisticated tech-
niques, such as expert systems that rely on forward inferencing to synthesize results
and resolve conflicts when multiple rules fire. These expert systems allow adminis-
trators to cope with the deluge of alarms generated by large-scale distributed systems.
[596] presents a specification language for expressing rules that captures the timing
relationship among correlated events. For example, alert operator if a link is down
and no corresponding link up event occurs within 2 min. Commercial tools such
as HP Operations Manager [949] use an optimized Rete algorithm [347] to
perform pattern matching on rules in a scalable manner that is independent of the
number of rules.

12.2.1.2 Limitations

Rule-based approaches are prevalent in commercial tools, such as IBM Tivoli
Enterprise Console [458] and HP Operations Manager [949], as they
offer an intuitive approach for expressing system behavior that allows users to aug-

244 S. P. Kavulya et al.

ment the rule-base by developing new rules tailored to their unique operating envi-
ronments. In addition, rule-based systems do not require profound understanding
of the underlying system architectural and operational principles. However, rule-
based systems suffer from the inability to learn from experience, and the inability
to deal with problems not described within the rule-base. Rule-based systems are
also difficult to maintain because the rules frequently contain hard-coded network
configuration information [850].

12.2.2 Model-Based

Model-based techniques define a mathematical representation of a system, and test
the observed state of the system against the learned model to diagnose problems.
Some models represent the normal operation of the system, and detect problems
whenever the observed system behavior fails to conform to the learned model. Other
techniques generate graphical models of how problems propagate through the system
[77, 508, 532, 539], and exploit this knowledge to infer the source of the problem.
Alternatively, graphical models [496, 780] can represent how successes propagate
through the system. These graphical models then analyze patterns of probe failures
and successes to infer the source of the problem. Lastly, graphical models may repre-
sent expected communication patterns within a system and flag problems whenever
these patterns are violated.

Illustrative example
Sherlock [77] localizes performance problems in large enterprise networks using a
graphical model of how errors propagate to infer the source of the problem. Sherlock’s
inference engine learns service-level dependencies by sniffing packets and detecting
which services are likely to be used together, e.g., DNS and web service. Sherlock
models three types of components: (i) clients which observe response times delays;
(ii) root-cause nodes which are potential sources of faults in the system; and (iii)
meta-nodes which model how errors propagate through the system. An example of a
meta-node is a fail-over node which requires all nodes in the high-availability group
to fail for an error to propagate. If a client observes a high response time, Sherlock
uses the fault-propagation model to compute the probability that a client observes a
set of symptoms given that a root-cause node is at fault. It outputs a list of root-cause
nodes which best explain the observed symptoms at the client.

12.2.2.1 Types of Model-Based Techniques

Model-based techniques can be classified into: (i) physical model based techniques
which use the physical laws that a system operates under to model constraints on sys-
tem behavior; (ii) regression and queuing models which model relationships between
resource consumption and application behavior; and (iii) graph-theoretic models

12 Failure Diagnosis of Complex Systems 245

which exploit knowledge on how errors or successes propagate in a system to local-
ize problems.
Physical models use models of the physical world, such as the laws of mechanics,
electomagnetics, or chemical kinetics to model system behavior and to determine
when anomalous behavior is present. They typically model continuous cyber-
physical systems in industrial, automotive and aerospace domains whose physics
are well understood, e.g., powertrain [633] and chassis systems [455] in cars. These
systems run in a closed-loop, where sensors monitor the system output, then feed the
data into a controller that signals actuators to adjust control as necessary to maintain
the desired system output. Problems are diagnosed by executing the physical model
alongside the actual system at run-time to detect when the system fails to conform to
the model. The fault model typically associated with the control-theoretic approach
includes sensor faults, actuator faults, and faults in the mechanical, electromechani-
cal, or hydraulic plant being controlled [574]. Isermann et al. [473] provide a more
detailed discussion of these techniques.
Regression and queuing models are useful for workload characterization, capacity
planning and detecting performance problems. These models represent relationships
between resource consumption and application behavior, and detect anomalies when-
ever these relationships are violated.

Some techniques model multi-tier Internet applications as queues, and use mean-
value analysis [597, 901] to predict transaction response times. These techniques use
a network of queues to represent how the tiers in the multi-tier application cooperate
to process requests. Mean-value analysis assumes closed queueing models in which
the number of clients in the system remains constant. However, it is often difficult in
practice to obtain the client session information required to calibrate closed models
for real-world production applications [852].

Real-world production workloads are non-stationary, i.e., the relative frequencies
of transaction types changes over time. Queuing approaches which leverage regres-
sion to learn the relationship between resource consumption and application behavior
can be used to predict response times for non-stationary workloads [198, 528, 852].
These models assume that the system contains a small number of types of transac-
tions, and that transaction types strongly influence system resource demands. These
models rely on open queues, where clients can join and leave the system model.
Open models facilitate more thorough empirical validation in production systems
than would be possible with closed models as they do not require client session
information [852].

In addition, using queuing theoretic approaches to model transaction mixes allows
these systems to distinguish anomalies from workload changes. Cherkasova et al.
[198] use queues to model the relationship between CPU usage and transaction
response times for a transaction mix. They also exploit regression to define an appli-
cation performance signature that allows them to detect software upgrades by moni-
toring changes in the application signature. Stewart et al. [852] model the relationship
between multiple physical resources, namely CPU, disk and network, and response
times for a transaction mix. These models need to be re-trained to cope with new

246 S. P. Kavulya et al.

transaction types. They also ignore interaction effects across transaction types and
implicitly assume that queueing is the only manifestation of congestion.
Graph-theoretic models analyze communication patterns across nodes and
processes to model the probability that errors, or successes, propagate through the
system. The models may also monitor violations in expected communication patterns.
Graph-theoretic models are useful for diagnosing both correctness and performance
problems in distributed systems. They can be used to detect multiple independent
problems - ranking them by likelihood of occurrence.

SCORE [539] and Shrink [508] localize problems in the IP network by modeling
error propagation patterns in the wide-area networks. Both Shrink and SCORE model
the system as a two-level graph between the IP layer and the underlying wide-area
network. Sherlock [77] and Khanna et al. [532] extend on Shrink and SCORE to
deal with multi-level dependencies and with more complex operators that capture
load-balancing and failover mechanisms.These techniques infer the root-cause by
computing the probability that errors propagate from a set of possible root-cause
nodes to the observation nodes. They indict the root-cause nodes that best explain
the symptoms at the observation nodes, and scale by assuming that there can only
be a small number of concurrent problems in the system at a given time.

Rish et al. [780] propose an active probing approach that exploits a dependency-
matrix to represent the failed components that each probe, e.g., server ping, detects.
Active probing allows probes to be selected and sent on-demand, in response to one’s
belief about the state of the system. At each step the most informative next probe
is computed and sent. As probe results are received, belief about the system state
is updated using probabilistic inference. This process continues until the problem is
diagnosed. They extend their active probing approach to cope with dynamic systems
[779], where problems may occur and disappear, by maintaining two sets of probes:
one set for repair detection to monitor nodes that are known to have failed, and
another set for failure detection to monitor nodes that are known to be working.
Their approach assumes a sequential fault model in which only one fault or repair
can occur at a time. Joshi et al. [496] use a Bayesian approach to diagnose problems in
systems with different types of monitors, or probes, that have differing coverage and
specificity characteristics. They use a dependency matrix to represent the probability
that a monitor detects a failure in a component, and incrementally update their belief
about the set of failed components based on the observed monitor output.

Khanna et al. [779] address diagnosis in distributed systems where errors can
propagate across nodes. They track message exchanges between nodes and detect
problems by comparing communication patterns against a rule-base of allowed state
transitions. Pip [775] detects application-specific problems in distributed systems
by allowing programmers to embed expectations about application behavior in the
source code. Pip detects problems by comparing actual behavior against expected
behavior. Black-box approaches that track message exchanges are more generic and
can be easily applied to new systems, whereas white-box approaches like Pip are
able to diagnose application-specific problems but require a deeper understanding of
system behavior.

12 Failure Diagnosis of Complex Systems 247

12.2.2.2 Limitations

Model-based techniques are well-suited for diagnosing application-specific prob-
lems because they encapsulate semantic knowledge on the expected behavior of the
system. The incorporation of semantic knowledge can also help them distinguish
legitimate changes in behavior, e.g. workload changes, from illegitimate changes
due to failures [198, 528, 852]. However, model-based techniques in general require
a deep understanding of system behavior to construct the models. Even in cases
where automatic model construction is feasible, there is often a tradeoff between the
amount of semantic knowledge the model incorporates and the fidelity of the diag-
nosis. For example, graph-theoretic models [77] that are automatically constructed
by examining a system’s communication patterns can localize a problem to a single
node or a small neighborhood of nodes, but cannot tell what the deeper root cause is.
Another disadvantage of model-based techniques is that they can fail to detect novel
problems that were not considered in the model.

12.2.3 Statistical

Statistical techniques for diagnosis summarize and interpret empirical data using
techniques such as correlation, histogram comparison and probability theory. These
techniques are data-centric and require little expert knowledge or detailed models
on system internals. Statistical techniques are either: (i) parametric techniques that
assume that data is drawn from a known distribution such as a normal distribution,
or (ii) non-parametric techniques that do not rely on data belonging to a particu-
lar distribution. Non-parametric methods make fewer assumptions than parametric
methods, making them more robust and giving them wider applicability. However,
there is a cost - larger sample sizes are required to draw conclusions with the same
degree of confidence as parametric methods.
Illustrative example Multivariate Adaptive Statistical Filtering (MASF) [168] is a
parametric technique for detecting and visualizing anomalies in data centers that is
similar to the Bucket algorithm by Avritzer et al. described in Chap. 2. MASF detects
anomalies by tracking deviations from the mean in performance counters, such as
CPU and memory usage. MASF assumes that data is drawn from a normal distribution
and flags an anomaly if a metric exceeds 3 standard deviations from the mean. To
cater for seasonal variations in behavior, such as heavy load during the day and light
load at night, MASF maintains separate behavioral profiles for computing the mean
and standard deviation of each metric. MASF alerts operators to suspicious behavior
and allows them to visualize anomalies, but it does not automatically localize the
problem.

http://dx.doi.org/10.1007/978-3-642-29032-9_2

248 S. P. Kavulya et al.

12.2.3.1 Types of Statistical Techniques

Statistical techniques are pervasive in problem diagnosis literature. Some model-
based techniques discussed earlier rely on statistical techniques, such as correlation
and regression, in conjunction with deep knowledge of the application’s behavior
to diagnose problems. In contrast, the statistical techniques discussed in this section
make fewer assumptions about the application’s behavior. Statistical techniques can
be classified as parametric or non-parametric techniques.
Parametric techniques assume that data is drawn from a known distribution. Normal
distributions are commonly used for anomaly detection and diagnosis because of
their tractability, and because normality can sometimes be justified by the central-
limit theorem which explains why many distributions tend to be close to the normal
distribution. These techniques typically detect anomalous behavior by identifying
significant deviations from the mean for performance counters, which they assume
follow a normal distribution. However, hardware failure rates are better modeled
using Weibull distributions which capture the increased failure rates of devices as
they age [812, 813].

Agarwal et al. [23] use change-point detection and problem signatures to detect
performance problems in enterprise systems. They detect abrupt changes in system
behavior by monitoring changes to the mean value of performance counters over con-
secutive windows of time. This technique does not scale well if the number of nodes
and metrics is large. NetMedic [509] diagnoses propagating problems in enterprise
systems by analyzing dependencies between nodes, and correlations in state pertur-
bations across processes to localize problems. NetMedic represents state for each
system component as a vector that indicates whether each metric was anomalous or
normal by assuming that each metric obeys a normal distribution and flagging anom-
alies based on deviation from the mean. If two components which depend on each
other are anomalous, NetMedic searches for time periods where the source compo-
nent’s state is similar to its current state, and searches for destination states that have
experienced significant changes in the same period. These destination states are the
likely culprits.

Draco [524] performs statistical diagnosis of problems in large Voice-over-IP
(VoIP) systems by comparing differences in the distributions of attributes, such as
hostnames and customer IP addresses, in successful and failed calls. Draco assumes
that these attributes are drawn from a Beta distribution and localizes problems by
identifying attributes that are most correlated with failed calls. By comparing suc-
cesses and failures over the same window of time, Draco avoids the need for separate
learning passes, and can thus diagnose problems that have never been seen before.
Non-parametric techniques assume that data is drawn from an unknown distribu-
tion. Non-parametric techniques estimate the underlying data distribution using his-
tograms or kernel density estimators, or make generalizations about the populations
from which the samples were drawn, e.g., using correlation.

Histogram-based techniques typically diagnose problems by comparing his-
tograms of performance counters before and during an anomalous period to identify
the metrics most likely to be associated with the problem. Tan et al. [715, 866]

12 Failure Diagnosis of Complex Systems 249

diagnose problems in large clusters using histogram-comparison of performance
counters to identify “odd-man-out” behavior. Peer-comparison allows their approach
to be robust to workload changes. However, propagating errors such as packet-
loss that affect communication across multiple nodes reduce the accuracy of their
approach. Shen et al. [822] propose a reference-driven approach to diagnose per-
formance problems due to configuration changes or upgrades. Their approach relies
on histogram comparison to identify the collection of single-parameter changes that
best explain the performance deviation observed.

Correlation-based techniques analyze historical data to automatically discover
relationships between pairs of metrics that are stable over time [488, 490]. Changes
in these learned correlations may signal problems. Correlation can also be used to
automatically discover causal relationships between metrics in distributed systems.
Giza [620] exploits knowledge of the system’s topology to identify spatial correla-
tions between events. For example, to detect that customers in Texas are experiencing
poor video quality. Next, Giza uses cross correlation to discover causal relationships
between the observed symptoms and root-cause events. Oliner et al. [702] also use
cross correlation to discover causal relationships between anomaly signals across
components. The anomaly signals represent the changes in the behavior of compo-
nents over time in terms of resource usage, message timing or semantics. Project5
[26] records packet traces at each node and uses message correlation algorithms to
automatically extract end-to-end causal traces for requests, and detect high-latency
paths. Correlation-based approaches can discover spurious relationships depending
on the thresholds used to determine whether a correlation is significant. In addition,
correlation-based approaches do not scale well if the number of nodes and metrics is
large because they search for metric correlations both locally, and remotely between
nodes communicating with each other.

Dimensionality-reduction techniques like Principal Component Analysis can
reduce the number of metrics to compare when diagnosing problems by summa-
rizing dominant trends. Xu et al. [948] use source-code analysis to apply structure to
console logs and discover dominant historical trends in application state and message
counts using Principal Component Analysis. PeerWatch [510] uses peer-comparison
to detect anomalies in heterogeneous clusters running different hardware. Their peer-
comparison algorithm uses a dimensionality-reduction technique known as canonical
correlation analysis to normalize performance differences due to different hardware,
and discover correlations between peers.

12.2.3.2 Limitations

Statistical techniques require little expert knowledge or detailed models of system
internals. The diagnosis techniques can rely on well-established statistical theories
to ground their algorithms, and test that their results are statistically significant, i.e.,
unlikely to have occurred by chance alone. For example, hypothesis tests such as the
t-test, allow us to reject the hypothesis that the observed system behavior is consistent
with the expected system behavior with a degree of confidence. When building

250 S. P. Kavulya et al.

statistical profiles of behavior, care must be taken to include sufficient data samples
and test assumptions on data distributions to ensure validity. For example, incorrectly
assuming that the data is drawn from a normal distribution can lead to a high error
rate. Since statistical techniques do not incorporate much semantic knowledge about
semantic behavior, they can experience difficulties distinguishing legitimate changes
in behavior such as workload changes from performance problems.

12.2.4 Machine Learning

Machine learning is a scientific discipline that is concerned with the design and
development of algorithms that allow computers to evolve behaviors based on training
data. Machine-learning techniques borrow heavily from statistical techniques and
probability theory. Machine learning relies on training and cross-validation which
involves partitioning a sample of data into complementary subsets, performing the
analysis on one subset called the training set, and validating the analysis on the other
subset called the validation set or testing set. Cross-validation can provide an estimate
of model accuracy.
Illustrative example Cohen et al. [231] describe an approach for automatically
extracting signatures of system behavior so that operators can identify and quantify
recurrent problems, e.g., slowdowns due to insufficient database connections. They
use Service-Level Objective (SLO) violations to identify periods of time where the
system was behaving abnormally and use tree augmented Bayesian networks (TANs)
to determine which metrics are most correlated with the anomalous periods. They
build signatures of the anomalous periods using metric attribution as follows: 1 indi-
cates a metric is selected by model and attributed to failure, −1 indicates a metric
is selected by model but not attributed to failure, and 0 indicates a metric was not
selected by model (irrelevant). They cluster the signatures based on a purity score
which indicates what fraction of signatures in the cluster are associated with failures.
Clusters with greater purity provide more confidence in the signature. They found
that the metric attribution gives better results than using raw metric values. They also
found that they can leverage signatures from different sites to identify or rule out
recurrent problems.
Types of machine learning techniques Diagnosis algorithms that rely on machine
learning can be categorized into two broad categories namely: (i) unsupervised learn-
ing which identifies patterns in unlabeled data typically through clustering, and
(ii) supervised learning which infer a function that best classifies successful and
failed states from labeled data.
Unsupervised learning identifies patterns in unlabeled data typically through clus-
tering, and detects unexpected outlier data points that might be indicators of failures.

Kiciman and Fox [533] uses probabilistic context-free grammars to model the
causal paths in the system. The grammar rules represent the probability that one
component calls another. They identify anomalous causal paths by measuring the
difference between the probability of the observed transition and the expected prob-

12 Failure Diagnosis of Complex Systems 251

ability of the transitions that make up the causal path. Magpie [89] uses a string-
edit-distance comparison to group together requests with similar behaviour, from
the perspective of request structure, synchronization points and resource consump-
tion. The representative requests from each clusters allow them to construct concise
workload models and detect outlier requests.
Supervised learning uses labeled data of successful and failed states to learn which
metrics are most correlated with failed states, or to identify signatures of recurrent
problems from a database of known problems.

Metric attribution approaches localize problems by identifying resource-usage
metrics or components that are highly correlated with failed states. They allow oper-
ators to sift through the hundreds or thousands of metrics available in their system
and narrow down the handful of metrics that yield insight to the cause of the problem
and its location and guide operators in performing more detailed root-cause analysis.
Once the operators determine the root-cause, they can then annotate the output of
metric attribution with the root-cause and build the database of known problems used
by signature-based approaches.

Pinpoint [192] and MinEntropy [193] localize components highly correlated with
failed requests using data clustering [192] or decision trees [193]. They represent
requests using a matrix where each row is a client request, and columns are compo-
nents. An additional column indicates whether the request was successful or failed.
The matrix serves as input into the machine learning algorithm. These approaches
detect problems that result in changes in the causal flow of requests such as excep-
tions. More recently, Spectroscope [780] categorizes requests based on functionality,
e.g., read or write requests, and applies data clustering to requests in each category
to identify outliers due to changes in causal flows or request durations. Some limita-
tions of these approaches are that they cannot distinguish between sets of components
that are tightly coupled and are always used together, and they require requests to be
independent of each other. If a request corrupts state and affects subsequent requests,
the non-independence of requests makes it difficult to detect the real faults because
the subsequent requests may fail while using a different set of components [192].

Cohen et al. [230] use tree augmented Bayesian networks to determine which
resource-usage metrics are most correlated with the anomalous periods. They pro-
posed an extension [957] to their work that uses ensembles of Bayesian models to
adapt to changing workloads and infrastructure.

Signature-based approaches allow system administrators to identify recurrent
problems from a database of known problems. Signature-based approaches have
wide applicability because studies have shown that typically half, and as much as
90% of software failures are due to recurrent problems [310]. Research has centered
on how to represent and retrieve signatures of known problems from the database
of known problems. However, these approaches do not fare well at automatically
identifying problems that have not previously been diagnosed.

Yuan et al. [954] learn signatures of known problems in standalone systems by
analyzing sequences of system calls. They target problems that have the same mani-
festation, e.g., a web page may fail to load due to different underlying root causes such
as an invalid IP address or an unplugged network cable. Analyzing system calls allows

252 S. P. Kavulya et al.

them to distinguish between problems that might be indistinguishable when analyzing
resource usage data. They use multi-class Support Vector Machines to learn signa-
tures of problems. However, their approach does not address distributed systems.

Cohen et al. [231] and Bodik et al. [123] generate signatures of recurrent problems
in distributed systems by using the discrete feature vectors obtained through metric
attribution. They found that using discrete values to represent signatures performs
better than using real-valued metrics. In addition, they found that they can leverage
signatures learned at one geographical location to diagnose problems in data centers
at a different location.

Duan et al. [310] present an approach that can be used for both known problems,
and problems that have not previously been seen. They use a supervised approach
(decision trees or signature databases) to identify recurrent problems. If the current
failure does not match the annotated failures in the database, they compare it to
the healthy data to identify features that are correlated with the failure. They then
select multiple instances of the same failure which they can present to the system
administrator to annotate.

12.2.4.1 Limitations

Machine-learning techniques automatically learn profiles of system behavior, for
example, using clustering to identify signatures of known problems. Machine-
learning can also help localize problems by identifying resource-usage metrics or
components that are highly correlated with failed states. However, these techniques
can suffer from the curse of dimensionality that reduces accuracy when the number of
features is large. Additionally, they are also susceptible to overfitting, a phenomenon
in which the learner learns features of the evidence that are circumstantial rather
than those that actually define the relationship between the faults and their effects.
Over-fitted models generalize poorly, and can fail when presented with evidence
that is only slightly different from the one on which the model was trained. Finally,
because machine learning techniques learn a direct mapping between the symp-
toms and underlying root causes without an intermediate structural model of the
system, lengthy retraining is required whenever the system behavior changes signifi-
cantly. Furthermore, previously learned models often have to be thrown away during
the period of retraining, leaving the system vulnerable to any problems. Therefore,
machine learning techniques may not be appropriate for systems that are upgraded
frequently.

12.2.5 Count-and-Threshold Techniques

Physical faults are distinguished by their nature and duration of impact as being
permanent or temporary [63]. Permanent faults may lead to error whenever the com-
ponent is activated; the only way to handle such faults is to remove the affected
component. Temporary faults can be internal (usually known as intermittent) or

12 Failure Diagnosis of Complex Systems 253

external (transient). The former are caused by some internal part deviating from its
specified behavior. After their first appearance, they usually exhibit a relatively high
occurrence rate and, eventually, tend to become permanent. On the other hand, tran-
sient faults, often manifesting the encountered interferences as noise-pulses on the
communication channels, cannot be easily traced to a defect in a particular part of
the system and, normally, their adverse effects tend to disappear. In industries like
transportation and telecommunications, where operating with permanently faulty
modules would carry high risks or costs, it is common that modules, disconnected
because they were considered faulty, are later proved to be free from permanent
faults when tested during repair operations. Therefore, treating transient faults as
permanent has a high cost for these industries. A good discrimination between tran-
sient and intermittent/permanent faults solves two important problems: (i) prevents
the undue removal of nodes affected by transient faults, thus avoiding unnecessary
depletion of system resources; and (ii) helps to maintain the correct coverage of
the system fault hypotheses (i.e., the assumption on the number of faults tolerated
by the core system protocols within a given time window) by keeping in operation
nodes not permanently faulty. Considering that most perturbations encountered are
transient [234, 590], the issue of proper diagnosis of transients is a significant issue
of interest.
Illustrative example A generic class of online low-overhead count-and-threshold
mechanisms, called alpha-count, has been initially proposed in [131] and later
enriched with a double threshold in [132]. It is characterized by: a) tunability through
internal parameters, to warrant wide adaptability to a variety of system requirements;
b) generality with respect to the system in which they are intended to operate, to ensure
wide applicability; c) simplicity of operation to allow high analyzability through ana-
lytical models and to be implementable as small, low-overhead and low-cost modules,
suitable especially for embedded, real-time, dependable systems. In its basic formu-
lation, an error counter is associated to each component, which is incremented when
the component fails and decremented when it delivers a correct service. When the
value of the counter exceeds a given threshold value , the component is diagnosed
as affected by a permanent or an intermittent fault.
Heuristic mechanisms The importance of distinguishing transient faults, so that they
can be dealt with specifically, is testified by the wide range of solutions proposed,
e.g., [25, 477, 590, 661, 841], although with reference to specific systems. Most of
these solutions are based on more or less simple heuristic mechanisms. One com-
monly used method, for example, in several IBM mainframes [841], is to count the
number of error events: too many events in a given time frame would signal that
the component needs to be removed. In TMR MODIAC, the architecture proposed
in [661], two failures experienced in two consecutive operating cycles by the same
hardware component that is part of a redundant structure make the other redun-
dant components consider it as definitively faulty. Another architecture using similar
mechanisms, designed for distributed ultra-dependable control systems, is described
in [567]. In this case, a combination of diversified design, temporal redundancy and
comparison schema is used to obtain a detailed determination of the nature of faults.
Counting mechanisms are also used to solve the so called 2-2 splits, i.e., to determine

254 S. P. Kavulya et al.

the correct value among four proposals in a quadruple modular redundancy (QMR)
system when there is a tie. In [25], a list of suspect processors is generated during
the redundant executions; a few schemes are then suggested for processing this list
including assigning weights to processors that participate in the execution of a job
and fail to produce a matching result and taking down for diagnostics those whose
weight exceeds a certain threshold. Other approaches do, instead, concentrate on off-
line analysis of system error logs, and therefore are not applicable on-line. In [590],
some heuristics, collectively named Dispersion Frame Technique, for fault diagnosis
and failure prediction are developed and applied to system error logs taken from a
large Unix-based file system. The heuristics are based on the inter-arrival patterns of
the failures (which may be time-varying). For example, there is the 2-in-1 rule, which
warns when the time of inter-arrival of two failures is less than one hour, and the
4-in-1 rule, which fires when four failures occur within a 24-hour period. In [477],
an error rate is used to build up error groups and simple probabilistic techniques
are then recursively applied to discern similarities (correlations) which may point to
common causes (permanent faults) of a possibly large set of errors.
Other count-and-threshold solutions In [130], a methodology and an architectural
framework for handling multiple classes of faults (namely, hardware-induced soft-
ware errors in the application, process and/or host crashes or hangs, and errors in
the persistent system stable storage) in a COTS and legacy-based application have
been defined. Also, a generic FDIR (Fault Detection followed by Isolation and system
Reconfiguration) framework for integrating existing distributed diagnosis approaches
with a count-and-threshold algorithm is proposed in [819].
Formulation based on Bayesian inference Another direction of research has
addressed a rigorous mathematical formulation of diagnosis based on Bayesian infer-
ence [731]. Bayesian inference provides a standard procedure for an observer who
needs to update the probability of a conjecture on the basis of new observations.
Therefore, after a new observation is provided by the error detection subsystem, the
on-line diagnosis procedure produces an updated probability of the module being
affected by a permanent fault. This leads to an optimal diagnosis algorithm, in the
sense that fault treatment decisions based on its results would yield the best utility
among all alternative decision algorithms using the same information. This higher
accuracy with respect to simple heuristics comes at the cost of higher computational
complexity.
Formulation based on Hidden Markov Models A formalization of the diagnosis
process, addressing the whole chain constituted by the monitored component, the
deviation detector and the state diagnosis through Hidden Markov Models has been
proposed in [255], with the goal of developing high accuracy diagnosis processes
based on probabilistic information rather than on merely intuitive criteria-driven
heuristics. Because of its high generality and accuracy, the proposed approach could
be usefully employed: (i) to evaluate the accuracy of low-cost on-line processes to be
adopted as appropriate and effective diagnostic means in real system applications;
(ii) for those diagnostic mechanisms equipped with internal tunable parameters, to
assist the choice of the most appropriate parameter setting to enhance effectiveness
of diagnosis; and (iii) to allow direct comparison of alternative solutions.

12 Failure Diagnosis of Complex Systems 255

12.2.5.1 Limitations

The accuracy of diagnosis performed through threshold-based mechanisms strongly
depends on proper calibration of the mechanism parameters, namely the threshold’s
value and the function adopted to update the counter. Actually, proper setting of the
mechanism’s parameters is fundamental to trade between accuracy and promptness,
which are the typical contrasting requirements to be satisfied in fault discrimination,
that is:

• To signal, as quickly as possible, all components affected by permanent or inter-
mittent faults. Gathering information to discriminate between transient and inter-
mittent faults takes time, thus giving rise to a longer fault latency. This increases
the chances of catastrophic failure and also increases the requirements on the error
processing subsystem in fault tolerant systems.

• To avoid signaling components that are not affected by permanent or intermittent
faults. In fact, depriving the system of resources that can still do valuable work
may be even worse than relying on a faulty component.

Practitioners have long used expertise and trial-and-error approach to tune their
systems. However, solutions based on rigorous mathematical formulations, such as
alpha-count and its variants, are amenable to high analyzability of the parameters
tuning through analytical models. Therefore, the system designer is equipped with a
systematic, predictable, and repeatable way to identify a proper setting, taking into
account requirements of the targeted application field.

12.2.6 Visualization

Automated diagnosis tools might not always be available, and when available they
occasionally miss the true root-cause and typically reduce the search space to a small
number of likely culprits [600]. Visualization tools allows operators to cope with
these scenarios by: (i) summarizing data trends, (ii) supporting interactive graphs
that allow operators to explore different hypotheses on the root-cause of problems,
and (iii) integrating output from automated diagnosis tools.

Visualization tools [364, 827, 843] provide an array of simple graphs, line plots,
barcharts, and histograms, to display trends in performance counters such as CPU
utilization. They use simple statistical tests such as the deviation from the mean to
flag outliers, and use color to highlight these outliers. LiveRAC [635] is a visual-
ization system that supports the analysis of large collections of system management
timeseries data consisting of hundreds of parameters across thousands of network
devices. LiveRAC provides high information density using a reorderable matrix of
charts, with semantic zooming that dynamically adapts different aspects of each chart
based on available space.

Magpie [89], X-trace [345], and Dapper [827] are primarily tools for tracing causal
request paths, but they also offer support for visualizing requests whose causal struc-

256 S. P. Kavulya et al.

ture or duration is anomalous. Artemis [244] provides a pluggable framework for
distributed log collection, data analysis, and visualization. Mochi [867] is a log-
analysis based debugging tool that visualizes both the flow of data and the flow of
control for a large-scale parallel processing framework known as Hadoop. NetClinic
[600] visualizes data from computer networks using directed graphs, and presents
suggested diagnostics for observed problems by incorporating output from an auto-
mated analytic reasoning engine [509].

12.3 Industrial Applications

In this section we summarize the use of the previously described diagnosis tech-
niques in several industrial applications ranging from large scale telecommunica-
tions infrastructures, to Internet services, to embedded systems and the automotive
industry, to aerospace and unmanned spacecraft.

12.3.1 Telecommunications

The telecommunications industry has long operated some of the largest scale distrib-
uted systems in use - from digitally switched phone networks and Internet backbones,
to high-speed cellular networks and Internet Protocol Television (IPTV) deploy-
ments. The high resilience requirements of these systems have led to widespread
deployment of diagnosis techniques by telecom operators. [850] provides a survey
of diagnosis techniques for communication systems.

Work in the telecom domain has traditionally revolved around alarms produced
by network elements, and trouble ticket systems [587] that track and coordinate trou-
bleshooting. The use of rule-based expert systems for troubleshooting was common
- as early as 1990, Wright et al. [945] survey a list of 40 rule-based expert system
in use within the telecom industry. More recently, codebook-based approaches [326,
952] have been used to correlate alarms across many network devices to a single
“root cause” alarm that the operators can investigate. SCORE [539] uses a model of
how IP links are routed over an underlying optical network to localize optical layer
failures (e.g., fiber-cuts) based on IP layer loss measurements. rcc [333] uses static
analysis to detect faults in BGP router configurations by checking them against a
high-level correctness specification.

However, such knowledge-based techniques often fail to capture emergent behav-
iors that are rife in highly heterogenous telecom networks. Therefore, increas-
ing attention is being devoted to “knowledge-free” techniques such as statistical
methods and machine learning. Giza [620] uses spatial (i.e., in the same geographical
neighborhood) and temporal correlations between network alarms in a large IPTV
network to determine the true root cause of network outages that result in many
alarms across different layers (e.g., video, TCP, IP). Draco [524] performs statistical

12 Failure Diagnosis of Complex Systems 257

comparisons between successful and dropped calls in a large voice-over-IP (VoIP)
service to identify features that discriminate the failures. Mahimkar et al. [621] per-
form statistical comparisons of various performance metrics such as CPU utilization
and loss of network elements before and after upgrades to identify problems that
result from upgrades.

12.3.2 Internet Services and Data Centers

Diagnosis in data center applications has centered on interactive applications in
Internet Services [192, 231, 533, 800] and enterprise systems [77, 509, 954], and
batch applications in data-intensive computing [715, 866, 948]. Interactive applica-
tions typically have well-established Service Level Objectives, e.g., 99% of Internet
requests should be serviced within 4 s, to ensure high-availability. Some techniques
use metric attribution [123, 192, 231, 800] localize problems by identifying resource-
usage metrics or components that are highly correlated with failed states. Signature-
based techniques [123, 231, 310, 954] have been used to diagnose recurrent problems
by generating signatures of known problems using techniques such as metric attribu-
tion. Regression and queuing models [198, 528, 852] detect performance problems in
Internet services by modeling the relationships between performance counters, e.g.,
CPU utilization and application response times, and detecting performance anom-
alies whenever these relationships are violated.

Batch applications in data-intensive computing have more diverse runtimes [523].
Peer-comparison techniques [656, 715, 866] diagnose problems by exploiting the
parallelism inherent in these applications to compare behavior across components
and detect “odd-man-out” behavior. The distributed nature of data center applications
facilitates the use of graphical models to analyze communication patterns across
nodes (or processes) to model the probability that errors [532], or successes [780]
propagate through the system. Log analysis [701, 702, 948] and rule-based techniques
[113, 416, 433] are also widely used in data center applications.

12.3.3 Embedded Systems

Embedded systems are computer systems designed to do one or a few dedicated
functions, often with real-time computing constraints. Embedded systems are pre-
sent in a large variety of systems such as consumer electronics (e.g., mobile phones),
and automotive safety-critical systems (e.g., anti-lock braking, and drive-by-wire
systems). Lanigan et al. [574] provides a comprehensive survey of failure diagnosis
in automative systems.

Preparata et al. [744] proposed the Preparata, Metze, and Chien (PMC) model
to identify faulty components by collating results of diagnostic tests across a dis-
tributed system. Heuristic mechanisms based on thresholds have been also adopted,

258 S. P. Kavulya et al.

such as [661] in railway control systems. Serafini et al. [819] distinguish between
healthy nodes from unhealthy nodes in time-triggered automotive systems by apply-
ing penalties and rewards to the collated diagnostic tests. The penalty counter is
increased when a node’s entry in the consistent health vector indicates a fault, other-
wise the reward counter is increased according to the criticality of the node. When
the reward threshold for a node is crossed, the penalty counter for that node is reset
to zero. When the penalty threshold for a node is crossed, the node is diagnosed
as faulty. Peti et al. [723] introduce Out-of-norm Assertions (ONAs) as a way to
correlate fault effects in the three dimensions of value, time and space. They use
ONAs to describe fault patterns that discriminate between different types of faults,
i.e., wearouts, massive transient faults, and connector faults in automotive systems.
Other diagnosis techniques for embedded systems rely on physical models to diag-
nose problems in powertrain [633] and chassis systems such as braking [455] in
cars.

12.3.4 Aerospace

Stroupe et al. [858] and Patton [719] provide a detailed survey on diagnosis in
aerospace systems. Livingstone is a model-based system, developed at NASA Ames,
used to autonomously control the New Millennium Deep Space One Probe (DS 1)
[858]. Livingstone accepts a model of the components of a complex system such as
a spacecraft or chemical plant and infers from it the overall behavior of the system.
From this, Livingstone monitors the operation of the system, diagnoses its current
state, determines if sensor readings are implausible, and recommends actions to put
the system into a desired state even in the face of failures. MARPLE is an expert
system that relies on a model-based technique known as constraint suspension to
diagnose problems [858]. Constraint suspension views the system to be monitored
as a network of black-box components and places constraints on the behavior of each
component. When observed behavior violates these constraints, MARPLE suspends
the components in the network, one at a time until it finds a component that can
account for all the inconsistent values at the nodes. MARPLE has been demonstrated
to work for the NASA LRC Space Station Freedom (SSF) power system testbed.

Kalman filtering [158] is a state and parameter estimation technique that fuses
data from different sensors together to produce an accurate estimate of the true
system state. Jayakumar and Das [485] use a single Kalman filter, driven by the
motor shaft velocity sensor, to diagnose problems in a flight control system. They
diagnose incipient sensor faults using structured residuals that are generated using
the Kalman filter estimates. Patton [719] discusses the use of filters to diagnose
faults in flight control systems. At the moment, the analytic redundancy provided by
model-based approaches cannot be used to replace hardware redundancy due to the
safety-critical nature of aerospace applications. However, analytical redundancy can
be used to suppress some levels of replication, e.g., to replace quadruple by triplex
schemes [719].

12 Failure Diagnosis of Complex Systems 259

12.4 Future Trends and Challenges

Despite the tremendous progress that has been made in automated fault diagnosis,
many open problems remain. Below, we enumerate a few such problems that may
serve to inspire new contributions in the field.

12.4.1 Online Recovery and Self Healing

The eventual outcome of any automated diagnosis technique is the identification
and removal of any impairments to a system’s proper operation. Therefore, a natural
evolution of diagnosis is the construction of “self-healing” systems that can automat-
ically perform recovery actions upon the outcome of an online diagnosis procedure
to remove faults. Self-healing is relatively risk-free either when the fault detection
and diagnosis mechanisms are highly accurate, or when the recovery actions do
not impose any penalties if applied wrongly. For example, JAGR [171] presents
an autonomous self-recovering Enterprise Java Bean (EJB) application server that
allows recovery using quick microreboots of components. The basic philosophy in
that work is to make recovery mechanisms cheap enough that they can be liber-
ally applied without consequences even if diagnosis produces poor outcomes. When
recovery actions are not cheap, self-healing becomes a risky proposition because
wrong diagnosis can lead to poor recovery decisions.

[496] propose a decision theoretic framework using Partially Observable Markov
Decision Processes (POMDPs) to reason about recovery decisions of different costs
under uncertain fault diagnoses. They combine the decision algorithm with a graph-
theoretic diagnosis algorithm to determine when components of a multitier Enterprise
system should be rebooted using the results of end-to-end system tests. [595] pro-
pose a model-free approach for choosing recovery actions by using reinforcement
learning to learn the effectiveness of previously executed actions as a function of the
observable symptoms. However, none of these techniques are sufficient when faced
with unanticipated problems due to emergent behavior.

12.4.2 Automatic Model Construction

Although model-based techniques have several advantages such as the ability to
predict error propagation, the ability to provide semantically meaningful diagnoses,
and the ability to cope with structural system changes without the need to relearn,
they require detailed and accurate models that have to be constantly updated. There is
some literature on automatically constructing system models, primarily those suitable
for graph-theoretic approaches, but also some on learning queuing-theoretic models.
Examples include work on automatic determination of component dependencies

260 S. P. Kavulya et al.

by system perturbation (e.g., [153]), work on dependency generation via passive
observation (e.g., [24, 26, 776]), approaches based on statistical clustering (e.g.,
[193]), and approaches to learn the parameters of queuing models using statistical
regression [852]. However, all of these techniques are only suitable for learning
models of a system during normal operations. Learning the dependencies of a system
that may be exercised during fault modes is an open problem whose solution is likely
to require a combination of static analysis (to discover all dependencies) along with
runtime measurement (to identify those dependencies which are explained by normal
behaviors).

12.4.3 Cross Domain and Cross Layer Diagnosis

In many domains such as Internet services and telecommunications, large systems
are increasingly built as a composition of multiple horizontal “technology layers”
and vertical “administrative domains”. For example, consider a typical Internet appli-
cation constructed using the Java runtime and its libraries, hosted in a Tomcat appli-
cation server running on a Linux OS inside a virtual machine that runs on a Windows
host running in a rack in a particular data center of a cloud provider. For communi-
cation with a backend database, it uses the Simple Object Access Protocol (SOAP)
that runs over HTTPS (secure HTTP) that runs over an IP virtual private network
that is provisioned over an Ethernet service provided by an Internet Service Provider
(ISP) that provisions it as a tunnel over an MPLS (multi-protocol label-switching)
backbone network. In addition, this application uses the Bing mapping service from
Microsoft, obtains analytics support from Google Analytics, and uses PayPal as a
payment service. Each of these services also run on very similar infrastructure layers,
and depending on which cloud provider the application users, some of these services
may also share a data-center and/or network provider with the application.

In such a highly layered and highly silo’ed setup, faults can occur in each of the
technology layers or third party providers the service uses. Furthermore, symptoms
of lower layer problems (e.g., packet loss on the MPLS network) can translate into
symptoms in higher layers (slow response from database server). Seemingly inde-
pendent third party providers may have common dependencies - e.g., they use the
same cloud provider, resulting in correlated failures. No single layer or administra-
tive domain may have sufficient information to completely determine the root cause
of a fault occurring in the system. These complications make diagnosis a challeng-
ing task. Although there has been some preliminary work on combining information
across technology layers (e.g., [539, 620]), comprehensive approaches that can take
a whole system view when performing diagnosis are still elusive.

12 Failure Diagnosis of Complex Systems 261

12.5 Conclusions

Diagnosis of failures occurring in systems in the field is an important aspect of
system resilience and its assessment. In this chapter, we provided a broad overview of
automated techniques for fault diagnosis ranging from knowledge-based techniques
that encode expert knowledge in the form of rules or system models to model-free
techniques that rely on statistical correlations, regression, and machine learning to
perform some aspects of the diagnosis task without any prior human knowledge.
We provided examples of industrial applications in which automated diagnosis has
proven to be a valuable tool for ensuring and evaluating resilience. Today, while these
mainly include telecommunications and Internet services that have to deal with issues
of scale and automotive and aerospace systems that have to deal with the absence
of human expertise when problems occur, automated diagnosis is poised to make
a foray into an increasingly number of domains ranging from software debugging
tools to agents that help troubleshoot configuration problems in personal computer
systems. Finally, we review some of the open problems in this area - these include the
need to deal with problems that occur due to emergent, unpredictable behaviors, and
the need for recovery techniques to automatically act upon the output of diagnosis
algorithms.

Chapter 13
Fault Injection

Raul Barbosa, Johan Karlsson, Henrique Madeira and Marco Vieira

Abstract Resilient systems are designed to operate at acceptable levels even in the
presence of faults and other adverse events. Assessing the resilience of a given sys-
tem therefore requires that the effects of such events can be measured and examined
in detail, which in turn requires the ability to introduce faults and observe the subse-
quent behaviour of the system. Fault injection is therefore a fundamental method for
resilience assessment. It allows us to study the effect of faults on a system, and can
thus be used to identify weaknesses in fault handling, to assess the effectiveness of
error detectors and fault tolerance mechanisms, and to quantify the effect of faults on
the quality of service achieved by the system. This chapter provides an introduction
to fault injection for resilience assessment. We start with a brief overview of the area
of fault injection, including the necessary terminology. We then discuss common
techniques for the injection of hardware, software, and security faults, aiming to
cover the wide spectrum of techniques proposed in the literature.

R. Barbosa (B) · H. Madeira · M. Vieira
DEI/CISUC, University of Coimbra,
3030-290 Coimbra, Portugal
e-mail: rbarbosa@dei.uc.pt

J. Karlsson
Department of Computer Science and Engineering,
Chalmers University of Technology,
412 96 Gothenburg, Sweden
e-mail: johan@chalmers.se

H. Madeira
e-mail: henrique@dei.uc.pt

M. Vieira
e-mail: mvieira@dei.uc.pt

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 263
DOI: 10.1007/978-3-642-29032-9_13, © Springer-Verlag Berlin Heidelberg 2012

264 R. Barbosa et al.

13.1 Introduction

A critical issue in the development of a resilient computer system is the validation
of its fault-handling mechanisms. We use the term fault-handling mechanism as an
umbrella concept encompassing all mechanisms that handle faults and errors in a
computer system. This includes mechanisms for achieving fault tolerance, preserv-
ing data integrity, ensuring safety, etc. Ineffective or unintended operation of these
mechanisms can significantly impair the resilience of a computer system. Assess-
ing the effectiveness and verifying the correctness of fault-handling mechanisms in
computer systems is therefore of vital importance.

Fault injection is an important experimental technique for assessment and verifi-
cation of fault-handling mechanisms. It may be defined as the process of deliberately
introducing faults or errors in computer systems, allowing researchers and system
designers to study how computer systems react and behave in the presence of faults.
Fault injection is used in many contexts and can serve different purposes, such as:

• Assess the effectiveness, i.e., fault coverage, of software and hardware imple-
mented fault-handling mechanisms.

• Study error propagation and error latency in order to guide the design of fault-
handling mechanisms.

• Test the correctness of fault-handling mechanisms.
• Measure the time it takes for a system to detect or to recover from errors.
• Test the correctness of fault-handling protocols in distributed systems.
• Verify failure mode assumptions for components or subsystems.
• Study the impact of faults and fault-tolerance mechanisms on QoS of the system.

In this chapter our goal is to give the reader an introduction to fault injection.
As fault injection has a long history in research, we structure the chapter around a
thorough survey of the state of the art. Over the years, numerous papers on assess-
ment and verification of fault-tolerant systems or individual mechanisms, and on
fault injection tools have been published. This chapter covers existing literature on
injection of hardware faults, injection of software faults, and for test of protocols for
fault-tolerant distributed systems.

Before we discuss and compare different fault injection techniques in detail, we
must first introduce some terms and basic concepts. We use target system as a generic
term for the system under assessment or verification. The target system executes a
workload, which is determined by the program executed by the target system and the
data processed by the program. The faults injected during the experiments constitute
the faultload.

Fault injection can in principle be carried out in two ways: faults can be injected
either in a real system or in a model of a system. By a real system we mean a physical
computer system, either a prototype or a commercial product. System models for fault
injection experiments can be built using two basic techniques: software simulation
and hardware emulation.

We distinguish between a fault injection experiment and a fault injection cam-
paign. A fault injection experiment corresponds to injecting one fault and observing,

13 Fault Injection 265

or recording, how the target system behaves in presence of that fault. To gain sta-
tistical confidence in the assessment or the verification of a target system, we need
to collect data from many fault injection experiments. A series of fault injection
experiments conducted on a target system is called a fault injection campaign.

Fault injection techniques can be compared and characterized on the basis of
several different properties. The following properties are applicable to all types of
fault injection techniques:

• Controllability. Ability to control the injection of faults in time and space.
• Observability. Ability to observe and record the effects of an injected fault.
• Repeatability. Ability to repeat a fault injection experiment and obtain the same

result.
• Reproducibility. Ability to reproduce the results of a fault injection campaign.
• Faultload representativeness. How accurately the faultload represents real faults.
• Workload representativeness. How accurately the workload represents real sys-

tem usage.
• System representativeness. How accurately the target system represents the real

system.

The main advantage of performing fault injection in a real system is that the ac-
tual implementation of the fault-handling mechanisms is assessed and verified. Thus,
system representativeness is usually higher when using a physical system compared
to using software simulation or hardware emulation. On the other hand, fault models
used in simulation-based and emulation-based fault injection can usually imitate real
faults more accurately than artificial faults injected into a real system. Fault represen-
tativeness is therefore often higher for simulation-based and emulation-based fault
injection. Also, controllability, observability, repeatability, reproducibility and reach-
ability are normally higher in simulation-based and emulation-based fault injection
compared to fault injection in real systems.

However, there are also several drawbacks and limitations to simulation-based and
emulation based fault injection. The development of the simulation/emulation model
can increase development cost. Performing software simulations with an accurate
simulation models can be very time-consuming. In fact, simulating a large amount
of system activity (e.g., the execution of several million lines of source code) may
not be feasible using a highly detailed model of the target system.

In simulation-based fault injection, it is therefore essential to make a trade-off
between simulation time, on one hand, and the accuracy of the fault model(s) and
the system model, on the other hand. Time overhead is much lower in hardware
emulation-based fault injection than in software simulation-based fault injection.
However, it may still be a concern in hardware emulation-based fault injection, e.g.,
in the verification of real-time systems.

Commonly used fault injection techniques have specific advantages and draw-
backs. Several researchers have therefore proposed hybrid fault injection approaches,
in which different techniques are combined in order to increase the scope and con-
fidence in the verification or the assessment of a target system.

266 R. Barbosa et al.

13.2 Techniques for Injecting Hardware Faults

In this section, we describe techniques for injecting or emulating hardware faults.
The first three subsections deal with fault injection into real systems, covering
hardware-implemented fault injection, software-implemented fault injection, and
radiation-based fault injection. Three additional subsections cover software sim-
ulation-based fault injection, hardware emulation-based fault injection and hybrid
fault injection. Thus, hardware faults can be injected or emulated by all the techniques
mentioned in the introduction of this chapter.

13.2.1 Hardware Implemented Fault Injection

Hardware-implemented fault injection includes three techniques: pin-level fault in-
jection, power supply disturbances, and test port-based fault injection.

In pin-level fault injection, faults are injected via probes connected to electrical
contacts of integrated circuits or discrete hardware components. This method was
used already in the 1950s for generating fault dictionaries for system diagnosis. Many
experiments and studies using pin-level fault injection were carried out during the
1980s and early 1990s. Several pin-level fault injection tools were developed at that
time, for example, MESSALINE [53] and RIFLE [617]. A key feature of these tools
was that they supported fully automated fault injection campaigns. The increasing
level of integration of electronic circuits has rendered the pin-level technique obsolete
as a general method for evaluating fault-handling mechanisms in computer systems.
The method is, however, still valid for assessment of systems where faults in elec-
trical connectors pose major problem, such as automotive and industrial embedded
systems.

Power supply disturbances (PSDs) are rarely used for fault injection because
of low repeatability. They have been used mainly as a complement to other fault
injection techniques in the assessment of error detection mechanisms for small mi-
croprocessors [518, 655, 757]. The impact of PSDs is usually much more severe than
the impact of other commonly used injection techniques, e.g., those that inject single
bit-flips, since PSDs tend to affect many bits and thereby a larger part of the system
state. Interestingly, some error detection mechanisms show lower fault coverage for
PSDs than for single bit-flip errors [757].

Test port-based fault injection encompasses techniques that use test ports to in-
ject faults in microprocessors. Many modern microprocessors are equipped with
built-in debugging and testing features, which can be accessed through special I/O-
ports, known as test access ports (TAPs), or just test ports. Test ports are defined by
standards such as the IEEE-ISTO 5001-2003 (Nexus) standard [466] for real-time
debugging, the IEEE 1149.1 standard test access port and boundary-scan architecture
(JTAG) [462], and the background debug mode (BDM) facility. Nexus and JTAG are
standardized solutions used by several semiconductor manufacturers, while BDM

13 Fault Injection 267

is a proprietary solution for debugging developed by Freescale, Inc. Tools for test
port-based fault injection are usually implemented on top of an existing commercial
microprocessor debug tool, since such tools contain all functions and drivers that are
needed to access a test port.

The type of faults that can be injected via a test port depends on the debugging
and testing features supported by the target microprocessor. Normally, faults can be
injected in all registers in the instruction set architecture (ISA) of the microprocessor.
BDM and Nexus also allow injection of faults in main memory. Test ports could also
be used to access hardware structures in the microarchitecture that are invisible to
the programmer. However, information on how to access such hardware structures
is usually not disclosed by manufacturers of microprocessors.

Tools that support test port-based fault injection include GOOFI [28, 833] and
INERTE [955]. GOOFI supports both JTAG-based and Nexus-based fault injection,
while INERTE is specifically designed for Nexus-based fault injection. An environ-
ment for BDM-based fault injection is described in [762].

Injecting a fault via a test port involves four major steps: (i) setting a breakpoint
via the test port and waiting for the program to reach the breakpoint, (ii) reading
the value of the target location (a register or memory word) via the test port, (iii)
manipulating this value and then writing the new, faulty value back to the target
location, and (iv) resuming the program execution via a command sent to the test
port.

The time overhead for injecting a fault depends on the speed of the test port. JTAG
and BDM are low-speed ports, whereas Nexus ports can be of four different classes
with different speeds. The simplest Nexus port (Class 1) is a JTAG port, which uses
serial communication and therefore only needs 4 pins. Ports compliant with Nexus
Class 2, 3 or 4 use separate input and output ports, know as auxiliary ports. These are
parallel ports that use several pins for data transfer. The actual number of data pins is
not fixed by the Nexus standard, but for Class 3 and 4 ports the standard recommends
4 to 16 data pins for the auxiliary output port and 1 to 4 data pins for the auxiliary
input port.

The main advantage of test port-based fault injection is that faults can be injected
internally in microprocessors without making any alterations of the system’s hard-
ware or software. Compared to software-implemented fault injection, it provides bet-
ter or equal capabilities of emulating real hardware faults. Finally, advanced Nexus
ports (Class 3 and 4) provide outstanding possibilities for data collection and ob-
serving the impact of injected faults within a microprocessor. Existing tools have not
fully exploited these possibilities. Hence, microprocessors with high-speed Nexus
ports constitute interesting targets for the development of new fault injection tools,
which potentially can achieve much better observability than existing tools do.

13.2.2 Software-Implemented Fault Injection of Hardware Faults

Software-implemented fault injection encompasses techniques that inject faults
through software executed on the target system.

268 R. Barbosa et al.

There are basically two approaches that we can use to emulate hardware faults by
software: run-time injection and pre run-time injection. In run-time injection, faults
are injected while the target system executes a workload. This requires a mechanism
that (i) stops the execution of the workload, (ii) invokes a fault injection routine,
and (iii) restarts the workload. Thus, run-time injection incurs a significant run-time
overhead. In pre run-time injection, faults are introduced by manipulating either the
source code or the binary image of the workload before it is loaded into memory.
Pre run-time injection usually incurs less run-time overhead than run-time injection,
but the total time for conducting a fault injection campaign is usually longer for
pre run-time injection since it needs more time for preparing each fault injection
experiment.

There are several fault injection tools that can emulate the effects of hardware
faults by software, but they use different techniques for injecting faults and support
different fault models. Most of these tools use run-time injection, since it provides
better opportunities for emulating hardware faults than pre run-time injection.

Software-implemented fault injection relies on the assumption that the effects of
real hardware faults can be emulated either by manipulating the state of the target
system via run-time injection, or by modifying the target workload through pre run-
time injection.

The validity of this approach varies depending of the fault type and where the fault
occurs. Consider for example emulation of a soft error, i.e. a bit-flip error induced
by a strike of a high energy particle. Flipping bits in main memory or processor
registers can easily be done by software. On the other hand, the effect of a bit-flip
in a processor’s internal control logic can be difficult, if not impossible, to emulate
accurately by software manipulations.

Emulating a permanent hardware fault requires a more elaborate set of manip-
ulations than emulating a transient fault. For example, the emulation of a stuck-at
fault in a memory word or a processor register would require a sequence of manip-
ulations performed every time the designated word or register is read by a machine
instruction. On the other hand, a transient fault requires only a single manipulation.
The time overhead imposed by fault emulation thus varies for different fault types.

We here describe eight tools that are capable of emulating hardware faults through
software. These tools represent important steps in the development of software-
implemented fault injection for emulation of hardware faults. The tools are FIAT
[92], FERRARI [506], FINE [516], DEFINE [515], FTAPE [896], DOCTOR [408],
Xception [175], MAFALDA [56] and Exhaustif [259]. These tools use different
approaches to emulating hardware faults and implement partly different fault models.
Some of the tools also provide support for emulating software faults, as we describe
later in this chapter.

Researchers started to investigate software-implemented fault injection in the late
1980s. In the beginning, the focus was on developing techniques for emulating the
effects of hardware faults. Work on emulation of software faults started a few years
later.

One of the first tools that used software to emulate hardware faults was FIAT [92],
developed at Carnegie Mellon University. FIAT injected faults by corrupting either

13 Fault Injection 269

the code or the data area of a program’s memory image during run-time. Three fault
types were supported: zero-a-byte, set-a-byte and two-bit compensation. The last
fault type involved complementing any 2 bits in a 32 bit word. Injection of single-bit
errors was not considered, because the memory of the target system was protected
by parity.

More advanced techniques for emulation of hardware faults were included in
FERRARI [506], developed at the University of Texas, and in FINE [516], devel-
oped at the University of Illinois. Both these tools supported emulation of transient
and permanent hardware faults in systems based on SPARC processors from Sun
Microsystems. FERRARI could emulate three types of faults: address line, data
line, and condition code faults, while FINE emulated faults in main memory, CPU-
registers and the memory bus. DEFINE [515], which was an extension of FINE,
supported fault injection in distributed systems and introduced two new fault models
for intermittent faults and communication faults.

DOCTOR [408] is a fault injection tool developed at the University of Michigan
targeting distributed real-time systems. It supports three fault types: memory faults,
CPU faults and communication faults. The memory faults can affect a single-bit,
two bits, one byte, and multiple bytes. The target bit(s)/byte(s) can be set, reset and
toggled. The CPU faults emulate faults in processor registers, the op-code decoding
unit, and the arithmetic logic unit. The communication faults can cause messages to
be lost, altered, duplicated or delayed. DOCTOR can inject transient, intermittent
and permanent faults, and uses run-time injection for the transient and intermittent
faults. Permanent faults are emulated using pre run-time injection.

FTAPE [896] is a fault injector aimed at benchmarking of fault tolerant com-
mercial systems. It was used to assess and test several prototypes of fault tolerant
computers for online transaction processing. FTAPE emulates the effects of hard-
ware faults in the CPU, main memory and I/O units. The CPU faults include single
and multiple bit-flips and zero/set registers in CPU registers. The memory faults
include single and multiple bit and zero/set faults in main memory. The I/O faults
include SCSI and disk faults. FTAPE was developed at the University of Illinois in
cooperation with Tandem Computers.

Xception [175] is a fault injection tool developed at the University of Coimbra.
This tool uses the debugging and performance monitoring features available in ad-
vanced microprocessors to inject faults. Thus, it injects faults in a way which is
similar to test portbased fault injection. The difference is that Xception controls the
setting of breakpoints and performs the fault injections via software executed on the
target processor rather than sending commands to a test port.

Xception injects faults through exception handlers executing in kernel mode,
which can be triggered by the following events: op-code fetch from a specified
address, operand load from a specified address, operand store to a specified address,
and a specified time passed since start-up. These triggers can be used to inject both
permanent and transient faults. Xception can emulate hardware faults in various
functional units of the processors such as the integer unit, floating point unit and the
address bus. It can also emulate memory faults, including stuck-at-zero, stuck-at-one
and bit-flip faults. Xception is unique because it is one of very few academic tools

270 R. Barbosa et al.

that has been commercialised. Xception is sold by Critical Software, Coimbra, which
released the first commercial version of the tool in 1999.

MAFALDA is a tool for assessment of commercial off-the-shelf microkernels.
It uses software implemented fault injection to inject single or multiple bit-flips
in the code and data segments of the microkernel under assessment. In addition,
MAFALDA also allows corruption of input parameters during invocation of kernel
system calls, and thus supports robustness testing of microkernels.

A more recent commercial tool, similar in functionality to Xception, is called
Exhaustif [259]. It instruments the workload with a software component that injects
faults at run-time. This component is configured through a communication interface
(e.g., serial port, Ethernet) using a graphical user interface. It supports several fault
models based on corruption of processor registers and memory, and interception
of function calls. The software component that injects faults on the target system
requires several kilobytes for code and data, which may be significant in terms of
intrusiveness.

The differences between the numerous fault injection techniques raise the issue
of metrological compatibility, as uncertainties associated with measurement proce-
dures, instruments and target systems create difficulties in comparing and reproduc-
ing results of dependability measurements. An investigation of sources of uncertainty
in fault injection [832] examined whether the results obtained by three different fault
injection techniques (two software-implemented and one test port-based technique)
were metrologically compatible. The three injection techniques (supported by the
GOOFI-2 tool [833]) were used to inject a single set of faults defined in a shared
database. Focusing on the values produced by the target system (i.e., abstracting the
temporal aspect of the outputs), it was observed that the outcome of many individ-
ual experiments is different, although the three injection techniques produce similar
average results over a large number of experiments. However, if we also take into
consideration the temporal aspect of the target system’s output, the three techniques
may produce very different measurements, due to significant differences in their
temporal intrusiveness.

13.2.3 Radiation-Based Fault Injection

Modern electronic integrated circuits and systems are sensitive to various forms
of external disturbances such electromagnetic interference and particle radiation.
One way of validating a fault tolerant system is thus to expose the system to such
disturbances.

A growing reliability concern for computer systems is the increasing susceptibility
of integrated circuits to soft errors, i.e., bit-flips caused when highly ionizing particles
hits sensitive regions within a circuit. Soft errors have been a concern for electronics
used in space applications since the 1970s. In space, soft errors are caused by cosmic
rays, i.e., highly energetic heavy-ion particles. Heavy-ions are not a direct threat to
electronics at ground-level and airplane flight altitudes, because they are absorbed

13 Fault Injection 271

when they interact with Earth‘s atmosphere. However, recent circuit technology
generations have become increasingly sensitive to high energy neutrons, which are
generated in the upper atmosphere when cosmic rays interact with the atmospheric
gases. Such high energy neutrons are a major source of soft errors in ground-based and
aviation applications using modern integrated circuits. All modern microprocessors
manufactured in technologies with feature sizes below 90nm are therefore equipped
with fault tolerance mechanisms to cope with soft errors.

Although computer systems often are used in environments where they can be
subjected to electromagnetic interference (EMI), it is not common to use such dis-
turbances to validate fault tolerance mechanisms. The main reason for this is that
EMI injections are difficult to control and repeat. In [55], EMI was used along
with three other fault injection techniques to evaluate error detection mechanisms
in a computer node in a distributed real time system. A primary goal of this study
was to compare the impact of pin-level fault injection, EMI, heavy-ion radiation
and software-implemented fault injection. The study showed that the EMI injections
tended to “favour” one particular error detection mechanism. For some of the fault in-
jection campaigns almost all faults were detected by one specific CPU-implemented
error detection mechanism, namely spurious interrupt detection. This illustrates the
difficulty in using EMI as a fault injection method. Another attempt to use EMI for
fault injection is reported in [912].

To assess the efficiency of such fault tolerance mechanisms, semiconductor man-
ufacturers are now regularly testing their circuits by exposing them to ionising parti-
cles. The neutron beam facility at the Los Alamos Neutron Science Center (LANSCE)
in the United States is often used for such tests as its energy spectrum is very simi-
lar to that of natural neutrons at sealevel. Similar neutron beam facilities are Osaka
University‘s RCNP and the ANITA Neutron Source at The Svedberg Laboratory in
Uppsala, Sweden. Results of neutron beam testing are reported for Intel‘s Itanium
microprocessor in [235], for the SPARC64 V microprocessor in [40], and for several
generations of microprocessors from Sun Microsystems in [299]. Sometimes proton
radiation is used as a slightly less expensive alternative to neutron beam testing.
Results of proton beam testing of the IBM POWER 6 processor can be found in
[527].

The sensitivity of integrated circuits to heavy-ion radiation can be exploited for
assessing the efficiency of fault-handling mechanisms. In [402] and [518], results
from fault injection experiments conducted by exposing circuits to heavy-ion radi-
ation from a Californium-252 source is reported. This method was also used in the
previously mentioned study [55], in which the impact of four different fault injection
techniques was compared. In this study, the main processor as well as the communi-
cation processor of a node in distributed system was exposed to heavy-ion radiation.
The results showed that the impact of the soft errors injected by the heavy-ions varied
extensively and that they activated many different error detection mechanisms in the
target system.

Finally, we note that radiation-based fault injection has very low, or non-existent,
repeatability. Due to low controllability, it is not possible to precisely synchronize
the activity of the target system with the time and the location of an injection in

272 R. Barbosa et al.

radiation-based fault injection. Thus, it is not possible to repeat an individual experi-
ment. However, the ability to statistically reproduce results over many fault injection
campaigns is usually high in particle radiation experiments. Both repeatability and
reproducibility are low for EMI-based fault injection.

13.2.4 Simulation-Based Fault Injection

As mentioned in the introduction, simulation-based fault injection can be performed
at different levels of abstraction, such as the device level, logical level, functional
block level, instruction set architecture (ISA) level, and system level. Simulation
models at different abstractions layers are often combined in so called mix-mode
simulations to overcome limitations imposed by the time overhead incurred by de-
tailed simulations.

FOCUS [209] is an example of a simulation environment that combines device-
level and gate-level simulation for fault sensitivity analysis of circuit designs with
respect to soft errors. At the logic level and the functional block level, circuits are
usually described in a hardware description language (HDL) such as Verilog or
very high speed integrated circuit hardware description language (VHDL). Several
tools have been developed that support automated fault injection experiments with
HDL models, e.g., MEFISTO [486] and the tool described in [283]. There are several
different methods for implementing the fault injection process, such as modifying the
HDL code [60], modifying the HDL simulator, commanding the simulator through
scripts or, in a more recent example [258], using the force and release constructs in
Verilog to emulate stuck-at faults.

Recently, several studies aimed at assessing the soft error vulnerability of com-
plex high-performance processors have been conducted using simulation-based fault
injection. In [928] a novel low-cost approach for tolerating soft errors in the execu-
tion core of a high-performance processor is evaluated by combining simulations
in a detailed Verilog model with an ISA-level simulator. This approach allowed the
authors to study the impact of soft errors for seven SPEC2000 integer benchmarks
through simulation.

DEPEND [387] is a tool for simulation-based fault injection at the functional level
aimed at evaluating architectures of fault-tolerant computers. A simulation model in
DEPEND consists of number of interconnected modules, or components, such as
CPUs, communication channels, disks, software systems, and memory. DEPEND
is intended for validating system architectures in early design phases and serves
a complement to probabilistic modelling techniques such as Markov and Petri net
models. DEPEND provides the user with predefined components and fault models,
but also allows the user to create new components and new fault models, e.g., the
user can use any probability distribution for the time to failure for a component.

13 Fault Injection 273

13.2.5 Hardware Emulation-Based Fault Injection

The advent of large field programmable gate arrays (FPGAs) circuits has provided
new opportunities for conducting model-based fault injection with hardware circuits.
Circuits designed in a HDL are usually tested and verified using software simulation.
Even if a powerful computer is used in such simulations, it may take considerable
time to verify and test a complex circuit adequately. To speed up the test and veri-
fication process, techniques have been developed where HDL-designs are tested by
hardware emulation in a large FPGA circuit. This technique also provides excellent
opportunities for conducting fault injection experiments. Hardware emulation-based
fault injection has all the advantages of simulation based fault injection such as high
controllability and high repeatability, but requires less time for conducting a fault
injection experiment compared to using software simulation.

The use of hardware emulation for studying the impact of faults was first proposed
in [197]. The authors of that paper used the method for fault simulation, i.e., for
assessing the fault coverage of test patterns used in production testing.

Fault injection can be performed in hardware emulation models through compile
time reconfiguration and run-time reconfiguration. Here reconfiguration refers to the
process of adding hardware structures to the model which are necessary to perform the
experiments. In compile-time reconfiguration, these hardware structures are added by
instrumentation of the HDL models. An approach for compile-time instrumentation
for injection of single event upsets (soft errors) is described in [223]. This work
presents different instrumentation techniques that allow injection of transient faults
in sequential memory element as well as in microprocessor-based systems.

One disadvantage of compile-time reconfiguration is that the circuit must be re-
synthesised for each reconfiguration, which can impose a severe overhead on the
time it takes to conduct a fault injection campaign. In order to avoid re-synthesizing
the target circuit, a technique for run-time reconfiguration is proposed in [46]. This
technique relies on directly modifying the bit-stream that is used to program the
FPGA-circuit. By exploiting partial reconfiguration capabilities available in some
FPGA circuits, this technique achieved substantial time-savings compared to other
emulation-based approaches to fault injection.

A tool for conducting hardware emulation-based fault injection called FADES is
presented in [269, 270]. This tool uses run-time configuration and can inject several
different types of transient faults, including bit-flips, pulse, and delay faults, as wells
as faults that cause digital signals to assume voltage levels between “1” and “0”.

Although FPGA-based techniques overcome the performance issues present in
software simulation, it is often difficult to obtain ideal observability due to the com-
munication required for observing the behaviour of emulated circuits. A recently pro-
posed method [321] reduces this overhead by having a single combinational circuit
for both the faulty circuit and the fault-free circuit. The complete circuit repeatedly
executes one clock cycle with the fault-free flip-flops followed by one clock cycle
with the faulty flip-flops, and the output is multiplexed to a comparator, in order to
identify which faults cause errors on the target. This method provides good observ-

274 R. Barbosa et al.

ability under the bit-flip fault model and avoids duplicating the entire combinational
circuit, which is assumed to be unaffected by faults.

There is a concern with representativeness when using hardware emulated
circuits, rather than the actual hardware. In [758], the results of fault injection on a
hardware-emulated IBM POWER6 processor (the authors call it “hardware acceler-
ated simulation”) are compared to radiation-based fault injection. The results show
a close match between the two techniques, therefore providing evidence in favour of
hardware emulation-based fault injection.

13.2.6 Hybrid Approaches for Injecting Hardware Faults

Hybrid approaches to fault injection combine several fault injection techniques to
improve the accuracy and scope of the verification, or the assessment, of a target
system.

An approach for combining software-implemented emulation of hardware faults
and simulation-based fault injection is presented in [403]. In this approach, the phys-
ical target is run until the program execution hits a fault injection trigger, which
causes the physical system to halt. The architected state of the physical system is
then transferred to the simulation model, in which a fault is injected, e.g., in the
non-visible parts of the microarchitecture. The simulator is run until the effects of
the fault have stabilized in the architected state of the simulated processor. This state
is then transferred back to the physical system, which subsequently is restarted so
that the system-level effects of the fault can be determined.

An extension of the FERRARI tool which allows it to control a hardware fault
injector is described in [507]. The hardware fault injector can inject logic-0/logic-
1 faults into the memory bus lines of a SPARC 1 based workstation. The authors
used the hardware fault injector to study the sensitivity of the computer in different
operational modes. The results showed that system was more likely to crash from bus
faults when the processor operated in kernel mode, compared to when it operated
in user mode. This study showed that it is feasible to extend a tool for software-
implemented fault injection with other techniques at reasonable cost, since many of
the central functions of a tool are independent of the injection technique.

A more recent tool that supports the use of different fault injections techniques is
NFTAPE [856], developed at the University of Illinois. This tool is aimed at injecting
faults in distributed systems using a technique called LightWeight Fault Injectors. The
purpose of this technique is to separate the implementation of the fault injector from
the rest of the tool. NFTAPE provides a standardized interface which simplifies the
integration and use of different types of fault injectors. NFTAPE has been used with
several types of fault injectors using hardware-implemented, software-implemented,
and simulation-based fault injection.

13 Fault Injection 275

13.3 Techniques for Injecting or Emulating Software Faults

Software faults are currently the dominating source of computer system failures.
Making computer systems resilient to software faults is therefore highly desirable
in many application domains. Much effort has been invested by both academia and
industry in the development of techniques that can tolerate and handle software faults.
In this context, fault injection plays an important role in assessing the efficiency of
these techniques. Hence, several attempts have been made to develop fault injection
techniques that can accurately imitate the impact of real software faults.

The current state-of-the-art techniques in this area rely exclusively on software-
implemented fault injection. There are two fundamental approaches to injecting
software faults into a computer system: fault injection and error injection [315].
Fault injection imitates mistakes of programmers by changing the code executed
by the target system, while error injection attempts to emulate the consequences of
software faults by manipulating the state of the target system.

Regardless of the injection technique, the main challenge is to find fault sets or
error sets that are representative of real software faults. Other important challenges
include the development of methods that allow software faults to be injected without
access to the source code, and techniques for reducing the time it takes to perform an
injection campaign. First, we discuss emulation of software faults by error injection,
and then software fault injection.

13.3.1 Emulating Software Faults by Error Injection

There are two common techniques for emulating software faults by error injection:
program state manipulation and parameter corruption. Program state manipulation
involves changing variables, pointers and other data stored in main memory or CPU-
registers. Parameter corruption corresponds to modifying parameters of functions,
procedures and system calls. The latter is also known as API parameter corruption and
falls under category of robustness testing. Here we discuss techniques for emulating
software faults by program state manipulation.

Many of the tools that we described in conjunction with emulation of hardware
faults through software-implemented fault injection, e.g., FIAT [92], FERRARI
[506], FTAPE [896], DOCTOR [408], Xception [175], and MAFALDA [56] can
potentially be used to emulate software faults since they are designed to manipulate
the system state. However, none of these tools provide explicit support for defining
errors that can emulate software faults and the representativeness of the injected
faults is therefore questionable.

An approach for generating representative error sets that emulates real software
faults is presented in [214]. This approach was based on a study of software faults
encountered in one release of a large IBM operating system product. Based on their
knowledge of the observed faults, the authors developed a procedure for generating

276 R. Barbosa et al.

a representative error set for error injection. The study addressed four important
questions related to emulation of software fault by error injection: what error model(s)
should be used; where should errors be injected; when should errors be injected; and
how a representative operational profile (workload) should be designed. This work
shows the feasibility of generating representative error sets when data on software
faults is available.

An experimental comparison between fault and error injection is presented in
[214]. Fault and error injection experiments were carried on a safety-critical real-
time control application. A total of 200 assignment, checking and interface faults
were injected by mutating the source code, which was written in C. The failure
symptoms produced by these faults were compared with failure symptoms produced
by bit flip errors injected in processor registers, and in the data and stack areas of
the main memory. A total 675 errors were injected. A comparison of the failure
distributions were made for eight different workload activations (test cases).

The authors conclude that the choice of test case caused greater variations in the
distribution of the failure symptoms than the choice of fault type, when fault injection
was used. On the other hand, for error injection the choice of error type caused greater
variations in the failure distribution than the choice of test case.

There were also significant differences between the failure distributions obtained
with fault injection and with error injection. The authors claim that these differences
occurred because a time-based trigger was used to control the error injections. They
also claim that the fault types considered could be emulated more or less perfectly by
using a break-point based trigger, although no experimental evidence is presented to
support this claim. This study points out that it may be difficult to find error sets that
emulate software faults accurately, and that the selection of the test case (workload
activation) is as important as the selection of the fault/error model for the outcome
of an injection campaign.

13.3.2 Techniques for Injection of Software Faults

An obvious way to inject software faults into a system is to manipulate the source
code, object code or machine code. Such manipulations are known as mutations.
Mutations have been used extensively in the area of program testing as a method for
evaluating the effectiveness of different test methods. They have also been used for
the assessment of fault-handling mechanisms.

The studies presented in [686] and [687] inject software faults in an operating
system through simple mutation of the object code. The primary goal of the fault
models used in these studies was to generate a wide variety of operating system
crashes, rather than achieving a high degree of representativeness with respect to
real soft faults.

FINE [516] and DEFINE [515] were among the first tools that supported emu-
lation of software faults by mutations. The mutation technique used by these tools
requires access to assembly language listings of the target program. FINE and DE-

13 Fault Injection 277

FINE emulate four types of software faults: initializations, assignment, condition
check, and function faults. These fault models were defined based on experience
collected from studies of field failure data.

An interesting technique, called Generic Software Fault Injection Technique
(G-SWFIT), for emulation of software faults by mutations at the machine-code level
is presented in [312]. This technique analyses the machine code to identify locations
that corresponds to highlevel language constructs that often results in design faults.
The main advantage of G-SWFIT is that software faults can be emulated without
access to the source code. A set of operators for injection of representative software
faults using G-SWFIT was presented in [313]. These operators were derived from
a field failure data study of more than 500 real software faults. These two works
jointly represent a unique contribution, since they provide the first fault injection
environment that can inject software faults which have been proven to be represen-
tative of real software faults. They also constitute the foundation of a methodology
for definition of faultloads based on software faults for dependability benchmarking
presented in [315].

13.3.3 Techniques for Injecting Security Vulnerabilities

Most information systems and business applications that are built nowadays
(e.g., e-commerce, banking, transportation, web mail, blogs, etc.) have a web front-
end. They need to be universally accessed by clients, employees and partners around
the world as online trading is becoming more and more ubiquitous in the global econ-
omy. These applications, which can be used from anywhere, also become so widely
exposed that any existing security vulnerability will most probably be uncovered and
exploited by hackers. Hence, the security of web applications is a major concern and
is receiving more and more attention from the research community. However, in spite
of this growing awareness of security aspects at web application level, there is an
increase in the number of reported attacks that exploit web application vulnerabilities
[851, 855].

The use of fault injection techniques to assess security is a particular case of
software fault injection, focused on the software faults that represent security vul-
nerabilities or may cause the system to fail in avoiding a security problem. Security
vulnerabilities are in fact a particular case of software faults, which require adapted
injection approaches. In [341] the vulnerabilities of six web applications using their
past 655 security fixes as the field data are presented and analyzed. Results show that
only a small subset of 12 generic software faults is responsible for all the security
problems. In fact, there are considerable differences by comparing the distribution
of the fault types related to security with studies of common software faults.

Neves et al. presented a tool (AJECT) focusing on the discovery of vulnerabilities
on network servers, specifically on IMAP servers [685]. In their work the fault space
is the binomial (attack, vulnerability) creating an intrusion that will cause an error

278 R. Barbosa et al.

and, possibly, a failure of the target system. To attack the target system they used
predefined test classes of attacks and some sort of fuzzing.

A procedure inspired on the fault injection technique (that has been used for
decades in the dependability area) targeting security vulnerabilities is proposed in
[344]. In this work, the “security vulnerability” plus “attack” represents the space
of the “faults” that can be injected in a web application; and the “intrusion” is the
“error” [685, 743]. To emulate with accuracy real world web vulnerabilities this work
relies on results obtained from a field study on real security vulnerabilities and use
them in a novel Vulnerability Injection tool. As proposed in [344], this tool is a key
instrument that can be used in several relevant scenarios, namely: building a realistic
attack injector, train security teams, evaluate security teams, and estimate the total
number of vulnerabilities still present in the code.

13.4 Techniques for Testing Resilient Distributed Systems

Several fault injection tools and frameworks have been developed for testing of
fault-handling protocols in distributed systems. The aim of this type of testing is to
reveal design and implementation flaws in the tested protocol. The tests are performed
by manipulating the content and/or the delivery of messages sent between nodes in
the target system. We call this message-based fault injection. It resembles robustness
testing in the sense that the faults are injected into the inputs of the target system.

A careful definition of the failure mode assumptions is crucial in the design of
distributed fault-handling protocols. The failure mode assumptions provide a model
of how faults in different subsystems (computing nodes, communication interfaces,
and networks) affect a distributed system. A failure mode thus describes the impact
of subsystem failures in a distributed system. Commonly assumed failure modes
include Byzantine failures, timing failures, omission failures, crash failures, fail-
stop failures and fail-signal failures. At the system-level, these subsystem failures
correspond to faults. Hence, tools for message-based fault injection intend to inject
faults that correspond to different subsystem failure modes.

The experimental environment for fault tolerance algorithms (EFA) [318] is an
early example of a fault injector for message-based fault injection. The EFA envi-
ronment provides a fault injection language that the protocol tester uses to specify
the test cases. The tool inserts fault injectors in each node of the target system and
can implement several different fault types, including message omissions, sending
a message several times, generating spontaneous messages, changing the timing of
messages, and corrupting the contents of messages. A similar environment is pro-
vided by the DOCTOR tool [408], which can cause messages to be lost, altered,
duplicated or delayed.

Specifying test cases is a key problem in testing of distributed fault-handling
protocols. A technique for defining test cases from Petri-net models of protocols in
the EFA environment is described in [319]. An approach for defining test cases from
an execution tree description of a protocol is described in [64].

13 Fault Injection 279

A framework for testing distributed applications and communication protocols
called ORCHESTRA is described in [264, 266]. This tool inserts a probe/fault
injection layer (PFI) between any two consecutive layers in a protocol stack. The PFI
layer can inject deterministic and randomly generated faults in both outgoing and in-
coming messages. ORCHESTRA was used in a comparative study of six commercial
implementations of the TCP protocol reported in [265].

Neko [900] is another framework for testing distributed applications. It supports
rapid prototyping of distributed algorithms and, with the NekoStat extension [330], it
can be used to perform quantitative evaluations of distributed systems. Neko provides
supports for fault injection, e.g., injection of faults between consecutive layers in the
application stack. The core part of Neko is pure Java (J2SE) and therefore Neko
processes are able to work on top of many different operating systems and platforms.
Neko provides support for both simulation and experimental execution of distributed
applications.

The failure of a distributed protocol often depends on the global state of the dis-
tributed system. It is therefore desirable for a human tester to control the global state
of the target system. This involves controlling the states of a number of individually
executing nodes, which is a challenging problem. Two tools that address this prob-
lem are CESIUM [35] and LOKI [187]. An environment for message-based fault
injection for assessment of OGSA middleware for grid computing is presented in
[607].

A similar tool for testing of Web-services, called WS-FIT, is presented in [606].
This fault injector can decode and inject meaningful faults into SOAP-messages. It
uses an instrumented SOAP API that includes hooks allowing manipulation of both
incoming and outgoing messages. A comparison of this method and fault injection
by code insertion is presented in [605]. Another tool aimed at testing grid services
and cluster applications is Fail-FCI [441]. This tool is based on FAIL, a fault injection
language that is used to define failure scenarios in a distributed system using a state
machine approach. The Fail-FCI tool is extended in [442] to allow fault injection in
distributed Java applications. Results from message-based fault injection assessment
of several implementations of CORBA middleware are reported in [624].

Another tool for testing the robustness of Web Services is presented in [915]. This
tool injects invalid data during the invocation of web service methods to discover both
programming and design errors. The parameter values used in the method invocations
are modified (i.e., corrupted) based on the data types and the semantics of the method
parameters. The Web Services are classified according to the type and number of
failures observed during the tests.

13.5 Applications of Fault Injection

As described in the first section of this chapter, fault injection is useful for a number of
purposes. It has, for example, been applied successfully to assess diverse properties
of operating systems. Fault injection is the technology underlying robustness testing

280 R. Barbosa et al.

of the system call interface, as applied for instance in Ballista [541] and DeBERT
[240]. Faults are injected by corrupting parameters just before function calls to the
operating system. This process requires knowledge of what consists, at a low level,
a system call and allows one to assess the robustness of this important interface to
the operating system. Among other measures, one may assess response time and
resilience in terms of avoiding system crashes and hangs.

Another problem area for operating systems is the evaluation of resilience against
device driver failures [30]. A study targeting the MINIX operating system [426]
applied fault injection by emulating hardware faults (corruption of driver code in
memory) and software faults (pointer, assignment, checking, parameter, and omis-
sion errors). The operating system executed a workload consisting of several device
drivers, in which faults were injected. While drivers were expected to fail, the oper-
ating system should be able to maintain correctness. The outcome of the experiments
was the discovery of several defects in error-handling code, which were subsequently
removed. A comprehensive campaign on the final corrected version of the operat-
ing system found it able to handle all injected faults properly, thereby showing the
usefulness of the fault injection process.

Another application of fault injection is the study of error coverage provided by
software and hardware implemented mechanisms. In [834], a series of experiments
targeting a brake-by-wire controller revealed that the vast majority of the errors that
led to critical failures (in terms of the behaviour of the controller) affected either the
stack pointer or the controller’s integrator state. Subsequently, the authors devised
two simple mechanisms specifically for protecting those two elements of the system.
A second campaign showed that those mechanisms reduced the proportion of critical
failures by one order of magnitude. This example shows how fault injection may be
used to improve error coverage in a very efficient manner, using the information
provided by fault injection experiments to guide the development of new mecha-
nisms. The examples provided in this section, along with the ones briefly described
throughout the chapter, make a strong case for the usefulness of fault injection in
diverse domains and for various applications.

Fault injection is also a key technique in the dependability benchmarking area
[514]. A dependability benchmark is a standard procedure to assess and compare de-
pendability aspects of computer systems and/or components. To obtain dependability
metrics, the system under benchmarking is exercised by injecting a representative
faultload during the execution of a typical workload. The faultload is applied using
typical fault injection techniques, as the ones introduced in this chapter. See chap-
ter on Resilience Benchmarking for examples on dependability benchmarks and the
application of fault injection in such context.

13.6 Conclusion

This chapter provided an overview of the state-of-the-art and historical achievements
in the field of fault injection. The overview covers tools and techniques for injecting
three main fault types: physical hardware faults, software design and implementation

13 Fault Injection 281

faults, and faults affecting messages in distributed systems. Our intention has been to
highlight the most important fault injection tools and techniques used for assessment
and test of resilient computer systems, although it would not have been possible to
cover all works in the field, since the number of publications that deal with fault
injection is quite large.

As fault injection techniques and tools have matured, we see that recent devel-
opments tend to improve and refine existing methods rather than exploiting new
principles for fault injection. Along with this trend, fault injection is reaching main-
stream usage, becoming widely adopted not only in academia but also in industry.
Consequently, fault injection is regarded as an important experimental technique for
assessment and verification of resilient systems.

Chapter 14
Resilience Benchmarking

Marco Vieira, Henrique Madeira, Kai Sachs
and Samuel Kounev

Abstract Computer benchmarks are standard tools that allow evaluating and
comparing different systems or components according to specific characteristics
(performance, dependability, security, etc). Resilience encompasses all attributes
of the quality of ‘working well in a changing world that includes faults, failures,
errors and attacks’. This way, resilience benchmarking merges concepts from per-
formance, dependability, and security. This chapter presents an overview on the state-
of-the-art on benchmarking performance, dependability and security. The goal is to
identify the existing approaches, techniques and problems relevant to the resilience-
benchmarking problem.

14.1 Introduction

Benchmarks are standard tools that allow evaluating and comparing different systems
or components according to specific characteristics such as performance, depend-
ability, and security. While historical benchmarks were only a few hundreds lines

M. Vieira (B) · H. Madeira
DEI/CISUC, University of Coimbra,
Coimbra 3030-290, Portugal
e-mail: mvieira@dei.uc.pt

H. Madeira
e-mail: henrique@dei.uc.pt

K. Sachs
SAP AG, 69190 Walldorf, Germany
e-mail: kai.sachs@sap.com

S. Kounev
Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany
e-mail: kounev@kit.edu

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 283
DOI: 10.1007/978-3-642-29032-9_14, © Springer-Verlag Berlin Heidelberg 2012

284 M. Vieira et al.

long, modern benchmarks are composed of hundreds of thousands or millions of
lines of code. Compared to traditional software, the benchmark development process
has different goals and challenges. Unfortunately, even if an enormous number of
benchmarks exist, only a few contributions focusing on the benchmark concepts and
development process were published.

The best-known publication on benchmarking is Gray’s The Benchmark Handbook
[391]. Besides a detailed description of several benchmarks, the author discusses the
need for domain specific benchmarks and defines four important criteria, which a
domain-specific benchmark has to fulfill:

• Relevance: the benchmark result has to measure the performance of the typical
operation within the problem domain.

• Portability: it should be easy to implement on many different systems and archi-
tectures.

• Scalability: it should be scalable to cover small and large systems.
• Simplicity: the benchmark should be understandable to avoid lack of credibility.

Another work dealing with the criteria that a benchmark should fulfill is [457].The
questions, what a ‘good’ benchmark should look like and which aspects should be
kept in mind from the beginning of the development process, are discussed in detail
and five key criteria are presented:

• Relevance: the benchmark has to reflect something important.
• Repeatable: the benchmark result can be reproduced by rerunning the benchmark

under similar conditions with the same result.
• Fair & Portable: All systems compared can participate equally (e.g., portability,

‘fair’ design).
• Verifiable: There has to be confidence that documented results are real. This can,

e.g., be assured by reviewing results by external auditors.
• Economical: The cost of running the benchmark should be affordable.

The work on performance benchmarking has started long ago. Ranging from sim-
ple benchmarks that target a very specific hardware system or component to very
complex benchmarks focusing on complex systems (e.g., database management sys-
tems, operating systems), performance benchmarks have contributed to improve suc-
cessive generations of systems. Research on dependability benchmarking has been
boosted in the beginning of the millennium, having already led to the proposal of
several dependability benchmarks. Several works have been carried out by different
groups and following different approaches (e.g., experimental, modeling, fault injec-
tion). Due to the increasing relevance of security aspects, security benchmarking is
becoming an important research field.

Resilience encompasses all attributes of the quality of ‘working well in a
changing world that includes faults, failures, errors and attacks’ [127]. This way,
resilience benchmarking merges concepts from performance, dependability, and
security benchmarking. In practice, resilience benchmarking faces challenges related
to the integration of these three concepts and to the adaptive characteristics of the

14 Resilience Benchmarking 285

systems under benchmarking. This chapter overviews the state-of-the-art on bench-
marking performance, dependability and security, identifying the current approaches,
techniques and problems relevant to the resilience benchmarking problem.

The outline of this chapter is as follows. The next section introduces the concept
of performance benchmarking. Section 14.3 focuses on dependability benchmarking
and presents existing research work. Section 14.4 introduces the security benchmark-
ing problem. Section 14.5 discusses the current needs and challenges on resilience
benchmarking. An overview of further research trends is provided in Sect. 14.6.
Finally, Sect. 14.7 concludes the chapter and puts forward a potential research path
to accomplish existing resilience benchmarking challenges.

14.2 Performance Benchmarking

Performance benchmarks are standard procedures and tools aiming at evaluating
and comparing different systems or components in a specific domain (e.g., databases,
operating systems, hardware, etc.) according to specific performance measures. Stan-
dardization organizations such as the SPEC (Standard Performance Evaluation Cor-
poration) and the TPC (Transaction Processing Performance Council) use internal
guidelines covering the development process of such benchmarks. A short summary
of the keypoints of the SPEC Benchmark Development Process is provided in [573].
However, these guidelines mostly cover formal requirements, e.g., design of run rules
and result submission guidelines, not the benchmark development process itself.

In general, a performance benchmark must fulfill the following fundamental
requirements to be useful and reliable [545, 793, 794]:

• It must be based on a workload representative of real-world applications.
• It must exercise all critical services provided by platforms.
• It must not be tuned/optimized for a specific product.
• It must generate reproducible results.
• It must not have any inherent scalability limitations.

The major goal of a performance benchmark is to provide a standard workload
and metrics for measuring and evaluating the performance and scalability of a cer-
tain platform. In addition, the benchmark should provide a flexible framework for
performance analysis. To achieve this goal, the workload must be designed to meet
a number of workload requirements that can be grouped according to the following
five categories [793]:

1. Representativeness
2. Comprehensiveness
3. Focus
4. Configurability
5. Scalability

286 M. Vieira et al.

Representativeness No matter how well a benchmark is designed, it would be of
little value if the workload it is based on does not reflect the way platform services
are exercised in real-life systems. Therefore, the most important requirement for a
benchmark is that it is based on a representative workload scenario including a repre-
sentative set of interactions. The scenario should represent a typical transaction mix.
The goal is to allow users to relate the observed behavior to their own applications
and environments.
Comprehensiveness Another important requirement is that the workload is compre-
hensive in that it exercises all platform features typically used in the major classes
of applications. The features and services stressed should be weighted according to
their usage in real-life systems. There is no need to cover features of the platforms
that are used very rarely in practice.
Focus The workload should be focused on measuring the performance and scalability
of the platform under test. It should minimize the impact of other components and
services that are typically used in the chosen application scenario.
Configurability In addition to providing standard workloads and metrics, a bench-
mark aims to provide a flexible performance analysis framework which allows users
to configure and customize the workload according to their requirements. Many users
will be interested in using a benchmark to tune and optimize their platforms or to ana-
lyze the performance of certain specific features. Others could use the benchmark for
research purposes in academic environments where, for example, one might be inter-
ested in evaluating the performance and scalability of novel methods and techniques
for building high-performance servers. All these usage scenarios require that the
benchmark framework allows the user to precisely configure the workload and trans-
action mix to be generated. This configurability is a challenge because it requires
that interactions are designed and implemented in such a way that one could run
them in different combinations depending on the desired workload mix. The ability
to switch interactions off implies that interactions should be decoupled from one
another. On the other hand, it should be ensured that the benchmark, when run in
its standard mode, behaves as if the interactions were interrelated according to their
dependencies in the real-life application scenario.
Scalability Scalability should be supported in a manner that preserves the relation
to the real-life business scenario modeled. In addition, the user should be offered the
possibility to scale the workload in an arbitrary manner by defining an own set of
scaling points.

14.2.1 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) is one of the leading
standardization bodies for benchmarks. While the most known benchmarks published
by SPEC are the SPEC CPU series for the performance evaluation of CPUs, SPEC
published benchmarks in many other areas, such as High Performance Computing,
Java or Graphical Applications. Inside the SPEC, four groups exist [846]:

14 Resilience Benchmarking 287

• Open Systems Group (OSG) focuses on benchmarks for desktop systems, high-end
workstations and servers running open systems environments.
Example benchmarks: SPEC CPU2006 (CPU performance), SPECjms2007
(message-oriented middleware benchmark, SPECpower_ssj2008 (power and per-
formance benchmark), SPECvirt_sc2010 (virtualization benchmark) and SPEC-
jEnterprise2010 (JavaEE benchmark).

• High-Performance Group (HPG) published a suite of benchmarks that repre-
sent high-performance computing applications for standardized, cross-platform
performance evaluation.
Example benchmarks: OMPM2001 / OMPL2001 (benchmarks for OpenMP appli-
cations and shared-memory systems) and MPIM2001 / MPIL2001 (benchmarks
focusing on Message-Passing Interface (MPI) across a wide range of cluster and
SMP hardware).

• Graphics and Workstation Performance Group (GWPG) develops graphics and
workstation performance benchmarks.
Example benchmarks: SPECapc benchmark series (addresses graphics and work-
station performance evaluation based on actual software applications) and
SPECviewperf 11.

• Research Group (SPEC RG) promotes research on benchmarking methodologies
and tools facilitating the development of benchmark suites and performance analy-
sis frameworks for established and newly emerging technology domains.

14.2.2 TPC Benchmarks

The benchmarks of the Transaction Processing Performance Council (TPC) became
the de-facto standard in the database area [884]. Currently the TPC has three active
benchmarks, two in the area of transaction processing (TPC-E/TPC-C) and one for
benchmarking decision support. Their currently active benchmarks are based on a
static workload mix. Additionally, TPC published the TPC-Energy Specification,
which contains the rules and methodology for measuring and reporting an energy
metric in TPC Benchmarks. It is important to note that, unlike SPEC, TPC does
not provide implementations of its benchmarks. A TPC benchmark is essentially a
specification that defines an application and a set of requirements on the workload
that has to be run. The user is expected to implement the benchmark application and
workload on the platform to be tested.

Further, TPC has released two benchmarks that can be used for benchmarking
enterprise software systems. The first one is the TPC Benchmark W (TPC-W) [886],
which has been available since 2000. The second one is the TPC Benchmark App
(TPC-App) [885], which was released in December, 2004. However, both of these
benchmarks are obsolete and there is no active benchmark for enterprise software
systems.

288 M. Vieira et al.

14.2.3 EEMBC Benchmarks

The Embedded Microprocessor Benchmark Consortium (EEMBC) is developing
performance benchmarks for the hardware and software used in embedded systems
[325]. EEMBC microprocessor benchmark suites are targeting telecommunications,
networking, digital media, Java, automotive/industrial, consumer, and office equip-
ment products. Further, an additional suite that allows users to observe the energy con-
sumed by the processor when performing these algorithms and applications exists.
EEMBC also has a series of multicore-specific benchmarks that span multiple appli-
cation areas.

14.2.4 Other Performance Benchmarks

Besides industry-standard benchmarks, numerous proprietary performance bench-
marks for all kinds of systems have been developed and used in the industry and
research. Due to the lack of space and the high number (e.g., we are aware of more
than 15 benchmarks and performance tests suits for message-oriented middleware
[793]) we will not discuss them here in detail.

14.3 Dependability Benchmarking

The notion of dependability and its terminology have been established by the Inter-
national Federation for Information Processing (IFIP) Working Group 10.4. IFIP
WG 10.4 defines dependability as ’the trustworthiness of a computing system which
allows reliance to be justifiably placed on the service it delivers’. Dependability is an
integrative concept that includes the following attributes [576]: availability (readi-
ness for correct service), reliability (continuity of correct service), safety (absence
of catastrophic consequences on the user(s) and the environment), confidentiality
(absence of unauthorized disclosure of information), integrity (absence of improper
system state alterations), and maintainability (ability to undergo repairs and modifi-
cations).

A dependability benchmark can be defined as a specification of a standard pro-
cedure to assess dependability-related measures of a computer system or computer
component. The main components of a dependability benchmark are: measures (char-
acterize the performance and dependability of the system), workload (work that the
system must perform during the benchmark run), faultload (set of faults that emulate
real faults experienced in the field), and benchmark procedure and rules (description
of the procedures and rules that must be followed to run the benchmark).

Two classes of measures can be considered when assessing dependability
attributes:

14 Resilience Benchmarking 289

• Conditional measures: measures that characterize the system in a relative fashion
(i.e., measures that are directly related to the conditions disclosed in the benchmark
report) and are mainly meant to compare alternative systems (e.g., response time,
throughput, up-time, recovery time).

• Unconditional measures on dependability attributes: measures that characterize
the system in a global fashion taking into account the occurrence of the various
events impacting its behavior (i.e., reliability, availability, maintainability, safety,
etc.) [576].

The conditional measures are directly obtained as results of the benchmark exper-
iments. The unconditional measures on dependability attributes have to be calculated
using modeling techniques with the help of external data, such as fault rates, MTBF,
etc. This external data could be provided from field data or based on past experi-
ence considering similar systems. However, models of complex systems may be very
difficult to define and the external data difficult to obtain.

Dependability benchmarks typically focus on direct measures (conditional mea-
sures), following the traditional benchmarking philosophy based on a pure exper-
imental approach. These measures are related to the conditions disclosed in the
benchmark report and can be used for comparison or for system/component improve-
ment and tuning. This is similar to what happens with performance benchmark results,
as the performance measures do not represent an absolute measure of system perfor-
mance and cannot be used for capacity planning or to predict the actual performance
of the system in field.

The faultload represents a set of faults that emulates real faults experienced by
systems in the field. Among the main components needed to define a benchmark, the
faultload is clearly the most complex one due to the nature of faults. A faultload can
be based on three major classes of faults:

• Operator faults: operator faults are human mistakes. The great complexity of
administration tasks in some systems and the need of tuning and administration
in a daily basis, clearly explains why human faults (i.e., wrong human actions)
should be considered in a dependability benchmark.

• Software faults: software faults (i.e., program defects or bugs) are recognized as
an important source of system outages, and given the huge complexity of today’s
software the weight of software faults tends to increase.

• Hardware faults: includes traditional hardware faults, such as bit-flips and stuck-
at, and high-level hardware failures, such as hard disk failures or failures of the
interconnection network. Hardware faults are especially relevant in systems prone
to electrical interferences.

Concerning the definition of the workload, the job is considerably simplified by
the existence of workloads from performance benchmarks. Obviously, these already
established workloads are the natural choice for a dependability benchmark. How-
ever, when adopting an existing workload some changes may be required in order to
target specific system features. An important aspect to keep in mind when choosing

290 M. Vieira et al.

a workload is that the goal is not only to evaluate the performance but also assess
specific dependability features.

The procedures and rules define the correct steps to run a benchmark and obtain
the measures. These rules are, of course, dependent on the specific benchmark but
the following points give some guidelines on specific aspects needed in most of the
cases:

• Procedures for ‘translating’ the workload and faultload defined in the benchmark
specification into the actual workload and faultload that will apply to the system.

• Uniform conditions to build the setup and run the dependability benchmark.
• Rules related to the collection of the experimental results.
• Rules for the production of the final measures from the direct experimental results.
• Scaling rules to adapt the same benchmark to systems of very different sizes.
• System configuration disclosures required for interpreting the benchmark results.
• Rules to avoid optimistic or biased results.

The awareness of the importance of dependability benchmarks has increased in
the recent years and dependability benchmarking is currently the subject of strong
research. The following subsections present the recent advances on dependability
benchmarking, both at universities and computer industry sites.

14.3.1 Special Interest Group on Dependability
Benchmarking (SIGDeB)

The Special Interest Group on Dependability Benchmarking (SIGDeB) was created
by the International Federation for Information Processing (IFIP) Working Group
10.4 in 1999 to promote the research, practice, and adoption of benchmarks for
computer-related systems dependability. The work carried out in the context of the
SIGDeB is particularly relevant and merges contributions from both industry and
academia.

A preliminary proposal issued by the SIGDeB was in the form of a set of standard-
ized classes for characterizing the dependability of computer systems [934]. The goal
of the proposed classification was to allow the comparison among computer systems
concerning four different dimensions: availability, data integrity, disaster recovery,
and security. The authors have specifically developed the details of the proposal for
transaction processing applications. This work proposes that the evaluation of a sys-
tem should be done by answering a set of standardized questions or performing tests
that validate the evaluation criteria.

A very relevant effort in the context of SIGDeB is a book on dependability bench-
marking of computer systems [514]. This book presents several relevant benchmark-
ing initiatives carried out by different organizations, ranging from academia to large
industrial companies.

14 Resilience Benchmarking 291

14.3.2 DBench Project

The DBench project was funded by the European Commission, under the Information
Society Technologies Programme (IST), Fifth Framework Programme (FP5). The
main goal of DBench project was to devise benchmarks to evaluate and compare the
dependability of COTS and COTS-based systems, in embedded, real time, and trans-
actional systems. Several works on dependability benchmarking have been carried
out in the DBench project. The following subsections summarize those works.
General purpose operating systems The works presented in [502, 503, 511, 512]
address the problem of dependability benchmarking for general purpose operating
systems (OS), focusing mainly on the robustness of the OS (in particular of the OS
kernel) with respect to faulty applications.

The measures provided are: 1) OS robustness in the presence of faulty system calls,
2) OS reaction time for faulty system calls and 3) OS restart time after the activation
of faulty system calls. Three workloads are considered: 1) a realistic application that
implements the experiments control system of the TPC-C performance benchmark
[887]. 2) the PostMark [521] file system performance benchmark for operating sys-
tems and 3) the Java Virtual Machine (JVM) middleware. The faultload is based on
the corruption of systems call parameters.

Another research work on the practical characterization of operating systems
behaviour in the presence of software faults in OS components is presented in [312].
The methodology used is based on the emulation of software faults in device drivers
and the observation of the behaviour of the overall system regarding a comprehensive
set of failure modes analyzed according to different dimensions related to different
user perspectives.
Real time kernels in onboard space systems The work presented in [666] is a pre-
liminary proposal of a dependability benchmark for real time kernels for onboard
space systems. This benchmark, called DBench-RTK, focuses mainly on the assess-
ment of the predictability of response time of service calls in a Real-Time Kernel
(RTK).

The DBench-RTK dependability benchmark provides a single measure that rep-
resents the predictability of response time of the service calls of RTKs used in space
domain systems. The workload consists in an Onboard Scheduler (OBS) process
based on a functional model derived from the Packet Utilization Standard [864]. The
faultload consists of a set of faults that are injected into kernel functions calls at the
parameter level by corrupting parameter values.
Engine control applications in automotive systems The work presented in [790]
represents a preliminary proposal of a dependability benchmark for engine control
applications for automotive systems. This benchmark focuses on the robustness of the
control applications running inside the Electronic Control Units (ECU) with respect
to transient hardware faults.

This dependability benchmark provides a set of measures that allows the compar-
ison of the safety of different engine control systems. The workload is based on the
standards used in Europe for the emission certification of light duty vehicles [320].

292 M. Vieira et al.

The faultload consists of transient hardware faults that affect the cells of the memory
holding the software used in the engine control.
On-line transaction processing systems The DBench-OLTP dependability bench-
mark [917, 918] is a dependability benchmark for on-line transaction processing sys-
tems. The DBench-OLTP measures are divided in three groups: baseline performance
measures, performance measures in the presence of the faultload, and dependability
measures. The DBench-OLTP benchmark can be used considering three different
faultloads each one based on a different class of faults, namely: operator faults,
software faults and high-level hardware failures.

In [161] it is presented a preliminary proposal of another dependability bench-
mark for on-line transaction processing systems. The measures provided by this
dependability benchmark are the system availability and the total cost of failures.
These measures are based on both measurements obtained from experimentation
(e.g., percentages of the various failure modes) and external data (e.g., the failure
rates and the repair rates). The external data used to calculate the measures must be
provided by the benchmark user. The workload was adopted from the TPC-C per-
formance benchmark [887] and the faultload includes exclusively hardware faults,
such as faults in the storage hardware and in the network.
Web-servers The work presented in [316] proposes a dependability benchmark for
web-servers (the WEB-DB dependability benchmark). This dependability bench-
mark uses the basic experimental setup, the workload, and the performance measures
specified in the SPECWeb99 performance benchmark [845].

The measures reported by WEB-DB are grouped into three categories: baseline
performance measures, performance measures in the presence of the faultload, and
dependability measures. The WEB-DB benchmark uses two different faultloads:
one based on software faults that emulate realistic software defects (see [314]) and
another based on operational faults that emulate the effects of hardware and operator
faults.

14.3.3 Berkeley University

The work developed at Berkeley University has highly contributed to the progress of
research on dependability benchmarking in the last few years, principally on what
concerns benchmarking the dependability of human-assisted recovery processes.

A general methodology for benchmarking the availability of computer systems is
introduced in [155]. The workload and performance measures are adopted from exist-
ing performance benchmarks and the measure of availability of the system under test
is defined in terms of the service provided by the system. The faultload (called fault
workload by the authors) may be composed of a single-fault (single-fault workload)
or of several faults (multi-fault workload).

The work presented in [156] addresses human error as an important aspect in
system dependability, and proposes that human behaviour must be considered in
dependability benchmarks and system designs.

14 Resilience Benchmarking 293

A technique to develop dependability benchmarks that capture the impact of
human operators on the tested system is proposed in [154]. The workload and mea-
sures are adopted from existing performance benchmarks and the dependability of
the system can be characterized by examining how the performance measures deviate
from their normal values as the system is perturbed by injected faults. In addition to
faults injected using traditional fault injection, perturbations are generated by actions
of human operators that actually participate in the benchmarking procedure.

In [151] are presented the first steps towards the development of a dependability
benchmark for human assisted recovery processes and tools. This work proposes
a methodology to evaluate human-assisted failure recovery tools and processes in
server systems. This methodology can be used to both quantify the dependability of
single recovery systems and compare different recovery approaches, and combines
dependability benchmarking with human user studies.

14.3.4 Carnegie Mellon University

Vajra [674] is a research project whose goal is benchmarking the survivability in
distributed systems, focusing on the objective and quantitative comparison of the
runtime implementations of different Byzantine fault-tolerant distributed systems.
The benchmark uses as the point of injection APIs that are common across various
Byzantine fault-tolerant systems. A variety of accidental and malicious faults are
injected at various rates across the system.

Although not resulting in a formal benchmark proposal, the research on robustness
testing developed at the Carnegie Mellon University [540] has effectively set the basis
for robustness benchmarks of operating systems. This will be further discussed in
Chap. 16, which includes a survey on robustness testing techniques.

14.3.5 Sun Microsystems

Research at Sun Microsystems has defined a high-level framework [959] specifi-
cally dedicated to availability benchmarking of computer systems. The proposed
framework follows a hierarchical approach that decomposes availability into three
key components: fault/maintenance rate, robustness, and recovery. The goal was to
develop a suite of benchmarks, each one measuring an aspect of the availability of
the system. Within the framework proposed by [959], two specific benchmarks have
already been developed.

In [960] is proposed a benchmark for measuring a system’s robustness (degree
of protection that exists in a system against outage events) in handling maintenance
events, such as the replacement of a failed hardware component or the installation
of a software patch.

http://dx.doi.org/10.1007/978-3-642-29032-9_16

294 M. Vieira et al.

In [629] is proposed a benchmark for measuring system recovery in a non-
clustered standalone system. This benchmark measures three specific system events;
clean system shutdown (provides a baseline metric), clean system bootstrap (corre-
sponds to rebooting a system following a clean shutdown), and a system reboot after
a fatal fault event (provides a metric that represents the time between the injection
of a fault and the moment when the system returns to a useful state).

Another effort at Sun Microsystems are the Analytical RAS Benchmarks [324],
which consists of three analytical benchmarks that examine the Reliability, Avail-
ability, and Serviceability (RAS) characteristics of computer systems:

• The Fault Robustness Benchmark (FRB-A) allows assessing and comparing the
techniques used to enhance resiliency, including redundancy and automatic fault
correction.

• The Maintenance Robustness Benchmark (MRB-A) assesses how maintenance
activities affect the ability of the system to provide a continuous service.

• The Service Complexity Benchmark (SCB-A) examines the complexity of mechan-
ical components replacement.

14.3.6 Intel Corporation

Work at Intel Corporation has focused on benchmarking semiconductor technology.
The work presented in [236] shows the impact of semiconductor technology scaling
on neutron induced SER (soft error rate) and presents an experimental methodol-
ogy and results of accelerated measurements carried out on Intel Itanium micro-
processors. The proposed approach can be used as a dependability benchmarking
tool and does not require proprietary information about the microprocessor under
benchmarking.

Another study [236] presents a set of benchmarks that rely on environmental
test tools to benchmark undetected computational errors, also known as silent data
corruption (SDC). In this work, a temperature and voltage operating test (known as
the four corners test) is performed on several prototype systems.

14.3.7 IBM Autonomic Computing Initiative

At IBM, the Autonomic Computing initiative developed benchmarks to quantify a
system’s level of autonomic capability, which is defined as the capacity of the system
to react autonomously to problems and changes in the environment. The goal was to
produce a suite of benchmarks covering the four categories of autonomic capabilities:
self-configuration, self-healing, self-optimization, and self-protection.

14 Resilience Benchmarking 295

The first steps towards a benchmark for autonomic computing are described in
[589]. The benchmark addresses the four attributes of autonomic computing and is
able to test systems at different levels of autonomic maturity.

The work presented in [152] identifies the challenges and pitfalls that must be
taken into account in the development of benchmarks for autonomic computing
capabilities. This paper proposes the use of the workload and driver system from
performance benchmarks and the introduction of changes into benchmarking envi-
ronment in order to characterize a given autonomic capability of the system. The
paper proposes that autonomic benchmarks must quantify the level of the response,
the quality of the response, the impact of the response on the users, and the cost of
any extra resources needed to support the autonomic response.

14.4 Security Benchmarking

Theoretically, a security benchmark provides a metric (or small set of metrics) able
to characterize the degree to which security goals are met in a given piece of code
[483], allowing developers and administrators to make informed decisions. However,
one of the biggest difficulties in designing such metric is related to the fact that
security assessment is, usually, much more dependent on what is unknown about
the applications (e.g. unknown bugs, hidden vulnerabilities) than by what is known
(e.g., known features, existing security mechanisms).

Security metrics are hard to define and compute [883] because they involve mak-
ing isolated estimations about the ability of an unknown individual (e.g., a hacker)
to discover and maliciously exploit an unknown system characteristic (e.g., a vulner-
ability). A feasible alternative is to assume that such metrics can be obtained using
information about the system itself, without taking into account external factors. In
fact, a security benchmark based on such metrics would allow characterizing the
degree to which security goals are met in a given web application or component.
In practice, due to the difficulties of quantifying security, most works on security
benchmarking are based on analysis and qualification of configurations/systems.

Several security evaluation methods have been proposed in the past [232, 233,
288, 807]. The Orange Book [288] and the Common Criteria for Information Tech-
nology Security Evaluation [233] define a set of generic rules that allow developers
to specify the security attributes of their products and evaluators to verify if products
actually meet their claims. Another example is the red team strategy [807], which
consists of a group of experts trying to hack its own computer systems to evaluate
security. However, none of these security evaluation approaches is oriented towards
security benchmarking, as comparing security has been largely absent from these
security evaluation methods.

The work presented in [630] addresses the problem of determining, in a thorough
and consistent way, the reliability and accuracy of anomaly detectors. This work
addresses some key aspects that must be taken into consideration when benchmarking
the performance of anomaly detection in the cyber-domain.

296 M. Vieira et al.

The set of security configuration benchmarks created by the Center for Internet
Security (CIS) is a very interesting initiative. CIS is a non-profit organization formed
by several well-known academic, commercial, and governmental entities that has
created a series of security configuration documents for several commercial and open
source systems. These documents focus on the practical aspects of the configuration
of these systems and state the concrete values each configuration option should have
in order to enhance overall security of real installations. Although CIS refers to these
documents as benchmarks they mainly reflect best practices and are not explicitly
designed for systems assessment or comparison.

A practical way to characterize the security mechanisms in database systems
is proposed in [920]. In this approach database management systems (DBMS) are
classified according to a set of security classes ranging from Class 0 to Class 5
(from the worst to the best). Systems are classified in a given class according to the
security requirements satisfied. In [50] the authors analyze the security best practices
behind the many configuration options available in several well-known DBMS. These
security best practices are then generalized and used to define a set of configuration
tests that can be used to compare different database installations. An improved set
of best practices is then used in [52] to benchmark the security of database servers
configurations.

A benchmark that allows database administrators to assess and compare database
configurations is presented in [51]. The benchmark provides a trust-based security
metric, named minimum untrustworthiness, that expresses the minimum level of
distrust the DBA should have in a given configuration regarding its ability to prevent
attacks. The use of trust-based metrics as an alternative to security measurement is
discussed in [682].

14.5 Resilience Benchmarking

A resilience benchmark should provide generic ways for characterizing a system
behavior in the presence of perturbations. If a system is effective and efficient in
accommodating or adjusting to perturbations, avoiding failures as much as possible,
it is reasonable to consider it as being resilient [33]. This capability can be bench-
marked by submitting the system to various types of perturbations and by observ-
ing the failures (and their frequency), as well as time and resources dedicated to
avoid/recover from them. Still, the perturbations that the system has to face may lead
to performance and dependability attributes degradation without leading necessarily
to catastrophic system failures. Thus, we need to assess variations of the properties of
interest (e.g., performance, availability, integrity) when the system is under varying
context conditions, in order to characterize its behavior from a resilience perspective.

Evaluating resilience must consider the system and environment dynamics that
are beyond those typically addressed in the evaluation of performance and depend-
ability. While maintaining similar workloads, dependability benchmarks enhanced
performance benchmarks by introducing a faultload and dependability metrics, which

14 Resilience Benchmarking 297

include performance metrics under faulty conditions. A resilience benchmark must
comprise a more wide-ranging set of perturbations, which will certainly include (but
will be not limited to) faults. For instance, variations on the workload or in system
parameters should be part of those perturbations. New metrics for characterizing
resilience are also needed, although some will naturally be based on measures of
performance and dependability while facing changes.

In practice, resilience benchmarking includes performance, dependability, and
security aspects, and aims at providing generic, repeatable and widely accepted
methods for characterizing and quantifying the system (or component) behavior in
the presence of faults, and comparing alternative solutions [514]. Although many
works have been conducted in the area of performance and dependability bench-
marking, it is clear that many key issues must be addressed towards the definition of
concrete resilience benchmarks, which, theoretically, should include the following
main components:

• Benchmarking metrics: the benchmark metrics should allow characterizing and
quantifying the system behavior when facing perturbations (i.e., faults, attacks,
and operational environment variations). At first sight, resilience benchmarking
metrics must characterize performance, dependability and security.

• Workload: during the benchmark execution, the system under test must be submit-
ted to a representative set of tasks, which should be as close to real conditions as
possible. An important aspect is that a workload cannot be static and must exercise
the resilience capabilities of the system, as the real conditions would.

• Perturbations-load: a system may be subjected to distinct types of perturbations
during its operation, and a benchmark must try to emulate those as realistically as
possible. These perturbations may be of three different types: faults, attacks, and
perturbations related to system’s maintenance.

In the context of the AMBER Coordination Action, funded by the European
Union under the Seventh Framework Programme, a set of research needs related to
resilience benchmarking have been identified, namely (see details at [127]):

1. Agreed, cost effective, easy to use, fast and representative enough dependability
benchmarks for well defined domains.

2. Benchmark frameworks (components and tools) able to be reused to create
benchmarks in different benchmarking domains.

3. Inclusion of adequate design methodologies to facilitate benchmark implemen-
tation and configuration in future components, systems, and infrastructures.

4. Uniform (standardized) benchmarking process that can be applied by indepen-
dent organizations to offer certification of the dependability of COTS products
(like in the case of standards compliance testing).

These needs raise a set of research challenges that have to be addressed in order
to be able to define a (resilience) benchmark, namely (see [127] for details):

1. Defining benchmark domains (components, systems, application domains) in
order to divide the problem space in adequate/tractable segments.

298 M. Vieira et al.

2. Defining key benchmark elements such as measures, workload, faultload, models,
to ensure the necessary properties (e.g., representativeness, portability, scalabil-
ity, repeatability) that allow agreement on benchmark proposals.

3. Coping with highly complex, adaptable and evolving benchmark targets (com-
ponents, systems and services).

4. Coping with human factors in the definition and execution of benchmarks.
5. Assuring proper validation of dependability benchmarks in order to achieve the

necessary agreement to establish benchmarks. This implies the validation of the
different benchmark properties.

6. Assuring reusability of benchmark frameworks (components and tools) to create
benchmarks in different benchmarking domains.

7. Defining and agreeing on a domain-specific dependability benchmarking process
that can be accepted by the parties concerned (supplier, customer and certifier)
and can be adapted to different products in the domain (e.g., in a product line).

14.6 Further Trends in Benchmarking Research

Besides resilience benchmarking we see some further research trends in the area of
benchmarking, which we discuss in this section.

14.6.1 Benchmark Engineering

While developing benchmarks, we faced a lack of methodology that describes how
to develop good and meaningful benchmarks. Since benchmark development has
turned into a complex team effort, there is a need for a development methodology
taking the specifics of benchmarks into account. Compared to traditional software, the
development process has different goals and challenges. New concepts and processes
are needed which address the whole development and life-cycle management of
benchmarks. We refer to them including benchmark methodology and measurement
techniques with the term Benchmark Engineering [793]. First work is already in
progress. As example, SPEC is working on development guidelines.

14.6.2 Benchmarking of Large Scale Systems

Large scale, highly distributed systems are increasingly used in mainstream appli-
cations. However, for these systems traditional benchmarking approaches fail: how
can we benchmark a system with 500,000 nodes? What does a typical workload look
like and how does it scale? What should be the distribution of the faultload? etc.

14 Resilience Benchmarking 299

Since it is not feasible to run benchmarks in a realistic environment with thousands
of nodes, new methods are needed which allow us to benchmark large scale systems
in a realistic way on limited resources. As a consequence, we see a need for research
in the area of simulated benchmarks.

Similar questions are currently under discussion in several research areas. The
authors in [583] discuss requirements for peer-to-peer (P2P) benchmarking and
present two exemplary approaches to benchmark such systems. They point out the
challenges of developing P2P benchmarks compared to conventional benchmarks.

A very active community can be found in the area of cloud benchmarking. A dis-
cussion why traditional benchmarks are not sufficient for evaluating cloud services
can be found in [114]. The authors present some initial ideas how a cloud benchmark
should be designed including a list of requirements for such a benchmark. In [238]
the Yahoo! Cloud Serving Benchmark (YCSB) framework was introduced including
a core set of benchmarks. YCSB targets cloud data serving services, allows to create
new workloads and is extendible. Another example is the Cloudstone benchmark,
which consists of a social-events web application (with PHP and Ruby implementa-
tions) and a set of automation tools for load generation and performance measure-
ment [839]. When running the benchmark, the load is generated against the web
application, which in turn generates load on the underlying database.

There are still many open questions in the area of P2P and cloud benchmarking.
This is the reason, why the SPEC Research Group decided to launch two subcom-
mittees working on these topics.

14.6.3 Power Consumption

In the past, benchmarking focused mainly on computation performance. Since indus-
try and governments are increasingly concerned about the energy use of servers, there
is a need to reflect the power consumption in the result of a benchmark. The first
standard benchmark providing a metrics, which represents computation performance
as well as energy consumption was the SPECpower_ssj2008 benchmark. Nowadays,
more and more benchmarks include energy consumption in their result, such as SPEC
or TPC benchmarks. Consequently, the SPEC is working on the Server Efficiency
Rating Tool (SERT), a tool set to measure and evaluate the energy efficiency of
computer servers [889].

A metric for power consumption has to reflect both, traditional performance met-
rics in relation to the power consumption and not only peak performance is of inter-
est. However, energy consumption scenarios are only one example, where traditional
benchmark metrics fail or are hard to apply. A major challenge of future benchmark
development is the definition of meaningful metrics, which take other aspect than
performance and dependability into account (see also Sect. 14.5).

300 M. Vieira et al.

14.7 Conclusion

This chapter presented the state-of-the-art on benchmarking. The work on perfor-
mance benchmarking has started long ago and has contributed to improve successive
generations of systems. Dependability benchmarking efforts both at universities and
computer industry sites are quite recent. Security is a newcomer to the benchmarking
world and little work has been performed so far.

Although performance benchmarking is a very well established field, further work
on dependability benchmarking seems to be necessary in several application areas
(e.g., real-time systems, grid computing, parallel systems, etc). Additionally, no
dependability benchmark has achieved the status of a real benchmark endorsed by
a standardization body. This may be due to several reasons (that need to be studied)
but clearly shows that additional work is still needed.

In the area of security benchmarking, a lot of work is clearly needed, as this is
a new and quite challenging field for which little work has been developed so far.
A key issue is the definition of useful and meaningful security metrics. In fact, the
problem of security quantification is a longstanding one. A useful security metric
must portray the degree to which security goals are met in a given system, allowing
a system administrator to make informed decisions. One of the biggest difficulties
in designing such a metric is related to the fact that security is, usually, much more
dependent on what is unknown about the system than on what is known about it. In
fact, security metrics are hard to define and compute as they involve making isolated
estimations about the ability of an unknown individual (e.g., a hacker) to discover
and maliciously exploit an unknown system characteristic (e.g., a vulnerability).

To tackle the challenges related to the future implementation of resilience bench-
marks, the following research steps are foreseen:

1. Study the metrics that better characterize resilience.
2. Study the definition of dynamic workloads via field studies and analysis of

existing workloads.
3. Study the characterization of perturbation loads. This can be based on field

studies and on the analysis of already existing faultloads.
4. Define the steps needed for the execution of a resilience benchmark. These steps

define the benchmark procedure and should be as generic as possible to allow
the portability of the benchmarking approach.

5. Conduct benchmarking campaigns to demonstrate the benchmark and validate
its properties.

6. Generalize the resilience benchmarking approach to make possible its applica-
tion in different domains.

7. Disseminate the benchmarking approach. A key aspect is to identify the best way
to foster the adoption by industry and to facilitate the support by a standardization
body like TPC and SPEC.

14 Resilience Benchmarking 301

Acknowledgments The work of Marco Vieira and Henrique Madeira was partially funded by the
European Commission under project AMBER - Assessing, Measuring and Benchmarking Resilience,
IST - 216295, funded by the European Union, 2009. The work of Samuel Kounev was partially
funded by the German Research Foundation (DFG) under grant No. KO 3445/6-1.

Part V
Testing Techniques

Chapter 15
Resilience Assessment Based on Performance
Testing

Alberto Avritzer and Andre B. Bondi

Abstract Performance degradation and/or irregularity are often indicators of sys-
tem instability. By applying the principle that average performance measures vary
little under constant load in a stable system without periodic behavior, we can use
performance metrics to anticipate instability within the system. We describe how to
use that information to isolate the cause of observed instability and how to structure
load tests to identify scenarios in which system instability is likely to occur. We
discuss resilience assessment based on performance measurements. Specifically, we
present our experience generating load tests and analyzing the performance testing
results. We discuss how we have used these results for security, reliability and per-
formance assessment. We discuss the conditions required for system stability and
identify some of the causes for system instability, such as security attacks, quality
problems, and queuing for system resources. We present a metric that can be used to
assess some dimensions of system security, reliability and performance using data
obtained from the execution of performance testing. In addition, we present the asso-
ciated testing activities that are required to collect data for the required modeling and
analysis activities, and to help track system security, reliability and performance. We
illustrate the presented methodology with empirical results obtained by testing for
security, reliability, and performance.

A. Avritzer (B) · A. B. Bondi
Siemens Corporate Research and Technology, 755 College Road East,
Princeton, NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

A. B. Bondi
e-mail: andre.bondi@siemens.com

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 305
DOI: 10.1007/978-3-642-29032-9_15, © Springer-Verlag Berlin Heidelberg 2012

306 A. Avritzer and A. B. Bondi

15.1 Introduction

Whether an episode of system instability occurs during execution in production or
during laboratory tests, identifying its root cause is very difficult unless expected
behavior can be modeled or data have been collected to track the system’s behavior
and activity during the episode and during the times immediately preceding and
following it. It is also difficult to tell whether a modification to the system has
improved its stability unless the occurrences of episodes and the conditions and
activities leading up to them are carefully tracked.

We also wish to anticipate system instability and take measures to prevent com-
plete failure. This is much easier to do if we have a way of evaluating the current
stability of the system, or, perhaps more pessimistically, the instantaneous propensity
of the system to fail.

Queuing theory and the theory of stochastic processes tell us that when a system
is well behaved and under a constant average load, the performance measures of the
system, including resource utilization, average response time, average queue lengths,
and memory occupancy will vary within small ranges of values. This is because the
rates of change of the probabilities of a system being in a particular state are all zero
when the system is in equilibrium. It follows that trends in performance measures
over time and large variations over time are indicators of potential instability or even
of forthcoming crashes (if observed before the fact) or past crashes (if observed after
the fact).

We shall explore potential causes of run-time instability and show how they can
be identified by examining the behavior of performance measures. We shall show
how performance tests can be structured to reveal potential run-time instability, and
illustrate our ideas with some examples.

There are many reasons why a system can become unstable. Among them are:

1. Security intrusion as a result of a security attack. A study of the impact of several
different security attacks test cases on system performance metrics was presented
in [71]. The test cases used in that research were buffer overflow, stack overflow,
SQL injection, denial of service (DOS), and Man-in-the-Middle (MITM) secu-
rity attacks. It was reported in that research that significant deviations from the
stable performance ranges could be detected when the system was under these
classes of security attacks.

2. Saturation of one or more hardware resources, such as CPU, I/O, or bandwidth,
and/or saturation of software resources such as pools of abstract objects. In the
case of the listed hardware resources, the cause is excessive offered load. In
the case of software resources, the most simple cause is that the product of the
average holding time and the average request rate is close to the size of the
resource pool, or even exceeds it.

3. Concurrent programming errors. These can result in deadlocks, livelocks, and/or
thread safety and mutual exclusion problems. Concurrent programming errors
often lead to Heisenbugs, i.e., bugs that are not always reproducible given the
same starting conditions and inputs because they occur non-deterministically.

15 Resilience Assessment Based on Performance Testing 307

Concurrent programming errors can result from the incorrect application of
synchronization operations, such as semaphore operations, or from the use of
scheduling rules that result in cyclic dependency between processes or threads
that acquire and release resources that are non-preemptible and non-sharable.
These are the necessary conditions for deadlock [404].

4. Memory and object pool leaks are caused by a failure to release the objects
in question and return them to their respective free pools. The symptoms of
these leaks include the growth of the virtual address space sizes of individual
processes and/or threads, shrinking free memory pool and/or object pool sizes,
and, in Java-based systems, growing heap sizes. If a leak progresses too far, the
system will crash.

5. Memory overflows resulting in unauthorized access and perhaps data corruption,
caused, for example, by subscripts being out of range or by bad pointer values.

The foregoing are examples of instability occurring at run or execution time, as
opposed to instability of the code base, which can contribute to instability at run
time. Specifically,

• Run-time instability manifests itself in performance degradation and/or failures
and malfunctions that could be caused by security intrusions, software/hardware
defects or contentions for hardware/and or software resources.

• Code base instability sometimes manifests itself in broken builds and compilation
failures. It can manifest itself in performance degradation and malfunctions at run
time.

• Code base instability may be caused by flaws in the development and change
control processes. Although code base instability may be a contributing factor to
run-time instability, it is neither a necessary nor a sufficient one. It is not necessary
because crashes can occur even if the code base is stable. It is not sufficient because
the system can run uneventfully even if the development process was chaotic.
Instability of the code base will not be considered further here.

In the remainder of this chapter, the term instability refers to manifestations occur-
ring during execution, i.e., at run time.

The fundamental operational laws of performance modeling [287] can give us
guidelines about structuring performance tests to reveal something about stability,
and insights on how to interpret performance test results.

In a well behaved system under a constant load:

1. The achieved throughput should equal the offered transaction throughput.
2. The utilizations of the processors, I/O devices, and bandwidth should be propor-

tional to the offered transaction rate. This is known as the Utilization Law.
3. The average response time should increase slowly as a function of the offered

load unless the utilization of any resource in the system under test exceeds 90 %.
4. The average values of the following performance measures should be approxi-

mately constant during a test run under constant load, except during the rampup
and cooldown periods, or when the load is inherently periodic:

308 A. Avritzer and A. B. Bondi

a. The average transaction response times,
b. All resource utilizations,
c. The average throughput,
d. The average memory occupancy,
e. The average sum total of all address space sizes,
f. The average address space sizes in all time intervals during the test.

If the load is inherently periodic, the quantities listed in items (a)–(f) should also
be correspondingly periodic unless the length of the averaging period exceeds the
period of the load. In that case, the average measures should again be approximately
constant over the course of the test run.

Any deviation from these rules is a sign of system instability. To recognize the
potential for instability, we structure our initial load tests and collect measurements in
a way that allows us to verify that the performance measures have the characteristics
listed above. If they do not, further investigation is warranted.

In the foregoing, we have focused on how instability can be inferred by deviations
from basic operational laws. The results of performance tests that are structured to
reveal possible deviations from these laws are illustrated in Sect. 15.4. In Sect. 15.2,
we shall present a complementary approach in which the choices of loads are deter-
mined based on sets of Markov chains whose states correspond to the operational
states of a system. These states are artefacts of both the offered load (whether seen
in testing or in production) and of the operational status of the system.

In the Markov state testing approach, for each state of the Markov chain that
needs to be tested, we drive the system into that state, and we generate a sustained
constant load to measure the system behavior for that load and determine pass/fail
conditions. Therefore, the approach presented in Sect. 15.2 identifies the system
states that require testing, while the stability conditions presented in this section help
determine pass/fail conditions for each test. In addition, the approaches presented
in Sect. 15.2, Markov Testing, and Sect. 15.3, Stability Testing are complementary.
In the approach presented in Sect. 15.2 a stochastic model is used and a customer
affecting metric is derived to represent the fraction of time the system satifies the
customer affecting metric. The approaches presented in Sect. 15.3 cover initial tests
and performance tests to uncover instability.

Identifying the impact of security intrusions, hardware and software defects, and
of system resource contention, when the system is run under constant average load,
requires the collection and/or computation of the customer affecting metric. Ideally,
we should be able to define a unified metric to cover security, reliability and perfor-
mance. We describe the application of Markov chain theory to the generation of test
cases for the evaluation of security, reliability and performance. We also describe the
process that should be used to solve the Markov chain and to compute the customer
affecting metric. In the next section we describe in detail the Markov state testing
[69, 73] approach and the associated metric of interest.

15 Resilience Assessment Based on Performance Testing 309

15.2 Modeling and Analysis Approaches Based on Performance
Testing Results

We apply results from performability theory [69] for test case generation and assess-
ment of system reliability by constructing two types of Markov chains:

1. resource failure-based Markov chain of the form X = {X (t), t ≥ 0}
2. resource usage-based Markov chain of the form Y = {Y (t), t ≥ 0}

In the resource failure-based Markov chain we capture the number and type of
operational/failed components that impact the system’s ability to complete its mis-
sion. In the resource usage-based Markov chain we capture the system allocated
resources for a certain load, for a given state of the failure-based Markov chain. The
objective is to test for failures that are most likely to occur and for states that are
important in the assessment of the system’s ability to satisfy the customer affecting
performance metric, for a certain system configuration.

We now present the approach we suggest to use to assess the impact of security
attacks, quality issues and resource contention on the defined customer affecting
metric.

The customer affecting metric of interest is defined using a performability
approach as:

‘The fraction of time the system satisfies the defined requirements specifications
during an observation period (0, t).’

We define two types of Markov chains:

• a resource failure-based Markov chain, where a state φ maps the resources that
are unavailable to perform useful work,

• a resource usage-based Markov chain, where a state s = (s1, s2, . . . , sM) maps
the resources that are being used.

The failure-based Markov chain contains failure states and associated events: failures
and repairs. The resource usage Markov chain contains the state of resources and
associated events: allocation and release. Security intrusions have been shown [71] to
impact system performance and therefore can be captured by appropriate definition
of the resource usage Markov chain.

The modeling and assessment process defined in [69] to compute the customer
affecting metric after the execution of performance tests is:

1. define the customer affecting metric for a given observation period as: the fraction
of time the system satisfies the defined requirements specifications during an
observation period (0, t).

2. define a resource failure based Markov chain for the system. The system can
be in K different system resource configurations. Generate the K Markov
resource usage based Markov chains, one Markov chain associated with each
resource configuration. System resource configurations could vary because
of resource failures and/or security attacks.

310 A. Avritzer and A. B. Bondi

3. Using test results, obtain the pass/fail results for each state of the K Markov
chains. The pass/fail also conveys the impact of the failure on the customers.

4. Solve the Markov chains and obtain the long term fraction of time each Markov
chain spends in each state.

5. Applying uniformisation [273], the customer affecting metric can be computed
as a transient metric for the observation interval or as a steady state metric when
the observation period becomes very large.

The detailed mathematical derivations is available from [69, 273]. We present a
summary of the results below.

We assume that the system under study can be in K different configurations, where
each configuration results from combinations of system failures. The failure configu-
rations comprise the set C. The i th configuration is denoted by ci ∈ C. The cardinalty
of C is K . The performance test suite is generated from the most likely states of the
resource usage-based Markov chain Y . An important assumption used to simplify
testing complexity is that a failing performance test for a certain configuration can
be marked as failed for higher loads that use the same configuration. In addition, a
configuration ci ∈ C that that has a very low probability of occurence, i.e., smaller
than a pre-specified cutoff probability, can be marked as failed without testing, thus
reducing the complexity of the performance test suite, as the impact of an extremely
low probabilility test case on the customer affecting metric is negligible.

Y(i) represents the resource usage-based Markov chain for configuration ci and
α j (i) is defined to be:

α j (i) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the performance requirements are
satisfied for configuration ci when
in state s j of Y(i)

0 otherwise

M(i) is the total number of states in Y(i). Let us define γ j (i) to be the long-term

fraction of time the system is in state s j (i) of Y(i). Then,
∑M(i)

j=1 γ j (i)α j (i) is the
fraction of time configuration ci satisfies the target requirements for the system.

The customer affecting metric of interest is defined to be Γ (t), the fraction of
time the system satisfies the customer affecting requirements specifications during
an observation interval (0, t).

The calculation of the customer affecting metric requires an additional assump-
tion: the transition rates between resource usage based Markov chain states are sig-
nificantly larger than the transition rates between different resource failure based
configurations. In addition, we define reward rates r1, . . . , rC , where reward ri is the
the amount of reward per unit of time accrued, when the system is in configuration
ci . Let us compute ri as:

ri =
∑

j

γ j (i)α j (i). (15.1)

15 Resilience Assessment Based on Performance Testing 311

Furthermore, let δi (t) units of time be the time the system is in configuration
ci during the observation period (0, t). Therefore, δi (t) ∗ ri , is the fraction of time
during (0, t) that the system is expected to pass the requirements test.

Next we calculate Γ (t). We refer the reader to the transient analysis results from
Markov reward models (e.g. [273]). Equation (58) of [273] provides an expression
for Γ (t),

Γ (t) =
∞∑

n=0

C/∼=−Λt Λt

n!

[∑n
j=0 r · v(j)

n + 1

]

, (15.2)

where

• v(n) = π(0)Pn
X is the nth state probability vector when X is uniformized with

rate Λ.
• π(0) is the initial state probability vector for X usually equal to 〈1, 0, . . . , 0〉

meaning that the system is fully operational at time 0.

Let Γ be the limit as t → ∞ of fraction of time the system satisfies the customer
affecting performance requirements. For t → ∞ we get:

Γ =
K∑

i=1

p(φi)

M(i)∑

j=1

γ j (i)α j (i), (15.3)

where we recall that p(φi) is the probability that the failure-based Markov chain X
is in state φi .

The security test cases described in [71] have been shown to create increased
resource usage and possible system instability. Therefore, the performability approach
just described for the assessment of system reliability and performance applies also to
the evaluation of a security/performance/reliability related customer affecting metric,
when the system is tested using known security attack test cases. The additional work
required to assess the impact of security attacks on system performance is related
to the developement of security attack test cases, and the extension of the resource
usage-based Markov chain and the resource failure based Markoc chain to include
configurations related to the security test case and new resource usage based states
that are related to the security attacks.

15.3 Test Case Generation Process

15.3.1 Initial Tests

The first step to uncovering possible instability is to subject the system to a well
defined mix of transactions at increasing rates. The transaction rate, or a set of rates
for different transaction types, must be kept at the same level(s) for a long enough

312 A. Avritzer and A. B. Bondi

period for the system to settle into and remain in equilibrium. The purpose of testing
the system at increasing loads is to verify that the average resource utilizations are
linear with respect to the transaction rate, that average response times vary little
during the period that the transaction rate is constant, and that the average response
time is insensitive to the offered transaction rate unless at least one resource has a
utilization exceeding 90 %. We should increase the transaction rate to the point at
which the utilization of the bottleneck resource approaches 95 %. Testing at higher
levels of utilization risks saturating the system without conveying information about
the resource utilization trend. Note: linearity is conditioned on the speed of the
resources being constant over time. To verify linearity of utilizations of processors,
one must ensure that their clock speeds do not vary with time during performance
testing, e.g., to conserve energy.

15.3.2 Performance Tests to Provoke Instability

Comparing Performance on Uniprocessor and Multiprocessor Systems System
instability may be caused by a concurrent programming error or by other causes.
It is possible that concurrent programming errors that are not apparent during a
performance test on a uniprocessor system (or a uniprocessor with hyperthreading
turned off) will become apparent on a multiprocessor system (or a uniprocessor
system with hyperthreading turned on) or vice versa. This is because running a mul-
tithreaded system on one or the other will allow different sequences of intereleaved
thread executions to occur. In the authors’ experience, there is a concurrent program-
ming problem if the performance is worse or less stable on a multiprocessor system
than on a uniprocessor system, other things being equal.

Tests Involving Bursts or Surges of Activity
Periodic Load. Some systems generate constant amounts of work at regular inter-

vals, and then become quiescent. Examples include network management systems
and building management and surveillance systems that generate status polling mes-
sages at regular intervals.

Quiet and Bursts. Some systems will alternate between quiet intervals and bursts
of traffic lasting short or long amounts of time.

For example:

• A network management system must automatically execute procedures in response
to traps and alarms, or bursts of traps and alarms.

• An airport conveyor system handling the baggage of arriving and transferring
passengers will be subject to a new burst of demand whenever a plane arrives.

Intense Extended Surge of Transactions. An intense extended surge of activity can
cause a system to crash. Instead, the system should merely suffer performance degra-
dation during and immediately after the surge and then recover gracefully without
further intervention.

15 Resilience Assessment Based on Performance Testing 313

Fig. 15.1 Measurements of an XP-based system showing, from top to bottom, CPU utilization,
committed memory, and I/O byte traffic over time

15.4 Empirical Results

15.4.1 Increasing Memory Occupancy and Periodic
Drops in CPU Usage

Figure 15.1 shows measurements of a system under constant load. The processor
usage drops off from time to time, and then resumes its normal usage after showing a
spike of activity following the dropoff. Memory usage increases at a rate that appears
to be nearly constant. The spike in I/O activity may be attributable to logging.

• The drops in CPU usage indicate that a deadlock repeatedly occurred, followed
by a release on timeout. An investigation of the code showed that this was indeed
the case. The problem was remedied, and troughs went away on a subsequent run.

• The constant increase in memory usage indicates the presence of a memory leak.
The cause of the leak was identified and eliminated.

This example illustrates how the analysis of performance measurements was used
to identify and eliminate two potential causes of system instability. The repeated
deadlocks resulted in intervals in which no useful work was being done. Any trans-

314 A. Avritzer and A. B. Bondi

Fig. 15.2 The same XP-based system, after problems were fixed

actions in progress or triggered during those intervals would have had very large
response times. In production, the memory leak would have resulted in a system
crash or else necessitated the stopping and restarting of the system to prevent it, had
it been allowed to continue long enough.

In Fig. 15.2, we see measurements of the same use case after the problems
encountered were remedied. The CPU utilization oscillates within a very small range
rather than dropping down to zero from time to time as in Fig. 15.1. Also, the number
of committed bytes stays fairly constant throughout the run rather than increasing
once the initial rampup period is over.

15.4.2 Comparison of a Healthy and an Unhealthy Use Case

In this section, we illustrate how the results of load tests were used to check whether
two use cases have suitable performance characteristics.

We first consider Use Case A, which has desirable performance characteristics.

• Figures 15.3 and 15.4 show how the performance measures evolved over time at a
load of 300 transactions per second (TPS). The test lasted about 4 min. Observa-
tions were collected every fifteen seconds.

15 Resilience Assessment Based on Performance Testing 315

Fig. 15.3 CPU and other utilizations for Use Case A at 300 TPS

Fig. 15.4 Average response times for Use Case A observed at different load generators at 300 TPS

– Figure 15.3 shows that the CPU utilization (the heavy line) ramped up quickly
from zero and leveled off at about 85.

– Figure 15.4 shows the average response times observed at different load gener-
ators. These lie within so narrow a range that the performance plotting tool did
not print labels on the vertical axis.

• Figure 15.5 is a plot of CPU utilization and actual transaction rate as a function
of the offered transaction rate. It shows that the average CPU utilization and the

316 A. Avritzer and A. B. Bondi

Fig. 15.5 CPU utilization versus load, Use Case A

0

0.30

0.25

0.20

0.15

R
es

po
ns

e
T

im
e

(s
ec

)

0.10

0.05

0.00
50 100 150 200

Target TPS
250 300 350 400 450

Fig. 15.6 Average response time versus load, Use Case A

actual transaction rate increase linearly to 300 TPS. At 300 TPS, the CPU busy is
85 %. The linearity of the CPU utilization with respect to the target TPS means a
target transaction rate of 400 TPS corresponds to a predicted CPU busy in excess
of 100.

• Figure 15.6 is a plot of the corresponding average response times. It shows that the
average response times are low for target throughputs up to 300 TPS and increase
dramatically at 400 TPS. This is consistent with the observations in Fig. 15.4.

15 Resilience Assessment Based on Performance Testing 317

Fig. 15.7 CPU and other utilizations for Use Case B at 2,000 transactions per second

These plots indicate that Use Case A is healthy from a performance standpoint.
The CPU utilization is linear with respect to the offered load, while the average
response is insensitive to the offered load at transaction rates of 300 per second or
less. These results show that the system has good load scalability and indicate the
absence of software bottlenecks, concurrency problems, or stability issues, at least
in this operating region. We now consider Use Case B, which is unhealthy from a
performance standpoint.

• Figure 15.7 shows that the CPU utilization reached a plateau quickly during a test
run at 2,000 transactions per second (TPS), but that it diminished slightly during
the run well before the offered load was turned off.

• Figure 15.8 shows that the average response times oscillated sharply over a wide
range during the same test run, and that the amplitude of the oscillations increased
irregularly over time.

• The plot of CPU utilization shows in Fig. 15.9 has an upper bound of about 45 %,
and shows that target throughputs in excess of 1,500 per second could not be
achieved.

• The plot of average response time increases sharply and linearly with respect to
the load when the target transaction rate exceeds 1,500 per second (Fig. 15.10).

Taken together, these curves indicate the presence of a software bottleneck or a
concurrency problem. The large oscillations of the average response times suggest
that the system would be unstable at loads greater than or equal to 1,500 TPS. Since
Use Case B implements a frequently used service, these performance test results
have provided us with an early warning of a problem that might have been difficult
to isolate by testing the applications themselves.

318 A. Avritzer and A. B. Bondi

Fig. 15.8 Average response times for Use Case B observed at different load generators at 2,000
transactions per second

Fig. 15.9 CPU utilization and actual transaction rate versus target transaction rate for Use Case B

15.4.3 Unstable Throughput

When a system is functioning smoothly, the transaction failure rate should be low. In
the system we were testing, we increased the number of virtual users at regular time
intervals. If the system were functioning smoothly, we would expect the transaction
completion rate to increase with the number of virtual users. The graphs of both
virtual users and transaction completion rates would have the form of an ascending

15 Resilience Assessment Based on Performance Testing 319

0 500

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
1000 1500 2000 2500

Response
Time (sec)

Target TPS

Fig. 15.10 Average response time versus target transaction rate for Use Case B

staircase. In this experiment, the number of virtual users was used as a surrogate for
the offered load. Transactions were generated at a set rate by each virtual user. Instead
of describing the staircase form, both the transaction completion and failure rates
exhibited spikes and troughs, to the extent that the failed and successful transaction
rates became the same during an interval near the end of the experiment.

These results indicate system instability with multiple causes. Because the sum of
the failed and successful transaction rates does not describe a staircase (since some
of the peaks and troughs of both rates occur at the same time), we know that there are
intervals in which transaction processing was obstructed altogether, indicating the
possibility of deadlocks and timeouts. A detailed examination of the run log and of
the data showed the presence of a thread safety problem, in addition to the possibility
of a deadlock problem, perhaps caused by the exhaustion of an object pool. Further
investigation revealed this to be the case.

15.4.4 Evolution of a System Towards Deadlock

Consider a resource pool that is accessed by threads requesting and relinquishing
identical resources through a common FCFS queue. The authors have seen this in
more than one computer-controlled system. We resort to a metaphor. The coat rooms
in some museums in New York City have this structure. Visitors queueing to leave
their coats on hangers and to collect their coats pass through a common queue to
reach the attendants who serve them. Deadlock occurs if all hangers are occupied
and the first visitor in the queue wishes to leave a coat. This could occur in the middle

320 A. Avritzer and A. B. Bondi

of a busy day in the winter, when large numbers of visitors might be arriving at the
museum in coats or wishing to leave. The onset of deadlock can be anticipated by
monitoring the following metrics:

• The number of occupied hangers increases towards it maximum value and hovers
near it.

• The queueing times of visitors gradually increase, and then suddenly increase
markedly as attendants must spend more time searching for empty hangers and/or
for coats to return.

• The number of visitors queueing to collect coats could increase, but only to the
number of occupied hangers.

• The utilization of the attendants will increase, thus causing queueing to increase
further.

Once deadlock has occurred,

• The rate at which customers leave the system will be zero, because no coats are
being left or returned.

• The utilization of the coat room attendants due to coat distribution and collection
will be zero.

• Queue lengths outside the coat room will increase.

In a discrete event simulation of this system, deadlock can be induced by gener-
ating a burst of “visitors” who leave their “coats” in the coat room for a long time
compared with the times between arrivals. If the size of the simulated burst exceeds
the number of hangers, deadlock will occur. Deadlock can be resolved by coat room
attendants asking those who wish to collect coats (thus freeing hangers) to come
to the head of the queue. It can be prevented by giving priority to those collecting
coats, but that might be socially unacceptable and/or architecturally infeasible [138,
139]. Notice that in this instance, the steady increase in the number of occupied
hangers would not be caused by a “hanger” leak, because that would correspond to
visitors failing to collect their coats. Instead, it is caused by visitors wishing to free
a resource (hangers) being delayed by those wishing to acquire one. This in and of
itself is a source of system instability, quite apart from the possibility of hangers
being exhausted by a high volume of visitors to the museum on a cold day. For this
reason, the problem might have gone unnoticed had it not occurred in a laboratory
setting. This suggests that performance measurement is not sufficient to reduce the
risk of instability. Reviews are also needed to prevent the implementation of design
choices that could lead to instability in the first place.

15.4.5 DOS Security Attacks

Figure 15.11 shows the impact of a Denial of Service (DOS) security attack on the
memory usage performance signature for a system that is run with constant load. The
figure shows both the normal constant load memory usage performance signature,

15 Resilience Assessment Based on Performance Testing 321

Fig. 15.11 Memory usage performance signature for constant load and DOS security attack

and the DOS attack signature, while the same normal constant load is executed in the
background. The DOS attack is initiated mid-way through the test at sample point
60. Similar plots are shown in [71] for stack overflow, buffer overflow, sql injection,
and Man in the middle (MITM) security test cases.

15.5 Conclusions

We have presented several approaches for resilience assessment based on perfor-
mance measurements.

We have shown how a performability approach can be used to define a resilience
assessment customer-affecting metric, and we have summarized the modeling and
assessment approach to compute the customer-affecting metric using performance
measurement results and the solution of the Markov chains that describe system
behavior.

We have described the types of tests that we recommend should be included in a
performance test suite designed to uncover system instability.

We have illustrated our concepts with several performance testing results showing
common instability conditions. Specifically, we have shown several examples of

322 A. Avritzer and A. B. Bondi

system instability that were detected when the system was executed under constant
load. We have also shown performance testing results obtained for a system under a
denial of service attack.

In one instance, a periodic drop in CPU usage when the system was tested under
constant load was an indication of a system deadlock followed by a release on timeout.
A comparison with a plot of measurements taken after the problem was corrected
demonstrated the expected system behavior.

Therefore, we recommend that performance testing should involve a combina-
tion of activities: the definition of a customer-affecting metric that can be computed
using a performability approach; execution of performance tests to uncover insta-
bility conditions; execution of performance tests to evaluate the system resilience
to resource exaustion, failures, and security attacks; and the computation of the
customer-affecting metric that captures the pass/fail conditions observed during per-
formance test execution using the solution of the Markov chains defined to describe
system behavior.

Chapter 16
Robustness Testing Techniques
and Tools

Zoltán Micskei, Henrique Madeira, Alberto Avritzer,
István Majzik, Marco Vieira and Nuno Antunes

Abstract Robustness is an attribute of resilience that measures the behaviour of
the system under non-standard conditions. Robustness is defined as the degree to
which a system operates correctly in the presence of exceptional inputs or stressful
environmental conditions. As triggering robustness faults could in the worst case
scenario even crash the system, detecting this type of faults is of utmost importance.
This chapter presents the state of the art on robustness testing by summarizing the
evolution of basic robustness testing techniques, giving an overview of the specific
methods and tools developed for major application domains, and introducing pen-
etration testing, a specialization of robustness testing, which searches for security
vulnerabilities. Finally, the use of testing results in resilience modelling and analysis
is discussed.

Z. Micskei (B) · I. Majzik
Budapest Univ. of Technology and Economics,
Budapest, Magyar Tudósok krt. 2, Hungary
e-mail: micskeiz@mit.bme.hu

I. Majzik
e-mail: majzik@mit.bme.hu

H. Madeira · M. Vieira · N. Antunes
DEI/CISUC, University of Coimbra,
3030-290 Coimbra, Portugal
e-mail: henrique@dei.uc.pt

M. Vieira
e-mail: mvieira@dei.uc.pt

N. Antunes
e-mail: nmsa@dei.uc.pt

A. Avritzer
Siemens Corporate Research and Technology,
755 College Road East, Princeton, NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 323
DOI: 10.1007/978-3-642-29032-9_16, © Springer-Verlag Berlin Heidelberg 2012

324 Z. Micskei et. al.

16.1 Introduction

Robustness is an attribute of resilience that measures the behaviour of the system
under non-standard conditions. Robustness is defined in IEEE Standard 24765:2010
as the degree to which a system operates correctly in the presence of exceptional
inputs or stressful environmental conditions [465]. To further refine the difference
between robustness and resilience Avizienis et al. defined robustness as “dependabil-
ity with respect to external faults, which characterizes a system reaction to a specific
class of faults” [63].

The goal of robustness testing is to activate those faults (typically design or pro-
gramming faults) or vulnerabilities in the system that result in incorrect operation,
i.e., robustness failure, affecting the resilience of the system. Robustness testing
mostly concentrates on the internal design faults activated through the system inter-
face. The robustness failures are typically classified according to the CRASH criteria
[540]: Catastrophic (the whole system crashes or reboots), Restart (the application
has to be restarted), Abort (the application terminates abnormally), Silent (invalid
operation is performed without error signal), and Hindering (incorrect error code is
returned–note that returning a proper error code is considered as robust operation).
The measure of robustness can be given as the ratio of test cases that exposes robust-
ness faults, or, from the system’s point of view, as the number of robustness faults
exposed by a given test suite.

Robustness testing can be characterized with the following two components of
the tests (stimuli); the workload triggers (regular) operation of the system, while
the faultload contains the exceptional inputs and stressful conditions applied on the
system. Depending on how these two loads are balanced, robustness testing can be
used for verification and evaluation purposes. Robustness testing can be used as a
special kind of conformance testing, where only a faultload is executed against the
public interfaces of the system. Overloading can also be considered as a stressful
condition, this way stress tests (i.e., submitting only a high amount of workload) are
also used to assess the robustness of a system.

Security testing is the process in which the software is verified not for functional
purposes but to detect vulnerabilities [634]. A vulnerability is a weakness (an internal
fault) that may be exploited by an attacker to cause harm or gain access to the system
[860]. Penetration testing is a technique to perform security testing and consists of a
particular form of robustness testing in which the application execution is analysed
when submitted to malicious conditions (i.e., malicious input parameters that try to
take advantage of vulnerabilities). Penetration tests are widely used by developers
to detect security vulnerabilities in their code [860] and consist of stressing the
application from the point of view of an attacker using specific malicious inputs.
Penetration testing can be performed manually or automatically. However, automated
tools, also referred as web vulnerability scanners, are the typical choice as, comparing
to manual tests and inspection, execution time and cost are quite lower. These tools
provide an automatic way for searching for vulnerabilities, avoiding the repetitive

16 Robustness Testing Techniques and Tools 325

and tedious task of doing hundreds or even thousands of tests by hand for each
vulnerability type.

Robustness benchmarks are agreed-upon and reproducible procedures defined
by specifying (1) the workload, (2) the faultload, (3) the standard procedures and
rules to execute them, (4) the experimental setup, and (5) the relevant measures that
characterize the robustness of the system under benchmarking. As robustness is an
attribute of dependability, robustness benchmarks can be considered as a special
category of dependability benchmarks.

From the point of view of the lifecycle of systems, on the one hand, robustness
testing can be used as an internal step in the development process, complementing
the other verification and evaluation activities. On the other hand, robustness tests
can be performed (typically by external parties) after the release of the system, to
assess its dependability or to compare it to other systems. The detected robustness
faults can be handled either by performing corrections in the design and implemen-
tation, or by the application of specific wrappers that are able to confine the effects
of the faults. This latter solution is particularly relevant when the system contains
commercial off-the-shelf (COTS) components, which cannot be modified to correct
the faults/robustness weaknesses, thus a wrapper built around the component is the
only solution to improve its robustness.

The outline of this chapter is as follows. Section 16.2 discusses the evolution of
basic robustness testing techniques. Section 16.3 provides an overview of the specific
methods and tools developed for major application domains. Section 16.4 introduces
the penetration testing technique and some of the existing tools. Section 16.5 briefly
discusses the use of testing results for resilience modelling and analysis. Finally,
Sect. 16.6 concludes the chapter.

16.2 Robustness Testing

In the past decades many research projects were devoted to the robustness testing of
a specific application or application type. The early methods were mainly based on
hardware fault injection, but later the research focus moved to software-implemented
techniques. In this section we introduce the main milestones, which can be connected
to the introduction of new testing techniques.

16.2.1 Injecting Physical Faults

Early work on robustness testing used fault injection (FI) tools to induce or simu-
late the effects of various hardware related faults. Here a clear distinction shall be
made between the purposes of general FI and FI for robustness testing. The general
technique assesses the ability of a system or component to handle internal hardware
or software faults. In a robustness testing framework, FI can be used to assess the

326 Z. Micskei et. al.

ability of a component to handle interaction faults that are triggered by injecting
faults into the environment (e.g., interacting components or underlying layers) while
keeping the tested component intact. In this way also the robustness of error detec-
tion and error handling mechanisms (considered as components to be tested) can be
investigated.

FIAT [92] or FTAPE [865] are examples for FI tools that are reported to be used
for such robustness testing purposes.

16.2.2 Using Random Inputs

One of the first robustness testing techniques was the generation of random input
for the system. Random inputs are easy to generate, there is a chance that robustness
faults are activated by them, and due to the simple acceptance criteria (crash/hung is
checked) there is no need to generate reference output.

Fuzz [650] was one of the first tools supporting this technique. It was utilized in
three series of experiments to test reliability and robustness of various applications.
In 1990, utility programs on seven variants of Unix operating systems were tested. In
1995, the tests were repeated to check whether robustness of these utilities had been
improved and support to test X Window applications were added. Lastly, in 2000,
Fuzz was used to test 30 GUI applications on Windows NT. Although the method
used was really simple, it detected a great deal of robustness errors, namely 40 % of
the Unix command line programs and 45 % of the Windows NT programs crashed
(terminated abnormally) or hung (stopped responding to input within a reasonable
length of time) when called with random input data.

Although random testing is a basic technique, it proves to be useful even for
modern COTS software systems. The tests in Fuzz were reapplied to MacOS in a
study prepared in 2007 [649] with the following results: 10 command line utilities
crashed out of the 135 utilities that were tested (a failure rate of 7 %), 20 crashed and
2 hung out of the 30 GUI programs tested (a failure rate of 73 %). Thus, it turns out
that robustness testing using random inputs is still a viable technique as robustness
of common software products has not been significantly improved in general in the
last fifteen years.

Fuzzing is extensively applied to security related testing, as presented in a recent
book [865].

16.2.3 Using Invalid Inputs

Basic software robustness testing technique is the systematic calling of the interface
functions of the system under test using parameter values that are selected from the
boundaries and outside of their allowed domain. E.g., if allowed values of a parameter

16 Robustness Testing Techniques and Tools 327

are positive integers then robustness tests may contain the zero, a negative number
and the MAXINT value.

A typical tool supporting this approach was Riddle [377], which used a grammar-
based description of the system’s input to generate random and invalid tests. Accord-
ing to the grammar definition legally structured inputs were generated that were filled
with random values, possible malicious values (like special or non-printable charac-
ters) and boundary values (for example numbers like MAXINT + 1). In this way,
syntactically correct inputs could also be created (not just totally random streams),
and a greater portion of the systems functionality could be accessed by the tests.
Results showed that about 10 % of the tests on GNU command line utilities pro-
duced unhandled exceptions. The robustness failures observed were mainly memory
access violation exceptions, privileged instruction exceptions and illegal instruction
exceptions. The typical cause of these exceptions was the improper handling of
non-printable characters and (excessively) long input streams.

Another area where invalid inputs can be easily defined and used for robustness
testing is low-level OS device drivers. In [643] such drivers were tested by select-
ing extreme values from the following categories: forbidden value, out of bounds
value, invalid pointer assignment, NULL pointer assignment, missing local variable
initialization, and missing call of a related function.

16.2.4 Using Type-Specific Tests

The robustness tests can be further refined by using specific invalid inputs for each
function in the system’s interface. To minimize the amount of manually created test
cases a type-specific approach was introduced. The basic idea is that valid and invalid
inputs are defined for the data types used in the system’s interface functions, and the
robustness tests are generated by combining the values for the different parameters.
The size of the invalid input domain can be further reduced by using inheritance
between the types to test.

The Ballista tool [540] used this approach to compare the robustness of 15 POSIX
operating systems using a test suite for 233 function calls. The general goal of the
research was to implement methods to measure the robustness of the exception han-
dling mechanism of systems. The results could be used to evaluate the dependability
of a system and characterize how it responds to the failures of other components. In
an experiment performed on the Safe Fast I/O (SFIO) library, the performance draw-
back of robustness hardening was also measured. The tests showed that the perfor-
mance penalty of proper data validation and parameter checking was fewer than 2 %.
A good summary of the experiences gained using Ballista can be found in [542].

328 Z. Micskei et. al.

16.2.5 Testing Object-Oriented Systems

The type-specific technique mentioned above can be enhanced in object-oriented
(OO) systems with the help of automatically building a parameter graph with the
type structure. The parameter graph describes how the specific object types used
as parameters in method calls can be generated as results of calling constructors or
public methods of other classes. This way the generation of an invalid object (needed
to test a given method) can be traced back to the call of another method (possibly
having parameters of simpler input types).

The JCrasher tool [249] creates robustness tests for Java programs automatically
by analysing which methods could return a type needed for the actual parameters. It
examines the type information of the set of Java classes constituting the application
and constructs code fragments that will create instances of different types to test the
behaviour of public methods with random or invalid data.

In OO applications the testing of exception handling is an important aspect of
assessing the robustness of the fault handling and recovery code. Exception flow
analysis and testing exception-catch paths is presented in [358].

16.2.6 Applying Mutation Techniques

Code mutation techniques [285] can be also applied to generate robustness tests.
Starting from a valid code, e.g., a functional test or an application using the system’s
interfaces, mutation operators can be applied, which resemble the typical faults caus-
ing robustness problems (e.g., omitting calls, interchanging calls, replacing normal
values in parameters with invalid values).

Mutation and extension of valid test sequences may also help in state-based sys-
tems or components to cover more states and transitions than in case of stateless API
testing. In [584], first a set of paths is generated to cover state transitions of the tested
component, and normal test cases are applied to traverse these paths and bring the
component into specific states. In each state, the available methods are called with
invalid inputs to test the robustness in that state. This approach is motivated by the
fact that complex components may fail differently in different states.

16.2.7 Model-Based Robustness Testing

The increasingly popular model-driven development paradigm led to the idea of
model based testing (using models as formal or semi-formal specification for testing
purposes) [159, 290] and also model based automated test generation [26]. Naturally,
model based test generation can be tailored to create robustness tests by looking for
extreme values and conditions on the basis of the pre- and post-conditions, invariants,

16 Robustness Testing Techniques and Tools 329

and constraints fixed in the design model. Model-based testing is currently a very
active field of research; here we mention only a few techniques and tools that are
relevant to testing robustness.

The first test generation approaches utilized formal specifications and functional
models (B, Z, LOTOS, etc.). Constraint-solving techniques were applied to generate
boundary values of input domains as well as the corresponding test cases. In state
based formalisms, e.g., in IOLTS [338], path searching and model mutation (on the
basis of fault models) were applied in order to find tests for concrete robustness
criteria. Timed behaviour was modelled and tested using timed automata [350] or
extended interoperability models [628].

In case of communication protocols SDL was the primary modelling language
used for generating robustness tests [792]. In another work [741], finite state machine
models of communication protocols were extended and faulty protocol data units
were generated on the basis of a stress operational profile in a statistical approach to
model based robustness testing.

In UML based designs the Object Constraint Language (OCL) was used to specify
valid domains, this way providing input information also for robustness testing.
Typical examples of UML based test generator tools that support (a subset of) OCL
were LTG/UML [902] and ParTeG [932].

Model based configuration and execution of robustness testing is complemen-
tary to model based test generation. In [700], a framework was presented that fits
to the model based development approach by offering to the tester the model of the
tested application (using UML class diagram model elements) and domain-specific
extensions that allow the configuration of fault injection and robustness testing exper-
iments. The modifications that are required for robustness testing are implemented
automatically (using a Java bytecode manipulation technology) on the basis of the
model extensions.

16.2.8 Historical Overview of the Basic Robustness Testing
Approaches

A detailed survey of robustness testing techniques was provided in the context of the
ReSIST Network of Excellence, in particular in the report summarizing the state of
knowledge [772].

To conclude the section on basic approaches and major supporting tools,
Table 16.1 presents the historical time line of the techniques and evaluates their
current applicability, while Fig. 16.1 presents the relations between the techniques.

330 Z. Micskei et. al.

Table 16.1 Historical time line of techniques used for robustness testing

Testing technique Introduced Evaluation of applicability

Injection of physical
faults

Early 1990s Used in specific domains, e.g., in safety-critical systems

Random inputs Mid 1990s Basic technique, still useful for off-the-shelf software
Invalid inputs Late 1990s Used as part of type-specific testing
Type-specific

testing
Around 2000 Very effective technique, used together with mutation

OO approach Early 2000s Extension of type-specific tests to OO languages
Mutation techniques Early 2000s Effectively complements type-specific techniques

Injection of
physical faults

Random inputs

Invalid inputs

Type-specific
tests

uses

uses

Object-oriented
tests

extends

Mutation
techniques

1990 20001995 2005

Fig. 16.1 Relations between the basic robustness testing techniques

16.3 Robustness Testing Techniques in Specific
Application Domains

In recent years, robustness testing techniques have been successfully used in several
application domains. In the following we survey the peculiarities of these techniques.

16.3.1 User Interfaces

State-based testing of graphical user interfaces (GUI) relies on building a graph
based model that describes the elements of the interfaces and the connections (e.g.,
allowed activation sequences) between them. This model is often called an event-
flow or event-interaction graph. In a robustness testing scenario the graph describing

16 Robustness Testing Techniques and Tools 331

the normal operation is completed with the connections that are not allowed. The
activation of these connections (after reaching the activation of their starting point by
a sequence of normal interactions) constitutes the robustness test suite. These robust-
ness tests can be generated automatically based on the possible sequences obtained
from the graph model. This technique can be considered as a specific mutation tech-
nique that appends an invalid activation after the sequence of valid ones.

The GUITAR framework [638] is a tool set for creating automatic tests for GUIs.
It detects the elements of the GUI, e.g., menus, buttons, and constructs an event flow
graph. Rapid tests trying to crash the application can be generated from the model
after each release of the software. The effectiveness of the method and the tools were
demonstrated on the GUI of an open-source office suite.

16.3.2 High Availability Middleware

Robustness is a key factor in middleware systems that are applied to provide
high availability (HA) services to applications and to manage the configuration of
redundant components: robustness faults in the HA middleware can be activated by
poor quality application components, and this way one such component may ren-
der the whole application inaccessible. The complexity in testing these middleware
implementations comes from the highly state-based nature of these systems: without
a proper setup code most of the calls in the public interface result in trivial error
messages, this way the robustness of the valid operation cannot be tested.

In [648] the common interface specified by the Service Availability Forum was
used to test and compare the robustness of different middleware implementations.
A robustness test suite was constructed on the basis of the definition of the com-
mon interface using a type-specific approach, i.e., various combinations of valid and
invalid inputs were generated automatically. To test stressful environmental condi-
tions an operating system call wrapper was implemented, since the manifestation of
many stressful conditions (network errors, lack of disk space etc.) can be simulated
by injecting errors into the return values of system calls. Additional robustness tests
were generated by mutating tests in the functional test suite (changing the order of
calls, applying invalid parameter values when a given state is reached, etc.). These
methods exposed distinct robustness faults in the system, demonstrating the impor-
tance of combining the different testing techniques.

16.3.3 Real-Time Executives

Microkernels are currently common components in a wide range of applications,
ranging from daily-use appliances (e.g., mobile devices) to space-borne vehicles.
Robustness testing of microkernels has been addressed using stressful operational
conditions, invalid inputs at the public interfaces, and fault injection.

332 Z. Micskei et. al.

In [56] the MAFALDA tool is used to collect objective failure data and to find ways
to improve the error detection capabilities of the Chorus and the Lynx microkernels.
A specialized version of that tool, the MAFALDA-RT, is used in [784] to test real-
time systems. The tool applies a novel method to cope with the problem of temporal
intrusiveness caused by the use of software implemented fault injection (SWIFI)
tools. In addition to detecting typical failure modes (e.g., application hang, system
hang, exception, etc.), the observation capabilities of MAFALDA-RT are extended to
consider temporal properties characterizing both the executive and application layers
(e.g., task processing, task synchronization, context-switch, system calls, etc.).

The Xception tool [241] is a SWIFI tool that was used in several experiments of
microkernel robustness testing (e.g., [86, 622, 665]). This tool is able to introduce
perturbations in the processor to emulate errors at the hardware and software level
(in the case of a software fault, the fault is introduced when user applications are
being executed). The robustness evaluation consists of assessing the abilities of the
microkernel to handle the stressful situation caused by the existence of faults. One
interesting work used Xception to emulate hardware transient faults and observe
their effects at the user application and at the operating system level [615]. The
results demonstrated that errors occurring in one user-mode application can propagate
to other user-mode applications through the OS itself.

16.3.4 OLTP and DBMS

Although not as common as other types of systems, Online Transaction Processing
(OLTP) systems were also used in past robustness related works. The following two
studies are worth noting.

The work presented in [919] presents a dependability benchmark (covering also
the attributes of robustness) for OLTP systems. The experiments exposed the OLTP
systems under observation to stressful conditions and measured the performance
penalty of the Database Management System (DBMS) engine and the rate of occur-
rence of data corruption on the data tables. The stressful conditions were caused by
the injection of operator errors. This work demonstrated that it is possible to assess
the dependability and robustness properties of OLTP systems and rank the systems
under study according to the results.

The work in [342] presents a method to detect intrusions and malicious data access
based on DBMS auditing. Although this work is not exactly inline with the traditional
robustness testing described earlier in this section, assessing the ability to prevent or
detect intrusion can constitute a measure to the robustness of a system (in this case,
the security attributes of that system).

16 Robustness Testing Techniques and Tools 333

16.3.5 Web Services

Web Services are a widespread technology to implement services accessible over
a computer network. Each Web Service has a well-defined interface (usually using
a standardized description language). Several methods were proposed to generate
robustness tests based on these interfaces for Web Services.

The work described in [897] presents a specification-based robustness testing
framework for Web Services. The testing framework includes the analysis of the ser-
vice specification to ensure that it is complete and consistent. It applies the Covering
Scenario Generation algorithm to identify the locations where incompleteness and
inconsistency exist. The testing framework also includes the robustness testing of
the Web Service by generating positive test cases (that should be successful) as well
as negative test cases (that should not be successful).

WebSob [626] is a tool that automates the generation and execution of test cases
for Web Services. This tool executes Web Service requests using the provider’s Web
Service Description Language (WSDL) specification. This tool was applied to freely
available implementation of Web Services and revealed several robustness problems.
The tool does not require the knowledge of the implementation of the Web Services
under test.

The work presented in [916] defines a benchmark to assess the robustness of Web
Services. It uses invalid data in the method invocations to discover both programming
and design errors. The parameter values used in the method invocations are modified
(i.e., corrupted) based on the data types and the semantics of the method parameters.
The Web Services are classified according to the type and number of failures observed
during the tests.

The WS-FIT tool [604] performs a dependability analysis of Web Services. For the
sake of robustness testing it performs network fault injection by capturing, modifying,
and retransmitting SOAP messages. This technique allows for easy corruption of RPC
method invocation within SOAP messages and can emulate the following errors:
corruption of input and output data, omission or duplication of messages, delay of
messages.

16.4 Penetration Testing

Penetration testing, a specialization of robustness testing, consists of the analysis of
the program execution in the presence of malicious inputs (based on a database of
know malicious values for specific applications or generated based on predefined
rules), searching for potential vulnerabilities [860]. Hackers are nowadays moving
their focus to this kind of vulnerabilities and explore applications’ inputs with spe-
cially tampered values trying to find weaknesses. These vulnerabilities cannot be
mitigated by traditional security mechanisms such as firewalls and intrusion detec-
tion system, thus highlighting the importance of detecting these vulnerabilities before

334 Z. Micskei et. al.

deployment. Also, the exposition of web applications makes them particularly prone
to attacks that try to exploit code vulnerabilities. In this section we overview existing
techniques, focusing particularly in web applications and code vulnerabilities, as
penetration testing is particularly important in these scenarios. Penetration testing is,
in fact, the most common approach to detect vulnerabilities in web applications and
web applications are the most frequent context in which penetration testing is used.

16.4.1 “Black-Box” Penetration Testing

In “black-box” penetration testing the tester does not know the internals of the appli-
cation and it uses fuzzing techniques over the applications requests [860]. The tester
needs no knowledge of the implementation details and tests the inputs of the appli-
cation from the user’s point of view by applying malicious inputs. The number of
tests can reach hundreds or even thousands for each vulnerability type. The vul-
nerability detection is based essentially on the analysis of the application output.
The human tester or the tool analyses the contents of this output including values or
errors returned and exceptions raised. The vulnerabilities are detected when certain
patterns found in the response are caused by the attacks launched. Many black-box
penetration testing techniques were proposed in the past. We introduce a few in the
next paragraphs due to the relevant innovations they introduced.

WAVES [450] is a black-box technique for testing web applications for SQL-
Injection vulnerabilities. The technique is based on a reverse engineering process
that identifies the data entry points of a Web application and attacks them with mali-
cious patterns. An algorithm is proposed to allow “deep injection” and to eliminate
false negatives. During the attack phase, the application’s responses to the attacks are
monitored and machine-learning techniques are used to improve the attack method-
ology.

SecuBat [504] is an open-source penetration testing tool that uses a black-box
approach to crawl and scan web sites for the presence of exploitable SQL injection
and cross-site scripting (XSS) vulnerabilities. SecuBat does not rely on a database of
known bugs. Instead, it tries to exploit the distinctive properties of application-level
vulnerabilities. To increase the confidence in the correctness of the results, the tool
also attempts to automatically generate proof-of-concept exploits in certain cases.

A black-box taint-inference technique for the detection of injection attacks is
proposed in [817]. The technique does not require any intrusive source-code or
binary instrumentation of the application to be protected; instead, it intercepts the
inputs and outputs of the application. Then, the technique infers tainted data in the
intercepted SQL statements, and then employs syntax and taint-aware policies to
detect unintended use of tainted data.

In [631] an automated penetration testing tool is presented that can find reflected
and stored XSS vulnerabilities in web applications. The proposed technique improves
the effectiveness of penetration testing by leveraging input from real users as a
starting point for its testing activity. The technique follows an entire user’s session

16 Robustness Testing Techniques and Tools 335

using recorded real user inputs to generate test cases to launch fuzzing attacks.
This way, the technique increases the code coverage by exploring pages that are
not reachable for other tools. The experiments show that the approach is able to
test more thoroughly the web applications and identify more bugs than a number of
open-source and commercial tools.

A vulnerability scanner for web services that performs better than the commercial
ones currently available is presented in [48]. The work focuses on the detection of
SQL Injection vulnerabilities, one of the most common and most critical types of
vulnerabilities in web environments. The proposed approach is based on a large set
of attacks and includes an enhanced response analysis (i.e., vulnerability detection)
algorithm. Experimental evaluation shows that the proposed approach performs much
better than well-known commercial tools, achieving very high detection coverage
while maintaining the false positives rate quite low.

16.4.2 “Gray-Box” Penetration Testing

The main limitation of black-box approaches is that vulnerability detection is limited
by the output of the tested application. Gray-box approaches consist of complement-
ing black-box testing with white-box techniques to overcome such limitation.

Dynamic program analysis is based on the analysis of the behaviour of the soft-
ware while executing it [860]. The idea is that by analysing the internal behaviour of
the code in the presence of realistic inputs it is possible to identify bugs and vulner-
abilities. Obviously, the effectiveness of dynamic analysis depends strongly on the
input values (similarly to black-box testing), but it takes advantage of the observation
of the source code. For improving the effectiveness of dynamic program analysis,
the program must be executed with sufficient test inputs. Code coverage analysers
help guaranteeing an adequate coverage of the source code [409, 664].

Source code or bytecode instrumentation is a technique that can be used to
develop runtime anomaly detection tools. In [578] it is proposed an anomaly detec-
tion approach to secure web services against SQL and XPath Injection attacks. The
web service is instrumented in such way that all the SQL/XPath commands used
are intercepted before being issued to the data source. The approach consists of two
phases. First, in the learning phase, the approach learns the regular patterns of the
queries being issued. Then, at runtime, the commands are compared with the pat-
terns learned previously in order to detect and abort potentially harmful requests. The
problem of this technique is that it does not include the generation of the requests to
use during the learning phase and so it requires the user to exercise the web service
in the learning phase.

In [47] the runtime anomaly detection approach from [578] was enhanced with
an automated workload and attackload generation technique in order to be able to
detect SQL and XPath Injection vulnerabilities in web services. This way, after the
instrumentation of the web service a workload is generated using information about
the domains of the parameters of the web service operations. Learning takes place

336 Z. Micskei et. al.

while executing the workload to exercise the web service. Afterwards, an attackload
is generated and used to attack the web service. Vulnerabilities are detected by
comparing the incoming commands during attacks with the valid set of commands
previously learned.

“Acunetix AcuSensor Technology” [19] is a technique introduced by Acunetix
that combines black-box scanning with feedback obtained during the test execution.
This feedback is provided by sensors previous placed, using code instrumentation,
inside the source code or bytecode. Using this technique it is possible to find more
vulnerabilities, to indicate in the code exactly where they are, and to report less false
positives. This technology is available for web applications, specifically .NET and
PHP web applications. In case of .NET this technology can be injected in bytecode.

Two techniques that combine static and dynamic analysis have been proposed to
perform automated test generation to find SQL Injection vulnerabilities. SQLUnit-
Gen, presented in [824], is a tool that combines static analysis with unit testing to
detect SQL injection vulnerabilities. The tool uses a third-party test case generator
and then modifies the test cases to introduce SQL injection attacks. In practice, these
attacks are obtained by using static analysis to trace the flow of user input values
to the point of query generation. Sania, presented in [544], is a testing framework
to detect SQL Injection vulnerabilities in web applications during development and
debugging phases. Sania intercepts the SQL queries between a web application and
a database and constructs parse trees of these queries. Terminal leafs of parse trees
typically represent vulnerable spots. The technique then generates attacks accord-
ing to the syntax and semantics of these potentially vulnerable spots. Finally, Sania
compares the parse trees of the original SQL query with the ones resulting after an
attack to assess the safety of these spots. The differences between the parse trees are
considered vulnerabilities, originating a warning.

Runtime anomaly detection tools are used as attack detection systems to protect
the applications at runtime. However, a detected attack is typically the exploitation
of an existing vulnerability, therefore showing that at least a vulnerability exists.
Examples include [578] and AMNESIA (Analysis and Monitoring for NEutralizing
SQL-Injection Attacks) [406]. AMNESIA combines static analysis and runtime mon-
itoring to detect and avoid SQL injection attacks. Static analysis is used to analyse the
source code of a given web application building a model of the legitimate queries that
such application can generate. At runtime, AMNESIA monitors all dynamically gen-
erated queries and checks them for compliance with the statically generated model.
When a query that violates the model is detected it is classified as an attack and is
prevented from accessing the database. The problem is that the model built during
the static code analysis may be incomplete and unrealistic because it lacks a dynamic
view of the runtime behaviour of the application.

While other works focused on identifying vulnerabilities related to the use of exter-
nal inputs without sanitizations, the work presented in [84] introduces an approach
that combines static and dynamic analysis techniques to analyse the correctness of
sanitization processes in web applications. First, a technique based on static analysis
models the modifications that the inputs suffer along the code paths. This approach
uses a conservative model of string operations, which might lead to false positives.

16 Robustness Testing Techniques and Tools 337

Then, a second technique based on dynamic analysis works bottom-up from the sinks
and reconstructs the code used by the application to modify the inputs. The code is
then executed, using a large set of malicious input values to identify exploitable flaws
in the sanitization process.

16.4.2.1 Examples of Penetration Testing Tools

Penetration testing tools provide an automatic way to search for vulnerabilities avoid-
ing the repetitive and tedious task of doing hundreds or even thousands of tests by
hand for each vulnerability type. The most common automated security testing tools
used in web applications are generally referred to as web security scanners (or web
vulnerability scanners). Web security scanners are often regarded as an easy way to
test applications against vulnerabilities. These scanners have a predefined set of tests
cases that are adapted to the application to be tested. In practice, the user only needs
to configure the scanner and let it test the application. Once the test is completed the
scanner reports existing vulnerabilities (if any detected). Most of these scanners are
commercial tools, but there are also some free application scanners often with limited
use, since they lack most of the functionalities of their commercial counterparts.

Two very popular free security scanners that support web services testing are
Foundstone WSDigger [351] and WSFuzzer [712]. WSDigger is a free open source
tool developed by Foundstone that executes automated penetration testing in web
services. Only one version of this software was released up to now (in December
2005). The tool contains sample attack plug-ins for SQL Injection, cross-site scripting
(XSS), and XPath Injection, but it was released as open-source to encourage users
to develop and share their own plug-ins and its test files are simple to edit to add
new test cases. WSFuzzer is a free open source program that mainly targets HTTP
based SOAP services. This tool was created based on real-world manual SOAP
penetration testing work, automating it. Nevertheless, the tool is not meant to replace
a solid manual human analysis. One problem of this tool is that its configuration is
very complex. The main problem of both WSDigger and WSFuzzer is that, in fact,
they do not detect vulnerabilities: they attack the web service under testing and log
the responses leaving to the user the task of examining those logs and identify the
vulnerabilities. This requires the user to be an “expert” in security and to spend a
huge amount of time to examine all the results.

As for commercial scanners, three brands currently lead the market: HP WebIn-
spect [434], IBM Rational AppScan [459] and Acunetix Web Vulnerability Scanner
[755].

HP WebInspect is a tool that “performs web application security testing and
assessment for today’s complex web applications, built on emerging Web 2.0 tech-
nologies. HP WebInspect delivers fast scanning capabilities, broad security assess-
ment coverage and accurate web application security scanning results” [433]. This
tool includes pioneering assessment technology, including simultaneous crawl and
audit (SCA) and concurrent application scanning. It is a broad application that can
be applied for penetration testing in web-based applications.

338 Z. Micskei et. al.

IBM Rational AppScan “is a leading suite of automated Web application security
and compliance assessment tools that scan for common application vulnerabilities”
[459]. This tool is suitable for users ranging from non-security experts to advanced
users that can develop extensions for customized scanning environments. IBM Ratio-
nal AppScan can be used for penetration testing in web applications, including web
services.

Acunetix Web Vulnerability Scanner “is an automated web application security
testing tool that audits a web applications by checking for exploitable hacking vul-
nerabilities” [755]. Acunetix WVS can be used to execute penetration testing in
web applications or web services and is quite simple to use and configure. The tool
includes numerous innovative features, for instance the “AcuSensor Technology”
[19].

16.5 Resilience Modelling and Analysis Using Testing Results

The Chapter on performance testing contains an overview of the application of mod-
elling and analysis based in performance testing results. The described approach can
be generalized to robustness testing with proper metrics and model state definitions.

The approach consists of defining a resilience related metric that can be derived
from the system security, reliability or performance requirements as follows:

The fraction of time the system satisfies the defined resilience requirements specifications
during an observation period (0,t)

The steps required to implement the approach presented in [69] are:

1. A resilience-based state definition needs to be devised. The resilience-based
state definition maps system resources to the events the system is designed to
be resilient to. For example, resilience related events could be faults, security
intrusions, or any other system activity that needs to be modelled.

2. Resilience modelling using the approach introduced in [69, 72] requires the def-
inition of Markov chains to contain the states and associated events. For exam-
ple, a failure-based Markov chain captures failures and repair events. Detailed
descriptions of the approaches with examples are presented in [68, 71].

3. The utilization of testing results pass/fail conditions to assess the resilience metric
requires the association of each resilience test with a Markov chain state. All
states associated with a test case result pass condition are used in the resilience
metric computation. In addition, the solution of the Markov chain enables the
association of the resilience metric with a notion of system reliability.

As topics for future research, we foresee a probabilistic quantification of robust-
ness related initiation and completion events (e.g., failure/repair) in some of the
relevant non-functional requirement domains, such as performance, reliability and
security.

16 Robustness Testing Techniques and Tools 339

16.6 Conclusion

This chapter presented an overview on robustness testing techniques, providing
examples of applications to several domains. In particular, we have introduced pen-
etration testing, where black-box and gray-box tests are used for detecting security
vulnerabilities. Finally, we have also introduced a quantitative approach for the eval-
uation of a robustness metric by using robustness testing results. The approach is
based on the definition of a system model in terms of robustness, the definition of
test cases that are related to the model states, and assessing pass/fail for each test
case executed in the robustness testing phase.

The robustness testing approaches presented in this chapter can be used to define
a systematic process that includes robustness metric definition, modelling of system
robustness, robustness test cases generation, automated tools for robustness testing,
and the assessment of the system robustness metric by using the pass/fail robustness
test case results. The current state of the art in robustness testing emphasizes the need
for additional studies on the identification of the most useful robustness models, and
the associated probabilistic quantification of the robustness states that are visited by
failures and security penetration events.

Acknowledgments The work presented in this chapter was partially funded by the European
Commission under project AMBER-Assessing, Measuring and Benchmarking Resilience, IST-
216295, funded by the European Union, 2009.

Part VI
Case Studies

Chapter 17
Case Study: Mobile Networks

Samir Bellahsene, Leïla Kloul, Philipp Reinecke
and Katinka Wolter

Abstract In order to be resilient, a network must possess means to ensure
connectivity even in the presence of disturbances. This chapter will study two dif-
ferent approaches to increase resilience of mobile networks, in the context of the
handover procedure. Seamless handovers between base stations is a prerequisite for
service continuity in mobile networks. The handover process consists in handing off
a call to a new base station when the mobile user moves to its corresponding cell
while the call is in progress. It imposes frequency synchronicity requirements which
imply strict bounds on the tolerable frequency deviations of base-station clocks.
The preferred protocol for frequency synchronisation in packet-switched backhaul
networks is the Precision Time Protocol (PTP). In the first part of this chapter, the
suitability of backhaul networks for accurate frequency synchronisation using PTP
is investigated. Two solutions for improving accuracy are derived. While the first
is applicable to networks of any topology, but may require costly reconfiguration,
the second is limited to specific setups, but can be applied without changing the
network. The second part of this chapter is dedicated to the performance analysis
of a Markov-based prediction model. Mobility prediction constitute an important

S. Bellahsene · L. Kloul (B)
PRiSM, Université de Versailles,
45 Avenue des Etats Unis,
78000 Versailles, France
e-mail: kle@prism.uvsq.fr

S. Bellahsene
e-mail: sabe@prism.uvsq.fr

P. Reinecke · K. Wolter
Institute of Computer Science,
Free University Berlin,
Takustr. 9, 14195 Berlin, Germany
e-mail: philipp.reinecke@fu-berlin.de

K. Wolter
e-mail: katinka.wolter@fu-berlin.de

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 343
DOI: 10.1007/978-3-642-29032-9_17, © Springer-Verlag Berlin Heidelberg 2012

344 S. Bellahsene et al.

solution to enable seamless handovers in cellular networks. The mobility trace is the
main information used to perform mobility prediction. However, using solely this
information makes the prediction process difficult when the mobile user is new in
the network, that is, when its mobility trace is poor. The efficiency of the prediction
model relies on both the ability of the model to predict successfully the next move
of a mobile user and its ability to perform such a prediction in a short delay. In order
to assess the Markov-based prediction model, data sets of a real cellular network in
a major US urban area are used.

17.1 Introduction

Service continuity is one of the main quality of service requirements in mobile
networks. However the continuity of user sessions is not always guaranteed as
the changes of radio channel, namely handovers, during mobile users movements
between the network cells, imposes short session disconnections. Thus, in the case
of applications such as multimedia applications where a session discontinuity cannot
be transparent to the users, the continuity of a service like VoIP is not guaranteed
unless an efficient handover procedure is implemented (see Chap. 2 for more details).

The handover procedure consists in handing off a call to a new cell when the
mobile user crosses the current-cell boundaries and moves to an adjacent cell while
the call is in progress. Such a procedure is initiated if the RSRP (Reference Signal
Received Power) of the adjacent cell is greater than the RSRP of the current cell by a
parameter value called the hysteresis. Moreover, this condition should last longer than
a time threshold called the Time-To-Trigger (TTT). Once the handover procedure is
initiated, if the new cell does not have enough channels to support the handoff, or
if the session disconnection between the mobile user and the old base station lasts
longer than a critical time while the connection with the new base station is not
established yet, the call is dropped.

Thus, in order to avoid communication failures during the handover procedure,
most solutions in the literature rely on the optimisation of the handover parameters,
which consists mainly in finding a tradeoff between the values of the TTT and the
hysteresis thresholds [482, 566, 829]. Some of these solutions were introduced in
the last releases of current mobile network standards [11, 12]. The other proposed
solutions focus on either speeding up the handover phases, or enhancing the existing
communication protocols between the network entities [166, 660, 669].

In this chapter, we present two distinct approaches that can be taken into account
by the mobile networks standardisation bodies. The objective of the first approach
is to enhance the communication protocols by elaborating solutions for an accurate
time synchronisation between the base stations of the current 3GPP and future LTE
mobile networks. Precise time synchronisation, especially frequency synchronisa-
tion between base stations is an important factor for seamless handovers. To that end,
the frequency on the air interface of wide area mobile base stations must not deviate

http://dx.doi.org/10.1007/978-3-642-29032-9_2

17 Case Study: Mobile Networks 345

by more than 50 ppb1 (parts per billion) relative to the nominal frequency. In existing
networks, base stations can derive the frequency from the bit clock of the mobile
backhaul network. As backhaul network operators migrate towards packet switching
backhaul networks, this is no longer possible, since packet switching networks are
inherently asynchronous. In these networks, Timing-over-Packet (ToP) according to
the Precision Time Protocol (PTP, IEEE 1588) is employed for frequency synchroni-
sation. A PTP master clock located at the network controller site sends Sync messages
of only a few bytes to the PTP slave clocks in the base stations. The frequency accu-
racy obtainable with PTP deteriorates with increasing Packet Delay Variation (PDV)
of the Sync messages which again is caused by queueing in the switches that can hap-
pen despite the high priority of the PTP packets. Packet delay variation does not mea-
sure the deviation of the frequency of the air interface as caused by an inaccurate clock
in the base station. Instead, PDV measures the difference in transmission time of the
timing packets from the network master clock to the slave clock in the base station.2

As synchronisation packets have to share the backhaul network with other traf-
fic, characteristics of the backhaul network and the background traffic may cause
packet delay variation to become too large to guarantee frequency synchronisation
of the base-station clocks, resulting in failed handover of calls between neighbouring
base-stations. Hence, resilience of time synchronisation in the backhaul network to
disturbances from background traffic becomes an important issue in modern mobile
networks.

Detailed network impairment models of transmission links and network nodes
can provide more insight in timing behaviour of complex networks than the common
black-box testing. In the first part of this chapter, we illustrate this by identifying
backhaul networks and load scenarios in which PTP accuracy is insufficient, and,
consequently, resilience of the handover procedure cannot be guaranteed. Based
on the insights gained from the detailed simulation analysis a modified version of
PTP is presented. It considerably reduces the PDV of the Sync messages in tree-
structured networks as they are typically deployed for mobile backhauling. Since the
detailed simulation models require runtimes of several days, sometimes even weeks,
the phase-type approximation technique from Chap. 5 has been applied. Assuming
identical switches is not too far from reality and enables us to simulate long paths
between the master clock and the base station in a short time at high accuracy.

The objective of the second approach presented in this chapter is to speed up the
handover phases by predicting the next moves of mobile users. This approach has
been developed for a specific and advanced mobile network architecture called the
Two-nodes IP Network [99]. This architecture is comparable to the emerging fourth
generation networks like the LTE and mobile WiMAX. As the coverage density in
mobile networks is often important, in particular in urban areas, the time needed
by any mobile terminal to scan all its neighbouring cells and classify those offering
the best RSRP can be long enough to become a critical issue for service continuity.

1 To illustrate: a frequency of 2 GHz = 2×109/s may vary in the range [2×109 ±100] per second.
2 The main difference between master and slave is the quality of the oscillator and hence the clocks’
frequency stability.

http://dx.doi.org/10.1007/978-3-642-29032-9_5

346 S. Bellahsene et al.

For example, in LTE [6, 9, 10, 563], a 6 ms measurement gap allows measuring up
to 3 neighbouring cells. The periodicity of this measurement gap is generally 40 or
120 ms. Thus, if the neighbourhood of the cell serving a mobile terminal consists of
8 cells, at least 98 ms will be required to scan all the cells in the neighbourhood. In
addition, in a critical situation, the handover in LTE can introduce an interruption
time, which can last more than 100 ms [6]. Consequently, for multimedia applications
that require service interruption time lower than 150 ms, the number of cells to scan,
before a handover is initiated, may play a decisive role in service continuity.

Mobility prediction, if well performed, may constitute a solution to limit the
number of cells to scan. The objective is to predict the next cell(s) to be visited
by the mobile user. If a unique cell is predicted, no RSRP measurement is needed,
otherwise only the predicted cells will be scanned and the one offering the best quality
of signal is selected. Thus, mobility prediction allows also the network to anticipate
the preparation of the handover in the predicted cell, enabling seamless handovers
and thus limited call dropping rates. The efficiency of such an approach relies not
only on its ability to predict the next cell to be visited by the mobile user, but also by
its ability to perform such a prediction in a short delay giving thus the network enough
time to prepare the handover to the new cell before the mobile user is disconnected.

Besides the mobility history of the user, the prediction approach presented in the
second part of this chapter takes into account an important characteristic of mobile
networks which is the ping pong handover phenomenon between neighbouring cells.
This phenomenon is related to the fixed values of signal threshold and the propagation
conditions when managing handovers [840]. The variation of propagation conditions
introduces fluctuations in the network coverage which leads to ping pong handovers.
Using simulation, we assess the efficiency of our prediction algorithm by assessing
its ability to predict successfully the next cell to be visited by a mobile user. We use
data sets from a real cellular network in a major US urban area [756].

Structure of the chapter: The first part of the chapter illustrates the performance
analysis of future frequency synchronisation techniques, that is the precision time
protocol in sufficient detail as to identify otherwise hidden problems. We first present
the backhaul networks models. Then we investigate the optimisation of the delay vari-
ation in tree-structured networks. We finally present the performance analysis of the
investigated approaches. The second part of this chapter is dedicated to performance
analysis of a Markov-based mobility prediction model and the ability assessment
of a mobile network implementing such an approach in anticipating the mobile user
resource needs in a near future. After defining the context of the analysis, that is a two-
nodes IP network architecture, the mobility prediction model is presented. Using data
sets from a real cellular network, the performance results of the model are discussed.

17 Case Study: Mobile Networks 347

Fig. 17.1 Network using synchronisation of base stations with ToP using PTP. The master clock
(in the upper right corner) sends PTP Sync messages to the slaves. Note that in this application
domain, network traffic is usually shown as flowing from right to left

Table 17.1 Frequency
accuracy requirements on the
air interface of FDD base
stations

BS class Minimum accuracy (ppb)

wide area BS ±50
Medium range BS ±100
Local area BS ±100
Home BS ±250

17.2 Frequency Synchronisation in Mobile Backhaul Networks

One technical prerequisite for service-continuity in mobile networks is seamless han-
dover of calls from one base station (BS) to the next. Handover requires precise fre-
quency synchronisation (also referred to as syntonisation),3 as radio access networks
(RAN) apply frequency division duplex (FDD) in compliance with [14] for sepa-
rating the downlink from the uplink carriers. As standardized by 3GPP in [14], the
frequency on the air interface of wide area GSM, WCDMA, and LTE base stations
must not deviate by more than 50 ppb4 from the nominal frequency. See Table 17.1
below for the frequency requirements of all BS classes. Since part of the frequency
accuracy is lost between the local oscillator of the BS and the air interface, in prac-
tice, the clock signal generated by the local oscillator has to be as accurate as some
15 ppb.

3 Note that base stations of an FDD-RAN typically have no need for phase synchronisation or
time-of-day synchronisation.
4 Parts per billion, defined as 10−9.

348 S. Bellahsene et al.

Table 17.2 Maximum tolerable PDV

Integration Required frequency accuracy
window size (h) 15 ppb (µs) 30 ppb (µs) 75 ppb (µs)

1 54 108 270
4 216 432 1,080
12 648 1,296 3,240
24 1,296 2,592 6,480
48 2,592 5,184 12,960

As base-station clocks depart from their nominal frequency by more than 15 ppb
after a few hours of free-running operation, a clock of higher quality is required to
discipline the clocks. The frequency of this clock must be traceable to a primary
reference clock (PRC). The high-quality clock is referred to as the master, while the
local oscillators in the base stations are called slaves. The master clock is typically
deployed at the centre of the mobile network, while the slave clocks are in the base
stations of the radio access network. This scenario is depicted in Fig. 17.1.

Frequency is related to the transmission time of packets across the network. It can
only be determined by integrating transmitted packets over a time interval. The longer
the integration the more robust the syntonization becomes against low-frequency
packet delay variations.

If the transmission time of packets was constant, the frequency would not vary
and packet delay variation would be zero. Since the frequency variation must be
bounded this translates to a bound on the packet delay variation (PDV) which means
that the difference in speed between fast and slow packets is of interest. In practice,
only a given portion of the fastest packets is considered at all. Since both the PTP
slave clock algorithm as well as the oscillator in the BS are vendor-discretionary the
packet delay variation (PDV) boundaries given in Table 17.2 have to be regarded as
guide values rather than precise limits.

However, in the evaluation of our models we consider a limit of 216 µs as total
packet delay variation between master and slave to be a reasonable target.

In current mobile networks employing TDM-based transport technology, the fre-
quency of the master clock can be conveyed to the base stations via the bit clock of
the backhaul network. With the migration of backhaul networks to inherently asyn-
chronous packet-switching technologies like Carrier Ethernet (CE), however, the bit
clock of the backhaul network can no longer convey the frequency of the master clock
to the slave clocks. In such networks, timing-over-packet (ToP) using the precision
time protocol (PTP) according to IEEE standard 1588–2008 [444] is the preferred
syntonisation method.

Let us illustrate the operation of PTP using the scenario shown in Fig. 17.1: A
PTP master clock syntonises PTP slave clocks in a single-ended way. The network
has one PTP master clock on the right-hand side and several PTP slave clocks at the
end of the paths through this tree-structured graph, with packets travelling from right
to left, and top to bottom. The leaves of the graph represent the PTP slave nodes.

17 Case Study: Mobile Networks 349

At constant time intervals, the PTP master clock sends Sync messages to the slaves.
The slaves use the interarrival time of consecutive Sync messages to synchronise
their local clock frequency to that of the master clock. Network connections in this
scenario can be either optical fiber Gigabit Ethernet (GE) links connecting carrier-
ethernet (CE) switches, or microwave radio (MWR) links with radio antennas on
either end. The last link to the mobile base station (BS) usually is a fast ethernet (FE)
connection. Some PTP slaves are only a few links away from the master clock, but
others can be at a distance of up to 20 links.

As long as the packet transfer delay (PTD) of the Sync messages over the backhaul
network stays constant, the PTP slave clocks can discipline their local oscillator to
the frequency of the PTP master clock. Variation in the PTD measurements, however,
adversely impacts the operation of ToP and this the accuracy achievable by the BS
clocks. This is formally described by the packet delay variation (PDV),5 which is
defined for each packet i as

P DVi := PT Di − min{PT D j | j ∈ N}

The upper PDV bound tolerable by a PTP implementation depends on the PTP
implementation and the accuracy of the local clocks. Although these are typically
kept secret by vendors, a total PDV between master and slave of 216 µs is a reasonable
target.6 PTP implements a mechanism for reducing PDV, based on the transmission
delay of packets: The master and slave clocks timestamp each packet upon trans-
mission and receipt. Based on the difference between both timestamps, the slave
clock can identify packets that have experienced high delay, and are therefore likely
to increase PDV. The slave clock then uses only the fastest packets, with typical
thresholds being at the 1 % quantile or below. Therefore, the target is to keep the 1 %
quantile of PTD below 216 µs.

The strict requirements discussed in the previous paragraphs pose two important
problems when engineering mobile backhaul networks for use with ToP. First, PDV
obviously depends on the topology of the network and on the delays accumulated
within the switches. These delays in turn are affected by the background load and
by the internal structure of the switch. This raises the question whether the backhaul
network will be able to support syntonisation with the required accuracy. Secondly,
in cases where the network will not be able to provide PTP PDV at or below the
upper limit of 216 µs, the network may be redesigned or more master clocks may
be added. However, these solutions are quite expensive, and thus the question arises
whether more cost-efficient methods can be found.

In this section we illustrate how to apply modelling and simulation techniques
in tackling both questions. We base the example on the work in [939], where the
focus was on tree-structured networks, which are typical for backhaul-networks in

5 Note that there exist different terminologies and definitions for the variation in transmission delays
(sometimes also referred to as jitter), e.g. the instantaneous PDV, as defined by [284].
6 We refer the reader to [939] for details and only mention here that this upper bound corresponds
to a maximum deviation of 15 ppb and an integration window size of 4 h.

350 S. Bellahsene et al.

l

l

l

l

ll

l

l

l

l

Fig. 17.2 Functional model of a single-stage Carrier Ethernet switch

mobile communication. From the point of view of PTP, these networks can be consid-
ered as sequences of links and switches, where the length of the sequences varies. Our
approach proceeds as follows: first, we construct a simulation model for the
link/switch sequence between the master clock and the slave clock. Using discrete-
event simulation, we use this model to gain a deeper understanding of the dependence
of PDV on the network. Secondly, we derive a closed-form expression for PDV in a
network of a special structure. This expression implies a simple method for minimis-
ing PDV. In a third step, we use our simulation model to evaluate the improvement.

17.2.1 Precise Modelling of Backhaul Networks

The need for simulation models is dictated by the limited coverage of measurement
studies on practical networking equipment. Even though there exist guidelines for
conducting such studies [475], cost and time constraints render exhaustive tests
infeasible. Discrete-event simulation allows evaluation in a much more efficient
way. However, the high accuracy requirements of PTP demand very precise models,
because the delay variation experienced by the fastest packets when passing through a
node must be quantifiable with microsecond precision under a wide range of load and
other conditions. As these requirements are far beyond those of typical applications,
sufficiently accurate models for networking equipment are not available in state-of-
the-art network simulators. In particular, current models do not include many of the
internal structures that have an effect on the PDV.

Our first step in [939] was thus to develop the required models based on detailed
structural analyses of the networking equipment. Consider the functional structure
of a typical single-stage Carrier Ethernet switch with a MAC bridging device as

17 Case Study: Mobile Networks 351

its central component, as shown in Fig. 17.2. Virtually all MAC bridging devices
implement a transmit FIFO buffer between the egress scheduler and the transmit
MAC. Since this transmit FIFO buffer is behind the priority queueing and schedul-
ing block (which applies strict priority queueing, SPQ) it completely ignores any
packet priority. It can be modelled as a rate-matching buffer with the low and
the high thresholds being vendor-discretionary and sometimes configurable. The
arbitrary delay element represents the PDV attributable to equipment-internal packet
processing and forwarding including packet storage and physical interfaces. MAC
bridging device manufacturers usually guarantee the PDV caused by device internal
packet processing and forwarding to be less than 1 µs. With the PDV of a Gigabit
Ethernet interface being less than 0.2 µs [463], and leaving some margin, the PDV
of the arbitrary delay element may be assumed to be less than 2 µs. Based on this
analysis, we model the switch as shown in Fig. 17.3. Note that a state-of-the-art
delay model of a packet switch would neither include the transmit FIFO buffer nor
the arbitrary delay element. Therefore, it would fail to represent PDV characteristics
at the accuracy required for evaluating ToP using PTP. This can be shown by sim-
ulating one link at different background load levels, using both the detailed model
and a model of a switch provided in a typical library of simulation models for net-
work equipment. Figure 17.4 shows the 1 % quantile of the packet-transfer delay for
growing background load. Note that the delay equals almost zero at all load levels if
we use the default model, while there is a sharp delay increase at 100 % load when
we use the detailed model. This delay step at 100 % background load occurs when
the Transmit FIFO runs into overload and throttles the egress scheduler in order to
reduce the load. This effect is well-known from experiments, but, as we observe, is
not reproduced by standard CE switch models.

In [939] we constructed chains of CE switch models as models of the network
paths between master and slave clocks. We simulated the CE chain with a variable
number of links and using different types of background traffic. With such highly-
detailed models one typically encounters scalability issues, as simulation times
increase quickly when the complexity of the scenario increases. In our case we
could solve these issues by applying the hybrid approach described in Chap. 6: we
simulated the delay behaviour of a single switch and modelled the resulting PDT dis-
tribution by a Phase-type (PH) distribution (cf. Chap. 5). This allowed us to simulate
the effect of the switch on the PDV by drawing random delays from the approximat-
ing PH distribution, instead of simulating individual background packets. Simulating
longer chains then just required chaining these delay models together.

The developed simulation model provides sufficient insight to allow us to propose
solutions to the problem of excessive PDV. One solution consists in avoiding the
delay step. This can be achieved by implementing a leaky-bucket egress shaper in
the switch. The leaky-bucket egress shaper reduces the data rate of the packet stream
entering the Transmit FIFO buffer, but in contrast to the Transmit FIFO buffer it
honours priority of the PTP packets. If the egress shaper is configured such that the
input to the Transmit FIFO buffer has a lower date rate than the output, the FIFO
buffer does not encounter overload situations, and thus no throttling of the scheduler

http://dx.doi.org/10.1007/978-3-642-29032-9_6
http://dx.doi.org/10.1007/978-3-642-29032-9_5

352 S. Bellahsene et al.

Fig. 17.3 Delay model of a CE switch

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 80 85 90 95 100 105 110

tim
e

(m
ic

ro
-s

ec
on

ds
)

background load

link simulation

with transmit FIFO buffer

with transmit FIFO buffer and
 leaky bucket egress shaper

Fig. 17.4 PDV 1 % over a GE-link between two single-stage CE switches

becomes necessary. Figure 17.4 confirms this effect, as the delay step vanishes when
the egress shaper is active.

17.2.2 Minimising Delay Variation in Tree-Structured Networks

The leaky-bucket egress shaper may require costly network reconfiguration and may
not be sufficient to reduce PDV to acceptable levels. Therefore, in [939] we devised a
second method for minimising PDV that works without changing the network, simply
by adjusting PTP. Note, however, that this method as described here is limited to
special network topologies, which is not the case for the leaky-bucket egress shaper.

The development of the method started with an analysis of the way high-priority
packets traverse a tree-structured network, with the aim of investigating possible wait-
ing times. The lower diagram in Fig. 17.5 shows the architecture of a tree-structured

17 Case Study: Mobile Networks 353

l l
l

l

l

Fig. 17.5 Delay model for tree-structured backhaul network (PTP path in Fig. 17.1). Note that the
CE switch models do not contain the transmit FIFO buffer, as we assume that its effects have been
eliminated by implementing a Leaky-Bucket Egress Shaper [939]

network while the upper part shows the packet flows that exist in such a network.
All traffic is generated at the PTP master and radio controller while the background
traffic might leave the route of the PTP packet at any one of the switches on the
way to the PTP slave. This means in particular, that no background traffic enters
this network at an intermediate switch. Therefore, no new background packets will
appear just in front of an arbitrary PTP packet.

Based on this analysis, we derived a closed-form expression for the PDV in such
a network. In order to do so, we had to take into account the best case and the worst
case of the packet transfer delay (PTD). Without loss of generality we considered
a fixed but arbitrary PTP packet. The probability Pr that the packet experiences a
remainder-of-packet delay depends on the background traffic load and is

Pr =
(

N∑

n=1

Rbt

)/

Rl1,

with Rbt being the data rate of the nth background traffic flow (as shown in Fig. 17.5),
and Rl1 being the data rate of the first link. If the packet message has to wait,
the remainder-of-packet delay tr1 is uniformly distributed between zero and the
transmission time of a complete background packet:

0 ≤ tr1 ≤ Sbp

Rl1
,

where Sbp is the size of the background packet and Rl1 is the data rate of the first link.
Since the background and the PTP Sync traffic flows are aligned on the first link, the
arrival times of background and PTP Sync packets are no longer statistically indepen-
dent on the succeeding links, where the packets arrive one after the other. If a 94 byte
PTP Sync message has to wait in the first node until the background packet (e.g. of
size 1522 bytes) is completely transmitted over the first link (remainder-of-packet

354 S. Bellahsene et al.

delay), it will certainly have to wait in the second node again unless the data rate Rl2
of the second link is much higher than that of the first link. The reason for this is that
virtually all packet switching equipment operates in the store-and-forward mode, i.e.
a packet has to be completely received on the ingress interface before its transmission
on the egress interface may start. And since the PTP Sync message is comparatively
small with a correspondingly low transmission delay, it typically catches up the larger
background packet in the next node. This effect has also been observed in [166].

The remainder-of-packet delay tr2 that the PTP Sync message experiences in such
a case on the second link is

tr2 = (Sbp/Rl2)− (SPTP Sync/Rl1) (17.1)

with SPTP Sync being the size of the PTP Sync message. This kind of remainder-of-
packet delay further accumulates over all links down to the PTP slave clock in the BS.

Packet delay variation is reduced if the PTP Sync messages can be prevented
from catching up the background packets, i.e. tr2 has to be zero. Using (17.1) for the
calculation of tr2 one obtains

tr2 = (Sbp/Rl2)− (SPTP Sync/Rl1) = 0 (17.2)

SPTP Sync/Rl1 = Sbp/Rl2 (17.3)

SPTP Sync = Sbp ∗ Rl1/Rl2 (17.4)

This means that the optimal size of the PTP Sync messages depends on the size of the
background packets and the data rate of the ingoing and outgoing link to a switch. In
consequence, the PTP Sync messages have to be enlarged. The optimal size depends
on the PDV the ToP implementation can accept, the background traffic load and
packet size distribution, and the number of links and their data rates. Figure 17.6
demonstrates the impact of the PTP Sync message size in various scenarios. To
illustrate the above reasoning we formally analyse a special case, where we first
assume all links have the same data rate Rl .

Let u = Sbp/Rl and p = SPTP Sync/Rl then we can define the maximum packet
transfer delay PT Dmax and the minimum packet transfer delay PT Dmin of a PTP
Sync message across N links as

PT Dmax = u + p + (N − 1) ∗ max(0, (u − p))

+ (N − 1) ∗ p = p + N ∗ u

PT Dmin = n ∗ p (17.5)

In the worst case, the PTP Sync packet has to wait for transmission of a full
background packet at the first link, then adding its own transmission time. At all
subsequent links the PTP Sync message needs to wait for the remaining transmis-
sion time of the (usually larger) background packet. Finally, the transmission time of
the PTP Sync message across all links needs to be added. In the best case, the PTP

17 Case Study: Mobile Networks 355

Fig. 17.6 Impact of timing packet size on the 1 % quantile of the packet-delay distribution

Sync message never needs to wait for remaining transmission delay of a background
packet.

We can distinguish two cases:

1) u >= p,

2) u < p.

Only the first case is of practical interest and therefore we can omit the maximum
in the definition of PT Dmax in what follows. Peak-to-peak packet delay variation
p2pP DV is defined as the difference between PT Dmax and PT Dmin. Let us assume
that u = i ∗ p, where i ≥ 1 in order to respect case 1) and i can be any real-valued
number. Then

p2pP DV = PT Dmax − PT Dmin = p(1 + (i − 1) ∗ N).

The value of i that minimises the delay variation and obeys all restrictions is i = 1.
For the optimal value of i the PTP Sync packet has the same size as the (largest)
background packet and then the peak-to-peak packet delay variation reduces to

p2pP DV opt = p.

For the second case (u < p) the delay variation is always p. The more general
case with links of variable speed requires heavy notation and is omitted here. The
reasoning is analogous.

356 S. Bellahsene et al.

17.2.3 Evaluation

We evaluated both approaches using our simulation model. While the effect of the
leaky-bucket egress shaper is straightforward (see Fig. 17.4), the optimal PTP packet
size requires a more detailed discussion of the evaluation approach. We simulated a
chain of 5 links at different link speeds and observed PDV at different background
load levels and different PTP packet sizes. We used the ITU-2 model [475], which
describes a mix of packets of different sizes. This model represents realistic traffic
conditions in a network. We increased the traffic load from 0 to 110 %. We increased
the size of PTP packets from 94 to 6088 bytes and observed the 1 % quantile of the
PDV for each combination of the parameters.

The results are presented in Fig. 17.6. It is immediately obvious that larger PTP
Sync messages reduce the 1 % PDV quantile considerably. Using large PTP Sync
packets the packet delay variation across 5 links stays below 200 µs and hence the
PDV requirements for ToP are fulfilled. The same cannot be said for the default
packet size of 94 bytes, where the 1 % quantile of PDV is much larger.

17.3 Service Continuity in a Two-Node IP Network

The objective of the second approach we present in this chapter is to speed up
the handover phases, by anticipating the future needs of mobile users in terms of
channels. At each newly entered cell, the approach consists in predicting the next
cell(s) the more likely to be visited by the mobile user. If a unique cell is predicted,
no RSRP measurement is needed and the handover procedure can start. However, if
more than one cell is predicted, the mobile terminal scans the predicted cells and the
one offering the best quality of signal is selected.

The prediction model has been developed for the two-nodes IP network architec-
ture depicted in Fig. 17.7 [99, 185]. In such an architecture, the mobility functions
are ensured by an Enhanced Access Gateway (EGW) and the Base Station (BS),
these nodes being interconnected using an all-IP network. Although very attractive,
meeting common mobile networks requirements using such an architecture may not
always be straightforward. The use of only two nodes (EGW, BS) implies that the
mobility anchor point, which is assumed to be in the access gateway, may be very
far from the base stations. Thus, in order to guarantee the continuity of a service
like VoIP in such an architecture, an efficient handover procedure is required. The
efficiency of this procedure relies on its ability to handoff an ongoing call to the new
host cell in a delay sufficiently short to guarantee an uninterrupted service.

Due to the fixed values of signal threshold and various conditions of signal prop-
agation, mobile users can switch several times and randomly between two neigh-
bouring cells [566]. This phenomenon, which is known as the ping pong handover
phenomenon, can occur even with small position changes of the mobile user. This
is a major problem faced by the mobility management procedure. Because of signal

17 Case Study: Mobile Networks 357

Fig. 17.7 Two nodes-based
IP architecture

EBS

EGW

Network cell

Access Aggr egation
Networ k (A2N)vv

 Cell sectorsv

Routers with basic IP
routing functionalities

shadowing [644], the signal attenuation is important and can last for a while. If this
attenuation makes the strength of the received signal by a mobile terminal lower than
the fixed threshold, the handover will be triggered even if the mobile user remains
geographically in the same cell. Thus even if the behaviour of the mobile user is very
regular, one can still observe a certain factor of randomness in its behaviour, due to
the ping pong handover. This randomness factor is more important in dense urban
areas because the degree of cells neighbouring and the density of buildings are very
important.

Currently, several types of mobility prediction models exist in the literature
[99, 188]. Some rely on the history of the user’s mobility patterns only, and thus
are sensitive to the changes of the user behaviour. Others are based on both the his-
tory of the mobility patterns and formal models. For several of these procedures,
a high degree of randomness in the user’s behaviour may have an impact on their
efficiency.

As the mobility prediction approaches are much more needed in urban areas, any
mobility prediction model based on the mobility trace should take into account the
randomness factor due to ping pong handover. In [98], a mobility prediction approach
which tries to efficiently correlate the mobility data of the user while taking into
account the ping pong handover phenomenon between neighbouring cells, has been
proposed for the two-nodes network architecture in Fig. 17.7. This approach, which
has been designed to be implemented at the enhanced gateway level of the two-
node IP architecture, is mainly based on the history of the user’s mobility patterns
and Markovian models. In the following, we discuss and show how such a mobility
prediction approach can be used to guarantee a certain service continuity for such an
architecture.

358 S. Bellahsene et al.

17.3.1 Markov-Based Mobility Prediction Approach

In this approach, the EGW saves the identity of all cells crossed by a mobile user, in
a history trace L and this during a time period T . Initially, when a mobile user gets
connected to the network, L contains only the identity of the cell where the mobile
gets the connection. The movements of the mobile user are then modelled using a
continuous-time Markov process whose discrete states are the cells of the network.
To perform the predictions, a second Markov order-based predictors are used. Thus
the probability of the next cell to be likely visited by a mobile user depends not only
on its current cell but also on the previously visited cell. Then for each mobile user,
the transition probability from the current cell Ci to each cell in its neighbourhood
(adjacent cells of Ci) is computed.

Let Γ (Ci) be the neighbourhood of cell Ci and let (M, N , r) be the tuple associ-
ated with each mobile user such that:

• for each pair of cells C j and Ck inΓ (Ci), M(CkCi ,C j) is the number of transitions
of the mobile user from cell Ci to cell C j in the past, knowing that each time such
a transition occurred the mobile user was previously in cell Ck .

• N (Ck,Ci) is the number of transitions of the user from cell Ck to cell Ci .
• r(Ci) denotes the average residence time of a mobile user in cell Ci .

The memory allowed for each mobile user is limited to a fixed size of L . Limiting
this memory to time period T is compensated by the global knowledge of the tuple
(M, N , r). Let L = C1C2C3...Ci−1Ci be the mobility history trace of a mobile user
and let X = Ci−1Ci be the sequence, in L , of the previously visited cell and the
current cell of this user. Assuming that Y = Ci Ci+1 is the sequence of the current
cell and the future cell to be visited, the estimated transition probability Pe1 is given
by:

Pe1 = P(Xi+1 = Y/Xi = X) = M(X,Ci+1)

N (Ci−1,Ci)

Unfortunately, if the previous cell Ci−1 appears for the first time in the mobility
trace of the user, M(X,Ci+1) is equal to zero for all neighbouring cells of Ci . In
[840], when the second-order Markov based predictor fails, Song et al. propose to
fall back on the first order, that is, only sequences formed by two consecutive visited
cells (Ci Ci+1) are used. In this case, the transition probability given by the first-order
Markov chain is:

Pe2 = P(Xi+1 = Y/Xi = X) = N (Ci ,Ci+1)

Z(Ci)

where Z(Ci) is the number of times cell Ci appears in the mobility history of the
mobile user. However, their algorithm remains inefficient whenever the current cell
Ci appears for the first time in the mobility trace of a mobile user.

In order to overcome this problem, in [98] an additional information is used: the
visit frequency to each cell Ci from its neighbouring cells. For that, let

17 Case Study: Mobile Networks 359

H(Ci) = ∑K
j=1 Z(C j) where K is the total number of adjacent cells to Ci . In

this case, the estimated probability value of the next move to Ci+1 ∈ Γ (Ci) is given
by:

Pe3 = Z(Ci+1)

H(Ci)

The occurrence of the ping pong phenomenon is detected in the mobility trace of
a mobile user thanks to cell sequences of the form Ci−1Ci Ci+1 where Ci−1 = Ci+1.
This phenomenon is taken into account by considering a randomness factor denoted
by α. This factor is set to 1 each time a sequence Ci−1Ci Ci+1 where Ci−1 = Ci+1
occurs, that is the current handover is considered 100 % as a ping pong handover. In
all the other cases, 0 < α < 1 and its optimal value is set, during the simulation, to
the value that maximises the prediction accuracy.

The overall prediction process using the approach is very simple. During each step
of the prediction, the approach algorithm checks if the mobility trace provides enough
information about the mobile user behaviour and the probability to move towards an
adjacent cell takes the general form: Pe = P × α, where P depends on the contents
of the trace. If the trace provides enough information about the previously visited
cell, the second order Markov based-predictor is used and P = Pe1 . Otherwise, the
first order Markov based-predictor is used and P = Pe2 . However, as the first order
cannot be used if N (Ci ,Ci+1) = 0 the algorithm uses the ultimate information that
can be found in the mobility trace, that is, the visit frequency to a cell. In this case,
P = Pe3 .

If the Markov-based mobility prediction approach (MMPA) fails in predicting a
unique cell, a multicast is performed by the EGW; a group of cells, the more likely
to be visited by the mobile user in the near future, is selected, and all users packets
are sent to the base stations of these cells. Then, instead of scanning all the cells
in its neighbourhood, the mobile user makes the necessary measurements to select
among only the group of predicted cells the one offering the best quality of signal.
The complete algorithm is described in [98].

17.3.2 Applying the Mobility Prediction Approach

The efficiency of a mobility prediction model relies on both the ability of the model
to predict successfully the next move of a mobile user and its ability to perform such
a prediction in a short delay. The accuracy of the predictions made by the model can
be assessed using the following equation:

Accuracy = Number of success f ul predictions

T otal number of predictions

360 S. Bellahsene et al.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Number of cells in trace L

A
cc

ur
 a

cy

MMPA

500 1000 1500 2000 2500 3000

Fig. 17.8 Prediction accuracy, using U1 mobility trace

17.3.2.1 Experimental Data Sets

The assessment of the prediction model is performed using data sets collected from
ten user terminals in Houston, a major US urban area [756]. These data sets are
measured on Wi-Fi enabled GSM cellular phones and contain logs of the network
availability, the signal levels, and the context information. Using these data sets, the
mobility trace for each participant is extracted. Each mobility trace represents the
sequence of all visited cells during a month, which is the time period of the data
collection. The size of the traces varies between 1629 cells (shortest) and 7286 cells
(the longest).

As the data sets provide, for each log period, the list of visible cells for a mobile
user, this list is used to build for each cell its neighbourhood. The number of cells in
the covered area differs from a participant to another. The smallest network contains
151 cells and the biggest one contains 551 cells. We define the mean degree of
neighbouring in each trace as the mean cells number in the neighbourhood, in each
network, from which the mobility trace is built.

17.3.2.2 Numerical Results

Both Figs. 17.8 and 17.9 show the accuracy level reached by the prediction model
(MMPA) when applied on the experimental data set of U1, the first mobile participant.
The results in Fig. 17.8 show that even if changes occur in the behaviour of the
mobile user, the model succeeds in making good predictions. Examples of the impact
of the changes in the user’s behaviour can be observed mainly when |L| ≈ 200,
|L| ≈ 650 and |L| ≈ 1200. Around these points, we can see slight degradations in
the performance of the prediction model, degradations which are quickly corrected.
This can be explained by the fact that the mobile user visits new cells, not met before
in the mobility trace, or by the appearance of new sequences of cells in the trace.

17 Case Study: Mobile Networks 361

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

Number of cells in trace L

A
cc

ur
 a

cy

MMPA

100 200 300 400 500 600

Fig. 17.9 Prediction accuracy, using U1 mobility trace

Figure 17.9 provides a more detailed representation of the accuracy level of the
predictions when the mobility trace of mobile user U1 is limited to the 500 first
cells (0 ≤ |L| ≤ 500). When the user is newly connected (|L| ≤ 50) the prediction
accuracy level increases rapidly to reach 60 %. This shows that the prediction model
learns rapidly the behaviour of the mobile user. This learning capability is due to
the use of Markov-based predictors and the visit frequency. Because of new cell
sequences in the trace, at |L| = 160 the prediction accuracy starts to decrease until
reaching its lowest level at |L| = 200. The system starts to get better predictions
again only when the size of the trace becomes more significant.

In Fig. 17.10, the performances of the prediction model (MMPA) are compared
to two other prediction models, the global prediction algorithm (GPA) [99], and the
second-order Markov based algorithm with fall back (O(2) fallback) [840]. We con-
sider the data sets of the ten mobile participants and for each mobile user, the average
gain of using MMPA instead of GPA and O(2) fallback approaches, is computed in
terms of prediction accuracy. The value of the time period T used for each mobile
user is optimised after experimentations. The results obtained show that, for all data
sets, the MMPA outperforms the other prediction models. As stated before, the aim
of MMPA is to perform better predictions when the user’s behaviour is characterised
by a high degree of randomness like when the user is newly connected to the network.

Figure 17.11 shows the importance of the role that the mobility prediction plays to
guarantee session continuity in mobile networks. In these experiments, we consider
the mobility trace of mobile user U4 for which the mean number of neighbouring cells
is 32 cells. In this case, if no mobility prediction approach is used, the mobile terminal
has to scan 32 cells in order to make signal quality measurements. Consequently, if
ts is the time needed to scan one neighbouring cell, the total time to scan all the cells
is Vs = 32 × ts . In contrary, if a list of 5 cells is predicted (Fig. 17.11), the accuracy
level of the prediction is 0.9 and the time needed to scan these cells is V ′

s = 5 × ts ,
that is 84.4 % less time than if all cells have to be scanned. Clearly if less cells are

362 S. Bellahsene et al.

Fig. 17.10 Average gain

Fig. 17.11 Prediction accu-
racy versus scanning time

.

.

.

.

.

.

.

.

.

Fig. 17.12 Optimal value
of α

predicted, the corresponding accuracy level is lower, but the time needed to make
measurements is also lower. Moreover, Fig. 17.11 shows that it is always possible to
have a satisfying trade-off between the accuracy level and the measurement time.

Note that in the case of mobile participant U4, the mobility trace does not allow
reaching a significant accuracy level when predicting a single cell; the prediction

17 Case Study: Mobile Networks 363

accuracy is about 49 %. This is due to the fact that the mobile user does not have
regular movements and the cell sequences in its history trace show that it follows
different paths.

In all the experiments, the optimal value of α is set to 0.9. This value matches
the best prediction accuracy level possible for the mobility traces used. Figure 17.12
shows the prediction accuracy level at the end of the mobility trace of mobile user
U1 for different values of α. In particular, it shows that the prediction accuracy is
better when 0.70 < α ≤ 0.90. Thus, to get benefit from the ping pong handover in
the prediction procedure the value of α is set to 0.90.

17.4 Conclusion

In this chapter, two major aspects of the handover procedure have been investi-
gated using modelling. The first aspect is the time synchronisation between base
stations and its impact on seamless handovers. We have presented the application of
modelling, simulation, and analytical methods to solving the problem of frequency
synchronisation in mobile backhaul networks. We have seen that, although this
appears to be a standard problem, standard models are not sufficiently accurate to
reflect important properties of real systems. Consequently, a highly-detailed mod-
elling approach had to be taken. This approach gave us the required insight into the
complex internal details of networking equipment that affect the accuracy of fre-
quency synchronisation. Based on this knowledge, we could derive two solutions
for improving accuracy. While the first is applicable to networks of any topology,
but may require costly reconfiguration, the second is limited to specific setups, but
can be applied without changing the network. We showed how such methods can be
evaluated using our highly-detailed models, and we demonstrated that both methods
are effective in reducing packet-delay variation. In practice, the choice between these
methods would not only be determined by the efficacy of either, but also by their
costs, an aspect we did not consider in formal terms here.

The second aspect related to the handover procedure is the ability of the network to
anticipate the resource needs of a mobile user in a near future. The presented mobility
prediction approach is based on the history trace of the mobile user and a Markovian
model. Besides the regular movements, this approach takes into account random
movement conditions, in particular those related to the ping pong phenomenon in
urban areas. Using real data sets, we have assessed the efficiency of the prediction
model by assessing its ability to predict successfully the next cell to be visited by a
mobile user. We have showed, through an example, the impact of mobility prediction
in reducing the scanning time performed by a cell.

Such a mobility prediction approach can be implemented at the EGW level [98].
Moreover, it can be combined with another approach such as the cells sectorization-
based approach, which has been designed to be used within the base stations [99].
However, as the Markov-based model uses the history traces which contain the mobile

364 S. Bellahsene et al.

users data, for security and confidentiality reasons, it will be more appropriate to
implement such an approach within the mobile terminals.

Acknowledgments Samir Bellahsene and Leïla Kloul are supported by the European Celtic project
HOMESNET [8]. Katinka Wolter and Philipp Reinecke are supported by the German Research
Council under grant Wo 899/2-1. They would like to thank highstreet technologies GmbH and
Alfons Mittermaier for the provided insights into frequency synchronisation techniques.

Chapter 18
Case Study on Critical Infrastructures:
Assessment of Electric Power Systems

Silvano Chiaradonna, Felicita Di Giandomenico and Paolo Lollini

Abstract Critical Infrastructures (CI) are increasingly responsible for vital services
our society relies on; therefore, assessing their resilience is of utmost importance for
improving trustworthiness on their services. Given the many challenges and open
issues involved, a number of initiatives have been ongoing in the last decade, research-
ing methods and developing tools for resilience assessment of critical infrastructures.
Moving from the major challenges posed by CI from the point of view of resilience
assessment and assessment needs, this chapter overviews a modelling framework
for the analysis of interdependencies in Electric Power Systems (EPS), adopting a
state-based stochastic approach. First, it is shown how the selected approach deals
with the interdependencies, complexity, heterogeneity and scalability dictated by the
infrastructures involved in framework implementation are then discussed, and some
illustrative examples of different typologies of analysis are provided on selected EPS
scenarios.

18.1 Introduction

In chapter on “Assessing Dependability and Resilience in Critical Infrastructures:
Challenges and Opportunities” in this book, the emergent and extensive sector of
Critical Infrastructures (CI) employing cyber control subsystems has been discussed,
as a motivating application area where assessment and evaluation of resilience is a

S. Chiaradonna · F. Di Giandomenico
ISTI Department, Italian National Research Council, via Moruzzi 1, 56124 Pisa, Italy
e-mail: chiaradonna@isti.cnr.it

F. Di Giandomenico
e-mail: digiandomenico@isti.cnr.it

P. Lollini(B)
University of Firenze, Viale Morgagni 65, 50134 Florence, Italy
e-mail: lollini@unifi.it

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 365
DOI: 10.1007/978-3-642-29032-9_18, © Springer-Verlag Berlin Heidelberg 2012

366 S. Chiaradonna et al.

ACRONYMS
AC Alternating current
CI Critical infrastructure
DC Direct current
EI Electric infrastructure
EPS Electric power system
ITCS Information-technology based control system
LCS Local control system
RS Reconfiguration strategy
RTS Regional tele-control system
SAN Stochastic activity networks

primary concern, given their central role in providing vital services our everyday life
relies on. There, general considerations on major challenging issues presented by CI,
on requirements for resilience assessment of CI as well as an overview of currently
ongoing studies have been sketched out. In this chapter, the emphasis is on providing
a case study showing a concrete approach to resilience analysis in the target field.
To this purpose, we have selected the sector of Electric Power Systems (EPS).

EPS have long been recognised as being critical infrastructures of all countries.
They constitute representative examples of hybrid complex systems, being composed
of the Electrical Infrastructure (EI) characterised by physical electrical parameters
and by the Information-Technology based Control System (ITCS). Due to their strong
interconnection, interdependencies are therefore a major challenge in EPS, since they
become a formidable vehicle through which a failure in a subsystem propagates to
the others, possibly resulting in cascading or escalating failure [778]. A number of
blackouts both in Europe and in US during the years 2000 s and the consequent
damages experienced have raised research on Electric Power Systems protection
to a hot topic, triggering initiatives at both national and international levels. An
overview of such initiatives is included in chapter on “Assessing Dependability and
Resilience in Critical Infrastructures: Challenges and Opportunities” in this book.
Here, we focus on the presentation of the modelling framework for the analysis
of interdependencies in EPS, that was one of the major efforts of the EU project
CRUTIAL [245]. It resorts to a model-based approach, where the structure and
correct/incorrect behaviour of major system components, as well as their interactions,
are represented at a certain abstraction level. To keep the framework general and
theoretically applicable to any EPS configuration, a modular development is adopted.
Simulation is then applied to assess metrics well representative of the quality of
service perceived by end users (blackout size indicators). This framework, whose
incremental developments are documented in a few publications [200–203], has been
recognised as a novel contribution to the analysis of interdependencies in EPS, since
it integrates the electrical infrastructure and the cyber control via explicit modelling
of the main entities of the two subsystems and of the interactions between them.

The rest of this chapter is organised as follows. Section 18.2 introduces the logical
structure of EPS, the simplifying assumptions made in the study and exemplifies
effects of failures due to reciprocal dependencies. Discussion of the features required

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 367

Fig. 18.1 Logical structure of a regional transmission grid, with the associated information control
system. Reproduced from [201] ©2009 Springer

from an evaluation framework to satisfactorily deal with EPS assessment is conducted
in Sect. 18.3, where an overview of formalisms for EPS evaluation is also included.
The implementation of the proposed evaluation framework is addressed in Sect. 18.4.
There, the sub-models representing the components of the EPS logical structure are
first synthetically described, and then details for just one sub-model are provided.
The sub-model was chosen as a representative one to show how peculiarities of
EPS components have been implemented. Some illustrative evaluation examples
of indicators of the blackout size experienced under selected failure scenarios are
presented in Sect. 18.5, to concretely demonstrate the applicability and utility of the
evaluation framework in assessing resilience of this critical infrastructure. Finally,
our conclusions are drawn in Sect. 18.6.

18.2 Logical Structure of EPS

In this section we discuss the modelling of EPS, presenting how we have represented
its main characteristics and which are the simplifying assumptions. This modelling
framework has been already introduced in [203]; however, it is recalled here to
provide a complete context overview of the system under analysis.

The target of our analysis is a regional EPS system, whose logical structure is
illustrated in Fig. 18.1.

The modelling of each infrastructure is first preceded by the description of its
logical structure, where the main logical components are identified. The section con-
cludes with a brief description of possible interdependencies between ITCS and EI.

368 S. Chiaradonna et al.

18.2.1 Electrical Infrastructure

The logical structure and the model of the electrical infrastructure are presented in
the following two subsections.

18.2.1.1 EI Logical Structure

The high level structure of EI includes the transmission grid (operating at very high
voltage levels), the distribution grid (operating at medium/low voltage levels), the
high, medium and low voltage generation plants, and the high, medium and low
voltage loads. The transmission and distribution grids are divided in regions and
areas, respectively.

In the lower part of Fig. 18.1 we have depicted the main logical components that
constitute the electric infrastructure, and that we took into account in our model of
the regional transmission power grid: generators (NG), loads (NL), substations (NS)
and power lines (AL). From a topological point of view, the power transmission
(as well as the distribution) grid can be considered like a network, or a graph, in
which the nodes of the graph are the generators, substations and loads, while the arcs
are the power lines. The topology T of the grid is typically a meshed graph for the
transmission grid, and a partially meshed, radial or ring graph for the distribution
grid.

Power plants can include one or more generators. The energy produced by the
generators is then adapted by transformers, to be conveyed with minimal dispersion
to the different types of end-user customers (loads), through the power grid. The
power lines are components that physically connect the substations with the power
plants and the end-user customers, and the substations are structured components
in which the electric power is transformed and split over several power lines. In the
substations there are transformers and several kinds of connection components (bus-
bars, protections and breakers). In particular, each substation is logically divided
into different sections, which are characterised by certain voltage levels and are
connected to each other through transformers. Each section consists of a single or
double bus-bar.

Voltage, frequency, current, angle, active and reactive power are some of the
main (not independent) physical parameters associated with the electric equipment
constituting EI (generators, substations, power lines and loads); their specific values
are of primary importance in determining the current status of the overall EI. In
fact, they affect the behaviour of the electric equipment they are referring to (e.g., in
terms of availability and reliability of the electric equipment), thus also influencing
the evolution of the overall power grid.

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 369

18.2.1.2 Modelling EI

Let us consider that the region is composed by n A power lines and nN nodes, divided
in nG generators, nL loads and nS substations, with nN = nG + nL + nS . The
topology of the network is described by the n A × nN adjacency matrix A = [ali],
where:

ali =
⎧
⎨

⎩

1 if line l exits node i,
−1 if line l enters node i,
0 otherwise.

The power associated with each node i is Pi , which is positive for the generators,
negative for the loads and zero for the substations. The maximum power that a
generator i can supply is Pmax

i and the maximum power flow that a transmission
line l can carry is Fmax

l . A line is overloaded if the power flow exceeds Fmax
l . The

susceptance of each line l is bl .
Some simplifying assumptions have been made to represent the power flow

through the transmission grid, following the same approach used in [42, 190, 301,
785]. Therefore, the state and the evolution of the transmission grid are described by
the active power flow F on the lines and the active power P of the nodes (generators,
loads or substations) at steady-state, i.e., when they have reached an equilibrium
condition. P and F satisfy the linear equations for a direct current (DC) load flow
approximation of the alternating current (AC) system:

P = B ·� (18.1)

F = D · A ·� (18.2)

with
nN −1∑

i=0

Pi = 0, (18.3)

where:

• B = AT · D · A is the nN × nN susceptance matrix, and AT is the transpose of A,
• D = diag(b0, b1, . . . , bn A−1) is the n A×n A diagonal matrix with the l-th diagonal

entry representing the susceptance bl ,
• � = (θ0, θ1, . . . , θnN −1)

T is the node voltage angle vector,
• P = (P0, P1, . . . , PnN −1)

T is the node power vector,
• F = (F0, F1, . . . , Fn A−1)

T is the line power flow vector.

As shown in [751], DC can be considered a good approximation of active power
flows in the network, although not every network is suitable for DC power flow
calculations, especially when power flow controlling devices (like phase shifting
transformers (PST)) are involved [908]. In these cases, a full AC power flow includ-
ing voltage support, reactive power management and transmission losses must be

370 S. Chiaradonna et al.

considered, which requires iterative solution of a set of non-linear algebraic equa-
tions [707]. In order to reduce calculation time and to simplify the developed model,
we considered the simplified power flow problem, thus concentrating our interest on
the interdependencies problem. However, our model can be extended to fully account
for the AC system aspects.

An autoevolution function AS() is considered to represent the automatic evolution
of EI when an event modifying the grid topology occurs. In this case, EI tries to find
a new electrical equilibrium for the new grid topology, by changing the values of
the power flow through the lines but leaving the generated and consumed power
unchanged (i.e., only through redirection of current flows). The new power flow F
through the lines depends on the power injected on the nodes of the grid, on the
electrical characteristics of the power lines (e.g., the susceptance) and on the grid
topology. In particular, the output values of AS() are derived by solving the linear
power flow equation system (18.1–18.3) for fixed values of P. The other activities
typically performed by electric operators in case of failures, such as modulation of
production (affecting the input power) and partial/total disconnection of some loads
(affecting the output power), have been considered and modelled in the information
control part of the system (see Sect. 18.2.2.2).

18.2.2 Information-Technology Based Control System

The logical structure and the model of the ITCS infrastructure are presented in the
following two subsections.

18.2.2.1 ITCS Logical Structure

In the upper part of Fig. 18.1 we have depicted a possible logical structure of a regional
ITCS, i.e., the part of the information control system controlling and operating on
a region of the transmission grid. The components LC S (Local Control System)
and RT S (Regional Tele-control System) differ in their criticality and in the locality
of their decisions, and they can exchange grid status information and control data
over a (public or private) network (Com Net component). LC S guarantees the correct
operation of a node (generator, substation or load) and reconfigures the node in case of
breakdown of some apparatus. It includes the data acquisition and control equipment
(sensors and actuators). RT S monitors its assigned region in order to diagnose faults
in the power lines. In case of breakdowns, it chooses the most suitable corrective
actions to restore the functionality of the grid. Since RT S is not directly connected
to the substations, the corrective actions are put in operation through the pertinent
LC S.

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 371

18.2.2.2 Modelling ITCS

The control operations performed by ITCS on EI are not represented in detail, but
a simplified model is considered where only the effects on the transmission grid of
mitigation methods to cope with EI malfunctions, namely generation redispatch, load
shedding or grid reconfigurations, are accounted for. In particular, the ITCS actions
are abstracted at two levels on the basis of the locality of the EI state considered by
ITCS to decide on proper reactions to disruptions (the same approach as adopted in
[785]). Each level is characterised by an activation condition (that specifies the events
that enable the ITCS reaction), a reaction delay (representing the overall computation
and application time needed by ITCS to apply a reconfiguration) and a reconfiguration
strategy (RS), based on generation redispatch (i.e., varying the generated power)
and/or load shedding (i.e., varying the load demand). The reconfiguration strategy
RS defines how the configuration of EI changes when ITCS reacts to an event that has
compromised the electrical equilibrium.1 For each level, a different reconfiguration
function is considered:

• RS1(). The reconfiguration function RS1() represents the effect of the ITCS
reaction on the complete transmission grid when only the state local to the affected
EI components is considered. Given the limited information necessary to issue its
output, RS1() is deemed to be local and fast in providing its reaction. RS1() is
performed by LC S components, and it can be triggered by RT S (as actuation of a
global reconfiguration) or can be directly triggered by LC S when it locally detects
a lack of (electrical) equilibrium.

• RS2(). The reconfiguration function RS2() represents the effect of the ITCS
reaction on the complete transmission grid when the state global to all the EI system
under the control of ITCS is considered. Therefore, differently from RS1(), RS2()

is deemed to be global and slower in providing its reaction. RS2() is performed
by RT S.

The activation condition, the reaction delay and the definition of the functions
RS1() and RS2() depend on the policies and algorithms adopted by the specific
tele-operation system. It is out of the scope of this chapter to discuss in detail defini-
tions of reconfiguration policies. We adopt definitions forRS1() andRS2() functions
inspired by [42, 190, 301, 785], where redispatch is formulated as an optimisation
problem minimising the amount of load shed subject to the system constraints, which
is reasonable for the purpose of our study. Of course, providing different specifica-
tions would imply different implementations but without changing how the method
incorporates and uses them.

The output values of RS1() and RS2() for defining the new P and F vectors are
derived considering that for a given power demand, the power flow equations do not
have a unique solution. The adopted definition for the function RS1() is given by the
solution (values for P and F) of the power flow Eqs. (18.1–18.3) while minimising a

1 Events that impact on the electrical equilibrium are typically an EI component’s failure or the
insertion of a new/repaired EI component.

372 S. Chiaradonna et al.

simple cost function, which indicates the cost incurred in having loads not satisfied
and having the generators producing more power. The output values of RS2() for
P and F are derived by solving an optimisation problem to minimise the change
in generation or load shedding with respect to the initial configuration, considering
more sophisticated system constraints as described in [204, 785].

18.2.3 Interdependencies

Dependencies of the state of EI on failures of ITCS mainly pertain to the topology T
and the values of the physical parameters associated with each electric equipment,
depending on the logical components affected by the failures and obviously on the
type of the failures. For example, consequences of a failure of the component LC S
associated with a component NS , NG or NL (see also Fig. 18.1) can be:

• Omission failure of LC S, fail silent LC S: no (reconfiguration) actions are per-
formed on NG , NS , NL or AL .

• Time to failure of LC S: the above (reconfiguration) actions on NG , NS , NL or AL

are performed after a certain delay (or before the instant of time they are required).
• Value failure of LC S: incorrect closing or opening of the power lines AL directly

connected to the failed component is performed.

The failure of the component RT S corresponds to an erroneous (request of)
reconfiguration of the state of EI (namely an unneeded or a missing reconfiguration)
affecting one or more components of the controlled region. The effect of the failure of
RT S on a component N is the same as the failure of the component LC S associated
with that component N.

On dependencies generated from the EI side, a malfunction of EI components
(resulting in a partial or total blackout) can bring the ITCS infrastructure in a weak-
ened state [577]. In general, parts of the ITCS control can no longer implement
their functions due to constraints originated from failures of EI, e.g., shortage of
electricity supply for ITCS parts when UPS power backup units are missing. For
example, a blackout can switch off a number of nodes of the communication net-
work, thus overloading the nodes that remain online and reducing the performance
of the network. A blackout can also increase the expected time to react to failures
of EI components (that is, evaluation and application of RT S), or degrade the op-
timality of the reconfiguration actions because not all the local control equipment
involved in the reconfiguration is reachable. Additionally, a blackout can increase
the expected time to repair a failed EI component (for example, the communication
network Com Net). In our evaluation model, dependencies from EI to ITCS are ac-
counted for when defining the failure and repair rates of the ITCS components, such
as Com Net , RT S and LC S, and the repair rate of the EI components, which are
considered dependent upon the blackout size. The modularity of the developed mod-
elling framework allow to include in the analysis other aspects of interdependencies
between EI and ITCS, when explicitly identified.

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 373

18.3 EPS Modelling and Evaluation Framework: Requirements
and Available Formalisms

In this section we first describe the main characteristics that a modelling and evalua-
tion framework should satisfy for the analysis of EPS. Then we provide an overview
of the formalisms introduced in the literature to model and evaluate critical infrastruc-
tures, specifically focusing on the electric power systems. Finally we shortly discuss
how well such formalisms actually fulfil the identified set of requirements, which
has led us to adopt the Stochastic Activity Networks (SAN) formalism [805] for our
analyses.

18.3.1 Framework’s Requirements

To represent and model the behaviour of EI and ITCS and their interactions, the mod-
elling and evaluation framework should possess a number of features encompassing
the following aspects : i) modelling power, i.e., the basic modelling mechanisms re-
quired to build the EPS model; ii) modelling efficiency, i.e. the advanced modelling
mechanisms required to build the EPS model more efficiently; and iii) solution power,
i.e., the ability to provide efficient solution methods adequate for the EPS modelling
complexity and for the assessment of the specific measures of interest. With respect
to the structural and behavioural aspects of EPS systems, major requirements on a
suitable modelling framework include:

R1 The system has a natural hierarchical structure, as shown in the examples of
logical schemes of Fig. 18.1. Therefore, the modelling framework should support
hierarchical composition of different sub-models. The model for the overall EPS
could be facilitated considering replication of (anonymous and not anonymous2)
sub-models, and the replicated and composed models should share part of the
state (common state).

R2 The state of EI is completely described through the physical parameters as-
sociated with each electric equipment (voltage, current, etc.) and through the
topology (T) of the grid: the first set of parameters defines the current status of
each EI component, while the topology defines how such components are con-
nected together to form the overall EI. Therefore, it is crucial that the modelling
framework should support the representation of a hybrid-state composed by a
discrete part (the topology) and a continuous one (the electric parameters).

R3 The time to failures of the components NS , NG , NL and AL depends also on
the value of the electric parameters associated with the components. This means
that the framework should support time and probability distributions, as well as
conditions enabling the time consuming events (e.g., for the activation of a local
protection) that can depend both on the discrete and on the continuous state.

2 Not anonymous replicas can be identified by an index.

374 S. Chiaradonna et al.

R4 We need to consider the reconfiguration actions triggered by the ITCS compo-
nents, e.g., by LCS and RTS. Moreover, the automatic evolution (autoevolution)
of the electric parameters in case of instability events, e.g. in correspondence of
a power line failure, should also be considered. Therefore, the framework should
support the call to the functions implementing the reconfiguration algorithms,
as well as the autoevolution algorithm.

R5 To manage complexity at solution level, ability to perform separate evaluation
of different sub-models and combination of the obtained results should be sup-
ported.

R6 Risk analysis of EPS based on a stochastic approach requires the definition
of measures of performability, which is a unified measure proposed to deal
simultaneously with performance and dependability. To this purpose, a reward
structure should be set-up by associating proper costs/benefits to generators/loads
and interruption of service supply.

18.3.2 Formalisms and Approaches for EPS Modelling and
Simulation

Several approaches to EPS modelling and simulation have been adopted in the lit-
erature, each having different levels of detail, modelling power, user-friendliness,
and computational efficiency. The works in [115, 376] provide a general understand-
ing of common methods for critical infrastructure analysis, including visualisation
and data presentation techniques, while a specific survey focused on modelling and
simulation can be found in [777]. A specific discussion on the usage of graphical
formalisms for critical infrastructures analysis has been presented in [137]. In the
following we shortly discuss some of the typical formalisms that have been used for
modelling critical infrastructures in general and electric power systems in particular,
grouping them in few macro categories.

18.3.2.1 Graph-Based Techniques

In graph-based techniques, the physical topology and configuration of the infrastruc-
ture is mapped to some kind of a graph, which can then be analysed to reveal useful
information about the system. To perform assessments with respect to faults or ex-
ternal attacks, critical infrastructures are often modelled as networks, and then nodes
are progressively removed to evaluate the possible cascading effects on the system.
These kinds of analyses are used to compare infrastructure designs and topologies,
for example showing the maximum number of random attacks that a certain topology
may handle before becoming disconnected (e.g., see [281]).

Network flows based approaches are typically used to model resource require-
ments and utilisation among different infrastructures. In such paradigm, interdepen-

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 375

dent infrastructures are viewed as networks, with movement of commodities (i.e.,
material, electric power, etc.) corresponding to flows, and with services correspond-
ing to a desired level of these flows. Approaches based on network flow are easily
modelled using supply-demand graph; in such kind of graphs, nodes are seen ei-
ther as supply, transhipment, or demand nodes, while arcs represent links through
which commodities flow from producers (supply) to consumers (demand) nodes.
Supply-demand graphs have been used for example in [582] to identify the telecom-
munication components which are more vulnerable to power components failures
within a certain critical infrastructure design.

18.3.2.2 Petri Nets

Petri nets (PN) and their extensions are modelling formalisms that are widely used in
dependability analysis. Many variants of Petri nets formalisms exist, which may have
different properties and modelling power, such as Generalised Stochastic Petri Nets
(GSPN), Stochastic Activity Networks (SAN), Stochastic Well-formed Nets (SWN),
hybrid Petri nets [262] and Fluid Stochastic Petri Nets (FSPN) [444]. Although they
have a simple graphical representation, they provide a great modelling power and are
therefore well suited for the modelling of complex systems like critical infrastructures
in general, and electric power systems in particular.

In [195] a GSPN model is developed to evaluate the impact of a potential intrusion
due to a cyber attack on the Supervisory Control and Data Acquisition (SCADA)
system, which is in charge of controlling and monitoring the electric power system.
There are two submodels in the Petri net model: a firewall model and a password
model, which are instantiated based on the configuration of the internal SCADA
network and its possible access points. A combined modelling approach for the
evaluation of the interdependencies between the Electric Power infrastructure and
its SCADA system has been developed in [95], where the quantification is achieved
through the integration of two models. The first is a SAN model, which concentrates
on the structure of the power grid and its physical quantities; the second is a Stochastic
Well-formed Net (SWN) model, which concentrates on the algorithms of the control
system and on the behaviour of the attacker. The scenario modelled in this work
considers a situation in which a load shedding activity is needed to re-establish
the nominal working conditions upon an electrical failure, but the control system
is not working properly due to a Denial of Service (DoS) attack. In [609] Petri
nets have been employed in the evaluation of pricing issues related to congestion
in de-regulated power market systems. In [522] a new general methodology, based
on FSPN, is proposed for the modelling and reliability evaluation of small isolated
power systems (which include wind turbines, photovoltaics, and diesel generators).

376 S. Chiaradonna et al.

18.3.2.3 General Simulation Environments

A simulator is a tool that tries to mimic the behaviour of a system. A large col-
lection of simulation environments exists for critical infrastructures analysis, which
can essentially be categorised in single domain and multiple domain simulators.
The electric power infrastructure, together with telecommunication networks and
transportations, has been the focus of development of domain specific simulators,
featuring many simulation tools having different granularity [472].

An ad-hoc simulator for the evaluation of dependability and performability mea-
sures in electrical power systems has been presented in [785]. The stochastic model
is composed by separated and simple submodels of the dynamics of the EI and ITCS
subsystems. The impact on the dependability and performability of the cascading or
escalating failures has been analysed by providing explicit modelling of the interde-
pendencies between the main subsystems.

18.3.2.4 Agent Based Modelling and Simulation

The agent based paradigm follows a bottom–up approach to manage system com-
plexity. The simulator is built as a population of interacting, intelligent agents. An
agent is “an autonomous system (software and/or hardware) that is situated in an
environment (possibly containing other agents) and acts on it in order to pursue
its own goals, and it is often able to learn from previous experiences” [777]; each
agent is an individual entity with location, capabilities, and memory. Using such
approach, a simulator is developed, where an agent may model physical components
of infrastructures, decision policies or, possibly, the external environment [716].

As other modelling techniques, the agent based paradigm can be applied at differ-
ent levels of detail, which are sometimes referred to as micro- and macro-agent based
simulation [179]. The micro-agent based approach uses a bottom up approach mod-
elling every single component of an infrastructure, putting them together to simulate
the whole infrastructure(s). The macro-agent based simulation represents a whole
infrastructure with a single agent, hiding the implementation details from the other
agents. Using such approach, it is also possible to apply the federated simulation
approach, leaving the physical, detailed simulation of each infrastructure to some
specific sector tool controlled by an associated agent, and expose only a predefined
interface to other agents.

18.3.3 Discussion on Requirements

In this section we discuss how the framework’s requirements identified in Sect. 18.3.1
are actually fulfilled by the available formalisms and analysis approaches that have
been proposed in the literature, discussing them at macro categories level.

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 377

Graphs are a natural way to represent relations between elements, so graph-
based techniques are in general appropriate for defining the hierarchical structure
of the system (R1) and the interdependencies that exist between infrastructures. For
the same reason, cascading failures may be represented as well. On the contrary,
they do not support the call to external functions (R4), and are often tailored to
a specific measure or analysis type, thus not allowing the definition of different
measures (R6).

Formalisms belonging to Petri net category are usually well suited to support time
and probability distributions, conditions enabling the time consuming events (R3), as
well as the definition of performance and performability measures (R6). The extent to
which they are able to represent the hierarchical structure of the system (R1) and the
hybrid-states (R2) highly depends on each individual Petri net formalism but, with
some exceptions, the scalability of the model is often a limiting factor and they are
usually tailored to model discrete state systems. The invocation of external functions
(R4) is usually precluded, with the exception of few Petri net formalisms, as well as
the separate evaluation of different sub-models and the combination of the obtained
results (R5).

Simulation packages may easily represent non-discrete system states (R2), time
and probability distributions, as well as conditions enabling the time consuming
events (R3). Invocation of external functions (R4) is possible, although it often re-
quires a significant effort to be achieved. Simulation environments may allow evalu-
ation of very complex measures (R6), but they are usually able to evaluate a limited
pre-defined set of them.

Thanks to the macro-agent and federation approach, external functions as well
as tools can be usually integrated quite easily in agent-based frameworks (R4), as
well as specific evaluation approaches to mitigate the complexity at solution level
(R5). Agent-based simulation frameworks have the same limitations that arise in
other simulation frameworks for what concerns the available measures that can be
evaluated (R6).

Although there is no formalism category that, as a whole, is capable to fulfil all the
identified requirements, some specific formalisms belonging to specific categories
feature more advanced capabilities that can be used to feasibly model complex sys-
tems like EPS. An example belonging to the Petri net class is the SAN formalism,
which provides the modeller with some primitives that can be profitably exploited
to fulfil the identified requirements, thus overcoming the limitations of most of the
other Petri net based models.

The SAN formalism [805] is a stochastic extension of Petri nets based on four
primitives: places, activities, input gates, and output gates. Places and activities rep-
resent the state and the actions of the modelled system, respectively. Special places,
called “extended places”, allow the representation of the primitive data types of the
programming language C++, like int, float, double, including structures and arrays
of primitive data types. Input gates control the enabling of activities and define the
marking changes that will occur when an activity completes (fires). Output gates
define the marking changes when an activity completes. The attributes of the SAN
primitives are defined by using sequences of C++ statements.

378 S. Chiaradonna et al.

The SAN formalism supports the hierarchical composition of different sub-models
(R1) thanks to the Join and Rep compositional operators [803], also allowing the repli-
cation of not anonymous submodels (see Sect. 18.4.2.1—paragraph “The indexing of
the replicas”—for more details on this feature). The representation of both discrete
and continuous states (R2) is another SAN feature: the SAN formalism supports
continuous valued tokens, thanks to a special primitive called "extended place" that
allows token of complex data types to be included in the model. The SAN formal-
ism also supports time and probability distributions, as well as marking-dependent
enabling conditions (R3—see Sect. 18.4.2 for some specific examples). Moreover,
SAN allows the modeller to include C++ code inside input and output gates, as well
as custom functions using C++ header files and libraries implementing, for example,
the required reconfiguration and autoevolution algorithms (R4). Also, the definition
and evaluation of both dependability and performance-oriented metrics (R6) is fully
met by resorting to the Performance Variable (PV) reward model [804], which can
be used to represent either dependability or performability measures. Finally, SAN
does not offer any specific feature to support the separate evaluation of different
sub-models and the combination of the obtained results (R5).

18.4 Overview of the Framework Implementation

Following the discussion at the previous section, we have selected the SAN for-
malism and the modelling and solution tool Möbius [242] to implement our frame-
work.

The software tool Möbius supports multiple high-level modelling formalisms (in-
cluding the SAN) and multiple solution techniques. It also allows the construction
of composed models from previously defined models, supporting a hierarchical ap-
proach to modelling based on state-sharing. In this approach the submodels are linked
together through sharing of state variables of each submodel. A state variable cap-
tures some portion of the state of a model, and is represented differently by different
formalisms. In a SAN model, a place represents a state variable. Thus, it is possible to
compose SAN models by holding one or more state variable in common. Möbius fea-
tures the Replicate/Join composed model formalism [803]. A Join is a state-sharing
composition node used to compose two or more submodels. A Replicate is a special
case of the Join node used to construct a model consisting of a number of identical
copies of a submodel.

The goal of the models is to assess metrics well representative of the quality of
service perceived by end users, such as indicators of blackout size (for example, the
percentage of power demand that is not met, the cost of a blackout, the number of
loads involved in a blackout, etc.).

In Sect. 18.4.1 we will briefly introduce all the atomic models composing the
overall EPS model, while in Sect. 18.4.2 we will detail the implementation of the
model representing a generic node with connected transformers, showing how we
have concretely realised some of the general framework’s characteristics detailed in

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 379

Sect. 18.3.1. The whole set of implemented models can be found in [204] and it is
not reported here for the sake of brevity.

18.4.1 The Composed EPS model

When modelling the considered EPS, we have followed a modular and compositional
approach. The following atomic models (the leaves in Fig. 18.2) have been identified
as building blocks to generate the overall EPS model:

• PL_SAN, which represents the generic power line with the connected transformers.
• PR1_SAN andPR2_SAN, which represent the generic protections and the breakers

connected to the two extremities of the power line.
• N_SAN and LCS_SAN, which represent, respectively, a node of the grid (a gener-

ator, a load or a substation) and the associated LC S (see Fig. 18.1).
• AUTOEV_SAN, which represents the automatic evolution (autoevolution) of EI

when an event modifying its state occurs.
• RS_SAN, which represents the computation and application of the local reconfig-

uration strategy RS1(), and the computation of the regional reconfiguration action
RS2() (its application is modelled in RTS_SAN).

• RTS_SAN and COMNET_SAN, which represent, respectively, the Regional Tele-
control System RTS, where the regional reconfiguration strategy RS2() is applied,
and the public or private networks (Com Net of Fig. 18.1).

In Fig. 18.2, it is shown how these atomic models are composed and replicated to
obtain the composed model representing the EPS region.

The model AL represents a power line with the associated protections and it
corresponds to the AL logical component of Fig. 18.1. This model is then replicated
to obtain all the necessary non anonymous AL components of the grid. The model
N_LCS is obtained by composing the atomic models N_SAN and LCS_SAN. Then
the model is replicated to obtain all the necessary non anonymous NG , NS and NL

components of the grid, with the associated LC S. The model Auto_Control
is obtained by composing the atomic models AUTOEV_SAN and RS_SAN, so it
represents both the autoevolution function and the reconfiguration strategy locally
applied by the LC S components. The overall EPSREG model is finally obtained
through composition of the different models and it represents the EPS under study.

The different (atomic or non atomic) submodels interact with each other through
sharing of some common places that represent the parameters or part of the states of
the EPS.

These models populate our modelling framework as template models, which are
used to represent a large variety of specific scenarios in the EPS sector. The overall
model results from the composition and replication of such template models. For
example, the power line model including the protections (AL) is built by composing
(through the Join operator) the template model for the power line (PL_SAN) with
those for the protections (PR1_SAN and PR2_SAN), and it is replicated (through

380 S. Chiaradonna et al.

Fig. 18.2 Composed model for an EPS region

the Rep operator) to obtain the model representing the whole set of power lines with
protections composing the grid (Rep_AL). In the following we provide some more
details on the system’s aspects captured by the N_SAN model, representing a node
of the grid.

18.4.2 The Atomic Model N_SAN

The atomic modelN_SAN, shown in Fig. 18.3, represents the generic node (generator,
substation or load). For the sake of conciseness, we concentrate here on three main
aspects of this model: i) the indexing of the replicas, ii) the failure modes, and iii) the
failures propagation to the connected lines. The boxes in Fig. 18.3 group the basic
modelling elements related to these three aspects, and are discussed in the following
subsections.

18.4.2.1 The Indexing of the Replicas

As discussed in [203], the modelling activity can be facilitated considering replica-
tion of non anonymous submodels, i.e., distinguishing each replicated submodel
by an associated index. In this section we will detail the part of the N_SAN
model implementing this specific aspect, as shown in box i) of Fig. 18.3. As
detailed in Sect. 18.4.1, the N_SAN model is anonymously replicated nN times
(one replica for each node in the system) using the Rep compositional operator

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 381

Fig. 18.3 The model N_SAN for a generic node. Reproduced from [202]. ©2011 Elsevier

[803]. In order to distinguish between the different replicas, we need to associate
an index with each node, which is represented by the number of tokens in the
place Nindex. This place is shared with atomic model LCS_SAN, but it is lo-
cal to composed model N_LCS. Place Nindex is set when the immediate ac-

382 S. Chiaradonna et al.

tivity setupIndex completes by the output gate setIndex, which is defined
as: Nindex->Mark()=(nN-Ncount->Mark())-1. The place Start is ini-
tialised with one token. The common place Ncount is shared with all the repli-
cated instances of the submodel (and with RS_SAN). The immediate activities
setupIndex of the replicated instances are all enabled in the same marking at
time 0, when the model RS_SAN sets to nN the number of tokens of the common
place Ncount. Thus, the first activity setupIndex that completes removes one
token from places Ncount and Start, and then the code of setupIndex is
executed thus setting to 0 the place Nindex of the same instance. In the same
way, the second activity setupIndex that completes will finally set 1 token in the
associated place Nindex, and so on. Therefore, at the end of this “initialization”
(instantaneous) process, a different index (Nindex->Mark()) will be associated
with each instance of the model, thus obtaining the non anonymous replicas.

18.4.2.2 Modelling of the Failure Modes

The modelling elements grouped in box ii) of Fig. 18.3 capture the considered fail-
ure modes for the node. Four timed activities represent the times to the failures of
the node. Two cases associated with these activities represent the probabilities of
permanent or transient failure. The considered failures are:

• External failure caused by a lightning, modelled by EFailureLi.
• External failure not caused by a lightning, modelled by EFailureEx.
• Internal failure (for a generator the failure is not caused by a high variation of

power), modelled by EFailureIn.
• Internal failure caused by a high variation, in a small interval of time, of the power

required from a generator, modelled by EFailureDeltaP.

The activities EFailureLi, EFailureEx and EFailureIn are assumed
to be exponential, but different distributions can be considered as well. The deter-
ministic activity EFailureDeltaP is only enabled when the variation, in a small
interval of time, of power required from a generator (for example after reconfig-
uration action RS1()) is greater than a threshold. In this case, also the protections
associated with the generator (and modelled in AL) are triggered to fire (if they are not
failed) after a deterministic time. If the protections fire before the firing of the activity
EFailureDeltaP, then the generator is disconnected from the grid, otherwise it
fails.

When the activity representing the occurrence of the lightning completes, the
input gate GenLiF sets the place LightningF with a value randomly generated
from an uniform distribution, which represents the power of the lightning.

The duration of a transient failure is represented by the timed activities LiDur-
ation (deterministic for the lightning) and TempFailDuration (exponential
for the other failures). The repair time of a permanent failure is represented by the
deterministic activity ERepair.

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 383

In the current model we have represented an on/off behaviour of the node, which
becomes completely unavailable and disconnected from the grid in case of failure.
It is worthwhile mentioning that this is not a methodology limitation and the same
model could be extended considering different degraded operational modes, each
one corresponding to a given degree of failure (e.g., disconnecting only a part of
the lines linked to the failed node). The same extensions could be done for power
lines models, provided that the different failure modes actually have an impact on
the metrics of interest, and that the propagation rules towards the connected lines
have been established.

18.4.2.3 Modelling the Failures Propagation to the Connected Power Lines

The modelling elements grouped in box iii) of Fig. 18.3 capture the failures propa-
gation from the node to the connected power line and vice versa. This propagation
is instantaneous; it starts from the failed node (or line) and stops:

1. when the propagation reaches an open breaker, or
2. when a protection fires (thus opening a breaker), or
3. when the propagation reaches a failed line or node, or
4. when the propagation reaches a node already touched by the propagation process.

The effect of the propagation of a lightning or a failure is to isolate the failed
component from the rest of the grid. If the propagation reaches a generator or a load
(because the protections did not fire), these components are considered failed.

The propagation to the lines connected to the modelled node is represented by the
enabling and completion of immediate activities and by places common to different
submodels. In particular, when a failure occurs in the node, the immediate activity
tols is enabled. It locks the propagation (by subtracting one token to the place
PropagLock) and, for each line l linked to the node, it sets the entry l of the extended
place PropagToLine with the failure propagation info. Place PropagToLine
is an array representing the failure propagation to the power lines linked to the node.
In the case of lightning propagation, entries of place PropagToLine are also set
with the power of the lightning divided by the number of lines connected to the node
(power of lightning is uniformly distributed to all lines connected to node).

One immediate activity PropagNode enabled when a failure (e.g., a lightning)
propagates from the model PR1_SAN or PR2_SAN associated to a power line.
Two cases on the activities represent the probability that the propagation causes a
failure of the node (if it is not already failed). In the case of failure of the node,
the propagation ends, otherwise the propagation moves to the model PR1_SAN or
PR2_SAN, represented by the extended place PropagateToLine.

The failures propagation modelled in box iii) of Fig. 18.3 represents the immediate
impact of the failure on the connected grid elements. Then, based on the resulting
EI configuration, the application of the EI autoevolution or LC S reconfiguration
functions will determine the new EI stable state. Afterwards, a failure propagation
could occur over time, for example, if in the resulting stable state some power lines

384 S. Chiaradonna et al.

are overloaded and no appropriate reconfiguration actions are performed by RT S
in due time, thus leading to a cascading effect (e.g., in the case of the 2003 Italian
blackout [491]).

18.5 Illustrative Examples of EPS Evaluation

In this section we present some examples of analysis of a few representative scenarios.
The conducted analyses targeted the following objectives to be assessed:

1. the impact of failures of one or more nodes and of the ITCS infrastructure
(through the DoS affecting the communications network Com Net) on the mea-
sures of interest, and

2. the criticality level of generators, substations or loads with respect to the mea-
sures of interest.

The analysed case study and the results of the numerical evaluations are discussed
in the following subsections.

18.5.1 Analysed Power Grid, Measures of Interest and Failure
Scenarios

The reference power grid under analysis is the IEEE Reliability Test System–1996
(RTS-96),3 typically used in bulk power system reliability evaluation studies [468].
RTS-96 is a multi-area reliability test system obtained by modifying, updating and
linking various single IEEE RTS-79 areas [467]. For sake of simplicity, we analyse a
single area of RTS-96 (referred as RTS96A in the following). Figure 18.4 shows the
topology of RTS96A and the power associated with each node and line at the time
zero. The label “Pi/Pmax

i ” associated with the generators (circles) represents the ini-
tial (active) power Pi and the maximum power that the generator i can supply Pmax

i .
The label “Di ” associated with the loads (squares) represents the power demand of
the load i . The label “Fl/Fmax

l (bl)” associated with each line l represents the initial
power flow Fl through the line, the maximum power flow Fmax

l that a transmission
line can carry and the susceptance bl of the line. A negative Fl value means that the
current is flowing in the opposite direction of the corresponding arrow.

The measures of interest considered in this study are user-oriented indicators of
the blackout size. They are:

1. PU D(0, l), defined as the mean of the percentage of power demand U D(0, l)
that is not met in the interval [0, l], and

2. discrete probability distribution function PDF of U D(0, l), defined as the prob-
ability that U D(0, l) is equal to 0 or it is in the interval (a, a + 10]%, a =
0, 10, . . . , 90.

3 http://www.ee.washington.edu/research/pstca

http://www.ee.washington.edu/research/pstca

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 385

Fig. 18.4 Diagram of RTS96A (generators are circles, loads are squares and substations are
rhombi). For the sake of clarity, only the integer part of the original values associated with generators,
power lines and loads are shown (in MW). Reproduced from [202]. ©2011 Elsevier

In the considered scenario, the EI state is in electrical equilibrium and it is initially
set as depicted in Fig. 18.4, where, for each generator i , all the ratios Pi/Pmax

i are
equal to a fixed value 0.95, called the power grid stress level. Moreover, power
demand is constant in time. At time zero, we suppose that one or more nodes are
simultaneously affected by a permanent disruption (e.g., due to a tree fall or a terrorist
attack), thus becoming unavailable. Pessimistic assumption is made that all power
lines linked to failed nodes are disconnected and the failed node is isolated from
the grid. The number of simultaneously failed nodes are alternatively selected from
different groups of nodes. Therefore, four cases are considered:

• FN: nF N failed nodes are selected from the group including all the types of nodes
(generators, substations or loads),

386 S. Chiaradonna et al.

• FG: nFG failed nodes are selected from the group including only the generators,
• FS: nF S failed nodes are selected from the group including only the substations,
• FL: nF L failed nodes are selected from the group including only the loads.

The nodes that fail are randomly (uniformly) selected from the respective group.
The repair time of the failed power node is one day. At time zero, the communication
network Com Net connecting the LC S components to RT S is simultaneously af-
fected by a denial of service (DoS) attack that prevents communication between LC S
and RT S. Therefore, during the DoS attack, the reconfiguration strategy RS2() can-
not be applied, while the reconfiguration strategy RS1() can be applied at any time.
The DoS attack ends after an exponentially distributed time with mean MT T RC N ET ,
when the Com Net is repaired, and from that time RT S can start computing the RS2()

reconfiguration action that will be applied after 10 min. The considered distributions
and values for failure, repair and reconfiguration processes do not refer to any spe-
cific real case; they are hypothetical but plausible ones and are used just for showing
the potentialities of our analysis method.

We performed a sensitivity analysis on the following parameters:

• nF N , thus varying the severity of the overall EI failure.
• nFG , nF S and nF L , thus varying the severity of the generators, substations and

loads failure, respectively.
• MT T RC N ET , thus varying the duration of the DoS attack affecting the commu-

nication network. If MT T RC N ET → 0 or MT T RC N ET → ∞, then we are
modelling the extreme cases where Com Net is not failed or it is not repaired,
respectively.

The results of the sensitivity analysis are presented in Sect. 18.5.2.

18.5.2 Numerical Evaluations and Analysis of the Results

In this section we present some of the results that we obtained through the solution of
the overall model for the RTS96A in the scenario previously described. A transient
analysis has been performed, using the simulator provided by the Möbius tool [242].
For each numerical result, 20,000 simulation runs (batches) were executed using a
confidence level equal to 0.95. The confidence intervals obtained for the result are
less than 10 % wide and are shown in the plots, although they are so small that they
are similar to points. The parameters values used as default values are l = 1 day
(for the considered interval of time), MT T RC N ET = 3 h (for the duration of the
DoS attack exponentially distributed) and nF N = nFG = nF S = nF L = 1 (for the
number of nodes affected by failure).

Figures 18.5 and 18.6 show the impact on PU D(0, l) of failures of nodes and
Com Net at varying the number of simultaneous failed nodes and the expected dura-
tion of the DoS attack MT T RC N ET , for different types of failed nodes. In particular,
Fig. 18.5a–d, focus on the assessment of PU D(0, l) for cases FN, FG, FS and FL, re-
spectively. The lines shown in the legend are sorted by decreasing values of PU D(0, l).

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 387

 0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

P
U

D
(0

,1
d)

 (
%

)

nFN (number of random failed nodes)

No ComNet repair
MTTRCNET=48 hours
MTTRCNET=36 hours
MTTRCNET=24 hours
MTTRCNET=12 hours
MTTRCNET=3 hours

No ComNet failure

(a)

 0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

P
U

D
(0

,1
d)

 (
%

)

nFG (number of random failed generators)

No ComNet repair
MTTRCNET=48 hours
MTTRCNET=36 hours
MTTRCNET=24 hours
MTTRCNET=12 hours

MTTRCNET=3 hours
No ComNet failure

(b)

 0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

P
U

D
(0

,1
d)

 (
%

)

nFS (number of random failed substations)

No ComNet repair
MTTRCNET=48 hours
MTTRCNET=36 hours
MTTRCNET=24 hours
MTTRCNET=12 hours
MTTRCNET=3 hours

No ComNet failure

30

40

50

 4

(c)

 0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

P
U

D
(0

,1
d)

 (
%

)

nFL (number of random failed loads)

No ComNet repair
MTTRCNET=48 hours
MTTRCNET=36 hours
MTTRCNET=24 hours
MTTRCNET=12 hours

MTTRCNET=3 hours
No ComNet failure

100*nFL/nL

(d)

Fig. 18.5 Percentage of the expected power demand PU D(0, l) that is not met in the interval [0, l],
with l = 1 day, as a function of a different number of random simultaneous failed nodes, for different
values of MT T RC N ET and for different types of failed nodes: cases FN (a), FG (b), FS (c) and
FL (d)

In Fig. 18.5d the formula 100nF L/nL is also plotted, representing the expected loss
of power demand in the interval [0, l] because of the failure of only nF L loads (and
no other failure), under the assumption that power lines linked to failed loads are not
disconnected. This plot is a lower bound for the curves shown in Fig. 18.5d. In fact, it
overlaps with the curve for which no failure of Com Net occurs, then showing that,
when reconfiguration strategy RS2() can be applied by RT S, the failures of loads,
even though disconnecting lines linked to them, do not impact on the expected power
demand of the other loads, for the considered topology and setting.

In Fig. 18.5, as expected, PU D(0, l) increases considering higher number of failed
nodes nX , being X = F N , FG, F S, F L . Fixing the value for nX , PU D(0, l) gets
worse in the case in which the DoS attack lasts longer. However, the impact of
MT T RC N ET on PU D(0, l) tends to decrease at low and high values of nX (that is,
at the extremes of the curves). In fact, when nX is low, the impact of the failed nodes
on PU D(0, l) is so small that the effect of the reconfiguration strategy RS2() applied
by RT S is negligible. Similarly, when nX is high, the impact of the failed nodes on
PU D(0, l) is so big that no reconfiguration exists to reduce the loss of power demand,

388 S. Chiaradonna et al.

 0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

P
U

D
(0

,1
d)

 (
%

)

Number of random failed nodes

FG

FS

FL
FN

No ComNet repair
No ComNet failure

Fig. 18.6 Percentage of the expected power demand PU D(0, l) that is not met in the interval [0, l],
with l = 1 day, as a function of a different number of random simultaneous failed nodes, for
different types of failed nodes (cases FN, FG, FSand FL) and for different values of MT T RC N ET

(corresponding to no Com Net failure and no Com Net repair)

as shown in Fig. 18.5b, for the case FG. In Fig. 18.5b, PU D(0, l) reaches the value
of 100 % for nFG = 10, since all the 10 generators of the grid are failed. Finally, we
note that for values of MT T RC N ET varying from 0 to 3 h, the values of PU D(0, l)
vary less than 2 %.

Figure 18.6 focuses on the comparison of the assessment of PU D(0, l) for different
types of failed nodes, corresponding to the cases FN, FG, FS and FL, when only
the two extreme values are considered for MT T RC N ET (i.e., no Com Net failure
and no Com Net repair), being the other values omitted for simplicity. This figure
shows how the level of criticality of each type of node with respect to the measure
of interest PU D(0, l) can depend on the number of failed nodes and on the delay to
apply the reconfiguration strategy RS2() by RT S. When the reconfiguration strategy
RS2() can be applied by RT S (no Com Net failure), or when it cannot be applied
only for a small duration of time (e.g., less than 3 h, for the topology and setting
used in our case study), the criticality of the types of nodes is shown by the lines
labelled “No Com Net failure” and their rank is not affected by the number of failed
nodes, but by the type of failed nodes. In this case, it is interesting to note that failures
involving nodes randomly selected from the overall set of nodes (FN, which includes
generators, substations and loads) are less critical than failures that only involve loads,
substations, or generators. On the other extreme, when the reconfiguration strategy
RS2() cannot be applied and the number of nodes is less than 6, the failures of
substations are more critical than the failures of generators.

In both Figs. 18.5 and 18.6 we have provided mean values for the percentage of
unsatisfied power demand U D(0, l) in an interval [0, l]. Figure 18.7 shows the dis-

18 Case Study on Critical Infrastructures: Assessment of Electric Power Systems 389

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

(0
,1

0]

(1
0,

20
]

(2
0,

30
]

(3
0,

40
]

(4
0,

50
]

(5
0,

60
]

(6
0,

70
]

(7
0,

80
]

(8
0,

90
]

(9
0,

10
0]

P
D

F
 o

f U
D

(0
,1

d)
 (

pr
ob

ab
ili

ty
)

Possible values UD(0,1d) can take (%)

FG
FS
FL
FN

Fig. 18.7 Probability (PDF) that U D(0, 1d) is equal to 0 or it is in the interval (a, a + 10]%, a =
0, 10, . . . , 90, for MT T RC N ET = 3 h and for one random failed node selected from different types
of nodes (cases FN, FG, FS and FL)

crete probability distribution function PDF of U D(0, l), for MT T RC N ET = 3 h,
when only one randomly selected node is affected by failure and for different
types of failed nodes (cases FN, FG, FS and FL). The values on the x-axis repre-
sent different levels of criticality of the failures of nodes with respect to the mea-
sure of interest U D(0, l). Each level of criticality corresponds to 0 or to a range
(a, a + 10]%, a = 0, 10, . . . , 90. The most critical failures are those leading to
higher values of U D(0, l). The PDF values of U D(0, l) on the y-axis multiplied by
100 represent the percentage of failures of nodes occurred for each level of criti-
cality. Thus, Figure 18.7 shows the percentage of failures of nodes associated with
each level of criticality, depending on the types of nodes affected by the failures. In
the case that the failed node is randomly selected from the set of generators, sub-
stations or loads (case FN), the most critical failures are the 1.4 % of the overall
occurred failures (corresponding to the (20, 30]% range). When the random failed
node is a generator (case FG), or a substation (case FS), or a load (case FL), then the
most critical failures are the 0.4 % for the generators, the 3 % for the substations and
the 0.5 % for the loads, respectively. Thus, loss of power demand is mainly caused
by failures of substations. Finally, we note that, for all types of failed nodes, the
highest percentage of nodes failures is associated with the criticality level for which
U D(0, l) ∈ (0, 10]%. Also, the mean PU D(0, l) varies in the range (0, 10]%, from
5.4 for case FG to 6.7 for FS.

390 S. Chiaradonna et al.

18.6 Conclusions

This chapter described a modelling framework suited to analyse and quantitatively
assess the impact of interdependencies between the electric grid and the cyber level
control in electric power systems, in presence of malfunctions affecting both in-
frastructures. First, the abstract specification of the major components under analy-
sis in both EI and ITCS infrastructures, in terms of structural/behavioural aspects,
failure patterns and related mutual dependencies, has been addressed. Requirements
imposed to assessment methods and available formalisms to model EPS have been
pointed out. Then, the definition of building block models, their implementation and
their composition to represent a whole region of EPS have been presented. To provide
concrete estimates of resilience-related measures, analyses to assess the criticality
of EI nodes (i.e., generators, substations and loads) and to assess the effects of a few
failure scenarios on blackouts related indicators have been performed. The results
of these analyses allow to understand the relative impact of involved failure/repair
processes and the criticality of the electric grid elements. Upon such knowledge,
indications can be derived on appropriate actions to take towards making the design
and development of EPS system more resilient.

Tackling interdependencies is a very challenging and still in progress research
area. This chapter goes in the direction to explore the field and to provide a step
forward. Given the high inner complexity, the study has been performed under some
limiting conditions. Enhancements of this study are foreseen in several directions.
Extending the view to the nation and cross-nations wide vision as well as enriching
the EPS analysis in several directions are among current and planned future work.
Exploring whether and to which extent the proposed modelling framework would
adapt to analyse interdependencies in other critical infrastructures (e.g., in oil/water
production and transportation systems and in the telecommunication sector) is an-
other stimulating research option.

Acknowledgments This work has been partially supported by the European Community through
the IST Projects CRUTIAL [245](Contract n. 027513) and by the Italian Ministry for Education,
University, and Research (MIUR) in the framework of the Project of National Research Inter-
est (PRIN) “DOTS-LCCI: Dependable Off-The-Shelf based middleware systems for Large-scale
Complex Critical Infrastructures”.

Chapter 19
Providing Dependability and Performance
in the Cloud: Case Studies

Nikolaus Huber, Fabian Brosig, Nicholas Dingle,
Kaustubh Joshi and Samuel Kounev

Abstract Cloud Computing promises a variety of opportunities but also brings up
several challenges. The three case studies presented in the following are examples on
how challenges in the field of capacity management, dependability, and scalability
can be addressed and how opportunities of Cloud Computing can be leveraged to,
e.g., maintain performance requirements or to increase dependability.

19.1 Introduction

As discussed in Chap. 4, Cloud Computing has several challenges and opportunities.
The increased flexibility and the shared resources cause challenges like security
or performance issues, to mention only some examples. However, the increasing

N. Huber (B) · F. Brosig · S. Kounev
Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany
e-mail: nikolaus.huber@kit.edu

F. Brosig
e-mail: fabian.brosig@kit.edu

S. Kounev
e-mail: kounev@kit.edu

N. Dingle
School of Mathematics,
University of Manchester,
Manchester M13 9PL, UK
e-mail: nicholas.dingle@manchester.ac.uk

K. Joshi
AT & T Labs Research,
Florham Park, NJ, USA
e-mail: kaustubh@research.att.com

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 391
DOI: 10.1007/978-3-642-29032-9_19, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-29032-9_4

392 N. Huber et al.

flexibility provides also opportunities like higher availability and fault tolerance,
resilience to attacks, or improved resource efficiency.

In this chapter we present three case studies as examples on how the previously
mentioned challenges can be addressed and how the opportunities can be used to
add value to systems running in Cloud Computing environments. The first two case
studies are approaches on managing performance and dependability in Cloud Com-
puting environments. The third case study is a scalability study of two different tools
for performance analysis in Cloud Computing environments. For related work and
state-of-the-art on approaches for resilience assessment and managing dependability
and performance, the reader is referred to Chap. 4.

In Sect. 19.2, we demonstrate how prediction techniques based on performance
models can be used to maintain the service-level agreements (SLAs) while using
available resources efficiently. The approach uses the Palladio Component Model
[96] and its simulator to predict service response times and resource utilizations.
Section 19.3 presents an architecture and algorithm on balancing the trade-off
between performance and dependability. It uses performance and availability models
to react to changes in the underlying infrastructure which are results of failures or
upgrades. The hierarchical optimization algorithm extends queuing models to bal-
ance the needs of availability and performance. Several scenarios show the applica-
bility of this approach even in a cloud scenario with different data centers. Finally, we
present a case study on the computational and communication scalability of a Cloud
Computing environment by transferring two HPC applications to a Cloud Computing
environment (Amazon EC2). Both tools calculate the full distributions of response
times in Continuous Time Markov Chains (CTMCs) but require a different amount
of interprocessor communication, and hence scale differently in Cloud Computing
environments.

19.2 Elastic Capacity Management

In this section we present results of our case study on self-adaptive resource manage-
ment in virtualized environments [451]. To avoid violations of service-level agree-
ments (SLAs) or inefficient resource usage, capacity management has to be adopted
continuously during system operation. For example, in Cloud Computing scenarios
resources allocated to services need to be increased or decreased to reflect changes
in application workloads. This is an approach on elastic capacity management based
on online architecture-level performance models [556]. The goal is to maintain per-
formance and efficient resource usage during run-time. In our evaluation we use the
new SPECjEnterprise2010 benchmark.1

1 SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterprise2010 results or findings in this publication have not been reviewed or accepted
by SPEC, therefore no comparison nor performance inference can be made against any published

http://dx.doi.org/10.1007/978-3-642-29032-9_4

19 Providing Dependability and Performance in the Cloud: Case Studies 393

19.2.1 Self-Adaptive Resource Management

Our self-adaptive resource management follows the control loop model [196] which
consists of four phases: collect, analyse, decide and act. For the collect phase, we
assume that changes of the application workload are either announced by the cus-
tomers (e.g., for an upcoming sales promotion) or by techniques like workload fore-
casting [147]. We then use the Palladio Component Model [96] and its performance
prediction techniques to analyze the impact of these changes and to decide which
actions to take. In this case study, the act phase covers the reconfiguration oper-
ations adding/removing application server cluster nodes and increasing/decreasing
the number of virtual CPUs of a cluster node’s virtual machine.

19.2.1.1 Resource Allocation Algorithm

The following algorithm is executed if SLAs are violated or resources are used
inefficiently. The goal is to find a new system configuration which again maintains
performance and resource efficiency. The algorithm is specified in generic terms, such
that it can be applied to different types of resources and resource allocation operations.
In short, the algorithm works on a set of services, resource types and SLAs. The SLAs
specify, e.g., the requested average response time for a service at a given arrival
rate. Each time there is a change of a specified SLA (e.g., a new client workload is
scheduled for execution or a change in the workload intensity of an existing workload
is forecast), we use our architecture-level performance models to predict the effect of
this change on all SLAs. The algorithm can be divided into two phases: PUSH phase
and PULL phase. If an SLA violation is detected, the PUSH phase of our algorithm
is executed which allocates additional resources (PUSH additional resources into the
system) until all client SLAs are satisfied. After the PUSH phase finishes, the PULL
phase is executed to optimize the resource efficiency. If no SLAs are violated, the
PULL phase starts directly to reduce the amount of used resources (PULL them out
of the system).

PUSH:

Basically, while there exists a client response time SLA that is violated, in this phase
the algorithm increases the amount of allocated resources for all resource types used
by the service which are overutilized. Increasing the number of allocated resources
works as follows: If a there is an instance of an overutilized resource type (e.g.,
a VM) which has some processing resources available that are not allocated yet,

(Footnote 1 continued)
SPEC result. The official web site for SPECjEnterprise2010 is located at http://www.spec.org/
jEnterprise2010.

http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010

394 N. Huber et al.

additional resources are allocated (e.g., virtual CPUs). Otherwise, a new instance of
this resource type is added (e.g., a new VM is started).

PULL:

The PULL phase aims to optimize the resource efficiency by releasing resources
that are not utilized efficiently under the current client workloads. In our algorithm,
inefficient usage means the delta of maximum utilization and current utilization of
a resource type is greater than a predefined constant, e.g., 20 %. While there is a
resource type assigned to service of the currently considered workload which is used
inefficiently, the amount of resources allocated to this service will be decreased, i.e.,
for a resource type instance the capacity (e.g., virtual CPUs) is reduced. If the client
SLAs are predicted to be violated after this change, the change is reversed.

19.2.2 Evaluation

In this section we briefly explain the SPECjEnterprise2010 benchmark and the exper-
imental environment we used to evaluate our approach. Finally, we present the exper-
imental results.

19.2.2.1 SPECjEnterprise2010 Benchmark

We selected the SPECjEnterprise2010 benchmark application as a basis for our case
study because it models a representative, state-of-the-art enterprise system. SPEC-
jEnterprise2010 is a benchmark developed by SPEC’s Java subcommittee to measure
the end-to-end performance and scalability of Java EE-based application servers. The
benchmark workload is generated by an application that is modeled after an automo-
bile manufacturer. As business scenarios, the application comprises customer rela-
tionship management (CRM), manufacturing and supply chain management (SCM).

The benchmark driver executes five benchmark operations. A dealer may browse
through the catalog of cars, purchase cars or manage his dealership inventory, i.e.,
sell cars or cancel orders. A manufacturer may place work orders for manufacturing
vehicles, either triggered per WebService or RMI call. In our experiments these
benchmark operations function as the different services. To control the request arrival
rate of each service individually, we had to slightly modify the benchmark driver. We
split up the two driver domains and three manufacturing domains into five different
domains, each invoking its own service. The resulting five independent services are
called Purchase, Manage, Browse, CreateVehicleEJB and CreateVehicleWS.

19 Providing Dependability and Performance in the Cloud: Case Studies 395

19.2.2.2 Architecture-Level Performance Model

To make decisions in our control loop, we use a PCM model [96] as architecture
level performance model to predict the service response times and resource utiliza-
tions of the SPECjEnterprise2010 application for a specific load. The PCM model
is semi-automatically extracted from a running benchmark application instance. As
extraction method, we use the method in [150]. However, for this case study we
extracted the entire benchmark application, i.e., including supplier domain, dealer
domain, web tier and the asynchronous communication between the three domains.
For reasons of brevity, the reader is referred to [451] for a detailed description of the
PCM model instance.

19.2.2.3 Experimental Setup

As hardware environment for the experiments, we use six blade servers from a clus-
ter environment. Each server is equipped with two Intel Xeon E5430 4-core CPUs
running at 2.66 GHz and 32 GB of main memory. The machines are connected by a
1 GBit LAN. On top of each machine, we run Citrix XenServer 5.5 as the virtual-
ization layer. Inside the XenServer’s VMs, we run the benchmark components. Each
component runs in its own VM, initially equipped with two virtual CPUs (VCPUs).
As operating system, these VMs execute CentOS 5.3. As Java EE application server,
we use the Oracle Weblogic Server (WLS) 10.3.3. The load balancer is haproxy 1.4.8
using round-robin as load balancing strategy. The database is an Oracle 11g database
server instance deployed on a VM with eight VCPUs on a separate node on Win-
dows Server 2008. The SPECjEnterprise2010 benchmark application is deployed in
a cluster of WLS nodes. For the evaluation, we considered reconfiguration options
concerning the WLS cluster and the VCPUs the VMs are equipped with: WLS nodes
are added to or removed from the WLS cluster, VCPUs are added to or removed from
a WLS node’s VM. These reconfigurations are applicable at run-time, i.e., can be
applied while the benchmark application is running.

19.2.2.4 Results

In the following section we present experimental results of our approach. First, we
demonstrate how the approach behaves when the system workload increases. Next,
we give an example how this approach can be used for elastic capacity management
and show its benefits.

Workload Growth:

In this scenario, we evaluate our approach when increasing the workload of all ser-
vices deployed in our environment. We increase the load in two steps from 2x to 4x

396 N. Huber et al.

EJB0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

M
ea

n
R

es
po

ns
e

T
im

e
[s

]

WS Purchase Manage BrowseEJB WS Purchase Manage Browse

(b)(a)
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

M
ea

n
R

es
po

ns
e

T
im

e
[s

]
4x workload (c)2
6x workload (c)2
6x workload (c)3

2x workload (c)1
4x workload (c)1
4x workload (c)2

Fig. 19.1 The response times when changing workload from (a) 2x to 4x and (b) 4x to 6x, respec-
tively (SLAs denoted by �). The three bars depict the response times for all five services before the
load increase, after the load increase, and after system reconfiguration

and 4x to 6x (see Fig. 19.1). The standard workload (1x) is defined as request arrival
rate (requests/second) for each service: (CreateVehicleEJB, 15), (CreateVehicleWS,
15), (Purchase, 12.5), (Manage, 12.5) and (Browse, 25). Our starting point is that five
services are running on one node with three VCPUs (c1) with 2x the standard work-
load and the following SLAs (CreateVehicleEJB, 30, 74 ms), (CreateVehicleWS, 30,
74 ms), (Purchase, 25, 130 ms), (Manage, 25, 130 ms), (Browse, 50, 130 ms) which
are initially satisfied. Now, we increase the workload to 4x the standard load. For this
new workload, the reallocation algorithm detects a violation of the SLAs and rec-
ommends to reallocate the system resources using two nodes, one with four VCPUs
and one using three VCPUs (c2). Applying this configuration to our benchmark, the
SLAs are satisfied. For the measurement results see Fig. 19.1a.

In the second step, we increase the workload to 6x the standard load and do not
change the SLAs. Again, this leads to a violation of the SLAs in our simulation
results. Therefore, we apply our algorithm, finding a new suitable configuration with
three nodes, two with four VCPUs and one with three VCPUs (c3). The experiment
results are depicted Fig. 19.1b. However, the results show that after reallocation the
SLA of the Browse service is still slightly violated. This is not due to inaccuracy of
our model, but rather due to scalability problems of the database machine, which is
not powerful enough to handle the new workload while satisfying the original SLAs.
Hence, we are confident that given a more powerful database, the SLAs would be
satisfied. The way this problem would be addressed in practice would be to either
scale the database or renegotiate the SLAs. As both solutions can be handled with
our online performance prediction mechanism, we plan to extend our approach with
this solution in the future.

19 Providing Dependability and Performance in the Cloud: Case Studies 397

Fig. 19.2 Assigned capacity
and servers for a workload
distribution over seven days

Resource Usage and Efficiency:

After evaluating the functionality of our approach, this section discusses its benefits.
Imagine a workload distribution over seven days like the one depicted in Fig. 19.2. In
a static scenario, one would assign three dedicated servers to guarantee the SLAs for
the peak load. However, with our approach one can dynamically assign the system
resources. In the static scenario, one would use three servers for seven days, whereas
our approach needs only 1 + 2 + 3 + 2 + 3 + 1 + 1 = 13 server days. Hence, in
such a scenario, only 62% of the resources of the static assignment are needed and
thereby almost 40% of the resources available can be saved.

19.2.3 Conclusions

This case study on self-adaptive resource management demonstrates that architecture-
level performance models in combination with resource allocation algorithms can be
applied to react to changes during runtime. It shows that it is possible to achieve elas-
tic capacity management while satisfying specified SLAs. Exemplary, we showed
how the system reacts on changes in the workload and how such an approach can
save up to 40% of the resources. Also important to note is that this case study demon-
strates that architecture-level performance models can be used effectively at runtime
to support self-adaptiveness.

19.3 Case Study: Balancing Performance and Dependability
Tradeoffs

Availability and responsiveness are crucial, although often conflicting, requirements
for the multitier applications that implement critical business functionality for many

398 N. Huber et al.

enterprises. Ensuring high availability requires the applications to be deployed
with sufficient redundancy, potentially spanning several data centers. Today, large
geographically dispersed hosting facilities provided by leading cloud computing
providers have made wide area deployments practical for even low to medium scale
applications. However, with such dispersion come consistency and synchronization
overheads, and applications must often pay a performance penalty as a result. In
traditional static deployments, application designers often tune such availability and
performance tradeoffs manually after taking into consideration application architec-
tures, workloads, and requirements.

However, shared infrastructures such as compute clouds necessitate a rethinking
of static deployment schemes. For example, resource contention might require relo-
cation of applications to another machine rack, cluster, or even another data center.
Additionally, current trends in system and data center design emphasize the use of
large numbers of machines running cheap, less reliable commodity components that
can fail often. For example, Google reported an average of 1000 node failures/yr in
their typical 1800 node cluster for a cluster MTBF of 8.76 h [274]. At the same time,
skilled manpower is quickly becoming the most expensive resource, thus encourag-
ing data center operators to batch repairs and replacement, thus increasing MTTR in
the process. In fact, portable “data-center in a box” designs (e.g., [407]) that contain
tightly packed individual components that are completely non-serviceable, i.e., with
an infinite MTTR, are emerging.

These trends imply that applications will run in increasingly dynamic environ-
ments in which parts of the infrastructure are in a failed state and static solutions
to availability and performance tradeoffs will no longer suffice. However, dynamic
solutions that redeploy multitier applications are challenging because they must not
only balance availability against performance, but they must also factor in resource
allocation between competing applications. Poor placement of a critical resource
such as a database server may cause it to be a bottleneck for the whole application
and as a result, the hosts where other tiers of the application are placed may become
underutilized.

In this study, we show how online performance and availability models can be used
to address these challenges and drive dynamic multitier application redeployment
in the event of failures so as to minimize performance degradation while maintain-
ing availability constraints. We build an online controller based on the models that
regenerates the affected software components across clusters or data centers in the
event of infrastructure failures, and reconfigures the entire system to run optimally on
the remaining resources. Using simulation and fault injection studies, we show that
this approach can provide high availability with far fewer resources than traditional
approaches.

19 Providing Dependability and Performance in the Cloud: Case Studies 399

19.3.1 Performance and Availability Models

We consider a consolidated data-center environment in which a set of multitier
applications A are deployed on a set of physical hosts H located in a number of data
centers. The hosts are organized into racks, clusters, and data centers in a resource
hierarchy (R,≤R), where R is the set of “resource groups” (i.e., machine, rack, clus-
ter, data-center) and ≤R specifies a direct hosting relationship between the groups,
e.g., Host1 ≤R Rack1 ≤R DataCenter1. The hosting relation ≤∗

R is the transitive clo-
sure of ≤R , e.g., Host1 ≤∗

R DataCenter1 indicates that Host1 is directly or indirectly
hosted in DataCenter1. Figure 20.3a shows an example resource hierarchy with 20
machines distributed across four racks in two data centers. Two resource groups are
said to be at the same “level” rl ∈ RL if they are of the same type, e.g., Rack1 and
Rack2. The example in the figure has three levels.

Hosts are interconnected by a data center network and the network latency between
hosts depends on how close they are to one another in the hierarchy, i.e., hosts placed
in the same rack have a lower network latency between them than hosts across
different racks, which have a lower latency than hosts in different data centers. We
denote by L(rl) the maximum latency between two hosts separated at resource level
rl. Finally, we denote the mean time between failures for each resource group r by
MTBFr . In general, MTBF increases with increasing resource level, i.e., MTBF for
hosts is smaller than MTBF for a rack, which is smaller still than the MTBF for an
entire data center.

Each application a consists of a set Na of component types (e.g., web server, data-
base), each of which contains several replicated components to avoid single points of
failure. Each application a may support multiple transaction types Ta . For example,
the RUBiS [184] auction site benchmark used in our testbed has transactions that
correspond to login, profile, browsing, searching, buying, and selling. Each transac-
tion can initiate a sequence of function calls between application components. The
application’s workloadwa is given by a vector of request rateswt

a for its transactions.
Each application-component replica executes in its own virtual machine (VM) [90]
on a physical host anywhere in the resource hierarchy that it can share with other
VMs. Each VM is allocated a share of the host’s CPU capacity that is enforced by
Xen’s credit-based scheduler.
Availability Models: We consider an application to be available when at least one
replica of each component is running on an operational machine, and define avail-
ability as the fraction of time the application is available. A replication level of at least
two for each of the application’s component types is necessary to avoid single points
of failure, but not always sufficient. If all replicas of the same type are contained
within a single resource tier, e.g., a rack, then a failure of that tier causes application
failure. Therefore, we allow each application to specify its desired availability and
use information about the system’s recovery policy codified by the MTTR to calcu-
late the application’s minimum desired “mean time between failures”, or MTBFa as:
MTBFa ≥ Availabilitya ·MTTR

1−Availabilitya
.

http://dx.doi.org/10.1007/978-3-642-29032-9_20

400 N. Huber et al.

We can now calculate the application’s actual MTBF for a given placement of its
components across the resource hierarchy. Assume that each resource group r fails
independently according to a Poisson failure process with rate λr = 1/MT B Fr

and each failure disables all the application components the group contains. If the
replication level of any application component type drops to zero as a result of a
resource failure, then the application fails. For each of application a’s component
types na , let rmax (na) be the highest level resource group such that all replicas of
na are contained in that resource group. e.g., if an application’s database had two
replicas hosted in DataCenter1:Rack1:Host1 and DataCenter1:Rack2:Host3, then
rmax (dba) = DataCenter1. Only failures at resource levels rmax (na) or higher will
cause an application failure by causing the replication level of the component type
na to fall to zero.

Under these assumptions, the overall failure arrival process is also Poisson with
rate

∑
r∈R λr . A failure event affects resource group r with probability λr/

∑
r∈R λr ,

and causes application a to fail if r is such that there is at least one component type
na with a value of rmax (na) that is lower than r . i.e., rmax (na) ≤∗

R r (Condition 1).
Since this condition only filter resource groups, the application failure process is also
Poisson with a rate equal to the sum of λr over resource groups for which condition
1 is true. rmax (na) depends only the exact system configuration, so the application
failure process has a constant rate until the system is reconfigured by the controller.
Thus, the MTBF for application a in a system configuration c is given by:

MTBFa(c) =
(∑

∀r∈R s.t. ∃na∈Na
s.t. rmax(na)≤∗

Rr

MT B F−1
r

)−1
(19.1)

This equation assumes that no additional failures occur in the time window
between the first failure and the time the controller finishes reconfiguring the system.
While this is not strictly true, it is a reasonable assumption because the reconfigu-
ration actions (VM instantiation, migration, CPU capacity changes) are very short
compared to typical resource MTBF values.
Performance Models: To quantify the performance of alternative system configura-
tions, we construct application models using the layered queuing network modeling
formalism [943] to predict the response times of application transactions and the
corresponding resource utilization demands for each replica for a given workload
and system configuration (i.e., the CPU capacity assigned to each application VM).
Each application component is modeled as a FCFS queue, while hardware resources
(e.g., CPU and disk) are modeled as processor sharing (PS) queues. Interactions
between tiers triggered by a transaction are modeled as synchronous calls in the
queuing network, and our models also account for the resource sharing overhead
imposed by Xen. The parameters for models (e.g., per-transaction service time at
each queue) are measured in an offline measurement phase, where each application
is instrumented using system call interception. Then, delays between incoming and

19 Providing Dependability and Performance in the Cloud: Case Studies 401

(a) (b)

Fig. 19.3 a Resource levels example, b approach overview

outgoing messages are measured per transaction. Details of the LQN models and
their validation can be found in [498].

We compute the application’s mean response time in a new configuration as the
sum of the response time RT (a, t) of each transaction t weighted by the fraction
γ (a, t) of the transaction in the application’s workload mix. The response time
degradation in a potential new configuration is simply the difference between the
predicted mean response time in the new configuration and the mean response time
in the original configuration before the failure.

19.3.2 Online Optimization Algorithm

Our approach, as shown in Fig. 19.3b, is realized by a runtime controller that monitors
the system and which, when a failure or recovery occurs, reconfigures all applications.
To do so, it uses standard virtual machine techniques—it can either migrate each
application component’s VM to another host, or change the CPU share allocated to
the VM on its current host. The controller chooses actions that minimize the mean
performance degradation (across all applications) as a result of the failure while
still maintaining the desired level of replication and application MTBF (Eq. 19.1).
It has to balance several factors in doing so. Maximizing performance dictates that
application components be placed close to one another to minimize the impact of
network latency, but packing components too closely (e.g., on the same machine)
may actually degrade performance by forcing VMs to use less CPU resources than
they require. Additionally, applications requiring high levels of reliability will have to
be distributed across higher resource levels to prevent single failures from impacting
multiple replicas.

The optimization is carried out over the large space of all possible system con-
figurations c ∈ C , each of which specifies: (a) the assignment of each replica nk

to a physical host c.host(nk), and (b) the CPU share cap c.cap(nk). The CPU cap

http://dx.doi.org/10.1007/978-3-642-29032-9_19

402 N. Huber et al.

c.cap(nk) allocated to a replica impacts it’s processing speed, and thus the applica-
tion’s end-to-end performance. However, for a fixed CPU cap, the choice of machine
on which to host a component only depends on the network latency of the machine
to the locations of the other application components. Furthermore, according to our
definition of L(rl) in Sect. 19.3.1, the network latency is a function of the resource
level rather than individual resources. For example, a resource level of “rack” would
require placement of replicas of the same type across different hosts in the same rack,
while a resource level of “whole system” would entail placing the replicas on hosts
in different data centers.

The optimization algorithm determines the values of the parameters that affect
application performance (CPU cap, resource level) by using a gradient descent search
to minimize performance degradation. The algorithm starts with the maximum value
of CPU cap (i.e., 1.0) for every replica and the lowest permissible resource level
for each tier such that the application’s MTBF given by Eq. 19.1 is higher than the
application’s desired MTBF. Once an initial value for the parameters is chosen for
every replica, the algorithm attempts to fit the replicas into the available resources
using a bin-packing algorithm that respects each replica’s choice of resource level and
uses the CPU cap as the “volume” of the replica. If a fit cannot be found, the algorithm
executes an additional iteration of the gradient descent to either choose to lower the
value of the CPU cap of a single replica to reduce CPU requirements, or to increase
the resource levels of a single application tier to increase the flexibility the bin-
packer has when distributing replicas. The option (which application, which tier, and
whether to reduce the CPU cap or increase the resource level) that results in the least
amount of performance degradation is chosen. The LQNS queuing model described
above is used to estimate the performance degradation in the new configuration. The
bin-packing is attempted again and the process repeats until a successful fit in the
available resources is found. More details of the optimization algorithm can be found
in.

Upon finding a successful fit, the optimizer calculates the difference between the
original configuration and new configuration for each replica, and returns the set of
actions (migrate VM, adjust CPU cap, re-instantiate VM) needed to affect the change.
The durations of these actions are relatively short compared to typical MTBF values,
and range from a few milliseconds to a few minutes at most. Furthermore, they can
be performed without causing VM downtime [224].

19.3.3 Simulation Based Evaluation

In this section, we present simulation results using a simulator written in the Java
based SSJ framework [581]. The target application for the experiments is the RUBiS
online auction benchmark. We created the LQNS model using offline measurements
from [498] and execute the model using transaction workload rates representing user
behavior according to the “browsing mix” defined by the RUBiS test client generator.

19 Providing Dependability and Performance in the Cloud: Case Studies 403

We compare our approach (Opt) with two reference strategies: a) the Static strategy
that relies on design redundancy to tolerate failures, and b) the “least loaded” (LL)
strategy that reinstantiates each failed replica (VM) in the order of decreasing CPU
utilization on the least loaded host within the same level of the resource hierarchy. The
utilization of the target host is then updated to take into account the reinstantiated VM
before choosing a host for the next failed VM. Once the VMs have been reassigned,
the controller reallocates the CPU capacities to the VMs on each host proportional
to their measured CPU utilization with a lower bound of 10% CPU. When a host
is recovered/replaced, LL migrates the original VMs running on the host before it
failed from their current locations back to the host.

We simulate the three strategies in a cloud setup consisting of two data centers
with three clusters each, 3 racks in each cluster, and 4 machines in each rack. The
communication delays between two machines in a rack are D, while those between
machines in different racks, clusters, and data centers are 1.5D, 2D, and 2.5D,
respectively. The setup hosts 6 instances of RUBiS: 3 gold instances each with a
weight of 5 (Eq. 19.1) and 3 silver instances with a weight of 1 (Eq. 19.1). For
all instances, each of the three tiers is replicated twice. The gold instances offer
higher availability and require tiers to be replicated at-least across separate clusters,
while the silver application tiers can be replicated across racks in the same cluster.
The workload is set to 30 and 60 requests/sec for the gold and silver instances,
respectively. Each VM is initially allocated 80% of one physical CPU.

For each strategy, we run fault injection experiments in which failures are simu-
lated at different levels of the hierarchy (i.e., data center, cluster, rack, host) using a
Poisson process with different failure and repair rates. Specifically, if the MTBF and
MTTR on the host-level are M f and Mr , then at the rack, cluster, and data center
levels they are 4M f and 4Mr , 16M f and 16Mr , and 160M f and 160Mr , respec-
tively. To make the results applicable for systems with different MTBFs and MTTRs,
we report all times normalized to the host-level MTBF M f , which was set to 1.0,
For repair, we vary the per host relative MTTR from 0.1 to 1, indicating that repair
takes from 10 to 100% of the MTBF. Each simulation runs for a normalized time
period of 10 (i.e., 10 failures per run on the average), and we repeat each experiment
10 times. For each experiment, we calculate both the availability of the system and
the performance degradation.

Figure 19.4a shows the unavailability of the system as a function of the relative
MTTR. Both the Opt and LL strategies achieve 100% availability, while the unavail-
ability of the Static strategy increases significantly with the relative MTTR. Since
both LL and Opt regenerate VMs as soon as a failure occurs, this result is expected.
In practice, both strategies may not achieve 100% availability for two reasons. First,
the controllers require time to make a reconfiguration decision after a failure event
and second, instantiation of new VMs is not instantaneous. During both intervals,
the system may be vulnerable to additional failures. Fortunately, both windows are
very short compared to typical MTBF values in practice.

Figure 19.4b shows the mean performance degradation D of the applications com-
puted over the period that they are available vs. the MTTR. The results show that in
some cases LL does not perform much better than Static. This is because if a set of

404 N. Huber et al.

(a) (b)

Fig. 19.4 Simulation results. a Unavailability, b performance degradation

hosts (a whole rack, cluster, or data center) fails and the failed hosts contain the VMs
of the silver applications, it may be better to do nothing (i.e., Static) than reallocat-
ing those VMs to machines that are running Gold instances (which have a higher
impact on the weighted mean response time) and slowing them down. LL also cannot
determine which components are bottlenecks and often makes decisions based on
small differences in host CPU utilizations (since all of them are high). It can end up
co-locating a regenerated VM with a bottleneck resource, thereby greatly degrading
the response time. On the other hand, the Opt strategy can avoid these bottlenecks
using its queuing model, and performs significantly better than both Static and LL
by exhibiting little performance degradation even at high relative MTTR values.

19.3.4 Fault Injection Based Evaluation

Next, we experimentally evaluate the Opt, Static, and LL strategies using fault injec-
tion experiments on a system subjected to actual failures and a realistic workload.
Our testbed contains 10 machines divided into two racks of 5 each. Each host has
an Intel Pentium 4 1.80 GHz processor, 1 GB RAM, and a 100 Mb Ethernet interface
and runs Linux kernel 2.6.18 guest OS VMs on an open-source Xen version 3.2.0
hypervisor. The controller is run on a separate server.

The hosted applications are two instances of the 3-tier servlet version of RUBiS
running on an Apache 2.0.54 webserver, a Tomcat 5.0.28 application server, and
MySQL 3.23.58 database. Each tier has two replicas, and each replica runs in its
own VM for a total of 12 VMs. Replicas for the same tier are constrained to run in
different racks. In the initial configuration, the VMs hosting the Tomcat and MySQL
replicas are allocated 80% of a physical CPU capacity and the VMs hosting Apache
replicas are allocated 40% of a physical CPU capacity. For the Static strategy, the
placement and the capacity allocation of the VMs remains the same throughout

19 Providing Dependability and Performance in the Cloud: Case Studies 405

0

10

20

30

40

50

60

70

80
15

:0
0

15
:2

0
15

:4
0

16
:0

0
16

:2
0

16
:4

0
17

:0
0

17
:2

0
17

:4
0

18
:0

0
18

:2
0

18
:4

0
19

:0
0

19
:2

0
19

:4
0

20
:0

0
20

:2
0

20
:4

0
21

:0
0

21
:2

0
21

:4
0

22
:0

0
22

:2
0

RUBiS-1
RUBiS-2

Time

R
eq

u
es

t
ra

te
 (

p
er

 s
ec

)
(a) (b)

Fig. 19.5 Cloud simulation results. a Workload, b response time degradation (%) after failure and
reconfiguration

the experiment, while the Opt and LL strategies adjust the location and capacity
allocation of the VMs based on the workload at the time of the failure.

The applications are subjected to the workloads shown in Fig. 19.5a. These traces
are produced by a user emulator that simulates actual users using a semi-Markov
model. Each state of semi-Markov model corresponds to a single transaction. Tran-
sitions between states s′ → s′′ encode the probability that a user issues the transaction
destination transaction s′′ after visiting the source page s′. The user is assumed to
spend a normally distributed amount of random “think time” between every consec-
utive transaction. The number of concurrent users at any given time varies, and we
obtain these variations from actual user traces from publicly available web-site logs
[57, 293].

Both individual host and rack failures (i.e., a correlated failure of all machines in
a rack due to a common cause such as power supply or switch/router) are injected. In
each run, a single failure is injected at a random time instant and the mean response
time of the applications before and after the injection and reconfiguration is measured
to calculate the performance degradation. Each strategy is subjected to failures at
the same time instant and workload and the mean performance degradation across
all transactions is reported. The results for one of the RUBiS instances are shown in
Fig. 19.5b. Across all failures, the average performance degradation for the Static and
LL strategies is 46 and 47 %, respectively, while it is only 9.5 % for the Opt. controller.
The gap between Static and LL is small because the initial configuration has no
single point of failure, and the relatively light workload allows the Static approach to
operate after a single failure without requiring VM regeneration. The large differences
between Opt. and LL demonstrate the benefits of taking performance bottlenecks into
account during reconfiguration. The Opt. controller has very low degradation even
when entire racks fail.

406 N. Huber et al.

19.3.5 Conclusion

In this study, we have examined how online controllers can be constructed to opti-
mize multitier application placements by balancing performance and availability
tradeoffs. We use component redundancy to tolerate single machine failures, virtual
machine cloning to restore component redundancy whenever machine failures occur,
and smart component placement based on performance and availability models to
minimize the resulting performance degradation. Experimental results show that the
proposed approach provides improved performance than classical approaches.

19.4 Computational and Communication Scalability of EC2

Stochastic models of real-life computer and communication systems allow engineers
to analyse the correctness and performance of such systems at design time. This
allows for problems to be detected and choices to be investigated much more quickly
and cheaply than if such investigations are delayed until after the system has been
implemented. Markov chains are one of the most commonly-encountered modelling
formalisms, but to capture even the most essential behaviour of a real-life system
may require a Markov chain with many millions of states. The analysis of such
chains will require the combined compute power and memory capacity of a number
of computers in parallel; for example, see [106, 148, 164, 297, 399, 411, 699, 892].
Typical quantities of interest are long-run or steady-state probability distributions
and the distributions of response times between specified initial and goal states.

To exploit the power of these implementations, the user is typically required to
possess a dedicated computational cluster or network of workstations. Such hardware
is, however, expensive to buy and to run, requires sufficient space with associated
power and cooling to house it, and staff to maintain it. With the ever-present pressure
on academic research budgets, it is conceivable that individual research groups will
struggle to continue to acquire such resources for themselves. Cloud computing holds
the promise of dramatically reducing these overheads.

A key concern in using existing performance analysis tools in the cloud is how
well those tools themselves perform in this environment, as their performance in this
shared environment could well differ from their performance on dedicated hardware.
Cloud computing offers the ability to make use of large numbers of processors far
more cheaply than we could ourselves own, but if our tools cannot efficiently use
these extra resources then they will need either to be modified or to be replaced with
tools that can.

In this section we study the scalability of two of our previously-presented perfor-
mance analysis tools: a Laplace transform-based response time analyser [295] and
the HYpergraph-based Distributed Response-time Analyser (HYDRA) [296, 297].
Both tools calculate the full distributions of response times in Continuous Time

19 Providing Dependability and Performance in the Cloud: Case Studies 407

Markov Chains (CTMCs), which can then be used to reason about a wide range of
performance requirements in formal models of systems.

We compare the two tools’ scalabilities in a cloud computing environment (Ama-
zon EC2) and a variety of traditional environments in the context of a case study
analysis of a CTMC model. We expect that the Laplace transform-based tool will
scale well in all environments because of the minimal amount of interprocessor com-
munication that it requires, but that HYDRA may suffer in environments with limited
network bandwidth despite the fact that it employs a data partitioning scheme that
minimises interprocessor communication.

19.4.1 Performance Analysis Tools

We will study the scalability of two previously-presented performance analysis tools:
a Laplace transform inverter [295] and the HYpergraph-based Distributed Response-
time Analyser (HYDRA) [296, 297]. Although the core computation carried out
by both tools is repeated sparse matrix–vector multiplication, the way in which
they parallelise the problem is different and consequently they place very different
communication loads on the network.

19.4.1.1 Laplace Transform Inverter

The distributed Laplace transform inverter is written in C++ and uses the Message
Passing Interface (MPI) [397] standard, so it is portable to a wide variety of paral-
lel computers and workstation clusters. It features a master-slave architecture that
ensures a good load balance and very high utilisation of slave processors. In addition,
there is no inter-slave communication and the amount of master-slave communication
is low. We therefore expect this tool to exhibit good scalability.

19.4.1.2 HYDRA

HYDRA is also implemented in C++ and uses MPI. The key opportunity for paral-
lelism in HYDRA is in the repeated sparse matrix–vector multiplications that form
the core of the implemented algorithm. To perform these operations efficiently in
parallel it is necessary to map the non-zero matrix elements onto processors such
that the computational load is balanced and communication between processors is
minimised. To achieve this, we use hypergraph partitioning to assign matrix rows and
corresponding vector elements to processors [182]. Our previous work has observed
that this gives HYDRA good scalability on both parallel computers with fast inter-
connection networks and also on networks of workstations connected via switched
Ethernet [296, 297] .

408 N. Huber et al.

Table 19.1 Summary of the four architectures on which the Laplace transform inversion tool was
executed

Name Type CPU (GHz) RAM Network

PC (2004) Workstation Intel Pentium 4 2.0 512 MB 100 Mbps Ethernet
PC (2010) Workstation Intel Core2 Duo 3.0 4GB 1 Gbps Ethernet
Camelot Cluster Opteron dual-core 2.2 8GB 2.5 Gbps Infiniband
Amazon EC2 Small instance c. Opteron 1.0–1.2 1.7GB Unknown

Table 19.2 Average run-times in seconds (T), speed-ups (Sp) and efficiencies (E p) for p-processor
response time density calculations in a 537,768 state model using the Laplace transform inversion
tool

PC (2004) PC (2010) Camelot Amazon

p T Sp E p T Sp E p T Sp E p T Sp E p

1 5,096.0 1.0 1.0 1,190.5 1.00 1.00 4,181.3 1.00 1.00 2,835.9 1.00 1.00
2 2,582.6 1.97 0.99 592.4 2.00 1.00 2,149.1 1.95 0.97 1,522.4 1.86 0.93
4 1,298.4 3.92 0.98 301.4 3.95 0.99 1,083.1 3.86 0.97 776.2 3.65 0.91
8 675.8 7.54 0.94 150.9 7.89 0.99 587.6 7.12 0.89 422.7 6.71 0.83
16 398.4 12.79 0.80 78.0 15.26 0.95 350.3 11.94 0.75 218.8 12.96 0.81

19.4.2 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is a service that allows users both
to purchase computing resources on-demand and also to reserve them to guarantee
availability in the future. Central to EC2 are Amazon Machine Images (AMIs), which
are instantiations of the Linux or Windows operating system that are brought into
being by the user and run as virtual machines. Amazon have a range of standard
AMIs, based on Windows and various versions of Linux, that come pre-installed
with commonly-used packages as well as providing tools to enable users to build
their own AMIs containing exactly the applications and packages that they require.

Both of our tools described in the previous section require MPI and, although
none of the standard Amazon AMIs include this, there is a user-produced AMI
that does [835, 836]. This AMI costs $0.085 per instance per hour,2 and is only
available in the US-N. Virginia region of EC2. Similarly, although Amazon has
recently released a dedicated Cluster Compute image (Cluster Compute Quadruple
Extra Large, or cc1.4xlarge) with access to 10 Gbps Ethernet interconnection,
this image does not come with MPI installed as standard. By following the publicly-
available instructions of [835], however, we were able to create our own custom
Cluster Compute image that included MPI. It costs $1.60 per instances per hour to
run and is also only available in the US-N. Virginia region.

2 See http://aws.amazon.com/ec2/pricing/ for a full list of rates.

http://aws.amazon.com/ec2/pricing/

19 Providing Dependability and Performance in the Cloud: Case Studies 409

 16

 14

 12

 10

 8

 6

 4

 2

 0
 16 8 4 2 1

sp
ee

d-
up

processors

PC (2004)
PC (2010)

Camelot
Amazon

 1

 0.8

 0.6

 0.4

 0.2

 0

 16 8 4 2 1

ef
fic

ie
nc

y

processors

PC (2004)
PC (2010)

Camelot
Amazon

(a)

(b)

Fig. 19.6 a Speed-up and b efficiency graphs for p-processor response time density calculations
in a 537, 768 state model using the Laplace transform inversion tool

19.4.3 Results

19.4.3.1 Laplace Transform Inverter

These results are presented for four architectures and are reproduced from [294] to
provide a basis for comparison with the new results in the next section. Table 19.1
summarises the processor speeds, main memory and network bandwidths of the
four architectures. Table 19.2 shows the run-times, speed-ups and efficiencies for the
calculation of response time densities on p processors for a 537,768 state model.

410 N. Huber et al.

Table 19.3 Summary of the five architectures on which HYDRA was executed

Name Type CPU RAM Network

AP3000 Distributed-memory UltraSparc 300 MHz 256 MB 520 Mbps mesh
parallel computer

PC (2010) Workstation Intel Core2 Duo 3.0 GHz 4 GB 1 Gbps Ethernet
Camelot Cluster Opteron dual-core 2.2 GHz 8 GB 2.5 Gbps Infiniband
Amazon EC2 Small Instance c. Opteron 1.0–1.2 GHz 1.7 GB Unknown
Amazon CC EC2 Compute Cluster Xeon quad-core 2.93 GHz 23 GB 10 Gbps Ethernet

Table 19.4 Average run-times in seconds (T), speed-ups (Sp) and efficiencies (E p) for p-processor
response time density calculations in a 1,639,440 state model using HYDRA

AP3000 PC (2010) Camelot Amazon Amazon CC

p T Sp E p T Sp E p T Sp E p T Sp E p T Sp E p

1 1,243.3 1.00 1.00 76.8 1.00 1.00 178.1 1.00 1.00 112.5 1.00 1.00 61.77 1.00 1.00
2 630.5 1.97 0.99 43.5 1.76 0.88 98.7 1.81 0.90 166.2 0.68 0.34 31.05 1.99 0.99
4 328.2 3.78 0.95 23.2 3.31 0.83 87.9 2.03 0.51 104.8 1.07 0.27 19.25 3.21 0.80
8 182.3 6.82 0.85 15.5 4.94 0.62 48.2 3.70 0.46 86.3 1.30 0.16 12.26 5.04 0.63
16 99.7 12.47 0.78 7.2 10.72 0.67 26.8 6.65 0.42 123.4 0.91 0.06 8.94 6.91 0.43

Corresponding graphs of speed-up and efficiency are shown in Fig. 19.6. Note that
run-times are averages of 5 runs.

We expect the Laplace transform tool to exhibit good scalability as there is very
little inter-processor communication, and this is shown to be the case. Indeed, it is
noticeable that on EC2 the speed-up trend is almost linear, which suggests that the
master-slave architecture with minimal intercommunication is an appropriate design
for cloud-based parallel tools.

19.4.3.2 HYDRA

These results are presented for five architectures, four of which are reproduced
from [294]. Table 19.3 summarises the processor speeds, main memory and network
bandwidths of the five architectures. As parallel sparse matrix–vector multiplication
potentially requires a great deal of data to be exchanged at each iteration of the solu-
tion, we also investigate HYDRA’s scalability when executed on Amazon’s Compute
Cluster instances. In an effort to ensure that we the effect of the network is included
in our results, we used two instances for all values of p > 1, with at least one process
assigned to each instance.

Table 19.4 shows the run-times, speed-ups and efficiencies for the calculation of
response time densities on p processors for a 1,639,440 state model. Corresponding
graphs of speed-up and efficiency are shown in Fig. 19.7. Once again, these run-times
were averaged over 5 runs. Although the use of hypergraph partitioning minimises

19 Providing Dependability and Performance in the Cloud: Case Studies 411

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

sp
ee

d-
up

processors

AP3000
PC (2010)

Camelot
Amazon

Amazon CC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

ef
fic

ie
nc

y

processors

AP3000
PC (2010)

Camelot
Amazon

Amazon CC

(a)

(b)

Fig. 19.7 a Speed-up and b efficiency graphs for p-processor response time density calculations
in a 1,639,440 state model using HYDRA

the amount of data that must be sent, we observe that the speed-ups achieved are
accordingly lower than for the Laplace transformer inverter. We also observe that
the scalability of HYDRA on the standard Amazon EC2 instances is the worst of
all five architectures. Although we expected the speed-up and efficiency to be lower
than on the dedicated hardware platforms, it is still very surprising to see just how
badly HYDRA fares in the cloud.

The interconnection of the Cluster Compute instances clearly provides far higher
bandwidth than the network connecting standard EC2 instances, and as a result
HYDRA’s scalability on these AMIs is much more in line with that experienced

412 N. Huber et al.

Table 19.5 Average costs (to the nearest whole cent) for HYDRA execution

1 2 4 8 16

Amazon ($) 0.09 0.17 0.34 0.68 1.36
Amazon CC ($) 1.60 3.20 3.20 3.20 3.20

in dedicated HPC environments. This higher performance comes at increased cost,
however, as can be seen from Table 19.5. Note that Amazon charges by the hour and
that each Cluster Compute image provides 8 CPUs (hence why only two are required
to run 16 HYDRA processes).

19.4.4 Conclusion

We observed that the Laplace transform tool scaled much better in the cloud than
HYDRA, but that HYDRA’s scalability improved dramatically when it was executed
on Amazon’s new Cluster Compute instances. This suggests that there are now cloud
computing services that can rival traditional dedicated HPC environments; it should
be recalled, however, that these instances were significantly more expensive than the
standard EC2 ones.

Acknowledgments The work of Samuel Kounev, Fabian Brosig and Nikolaus Huber was funded
by the German Research Foundation (DFG) under grant No. KO 3445/6-1. The work of Nicholas
Dingle was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) under
grant EP/I006702/1 “Novel Asynchronous Algorithms and Software for Large Sparse Systems”.

Part VII
Conclusions and Outlook

Chapter 20
Future of Resilience Assessment:
The AMBER Research Roadmap

Andrea Bondavalli, Henrique Madeira and Paolo Lollini

Abstract This chapter provides a condensed description of a roadmap for research
in technologies for assessment, measurement and benchmarking (AMB) of the
resilience of information, computer and communication systems. The research
roadmap is the result of the EU-funded AMBER Coordination Action, integrating
the consortium experience in the field with the insights resulting from discussions
and interviews with a variety of stakeholders about motivating scenarios, drivers
and priorities. A set of motivating scenarios help understand the current needs and
challenges in resilience assessment. These scenarios present viewpoints of industrial
players, end users, system operators and regulators. The research roadmap then pro-
vides a detailed list of research needs and challenges grouped in three categories: (i)
scientific and technological foundations, (ii) measurement and assessment, and (iii)
benchmarking. The foundations make the case for two types of research advances,
which we could label as ‘back to basics’ and ‘holistic’. The measurement and assess-
ment category identifies a number of topics of acute interest and that are particularly
challenging. Resilience benchmarking aims at providing generic, repeatable and
widely accepted methods for characterising and quantifying the system (or compo-
nent) behaviour in the presence of faults, and comparing the resilience of alternative
solutions. In addition to the above research issues, we also identified the challenges
we see in education as well as standardization.

A. Bondavalli (B) · P. Lollini
University of Firenze,
Viale Morgagni 65, I-50134 Firenze, Italy
e-mail: bondavalli@unifi.it

P. Lollini
e-mail: lollini@unifi.it

H. Madeira
DEI/CISUC, University of Coimbra,
3030-290 Coimbra, Portugal
e-mail: henrique@dei.uc.pt

K. Wolter et al. (eds.), Resilience Assessment and Evaluation of Computing Systems, 415
DOI: 10.1007/978-3-642-29032-9_20, © Springer-Verlag Berlin Heidelberg 2012

416 A. Bondavalli et al.

20.1 Introduction

Assessment, measurement and benchmarking of resilience (of computer systems)
are related concepts, but each of them reflects a different form of characterizing
computer resilience and demands specific methods and tools. These three terms may
mean slightly different things to different communities, but the scope of the AMBER
Coordination Action was easily defined as covering activities that involve quantitative
descriptions of the qualities of dependability and resilience. Within this scope, we will
use “assessment” to mean obtaining any kind of quantitative statement about these
qualities, especially supporting decision-making; use “measurement” in its usual
meaning in science and engineering, of mapping empirical observations to numbers
in a rigorous manner, through rigorous procedures and calibrated instruments; and
distinguish “benchmarking” activities as those in which the main purpose is ranking
systems using a simple and standardized method, even at the cost of it being somewhat
simplistic [514]. We have generally excluded from consideration, or described only
as the background for the research on which AMBER aims to foster debate and
coordination, many activities that may be called “measurement” in a broad sense of
the word, like formal proofs and checklist-oriented methods.

The very word “resilience” is not uniformly defined (or accepted) in what can
be called the “resilience research community”. “Resilience” tends to be a synonym
for fault tolerance in a broad sense, but it is also used to convey ideas of depend-
ability measures, sought for less narrowly defined and less static scenarios than
assumed in currently established methods [38]. AMBER addresses the communities
of researchers and users dealing with assessment of qualities related to these two
broad concepts. Therefore, in this chapter we will use “resilience” as a generalisa-
tion of terms like dependability, security, fault tolerance, and so on, to encompass all
attributes of the quality of “working well in a changing world that includes failures,
errors and attacks”. The changes can be planned or predictable, such as software
upgrades and configuration changes, or rather unforeseen such as failures [771].
The main objective of AMBER is the synthesis of a research roadmap on assess-
ing, measuring, and benchmarking resilience (abbreviated in the following as AMB
resilience), to be understood as a list of research directions that seem worth pursuing
now, with associated priorities.

The rest of this chapter is structured as follows: Sect. 20.2 proposes a set of ad-hoc
scenarios (in the form of “stories”) to exemplify the current needs and challenges in
the fields of future Internet, embedded systems, enterprise computing, supervision
of IT infrastructure, safety certification and regulation. In Sect. 20.3 we consider the
drivers that can influence the research needs on assessing, measuring and benchmark-
ing resilience, as well as the effective transfer of resilience assessment best practices
to European industry and the adoption of standards for resilience assessment and
benchmarking. The research roadmap is then provided in Sect. 20.4, integrating the
consortium experience in the field with the insights resulting from a long discus-
sion of scenarios, drivers and inputs from stakeholders and experts. Four main areas
have been identified: (i) scientific and technological foundations, (ii) measurement

20 Future of Resilience Assessment: The AMBER Research Roadmap 417

and assessment, (iii) benchmarking, and (iv) education, training, standardization
and take up. For each of them we identify recognised needs, challenges to be over-
come to satisfy these needs, and objectives for specific actions to be performed in
a short or medium term period. Moreover, we provide a synoptic diagram of the
connections between needs, challenges and (short and medium term) objectives.
Finally, Sect. 20.5 presents a series of alternate viewpoints about priorities within
the research roadmap. Each viewpoint has been written by one of the partners in
consultation with one or more industrial experts in a specific sector, to give exam-
ples of priorities that specific stakeholders would identify within the roadmap. The
parts of this section are accordingly titled: “embedded systems”, “transportation”,
“certification authorities and assessors”, “future internet technological platforms”,
“service architectures, platforms and infrastructures” and “enterprise security”. By
showing samples of viewpoints within each sector, this last section allows a reader
to appreciate how the roadmap could be tailored to specific points of view, offering
a particular perspective for reading the roadmap itself. The original version of the
Roadmap presented expanded descriptions and discussions of a subset of the needs,
challenges, objectives and actions from Sect. 20.4, to clarify their meaning and jus-
tification and to provide a more concrete view of the underlying issues. These could
not be reported here for the sake of space but can be accessible in [37].

20.2 Motivating Scenarios

In this section we present a set of example scenarios to illustrate some of the chal-
lenges that need to be addressed in resilience assessment, measurement and bench-
marking. The scenarios belong to the fields of Future Internet, embedded systems,
enterprise computing, supervision of IT infrastructure, and safety certification and
regulation.

20.2.1 Future Internet

The two scenarios presented in this section show how the Future Internet could,
and possibly will, shape the lives of all Europeans in or around 2020. They con-
cern the green urban transport (Sect. 20.2.1.1) and the information on the move
(Sect. 20.2.1.2).

418 A. Bondavalli et al.

20.2.1.1 Green Urban Transport

Scenario.1 It is 2020. As problems caused by vehicular traffic increase, several cities
are considering new mechanisms to control the emissions of pollutants. A proposed
method is based on monitoring drivers’ behaviour. Drivers are allowed to use personal
or public transport, but this depends on the level of traffic congestion at the time;
each driver has a personal carbon credit. Drivers can save their own carbon credit by
using public transport or reducing the use of their personal vehicles; users pay more
or less for travelling, depending on their carbon credit.

Several service providers propose their own ICT implementations of this mech-
anism. A large European capital city decides to introduce this service in the city
centre, since the pollution levels and people’s use of personal vehicles have become
excessive. The Traffic and Mobility Office of the city thus needs to choose a service
provider; the choice must be based on cost as well as trustworthiness qualities, like
reliability, resilience to attacks and operational failures, ability to guarantee quality
of service and to protect user data to ensure privacy. The Traffic and Mobility Office
gives the technical tasks of evaluating the different service providers, identifying the
best candidate, and defining a suitable combination of network infrastructure and
wireless connections, to an external company. This company has access to usage and
failure data concerning the various service providers, from other cities where the
service is already in use.

Will this company be able to assess the level of trustworthiness of each service
provider, so as to correctly select the best one for the needs of this specific city?
Open challenges. This scenario highlights several challenges in the measurement
and assessment of trustworthiness of future Internet-based applications. First of all
we have a problem of requirements: what are the main attributes of the service, to
be measured for assessing a Green Urban Transport application? Which aspects of
security and trustworthiness are measurable and quantifiable, and which metrics are
appropriate, for this application? If experimental evaluation (of subsystems or of
small-size pilot implementations of the complete service) is sought, are there any
reference fault loads and attack loads that are known to be appropriate for assessing
resilience to attacks and operational failures? There is also the problem of com-
positionality of measurements: after estimating low-level metrics referring to sub-
systems (e.g., performance/reliability/security of the wireless network, of the wired
infrastructure network and of vehicles’ on-board subsystems) how can these mea-
sures be aggregated to extract meaningful information about the trustworthiness of
the overall system, that is, of the service? Even with access to usage and failure data
about the competing service providers in other cities (in which the service is already
used), how can the assessments obtained from these data, representing trustworthi-
ness attributes of each provider’s service in a different set of cities, be extrapolated to
the new application environment (the specific city), or even meaningfully compared?

1 This scenario is partly inspired by Application scenarios and functional requirements for wireless
sensor and actuator networks in Future Internet (F. Forest) presented at the 10th LETI Annual
Review (24–25 June 2008).

20 Future of Resilience Assessment: The AMBER Research Roadmap 419

20.2.1.2 Network 2020: Information on the Move

Scenario.2 This scenario is about seamless mobility: Matti moves effortlessly
between his home, car and office interacting with family, friends and work colleagues
as he goes, and always with his whole world of personal information at his fingertips.
The scenario illustrates how in the Future Internet our personal information, content
and services will be available to us anywhere, at any time. Our everyday environ-
ments will be context-aware: systems and devices will be able to sense how, where
and why information is being accessed and respond accordingly. The Internet will
be our personal global network. This new world of seamless applications, services
and content requires a new network infrastructure, in which advanced features such
as semantics and trustworthiness must be built in. Matti’s world is more seamless
than anything we have today. There is no lost connectivity, no waiting for logons,
no poor quality content, no systems that don’t talk to each other. What’s more, all
environments (Matti’s home, office, car) are context-aware: systems and devices are
able to sense how, where and why information and content are being accessed and
respond accordingly.
Open challenges. From the point of view of measurement, assessment and bench-
marking of trustworthiness of future Internet-based applications, this scenario opens
several challenges. First of all, trust and security are paramount in this scenario:
they will be key enablers in realising the potential of the new online world, and
measurement, assessment and benchmarking of trust and security will be neces-
sary in order to be able to assure the quality of new future services as perceived
by their users (also allowing a fair comparison of alternative services and avoiding
mistrust). Secondly, developments such as cloud computing, social networks, and
service mash-ups require new approaches to regulation of privacy at a worldwide
scale. This should be complemented by research into privacy enhancing technolo-
gies (where data protective features and services are built in from the ground up) as
well as into their assessment techniques that provide public characterization of the
level of built-in privacy and security, together with accountability. To counter these
strategies, and to create a level playing field, regulators and public policymakers
should strive for open standards (including standard benchmarking of trustworthi-
ness), open interfaces (including hooks for measuring and assessment), and federated
architectures (reliable and secure interoperable platforms). Adherence to these prin-
ciples should be a mandatory requirement for developers of public Internet services.
Thirdly, resilience AMB technologies and large-scale testbeds are required to iden-
tify (and then reduce) the major technology-related roadblocks that may be in the
way to the realization of this scenario: vulnerable architectures, lack of adaptability
(also in quality of content and energy consumption), non-scalable connectivity and
accessibility, performability bottlenecks, lack of resilience to attacks and operational
failures.

2 It is a shortened version of the scenario “Network 2020: Information on the Move” taken from
Future Internet 2020, Visions of an industry expert group, which is an industry expert group report.
This document was found on the website http://www.future-internet.eu, the European Future Inter-
net Portal, a project initiative which hosts the Europe-wide debate on the Future of the Internet.

http://www.future-internet.eu

420 A. Bondavalli et al.

20.2.2 Embedded Sub-Systems in Automobiles

Scenario. Large automotive manufacturers rely on third parties for many aspects
of their products—that is, they are ‘Original Equipment Manufacturers’ (OEM).
As an example, assume that an automotive manufacturer has decided to offer an
infotainment server as an optional feature for its next generation of cars. Such an
infotainment server has interfaces to the car’s backbone network to connect user
panels, the wireless communication unit, and the GPS receiver. This poses high
risks, and the OEM must make absolutely sure that an infotainment system supplied
by a second company does not endanger the operation of the car.

In more detail, the infotainment server is required to implement a set of “sand-
boxing”3 techniques that provide confined execution environments for downloaded
applications. This must prevent hidden malware to access or manipulate restricted
data and should ensure that software design faults (software bugs) in a downloaded
application do not cause interruptions of the infotainment or system programs. It also
continuously monitors the application for failures and must take appropriate action
for benign as well as severe failures.

Assume now that the OEM has two offers from infotainment systems suppliers.
How do the OEM’s test engineers decide between offerings from different infotain-
ment system suppliers?
Open challenges. The OEM test engineers must measure both security and depend-
ability properties since malicious attacks as well as accidental failures must be antic-
ipated. However, the OEM test engineers have almost no standard ways of testing the
two offerings. This is true even if we assume that both suppliers offer easily acces-
sible and usable test infotainment systems. There are no widely accepted attack or
fault loads, nor methods to derive such attack and fault loads. In addition, the prod-
ucts delivered by the suppliers do not have standard measurement hooks, fault/attack
injection hooks or measurement data formats. Finally, there are no well-understood
and reusable grading criteria for ranking of contending systems.

The knowledge gaps apply to theoretical underpinnings, modelling and emulation
of software faults and security attacks, injection and data collection techniques, as
well as definition of useful measures.

20.2.3 Information Security Management in a Financial
Enterprise

Scenario. A Chief Information Security Officer (CISO) of a large investment firm
carries large responsibilities and must balance pressures and objectives from many
angles. In this particular case, the CISO must decide about the Information Rights

3 Sandboxing means providing a strictly-controlled set of resources for a guest program to run in,
such as a limited space on disk and memory. Many features, such as reading from input devices or
accessing the host system, are restricted.

20 Future of Resilience Assessment: The AMBER Research Roadmap 421

Management (IRM) solution that is appropriate for the company. IRM solutions are
variations of digital rights management solutions, associating metadata to informa-
tion such that management software can regulate access. The CISO’s first objective is
to determine whether such a system is worth the investment, and the question there-
fore is: how does the CISO assess the value of the IRM solution to the company?

To address this question, the CISO uses as starting point a variety of company
security policies and government regulations to determine the requirements for an
IRM solution. These pertain to often contradictory requirements, such as the need
to protect data from unauthorised access, allow for auditing of purposely retained
data, and the need to avoid employees accessing or receiving information that would
endanger the lawfulness of a financial interaction. In addition, the CISO must take
into consideration the employees sustained productivity as well as the behavioural
patterns of employees with respect to the use of technological security solutions.
Finally, a cost-benefit and risk analysis would need to be carried out.
Open challenges. The CISO is far less concerned with technology matters than
the engineers in the embedded sub-systems in automobiles scenario, but the lack
of well-established reusable tools, techniques and methodology is as much (if not
more) a pain point as in the technology oriented scenario. To carry out assessment
of socio-technological solutions such as the deployment of IRM, the CISO would
want a set of well-established tools and techniques that allow for integration of
many concerns. The CISO needs input parameters about security offered by the IRM
solution, thus requiring well-established security benchmarks. The CISO also needs
analysis methods and techniques to associate IT decisions with the financial and
business implications for the company. Finally, the CISO would like a knowledge
base or other reusable way of identifying and taking into account human factors. The
knowledge gaps apply to dealing with the multi-facetted nature of socio-technical
systems in an integrated fashion.

20.2.4 High-Level Education for IT Administration

Scenario. We assume a fresh computer science graduate whose first job is in IT
administration. The company he works for manages the IT for its customers and
the young IT administrator is made responsible for the daily operation of the office
applications of the customer enterprise. His tasks are relatively focussed, but become
more challenging over time, and include elements such as configuration management,
application monitoring, service level agreement management and eventually software
purchasing. The core in all jobs of this young administrator is assessment, both of the
existing applications and of possible newly acquired applications. The question this
scenario asks is: how well did the computer engineering degree prepare the young
graduate for the job?

The young graduate is fortunate enough to work for a company that is at the
forefront of management technologies. A considerable tool suite is available to help
the IT administrator with tasks such as network, server and service monitoring and

422 A. Bondavalli et al.

for more advanced analysis such as root cause analysis of failures. The R&D division
of the company develops advanced software tools for IT management, for instance
using model-based approaches. These model-based approaches include UML design
and domain-specific deployment models that include resilience properties in their
abstractions. In addition, the various divisions for which the young administrator
manages applications pose service level agreements (SLAs) that they want the IT
systems to fulfil.
Open challenges. As we mentioned, in this scenario we are especially interested in
the question whether the young computer engineering graduate received the right
training for his job. In particular, without proper fundamental training in assessment
methods and techniques the IT administrator is in danger of misusing the existing set
of elaborated management software tools (such as for monitoring, data processing
and root cause analysis). Of increasing importance is the ability of an IT administrator
to work with model-based abstractions, including UML in the design of application
integration solutions, domain-specific abstractions for deployment and assessment,
and model-based prediction to determine if SLAs can be met and operation can
be optimised with respect to SLAs. The increasing virtualisation-based dynamism
through service-oriented software and service provision solutions (including cloud
computing) create further challenges in dealing with partners through contracts that
include service level agreements.

20.2.5 Safety Certification and Regulation

Scenario. An assessor (working in an independent assessment body or in a regulatory
agency) has to recommend or approve the use of a certain safety system for a dan-
gerous plant in a regulated industrial sector. The proposed system is a combination
of off-the-shelf platforms with industry-specific and plant-specific application soft-
ware, developed with the help of off-the-shelf development tools. Accidents in this
plant may have very serious consequences, so the assessment must give assurance
of very low probability of accident, and very high confidence in this assessment is
required before the plant can be allowed to operate with the proposed safety system.
Following accepted practice, the assessor relies on aspects such as ‘proven in use’
evidence, quality of the development process and resilience of the architecture. But,
how confidently can the assessor assess system safety using such evidence?

The assessor uses the common set of techniques and tools in his work, but this
does not prevent him from being uncertain about the quality of the assessment. In
fact, the value of “proven in use” evidence is difficult to assess: it is hard to know
whether, for instance, the new safety system uses the same set of features of the
off-the-shelf platform as the one from which statistics were derived, and how many
failures may have gone unreported in the past. Another potential problem is the
reliance on process quality evidence: even though the assessor accepts the practical
constraints that dictate such reliance, he can feel particularly uneasy justifying the
relation between process quality and system safety. A third significant difficulty is in

20 Future of Resilience Assessment: The AMBER Research Roadmap 423

deciding how much “credit” to give for resilience features in the architecture: while
the architecture may include useful redundancy, statistically reliable information
about its effectiveness is limited, both because it is intrinsically hard to obtain and
because the vendors are often reluctant to provide it.
Open challenges. The difficulties that the assessor needs to overcome indicate some
hard open problems. More statistical evidence would be available if widely accepted
and uniform ways for collecting data such as amount of use, profile of use and fail-
ure data were available, and if vendors were willing to make such data available.
Even given abundant statistical data, the assessor needs methods and techniques for
extrapolating resilience measures from such data. The issues include for instance:
estimating the coverage of error detection and reporting facilities; characterising how
process quality relates to resilience of a product; improving the modelling and empiri-
cal knowledge of how system architecture affects resilience, so as to characterise and,
where possible, reduce the uncertainty of predictions based on probabilistic models.
Last, we can notice two other open challenges: (i) the need to increase awareness
of the sources of uncertainty in the evaluation of computing systems and (ii) the
lack of uniform and standard ways to collect, filter and report results obtained in
experimental evaluations. These methods should be based on sound statistical and
metrological science.

The knowledge gaps are in the quality and appropriateness of the data available
for assessing the resilience of systems, and the mathematical methods needed for
sound inference given the inevitable limits of the data that can feasibly be collected.

20.3 Drivers

In this section we discuss the main drivers for expanding research activities on assess-
ing, measuring and benchmarking resilience. Two important ever-present drivers are
complexity, which often sprouts difficulties in project development, and the pace of
change, which requires companies to rapidly understand the benefits and drawbacks
of any new technology or development process, while maintaining legacy systems
and obsolete technologies. The focus here is on the drivers that have recently emerged
and that are expected to continue motivating the development of resilience-related
techniques in the foreseeable future. The description is organized into the following
four groups:

• Information technologies are global and pervasive;
• There is a greater awareness for the environment;
• Socio-economic factors affect the resilience market;
• Technological innovation creates new issues.

424 A. Bondavalli et al.

20.3.1 Information Technologies are Global and Pervasive

New ways of distributing services. Recent initiatives promote new technologies and
new forms of distributing services through the Internet. Economic factors boost the
market for everything as a service, including software, aiming at reducing acquisition
and maintenance costs. For an organization to move to this service model there is a
strong need for assessing how good a given provider is, and how service failures affect
the return on investment. Using software through the Internet, as pushed by cloud
computing initiatives, will also open up opportunities for competition among dif-
ferent providers of cloud applications. This creates the need to benchmark, measure
and forecast the service provided through these new means, as that decision-making
requires factual data on resilience, availability, integrity, etc.
Emerging cyber-threats. Most enterprise systems cannot be considered secure
unless they are dependable, and vice versa. For this reason, organizations are inter-
ested in evaluating the resilience of their infrastructures to attacks. There are numer-
ous emerging cyber-threats, such as the increasing number of malware objects on the
Internet and the growing concerns with botnets (groups of infected computers that
are controlled by attackers), which may be used for data theft and other malicious
intents. Here, AMB technologies can be used as instruments for deciding whether to
migrate an organization to a newer version of a given software product, for evaluating
whether an infrastructure requires improvements, etc.

20.3.2 There is a Greater Awareness for the Environment

New technologies for a greener world. Technology is the means for guiding and
monitoring green policies, with governments and businesses wishing to analyze
energy usage and carbon footprints, to control traffic congestion, and so on. On
the end-user’s side, environmental and economical concerns motivate an increas-
ing number of professionals to carry out their activities using computer systems at
home—telecommuting. Those end-users, and the organizations they work for, are
interested in benchmarking different Internet access providers (wired and wireless)
as well as the resilience of online collaboration tools. The success of most green
initiatives depends on the resilience of the underlying technologies. For this reason,
governments, organizations and end-users would benefit from trustworthy techniques
for resilience assessment and measurement.
Green computing. There are several ongoing initiatives to make efficient use of
computer resources, to reduce the emission of greenhouse gases and to improve
the environment. The energy consumption of computer systems may be reduced by
centralizing processing power in a server and using thin clients as terminals. This
provides also the means for reducing storage requirements, by storing only a single
copy of each file and allowing multiple users to access it. The large-scale usage of this
type of architecture and associated techniques (e.g., virtualisation) is unprecedented.

20 Future of Resilience Assessment: The AMBER Research Roadmap 425

Resilience assessment and measurement are fundamental to guarantee the success
of these initiatives, as it is necessary to optimize the balance between resilience and
environmental impact of computer infrastructures.

20.3.3 Socio-Economic Factors Affect the Resilience Market

Regulatory demands. Society is becoming increasingly dependent on large-scale
ICT systems, as well as advanced embedded systems, which in the event of major ser-
vice failures may cause not only significant economic loss, but also severe accidents
or loss of vital government and public services. This dependence has increased the
efforts to regulate many issues related to resilience and dependability, as regulators
seek to protect the public. Data retention regulations are motivated by cyber-crime
and terrorism; the Sarbanes-Oxley (SOX) act requires corporations to maintain and
retain correct financial records, related to assessment through the need for moni-
toring, logging, auditing and analysis; the upcoming ISO 26262 standard for the
automotive industry recommends fault injection as a means to assess the effective-
ness of safety-related functions; the Basel 2 agreement has created a need for banks
to apply quantitative forecast to “operational risk” (which includes risks from ICT
failure). These are examples of the trend to regulate resilience and its assessment,
which compels companies to adopt the necessary AMB technologies.
Human factors. It is well known that the dependability of complex IT systems relies
to a large extent on human operators and their ability to handle failures and other
critical events. Experience shows that outages of systems that have been designed to
be highly resilient (e.g., telephone systems and large file servers) are often caused
by operator mistakes. While human reliability analysis has a long history, there is a
striking lack of adequate techniques for assessing and modelling users and operators
in complex roles for a large range of IT-based systems.

20.3.4 Technological Innovation Creates New Issues

Component-based and off-the-shelf products. Computer systems and systems-
of-systems are often built using off-the-shelf products, and software is increasingly
designed by decomposing a system into subcomponents that can be purchased from
different suppliers. This way of developing systems is now widespread, including
its use for building critical systems and infrastructures. Consequently, it is neces-
sary to create and adapt AMB techniques to compare different suppliers regarding
the resilience of their products. Since system integrators have less control over the
development process, it is increasingly important to evaluate the offerings of multiple
vendors of a given component.
Hardware and software reliability. Hardware failure modes are likely to change
significantly with new field-programmable devices and new integrated circuit tech-

426 A. Bondavalli et al.

nologies, as these are increasingly susceptible to soft errors (data corruption), device
aging, and variations in manufacturing processes. This will force chip manufacturers
to add more fault tolerance to their circuits, thereby changing the way hardware fail-
ures are manifested at the system level. Regarding software, a few trends of interest
are the increasing use of programming frameworks (that implement generic func-
tionality and handle flow-control), new development processes (such as agile and
model-driven development), and automatic code generation, as well as the use of
thread-level parallelism in multi-core programming. These advances are likely to
change the rate and nature of software and hardware faults, calling for new fault
models and new techniques for understanding how to mitigate their effects.

20.4 AMBER Research Roadmap: Abridged View

The AMBER roadmap for research on assessing, measuring and benchmarking
(AMB) resilience is reported here in a condensed version. The detailed descrip-
tion of the roadmap can be found in [37]. This roadmap was the final synthesis of
inputs coming from the work described in the previous sections, on the analysis of
the state of the art reported in [36], of other past research roadmaps, specifically
AMSD [39], GRID [396], and ReSIST [771]; on the feedback received during the
organized AMBER panels and workshops, as well as on the received responses to
the AMBER questionnaire.

Four main areas for investigation have been identified:

• Research area 1—Scientific and technological foundations: addresses the foun-
dations that underlie the other areas of research discussed in this roadmap. Among
the foundational issues, we identify for example the need for sound metrology-
based assessment principles, the handling of complex models and multi-faceted
arguments, and the inclusion of human behaviour.

• Research area 2—Measurement and assessment: deals with the challenges and
research directions related to measurement and assessment activities as typically
used to characterize a system alone, as opposed to ranking different systems.
Measurement and assessment require sound and well-defined methods, although
these need not be standardized.

• Research area 3—Benchmarking: targets benchmarking activities, which can be
seen as the evolution of current resilience assessment techniques into more stan-
dardized approaches. Resilience benchmarks offer generic, repeatable and widely
accepted methods for characterising the system behaviour in the presence of faults,
and allow the comparison of the resilience of alternative solutions.

• Research area 4—Education, training, standardization and take up: discusses
the educational, training and standardization issues related to resilience AMB.
Some of these issues identify actions that can be performed or supported by the
research community, while some others are related to more general policy actions.

For each of these research areas there are:

20 Future of Resilience Assessment: The AMBER Research Roadmap 427

• Needs (linked to the various drivers identified), which are felt by stakeholders and
research activities would aim to satisfy (although full satisfaction may be more an
ideal state than a feasible objective).

• Challenges, the most probable difficulties and obstacles to be overcome, in view
of the context, the present state, the objectives and the nature of the problem to be
solved.

• Objectives, which identify either tangible results to be achieved or research direc-
tions to be followed. For each objective we specify:

– The short (0–3 years) or medium (3–8 years) term in which the specified results
should be achieved or progress in the research directions should be made;

• Actions, i.e., specific activities that should be carried out to achieve the result or
to pursue the research direction.

The approach used to present the AMBER research roadmap for AMB resilience
consists of identifying in first place the needs and related challenges for each research
areas. This is presented in a table format to allow a very condensed view. Then, a
second table presents, for each area, the research objectives and the actions related to
attaining such objectives. A synoptic diagram shows the links among research needs,
challenges and objectives for each area, providing a snapshot of what is proposed to
each of the four research areas.

We found this approach richer than the classic list of research topics that is nor-
mally used to present research roadmaps. Unfortunately, presenting the research
needs, challenges, objectives and actions for each research area identified in the
research roadmap occupies a large number of pages. For that reason, the detailed
description of the AMBER research roadmap for AMB resilience is accessible in
[37], and the rest of this section just provides a condensed view with the topmost
research priorities.

The rest of this section presents a short list of topics, from those described
in [37], that are seen by the AMBER consortium as having the highest priority
for a possible research programme. This list was selected by consensus, through
rounds of debate within the consortium and advisors from industry. Each partner
contributed its knowledge of specific stakeholders and of the links between required
scientific advances. An agreed constraint was to keep the final list short: there are six
top priorities from the research areas of “scientific and technological foundations”,
“measurement and assessment”, “benchmarking”; plus two concerning “education,
training, standardization and take up”.

We have not ranked the priorities within this short list. We have instead identified,
for each item in the list, the more general goals, in terms of desired changes in
the landscape of application of assessment, measurement and benchmarking (AMB)
of resilience, which it aims to satisfy. Ranking within our list, for example for the
purpose of a funded research programme or to set the roadmap of a research group
or community, would depend on a necessary political choice between these more
general goals. These general goals for the research roadmap on AMB resilience
are the following:

428 A. Bondavalli et al.

1. Extension and combination of AMB methods to ensure that resilience assess-
ment integrates security issues together with accidental faults, design faults with
physical faults, human behaviour with machine behaviour, even in very complex
systems.

This integration is necessary now, and becoming more essential, with the increasingly
complex and integrated systems that characterise “future Internet” scenarios and
generally the Information Society.

2. Addressing the fundamental difficulties in quantitative assessment of high con-
sequence and low probability events: predictive value of past experience, com-
bination of diverse evidence, uncertainties about the models and assumptions
used.

This goal is crucial for society: these difficulties affect the assessment of systems and
infrastructures with great societal value but also great potential risk. Advances that
expand the range of applicability of AMB in these critical areas would also have
beneficial fall-out for the less critical applications.

3. Empirical validation of the practices already developed in measurement, mod-
elling and benchmarking, so that industry has a basis for steering its own invest-
ment regarding these techniques.

Adoption of new techniques throughout industry requires companies to invest in
adapting and implementing the techniques. But this requires sufficient empirical
evidence of how effective each technique is, and within which constraints.

4. Making the current practices of measurement, assessing and benchmarking more
rigorous, e.g., via better use of the established principles of metrology, better
matching of the choice of metrics to the measurement needs, and widely.

A more rigorous approach in applying AMB techniques would significantly increase
the benefits they offer and reduce the risks from inappropriate application.

5. Building AMB techniques or tools for specific systems and application areas
where these are currently inadequate.

In some applications, for instance in Future Internet scenarios with their charac-
teristics of dynamicity, large scale, heterogeneity, developing AMB techniques and
tools poses new research challenges, beyond the application of known principles and
solution.

6. Gaining widespread acceptance of AMB practices and results.

Promoting AMB practices in the form of, for example, state-of -the-art reports, cook-
books, and success stories, and disseminate the AMB results to the parties that can
benefit from them would contribute to the achievement of this goal.

Table 20.1 shows the topmost research topics for each area and the related general
goals. The research topics (column in the middle) can be seen in detailed in [37],
including their relationship with research challenges, objectives and related actions.

20 Future of Resilience Assessment: The AMBER Research Roadmap 429

Ta
bl

e
20

.1
To

pm
os

tp
ri

or
iti

es
fo

r
ea

ch
ar

ea
an

d
re

la
te

d
ge

ne
ra

lr
es

ea
rc

h
go

al
s

In
ve

st
ig

at
io

n
ar

ea
s

To
pm

os
tr

es
ea

rc
h

pr
io

ri
ty

to
pi

cs
R

el
at

ed
ge

ne
ra

l
go

al
s

Sc
ie

nt
ifi

c
an

d
te

ch
no

lo
gi

ca
l

fo
un

da
tio

ns
V

al
id

at
ed

m
et

ho
ds

fo
r

ex
tr

ap
ol

at
in

g
m

ea
su

re
m

en
ts

to
pr

ed
ic

tio
ns

of
sy

st
em

be
ha

vi
ou

r
de

sp
ite

di
ff

er
en

ce
s

be
tw

ee
n

th
e

sy
st

em
in

op
er

at
io

n
an

d
its

en
vi

ro
nm

en
ta

nd
th

e
sy

st
em

/e
nv

ir
on

m
en

t
w

he
re

th
e

m
ea

su
re

m
en

ts
w

er
e

ta
ke

n

2,
4,

5

In
ve

st
ig

at
io

n
of

pr
in

ci
pl

es
fo

r
su

cc
es

sf
ul

in
te

gr
at

io
n

of
re

si
lie

nc
e

as
se

ss
m

en
t,

m
ea

su
re

m
en

ta
nd

be
nc

hm
ar

ki
ng

te
ch

no
lo

gi
es

in
to

di
ff

er
en

tp
ha

se
s

of
th

e
lif

e
cy

cl
e

of
IT

sy
st

em
s,

in
cl

ud
in

g
m

et
ho

ds
fo

r
ev

al
ua

tin
g

te
ch

ni
ca

le
ffi

ci
en

cy
an

d
ec

on
om

ic
im

pa
ct

1,
4,

5

Im
pr

ov
ed

“a
rg

um
en

ta
tio

n”
pr

oc
es

se
s,

w
hi

ch
co

rr
ec

tly
fo

rm
ul

at
e,

co
m

m
un

ic
at

e
an

d
ve

ri
fy

co
m

pl
ex

ar
gu

m
en

ts
co

m
bi

ni
ng

“h
ar

d”
ev

id
en

ce
(m

ea
su

re
m

en
t,

m
at

he
m

at
ic

al
m

od
el

s)
an

d
“s

of
t”

ev
id

en
ce

(j
ud

ge
m

en
t)

,w
ith

pr
op

er
tr

ea
tm

en
to

f
ep

is
te

m
ic

un
ce

rt
ai

nt
y,

le
ve

ls
of

co
nfi

de
nc

e,
an

d
“u

nk
no

w
n

un
kn

ow
ns

”

1,
2,

4

M
ea

su
re

m
en

ta
nd

as
se

ss
m

en
t

D
ev

el
op

m
en

to
f

ef
fic

ie
nt

on
-l

in
e

m
ec

ha
ni

sm
s

to
m

on
ito

r
th

e
en

vi
ro

nm
en

tc
on

di
tio

ns
of

th
e

sy
st

em
an

d
to

dy
na

m
ic

al
ly

ev
al

ua
te

an
d

as
se

ss
its

re
si

lie
nc

e
1,

5

Pr
ac

tic
al

,t
ru

st
w

or
th

y
an

d
w

id
el

y
ap

pl
ic

ab
le

to
ol

s
fo

r
m

ea
su

re
m

en
ta

nd
as

se
ss

m
en

ti
n

la
rg

e-
sc

al
e

dy
na

m
ic

sy
st

em
s,

ad
ap

ta
bl

e
an

d
ev

ol
vi

ng
in

fr
as

tr
uc

tu
re

s,
an

d
ot

he
r

do
m

ai
ns

w
he

re
th

es
e

ar
e

la
ck

in
g

1,
5

B
en

ch
m

ar
ki

ng
V

al
id

at
ed

re
fe

re
nc

e
fa

ul
tlo

ad
s

(i
.e

.,
se

ts
of

fa
ul

ts
th

at
ar

e
re

pr
es

en
ta

tiv
e

of
sp

ec
ifi

c
do

m
ai

ns
)

an
d

co
rr

es
po

nd
in

g
in

je
ct

io
n

to
ol

s
(t

ha
ta

llo
w

ea
sy

im
pl

em
en

ta
tio

n
an

d
po

rt
ab

ili
ty

of
th

e
fa

ul
tlo

ad
s)

to
be

us
ed

in
th

e
de

ve
lo

pm
en

to
f

re
si

lie
nc

e
be

nc
hm

ar
ks

3,
5

E
du

ca
tio

n,
tr

ai
ni

ng
,

st
an

da
rd

iz
at

io
n

an
d

ta
ke

up
D

is
se

m
in

at
io

n
of

re
se

ar
ch

re
su

lts
,i

nc
lu

di
ng

be
nc

hm
ar

k
pr

ot
ot

yp
es

,s
ho

w
in

g
th

at
re

si
lie

nc
e

be
nc

hm
ar

ks
ar

e
te

ch
ni

ca
lly

ac
hi

ev
ab

le
an

d
co

st
ef

fe
ct

iv
e

6

Pr
om

ot
io

n
of

pr
op

er
an

d
fa

ir
re

si
lie

nc
e

as
se

ss
m

en
tp

ra
ct

ic
es

fo
r

sp
ec

ifi
c

cl
as

se
s

of
sy

st
em

s/
se

rv
ic

es
6

430 A. Bondavalli et al.

20.5 Tailoring the Roadmap to Specific Roles and Industrial
Domains: Specific Examples

This section proposes a set of viewpoints about priorities as seen from the perspective
of specific industrial domains or professional roles, thus providing alternative ways
of reading the roadmap. We considered the following perspectives:

• Embedded Systems;
• Transportation;
• Certification Authorities and Assessors;
• Future Internet technological platforms;
• Service Architectures, Platforms and Infrastructures; and
• Enterprise Security.

Within each industrial domain and each role there will be a variety of actors with
different interests and opinions. From this range of different positions, this section
documents a sample of opinions of senior experts. The discussion provided for each
“perspective” in the above list is the outcome of rounds of interaction between
AMBER members and AMBER Advisory Board members working in these dif-
ferent domains, aiming to identify the items of the roadmap that may get priority
in the respective domain. In addition to the topmost research priorities presented
in Sect. 20.4, the interested reader should consider the detailed description of the
research roadmap presented in [37] in order to follow the discussion of roadmap in
each domain.

20.5.1 Embedded Systems

This section describes the research priorities for the embedded systems domain,
specifically addressing the perspective of a systems integrator. The role of a systems
integrator is to bring together components manufactured by several companies into
a complete product, such as an airplane, a power plant or a satellite. One important
concern in this domain is to be able to predict the robustness of a design as early
as possible in the development. This calls for techniques to extrapolate measure-
ments from previous designs to new ones, taking advantage of the field data usually
collected by mature companies. To facilitate adoption, those techniques must be
easily integrated with existing methodologies, such as model-driven development.
Therefore, two important research problems are:

• Validated methods for extrapolating measurements to predictions of system behav-
iour despite differences between the system in operation and its environment and
the system/environment where the measurements were taken.

• Reducing the cost of resilience assessment and measurement by developing meth-
ods and tools that are easy to integrate into existing development methods and tool
chains.

20 Future of Resilience Assessment: The AMBER Research Roadmap 431

It is fundamental for an integrator to understand the resilience of components and
subsystems that are purchased from suppliers. Simple metrics such as the mean time
between failures are insufficient, and suppliers are gradually expected to provide
more information on the failure modes and failure rates of their components. This
can be achieved, at least in part, if suppliers perform resilience benchmarking and
make the results available. A relevant step in this direction is:

• Development of concrete examples of resilience benchmarks (possibly as an evo-
lution/standardization of benchmark prototypes).

Manufacturers of safety-critical systems must provide arguments sustaining the
safety of their products. In some industries these arguments are documented and
compiled into “safety cases”, which enable all stakeholders to examine the available
evidence. It is important for manufacturers to have high confidence in the argumen-
tation. Otherwise, they are forced to incorporate more redundancy in their designs,
in order to remain on the safe side. Thus, an important issue is:

• Improved “argumentation” processes, which correctly formulate, communicate
and verify complex arguments combining “hard” evidence (measurement, mathe-
matical models) and “soft” evidence (judgement), with proper treatment of epis-
temic uncertainty, levels of confidence, and “unknown unknowns”.

When a systems integrator acquires a hardware module from a supplier and installs
its own software on it, there is a need to assess the final configuration. The supplier
can ease this assessment by equipping the hardware modules with:

• Standard set of monitoring features and “hooks” to facilitate AMB and the devel-
opment of related tools.

Lastly, companies learn from accumulated experience how to improve the resilience
of their systems. Field failure data is fundamental to enable this process. However, it
is often difficult to obtain and log the necessary data, particularly when using com-
mercial off-the-shelf components. The embedded systems industry would therefore
benefit from ways to understand the circumstances under which components fail. To
this end, progress should be made in:

• Development of efficient on-line mechanisms to monitor the environment condi-
tions of the system and to dynamically evaluate and assess its resilience.

20.5.2 Transportation

The commercial transport industry is developing ever more complex Intelligent
Transport Systems (ITS) to enhance the range of features provided to drivers, fleet
managers and other stakeholders. The present focus is on enabling vehicle connec-
tivity to numerous other systems and infrastructures, including traffic management
centres, local authorities, weather stations, toll offices, other vehicles and the Internet.

432 A. Bondavalli et al.

The growing complexity of systems in this domain needs to be met with appropri-
ate (and possibly new) methods and tools for assessing, measuring and benchmarking
resilience. One important challenge lies in reducing the cost and time required to per-
form certification, verification and validation activities. To this end, the most relevant
foundational issues are:

• Investigation of principles for successful integration of resilience assessment, mea-
surement and benchmarking technologies into different phases of the life cycle of
IT systems, including methods for evaluating technical efficiency and economic
impact.

• Adoption of sound measurement practices in the transportation domain.
• Standard set of monitoring features and “hooks” to facilitate AMB and the devel-

opment of related tools.

Transportation systems are becoming more dynamic and capable of adapting to
changes in the operation environment. There is a lack of cost-efficient resilience
assessment techniques for such systems, especially techniques that are able to cope
with the unpredictability of the environment and the customized configuration of each
vehicle. For these reasons, there are two main issues in measurement and assessment
that should be addressed:

• Development of efficient on-line mechanisms to monitor the environment condi-
tions of the system and to dynamically evaluate and assess its resilience.

• Development of experimental techniques for resilience assessment in ITS.

In the long term, transportation systems are expected to provide greater flexibility,
allowing for instance third-party applications to be downloaded onto onboard units.
Such runtime changes to the system’s configuration would benefit from ways to
benchmark the impact of software changes on the overall resilience. Two relevant
steps in this direction are:

• Cost effective, easy to use, and fast enough resilience benchmark prototypes for
the transportation domain.

• Validated reference faultloads (i.e., sets of faults that are representative of specific
domains) and corresponding injection tools (that allow easy implementation and
portability of the faultloads) to be used in the development of resilience bench-
marks.

Lastly, the transportation industry faces very rapid changes in processes and tech-
nologies, leading managers and engineers to invest in self-learning. Such initiatives
require teaching material to be made available. Thus, an important step would be:

• Definition of specific syllabus and course material for resilience assessment.

20.5.3 Certification Authorities and Assessors

The main goal of an assessor (or of a certification authority) is to check if the depend-
ability requirements (e.g., in terms of safety, security, resilience) of a specific system

20 Future of Resilience Assessment: The AMBER Research Roadmap 433

are satisfied or not. This is a very crucial work that usually concerns safety-critical
systems where a failure can lead to catastrophic consequences, so the assessor should
rely on a set of techniques and tools which allows him to trustfully rely on the quality
of the assessment process and on the outcomes produced. In other words, there is a
general need of

• practical, trustworthy and widely applicable tools for measurement and assessment
in large-scale dynamic systems, adaptable and evolving infrastructures, and other
domains where these are lacking.

Another important issue is that, in the assessment process, the system’s behaviour
is usually predicted using data collected in the past, sometimes related to different
environments or even to similar systems. To take correct decisions, corrective factors
should be known to extrapolate future system’s behaviour from slightly different sce-
narios, or at least indications should be available about the uncertainty of predictions.
In other words, there is the need to

• validate methods for extrapolating measurements to predictions of system behav-
iour despite differences between the system in operation and its environment and
the system/environment where the measurements were taken.

As detailed in the scenario concerning safety certification and regulation, there are
several open challenges that still need to be managed and that currently prevent
an assessor from being certain about the quality of the assessment, so both short
term and medium term research activities are considered important. With respect
to the AMBER roadmap, the focus will be on the “measurement and assessment”
and “scientific and technological foundations” areas rather than on “benchmarking”,
since the objective is not comparing different systems or different products to select
the most dependable one, but just to assess the dependability properties of a critical
system to allow the claim they are above the required threshold.

The main medium term objective is the

• Development of (domain-specific) compositional framework for a holistic assess-
ment process.

The complexity of current critical system, in terms of heterogeneity, evolvability,
largeness, dynamicity, inhibits the application of well-proven traditional methods
“as they are”, but requires the development of an assessment framework where the
synergies between different evaluation techniques and tools are exploited to provide
realistic assessments. A related challenge is the

• provision of domain-specific rules to compose/integrate different methods and
tools for resilience assessment.

This challenge concerns the expressive power of the formalisms (for efficient mod-
elling) as well as the complexity that the supporting solution tools can handle. The
elaboration of proper rules to divide the problem and then compose/integrate the
results of the different methods and tools used to solve the sub-problems is a possi-
ble encouraging approach to attack this challenge.

To achieve this medium term objective, particular effort should be put on:

434 A. Bondavalli et al.

• The identification of the base types of measurement and modelling techniques
and tools (applicable in a given application domain) and the possible interactions
among them to provide realistic assessments;

• The assessment of the impact of the approximations introduced in modelling on
the resilience-related predictions sought.

Moreover, a number of short term (thus preliminary) actions and objectives should
be pursued:

• Identification of simple and universally accepted resilience-related metrics.
• Development of efficient methods coping with model and size complexity.

Besides these research activities, there are other issues seen of primary importance
in education as well as standardization. Among them:

• The need of comprehensive state-of-the-art reports (including research gaps, lim-
itations and success stories) on resilience assessment techniques.

• The availability of a cookbook (or cookbooks for different domains) on resilience
assessment and benchmarking.

• The short term objective of defining specific syllabus and course material for
resilience assessment.

20.5.4 Future Internet Technological Platforms

The most important theme in the Future Internet domain is currently related to the
proliferation of digital identities and their trustworthiness.

The services that will constitute the basis of the Future Internet should offer
simple access methods, and the problem of guaranteeing security in the usage of
these services should be always considered.

Future Internet will have characteristics of high dynamicity, with the necessity of
maintaining a high level of resilience. Future Internet systems will be characterized
by needs of adaptability to different environment conditions. Future Internet systems
will also be evolving systems. In this scenario, enhancing the capabilities of on-line
monitoring systems will thus be of uttermost importance, as it would be difficult to
obtain off-line trustable (measurement) results of resilience.

We identified the following six points of the AMBER final research roadmap as
the topmost research priorities in this domain.

• Development of efficient on-line mechanisms to monitor the environment condi-
tions of the system and to dynamically evaluate and assess its resilience.

• Standard set of monitoring features and “hooks” to facilitate AMB and the devel-
opment of related tools (at least for computer systems in specific domains).

• Coping with highly complex, adaptable and evolving benchmark targets (compo-
nents, systems and services).

• Designing and developing test beds for emerging applications, e.g., cloud com-
puting and collaborative services.

20 Future of Resilience Assessment: The AMBER Research Roadmap 435

• Reusable benchmark components and tools to facilitate the development of bench-
marks in different benchmarking domains.

• Understanding the value of assessing and benchmarking resilience in the business
domain and in the user/customer community.

20.5.5 Service Architectures, Platforms and Infrastructures

Service architectures, platforms and infrastructures become increasingly vulnerable
as they become more complex, thus they need to be made resilient to attacks and
operational failures. Minimizing the risk associated with loss of IT services or user
data needs precise metrics and models for evaluating risk, augmenting tools with
resilience evaluation capabilities in the design phase, and rigorous resilience mea-
surement and real-time assessment techniques in the operational phase. These needs
are reflected in the following objectives and actions selected by the domain experts.

Various resilience metrics are used in an increasing extent in IT systems. However,
only a few metrics can be used all over the lifetime of an IT system in a consistent
way, due to the lack of proper definitions and a related metrological foundation.
There is a significant ambiguity in the definitions used and in the specification of
the validity of measures and benchmark results, thus reducing the portability and
reusability of results used in quantitative evaluation. In case of security, adaptation
of metrics to evolving threats is largely unsolved. Accordingly, the first priority is
the following:

• Elaboration of easy-to-use, practically measurable (domain-specific) resilience
metrics (including metrics for security) and establishing common “operational”
definitions for them, in domains where these are lacking.

Resilience predictive capability is useful for system developers, designers, architects,
and IT practitioners who assemble the hardware and software into even more complex
systems, and the clients who purchase and operate the systems. Methods to evaluate
resilience metrics prior to build, at the various levels of build, are especially useful,
permitting design change before design commitment. In addition to failures, it would
be valuable to assess the resilience to planned change activities such as release and
version updates, hardware or software configuration changes, etc. The ability to
quantify resilience along the dimensions of the application environment so as to
more accurately predict for a specific use case of the application is highly desirable:

• Elaboration of extrapolation methods and tools to generalize observations (mea-
sures).

The correspondence between IT based risks and business (or more generically envi-
ronmental) processes is of high concern. The qualification and quantification of risks
must heavily dependent upon their implications on business processes using the IT
systems under analysis. Resilience measures need to focus on the risks with the

436 A. Bondavalli et al.

highest impacts on the supported processes. In the area of IT, because of inade-
quate or non-existent models and tools, assessing business risks is not always done
or done with insufficient rigour. If there were trustworthy and accurate models for
evaluating risk associated with loss if IT service, it is expected that they would be
extensively used by researchers (to demonstrate risk reduction capabilities), design-
ers, consultants and clients (expectation is that clients would invest in resilience if
risks were clearly understood). The development of models for risk analysis has to
be extended with the elaboration of corresponding methods and tools. The related
research priorities are the following:

• Understanding the economics and overall impact of resilience assessment on the
lifecycle of IT systems.

• Development of business and economic models for risk analysis.

Real-time assessment of operational system resilience is a critical need. Even when
a system has been properly configured for resilience, changes can take place which
reduce or even eliminate protection measures. If there is no notification of the
degraded state, outages may occur that the system was assumed to be guarded against.
Advanced analytics to evaluate system state and to identify states where resilience
is exposed have great value. Initially, real-time assessment should provide for issue
notification and recommendations on corrective actions. Over time, automation of the
required responses can be expected. In large-scale dynamic systems new, efficient
model-driven online assessment methods are needed. Accordingly, the following
research is of high priority:

• Development of efficient online mechanisms to monitor the environment condi-
tions of the system and to dynamically evaluate and assess its resilience.

Aimed more at the system design stage than the operational phase, the development
of methods and tools for resilience assessment would be beneficiary. These would be
used by system and application architects, that is, those who design and build complex
IT systems at various levels. Augmenting design tools with resilience evaluation
capabilities is an excellent objective as is resilience assessment of design models:

• Development of methods for resilience assessment through automated analysis.

The advances in resilience assessment and measurement shall face (and serve) the par-
adigm shift observable in this domain nowadays: details of computing resources are
abstracted from the users who no longer need control over the technology infrastruc-
ture. Virtualisation and other technologies enable convenient, on-demand access to
a shared pool of configurable computing resources as outsourced services. In this
context, assessment and measurement of resilience is closely related to Service Level
Agreement/Quality of Service management and charging of customers. Accordingly,
the used techniques have to be precise, rigorous, and at the same time widely accepted
and agreed among service providers and customers.

20 Future of Resilience Assessment: The AMBER Research Roadmap 437

20.5.6 Enterprise Security

CISOs need to make tools to make security investment decisions. Currently, they
base their decision making on trends in the industry, general intuition of good prac-
tice, etc; they also need to be salesmen to sell their proposed decisions to manage-
ment. The tools CISOs would want fall in two camps: (i) tools that allow objective
decision-making and (ii) ways to share knowledge (an interesting aspect not covered
by AMBER much). The hope of a CISO is not that much in expert systems that act
as oracle and divine answers, but in tools that provide objective suggestions, com-
municate the important aspects to consider, etc. A CISO is very much aware of the
importance in understanding human tendencies, often economically driven, possibly
influenced by training, and often driven by personal tendencies such as risk averse-
ness. Although a CISO understands that assessment is a key ingredient in making
decisions in more objective fashion, assessment per se is not a goal they pursue: it’s
the decision making that matters, not the assessment.

Priorities:

• Integration of considerations related to human behaviour in the assessments of
resilience of computer systems as affected by the behaviour of their users, system
managers, and adversaries.

• Practical, trustworthy and widely applicable tools for measurement and assessment
in large-scale dynamic systems, adaptable and evolving infrastructures, and other
domains where these are lacking.

• Finding whether representative types of faults exist through field studies and analy-
sis. (In this case, faults should be read as ‘attacks’. The fact that it is field studies
and analysis is irrelevant, any means are okay.)

20.6 Summary and Conclusion

This chapter presents a roadmap for research in technologies for assessment, mea-
surement and benchmarking (AMB) of the resilience of information, computer and
communication systems. It is the result of the EU-funded AMBER Coordination
Action, integrating the consortium experience in the field with the insights result-
ing from discussions and interviews with a variety of stakeholders about motivating
scenarios, drivers and priorities.

The chapter starts by describing a set of motivating scenarios that help understand
the current needs and challenges in resilience assessment. These scenarios present
viewpoints of industrial players, end users, system operators and regulators. Based
on these scenarios, we identify opportunities and challenges that we believe will
act as drivers for investment in improved resilience AMB technologies. In particular,
we believe that the establishment of standardized and sound assessment technologies
and benchmarks will be a catalyst for the acceptance of AMB solutions. If done well,
it will lead to improved competition by providing easy to communicate measurable
objectives for manufacturers, system integrators and users alike. In addition, the

438 A. Bondavalli et al.

increasing demands by regulators as well as the continuing technological progress
in software and hardware will create challenges to be addressed by research in the
field.

The research roadmap (described in a condensed form in Sect. 20.4 and fully
detailed in [37]) first provides a detailed list of research needs and challenges grouped
in four categories: (i) scientific and technological foundations, (ii) measurement and
assessment, (iii) benchmarking, and (iv) education, training, standardization and take
up.

The foundations make the case for two types of research advances, which we
could label as ‘back to basics’ and ‘holistic’. The desire to go ‘back to basics’ refers
to the creation of a standardized set of sound but simple techniques and tools for
assessment, based on, for instance, insights from metrology (the science of mea-
surement). The ‘holistic’ view refers to the identification that the context (human,
socio-economic, political) in which computer systems operate should be considered
and assessment should take a holistic view, thus requiring the study of human factors,
business impact and the integration of tools and/or arguments, as well as identifying
practical limits for the applicability of each class of methods as a function of the
environment. A two-prong strategy is therefore needed, on the one hand to keep
advancing our assessment methods and techniques to deal with increasingly com-
plex system deployments, and address hard theoretical problems, on the other to
work towards standardized basic tools that through widespread use can dramatically
change the way resilience is viewed and perceived.

The measurement and assessment category identifies a number of topics of
acute interest and that are particularly challenging (in addition to topics already dis-
cussed above). In particular, this concerns on-line assessment for run-time system
adaptation and optimisation (often referred to as self-adaptive systems), the quan-
titative assessment of security (that is, the ability of a system to withstand attacks
and malicious interference), and the analysis of collected data in a structured and
powerful a way.

Resilience benchmarking aims at providing generic, repeatable and widely
accepted methods for characterising and quantifying the system (or component)
behaviour in the presence of faults, and comparing the resilience of alternative
solutions. A problem is that, typically, benchmarks may not be designed well
enough and are prone to being ‘gamed’, in which case the benchmark may have
unintended negative consequences. The research challenges identified in the bench-
marking section are therefore about constructing benchmarks that are robust while
easy to use. Questions that need to be addressed are how to subdivide application
domains, how to create acceptance through standardization, how to include measure-
ment and fault injection hooks into systems, etc.

We also identified the challenges we see in education as well as standardization.
It has become apparent to us that to fulfil some of the potential of broadly applied
resilience assessment, both these aspects need to be addressed. We already touched
on the importance of standardized basic assessment techniques and standardized
benchmarks. In addition, advances in education of assessment techniques are critical

20 Future of Resilience Assessment: The AMBER Research Roadmap 439

for computer system engineers to appreciate the power of quantitative assessment as
well as the pitfalls of poorly conducted assessment.

Acknowledgments The authors acknowledge the support given by the European Commission to
the AMBER Coordination Action [38].

References

1. Amazon Web Services Discussion Forums, http://developer.amazonwebservices.
com/connect/thread.jspa?threadID=21401&tstart=15. Accessed June 2009

2. Cloud Security Alliance, http://www.cloudsecurityalliance.org. Accessed Jan 2011
3. Cloutage—tracking cloud incidents, security, and outages, http://cloutage.org/. Accessed

June 2011
4. IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed

and Mobile Broadband Wireless Access Systems. Technical report 802.16e, Dec 2005
5. IDC Enterprise Panel, N = 244, Aug 2008
6. Universal Mobile Telecommunications System (UMTS) and LTE; Radio Resource Control

(RRC); Feasibility study for E-UTRA and UTRAN. (3GPP TS 25.912, v9.0.0, release 9),
Oct 2009

7. NTT Communications, Cloud or Fog? The business realities of cloud computing for UK
enterprises (2009)

8. HOMESNET: Home Base Station, An emerging network paradigm. CELTIC European
project (2009–2011), http://www.celtic-initiative.org/Projects/Celtic-projects/Call6/
HOMESNET/homesnet-default.asp

9. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial
Radio Access Network (E-UTRAN); Overall description, Stage 2 (3GPP TS 36.300, release
9, v9.1.0), Oct 2010

10. LTE and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control
(RRC); protocol specification. (3GPP TS 36.331, release 9, v9.4.0), Sept 2010

11. Universal Mobile Telecommunications System UMTS; Radio Resource Control (RRC);
protocol specification. (3GPP TS 36.331, release 9, v9.1.0), Feb 2010

12. Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US East Region,
http://aws.amazon.com/message/65648/. Accessed April 2011

13. FEMA Reference manual to mitigate potential terrorist attacks against buildings [electronic
resource]: providing protection to people and buildings (Federal Emergency Management
Agency, Washington, 2003)

14. 3GPP. TS 25.104, V9.5.0 (2010-09) Base station (BS) radio transmission and reception
(FDD) (2010), http://www.3gpp.org/ftp/specs/html-info/25104.htm

15. R.J. Abbott, Resourceful systems for fault tolerance, reliability, and safety. ACM Comput.
Surv. 22(1), 35–68 (1990)

16. R. Abdalla, Q. Cheng, V. Tao, J. Li, Network-centric approach for modeling infrastructure
interdependency. Photogramm. Eng. Remote Sens. 27(6), 681–690 (2007)

17. T. Abdelzaher, K. Shin, N. Bhatti, Performance guarantees for web server end-systems: a
control-theoretical approach. IEEE Trans. Parallel Distrib. Syst. 13(1), 80–96 (2002)

A. Avritzer et al., Resilience Assessment and Evaluation of Computing Systems,
DOI: 10.1007/978-3-642-29032-9, � Springer-Verlag Berlin Heidelberg 2012

441

http://developer.amazonwebservices.com/connect/thread.jspa?threadID=21401&tstart=15
http://developer.amazonwebservices.com/connect/thread.jspa?threadID=21401&tstart=15
http://www.cloudsecurityalliance.org
http://cloutage.org/
http://www.celtic-initiative.org/Projects/Celtic-projects/Call6/HOMESNET/homesnet-default.asp
http://www.celtic-initiative.org/Projects/Celtic-projects/Call6/HOMESNET/homesnet-default.asp
http://aws.amazon.com/message/65648/
http://www.3gpp.org/ftp/specs/html-info/25104.htm

18. B. Abrahao, V. Almeida, J. Almeida. Self-adaptive SLA-driven capacity management for
internet services, in International Workshop on Distributed Systems: Operations and
Management (2006)

19. Acunetix. AcuSensor Technology (2011), http://www.acunetix.com/vulnerability-scanner/
acusensor.htm

20. B. Addis, D. Ardagna, B. Panicucci, L. Zhang, Autonomic management of cloud service
centers with availability guarantees, in IEEE International Conference on Cloud Computing
(2010), pp. 220–227

21. V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E. Houstis, J. Rice, R. Sakellariou,
D. Sundaram-Stukel, P. Teller, M. Vernon, Poems: end-to-end performance design of large
parallel adaptive computational systems. IEEE Trans. Softw. Eng. 26(11), 1027–1048 (2000)

22. M.K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Anerousis, L.B. Mummert, Problem
determination in enterprise middleware systems using change point correlation of time
series data, in IEEEIFIP Network Operations and Management Symposium NOMS,
Vancouver, Canada, April 2006, pp. 471–482

23. S. Agarwala, F. Alegre, K. Schwan, J. Mehalingham, E2eprof: automated end-to-end
performance management for enterprise systems, in Proceedings of the 37th Annual IEEE/
IFIP International Conference on Dependable Systems and Networks, June 2007, pp. 749–758

24. P. Agrawal, Fault tolerance in multiprocessor systems without dedicated redundancy. IEEE
Trans. Comput. 37, 358–362 (1988)

25. M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, A. Muthitacharoen. Performance
debugging for distributed system of black boxes, in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, Oct 2003, pp. 74–89

26. B. Aichernig, W. Krenn, H. Eriksson, J. Vinter, State of the Art Survey–Part A: Model-
based Test Case Generation (2008), http://www.mogentes.eu/

27. J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, GOOFI: Generic object-oriented fault
injection tool, in Proceedings of the 2001 International Conference on Dependable Systems
and Networks (DSN 2001), July 2001, pp. 83–88

28. M. Albano, S. Chessa, R. Di Pietro, Information assurance in critical infrastructures via
wireless sensor networks, in Information Assurance and Security, 2008. ISIAS ’08. Fourth
International Conference on, Sept 2008, pp. 305–310

29. A. Albinet, J. Arlat, J.-C. Fabre, Characterization of the impact of faulty drivers on the
robustness of the linux kernel, in Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN 2004), IEEE Computer Society, June–July 2004,
pp. 867–876

30. J. Almasizadeh, M.A. Azgomi, Intrusion process modeling for security quantification, in:
International Conference on Availability, Reliability and Security (IEEE Computer Society,
Los Alamitos, 2009), pp. 114–121

31. J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, M. Trubian, Joint admission
control and resource allocation in virtualized servers. J. Parallel Distrib. Comput. 70(4),
344–362 (2010)

32. R. Almeida, N. Mendes, H. Madeira, Sharing experimental and field data: the amber raw
data repository experience, in 30th IEEE International Conference on Distributed
Computing Systems Workshops—ICDCSW, Genova (2010)

33. R. Almeida, M. Vieira, Benchmarking the resilience of self-adaptive software systems:
perspectives and challenges, in 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2011, Honolulu, Hawaii, May 2011

34. J. Alonso, L. Silva, A. Andrzejak, P. Silva, J. Torres, High-available grid services through
the use of virtualized clustering, in Grid Computing, 2007 8th IEEE/ACM International
Conference on, Sept 2007, pp. 34–41

35. G.A. Alvarez, F. Cristian, Centralized failure injection for distributed, fault-tolerant
protocol testing, in Proceedings of the 17th IEEE International Conference on Distributed
Computing Systems (ICDCS’7) (1997), pp. 78–85

442 References

http://www.acunetix.com/vulnerability-scanner/acusensor.htm
http://www.acunetix.com/vulnerability-scanner/acusensor.htm
http://www.mogentes.eu/

36. AMBER Consortium. D2.2—state of the art (final version). Technical report, AMBER
Consortium, July 2009

37. AMBER Consortium. D3.2—final research roadmap. Technical report, AMBER
Consortium, Dec 2009

38. AMBER—Assessing, Measuring and BEnchmarking Resilience (Coordinated Action ICT-
FP7-216295), http://www.amber-project.eu/

39. AMSD Consortium. D1.1—amsd: A dependability roadmap for the Information Society in
Europe, part 3—towards a dependability roadmap. Technical report, AMSD Consortium
(2003)

40. H. Ando, R. Kan, Y. Tosaka, K. Takahisa, K. Hatanaka, Validation of hardware error
recovery mechanisms for the SPARC64 V microprocessor, in Proceedings of the 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
IEEE Computer Society, Anchorage, Alaska, June 2008, pp. 62–69

41. A. Andrzejak, L. Silva, Deterministic models of software aging and optimal rejuvenation
schedules, in 10th IFIP/IEEE International Symposium on Integrated Network
Management, 2007. IM ’07 (2007), pp. 159–168

42. M. Anghel, K.A. Werley, A.E. Motter, Stochastic model for power grid dynamics, in 40th
Hawaii International Conference on System Sciences (CD-ROM), Waikoloa, Big Island,
January 2007 IEEE, pp. 113–122 (10 pages)

43. L. Angrisani, S. D’Antonio, M. Esposito, M. Vadursi, Techniques for available bandwidth
measurement in ip networks: a performance comparison. Int. J. Comput. Telecommun.
Netw. 50, 332–349 (2006)

44. L. Angrisani, A. Pescape, G. Ventre, M. Vadursi, Performance measurement of IEEE
802.11b-based networks affected by narrowband interference through cross-layer
measurements. IET Commun. 2(1), 82–91 (2008)

45. M. Anji, Y. Jiaxi, G. Zhizhong, Electric power grid structural vulnerability assessment, in
Power Engineering Society General Meeting (IEEE, 2006), p. 6

46. L. Antoni, R. Leveugle, B. Fehér, Using run-time reconfiguration for fault injection
applications, in Proceedings of the IEEE Instrumentation and Measurement Technology
Conference, vol 3, May 2001, pp. 1773–1777

47. N. Antunes, N. Laranjeiro, M. Vieira, H. Madeira, Effective detection of SQL/XPath
injection vulnerabilities in web services, in Proceedings of the 2009 IEEE International
Conference on Services Computing (SCC ’09) (2009), pp. 260–267

48. N. Antunes, M. Vieira, Detecting SQL injection vulnerabilities in web services, in Fourth
Latin-American Symposium on Dependable Computing (LADC ’09) (2009), pp. 17–24

49. P. Apparao, R. Iyer, X. Zhang, D. Newell, T. Adelmeyer, Characterization & analysis of a
server consolidation benchmark, in Proceedings of 4th International ACM Conference on
Virtual Execution Environments (VEE ’08) (2008), pp. 21–30

50. A. Araujo Neto, M. Vieira, Towards assessing the security of dbms configurations, in
Proceedings of the 2008 IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2008) (2008)

51. A. Araujo Neto, M. Vieira, A trust-based benchmark for dbms configurations, in
Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC 2009) (2009)

52. A. Araujo Neto, M. Vieira, H. Madeira, An appraisal to assess the security of database
configurations, in Proceedings of the Second International Conference on Dependability
(DSN 2009) (2009)

53. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, D. Powell,
Fault injection for dependability validation: a methodology and some applications. IEEE
Trans. Softw. Eng. 16(2), 166–182 (1990)

54. J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, D. Powell, Fault injection and dependability
evaluation of fault-tolerant systems. IEEE Trans. Comput. 42(8), 913–923 (1993)

References 443

http://www.amber-project.eu/

55. J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G.H. Leber, Comparison of
physical and software-implemented fault injection techniques. IEEE Trans. Comput. 52(9),
1115–1133 (2003)

56. J. Arlat, J.-C. Fabre, M. Rodríguez, F. Salles, Dependability of COTS microkernel-based
systems. IEEE Trans. Comput. 51(2), 138–163 (2002)

57. M. Arlitt, T. Jin, Workload characterization of the 1998 world cup web site, in HP technical
report, HPL-99-35 (1999)

58. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing. ACM Commun. 53(4), 50–58
(2010)

59. S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distribution via the em algorithm.
Scand. J. Stat. 23, 419–441 (1996)

60. M.H. Assat, S.R. Das, E.M. Petriul, L. Jin, C. Jin, D. Biswas, V. Groza, M. Sahinoglu,
Hardware and software co-design in space compaction of digital circuits, in IEEE
Instrumentation and Measurement Technology Conference, vol. 2 (2004), pp. 1503–1508

61. A. Avizienis, Fault-tolerance and fault-intolerance: Complementary approaches to reliable
computing, in International Conference on Reliable Software (ACM, Los Angeles, 1975),
pp. 458–464

62. A. Avizienis, Design diversity and the immune system paradigm: Cornerstones for
information system survivability, in Third Information Survivability Workshop (ISW-2000),
Boston, MA (2000)

63. A. Avizienis, J.-C. Laprie, B. Randell, C.E. Landwehr, Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Depend. Secure Comput. 1(1), 11–33
(2004)

64. D. Avresky, J. Arlat, J.-C. Laprie, Y. Crouzet, Fault injection for formal testing of fault
tolerance. IEEE Trans. Reliab. 45(3), 443–455 (1996)

65. A. Avritzer, A. Bondi, M. Grottke, K.S. Trivedi, E.J. Weyuker, Performance assurance via
software rejuvenation: monitoring, statistics and algorithms, in International Conference on
Dependable Systems and Networks, 2006 (DSN 2006), June 2006, pp. 435–444

66. A. Avritzer, A. Bondi, E.J. Weyuker, Ensuring stable performance for systems that degrade,
in 5th International Workshop on Software and Performance, 2005. Proceedings (WOSP
’05) (ACM, New York, 2005), pp. 43–51

67. A. Avritzer, R.G. Cole, E.J. Weyuker, Using performance signatures and software
rejuvenation for worm mitigation in tactical manets, in 6th International Workshop on
Software and Performance, 2007. Proceedings (WOSP ’07) (ACM, New York, 2007),
pp. 172–180

68. A. Avritzer, R.G. Cole, E.J. Weyuker, Methods and opportunities for rejuvenation in aging
distributed software systems. J. Syst. Softw. 83(9), 1568–1578 (2010)

69. A. Avritzer, E. de Souzae Silva, R. Leão, E. Weyuker, Automated generation of test cases
using a performability model. IET Softw. 5(2), 113–119 (2011)

70. A. Avritzer, B. Larson, Load testing software using deterministic state testing, in ISSTA’93
(1993), pp. 82–88

71. A. Avritzer, R. Tanikella, K. James, R.G. Cole, E.J. Weyuker, Monitoring for security
intrusion using performance signatures, in 1st joint WOSP/SIPEW International Conference
on Performance Engineering, 2010. Proceedings (WOSP/SIPEW ’10) (ACM, New York,
2010), pp. 93–104

72. A. Avritzer, E.J. Weyuker, Generating test suites for software load testing, in ISSTA ’94:
Proceedings of the 1994 ACM SIGSOFT international symposium on Software Testing and
Analysis (ACM, New York, 1994), pp. 44–57

73. A. Avritzer, E.J. Weyuker, The automatic generation of load test suites and the assessment
of the resulting software. IEEE Trans. Softw. Eng. 21(9), 705–716 (1995)

74. A. Avritzer, E.J. Weyuker, Monitoring smoothly degrading systems for increased
dependability. Empire Softw. Eng. 2(1), 59–77 (1997)

444 References

75. G.A.G.B. Schroeder, The computer failure data repository (CFDR), in Workshop on
Reliability Analysis of System Failure Data—RAF’07 (MSR Cambridge, Cambridge, 2007)

76. J. Bachmann, M. Riedl, J. Schuster, M. Siegle, An efficient symbolic elimination algorithm
for the stochastic process algebra tool caspa, in Proceedings of the 35th Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM ’09) (Springer,
Berlin, 2009), pp. 485–496

77. P. Bahl, R. Chandra, A.G. Greenberg, S. Kandula, D.A. Maltz, M. Zhang, Towards highly
reliable enterprise network services via inference of multi-level dependencies, in
Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Kyoto, August 2007, pp. 13–24

78. C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking of continuous-
time markov chains, in Proceedings of the 10th International Conference on Concurrency
Theory (CONCUR ’99) (Springer, London, 1999), pp. 146–161

79. R. Bakhshi, L. Cloth, W. Fokkink, B. Haverkort, Mean-field analysis for the evaluation of
gossip protocols, in Proceedings 6th International Conference on the Quantitative
Evaluation of Systems (QEST’09), IEEE Computer Society (2009), pp. 247–256

80. R. Bakhshi, L. Cloth, W. Fokkink, B. Haverkort, Mean-field framework for performance
evaluation of push–pull gossip protocols. Perform. Eval. 68(2), 157–179 (2011)

81. G. Balbo, in Introduction to Stochastic Petri nets, ed. by B. Brinksma, H. Hermanns, J.-P.
Katoen (Springer, Berlin, 2001)

82. G. Balbo, S. Bruell, M. Sereno, Embedded processes in generalized stochastic petri nets, in
Proceedings 9th International Workshop on Petri Nets and Performance Models (2001),
pp. 71–80

83. S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-based performance prediction in
software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)

84. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna, Saner:
composing static and dynamic analysis to validate sanitization in web applications, in IEEE
Symposium on Security and Privacy (SP 2008) (2008), pp. 387–401

85. Y. Bao, X. Sun, K.S. Trivedi, Adaptive software rejuvenation: degradation model and
rejuvenation scheme, in 2003 International Conference on Dependable Systems and
Networks, 2003. Proceedings, June 2003, pp. 241–248

86. Y. Bao, X. Sun, K.S. Trivedi, A workload-based analysis of software aging, and
rejuvenation. IEEE Trans. Reliab. 54(3), 541–548 (2005)

87. R. Barbosa, N. Silva, J. Durães, H. Madeira, Verification and validation of (Real Time)
COTS products using fault injection techniques, in Proceedings of the Sixth International
IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (2007),
pp. 233–242

88. P. Barger, J.-M. Thiriet, M. Robert, Dependability analysis of a distributed control or
measurement architecture, in Instrumentation and Measurement Technology Conference,
2003. IMTC ’03. Proceedings of the 20th IEEE, vol. 1, May 2003, pp. 473–477

89. P. Barham, A. Donnelly, R. Isaacs, R. Mortier, Using magpie for request extraction and
workload modelling, in Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation—vol. 6, San Francisco, Dec 2004, pp. 259–272

90. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A.
Wareld, Xen and the art of virtualization, in Proceedings of 19th Symposium on Operating
System Principles (2003), pp. 164–177

91. L. Barroso, U. Hölzle, The case for energy-proportional computing. IEEE Comp. 40 (2007)
92. J.H. Barton, E.W. Czeck, Z. Segall, D.P. Siewiorek, Fault injection experiments using

FIAT. IEEE Trans. Comput. 39(4), 575–582 (1990)
93. F. Baskett, M. Chandy, R. Muntz, F. Palacios, Open, closed and mixed networks of queues

with different classes of customers. J. ACM 22, 248–260 (1975)

References 445

94. F. Bause, P. Buchholz, P. Kemper, A toolbox for functional and quantitative analysis of
deds, in Computer Performance Evaluation. Lecture Notes in Computer Science, vol. 1469,
ed. by R. Puigjaner, N. Savino, B. Serra (Springer, Berlin, 1998), pp. 356–359

95. M. Beccuti, G. Franceschinis, S. Donatelli, S. Chiaradonna, F. Di Giandomenico, P. Lollini,
G. Dondossola, F. Garrone, Quantification of dependencies in electrical and information
infrastructures: the crutial approach, in Fourth International Conference on Critical
Infrastructures, 2009. CRIS 2009 (2009), pp. 1–8

96. S. Becker, H. Koziolek, R. Reussner, The palladio component model for model-driven
performance prediction. J. Syst. Softw. 82, 3–22 (2009)

97. S. Bellahsene, Algorithmique et Evaluation de performances pour les réseaux de
télécommunication. Ph.D. thesis, Université de Versailles (2012)

98. S. Bellahsene, L. Kloul, A new markov-based mobility prediction algorithm for mobile
networks, in Proceedings of the 7th European Performance Engineering Workshop (EPEW
2010) (Springer, Bertinoro, 2010)

99. S. Bellahsene, L. Kloul, D. Barth, A hierarchical prediction model for two nodes-based IP
mobile networks, in Proceedings of the 12th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’09), Tenerife, Canary
Islands, Oct 2009, pp. 173–180

100. M. Bena, J.-Y. Le Boudec, A class of mean field interaction models for computer and
communication systems. Perform. Eval. 65(11–12), 823–838 (2008)

101. F. Benevenuto, C. Fernandes, M. Santos, V. Almeida, J. Almeida, G. Janakiraman, J.
Santos, Performance models for virtualized applications, in Frontiers of High Performance
Computing and Networking—ISPA 2006 Workshops. Lecture Notes in Computer Science,
vol. 4331 (Springer, Heidelberg, 2006), pp. 427–439

102 M.N. Bennani, D. Menascé, Resource allocation for autonomic data centers using analytic
performance models, in Proceedings of the Second International Conference on Automatic
Computing (2005)

103. A. Benoit, Méthodes et algorithmes pour l’évaluation des performances des systèmes
informatiques à grands espaces d’états. Ph.D thesis (2003)

104. A. Benoit, L. Brenner, P. Fernandes, B. Plateau, W. Stewart, The peps software tool, in
Computer Performance Evaluation. Modelling Techniques and Tools. Lecture Notes in
Computer Science, vol. 2794, ed. by P. Kemper, W. Sanders (Springer, Berlin, 2003),
pp. 98–115

105. A. Benoit, B. Plateau, W. Stewart, Memory-efficient algorithms with applications to the
modelling of parallel systems. Future Gener. Comput. Syst. 22, 838–847 (2006)

106. M. Benzi, M. Tuma, A parallel solver for large-scale Markov chains. Appl. Numer. Math.
41, 135–153 (2002)

107. C. Beounes, M. Aguera, J. Arlat, S. Bachmann, C. Bourdeau, J.-E. Doucet, K. Kanoun, J.-C.
Laprie, S. Metge, J. Moreira de Souza, D. Powell, P. Spiesser, Surf-2: a program for
dependability evaluation of complex hardware and software systems, in The Twenty-Third
International Symposium on Fault-Tolerant Computing, FTCS-23. Digest of Papers, June
1993, pp. 668–673

108. L. Berardinelli, V. Cortellessa, A. Di Marco, Performance modeling and analysis of context-
aware mobile software systems, in FASE (2010), pp. 353–367

109. The Berkeley/Stanford recovery-oriented computing (ROC) project (2008),
http://roc.cs.berkeley.edu. Accessed 26 Nov 2011

110. S. Bernardi, J. Merseguer, D. Petriu, A dependability profile within marte. Softw. Syst.
Model. 10, 313–336 (2009)

111. L. Bernstein, Innovative technologies for preventing network outages. AT&T Tech. J.
72(4), 9–10 (1993)

112. A. Bessani, P. Sousa, M. Correia, N.F. Neves, P. Verissimo, The CRUTIAL way of critical
infrastructure protection. IEEE Secur. Priv. 6(6), 44–51 (2008)

446 References

http://roc.cs.berkeley.edu

113. S. Bhatia, A. Kumar, M.E. Fiuczynski, L.L. Peterson, Lightweight, high-resolution
monitoring for troubleshooting production systems, in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, San Diego, CA (2008),
pp. 103–116

114. C. Binnig, D. Kossmann, T. Kraska, S. Loesing, How is the weather tomorrow? Towards a
benchmark for the cloud, in Proceedings of the 2nd International Workshop on Testing
Database Systems, DBTest ’09 (ACM, New York, 2009), pp. 9:1–9:6

115. R. Bloomfield, L. Buzna, P. Popov, K. Salako, D. Wright, Stochastic modelling of the
effects of interdependency between critical infrastructures, in 4th International Workshop
on Critical Information Infrastructures Security (CRITIS 2009). Lecture Notes in Computer
Science, vol. 6027, ed. by E. Rome, R. Bloomfield (Springer, Berlin, 2010), pp. 201–212

116. R. Bloomfield, N. Chozos, K. Salako, Current capabilities, requirements and a proposed
strategy for interdependency analysis in the UK, in 4th International Workshop on Critical
Information Infrastructures Security (CRITIS 2009). Lecture Notes in Computer Science,
vol. 6027, ed. by E. Rome, R. Bloomfield (Springer, Berlin, 2010), pp. 188–200

117. A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno, M. Telek, Modeling software
systems with rejuvenation, restoration and checkpointing through fluid stochastic petri nets,
in Proceedings of the 8th International Workshop on Petri Nets and Performance Models
(1999), pp. 82–91

118. A. Bobbio, M. Gribaudo, M. Telek, Analysis of large scale interacting systems by mean
field method, in Proceedings of the 5th Conference on the Quantitative Evaluation of
Systems (QEST’08), IEEE Computer Society (2008), pp. 215–224

119. A. Bobbio, A. Puliafito, M. Telek, K.S. Trivedi, Recent developments in non-Markovian
stochastic petri nets. J. Circuits Syst. Comput. 119–158 (1998)

120. A. Bobbio, M. Sereno, C. Anglano, Fine grained software degradation models for optimal
rejuvenation policies. Perform. Eval. 46, 45–62 (2001)

121. A. Bobbio, K. Trivedi, An aggregation technique for the transient analysis of stiff markov
chains. IEEE Trans. Comput. C-35(9), 803–814 (1986)

122. N. Bobroff, A. Kochut, K. Beaty, Dynamic placement of virtual machines for managing
SLA violations, in Integrated Network Management, 2007. IM ’07 (2007), pp. 119–128

123. P. Bodik, M. Goldszmidt, A. Fox, D.B. Woodard, H. Andersen, Fingerprinting the
datacenter: automated classification of performance crises, in Proceedings of the 5th
European Conference on Computer systems, Paris, France (2010), pp. 111–124

124. L. Bodrog, A. Horváth, M. Telek, Moment characterization of matrix exponential and
markovian arrival processes. Ann. OR 160(1), 51–68 (2008)

125. G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications (Wiley-
Interscience, New York, 1998)

126. E. Bompard, R. Napoli, F. Xue, Analysis of structural vulnerabilities in power transmission
grids. Int. J. Crit. Infrastruct. Prot. 2(1–2), 5–12 (2009)

127. A. Bondavalli, Research roadmap—deliverable D3.2, amber—assessing, measuring and
benchmarking resilience, Ist—216295 funded by the European Union, 2009. Technical
report, AMBER consortium (2009), http://amber-dbserver.dei.uc.pt:81/roadmap

128. A. Bondavalli, A. Ceccarelli, L. Falai, M. Vadursi, Foundations of measurement theory
applied to the evaluation of dependability attributes, in DSN ’07: Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (IEEE
Computer Society, Washington, 2007), pp. 522–533

129. A. Bondavalli, A. Ceccarelli, L. Falai, M. Vadursi, A new approach and a related tool for
dependability measurements on distributed systems. IEEE Trans. Instrum. Meas. 59(4),
820–831 (2010)

130. A. Bondavalli, S. Chiaradonna, D. Cotroneo, L. Romano, Effective fault treatment for
improving the dependability of cots and legacy-based applications. IEEE Trans. Depend.
Secure Comput. 1, 223–237 (2004)

References 447

http://amber-dbserver.dei.uc.pt:81/roadmap

131. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, F. Grandoni, Discriminating fault rate
and persistency to improve fault treatment, in IEEE FTCS International Symposium on
Fault-Tolerant Computing (1997), pp. 354–362

132. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, F. Grandoni, Threshold-based
mechanisms to discriminate transient from intermittent faults. IEEE Trans. Comput. 49,
230–245 (2000)

133. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, I. Mura, Dependability modeling and
evaluation of multiple-phased systems using deem. IEEE Trans. Reliab. 53(4), 509–522
(2004)

134. A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, G. Savoia, Dependability
analysis in the early phases of uml based system design. J. Comput. Syst. Sci. Eng. 16(5),
265–275 (2001)

135. A. Bondavalli, O. Hamouda, M. Kaâniche, P. Lollini, I. Majzik, H.-P. Schwefel, The
hidenets holistic approach for the analysis of large critical mobile systems. IEEE Trans.
Mob. Comput. 10(6), 783–796 (2011)

136. A. Bondavalli, P. Lollini, L. Montecchi, Qos perceived by users of ubiquitous umts:
compositional models and thorough analysis. J. Softw. 4(7) (2009)

137. A. Bondavalli, P. Lollini, L. Montecchi, Graphical formalisms for modeling critical
infrastructures, in Critical Infrastructure Security: Assessment, Prevention, Detection,
Response, ed. by F. Flammini (WIT Press, London, 2011, to appear)

138. A.B. Bondi, Characteristics of scalability and their impact on performance, in The 2nd
International Workshop on Software and Performance, Sept 2000, pp. 195–203

139. A.B. Bondi, V.Y. Jin, A performance model of a design for a minimally replicated
distributed database for database-driven telecommunications services. Distrib. Parallel
Databases (4), 295–318 (1996)

140. L. Bononi, M. Di Felice, A. Molinaro, S. Pizzi, A cross-layer architecture for effective
channel assignment with load-balancing in multi-radio multi-path wireless mesh networks,
in 7th ACM International Symposium on Mobility Management and Wireless Access
(Mobiwac09) (2009)

141. S. Bornot, J. Sifakis, On the composition of hybrid systems, in Proceedings of the First
International Workshop on Hybrid Systems: Computation and Control (Springer, London,
1998), pp. 49–63

142. L. Bortolussi, A. Policriti, Stochastic concurrent constraint programming and differential
equations, in QAPL’07, 5th Workshop on Quantitative Aspects of Programming Languages.
Electronic Notes in Theoretical Computer Science, 190(3), 27–42 (2007)

143. S. Bose, P. Mishra, P. Sethuraman, R. Taheri, Performance evaluation and benchmarking, in
Performance Evaluation and Benchmarking, chapter Benchmarking Database Performance
in a Virtual Environment, ed. by R. Nambiar, M. Poess (Springer, Berlin, 2009), pp. 167–182

144. R. Boucherie, A characterisation of independence for competing markov chains with
applications to stochastic petri nets. IEEE Trans. Softw. Eng. 20(7), 536–544 (1994)

145. H. Boudali, P. Crouzen, M. Stoelinga, Dynamic fault tree analysis using input/output
interactive markov chains, in Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’07 (IEEE Computer Society,
Washington), pp. 708–717

146. J.-Y. Le Boudec, D. McDonald, J. Mundinger, A generic mean field convergence result for
systems of interacting objects, in Proceedings of the 4th Conference on the Quantitative
Evaluation of Systems (QEST’07) (IEEE Computer Society, 2007), pp. 3–18

147. G. Box, G. Jenkins, Time Series Analysis: Forecasting and Control (Prentice Hall PTR,
Upper Saddle River, 1994)

148. J. Bradley, N. Dingle, W. Knottenbelt, H. Wilson, Hypergraph-based parallel computation
of passage time densities in large semi-Markov models. Linear Algebra Appl. 386, 311–334
(2004)

448 References

149. S. Brocklehurst, B. Littlewood, New ways to get accurate reliability measures. IEEE Softw.
9, 34–42 (1992)

150. F. Brosig, S. Kounev, K. Krogmann, Automated extraction of palladio component models
from running enterprise java applications, in Proceedings of ROSSA 2009, ACM, Oct 2009

151. A. Brown, L. Chung, W. Kakes, C. Ling, D.A. Patterson. Dependability benchmarking of
human-assisted recovery processes, in Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN 2004) (2004)

152. A. Brown, J. Hellerstein, M. Hogstrom, T. Lau, S. Lightstone, P. Shum, M.P. Yost,
Benchmarking autonomic capabilities: promises and pitfalls, in Proceedings of the 1st
International Conference on Autonomic Computing (ICAC 2004) (2004)

153. A. Brown, G. Kar, A. Keller, An active approach to characterizing dynamic dependencies
for problem determination in a distributed environment, in IFIP/IEEE International
Symposium on Integrated Network Management, Seattle, WA, May 2001, pp. 377–390

154. A. Brown, C.L. Chung, D.A. Patterson, Including the human factor in dependability
benchmarks, in DSN 2002 Workshop on Dependability Benchmarking (2002)

155. A. Brown, D.A. Patterson, Towards availability benchmarks: a case study of software raid
systems, in Proceedings of the 2000 USENIX Annual Technical Conference (2000)

156. A. Brown, D.A. Patterson, To err is human, in First Workshop on Evaluating and
Architecting System Dependability (EASY) (2001)

157. E. Brown, J. Place, A. van de Liefvoort, Generating matrix exponential random variates.
Simulation 70, 224–230 (1998)

158. R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering
(Wiley, New York, 1997)

159. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A. Pretschner, Model-Based Testing of
Reactive Systems: Advanced Lectures. Lecture Notes in Computer Science (Springer, New
York, 2005)

160. R. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput. C-35(8), 677–691 (1986)

161. K. Buchacker, M. Dal Cin, H.-J. Hoxer, R. Karch, V. Sieh, O. Tschache, Reproducible
dependability benchmarking experiments based on unambiguous benchmark setup
descriptions, in Proceedings of the IEEE/IFIP 2003 International Conference on
Dependable Systems and Networks (DSN 2003) (2003)

162. P. Buchholz, Compositional analysis of a markovian process algebra, in Proceedings of the
2nd Process Algebra and Performance Modelling Workshop, ed. by U. Herzog, M.
Rettelbach (1994)

163. P. Buchholz, Hierarchical structuring of superposed GSPNs. IEEE Trans. Softw. Eng. 25(2),
166–181 (1999)

164. P. Buchholz, M. Fischer, P. Kemper, Distributed steady state analysis using Kronecker
algebra, in Proceedings of the 3rd International Conference on the Numerical Solution of
Markov Chains (NSMC’99), Zaragoza, Spain, Sept 1999, pp. 76–95

165. P. Buchholz, P. Kemper, Numerical analysis of stochastic marked graphs, in Proceedings of
International Workshop on Petri Nets and Performance Models (IEEE-Computer Society
Press, Durham, 1995), pp. 32–41

166. D. Bui, A. Dupas, M. Le Pallec, Packet delay variation management for a better ieee1588v2
performance, in International IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, Brescia, Oct 2009, pp. 1–6

167. R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and simulation of scalable cloud computing
environments and the CloudSim toolkit: challenges and opportunities, in Proceedings of the
7th High Performance Computing and Simulation (HPCS 2009) Conference (2009)

168. J.P. Buzen, A.W. Shum, MASF—multivariate adaptive statistical filtering, in International
Computer Measurement Group Conference, Nashville, TN, Dec 1995, pp. 1–10

References 449

169. C.M.T. Calafate, P. Manzoni, A multi-platform programming interface for protocol
development. Euromicro Conference on Parallel, Distributed, and Network-Based
Processing (2003), p. 243

170. J. Campos, S. Donatelli, M. Silva, Structured solution of stochastic dssp systems, in
Proceedings of International Workshop on Petri Nets and Performance Models (IEEE-
Computer Society Press, St Malo, 1997), pp. 91–100

171. G. Candea, E. Kiciman, S. Zhang, P. Keyani, A. Fox, Jagr: an autonomous self-recovering
application server, in Autonomic Computing Workshop, 25 June 2003, pp. 168–177

172. L. Cardelli, On process rate semantics. J. Theor. Comput. Sci. 391(3), 190–215 (2008)
173. R. Carmo, L. de Carvalho, E. de Souza e Silva, M. Diniz, R. Muntz, Tangram-ii: a

performability modeling environment tool, in Computer Performance Evaluation Modelling
Techniques and Tools. Lecture Notes in Computer Science, vol. 1245 (Springer, Berlin,
1997), pp. 6–18

174. S. Carpenter, B. Walker, J.M. Anderies, N. Abel, From metaphor to measurement: resilience
of what to what? Ecosystems 4, 765–781 (2001)

175. J. Carreira, H. Madeira, J.G. Silva, Xception: a technique for the experimental evaluation of
dependability in modern computers. IEEE Trans. Softw. Eng. 24(2), 125–136 (1998)

176. G. Casale, R.R. Muntz, G. Serazzi, Special issue on tools for computer performance
modeling and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36, 2–3 (2009)

177. E. Casalicchio, E. Galli, Metrics for quantifying interdependencies, in IFIP International
Federation for Information Processing, vol. 290, edited by M. Papa, S. Shenoi (Springer,
Boston, 2009), pp. 215–227

178. E. Casalicchio, E. Galli, S. Tucci, Federated agent-based modeling and simulation approach
to study interdependencies in IT critical infrastructures, in 11th IEEE International
Symposium on Distributed Simulation and Real-Time Applications, Oct 2007, pp. 182–189

179. E. Casalicchio, E. Galli, S. Tucci, Macro and micro agent-based modelling and simulation
of critical infrastructures, in Complexity in Engineering (COMPENG ’10), Rome, Italy, Feb
2010, pp. 79–81

180. K. Cassidy, K. Gross, A. Malekpour, Advanced pattern recognition for detection of complex
software aging phenomena in online transaction processing servers, in Proceedings of the
International Conference on Dependable Systems and Networks, 2002, DSN 2002,
pp. 478–482

181. V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.S. Trivedi, K. Vaidyanathan,
W.P. Zeggert, Proactive management of software aging. IBM J. Res. Dev. 45(2), 311–332
(2001)

182. U. Catalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. Parallel. Distrib.Syst. 10(7), 673–693
(1999)

183. The computer failure data repository (CFDR) (2008)
184. E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, W. Zwaenepoel, Performance

comparison of middleware architectures for generating dynamic web content, in
Proceedings of the ACM/IFIP/USENIX 4th International Middleware Conference, Rio de
Janeiro, Brazil (2008)

185. Celtic, TWINBOARD: two-nodes IP network for better and optimized aggregation, routing
and delivery, European Celtic project (2007–2009), http://www.celtic-initiative.org/
Projects/TWINBOARD/default.as

186. Center for Internet Security, The CIS Security Metrics v 1.0.0, May 2009
187. R. Chandra, R.M. Lefever, M. Cukier, W.H. Sanders, Loki: a state-driven fault injector for

distributed systems, in 2000 International Conference on Dependable Systems and
Networks (DSN 2000) (Formerly FTCS-30 and DCCA-8) (DSN 2000), New York, NY,
USA, June (IEEE Computer Society, 2000), pp. 237–242

450 References

http://www.celtic-initiative.org/Projects/TWINBOARD/default.as
http://www.celtic-initiative.org/Projects/TWINBOARD/default.as

188. R. Chellappa, A. Jennigs, N. Shenoy, A review on current work in mobility prediction for
wireless networks, in Proceedings of the 3rd Asian International Mobile Computing
Conference (Kasetsart University, 2004)

189. D. Chen, S. Dharmaraja, D. Chen, L. Li, K. Trivedi, R. Some, A. Nikora, Reliability and
availability analysis for the jpl remote exploration and experimentation system, in
Conference on Dependable Systems and Networks, 2002. DSN 2002. Proceedings of the
International, pp. 337–342

190. J. Chen, J.S. Thorp, I. Dobson, Cascading dynamics and mitigation assessment in power
system disturbances via a hidden failure model. Int. J. Electr. Power Energy Syst. 27(4),
318–326 (2005)

191. L. Chen, A. Avizienis, On the implementation of N-version programming for software fault
tolerance during program execution, in 1st International Computer Software and
Applications Conference, (COMPSAC 77) (New York, 1977), pp. 149–155

192. M. Chen, E. Kiciman, E. Fratkin, E. Brewer, A. Fox, Pinpoint: problem determination in
large, dynamic, internet services, in Proceedings of the 2002 International Conference on
Dependable Systems and Networks, Bethesda, MD, June 2002, pp. 595–604

193. M. Chen, A. Zheng, J. Lloyd, M. Jordan, E. Brewer, Failure diagnosis using decision trees,
in Proceedings of the First International Conference on Autonomic Computing, New York,
May 2004, pp. 36–43

194. Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, N. Gautam, Managing server
energy and operational costs in hosting centers, in SIGMETRICS International Conference
(2005)

195. L. Chen-Ching, T. Chee-Wooi, M. Govindarasu, Cybersecurity of SCADA systems:
vulnerability assessment and mitigation, in IEEE/PES Power Systems Conference and
Exposition (PSCE ’09), March 2009, pp. 1–3

196. B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, Software engineering for self-
adaptive systems: a research roadmap, in Software Engineering for Self-Adaptive Systems
(2009)

197. K.-T. Cheng, S.-Y. Huang, W.-J. Dai, Fault emulation: a new methodology for fault
grading. IEEE Trans. CAD Integr. Circuits Syst. 18(10), 1487–1495 (1999)

198. L. Cherkasova, K.M. Ozonat, N. Mi, J. Symons, E. Smirni, Anomaly? Application change?
or Workload change? Towards automated detection of application performance anomaly
and change, in 2008 IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC DSN, Anchorage, Alaska, June 2008, pp. 452–461

199. Artemis-ju-100022 chess—composition with guarantees for high-integrity embedded
software components assembly, http://www.chess-project.org

200. S. Chiaradonna, F. Di Giandomenico, P. Lollini, Evaluation of critical infrastructures:
challenges and viable approaches, in Architecting Dependable Systems V. Lecture Notes in
Computer Science, vol. 5135, ed. by R. De Lemos, F. Di Giandomenico, C. Gacek, H.
Muccini, M. Vieira (Springer, Heidelberg, 2008), pp. 52–77

201. S. Chiaradonna, F. Di Giandomenico, P. Lollini, Interdependency analysis in electric power
systems, in 3rd International Workshop on Critical Information Infrastructures Security
(CRITIS 2008). Lecture Notes in Computer Science, vol. 5508, ed. by R. Setola, S.
Geretshuber (Springer, Berlin, 2009), pp. 60–71

202. S. Chiaradonna, F. Di Giandomenico, P. Lollini, Definition, implementation and application
of a model-based framework for the analysis of interdependencies in electric power systems.
Int. J. Crit. Infrastruct. 4(1), 24–40 (2011)

203. S. Chiaradonna, P. Lollini, F. Di Giandomenico, On a modeling framework for the analysis
of interdependencies in electric power systems, in IEEE/IFIP 37th International Conference
on Dependable Systems and Networks (DSN 2007), June 2007, Edinburgh, UK, pp. 185–195

204. S. Chiaradonna, P. Lollini, F. Di Giandomenico, Modelling framework of an instance of the
electric power system: functional description and implementation. Technical report
RCL071202—version 4, University of Florence, Dip. Sistemi Informatica, RCL Group,

References 451

http://www.chess-project.org

March 2010, http://dcl.isti.cnr.it/Documentation/Papers/Techreports.htm
205. R. Chillarege, Orthogonal defect classification, Section 9, Handbook of Software Reliability

Engineering (IEEE Computer Society Press/McGraw-Hill, New York, 1995)
206. R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D. Moebus, B. Ray, M. Wong,

Orthogonal defect classification—a concept for in-process measurement. IEEE Trans.
Softw. Eng. 18(11), 943–956 (1992)

207. R. Chillarege, N. Bowen, Understanding large system failures-a fault injection experiment,
in Fault-Tolerant Computing, 1989. FTCS-19. Digest of Papers. Nineteenth International
Symposium on, June 1989, pp. 356–363

208. G. Chiola, G. Franceschinis, R. Gaeta, M. Ribaudo, Greatspn 1.7: graphical editor and
analyzer for timed and stochastic petri nets. Perform. Eval. 24, 47–68 (1995)

209. G.S. Choi, R.K. Iyer, FOCUS: an experimental environment for fault sensitivity analysis.
IEEE Trans. Comput. 41(12), 1515–1526 (1992)

210. H. Choi, V.G. Kulkarni, K.S. Trivedi, Markov regenerative stochastic petri nets. Perform.
Eval. 20(1–3), 337–357 (1994)

211. M. Choraś, A. Flizikowski, R. Kozik, W. Holubowicz, Decision aid tool and ontology-based
reasoning for critical infrastructure vulnerabilities and threats analysis, in Proceedings of
the 4th International Conference on Critical Information Infrastructures Security,
CRITIS’09 (Springer, Berlin, 2010), pp. 98–110

212. H. Christiansson, E. Luiijf, Creating a European scada security testbed, in Critical
Infrastructure Protection. IFIP International Federation for Information Processing, vol.
253, ed. by E. Goetz, S. Shenoi (Springer, Boston, 2007), pp. 237–247

213. J. Christmansson, R. Chillarege, Generation of an error set that emulates software faults, in
26th IEEE Fault Tolerant Computing Symposium, FTCS-26, Sendai, Japan, June 1996,
pp. 304–313

214. J. Christmansson, R. Chillarege, Generation of an error set that emulates software faults
based on field data, in Proceedings of the Twenty-Sixth International Symposium on Fault-
Tolerant Computing, Washington, 25–27, June 1996, pp. 304–313

215. C. Ciardo, M. Tilgner, On the use of kronecker operators for the solution of generalized
stochastic petri nets. Technical report 96-35. Institute for Computer Applications in Science
and Engineering, Hampton, VA, May 1996

216. G. Ciardo, R. German, C. Lindemann, A characterization of the stochastic process
underlying a stochastic petri net. IEEE Trans. Softw. Eng. 20(7), 506–515 (1994)

217. G. Ciardo, G. Luettgen, R. Siminiceanu, Saturation: an efficient strategy for symbolic state-
space generation, in Proceedings of TACAS’01, Genova, Italy. Lecture Notes in Computer
Science, vol. 2031 (Springer, 2001), pp. 328–342

218. G. Ciardo, A. Miner, Smart: simulation and markovian analyzer for reliability and timing, in
Proceedings of IEEE International Computer Performance and Dependability Symposium,
1996, , Sept 1996, p. 60

219. G. Ciardo, A. Miner, A data structure for the efficient Kronecker solution of GSPNs, in
PNPM’99, ed. by P. Buchholz, M. Silva (IEEE Computer Society, New York, 1999),
pp. 22–31

220. G. Ciardo, A.S. Miner, Efficient reachability set generation and storage using decision
diagrams, in Application and Theory of Petri Nets 1999 (Proceedings of the 20th International
Conference on Applications and Theory of Petri Nets) (Springer, 1999), pp. 6–25

221. G. Ciardo, D. Nicol, K. Trivedi, Discrete-event simulation of fluid stochastic petri nets.
IEEE Trans. Softw. Eng. 25(2), 207–217 (1999)

222. I. Cidon, I. Gopal, Paris: an approach to integrated high-speed private networks. Int. J. Digit.
Analog Cabled Syst. 1, 77–86 (1988)

223. P. Civera, L. Macchiarulo, M. Rebaudengo, M.S. Reorda, M. Violante, New techniques for
efficiently assessing reliability of SOCs. Microelectron. J. 34(1), 53–61 (2003)

452 References

http://dcl.isti.cnr.it/Documentation/Papers/Techreports.htm

224. C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live
migration of virtual machines, in Proceedings of the USENIX Symposium on Networked
System Design and Implementation (2005)

225. G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J.M. Doyle, W.H. Sanders, P.
Webster, The möbius modeling tool, in 9th International Workshop on Petri Nets and
Performance Models, 2001, pp. 241–250

226. G. Clark, S. Gilmore, J. Hillston, N. Thomas, Experiences with the pepa performance
modelling tools, in UKPEW’98, Proceedings of the 14th UK Performance Engineering
Workshop, Edinburgh, July 1998

227. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, X. Zhao, Multi-terminal binary
decision diagrams: an efficient data structure for matrix representation, in IWLS:
International Workshop on Logic Synthesis, Tahoe City, May 1993

228. L. Cloth, B.R. Haverkort, Model checking for survivability, in 2nd International
Conference on the Quantitative Evaluation of Systems (IEEE Computer Society, 2005),
pp. 145–154

229. A. Coccoli, P. Urban, A. Bondavalli, A. Schiper, Performance analysis of a consensus
algorithm combining stochastic activity networks and measurements, in IEEE DSN—
International Conference on Dependable Systems and Networks (IPDS Track) (IEEE
Computer Society Press, Washington, 2002), pp. 551–560

230. I. Cohen, J.S. Chase, M. Goldszmidt, T. Kelly, J. Symons, Correlating instrumentation data
to system states: a building block for automated diagnosis and control, in Proceedings of the
6th Conference on Symposium on Operating Systems Design & Implementation, vol. 6, San
Francisco, CA, Dec 2004, pp. 231–244

231. I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, A. Fox, Capturing, indexing,
clustering, and retrieving system history, in Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, Brighton, UK, Oct 2005, pp. 105–118

232. Commission of the European Communities. Information Technology Security Evaluation
Manual (ITSEM) (1993)

233. Common Criteria Common criteria for information technology security evaluation: user
guide (1999)

234. C. Constantinescu, Trends and challenges in VLSI circuit reliability. IEEE Micro 23, 14–19
(2003)

235. C. Constantinescu, Neutron SER characterization of microprocessors, in Proceedings 2005
International Conference on Dependable Systems and Networks (DSN 2005) (IEEE
Computer Society, Yokohama, 2005), pp. 754–759

236. C. Constantinescu, Neutron ser characterization of microprocessors, in Proceedings of the
2005 International Conference on Dependable Systems and Networks (DSN 2005) (2005)

237. M. Conti, G. Maselli, G. Turi, S. Giordano, Cross-layering in mobile ad hoc network design.
Computer 37(2), 48–51 (2004)

238. B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking cloud
serving systems with ycsb, in Proceedings of the 1st ACM Symposium on Cloud computing
(SoCC ’10) (2010)

239. V. Cortellessa, R. Mirandola, Prima-uml: a performance validation incremental
methodology on early uml diagrams. Sci. Comput. Program. 44(1), 101–129 (2002)

240. D. Costa, R. Barbosa, R. Maia, F. Moreira, Dependability Benchmarking for Computer
Systems, chapter DeBERT—Dependability Benchmarking for Embedded Real-time Off-the-
Shelf Components for Space Applications (Wiley, New York, 2008), pp. 255–283

241. D. Costa, H. Madeira, J. Carreira, J.G. Silva, Xception: a software implemented fault
injection tool, in Fault Injection Techniques and Tools for Embedded Systems Reliability
Evaluation, ed. by A. Benso, P. Prinetto (Springer, New York, 2004), pp. 125–139

242. T. Courtney, S. Gaonkar, K. Keefe, E.W.D. Rozier, W.H. Sanders. Möbius 2.3: an extensible
tool for dependability, security, and performance evaluation of large and complex system
models, in 39th Annual IEEE/IFIP International Conference on Dependable Systems and

References 453

Networks (DSN 2009), Estoril, Lisbon, Portugal, June 29–July 2 2009, pp. 353–358
243. P. Courtois, Decomposability, Queueing and Computer System Applications. ACM

Monograph Series (1977)
244. G.F. Cretu-Ciocarlie, M. Budiu, M. Goldszmidt, Hunting for problems with Artemis, in

USENIX Workshop on Analysis of System Logs, San Diego, CA, Dec 2008
245. CRUTIAL, European Project CRUTIAL—Critical utility infrastructural resilience,

http://crutial.erse-web.it
246. Crutial—critical utility infrastructural resilience (project ist-fp6-027513), http://crutial.

cesiricerca.it (2006)
247. CRUTIAL Consortium, The crutial modelling framework (final version). Technical report,

http://crutial.rse-web.it/Dissemination/DELIVERABLES-OF-THE-PROJECT, March 2009
248. CRUTIAL Consortium, On eps-ict interdependencies in the testbeds. Technical report,

http://crutial.rse-web.it/Dissemination/DELIVERABLES-OF-THE-PROJECT, March 2009
249. C. Csallner, Y. Smaragdakis, JCrasher: an automatic robustness tester for Java. Softw. Pract.

Exp. 34, 1025–1050 (2004)
250. B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield, Remus: high

availability via asynchronous virtual machine replication, in Proceedings of the USENIX
Symposium on Networked System Design and Implementation (2008), pp. 161–174

251. A. Cumani, On the canonical representation of homogeneous Markov processes modelling
failure-time distributions. Microelectron. Reliab. 22, 583–602 (1982)

252. I. Cunha, J. Almeida, V. Almeida, M. Santos, Self-adaptive capacity management for multi-
tier virtualized environments, in IM’07: Proceedings of the 10th IFIP/IEEE International
Symposium on Integrated Network Management, Munich, Germany (2007), pp. 129–138

253. K. Czarnecki, S. Helsen, Classification of model transformation approaches, in Proceedings
of OOPSLA’03, Anaheim, CA, USA (2003)

254. Software reliability dataset (2008)
255. A. Daidone, F. Di Giandomenico, A. Bondavalli, S. Chiaradonna, Hidden Markov models

as a support for diagnosis: formalization of the problem and synthesis of the solution, in
Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems, Leeds, UK, Oct
2006, pp. 245–256

256. D. Daly, D.D. Deavours, J.M. Doyle, A.J. Stillman, P.G. Webster, Möbius: an extensible
tool for performance and dependability modeling, in 11th International Conference, TOOLS
2000. Lecture Notes in Computer Science, pp. 332–336 (2000)

257. P.R. D’Argenio, H. Hermanns, J.-P. Katoen, R. Klaren, Modest: a modelling language for
stochastic timed systems, in Process Algebra and Probabilistic Methods. Performance
Modelling and Verification. Lecture Notes in Computer Science, vol. 2165, ed. by L. de
Alfaro, S. Gilmore (Springer, Berlin, 2001), pp. 87–104

258. S.R. Das, S. Mukherjee, E.M. Petriu, M.H. Assaf, M. Sahinoglu, W.-B. Jone, An improved
fault simulation approach based on verilog with application to iscas benchmark circuits, in
Instrumentation and Measurement Technology Conference IMTC 2006), April 2006,
pp. 1902–1907

259. A. Dasilva, J.-F. Martínez, L. López, A.B. García, L. Redondo, Exhaustif: a fault injection
tool for distributed heterogeneous embedded systems, in Proceedings of the 2007 Euro
American conference on Telematics and Information Systems, EATIS 2007, Faro, Portugal,
May 14–17, 2007, ed. by R.P.C. do Nascimento, A. Berqia, P. Serendero, E. Carrillo (2007),
p. 17

260. A. David, S. Larry, The least variable phase-type distribution is erlang. Stoch Models 3,
467–473 (1987)

261. R. David, H. Alla. On hybrid petri nets. Discret. Event Dyn. Syst. 11, 9–40 (2001)
262. R. David, H. Alla, Discrete, Continuous, and Hybrid Petri Nets, 2nd edn. (Springer, Berlin,

2010)
263. M.H.A. Davis, Piecewise-deterministic markov processes: a general class of non-diffusion

stochastic models. J. R. Stat. Soc. Ser. B (Methodol.) 46(3), 353–388 (1984)

454 References

http://crutial.erse-web.it
http://crutial.cesiricerca.it
http://crutial.cesiricerca.it
http://crutial.rse-web.it/Dissemination/DELIVERABLES-OF-THE-PROJECT
http://crutial.rse-web.it/Dissemination/DELIVERABLES-OF-THE-PROJECT

264. S. Dawson, F. Jahanian, T. Mitton, A software fault injection tool on real-time mach, in
IEEE Real-Time Systems Symposium (1995), pp. 130–140

265. S. Dawson, F. Jahanian, T. Mitton, Experiments on six commercial TCP implementations
using a software fault injection tool. Softw. Pract. Exp. 27(12):1385–1410 (1997)

266. S. Dawson, F. Jahanian, T. Mitton, T.-L. Tung, Testing of fault-tolerant and real-time
distributed systems via protocol fault injection, in Proceedings of the Twenty-Sixth
International Symposium on Fault-Tolerant Computing, Washington, June 25–27 (1996),
IEEE, pp. 404–414

267. T. Dayar, Iterative methods based on splittings for stochastic automata networks. Eur.
J. Oper. Res. 110, 166–186 (1998)

268. Dbench Project, project funded by the European community under the information society
technology programme (1998–2002), http://www.dbench.org/

269. D. de Andres, J.C. Ruiz, D. Gil, P.J. Gil, Run-time reconfiguration for emulating transient
faults in VLSI systems, in Proceedings 2006 International Conference on Dependable
Systems and Networks DSN 2006, Dependable Computing and Communications Symposium
(DCCS), Philadelphia, Pennsylvania, USA (IEEE Computer Society, New York, 2006),
pp. 291–300

270. D. de Andrés, J.C. Ruiz, D. Gil, P.J. Gil, Fault emulation for dependability evaluation of
VLSI systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(4), 422–431 (2008)

271. H. de Meer, K.S. Trivedi, Guarded repair of dependable systems. Theor. Comp. Sci. 128,
179–210 (1994)

272. E. de Souza e Silva, D.R. Figueiredo, R.M. Leão, The TANGRAMII integrated modeling
environment for computer systems and networks. SIGMETRICS Perform. Eval. Rev. 36(4),
64–69 (2009)

273. E. de Souza e Silva, H. Gail, Transient solutions for markov chains. Computational
Probability (Kluwer, Dordrecht, 2000), pp. 43–79

274. J. Dean, Software engineering advice from building large-scale distributed systems.
Stanford CS295 class lecture (2007), http://research.google.com/people/jeff/stanford-
295-talk.pdf

275. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2008)

276. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W. Sanders, P. Webster,
The moebius framework and its implementation. IEEE Trans. Softw. Eng. 28(10), 956–969
(2002)

277. D. Deavours, W. Sanders, ‘‘On-the-fly’’ solution techniques for stochastic petri nets and
extensions. IEEE Trans. Softw. Eng. 24(10), 889–902 (1998)

278. D.D. Deavours, W.H. Sanders, An efficient disk-based tool for solving large markov
models. Perform. Eval. 33(1), 67–84 (1998)

279. J. Dejun, G. Pierre, C.-H. Chi, EC2 performance analysis for resource provisioning of
service-oriented applications, in Proceedings 3rd Workshop on Non-Functional Properties
and SLA Management in Service-Oriented Computing, Nov 2009

280. A.H. Dekker, Simulating network robustness for critical infrastructure networks, in
Proceedings of the Twenty-Eighth Australasian conference on Computer Science, vol. 38,
ACSC ’05, Darlinghurst, Australia (Australian Computer Society, 2005), pp. 59–67

281. A.H. Dekker, B. Colbert, Scale-free networks and robustness of critical infra-structure
networks, in Proceedings of the 7th Asia-Pacific Conference on Complex Systems (Complex
2004), Cairns, Australia, Dec 2010

282. S. Delamare, A.A. Diallo, C. Chaudet, High-level modelling of critical infrastructures’
interdependencies. Int. J. Critic. Infrastruct. 5(1/2), 100–119 (2009)

283. T.A. DeLong, B.W. Johnson, J.A. Profeta III, A fault injection technique for VHDL
behavioral-level models. IEEE Des. Test. Comput. 13(4), 24–33 (1996)

284. C. Demichelis, P. Chimento, IP Packet Delay Variation Metric for IP Performance Metrics
(IPPM). RFC 3393 (Proposed Standard), Nov 2002

References 455

http://www.dbench.org/
http://research.google.com/people/jeff/stanford-295-talk.pdf
http://research.google.com/people/jeff/stanford-295-talk.pdf

285. R. DeMillo, D. Guindi, W. McCracken, A. Offutt, K. King, An extended overview of the
Mothra software testing environment, in Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis (1988), pp. 142–151

286. A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the em
algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1997)

287. P. Denning, J.P. Buzen, The operational analysis of queueing network models. ACM
Comput. Surv. 10(3), 225–261 (1978)

288. Department of Defense, Trusted computer system evaluation criteria (1985)
289. S. Derisavi, A symbolic algorithm for optimal markov chain lumping, in TACAS 2007, ed.

by O. Grumberg, M. Huth (Springer, Heidelberg, 2007), pp. 139–154
290. A.C. Dias Neto, R. Subramanyan, M. Vieira, G.H. Travassos, A survey on model-based

testing approaches: a systematic review, in Proceedings of the 1st ACM International
Workshop on Empirical Assessment of Software Engineering Languages and Technologies,
WEASELTech ’07 (2007), pp. 31–36

291. Database Language SQL (1992)
292. E.W. Dijkstra, Hierarchical ordering of sequential processes. Acta Inform. 1, 115–138

(1971)
293. J. Dilley, Web server workload charaterization, in HP Technical report, HPL-96-160 (1996)
294. N. Dingle, An empirical study of the scalability of performance analysis tools in the cloud,

in Proceedings of the 26th UK Performance Engineering Workshop (UKPEW’10),
Warwick, July 2010, pp. 9–16

295. N. Dingle, P. Harrison, W. Knottenbelt, Response time densities in generalised stochastic
petri net models, in Proceedings of the 3rd International Workshop on Software and
Performance (WOSP’02), Rome, July 24th–26th 2002, pp. 46–54

296. N. Dingle, P. Harrison, W. Knottenbelt, HYDRA: hypergraph-based distributed response-
time analyser, in Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’03), Las Vegas, June 23rd–26th 2003,
pp. 215–219

297. N. Dingle, P. Harrison, W. Knottenbelt, Uniformization and hypergraph partitioning for the
distributed computation of response time densities in very large Markov models. J. Parallel.
Distr. Com. 64(8), 908–920 (2004)

298. S. Distefano, A. Puliafito, Dependability evaluation with dynamic reliability block diagrams
and dynamic fault trees. IEEE Trans. Depend. Secure Comput. 6(1), 4–17 (2008)

299. A. Dixit, R. Heald, A. Wood, Trends from ten years of soft error experimentation, in 5th
IEEE Workshop on Silicon Errors in Logic—Systems Effects (SELSE-5), March 2009

300. I. Dobson, B. Carreras, V. Lynch, D.E. Newman, Complex systems analysis of series of
blackouts: cascading failure, critical points, and self-organization. CHAOS 17(2) (2007)

301. I. Dobson, B.A. Carreras, V. Lynch, D.E. Newman, An initial model for complex dynamics
in electric power system blackouts, in 34th IEEE Hawaii International Conference on
System Sciences (CD-ROM), Maui, Hawaii, Jan 2001, 9 pp

302. J. Dobson, B. Randell, Building reliable secure systems out of unreliable insecure components,
in IEEE Conference on Security and Privacy (IEEE, Oakland, 1986), pp. 187–193

303. T. Dohi, K. Goseva-Popstojanova, K.S. Trivedi, Analysis of software cost models with
rejuvenation, in Fifth IEEE International Symposium on High Assurance Systems
Engineering, 2000. HASE 2000 (2000), pp. 25–34

304. T. Dohi, K. Goseva-Popstojanova, K.S. Trivedi, Statistical non-parametric algorithms to
estimate the optimal software rejuvenation schedule, in 2000 Pacific Rim International
Symposium on Dependable Computing, 2000: Proceedings (2000), pp. 77–84

305. T. Dohi, K. Goseva-Popstojanova, K.S. Trivedi, Estimating software rejuvenation schedules
in high-assurance systems. Comput. J. 44(6), 473–485 (2001)

306. S. Donatelli, Superposed generalised stochastic petri nets: definition and efficient solution,
in Proceedings of 15th International Conference on Application and Theory of Petri Nets,
ed. by M. Silva (1994)

456 References

307. S. Donatelli, P. Kemper, Integrating synchronization with priority into a kronecker
representation. Perform. Eval. 44(1–4), 73–96 (2001)

308. Drupal (2009), http://www.drupal.org/
309. X. Du, Y. Qi, D. Hou, Y. Chen, X. Zhong, Modeling and performance analysis of software

rejuvenation policies for multiple degradation systems, in 33rd Annual IEEE International
Computer Software and Applications Conference, 2009. COMPSAC ’09, vol. 1, July 2009,
pp. 240–245

310. S. Duan, S. Babu, Guided problem diagnosis through active learning, in Proceedings of the
2008 International Conference on Autonomic Computing, Chicago, IL, June 2008, pp. 45–54

311. R.B. Duffey, The quantification of resilience: learning environments and managing risk, in
3rd Symposium on Resilience Engineering (Antibes, France, 2008), pp. 75–81

312. J. Durães, H. Madeira, Characterization of operating systems behavior in the presence of
faulty drivers through software fault emulation, in 9th Pacific Rim International Symposium
on Dependable Computing (PRDC 2002) (IEEE Computer Society, New York, 2002),
pp. 201–209

313. J. Durães, H. Madeira, Definition of software fault emulation operators: a field data study, in
Proceedings 2003 International Conference on Dependable Systems and Networks (DSN
2003) (IEEE Computer Society, San Francisco, 2003), pp. 105–114

314. J. Durães, H. Madeira, Generic faultloads based on software faults for dependability
benchmarking, in Proceedings of the IEEE/IFIP 2004 International Conference on
Dependable Systems and Networks (DSN 2004) (2004)

315. J. Durães, H. Madeira, Emulation of software faults: a field data study and a practical
approach. IEEE Trans. Softw. Eng. 32(11), 849–867 (2006)

316. J. Durães, M. Vieira, H. Madeira, Dependability benchmarking of web-servers, in
Proceedings of the 23rd International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2004) (2004)

317. E-UTRA, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal
Terrestrial Radio Access Network (E-UTRAN); Overall description, Stage 2, release 9,
version 9.1.0, Oct 2010

318. K. Echtle, M. Leu, The EFA fault injector for fault-tolerant distributed system testing, in
Proceedings of the IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems
(IEEE Computer Society Press, Amherst, 1992), pp. 28–35

319. K. Echtle, M. Leu, Test of fault tolerant distributed systems by fault injection, in
Proceedings of IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, June
1994, pp. 244–251

320. EEC Directive 90/C81/01, Emission test cycles for the certification of light duty vehicles in
Europe, EEC emission cycles (1999), http://www.dieselnet.com/standards/cycles

321. A. Ejlali, S.G. Miremadi, Error propagation analysis using FPGA-based SEU-fault
injection. Microelectron. Reliab. 48(2), 319–328 (2008)

322. Y. el-Khamra, H. Kim, S. Jha, M. Parashar, Exploring the performance fluctuations of HPC
workloads on clouds, in 2nd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom) (2010)

323. I. Elia, J. Fonseca, M. Vieira, Comparing SQL injection detection tools using attack
injection: an experimental study, in 21st International Symposium on Software Reliability
Engineering, ISSRE-2010 (IEEE, San Jose, 2010)

324. R. Elling, I. Pramanick, J. Mauro, W. Bryson, D. Tang, Analytical RAS Benchmarks,
Dependability Benchmarking for Computer Systems (Wiley, Chichester, 2008)

325. Embedded Microprocessor Benchmark Consortium, Eembc homepage (2011),
http://www.eembc.org/home.php

326. EMC, Automating root cause analysis: EMC Ionix codebook correlation technology vs.
rule-based analysis. Technical report h5964, EMC, Nov 2009

327. R. Enders, T. Filkorn, D. Taubner, Generating BDDs for symbolic model checking in CCS,
in Computer Aided Verification, vol. 6 (Springer, Berlin, 1993), pp. 155–164

References 457

http://www.drupal.org/
http://www.dieselnet.com/standards/cycles
http://www.eembc.org/home.php

328. B.C. Ezell, Infrastructure vulnerability assessment model (I-VAM). Risk Anal. 27(3),
571–583 (2007)

329. L. Falai, Observing, monitoring and evaluating distributed systems. Ph.D. thesis, University
of Florence (2008)

330. L. Falai, A. Bondavalli, F. Di Giandomenico, Quantitative evaluation of distributed
algorithms using the neko framework: the nekostat extension, in Dependable Computing.
Lecture Notes in Computer Science, vol. 3747, ed. by C.A. Maziero, J.G. Silva, A.M.S.
Andrade, F.M. de Assis Silva (Springer, Berlin, 2005), pp. 35–51

331. N. Falliere, L.O. Murchu, E. Chien, W32.sutxnet Dossier, http://www.symantec.com/
content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf.
Accessed 7 Oct 2010

332. E. Farr, R. Harper, L. Spainhower, J. Xenidis, A case for high availability in a virtualized
environment (HAVEN), in International Conference on Availability, Reliability and
Security (2008)

333. N. Feamster, H. Balakrishnan, Detecting BGP configuration faults with static analysis, in
Proceedings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation, vol. 2, Boston, MA, May 2005, pp. 43–56

334. N. Fenton, Software measurement: a necessary scientific basis. IEEE Trans. Softw. Eng. 20,
199–206 (1994)

335. N. Fenton, S.L. Pfleeger, Software Metrics—A Rigorous and Practical Approach, 2nd edn.
(PWS Publishing, Boston, 1997)

336. P. Fernandes, Méthodes numériques pour la solution de systèmes Markoviens àà grand
espace d’états. Ph.D. thesis (1998)

337. P. Fernandes, B. Plateau, W. Stewart, Efficient descriptor-vector multiplications in
stochastic automata networks. JACM 3(45), 381–414 (1998)

338. J.-C. Fernandez, L. Mounier, C. Pachon, A model-based approach for robustness testing, in
Testing of Communicating Systems, (2005), pp. 333–348

339. F. Flammini (ed.), Critical Infrastructure Security: Assessment, Prevention, Detection,
Response (WIT Press Royal, in press, 2011)

340. F. Flammini, V. Vittorini, N. Mazzocca, C. Pragliola, A study on Multiformalism Modeling
of Critical Infrastructures (Springer, Berlin, 2009), pp. 336–343

341. J. Fonseca, M. Vieira, Mapping software faults with web security vulnerabilities, in IEEE/
IFIP International Conference on Dependable Systems and Networks, June 2008

342. J. Fonseca, M. Vieira, H. Madeira, Online detection of malicious data access using DBMS
auditing, in Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08,
pp. 1013–1020 (2008)

343. J. Fonseca, M. Vieira, H. Madeira, Vulnerability & attack injection for web applications, in
International Conference on Dependable Systems and Networks with FTCS and DCC—
DSN 2009 (IEEE, Lisbon, 2009)

344. J. Fonseca, M. Vieira, H. Madeira, Vulnerability & attack injection for Web applications, in
The 39th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2009, Lisbon, Portugal (2009)

345. J. Fonseca, M. Vieira, H. Madeira, The web attacker perspective—a field study, in 21st
International Symposium on Software Reliability Engineering, ISSRE-2010 (IEEE, San
Jose, 2010)

346. R. Fonseca, G. Porter, R. Katz, S. Shenker, I. Stoica, X-Trace: a pervasive network tracing
framework, in Proceedings of the Fourth USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2007), Cambridge, MA, April 2007, pp. 271–284

347. C. Forgy, Rete: a fast algorithm for the many pattern/many object pattern match problem.
Artif. Intell. 19(4), 17–37 (1982)

348. M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney, M.K. Low, T.
Adams, M.P. Laucht, J. Gough, Symantec report on the underground economy. Symantec
Security report, Symantec (2008)

458 References

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

349. I.T. Foster, Globus toolkit version 4: software for service-oriented systems, in Proceedings
of the 2005 IFIP International Conference on Network and Parallel Computing (2005),
pp. 2–13

350. H. Fouchal, A. Rollet, A. Tarhini, Robustness testing of composed real-time systems.
J. Comp. Methods Sci. Eng. 10, 135–148 (2010)

351. Foundstone, Inc. Foundstone WSDigger (2011), http://www.foundstone.com/us/resources/
proddesc/wsdigger.htm

352. J.-M. Fourneau, L. Kloul, F. Valois, Performance modelling of hierarchical cellular
networks using pepa. Perform. Eval. 50(2–3), 83–99 (2002)

353. K. Fowler, Dependability [reliability]. Instrum. Meas. Mag. IEEE 8(4), 55–58 (2005)
354. G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, V. Vittorini, DrawNET++: model

objects to support performance analysis and simulation of systems, in Computer
Performance Evaluation: Modelling Techniques and Tools. Lecture Notes in Computer
Science, vol. 2324, ed. by T. Field, P. Harrison, J. Bradley, U. Harder (Springer, Berlin,
2002), pp. 55–60

355. M. Frank, P. Wolfe, An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2),
95–110 (1956)

356. F.C. Freiling, Introduction to security metrics, in Dependability Metrics, ed. by I. Eusgeld,
F.C. Freiling, R. Reussner (Springer, Berlin, 2008), pp. 129–132

357. R. Fricks, C. Hirel, S. Wells, K. Trivedi, The development of an integrated modeling
environment, in Proceedings of the World Congress on Systems Simulation (WCSS ’97),
Singapore, Sept 1997, pp. 471–476

358. C. Fu, A. Milanova, B.G. Ryder, D.G. Wonnacott, Robustness testing of Java server
applications. IEEE Trans. Softw. Eng. 31, 292–311 (2005)

359. G. Fuchs, R. German, UML2 activity diagram based programming of wireless sensor
networks, in ICSE Workshop on Software Engineering for Sensor Network Applications,
SESENA ’10 (ACM, New York, 2010), pp. 8–13

360. M. Fujita, P. McGeer, J.-Y. Yang, Multi-terminal binary decision diagrams: an efficient data
structure for matrix representation. Formal Methods Syst. Des. 10(2/3), 149–169 (1997)

361. M. Fukushima, A modified frank-wolfe algorithm for solving the traffic assignment
problem. Transp. Res. B Methodol. 18(2), 169–177 (1984)

362. S. Gaisbauer, J. Kirschnick, N. Edwards, J. Rolia, VATS: virtualized-aware automated test
service, in QEST’08, Fifth International Conference on the Quantitative Evaluation of
Systems (IEEE, St Malo, 2008), pp. 93–102

363. A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, Optimal power allocation in server
farms, in International Joint Conference on Measurement and Modeling of Computer
Systems (2009)

364. Ganglia, Ganglia monitoring system (2007), http://ganglia.inf
365. D.A. Garbin, J.F. Shortle, Measuring resilience in network-based infrastructures, in Critical

Thinking: Moving from Infrastructure Protection to Infrastructure Resilience, CIP Program
Discussion Paper Series (George Mason University, 2007), pp. 73–86

366. S. Garg, Y. Huang, C. Kintala, K.S. Trivedi, Time and load based software rejuvenation:
policy, evaluation and optimality, in Proceedings of the 1st Fault-Tolerant Symposium
(1995), pp. 22–25

367. S. Garg, A. Puliafito, M. Telek, K.S. Trivedi, Analysis of software rejuvenation using
markov regenerative stochastic petri nets, in Proceedings of the Sixth International
Symposium on Software Reliability Engineering, Oct 1995, pp. 180–187

368. S. Garg, A. Puliafito, M. Telek, K.S. Trivedi, Analysis of preventive maintenance in
transactions based software systems. IEEE Trans. Comput. 47(1), 96–107 (1998)

369. S. Garg, A. van Moorsel, K. Vaidyanathan, K.S. Trivedi, A methodology for detection and
estimation of software aging, in Proceedings of the the Ninth International Symposium on
Software Reliability Engineering, Nov 1998, pp. 283–292

References 459

http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://ganglia.inf

370. N. Gast, B. Gaujal, J.-Y. Le Boudec, Mean field for markov decision processes: from
discrete to continuous optimization. Technical report, arXiv:1004.2342v2 (2010)

371. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesC language: a
holistic approach to networked embedded systems. SIGPLAN Not 38(5), 1–11 (2003)

372. E. Gelenbe, Product-form queueing networks with negative and positive customers. J. Appl.
Probab. 28(3), 656–663 (1991)

373. A. Georges, L. Eeckhout, Performance metrics for consolidated servers, in Proceedings of
HPCVirt 2010 (Association for Computing Machinery (ACM), 2010)

374. R. German, C. Kelling, A. Zimmermann, G. Hommel, Timenet-a toolkit for evaluating non-
markovian stochastic petri nets, in Proceedings of the Sixth International Workshop on Petri
Nets and Performance Models, Oct 1995, pp. 210–211

375. S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in Proceedings of the 19th
ACM Symposium on Operating Systems Principles (2003)

376. A.A. Ghorbani, E. Bagheri, The state of the art in critical infrastructure protection: a
framework for convergence. Int. J. Crit. Infrastruct. 4, 244–251 (2008)

377. A.K. Ghosh, M. Schmid, An approach to testing COTS software for robustness to operating
system exceptions and errors, in Proceedings of the 10th International Symposium on
Software Reliability Engineering, ISSRE ’99 (1999), pp. 166–174

378. R. Ghosh, F. Longo, V. Naik, K. Trivedi, Quantifying resiliency of iaas cloud, in 29th IEEE
Symposium on Reliable Distributed Systems, 2010, Oct 31–Nov 3, 2010, pp. 343–347

379. K. Gilly, S. Alcaraz, C. Juiz, R. Puigjaner, Analysis of burstiness monitoring and detection
in an adaptive web system. Comput. Netw. 53, 668–679 (2009)

380. K. Gilly, C. Juiz, N. Thomas, R. Puigjaner, Adaptive admission control algorithm in a qos-
aware web system. Inf. Sci. (in press, 2011)

381. S. Gilmore, J. Hillston, M. Ribaudo, An efficient algorithm for aggregating pepa models.
IEEE Trans. Softw. Eng. 27(5), 449–464 (2001)

382. N. Glombitza, D. Pfisterer, S. Fischer, Using state machines for a model driven development
of web service-based sensor network applications, in ICSE Workshop on Software
Engineering for Sensor Network Applications (2010)

383. Critical thinking: Moving from Infrastructure Protection to Infrastructure Resilience. CIP
Program Discussion Paper Series, George Mason University School of Law, Feb 2007

384. J. Goldberg, SIFT: A provable fault-tolerant computer for aircraft flight control, in IFIP
Congress 1980 (International Federation for Information Processing Tokyo, 1980),
pp. 151–156

385. L. Gönczy, S. Chiaradonna, F.D. Giandomenico, A. Pataricza, A. Bondavalli, T. Bartha,
Dependability evaluation of web service-based processes, in 3rd European Performance
Engineering Workshop (EPEW2006), Budapest, Hungary, June 21–22, 2006. Lecture Notes
in Computer Science, vol. 4054, ed. by A. Horváth, M. Telek (Springer, Berlin, 2006),
pp. 166–180

386. W. Gordon, G. Newell, Closed queueing systems with exponential servers. Oper. Res.
15(2), 254–265 (1967)

387. K.K. Goswami, R.K. Iyer, L.T. Young, DEPEND: a simulation-based environment for
system level dependability analysis. IEEE Trans. Comput. 46(1), 60–74 (1997)

388. M. Grabowski, A. Premnath, J. Merrik, J. Harrald, K. Roberts, Leading indicators of safety
in virtual organizations. Saf. Sci. 45, 1013–1043 (2007)

389. M. Grabowski, Z. You, H. Song, H. Wang, J. Merrick, Sailing on Friday: developing the
link between safety culture and performance in safety-critical systems. IEEE Trans. Syst.
Man Cybern. A Syst. Hum. 40(2), 263–284 (2010)

390. J. Gray, Why do computers stop and what can be done about it? In 5th Symposium on
Reliability in Distributed Software and Database Systems (SRDSDS-5) (IEEE Computer
Society Press, Los Angeles, 1986), pp. 3–12

391. J. Gray (ed.), The Benchmark Handbook for Database and Transaction Systems, 2nd edn.
(Morgan Kaufmann, San Mateo, 1993)

460 References

392. J. Gray, D.P. Siewiorek, High-availability computer systems. IEEE Comput. 9, 39–48
(1991)

393. M. Gribaudo, A. Remke, Hybrid petri nets with general one-shot transitions for
dependability evaluation of fluid critical infrastructures, in Proceedings of the 2010 IEEE
12th International Symposium on High-Assurance Systems Engineering, HASE ’10 (IEEE
Computer Society, Washington, 2010), pp. 84–93

394. M. Gribaudo, M. Sereno, Simulation of fluid stochastic petri nets, in Proceedings of the 8th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS ’00 (IEEE Computer Society, Washington,
2000), pp. 231–239

395. M. Gribaudo, M. Telek, Fluid models in performance analysis, in Proceedings of the 7th
International Conference on Formal Methods for Performance Evaluation, SFM’07
(Springer, Berlin, 2007), pp. 271–317

396. GRID Consortium, D11—ICT vulnerabilities of power systems: a roadmap for future
research. Technical report, GRID Consortium, Dec 2007

397. W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the
Message Passing Interface (MIT Press, Cambridge, 1994)

398. R. Grossman, The case for cloud computing. IT Prof. 11(2), 23–27 (2009)
399. M. Grottke, V. Apte, K. Trivedi, S. Woolet, Response time distributions in networks of

queues, in Queueing Networks. International Series in Operations Research and
Management Science, vol. 154, ed. by R. Boucherie, N. Dijk (Springer, New York,
2011), pp. 587–641

400. M. Grottke, R. Matias, K.S. Trivedi, The fundamentals of software aging, in Software
Reliability Engineering Workshops, 2008. IEEE International Conference on ISSRE Wksp
2008, Nov 2008, pp. 1–6

401. M. Grottke, K.S. Trivedi, Fighting bugs: remove, retry, replicate, and rejuvenate. Computer
40(2), 107–109 (2007)

402. U. Gunnejlo, J. Karlsson, J. Torin, Evaluation of error detection schemes using fault
injection by heavy-ion radiation, in International Symposium on Fault-Tolerant Computing
(FTCS ’89) (IEEE Computer Society Press, Washington, 1989), pp. 340–347

403. J. Güthoff, V. Sieh, Combining software-implemented and simulation-based fault injection
into a single fault injection method, in The Twenty-Fifth International Symposium on Fault-
Tolerant Computing (FTCS ’95). (IEEE Computer Society Press, Los Alamitos, 1995),
pp. 196–206

404. A.N. Habermann, Introduction to Operation Systems Design (Science Research Associates,
Chicago, 1976)

405. A. Hale, T. Heijer, Is resilience really necessary? The case of railways, in Resilience
Engineering. Concepts and Precepts, ed. by E. Hollnagel, D.D. Woods, N. Leveson
(Ashgate, Aldershot, UK, 2006), pp. 125–148

406. W.G.J. Halfond, A. Orso, AMNESIA: analysis and monitoring for NEutralizing SQL-
injection attacks, in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05 (2005), pp. 174–183

407. J.R. Hamilton, An architecture for modular data centers, in Proceedings of the Conference
on Innovative Data System Research (2007), pp. 306–313

408. S. Han, K.G. Shin, H.A. Rosenberg, DOCTOR: an integrated software fault injection
environment for distributed real-time systems, in International Computer Performance and
Dependability Symposium (1995), pp. 204–213

409. R. Hansen, SQL Injection cheat sheet (2006) http://ha.ckers.org/sqlinjection/
410. R. Hansen, XSS (Cross Site Scripting) Cheat Sheet (2009)
411. P. Harrison, W. Knottenbelt, Passage time distributions in large Markov chains, in

Proceedings of ACM SIGMETRICS 2002, Marina Del Rey, CA, June 2002, pp. 77–85
412. P.G. Harrison, Turning back time in markovian process algebra. Theor. Comput. Sci.

290(3):1947–1986 (2003)

References 461

http://ha.ckers.org/sqlinjection/

413. P.G. Harrison, Compositional reversed markov processes, with applications to g-networks.
Perform. Eval. 57(3), 379–408 (2004)

414. P.G. Harrison, B. Strulo, Spades—a process algebra for discrete event simulation. J. Logic
Comput. 10(1), 3–42 (2000)

415. H. Hashempour, L. Schiano, F. Lombardi, Evaluation, analysis, and enhancement of error
resilience for reliable compression of vlsi test data. IEEE Trans. Instrum. Meas., 54(5)
1761–1769 (2005)

416. M. Hauswirth, A. Diwan, P. Sweeney, M. Hin, Vertical profiling: understanding the
behavior of object-oriented applications, in ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Vancouver, BC, Canada (2004),
pp. 251–269

417. B.R. Haverkort, H. Hermanns, J.-P. Katoen, On the use of model checking techniques for
quantitative dependability evaluation, in Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems, SRDS 2000 (IEEE Computer Society Press, Los Alamitos,
2000), pp. 228–237

418. B.R. Haverkort, I.G. Niemegeers, Performability modelling tools and techniques. Perform.
Eval. 25(1), 17–40 (1996)

419. R. Hayden, Scalable performance analysis of massively parallel stochastic systems. Ph.D.
thesis, Department of Computing, Imperial College London (2011)

420. R. Hayden, J.T. Bradley, A fluid analysis framework for a Markovian process algebra.
J. Theor. Comput. Sci. 411(22–24) 2260–2297, (2010). doi:10.1016/j.tcs.2010.02.001

421. R. Hayden, A. Stefanek, J.T. Bradley, Fluid computation of passage time distributions in
large markov models. Technical report, Department of Computing, Imperial College
London, Nov 2010 http://pubs.doc.ic.ac.uk/fluid-passage-time/ (under review)

422. Q.-M. He, H. Zhang, Spectral polynomial algorithms for computing bi-diagonal
representations for phase type distributions and matrix-exponential distributions. Stoch.
Models 22, 289–317 (2006)

423. X. He, W. Wei, X. Gui, The software rejuvenation model with pre-start technology, in 2008
International Symposiums on Information Processing (ISIP), May 2008, pp. 723–727

424. P.E. Heegaard, K.S. Trivedi, Network survivability modeling. Comput. Netw. 53(8), 1215–
1234 (2009)

425. W. Henderson, P. Taylor, Embedded processes in stochastic petri nets. IEEE Trans. Softw.
Eng. 17(2), 108–116 (1991)

426. J.N. Herder, H. Bos, B. Gras, P. Homburg, A.S. Tanenbaum, Fault isolation for device
drivers, in Proceedings of the 39th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2009), June–July 2009, pp. 33–42

427. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, M. Siegle (2003) On the use of
MTBDDs for performability analysis and verification of stochastic systems. J. Logic
Algebraic Progr. 56(1–2), 23–67

428. H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi terminal binary decision diagrams to
represent and analyse continuous time markov chains, in 3rd International Workshop on the
Numerical Solution of Markov Chains, ed. by B. Plateau, W. Stewart, M. Silva (Prensas
Universitarias de Zaragoza, 1999), pp. 188–207

429. H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences, and axioms for MTIPP, in
Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling (PAPM
’94) (1994), pp. 71–87

430. H. Hermanns, M. Siegle, Bisimulation algorithms for stochastic process algebras and their
BDD-based implementation, in ARTS’99, 5th International AMAST Workshop on Real-Time
and Probabilistic Systems. Lecture Notes in Computer Science, vol. 1601, ed. by J.-P.
Katoen (Springer, Heidelberg, 1999), pp. 144–264

431. B. Herndon, P. Smith, L. Roderick, E. Zamost, J. Anderson, V. Makhija, B. Herndon, P.
Smith, E. Zamost, J. Anderson, VMmark: a scalable benchmark for virtualized systems
(2006)

462 References

http://dx.doi.org/10.1016/j.tcs.2010.02.001
http://pubs.doc.ic.ac.uk/fluid-passage-time/

432. I. Herrera, J. Hovden, The leading indicators applied to maintenance in the framework of
resilience engineering: a conceptual approach, in 3rd Resilience Engineering Symposium
(Antibes-Juan Les Pins, France 2008)

433. Hewlett Packard, HP operations manager (2010), http://www.managementsoftware.hp.com
434. Hewlett-Packard Development Company. HP WebInspect (2011), http://www8.hp.com/

us/en/software/software-solution.html?compURI=tcm:245-936139
435. Hidenets—highly dependable IP-based networks and services (project ist-fp6-strep-26979)

(2006), http://www.hidenets.aau.dk/
436. J. Hillston, A Compositional Approach to Performance Modelling. Distinguished

Dissertations in Computer Science, vol. 12 (Cambridge University Press, Cambridge, 1996)
437. J. Hillston, Exploiting structure in solution: decomposing compositional models, in Lectures

on Formal Methods and Performance Analysis. Lecture Notes in Computer Science, vol.
2090, ed. by E. Brinksma et al., (Springer, Berlin, 2001), pp. 278–314

438. J. Hillston, Fluid flow approximation of PEPA models, in Second International Conference
on the Quantitative Evaluation of Systems, Sept 2005, pp. 33–42

439. J. Hillston, L. Kloul, An efficient kronecker representation for PEPA models, in
Proceedings of the Joint International Workshop, PAPM-PROBMIV 2001. Lecture Notes
in Computer Science, vol. 2165 (Springer, Aachen, 2001), pp. 120–135

440. J. Hillston, L. Kloul, Formal techniques for performance analysis: blending san and pepa.
Formal Aspects Comput. 19, 3–33 (2007)

441. W. Hoarau, S. Tixeuil, A language-driven tool for fault injection in distributed systems, in
Proceedings of the 6th IEEE/ACM International Conference on Grid Computing (GRID
2005) (IEEE, 2005), pp. 194–201

442. W. Hoarau, S. Tixeuil, F. Vauchelles, Fault injection in distributed java applications, in
Proceedings of the 20th International Parallel and Distributed Processing Symposium
(IPDPS 2006) (IEEE, 2006)

443. G. Hoffmann, K. Trivedi, M. Malek, A best practice guide to resource forecasting for
computing systems. IEEE Trans. Reliab. 56(4), 615–628 (2007)

444. G. Horton, V.G. Kulkarni, D.M. Nicol, K.S. Trivedi, Fluid stochastic petri nets: theory,
applications, and solution techniques. Eur. J. Oper. Res. 105(1), 184–201 (1998)

445. A. Horváth, M. Telek, Approximating heavy tailed behaviour with phase type distributions,
in 3rd International Conference on Matrix-Analytic Methods in Stochastic Models
(MAM03) (2000)

446. A. Horváth, M. Telek, PhFit: a general phase-type fitting tool, in TOOLS ’02: Proceedings
of the 12th International Conference on Computer Performance Evaluation, Modelling
Techniques and Tools (Springer, London, 2002), pp. 82–91

447. G. Horváth, M. Telek, A canonical representation of order 3 phase-type distributions, in
Formal Methods and Stochastic Models for Performance Evaluation. Lecture Notes in
Computer Science, vol. 4748, ed. by K. Wolter (Springer, Berlin, 2007), pp. 48–62

448. G. Horváth, M. Telek, A minimal representation of markov arrival processes and a moments
matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

449. Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, Software rejuvenation: analysis, module and
applications, in Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995.
FTCS-25, Digest of Papers, June 1995, pp. 381–390

450. Y.-W. Huang, S.-K. Huang, T.-P. Lin, C.-H. Tsai, Web application security assessment by
fault injection and behavior monitoring, in Proceedings of the 12th International
Conference on World Wide Web, WWW ’03 (2003), pp. 148–159

451. N. Huber, F. Brosig, S. Kounev, Model-based self-adaptive resource allocation in
virtualized environments, in SEAMS’11: 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (2011)

452. N. Huber, M. von Quast, F. Brosig, S. Kounev, Analysis of the performance-influencing
factors of virtualization platforms, in OTM 2010 Conferences—Distributed Objects,
Middleware, and Applications (DOA’10) (Springer, Heidelberg, 2010)

References 463

http://www.managementsoftware.hp.com
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936139
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936139
http://www.hidenets.aau.dk/

453. N. Huber, M. von Quast, M. Hauck, S. Kounev, Evaluating and modeling virtualization
performance overhead for cloud environments, in 1st International Conference on Cloud
Computing and Service Science (CLOSER 2011) (2011)

454. M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees, models, and
applications. ACM Comput. Surv. 40(7) (2008)

455. K. Huh, K. Han, D. Hong, J. Kim, H. Kang, P. Yoon, A model-based fault diagnosis system
for electro-hydraulic brake. SAE technical paper series 2008-01-1225 (SAE International,
Warrendale, 2008)

456. J.W. Hunt, M.D. McIlroy, An algorithm for differential file comparison. Online technical
report, Bell Laboratories Computing Science (1976), http://www.cs.dartmouth.edu/doug/
diff.ps

457. K. Huppler, The art of building a good benchmark, in First TPC Technology Conference
(TPCTC 2009). Lecture Notes in Computer Science, vol. 5895 (2009)

458. IBM, Tivoli Enterprise Console (2010), http://www.ibm.com/software/tivoli/products/
enterprise-consol

459. IBM. IBM Rational AppScan (2011), http://www-01.ibm.com/software/awdtools/appscan/
460. S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, X. Shi, Evaluating mapreduce on virtual machines:

the hadoop case, in Proceedings of 1st International Conference on Cloud Computing,
CloudCom ’09 (Springer, Berlin, 2009), pp. 519–528

461. IEC 61508, Functional safety of electrical/electronic/programmable electronic safety related
systems (International Electrotechnical Commission, 1998–2010)

462. IEEE, IEEE Std 1149.1-2001, IEEE standard test access port and boundary-scan
architecture (2001)

463. IEEE, IEEE 802.3: LAN/MAN CSMA/CDE (ETHERNET) Access method (2010),
http://standards.ieee.org/getieee802/802.3.html

464. IEEE, Std 1588-2008, IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems, http://ieeexplore.ieee.org/xpl/freeabs_all.
jsp?arnumber=4579760 (2010)

465. IEEE. Systems and software engineering—vocabulary, 2010. Standard 24765 (2010)
466. IEEE Industry Standards and Technology Organization (IEEE-ISTO). IEEE-ISTO 5001

TM-2003, the nexus 5001TM forum standard for a global embedded processor debug
interface, Dec 2003

467. IEEE RTS Task Force of the APM Subcommittee, IEEE reliability test system. IEEE Trans.
Power App. Syst. PAS-98(6) 2047–2054 (1979)

468. IEEE RTS Task Force of the APM Subcommittee, The IEEE reliability test system—1996.
IEEE Trans. Power Syst. 14(3) 1010–1020 (1999)

469. M. Ihde, W.H. Sanders, Barbarians in the gate: an experimental validation of nic-based
distributed firewall performance and flood tolerance, in Proceedings of the International
Conference on Dependable Systems and Networks (2006), pp. 209–216

470. IRRIIS, European Project IRRIIS—Integrated risk reduction of information-based
infrastructure systems, http://irriis.org

471. IRRIIS Consortium, Tools and techniques for interdependency analysis. Technical report,
http://www.irriis.org/, July 2007

472. IRRIS Consortium, D1.3.2—list of available and suitable simulation components. Technical
report, IRRIS Consortium (2006)

473. R. Isermann, Model-based fault-detection and diagnosis—status and applications. Annu.
Rev. Control 29(1), 71–85 (2005)

474. T. Israr, M. Woodside, M. Franks, Interaction tree algorithms to extract effective
architecture and layered performance models from traces. J. Syst. Softw. 80, 474–492
(2007)

475. ITU, G.8261/Y.1361 (04/2008) Timing and synchronization aspects in packet networks,
http://www.itu.int/rec/T-REC-G.8261-200804-I, April 2008

464 References

http://www.cs.dartmouth.edu/doug/diff.ps
http://www.cs.dartmouth.edu/doug/diff.ps
http://www.ibm.com/software/tivoli/products/enterprise-consol
http://www.ibm.com/software/tivoli/products/enterprise-consol
http://www-01.ibm.com/software/awdtools/appscan/
http://standards.ieee.org/getieee802/802.3.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760
http://irriis.org
http://www.irriis.org/
http://www.itu.int/rec/T-REC-G.8261-200804-I

476. R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, D. Newell, VM3: measuring, modeling
and managing VM shared resources. Comput. Netw. 53(17), 2873–2887 (2009) (Virtualized
Data Centers)

477. R.K. Iyer, L.T. Young, P.V.K. Iyer, Automatic recognition of intermittent failures: an
experimental study of field data. IEEE Trans. Comput. 39, 525–537 (1990)

478. R.V.J. Delude, Analyzing quantitative data through the web, in 6th Annual Dual Use
Technologies and Applications Conference, Mohawk, Valley Section, USA (IEEE, 1995)

479. J. Kephart et al., Coordinating multiple autonomic managers to achieve specified power-
performance tradeoffs, in International Conference on Autonomic Computing (2007)

480. J. Jackson, Networks of waiting lines. Oper. Res. 5(4), 518–521 (1957)
481. K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.J. Wasserman,

N.J. Wright, Performance analysis of high performance computing applications on the
amazon web services cloud, in Proceedings of 2nd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom) (2010), pp. 159–168

482. T. Jansen, I. Balan, I. Moerman, T. Kürner, Handover parameter optimization in lte self-
organizing networks, in Proceedings of the 72nd Vehicular Technology Conference, VTC
2010-Fall, Ottawa, ON, Sept 2010

483. W. Jansen, Directions in security metrics research—NISTIR 7564. Technical report, NIST
(2009)

484. A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt (Addison-Wesley
Professional, Reading, 2007)

485. M. Jayakumar, B. Das, Diagnosis of incipient sensor faults in a flight control actuation
system, in SICE-ICASE, 2006. International Joint Conference, Busan, Korea, Oct 2006,
pp. 3423–3428

486. E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, J. Karlsson, Fault injection into VHDL models: the
MEFISTO tool, in Proceedings of the 24th Annual International Symposium on Fault-
Tolerant Computing (FTCS 94) (IEEE Computer Society Press, Los Alamitos, 1994),
pp. 66–75

487. Y.-F. Jia, J.-Y. Su, K.-Y. Cai, A feedback control approach for software rejuvenation in a
web server, in Software Reliability Engineering Workshops, 2008. IEEE International
Conference on ISSRE Wksp 2008, Nov 2008, pp. 1–6

488. G. Jiang, H. Chen, K. Yoshihira, A. Saxena, Ranking the importance of alerts for problem
determination in large computer systems, in Proceedings of the 6th International
Conference on Autonomic Computing, Barcelona, Spain, June 2009, pp. 3–12

489. L. Jiang, X. Peng, G. Xu, Time and prediction based software rejuvenation policy, in
Second International Conference on Information Technology and Computer Science (ITCS),
2010, July 2010, pp. 114–117

490. M. Jiang, M.A. Munawar, T. Reidemeister, P.A.S. Ward, System monitoring with metric-
correlation models: problems and solutions, in Proceedings of the 6th International
Conference on Autonomic Computing, Barcelona, Spain, June 2009, pp. 13–22

491. C.W. Johnson, Analysing the causes of the Italian and Swiss blackout, 28th Sept 2003, in
SCS ’07: Proceedings of the Twelfth Australian Workshop on Safety Critical Systems and
Software and Safety-Related Programmable Systems (Australian Computer Society,
Darlinghurst, 2007), pp. 21–30

492. Joint Committee for Guides in Metrology JCGM 100:2008. Evaluation of Measurement
Data—Guide to the Expression of Uncertainty in Measurement (2008)

493. Joint Committee for Guides in Metrology JCGM 200:2008. International Vocabulary of
Metrology—Basic and General Concepts and Associated Terms, 3rd edn. (2008)

494. N. Jones, PHP-Fusion (2009)
495. E. Jonsson, T. Olovsson (1997) A quantitative model of the security intrusion process based

on attacker behavior. IEEE Trans. Softw. Eng. 23(4), 235–245

References 465

496. K.R. Joshi, W.H. Sanders, M.A. Hiltunen, R.D. Schlichting, Automatic model-driven
recovery in distributed systems, in Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, Orlando, Florida, Oct 2005, pp. 25–38

497. G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, C. Pu, Mistral: dynamically managing
power, performance, and adaptation cost in cloud infrastructures, in Proceedings of the 2010
IEEE 30th International Conference on Distributed Computing Systems (2010)

498. G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, C. Pu, Generating adaptation policies for
multi-tier applications in consolidated server environments, in Proceedings of the 5th IEEE
International Conference on Autonomic Computing, June 2008, pp. 23–32

499. G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, C. Pu, A cost-sensitive adaptation engine for
server consolidation of multitier applications, in International Conference on Middleware
(2009)

500. M. Kaâniche et al, Methodologies synthesis. EU FP6 IST project CRUTIAL, Deliverable
D3, Dec 2006, http://crutial.cesiricerca.it, Public deliverables section

501. M. Kaâniche, P. Lollini, A. Bondavalli, K. Kanoun, Modeling the resilience of large and
evolving systems. Int. J. Performability Eng. 4(2), 153–168 (2008)

502. A. Kalakech, T. Jarboui, A. Arlat, Y. Crouzet, K. Kanoun, Benchmarking operating systems
dependability: Windows as a case study, in Proceedings of the 2004 Pacific Rim
International Symposium on Dependable Computing (PRDC 2004) (2004)

503. A. Kalakech, K. Kanoun, Y. Crouzet, A. Arlat, Benchmarking the dependability of windows
nt, 2000 and xp, in Proceedings of the 2004 International Conference on Dependable
Systems and Networks (DSN 2004) (2004)

504. S. Kals, E. Kirda, C. Kruegel, N. Jovanovic, SecuBat: a web vulnerability scanner, in
Proceedings of the 15th International Conference on World Wide Web, WWW ’06 (2006),
pp. 247–256

505. T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli, Multi-valued decision diagrams:
theory and applications. Multiple Valued Logic 4(1–2), 9–62 (1998)

506. G.A. Kanawati, N.A. Kanawati, J.A. Abraham, FERRARI: a tool for the validation of
system dependability properties, in Proceedings of the 22nd Annual International
Symposium on Fault-Tolerant Computing (FTCS ’92), ed. by D.K. Pradhan (IEEE
Computer Society Press, Boston, 1992), pp. 336–344

507. G.A. Kanawati, N.A. Kanawati, J.A. Abraham, Dependability evaluation using hybrid fault/
error injection, in Proceedings of the International Computer Performance and
Dependability Symposium (IPDS’95) (1995), pp. 224–233

508. S. Kandula, D. Katabi, J.-P. Vasseur, Shrink: a tool for failure diagnosis in IP networks, in
ACM SIGCOMM Workshop on Mining Network Data (MineNet-05), Philadelphia, PA, Aug
2005

509. S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, P. Bahl, Detailed diagnosis in
enterprise networks, in Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, Barcelona, Spain, Aug 2009, pp. 243–254

510. H. Kang, H. Chen, G. Jiang, PeerWatch: a fault detection and diagnosis tool for virtualized
consolidation systems, in Proceedings of the 7th International Conference on Autonomic
Computing, Washington, DC, June 2010, pp. 119–128

511. K. Kanoun, Y. Crouret, Dependability benchmarking for operating systems. Int. J. Perform.
Eng. 2(3), 275–287 (2006)

512. K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, P. Rumeau, Benchmarking the
dependability of windows and linux using postmark workloads, in Proceedings of the 16th
International Symposium on Software Reliability Engineering (ISSRE 2005) (2005)

513. K. Kanoun et al., http://www.laas.fr/dbench, project reports section, project full final report
(2004)

514. K. Kanoun, L. Spainhower (eds), Dependability Benchmarking for Computer Systems
(Wiley, New York, 2008)

466 References

http://crutial.cesiricerca.it
http://www.laas.fr/dbench

515. W.-L. Kao, R.K. Iyer, DEFINE: a distributed fault injection and monitoring environment, in
Fault-Tolerant Parallel and Distributed Systems, ed. by D. Pradhan, D.R. Avresky (IEEE
Computer Society Press, New York, 1995), pp. 252–259

516. W.-L. Kao, R.K. Iyer, D. Tang, FINE: a fault injection and monitoring environment for
tracing the UNIX system behavior under faults. IEEE Trans. Softw. Eng. 19(11), 1105–
1118 (1993)

517. J. Kaplan, W. Forrest, N. Kindler, Revolutionizing Data Center Energy Efficiency
(McKinsey, 2008)

518. J. Karlsson, U. Gunneflo, P. Liden, J. Torin, Two fault injection techniques for test of fault
handling mechanisms, in International Test Conference (ITC ’91) (IEEE Computer Society
Press, Altoona, 1991), pp. 140–149

519. A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, A. Tantawi,
Dynamic placement for clustered web applications, in International Conference on World
Wide Web (2006)

520. Kaspersky Lab, Kaspersky lab provides its insights on stuxnet worm, http://www.kaspersky.
com/news?id=207576183. Accessed 7 Dec 2010

521. J. Katcher, Postmark: a new file system benchmark. Network appliance technical report
TR3022, Oct 1997

522. Y.A. Katsigiannis, P.S. Georgilakis, G.J. Tsinarakis (2010) A novel colored fluid stochastic
petri net simulation model for reliability evaluation of wind/pv/diesel small isolated power
systems. IEEE Trans. Syst. Man Cybern. A: Syst. Humans 40(6), 1296–1309

523. S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, An analysis of traces from a production
MapReduce cluster, in IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, Melbourne, Australia, May 2010, pp. 94–103

524. S.P. Kavulya, K. Joshi, M. Hiltunen, S. Daniels, R. Gandhi, P. Narasimhan, Practical
experiences with chronics discovery in large telecommunications systems, in ACM
Workshop on Managing Systems via Log Analysis and Machine Learning Techniques
(SLAML), Cascais, Portugal, Oct 2011

525. V. Kawadia, Y. Zhang, B. Gupta, System services for ad-hoc routing: architecture,
implementation and experiences, in MobiSys ’03: Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services (ACM, New York, 2003),
pp. 99–112

526. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems (Springer, Berlin, 2004)
527. J.W. Kellington, R. McBeth, P. Sanda, R.N. Kalla, Ibm power6 processor soft error

tolerance analysis using proton irradiation, in 3th IEEE Workshop on Silicon Errors in
Logic—Systems Effects (SELSE-3) (2007)

528. T. Kelly, Detecting performance anomalies in global applications, in USENIX WORLDS,
San Francisco, CA, Dec 2005

529. J. Kemeney, J. Snell, Finite markov chains. Technical report, D. Van Nostrand Company
(1960)

530. P. Kemper, Reachability analysis based on structured representations, in Proceedings of
17th International Conference on Application and Theory of Petri Nets. Lecture Notes in
Computer Science (Springer, Heidelberg, 1996), pp. 269–288

531. P. Kemper, Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng. 22(9), 615–
628 (1996)

532. G. Khanna, I. Laguna, F.A. Arshad, S. Bagchi, Distributed diagnosis of failures in a three
tier e-commerce system, in 26th IEEE International Symposium on Reliable Distributed
Systems, 2007. SRDS 2007, Beijing, China, Oct 2007, pp. 185–198

533. E. Kiciman, Using statistical monitoring to detect failures in internet services. Ph.D. thesis,
Stanford University, Sept 2005

534. D.S. Kim, F. Machida, K.S. Trivedi, Availability modeling and analysis of a virtualized
system, in IEEE Pacific Rim International Symposium on Dependable Computing (2009)

References 467

http://www.kaspersky.com/news?id=207576183
http://www.kaspersky.com/news?id=207576183

535. R. King, How cloud computing is changing the world, in Businessweek on the World Wide
Web, http://www.businessweek.com/technology/content/aug2008/tc2008082_445669.htm,
Aug 2008. Accessed June 2009

536. R. Klein, Information modelling and simulation in large dependent critical infrastructures:
an overview on the european integrated project irriis, in 3rd International Workshop on
Critical Information Infrastructures Security (CRITIS 2008). Lecture Notes in Computer
Science, vol. 5508, ed. by R. Setola, S. Geretshuber (Springer, Berlin, 2009), pp. 131–143

537. A.G. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture:
Practice and Promise (Addison-Wesley Longman Publishing, Boston, 2003)

538. L. Kloul, Méthodes d’évaluation des performances pour les réseaux ATM. Ph.D. thesis,
Université de Versailles-St-Quentin-en-Yvelines, Jan 1996

539. R.R. Kompella, J. Yates, A.G. Greenberg, A.C. Snoeren, IP fault localization via risk
modeling, in Proceedings of the 2nd Conference on Symposium on Networked Systems
Design and Implementation, vol. 2, Boston, MA, May 2005, pp. 57–70

540. P. Koopman, J. DeVale, The exception handling effectiveness of posix operating systems.
IEEE Trans. Softw. Eng. 26(9), 837–848 (2000)

541. P. Koopman, K. DeVale, J. DeVale, Interface robustness testing: experience and lessons
learned from the Ballista project, in Dependability Benchmarking for Computer Systems
(Wiley, New York, 2008), pp. 201–226

542. P. Koopman, K. Devale, J. Devale, Interface Robustness Testing: Experience and Lessons
Learned from the Ballista Project (Wiley, 2008), pp. 201–226

543. I. Koren, C. Krishna, Fault-Tolerant Systems (Morgan Kaufmann Publishers, San Francisco,
2007)

544. Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, Y. Takahama, Sania: syntactic and
semantic analysis for automated testing against SQL injection, in Twenty-Third Annual
Computer Security Applications Conference, ACSAC 2007, pp. 107–117

545. S. Kounev, Performance engineering of distributed component-based systems—
benchmarking, modeling and performance prediction. Ph.D. thesis, Technische Universität
Darmstadt (2005)

546. S. Kounev, Performance modeling and evaluation of distributed component-based systems
using queueing petri nets. IEEE Trans. Softw. Eng. 32(7), 486–502 (2006)

547. S. Kounev, Self-aware software and systems engineering: a vision and research roadmap, in
Proceedings of Software Engineering 2011 (SE2011), Nachwuchswissenschaftler-
Symposium (2011)

548. S. Kounev, F. Brosig, N. Huber, Descartes Research Project, http://www.descartes-
research.net. Accessed Nov 2011

549. S. Kounev, F. Brosig, N. Huber, R. Reussner, Towards self-aware performance and resource
management in modern service-oriented systems, in Proceedings of the 7th IEEE
International Conference on Services Computing (SCC 2010), IEEE Computer Society,
Miami, Florida, USA, July 5–10 (2010)

550. S. Kounev, R. Nou, J. Torres, Autonomic QoS-aware resource management in grid
computing using online performance models, in Proceedings of VALUETOOLS-2007
(2007)

551. K. Kourai, S. Chiba, A fast rejuvenation technique for server consolidation with virtual
machines, in IEEE/IFIP International Conference on Dependable Systems and Networks
(2007), pp. 245–255

552. V. Koutras, A. Platis, Applying software rejuvenation in a two node cluster system for high
availability, in International Conference on Dependability of Computer Systems, 2006.
DepCos-RELCOMEX ’06, May 2006, pp. 175–182

553. V.P. Koutras, A.N. Platis, Semi markov performance modelling of a redundant system with
partial, full and failed rejuvenation. Int. J. Crit. Comput. Based Syst. 1, 59–85 (2010)

468 References

http://www.businessweek.com/technology/content/aug2008/tc2008082_445669.htm
http://www.descartes-research.net
http://www.descartes-research.net

554. V.P. Koutras, A.N. Platis, G.A. Gravvanis, On the optimization of free resources using non-
homogeneous markov chain software rejuvenation model. Reliab. Eng. Syst. Safety 92(12),
1724–1732, Special Issue on ESREL 2005 (2007)

555. M. Kovacs, P. Lollini, I. Majzik, A. Bondavalli, An integrated framework for the
dependability evaluation of distributed mobile applications, in SERENE ’08: Proceedings of
the 2008 RISE/EFTS Joint International Workshop on Software Engineering for Resilient
Systems (ACM, New York, 2008), pp. 29–38

556. H. Koziolek, Performance evaluation of component-based software systems: a survey.
Perform. Eval. Aug 2009

557. M. Kulawiak, A. Stepnowski, Algorithms for spatial analysis and interpolation of discrete
sets of critical infrastructure hazard data, in 2nd International Conference on Information
Technology (ICIT), 2010, June 2010, pp. 157–160

558. S. Kumar, V. Marbukh, On route exploration capabilities of multi-path routing in variable
topology ad hoc networks, in Proceedings of the 21st IEEE Instrumentation and
Measurement Technology Conference, 2004. IMTC 04, vol. 2, May 2004, pp. 1322–1327

559. S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, K. Schwan. vManage: loosely coupled
platform and virtualization management in data centers, in International Conference on
Autonomic Computing (2009)

560. S. Kundu, R. Rangaswami, K. Dutta, M. Zhao, Application performance modeling in a
virtualized environment, in IEEE 16th International Symposium on High Performance
Computer Architecture (HPCA) (2010), pp. 1–10

561. M. Kuntz, M. Siegle, Deriving symbolic representations from stochastic process algebras, in
Process Algebra and Probabilistic Methods, Proceedings of PAPM-PROBMIV’02. Lecture
Notes in Computer Science, vol. 2399 (Springer, Heidelberg, 2002), pp. 188–206

562. M. Kuntz, M. Siegle, E. Werner, Symbolic performance and dependability evaluation with
the tool caspa, in FORTE Workshops. Lecture Notes in Computer Science, vol. 3236
(Springer, 2004), pp. 293–307

563. J. Kurjenniemi, T. Henttonen, Effect of measurement bandwidth to the accuracy of inter-
frequency rsrp measurements in lte, in Proceedings of the 19th International Symposium
Personal, Indoor and Mobile Radio Communications, IEEE, PIMRC, Cannes, France, Sept
2008

564. M. Kwiatkowska, G. Norman, D. Parker, Prism: probabilistic model checking for
performance and reliability analysis. ACM SIGMETRICS Perform. Eval. Rev. 36(4),
40–45 (2009)

565. M. Kwiatkowska, D. Parker, Y. Zhang, R. Mehmood, Dual-processor parallelisation of
symbolic probabilistic model checking, in Proceedings 12th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS’04), ed. by D. DeGroot, P. Harrison (IEEE Computer Society Press, New
York, 2004), pp. 123–130

566. J. Lacki, J. Niemela, J. Lempiainen, Optimization of soft handover parameters for umts
network in indoor environment, in Proceedings of the 9th International Symposium on
Wireless Personal Multimedia Communications, WPMC 2006, San Diego, USA, Sept 2006

567. J. Lala, L. Alger, Hardware and software fault tolerance: a unified architectural approach, in
IEEE FTCS International Symposium on Fault-Tolerant Computing (1988), pp. 240–245

568. K. Lampka, A symbolic approach to the state graph based analysis of high-level markov
reward models. Ph.D. thesis, University of Erlangen-Nürnberg, Technische Fakultät (2007)

569. K. Lampka, M. Siegle, Activity-local symbolic state graph generation for high-level
stochastic models, in Proceedings of 13th GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB), Nürnberg, Germany (VDE
Verlag, 2006), pp. 245–263

570. K. Lampka, M. Siegle, J. Ossowski, C. Baier, Partially-shared zero-suppressed multi-
terminal bdds: concept, algorithms and applications. Formal Methods Syst. Des. 36(3),
198–222 (2010)

References 469

571. C. Lamprecht, A. van Moorsel, P. Tomlinson, N. Thomas, Investigating the efficiency of
cryptographic algorithms in online transactions. Int. J. Simul. Syst. Sci. Technol. 7(2),
63–75 (2006)

572. A. Lang, J. Arthur, Parameter approximation for phase-type distributions. Matrix Anal.
Methods Stoch. Models 183, 151–206 (1996)

573. K.-D. Lange, Identifying shades of green: the specpower benchmarks. Computer 42(3),
95–97 (2009)

574. P.E. Lanigan, S. Kavulya, T.E. Fuhrman, P. Narasimhan, M.A. Salman, Diagnosis in
automotive systems: a survey. Technical report CMU-PDL-11-110, Carnegie Mellon
University PDL, May 2011

575. T. Lanowitz, Now is the time for security at the application level. Online report, Gartner
Group (2005), http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeFor
Security.pdf

576. J.C. Laprie, Dependable computing: concepts, limits, challenges, in IEEE International
Symposium on Fault-Tolerant Computing: Special Issue (1995), pp. 42–54

577. J.-C. Laprie, K. Kanoun, M. Kaaniche, Modeling interdependencies between the electricity
and information infrastructures, in SAFECOMP-2007. Lecture Notes in Computer Science,
vol. 4680 (Springer, 2007), pp. 54–67

578. N. Laranjeiro, M. Vieira, H. Madeira, Protecting database centric web services against SQL/
XPath injection attacks, in Proceedings of the 20th International Conference on Database
and Expert Systems Applications, DEXA ’09 (2009), pp. 271–278

579. G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic
Modeling. Series on statistics and applied probability. ASA-SIAM (1999)

580. S. Lavenberg, M. Reiser, Stationary state space probabilities at arrival instants for closed
queueing networks with multiple types of customers. J. Appl. Probab. 17(4), 1048–1061
(1980)

581. P. L’Ecuyer, L. Meliani, J. Vaucher, SSJ: a framework for stochastic simulation in Java, in
Proceedings of the Winter Simulation Conference (2002), pp. 234–242

582. E.E. Lee, J.E. Mitchell, W.A. Wallace, Assessing vulnerability of proposed designs for
interdependent infrastructure systems, in Proceedings of the 37th IEEE Annual Hawaii
International Conference on System Sciences (HICSS’04) (2004)

583. M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller, W. Effelsberg, A. Kovacevic, R.
Steinmetz, Designing benchmarks for P2P systems, in From Active Data Management to
Event-Based Systems and More. LNCS, vol. 6462 (Springer, 2010), pp. 209–229

584. B. Lei, X. Li, Z. Liu, C. Morisset, V. Stolz, Robustness testing for software components.
Sci. Comput. Program. 75, 879–897 (2010)

585. L. Lei, K. Vaidyanathan, K.S. Trivedi, An approach for estimation of software aging in a
web server, in Proceedings of the 2002 International Symposium on Empirical Software
Engineering, 2002 (2002), pp. 91–100

586. N. Leveson, N. Dulac, K. Marais, J. Carroll, Beyond normal accidents and high reliability
organizations: the need for an alternative approach to safety in complex systems. Organ.
Stud. 30(2–3), 227–249 (2009)

587. L. Lewis, G. Dreo, Extending trouble ticket systems to fault diagnostics. IEEE Netw. 7(6),
44–51 (1993)

588. J. Li, X. Ma, K. Singh, M. Schulz, B. de Supinski, S. McKee, Machine learning based online
performance prediction for runtime parallelization and task scheduling, in IEEE
International Symposium on Performance Analysis of Systems and Software, 2009.
ISPASS 2009, April 2009, pp. 89–100

589. S. Lightstone, J. Hellerstein, W. Tetzlaff, P. Janson, E. Lassettre, C. Norton, B. Rajaraman,
L. Spainhower, Towards benchmarking autonomic computing maturity, in Proceedings of
the First IEEE Conference on Industrial Automatics (INDIN 2003) (2003)

590. T.Y. Lin, D.P. Siewiorek, Error log analysis: statistical modeling and heuristic trend
analysis. IEEE Trans. Reliab. 39, 419–432 (1990)

470 References

http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf
http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf

591. C. Lindemann, A. Reuys, A. Thümmler, The dspnexpress 2.000 performance and
dependability modeling environment, in Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing, 1999. Digest of Papers, pp. 228 –231

592. J.L. Lions, Report by the Inquiry Board on the Ariane 5 Flight 501 failure. ESA/CNES, 19
July 1996

593. B. Littlewood, S. Brocklehurst, N.E. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson, J.
McDermid, D. Gollmann, Towards operational measures of computer security. J. Comput.
Secur. 2(2–3), 211–230 (1993)

594. B. Littlewood, L. Strigini, Redundancy and diversity in security, in ESORICS. Lecture
Notes in Computer Science, vol. 3193, ed. by P. Samarati, P.Y.A. Ryan, D. Gollmann, R.
Molva (Springer, Heidelberg, 2004), pp. 423–438

595. M. Littman, N. Ravi, E. Fenson, R. Howard, An instance-based state representation for
network repair, in 19th National Conference on Artificial Intelligence (AAAI 2004), July
2004, pp. 287–292

596. G. Liu, A. Mok, E. Yang, Composite events for network event correlation, in International
Symposium on Integrated Network Management, Boston, MA, May 1999, pp. 247–260

597. X. Liu, J. Heo, L. Sha, Modeling 3-tiered web applications, in International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Atlanta, GA, Sept 2005, pp. 307–310

598. Y. Liu, Y. Ma, J.J. Han, H. Levendel, K.S. Trivedi, A proactive approach towards always-on
availability in broadband cable networks. Comput. Commun. 28, 51–64 (2005)

599. Y. Liu, K.S. Trivedi, Y. Ma, J.J. Han, H. Levendel, Modeling and analysis of software
rejuvenation in cable modem termination systems, in Proceedings of the 13th International
Symposium on Software Reliability Engineering, 2002. ISSRE 2002 (2002), pp. 159–170

600. Z. Liu, B. Lee, S. Kandula, R. Mahajan, NetClinic: interactive visualization to enhance
automated fault diagnosis in enterprise networks, in IEEE Conference on Visual Analytics
Science and Technology, Salt Lake City, UT, Oct 2010, pp. 131–138

601. Z. Liu, M.S. Squillante, J.L. Wolf, On maximizing service-level-agreement profits, in
Proceedings of 3rd ACM Conference on Electronic Commerce (EC’01) (2001)

602. P. Lollini, A. Bondavalli, F. di Giandomenico, A decomposition-based modeling framework
for complex systems. IEEE Trans. Reliab. 58(1), 20–33 (2009)

603. P. Lollini, A. Bondavalli et al., Evaluation methodologies, techniques and tools (final
version). EU FP6 IST project HIDENETS, Deliverable D4.1.2, Dec 2007,
http://www.hidenets.aau.dk/, Public deliverables section

604. N. Looker, M. Munro, J. Xu, WS-FIT: a tool for dependability analysis of Web services, in
Proceedings of the 28th Annual International Computer Software and Applications
Conference, COMPSAC ’04 (2004), pp. 120–123

605. N. Looker, M. Munro, J. Xu, A comparison of network level fault injection with code
insertion, in Proceedings of the 29th International Computer Software and Applications
Conference (COMPSAC 2005) (IEEE Computer Society, New York, 2005), pp. 479–484

606. N. Looker, M. Munro, J. Xu, Simulating errors in web services. Int. J. Simul. Syst. Sci.
Technol. 5, 29–37 (2005)

607. N. Looker, J. Xu, Assessing the dependability of OGSA middleware by fault injection, in
Proceedings of 22nd Symposium on Reliable Distributed Systems (22nd SRDS’03),
Florence, Italy (IEEE Computer Society, New York, 2003), pp. 293–302

608. S. Loveland, E.M. Dow, F. LeFevre, D. Beyer, P.F. Chan, Leveraging virtualization to
optimize high-availability system configurations. IBM Syst. J. 47(4), 591–604 (2008)

609. N. Lu, J.H. Chow, A. Desrochers, A multi-layer petri net model for deregulated electric power
systems, in Proceedings of the American Control Conference, vol. 1 (2002), pp. 513–518

610. E. Luiijf, Scada security good practices for drinking water sector (2008)
611. E. Luiijf, M. Ali, A. Zielstra, Assessing and Improving SCADA Security in the Dutch

Drinking Water Sector (Springer, 2009), pp. 190–199

References 471

http://www.hidenets.aau.dk/

612. E. Luiijf, A. Nieuwenhuijs, M. Klaver, M. Eeten, E. Cruz, Empirical Findings on Critical
Infrastructure Dependencies in Europe (Springer, Berlin, 2009), pp. 302–310

613. D. Macii, D. Petri, Accurate software-related average current drain measurements in
embedded systems. IEEE Trans. Instrum. Meas. 56(3), 723–730 (2007)

614. B.B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K.S. Trivedi, Modeling and
quantification of security attributes of software systems, in Proceedings of the International
Conference on Dependable Systems and Networks (DSN’02) (2002), pp. 505–514

615. H. Madeira, J. Costa, M. Vieira, The OLAP and data warehousing approaches for analysis
and sharing of results from dependability evaluation experiments, in International
Conference on Dependable Systems and Networks (2003), pp. 86–91

616. H. Madeira, P. Koopman, Dependability benchmarking: making choices in an n-
dimensional problem space, in 1st Workshop on Evaluating and Architecting System
Dependability (Göteborg, Sweden, 2001)

617. H. Madeira, M.Z. Rela, F.M. João Gabriel Silva, RIFLE: a general purpose pin-level fault
injector, in Proceedings of the First European Dependable Computing Conference (EDCC-
1), Berlin, Germany, Oct 4–6 1994. Lecture Notes in Computer Science, vol. 852, ed. by K.
Echtle, D.K. Hammer, D. Powell (Springer, Heidelberg, 1994), pp. 199–216

618. J. Magott, M. Woda, Evaluation of soa security metrics using attack graphs, in Proceedings
of 3rd International Conference on Dependability of Computer Systems (DepCoS-
RELCOMEX) (2008), pp. 277–284

619. M. Magyar, I. Majzik, Modular construction of dependability models from system
architecture models: a tool-supported approach, in Proceedings 6th International
Conference on the Quantitative Evaluation of Systems (QEST 2009) (2009), pp. 95–96

620. A.A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, Q. Zhao, Towards
automated performance diagnosis in a large IPTV network, in Proceedings of the ACM
SIGCOMM 2009 Conference on Data Communication, Barcelona, Spain, Aug 2009,
pp. 231–242

621. A.A. Mahimkar, H.H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, J. Emmons,
Detecting the performance impact of upgrades in large operational networks, in Detecting the
Performance Impact of Upgrades in Large Operational Networks, Aug 2010, pp. 303–314

622. R. Maia, L. Henriques, R. Barbosa, D. Costa, H. Madeira, Xception fault injection and
robustness testing framework: a case-study of testing RTEMS, in VI Test and Fault
Tolerance Workshop (Jointly Organized with the 23rd Brazilian Symposium on Computer
Networks (SBRC)) (2005)

623. V. Mainkar, K. Trivedi, Sufficient conditions for existence of a fixed point in stochastic
reward net-based iterative models. IEEE. Trans. Softw. Eng. 22(9), 640–653 (1996)

624. E. Marsden, J.-C. Fabre, J. Arlat, Dependability of CORBA systems: service
characterization by fault injection, in The 21th IEEE Symposium on Reliable Distributed
Systems (SRDS ’02) (IEEE, Washington, 2002), pp. 276–285

625. E. Marshall, Fatal error: how patriot overlooked a scud. Science 3, 1347 (1992)
626. E. Martin, S. Basu, T. Xie, Websob: a tool for robustness testing of web services, in

Companion to the Proceedings of the 29th International Conference on Software
Engineering, ICSE COMPANION ’07 (2007), pp. 65–66

627. R. Matias, P. Barbetta, K. Trivedi, P. Filho, Accelerated degradation tests applied to
software aging experiments. IEEE. Trans. Reliab. 59(1), 102–114 (2010)

628. F. Mattiello-Francisco, E. Martins, A. Corsetti, A. Cavalli, E. Yano, Extended
interoperability models for timed system robustness testing, in IEEE Latin-American
Conference on Communications, LATINCOM ’09 (2009), pp. 1–6

629. J. Mauro, J. Zhu, I. Pramanick, The system recovery benchmark, in Proceedings of the 2004
Pacific Rim International Symposium on Dependable Computing (PRDC 2004) (2004)

630. R. Maxion, K. Tan, Benchmarking anomaly-based detection systems, in Proceedings of the
International Conference on Dependable Systems and Networks (DSN 2000) (2000)

472 References

631. S. Mcallister, E. Kirda, C. Kruegel, Leveraging user interactions for in-depth testing of web
applications, in Proceedings of the 11th International Symposium on Recent Advances in
Intrusion Detection, RAID ’08 (2008), pp. 191–210

632. J.A. McCarthy, Introduction: From protection to resilience: Injecting ‘‘moxie’’ into the
infrastructure security continuum, in Critical Thinking: Moving from Infrastructure
Protection to Infrastructure Resilience, CIP Program Discussion Paper Series (George
Mason University, 2007), pp. 1–8

633. G. McCullough, N. McDowell, G. Irwin, Fault diagnostics for internal combustion
engines—current and future technologies. SAE technical paper series 2007-01-1603 (SAE
International, 2007)

634. G. McGraw, B. Potter, Software security testing. IEEE. Secur. Priv. 2, 81–85 (2004)
635. P. McLachlan, T. Munzner, E. Koutsofios, S.C. North, LiveRAC: interactive visual

exploration of system management time-series data, in Conference on Human Factors in
Computing Systems, CHI, Florence, April 2008, pp. 1483–1492

636. K. McMillan, Symbolic Model Checking (Kluwer, Dordruch, 1993)
637. Y. Mei, L. Liu, X. Pu, S. Sivathanu, Performance measurements and analysis of network I/O

applications in virtualized cloud, in International Conference on Cloud Computing (2010)
638. A.M. Memon, An event-flow model of GUI-based applications for testing. Softw. Test.

Verif. Reliab. 17, 137–157 (2007)
639. D.A. Menasce, Virtualization: concepts, applications, and performance modeling, in

Proceedings of International CMG Conference (2005)
640. D.A. Menasce, M.N. Bennani, On the use of performance models to design self-managing

computer systems, in Proceedings of the 2003 Computer Measurement Group Conference
(2003), pp. 7–12

641. D.A. Menasce, M.N. Bennani, Autonomic virtualized environments, in ICAS ’06:
Proceedings of the International Conference on Autonomic and Autonomous Systems (2006)

642. D.A. Menasce, M.N. Bennani, H. Ruan, On the use of online analytic performance models
in self-managing and self-organizing computer systems, in Self-* Properties in Complex
Information Systems (Springer, Heidelberg, 2005), pp. 128–142

643. M. Mendonca, N. Neves, Robustness testing of the Windows DDK, in Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’07 (2007), pp. 554–564

644. J. Méreur, G. Malléus, D. Hardy, Réseaux: Internet, téléphonie, multimédia, Convergences
et complémentarités (De Boeck, 2002)

645. J. Meserve, Sources: Staged cyber attack reveals vulnerability in power grid (2007),
http://edition.cnn.com/2007/US/09/26/power.at.risk/index.html

646. J.F. Meyer, On evaluating the performability of degradable computing systems. IEEE.
Trans. Comput. C-29(8), 720–731 (1980)

647. H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, L. Yuan, Online self-reconfiguration with
performance guarantee for energy-efficient large-scale cloud computing data centers, in
IEEE SCC (2010)

648. Z. Micskei, I. Majzik, F. Tam, in International Service Availability Symposium 2007.
Comparing Robustness of Ais-based Middleware Implementations. LCNS, vol. 4526, ed. by
M. Malek, M. Reitenspieß, A. van Moorsel (Springer, Heidelberg, 2007), pp. 20–30

649. B.P. Miller, G. Cooksey, F. Moore, An empirical study of the robustness of macos
applications using random testing. ACM SIGOPS Oper. Syst. Rev. 41, 78–86 (2007)

650. B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, Fuzz
revisited: a re-examination of the reliability of unix utilities and services. Technical report
1268, University of Wisconsin-Madison (1995)

651. S. Minato, Zero-suppressed bdds for set manipulation in combinatorial problems, in 30th
ACM/IEEE Design Automation Conference (1993), pp. 272–277

References 473

http://edition.cnn.com/2007/US/09/26/power.at.risk/index.html

652. A. Miner, Efficient solution of GSPNs using canonical matrix diagrams, in Petri Nets and
Performance models (PNPM’01), ed. by R. German, B. Haverkort (IEEE Computer Society
Press, New York, 2001), pp. 101–110

653. A. Miner, G. Ciardo, Efficient reachability set generation and storage using decision
diagrams, in Application and Theory of Petri Nets 1999. Lecture Notes in Computer
Science, vol.1639, ed. by H. Kleijn, S. Donatelli (Springer, Williamsburg, 1999), pp. 6–25

654. A. Miner, G. Ciardo, S. Donatelli, Using the exact state space of a markov model to
compute approximate stationary measures. Perform. Eval. Rev. 28(1), 207–216 (2000),
Proceedings of ACM SIGMETRICS

655. G. Miremadi, J. Torin, Evaluating processor-behavior and three error-detection mechanisms
using physical fault-injection. IEEE. Trans. Reliab. 44(3), 441–454 (1995)

656. A.V. Mirgorodskiy, N. Maruyama, B.P. Miller, Problem diagnosis in large-scale computing
environments, in International Conference on High Performance Computing, Networking,
Storage and Analysis, Tampa, Nov 2006, p. 88

657. K. Mishra, K. Trivedi, Model based approach for autonomic availability management, in
Service Availability. Lecture Notes in Computer Science, vol. 4328 (Springer, Heidelberg,
2006), pp. 1–16

658. Common Vulnerabilities and Exposures (2009)
659. S. Mocanu, C. Commault, Sparse representations of phase-type distributions. Commun.

Stat. Stoch Models 15(4), 759–778 (1999)
660. B. Mochizuki, I. Hadžić, Improving IEEE 1588v2 clock performance through controlled

packet departures, IEEE. Commun. Lett. 14(5), 459–461 (2010)
661. G. Mongardi, Dependable computing for railway control systems, in 3rd IFIP International

Working Conference on Dependable Computing for Critical Applications (1993),
pp. 255–277

662. L. Montecchi, P. Lollini, A. Bondavalli, Dependability concerns in model-driven
engineering, in 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW 2011) (2011), pp. 28–31
(in press)

663. L. Montecchi, P. Lollini, A. Bondavalli, Towards a mde transformation workflow for
dependability analysis, in 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2011), 27–29 April 2011 (in press)

664. R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, H. Madeira, Injection of faults at
component interfaces and inside the component code: are they equivalent?, in Sixth
European Dependable Computing Conference, EDCC-2006, Coimbra, IEEE, Oct 2006,
pp. 53–54

665. R. Moraes, J. Durães, R. Barbosa, E. Martins, H. Madeira, Experimental risk assessment and
comparison using software fault injection, in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’07 (2007),
pp. 512–521

666. F. Moreira, R. Maia, D. Costa, N. Duro, P. Rodriguez-Dapena, K. Hjortnaes, Static and
dynamic verification of critical software for space applications, in Proceedings of the Data
Systems In Aerospace (DASIA 2003) (2003)

667. L.M. Silva, J. Alonso, P. Silva, J. Torres, A. Andrzejak, Using virtualization to improve
software rejuvenation, in International Symposium on Network Computing and Applications
(NCA 2007) (2007)

668. J.K. Muppala, M. Malhotra, K.S. Trived, Stiffness-tolerant methods for transient analysis of
stiff markov chains. Microelectron. Reliab. 34, 1825–1841 (1994)

669. T. Murakami, Y. Horiuchi, Improvement of synchronization accuracy in IEEE 1588 using a
queuing estimation method, in International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, 2009. ISPCS 2009, Oct
2009, pp. 1–5

474 References

670. J.D. Musa, Software reliability data. Data and Analysis Center for Software, Rome Air
Development Center, Rome, NY, Tech. Rep., (1979)

671. A.B. Nagarajan, F. Mueller, C. Engelmann, S.L. Scott, Proactive fault tolerance for hpc with
xen virtualization, in Proceedings of the 21st Annual International Conference on
Supercomputing (2007), pp. 23–32

672. F. Nai, M. Masera, A. De Cian, Integrating cyber attacks within fault trees. Reliab. Eng.
Syst. Saf. 94(9), 1394–1402 (2009)

673. J. Napper, P. Bientinesi, Can cloud computing reach the TOP500?, in Proceedings of the
Combined Workshops on UnConventional High Performance Computing Workshop Plus
Memory Access Workshop (UCHPC-MAW’09) (2009), pp. 17–20

674. P. Narasimhan, Vajra: benchmarking survivability in distributed systems. Technical report,
CMU (2008), http://www.cylab.cmu.edu/default.aspx?id=1990

675. Metrics Data Program, http://mdp.ivv.nasa.gov (NASA/WVU IV & V Facility, 2008)
676. R. Nathuji, K. Schwan, Virtualpower: coordinated power management in virtualized

enterprise systems, in ACM SIGOPS Symposium on Operating Systems Principles (2007)
677. National Infrastructure Advisory Council, Critical infrastructure resilience—final report and

recommendations. Technical report, DHS/NIAC, 2009, http://www.dhs.gov/xlibrary/assets/
niac/niac_critical_infrastructure_resilience.pdf

678. M. Nelli, A. Bondavalli, L. Simoncini, Dependability modelling and analysis of complex
control systems: an application to railway interlocking, in EDCC-2 European Dependable
Computing Conference, Taormina (1996), pp. 93–110

679. R. Nelson, Software data collection and analysis (1978)
680. C. Nemeth, R. Cook, Reliabilityversusresilience:Whatdoeshealthcareneed?, in Symposium

on High Reliability in Healthcare. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, ed. by C. Dominguez (Baltimore, 2007), pp. 621–625

681. C.P. Nemeth, Resilience engineering: The birth of a notion, in Resilience Engineering
Perspectives vol. 1: Remaining Sensitive to the Possibility of Failure, ed. by E. Hollnagel,
C.P. Nemeth, S. Dekker (Ashgate, 2008), p. 346

682. A.A. Neto, M. Vieira, Benchmarking untrustworthiness: an alternative to security
measurement, Int. J. Depend. Trustworthy Inf. Syst. 1(2), 32–54 (2010)

683. M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach
(Dover, New York, 1981)

684. M.F. Neuts, M.E. Pagano, Generating random variates from a distribution of phase type, in
WSC ’81: Proceedings of the 13th Winter Simulation Conference (IEEE Press, Piscataway,
1981), pp. 381–387

685. N. Neves, J. Antunes, M. Correia, P. Veríssimo, R. Neves, Using attack injection to discover
new vulnerabilities, in IEEE/IFIP International Conference on Dependable Systems and
Networks (2006)

686. W.T. Ng, C.M. Aycock, G. Rajamani, P.M. Chen, Comparing disk and memory’s resistance
to operating system crashes, in Proceedings of the 7th International Symposium on Software
Reliability Engineering (1996), pp. 185–194

687 W.T. Ng, P.M. Chen, The systematic improvement of fault tolerance in the rio file cache, in
Digest of Papers: Twenty-Ninth Annual International Symposium on Fault-Tolerant
Computing (FTCS’99), Madison (IEEE Computer Society, New York, 1999), pp. 76–83

688. D.M. Nicol, W.H. Sanders, K.S. Trivedi, Model-based evaluation: from dependability to
security, IEEE. Trans. Depend. Secure Comput. 1(1), 48–65 (2004)

689. A. Nieuwenhuijs, E. Luiijf, M. Klaver, in IFIP International Federation for Information
Processing. Modeling dependencies in critical infrastructures, vol. 290, ed. by M. Papa, S.
Shenoi (Springer, Boston, 2009), pp. 205–213

690. Error, Fault, and Failure Data Collection and Analysis (2008)
691. R. Nou, S. Kounev, F. Julia, J. Torres, Autonomic qos control in enterprise grid

environments using online simulation, J. Syst. Softw. 82, 486–502 (2009)

References 475

http://www.cylab.cmu.edu/default.aspx?id=1990
http://mdp.ivv.nasa.gov
http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf
http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf

692. R. Nou, S. Kounev, J. Torres, Building online performance models of grid middleware with
fine-grained load-balancing: a globus toolkit case study, in Proceedings of the 4th European
Performance Engineering Conference on Formal Methods and Stochastic Models for
Performance Evaluation, EPEW’07 (Springer, Heidelberg, 2007), pp. 125–140

693. NS-2. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/. Accessed Nov 2011
694. NVD, National Vulnerability Database (2010)
695. W.I. Obal, W. Sanders, State-space support for path-based reward variables, in Computer

Performance and Dependability Symposium, 1998. IPDS ’98. Proceedings IEEE
International, Sept 1998, pp. 228–237

696. J. Oberheide, E. Cooke, F. Jahanian, Cloudav: N-version antivirus in the network cloud, in
Proceedings of the 17th USENIX Security Symposium, July 2008

697. C.A. O’Cinneide, Characterization of phase-type distributions. Stoch. Models 6, 1–57
(1990)

698. C.A. O’Cinneide, Phase-type distributions and invariant polytopes. Adv. Appl. Probab.
23(3), 515–535 (1991)

699. A. Ogielski, W. Aiello, Sparse matrix computations on parallel processor arrays. SIAM J.
Sci. Comput. 14(3), 519–530 (1993)

700. J. Olah, I. Majzik, A model based framework for specifying and executing fault injection
experiments, in Proceedings of the 2009 Fourth International Conference on Dependability
of Computer Systems, DEPCOS-RELCOMEX ’09, pp. 107–114 (2009)

701. A. Oliner, J. Stearley, Bad words: Finding faults in Spirit’s syslogs. In 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2008), pp. 765–770,
Lyon, France, May 2008

702. A.J. Oliner, A.V. Kulkarni, A. Aiken, Using correlated surprise to infer shared influence, in
IEEE/IFIP International Conference on Dependable Systems and Networks, Chicago, IL,
July 2010, pp. 191–200

703. Object Management Group, UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification, v1.1, 2008, http://www.omg.
org/spec/QFTP/1.1/

704. Object Management Group, UML Profile for Modeling and Analysis of Real-time and
Embedded Systems (MARTE), v1.0, Nov 2009, http://www.omg.org/spec/MARTE/1.0/

705. S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema, A performance
analysis of EC2 cloud computing services for scientific computing, in 1st International
Conference on Cloud Computing (ICST Press, 2009)

706. Open source vulnerability database (2010), http://osudb.org/
707. T.J. Overbye, X. Cheng, Y. Sun, A comparison of the AC and DC power flow models for

LMP calculations, in 37th IEEE Hawaii International Conference on System Sciences (CD-
ROM), Big Island, Hawaii, Jan 2004, p. 9

708. OWASP Top 10, 1007 (OWASP Foundation, 2007), http://www.owasp.org/index.
php/Top_10_2007

709. Owasp Testing Guide v3 (OWASP Foundation, 2008), http://www.owasp.org/images/
5/56/OWASP_Testing_Guide_v3.pdf

710. SQL Injection (OWASP Foundation, 2008), http://www.owasp.org/index.php/SQL_
injection

711. Cross-site Scripting (XSS) (OWASP Foundation, 2009), http://www.owasp.org/index.
php/Cross-site_Scripting_(XSS)

712. OWASP Foundation, OWASP WSFuzzer Project (2011), http://www.owasp.org/index.
php/Category:OWASP_WSFuzzer_Project

713. S.D.P. Bucholtz, G. Ciardo, P. Kemper, Complexity of memory-efficient kronecker
operations with applications to the solution of markov models. INFORMS J. Comput. 3(12),
203–222 (2000)

476 References

http://www.isi.edu/nsnam/ns/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MARTE/1.0/
http://osudb.org/
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://www.owasp.org/index.php/SQL_injection
http://www.owasp.org/index.php/SQL_injection
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project

714. G. Pai, J. Dugan, Automatic synthesis of dynamic fault trees from uml system models, in
Proceedings of the 13th International Symposium onSoftware Reliability Engineering, 2002.
ISSRE 2003, pp. 243–254 (2002)

715. X. Pan, J. Tan, S. Kavulya, R. Gandhi, P. Narasimhan, Blind men and the elephant: piecing
together hadoop for diagnosis, in International Symposium on Software Reliability
Engineering (ISSRE), Mysuru, India, Nov 2009

716. S. Panzieri, R. Setola, G. Ulivi, An agent based simulator for critical interdependent
infrastructures, in 2nd International Conference on Critical Infrastructures (CRIS 2004),
Grenoble, France, Oct 2004

717. K. Park, S. Kim, Availability analysis and improvement of active/standby cluster systems
using software rejuvenation. J. Syst. Softw. 61, 121–128 (2002)

718. D. Parker, Implementation of symbolic model checking for probabilistic systems. Ph.D.
thesis, School of Computer Science, Faculty of Science, University of Birmingham (2002)

719. R. Patton, Fault detection and diagnosis in aerospace systems using analytical redundancy.
Comput. Cont. Eng. J. 2(3), 127–136 (1991)

720. P. Pederson, D. Dudenhoeffer, S. Hartley, M. Permann, Critical infrastructure
interdependency modeling: a survey of US and international research. Technical report,
Idaho National lab, USA (2006), http://www.pcsforum.org/library/files/1159904563-
TSWG_INL_CIP_Tool_Survey_final.pdf.

721. pentestmonkey.net (2009), http://pentestmonkey.net
722. C. Perrow, Normal Accidents—Living with High Risk Technologies (Basic Books, New

York, 1984)
723. P. Peti, R. Obermaisser, H. Kopetz, Out-of-norm assertions, in 11th IEEE Real Time and

Embedded Technology and Applications Symposium (RTAS ’05), San Francisco, CA, March
2005, pp. 280–291

724. D.C. Petriu, C.M. Woodside, Approximate mva for software client/server models by
markov chain task-directed aggregation, in 3rd IEEE Symposium on Parallel and
Distributed Processing, Dec 1991, pp. 322–329

725. H. Petroski, To Engineer is Human: The Role of Failure in Successful Design (St Martin’s
Press, New York, 1992)

726. A. Pfening, S. Garg, A. Puliafito, M. Telek, K.S. Trivedi, Optimal software rejuvenation for
tolerating soft failures. Perform. Eval. 27(28), 491–506 (1996)

727. PHP-Nuke (2010), http://phpnuke.org/
728. phpBB (2009), http://www.phpbb.com/
729. phpMyAdmin (2009), http://www.phpmyamin.net/home_page/index.php
730. G.P. Picco, Software engineering and wireless sensor networks: happy marriage or

consensual divorce? in FSE/SDP Workshop on Future of Software Engineering Research
(2010), pp. 283–286

731. M. Pizza, L. Strigini, A. Bondavalli, F. Di Giandomenico, Optimal discrimination between
transient and permanent faults, in 3rd IEEE International Symposium on High-Assurance
Systems Engineering (HASE ’98), pp. 214–223 (1998)

732. B. Plateau, On the stochastic structure of parallelism and synchronization models for
distributed algorithms, in Proceedings of the 1985 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’85 (ACM, New York,
1985), pp. 147–154

733. B. Plateau, De l’Evaluation du Parrallélisme et de la Synchronisation. PhD thesis, Nov
1984

734. B. Plateau, K. Atif, Stochastic automata network of modeling parallel systems. IEEE Trans.
Softw. Eng. 17(10), 1093–1108, Oct 1991

735. B. Plateau, J. Fourneau, A methodology for solving markov models of parallel systems.
J. Parallel. Distrib. Comput. 12(4), 370–387 (1991)

References 477

http://www.pcsforum.org/library/files/1159904563-TSWG_INL_CIP_Tool_Survey_final.pdf
http://www.pcsforum.org/library/files/1159904563-TSWG_INL_CIP_Tool_Survey_final.pdf
 http://pentestmonkey.net
http://phpnuke.org/
http://www.phpbb.com/
http://www.phpmyamin.net/home_page/index.php

736. B. Plateau, J. Fourneau, K. Lee, Peps: a package for solving complex markov models of
parallel systems, in Proceedings of the 4th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (1988)

737. G. Pola, M. Bujorianu, J. Lygeros, M.D. Benedetto, Stochastic hybrid models: an overview,
in International Conference on the Analysis and Design of Hybrid Systems. IPV-IFAC
Proceedings (2003), pp. 45–50

738. R.J. Pooley, The integrated modeling support environment: a new generation of
performance modeling tools, in Proceedings of the 5th International Conference in
Computer Performance Evaluation: Modeling Techniques and Tools, Torino, Italy, Feb
1991, pp. 1–15

739. P. Popov, L. Strigini, Assessing asymmetric fault-tolerant software, in 21st International
Symposium on Software Reliability Engineering (ISSRE 2010) (IEEE Computer Society
Press, San Jose, 2010), pp. 41–50

740. P. Popov, L. Strigini, A. Romanovsky, Diversity for off-the-shelf components, in DSN 2000,
International Conference on Dependable Systems and Networks—Fast Abstracts
Supplement (IEEE Computer Society Press, New York, 2000), pp. B60–B61

741. M. Popovic, J. Kovacevic, A statistical approach to model-based robustness testing, in
Proceedings of the 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (2007), pp. 485–494

742. P. Pourbeik, P.S. Kundur, C.W. Taylor, The anatomy of a power grid blackout. IEEE Power
Energy Magazine, Sept–Oct 2006, pp. 22–29

743. D. Powell, R. Stroud, Conceptual model and architecture of MAFTIA, in Project MAFTIA,
deliverable D21 (2003)

744. F.P. Preparata, G. Metze, R.T. Chien, On the connection assignment problem of diagnosable
systems. IEEE Transact. Elect. Comput. EC-16(6), 848–854 (1967)

745. Project Next Generation Infrastructures, http://www.nginfra.nl/index.php?id=4. Accessed
25 Dec 2009

746. Project PSERC—Power Systems Engineering Research Center, http://www.pserc.wisc.edu.
Accessed 25 Dec 2009

747. Project VITA—vital infrastructure threats and assurance, http://vita.iabg.eu/index.php.
Accessed 25 Dec 2009

748. C. Pu, J. Noe, A. Proudfoot, Regeneration of replicated objects: a technique and its Eden
implementation, in Proceedings of the 2nd International Conference on Data Engineering
(1986), pp. 175–187

749. X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, Understanding performance interference
of I/O workload in virtualized cloud environments, in International Conference on Cloud
Computing (2010)

750. R. Pulungan, Reduction of acyclic phase-type representations. Ph.D thesis, Universität des
Saarlandes (2009)

751. K. Purchala, L. Meeus, D. Van Dommelen, R. Belmans, Usefulness of DC power flow for
active power flow analysis, in IEEE Power Engineering Society General Meeting, San
Francisco, June 2005, pp. 454–459

752. R. Puttini, J.-M. Percher, L. Me, R. de Sousa, A fully distributed ids for manet, in ISCC ’’04:
Proceedings of the Ninth International Symposium on Computers and Communications
2004 (ISCC‘‘04), Washington, DC (IEEE Computer Society, New York, 2004), pp. 331–
338

753. C. Queiroz, A. Mahmood, J. Hu, Z. Tari, X. Yu, Building a scada security testbed, in
International Conference on Network and System Security (2009), pp. 357–364

754. QCA 164-Appeal against Conviction and Sentence, Supreme Court of Queensland, May
2002

755. Acunetix. Acunetix Web Vulnerability Scanner (2011), http://www.acunetix.com/
vulnerability-scanner/

478 References

http://www.nginfra.nl/index.php?id=4
http://www.pserc.wisc.edu
http://vita.iabg.eu/index.php
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/

756. A. Rahmati, L. Zhong, CRAWDAD data set rice/context (v. 2007-05-23), http://crawdad.
cs.dartmouth.edu/rice/context. Accessed May 2007

757. A. Rajabzadeh, S.G. Miremadi, M. Mohandespour, Experimental evaluation of master/
checker architecture using power supply- and software-based fault injection, in 10th IEEE
International On-Line Testing Symposium (IOLTS 2004), Funchal, Madeira Island, 12–14
July (IEEE Computer Society, New York, 2004), pp. 239–246

758. P. Ramachandran, P. Kudva, J.W. Kellington, J. Schumann, P. Sanda, Statistical fault
injection, in Proceedings of the 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (38th DSN’08), Anchorage (IEEE Computer Society,
New York, 2008), pp. 122–127

759. H.V. Ramasamy, M. Schunter, Architecting dependable systems using virtualization, in
Workshop on Architecting Dependable Systems: Supplemental Volume of the DSN’07
(2007)

760. R. Ramdhany, P. Grace, G. Coulson, D. Hutchison, Manetkit: supporting the dynamic
deployment and reconfiguration of ad-hoc routing protocols, in Middleware ’09:
Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware
(Springer, New York, 2009), pp. 1–20

761. K. Rangan, The cloud wars: $100+ billion at stake. Technical report, Merrill Lynch, May
2008

762. M. Rebaudengo, M.S. Reorda, Evaluating the fault tolerance capabilities of embedded
systems via BDM, in 17th IEEE VLSI Test Symposium (VTS ’99), San Diego, 25–30 April
1999 (IEEE Computer Society, New York, 1999), pp. 452–457

763. A. Reibman, M. Veeraraghavan, Reliability modeling: an overview for system designers.
Computer 24(4), 49–57 (1991)

764. P. Reinecke, M. Telek, K. Wolter, Reducing the costs of generating APH-distributed
random numbers, in MMB & DFT 2010. Lecture Notes in Computer Science, vol. 5987, ed.
by B. Müller-Clostermann, K. Echtle, E. Rathgeb (Springer, Berlin, 2010), pp. 274–286

765. P. Reinecke, K. Wolter, Libphprng—a library to generate PH-distributed random numbers.
Technical report, Freie Universität Berlin (2011) (to appear)

766. M. Reiser, S. Lavenberg, Mean value analysis of closed multichain queueing networks.
JACM 22(4), 313–322 (1980)

767. http://www.resilience-engineering.org/intro.htm. Accessed 2 Oct 2011
768. Resilience 2008. Workshop on resilience in high-performance computing, Resilience 2008,

http://xcr.cenit.latech.edu/resilience2008/. Accessed 26 Nov 2011
769. ReSIST. From resilience-building to resilience-scaling technologies: directions. Deliverable

D13, ReSIST (Resilience for Survivability in IST) European Network of Excellence 2007.
http://www.resist-noe.org/. Accessed 26 Nov 2011

770. ReSIST, Selected current practices. Deliverable D39, ReSIST (Resilience for Survivability
in IST) European Network of Excellence 2009

771. RESIST Consortium, D13—from resilience-building to resilience-scaling technologies:
directions. Technical report, RESIST Consortium, Sept 2007

772. RESIST NoE. Resilience-building technologies: State of knowledge (2006), http://www.
resist-noe.org/

773. Resist resilience for survivability in IST (project IST-0265764) (2006), http://www.
resist-noe.org/index.html

774. Resist NoE, Resilience-building technologies: state of knowledge, deliverable d12,
http://www.resist-noe.org/outcomes/outcomes.html

775. P. Reynolds, C.E. Killian, J.L. Wiener, J.C. Mogul, M.A. Shah, A. Vahdat, Pip: detecting
the unexpected in distributed systems, in Proceedings of the 3rd Conference on Networked
Systems Design & Implementation, San Jose, vol. 3, May 2006, pp. 115–128

776. P. Reynolds, J.L. Wiener, J.C. Mogul, M.K. Aguilera, A. Vahdat, Wap5: black-box
performance debugging for wide-area systems, in WWW ’06: Proceedings of the 15th
International Conference on World Wide Web (ACM Press, New York, 2006), pp. 347–356

References 479

http://crawdad.cs.dartmouth.edu/rice/context
http://crawdad.cs.dartmouth.edu/rice/context
http://www.resilience-engineering.org/intro.htm
http://xcr.cenit.latech.edu/resilience2008/
http://www.resist-noe.org/
http://www.resist-noe.org/
http://www.resist-noe.org/
http://www.resist-noe.org/index.html
http://www.resist-noe.org/index.html
http://www.resist-noe.org/outcomes/outcomes.html

777. T. Rigole, G. Deconinck, A survey on modelling and simulation of interdependent critical
infrastructures, in Proceedings of the 3rd IEEE Benelux Young Researchers Symposium in
Electrical Power Engineering, Ghent, Belgium, April 2006

778. S.M. Rinaldi, J.P. Peerenboom, T.K. Kelly, Identifying, understanding, and analyzing
critical infrastructure interdependencies. IEEE Control Syst Mag, Dec 2001, pp. 11–25

779. I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, K. Hernandez,
Adaptive diagnosis in distributed systems. IEEE Trans. Neural Netw. 16(5), 1088–1109
(2005)

780. I. Rish, M. Brodie, N. Odintsova, S. Ma, G. Grabarnik, Real-time problem determination in
distributed systems using active probing, in Network Operations and Management
Symposium, Seoul, April 2004, pp. 133–146

781. F. Ritter, N. Brausen, N. Millar, Distribution point-of-delivery interconnection process
guideline—standards of service. Technical report. Alberta electric system operator (2005)

782. B. Robert, R. De Calan, L. Morabito, Modelling interdependencies among critical
infrastructures. Int. J. Crit. Infrastruct. 4(4), 392–408 (2008)

783. G. Rochlin, T. LaPorte, K. Roberts, The self-designing high-reliability organization: aircraft
carrier flight operations at sea. Naval War Coll. Rev. 40(4), 76–90 (1987)

784. M. Rodríguez, A. Albinet, J. Arlat, MAFALDA-RT: a tool for dependability assassment of
real-time systems, in DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks (2002), pp. 267–272

785. F. Romani, S. Chiaradonna, F. Di Giandomenico, L. Simoncini, Simulation models and
implementation of a simulator for the performability analysis of electric power systems
considering interdependencies, in 10th IEEE High Assurance Systems Engineering
Symposium (HASE’07), Dallas, Nov 2007, pp. 305–312

786. P. Rooney. Microsoft’s ceo: 80-20 rule applies to bugs, not just features. Online report,
CRN (2002), http://www.crn.com/security/18821726

787. V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S.D. Porcellinis, R. Setola, Modelling
interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct.
4(1/2), 63–79 (2008)

788. W.L. Roy Billinton, Reliability Assessment of Electrical Power Systems Using Monte Carlo
Methods, hardbound edn. (Plenum, New York, 1994)

789. A.-E. Rugina, K. Kanoun, M. Kaâniche, Chapter a system dependability modeling
framework using AADL and GSPNs, in Architecting Dependable Systems IV, ed by R. de
Lemos, C. Gacek, A. Romanovsky (Springer, Berlin, 2007), pp. 14–38

790. J.-C. Ruiz, P. Yuste, P. Gil, L. Lemus, On benchmarking the dependability of automotive
engine control applications, in Proceedings of the IEEE/IFIP 2004 International
Conference on Dependable Systems and Networks (DSN 2004) (2004)

791. S. Ruzzante, E. Castorini, E. Marchei, V. Fioriti, A metric for measuring the strength of
inter-dependencies, in SAFECOMP 2010. Lecture Notes in Computer Science, vol. 6351,
ed. by E. Schoitsch (Springer, Berlin, 2010), pp. 291–302

792. F. Saad-Khorchef, A. Rollet, R. Castanet, A framework and a tool for robustness testing of
communicating software, in Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC ’07 (2007), pp. 1461–1466

793. K. Sachs, Performance modeling and benchmarking of event-based systems. Ph.D. thesis,
TU Darmstadt (2010)

794. K. Sachs, S. Kounev, J. Bacon, A. Buchmann, Performance evaluation of message-oriented
middleware using the SPECjms2007 benchmark. Perform. Eval. 66(8), 410–434 (2009)

795. SAE-AS5506/1, Architecture Analysis and Design Language (AADL) Annex vol. 1, Annex
E: Error Model Annex. Society of Automotive Engineers (2006), http://standards.sae.org/
as5506/1

796. SAFEDMI—Safe Driver Machine Interface (DMI) for ERTMS trains (Project IST-FP6-
STREP-031413) (2006), http://www.safedmi.org/

797. SAFEDMI—Quantitative Evaluation Methodology, Deliverable D4.1, June 2008

480 References

http://www.crn.com/security/18821726
http://standards.sae.org/as5506/1
http://standards.sae.org/as5506/1
http://www.safedmi.org/

798. R. Sahner, K. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the SHARPE Software Package (Kluwe,
Boston, 1996)

799. F. Salfner, K. Wolter, A queueing model for service availability of systems with
rejuvenation, in Software Reliability Engineering Workshops, 2008. IEEE International
Conference on Software Reliability Engineering (ISSRE) (2008), pp. 1–5

800. R.R. Sambasivan, A.X. Zheng, M.D. Rosa, E. Krevat, S. Whitman, M. Stroucken, W.
Wang, L. Xu, G.R. Ganger, Diagnosing performance changes by comparing request flows,
in Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, Boston, MA, March 2011, pp. 43–56

801. W. Sanders, Progress towards a resilient power grid infrastructure, in IEEE Power and
Energy Society General Meeting (PES GM) (2010)

802. W.H. Sanders, Integrated frameworks for multi-level and multi-formalism modeling, in
Petri Nets and Performance Models, 1999. Proceedings of the 8th International Workshop
on (1999), pp. 2–9

803. W.H. Sanders, J.F. Meyer, Reduced base model construction methods for stochastic activity
networks. IEEE J. Sel. Areas Commun. 9(1), 25–36 (1991)

804. W.H. Sanders, J.F. Meyer, A unified approach for specifying measures of performance,
dependability and performability, in Dependable Computing for Critical Applications.
Dependable Computing and Fault-Tolerant Systems, vol. 4, ed. by A. Avizienis, J. Laprie
(Springer, Berlin, 1991), pp. 215–237

805. W.H. Sanders, J.F. Meyer, Stochastic activity networks: formal definitions and concepts, in
Lectures on Formal Methods and Performance Analysis. Lecture Notes in Computer
Science, vol. 2090, ed. by E. Brinksma, H. Hermanns, J.P. Katoen (Springer, Heidelberg,
2001), pp. 315–343

806. W.H. Sanders, W.D. Oball II, M.A. Qureshi, F.K. Widjanarko, The ultrasan modeling
environment. Perform. Eval. 24, 89–115 (1995)

807. Sandia National Laboratories, Information operations red team and assessmentsTM,
http://www.sandia.gov/iorta/

808. P. Saravakos, G. Gravvanis, V. Koutras, A. Platis, A comprehensive approach to software
aging and rejuvenation on a single node software system, in Proceedings of the 9th Hellenic
European Research on Computer Mathematics and Its Applications Conference, Sept 2009

809. P. Saripalli, B. Walters, Quirc: a quantitative impact and risk assessment framework for
cloud security, in IEEE International Conference on Cloud Computing (2010), pp. 280–288

810. J. Scaramella, Worldwide Server Power and Cooling Expense, 2006–2010 Forecast (IDC,
2006)

811. D.C. Schmidt, Guest editor’s introduction: model-driven engineering. Computer 39(2),
25–31 (2006)

812. B. Schroeder, G. Gibson, A large-scale study of failures in high-performance computing
systems, in Proceedings of the International Conference on Dependable Systems and
Networks, Philadelphia, PA, June 2006, pp. 249–258

813. B. Schroeder, G.A. Gibson, Disk failures in the real world: what does an MTTF of
1,000,000 hours mean to you?, in USENIX Conference on File and Storage Technologies,
San Jose, CA, Feb 2007, pp. 1–16

814. J. Schuster, M. Siegle, A symbolic multilevel method with sparse submatrix representation
for memory-speed tradeoff, in 14. GI/ITG Conference Measurement, Modelling and
Evaluation of Computer and Communication Systems (MMB08), VDE Verlag (2008),
pp. 191–205

815. J. Schuster, M. Siegle, Speeding up the symbolic multilevel algorithm, in 6th International
Workshop on the Numerical Solution of Markov Chains (NSMC2010) (2010), pp. 79–82

816. N. Seixas, J. Fonseca, M. Vieira, H. Madeira, Looking at web security vulnerabilities from the
programming language perspective: a field study, in 20th International Symposium on
Software Reliability Engineering, ISSRE-2009, Mysuru, India (IEEE, Nov 2009), pp. 129–135

References 481

http://www.sandia.gov/iorta/

817. R. Sekar, An efficient black-box technique for defeating web application attacks, in
Proceedings of the 16th Annual Network and Distributed System Security Symposium
(2009)

818. A. Selvam, K. Kathiravan, R. Reshmi, A cross-layer tcp protocol with adaptive modulation
for manets, in ICSCN ’08: International Conference on Signal Processing, Communications
and Networking (2008), pp. 428–433

819. M. Serafini, A. Bondavalli, N. Suri, Online diagnosis and recovery: on the choice and
impact of tuning parameters. IEEE Trans. Depend. Secur. Comput. 4(4), 295–312 (2007)

820. I.G.T. Services, Ibm internet security systems x-force—2008 trend & risk report. Online
report, IBM Corporation, http://www-935.ibm.com/services/us/iss/xforce/trendreports/
xforce-2008-annual-report.pdf (2009)

821. K. Sevcik, I. Mitrani, The distribution of queueing network states at input and output
instants. J. ACM 28(2), 358–371 (1981)

822. K. Shen, C. Stewart, C. Li, X. Li, Reference-driven performance anomaly identification, in
Proceedings of the Eleventh International Joint Conference on Measurement and Modeling
of Computer Systems, Seattle, WA, June 2009, pp. 85–96

823. K.G. Shin, C.M. Krishna, Y.-H. Lee, Optimal dynamic control of resources in a distributed
system. IEEE Trans. Softw. Eng. 15(10), 1188–1198 (1989)

824. Y. Shin, L. Williams, T. Xie, SQLUnitGen: SQL injection testing using static and dynamic
analysis, in The 17th IEEE International Symposium on Software Reliability Engineering,
ISSRE (2006)

825. R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications (Springer Texts in
Statistics) (Springer, New York, 2005)

826. L. Siegele, Let it rise: a special report on corporate IT. Economist 389(8603), 3–16 (2008)
827. B.H. Sigelman, L.A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,

C. Shanbhagy, Dapper, a large-scale distributed systems tracing infrastructure. Technical
report dapper-2010-1, Google, April 2010

828. L.M. Silva, J. Alonso, J. Torres, Using virtualization to improve software rejuvenation.
IEEE Trans. Comput. 58(11), 1525–1538 (2009)

829. N. Singh, S. Brahmjit, Effect of soft handover parameters on CDMA cellular networks.
J. Theor. Appl. Inf. Technol. B v.77, 523 (2010)

830. S. Singh, W.H. Sanders, D.M. Nicol, M. Seri, Automatic verification of distributed and
layered security policy implementations. Technical report UILU-ENG-08-2209 (CRHC-08-
05) (University of Illinois, Urbana-Champaign, 2008)

831. S. Sivathanu, L. Liu, M. Yiduo, X. Pu, Storage management in virtualized cloud
environment, in Proceedings of IEEE International Conference on Cloud Computing
(2010), pp. 204–211

832. D. Skarin, R. Barbosa, J. Karlsson, Comparing and validating measurements of
dependability attributes, in Proceedings of the 8th European Dependable Computing
Conference EDCC 2010, April 2010, pp. 3–12

833. D. Skarin, R. Barbosa, J. Karlsson, GOOFI-2: a tool for experimental dependability
assessment, in Proceedings of the 40th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks DSN 2010, June/July 2010, pp. 557–562

834. D. Skarin, J. Karlsson, Software implemented detection and recovery of soft errors in a
brake-by-wire system, in Proceedings of the 7th European Dependable Computing
Conference EDCC 2008, May 2008, pp. 145–154

835. P. Skomoroch, MPI cluster programming with Python and Amazon EC2, in Proceedings of
the 6th Annual Python Community Conference PyCon’08, Chicago, March 2008,
http://www.datawrangling.com/mpi-cluster-with-python-and-amazon-ec2-part-2-of-3

836. P. Skomoroch, Data wrangling image: fedora core 6 mpi compute node with python libraries
(2010), http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=101&
externalID=705

482 References

http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
http://www.datawrangling.com/mpi-cluster-with-python-and-amazon-ec2-part-2-of-3
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=101&externalID=705
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=101&externalID=705

837. C.U. Smith, L.G. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley, Boston (2002)

838. W.D. Smith, TPC-W: benchmarking an ecommerce solution. TPC White paper (2001),
http://www.tpc.org/tpcw/

839. W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov, S. Patil, O.
Fox, D. Patterson, Cloudstone: multi-platform, multi-language benchmark and measurement
tools for web 2.0 (2008)

840. L. Song, D. Kotz, R. Jain, X. He, Evaluating location predictors with extensive wi-fi
mobility data, in Proceedings of the Twenty-Third Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), vol. 2, March 2004, pp. 1414–1424

841. L. Spainhower, J. Isenberg, R. Chillarege, J. Berding, Design for fault-tolerance in system
es/9000 model 900, in Proceedings of the 22nd IEEE FTCS International Symposium on
Fault-Tolerant Computing (1992), pp. 38–47

842. SPEC Virtualization Committee, SPECvirt_sc2010 (2010), http://www.spec.org/virt_
sc2010

843. Splunk Inc., Splunk: The IT Search Company (2005), http://www.splunk.co
844. M. Sridharan, S. Ramasubramanian, A.K. Somani, Himap: architecture, features, and

hierarchical model specification techniques, in Proceedings of the Computer Performance
Evaluation: Modelling Techniques and Tools. 10th International Conference, Tools 98,
Palma de Mallorca, Spain, Sept 14–18, 1998. Lecture Notes in Computer Science, vol.
1469, ed. by R. Puigjaner, N.N. Savino, B. Serra (Springer, Heidelberg, 1998), pp. 348–351

845. Standard Performance Evaluation Corporation (SPEC) Specweb99 release 1.02
documentation, Specification, Standard Performance Evaluation Corporation (2000),
http://www.spec.org/web99/

846. Standard Performance Evaluation Corporation (SPEC), Website (2011)
847. A. Stefanek, Grouped PEPA analyzer, http://doc.ic.ac.uk/*as1005/GPA
848. A. Stefanek, R.Hayden, J.T. Bradley, Fluid analysis of energy consumption using rewards in

massively parallel Markov models, in International Conference on Performance
Engineering (ICPE) 2011, 14–16 March 2011 (to appear)

849. A. Stefanek, R.A. Hayden, J.T. Bradley, A new tool for the performance analysis of
massively parallel computer systems, in QAPL’10, 8th Workshop on Quantitative Aspects of
Programming Languages, Electronic Proceedings of Theoretical Computer Science, vol. 28
(2010), pp. 159–181

850. M. Steinder, A.S. Sethi, A survey of fault localization techniques in computer networks. Sci.
Comput. Program. 53(2), 165–194 (2004)

851. C. Steve, R. Martin, Vulnerability type distributions in CVE, in Mitre report, May 2007
852. C. Stewart, T. Kelly, A. Zhang, Exploiting nonstationarity for performance prediction, in

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, Lisbon, March 2007, pp. 31–44

853. W. Stewart, K. Atif, B. Plateau, The numerical solution of stochastic automata networks.
Eur. J. Oper. Res. 86, 503–525 (1995)

854. W.J. Stewart, Probability, Markov Chains, Queues and Simulation. The Mathematical Basis
of Performance Modeling (Princeton University Press, Princeton, 2009)

855. A. Stock, J. Williams, D. Wichers, OWASP top 10, in OWASP Foundation, July 2007
856. D.T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, R.K. Iyer, NFTAPE: a framework for

assessing dependability in distributed systems with lightweight fault injectors, in
Proceedings of the International Computer Performance and Dependability Symposium
PDS’00 2000, pp. 91–100

857. K. Stouffer, J. Falco, K. Kent, Guide to supervisory control and data acquisition (scada) and
industrial control systems security. NIST special publication, 800(82), Sept 2006, pp. 1–13

858. A.W. Stroupe, S. Singh, R. Simmons, T. Smith, P. Tompkins, V. Verma, R. Vitti-Lyons, M.
Wagner, Technology for autonomous space systems. Technical report CMU-RI-TR-00-02,
Carnegie Mellon University, Robotics Institute, Sept 2001

References 483

http://www.tpc.org/tpcw/
http://www.spec.org/virt_sc2010
http://www.spec.org/virt_sc2010
http://www.splunk.co
http://www.spec.org/web99/
http://doc.ic.ac.uk/~as1005/GPA

859. S. Strubbe, A. van der Schaft, Compositional modeling of stochastic hybrid systems, in
Stochastic Hybrid Systems: Control Engineering Series, vol. 24 (CRC Press, Boca Raton,
2006), pp. 47–78

860. D. Stuttard, M. Pinto, The Web Application Hacker’s Handbook: Discovering and
Exploiting Security Flaws (Wiley, Chichester, 2007)

861. J.L. Sun, S. Singh, ATCP: TCP for mobile ad hoc networks. IEEE. J. Sel. Areas Commun.
19, 1300–1315 (1999)

862. K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, R. Sivakumar, ATP: a reliable transport
protocol for ad-hoc networks, in MobiHoc ’03: Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking & Computing (ACM, New York, 2003),
pp. 64–75

863. N. Svendsen, S. Wolthusen, Analysis and statistical properties of critical infrastructure
interdependency multiflow models, in Information Assurance and Security Workshop, 2007.
IAW ’07. IEEE SMC, June 2007, pp. 247–254

864. S.E.G. Systems and Operations, Telemetry and telecommand packet utilization (ecss-e-70-
41a) (2003)

865. A. Takanen, J. DeMott, C. Miller, Fuzzing for Software Security Testing and Quality
Assurance, 1st edn. (Artech House, 2008)

866. J. Tan, X. Pan, S. Kavulya, R. Gandhi, P. Narasimhan, SALSA: analyzing logs as state
machines, in USENIX Workshop on Analysis of System Logs, San Diego, Dec 2008

867. J. Tan, X. Pan, S. Kavulya, R. Gandhi, P. Narasimhan, Mochi: visual log-analysis based
tools for debugging hadoop, in USENIX Workshop on Hot Topics in Cloud Computing
HotCloud, San Diego, June 2009

868. TCIP, NSF Project TCIP—Trustworthy cyber infrastructure for the power grid,
http://www.iti.uiuc.edu/tcip

869. TCIP Team, Trustworthy cyber-infrastructure for power TCIP, in Workshop on Research
Directions for Security and Networking in Critical Real-Time and Embedded Systems, San
Jose, April 2006

870. M. Telek, A. Heindl, Matching moments for acyclic discrete and continuous phase-type
distributions of second order. Int. J. Simul. Syst. Sci. Technol. 3(3–4), 47–57 (2002)

871. M. Telek, A. Heindl, Moment bounds for acyclic discrete and continuous phase-type
distributions of second order, in Proceedings of the UK Performance Evaluation Workshop
(2002)

872. M. Telek, S. Rácz, Numerical analysis of large Markovian reward models. Perform. Eval.
36-37, 95–114 (1999)

873. C.-W. Ten, C.-C. Liu, G. Manimaran, Vulnerability assessment of cybersecurity for scada
systems. IEEE Trans. Power Syst. 23(4), 1836–1846 (2008)

874. C.-W. Ten, G. Manimaran, C.-C. Liu, Cybersecurity for critical infrastructures: attack and
defense modeling. Trans. Sys. Man Cyber. Part A 40, 853–865 (2010)

875. G. Tesauro, N.K. Jong, R. Das, M.N. Bennani, A hybrid reinforcement learning approach to
autonomic resource allocation, in International Conference on Autonomic Computing
(2006)

876. N.X. Thang, K. Geihs, Model-driven development with optimization of non-functional
constraints in sensor network, in ICSE Workshop on Software Engineering for Sensor
Network Applications (2010), pp. 61–65

877. T. Thein, S.-D. Chi, J.S. Park, Availability modeling and analysis on virtualized clustering
with rejuvenation. Int. J. Comput. Sci. Netw. Secur. 8(9), 72–80 (2008)

878. T. Thein, J.S. Park, Availability analysis of application servers using software rejuvenation
and virtualization. J. Comput. Sci. Technol. 24(2), 339–346 (2009)

879. N. Thomas, Y. Zhao, Mean value analysis for a class of PEPA models. Comput. J. (2011)
(accepted). doi:10.1093/comjnl/bxq064

880. A. Thümmler, P. Buchholz, M. Telek, A novel approach for phase-type fitting with the EM
algorithm. IEEE Trans. Depend. Secur. Comput. 3(3), 245–258 (2006)

484 References

http://www.iti.uiuc.edu/tcip
http://dx.doi.org/10.1093/comjnl/bxq064

881. O. Tickoo, R. Iyer, R. Illikkal, D. Newell, Modeling virtual machine performance:
challenges and approaches. SIGMETRICS Perform. Eval. Rev. 37, 55–60 (2010)

882. W.J. Tolone, D. Wilson, A. Raja, W.-n. Xiang, H. Hao, S. Phelps, E. W. Johnson, Critical
infrastructure integration modeling and simulation, in Intelligence and Security Informatics.
Lecture Notes in Computer Science, vol. 3073, ed. by H. Chen, R. Moore, D.D. Zeng, J.
Leavitt (Springer, Berlin, 2004), pp. 214–225

883. M. Torgerson, Security metrics for communication systems, in Proceedings of the 12TH
ICCRTS (2007)

884. Transaction Processing Performance Council, http://www.tpc.org/
885. Transaction Processing Performance Council. Tpc benchmarkTM app (tpc-app).

Specification, Transaction Processing Performance Council, Dec 2004, http://www.tpc.
org/tpcw/

886. Transaction Processing Performance Council. Tpc benchmarkTM w (tpc-w). Specification,
Transaction Processing Performance Council (2004), http://www.tpc.org/tpcw/

887. Transaction Processing Performance Council. Tpc benchmarkTM c (tpc-c). Specification,
Transaction Processing Performance Council (2010), http://www.tpc.org/tpcc/

888. M. Tribastone, A. Duguid, S. Gilmore, The pepa eclipse plugin. SIGMETRICS Perform.
Eval. Rev. 36, 28–33 (2009)

889. M.G. Tricker, K.-D. Lange, The design and development of spec’s server efficiency rating
tool (sert), in Proceedings of the 2nd ACM/SPEC International Conference on Performance
Engineering (ICPE’ 11) (2011)

890. K. Trivedi, Sharpe 2002: symbolic hierarchical automated reliability and performance
evaluator, in Proceedings of International Conference on Dependable Systems and
Networks, 2002. DSN 2002 (2002), p. 544

891 K. Trivedi, M. Malhotra, in Reliability and Performability Techniques and Tools: A Survey,
ed. by B. Walke, O. Spaniol (Springer, Aachen, 1993)

892. K. Trivedi, S. Ramani, R. Fricks, Recent advances in proceedings of the IEEE modeling
response-time distributions in real-time systems, 91(7):1023–1037

893. K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science
Applications (Wiley, New York, 2001)

894. K.S. Trivedi, S. Hunter, S. Garg, R. Fricks, in Reliability Analysis Techniques Explored
Through a Communication Network Example, Beijing, pp. 2–3

895. K.S. Trivedi, K. Vaidyanathan, K. Goseva-Popstojanova, Modeling and analysis of software
aging and rejuvenation, in Proceedings of 33rd Annual Simulation Symposium, 2000 (SS
2000) (2000), pp. 270–279

896. T.K. Tsai, R.K. Iyer, D. Jewitt, An approach towards benchmarking of fault-tolerant
commercial systems, in Proceedings of the 26th International Symposium on Fault-Tolerant
Computing, IEEE 1996, Washington, DC (1996)

897. W. Tsai, X. Wei, Y. Chen, R. Paul, A robust testing framework for verifying web services
by completeness and consistency analysis, in IEEE International Workshop on Service-
Oriented System Engineering, SOSE 2005 (2005), pp. 151–158

898. G. Tunstall, W. Clegg, D. Jenkins, C. Chilumbu, Head-media interface instability under
hostile operating conditions. IEEE Trans. Instrum. Meas. 51(2), 293–298 (2002)

899. UMTSevol, Universal Mobile Telecommunications System (UMTS); Radio Resource
Control (RRC); protocol specification, release 9, v9.4.0, Oct 2010

900. P. Urban, X. Defago, A. Schiper, Neko: a single environment to simulate and prototype
distributed algorithms, in International Conference on Information Networking (ICOIN), 31
Jan 2001

901. B. Urgaonkar, G. Pacifici, P.J. Shenoy, M. Spreitzer, A.N. Tantawi, An analytical model for
multi-tier internet services and its applications, in Proceedings of the 2005 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, Banff, June 2005, pp. 291–302

References 485

http://www.tpc.org/
http://www.tpc.org/tpc_app/
http://www.tpc.org/tpc_app/
http://www.tpc.org/tpcw/
http://www.tpc.org/tpcc/

902. M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach (Morgan
Kaufmann, San Francisco, 2007)

903. K. Vaidyanathan, R.E. Harper, S.W. Hunter, K.S. Trivedi, Analysis and implementation of
software rejuvenation in cluster systems. SIGMETRICS Perform. Eval. Rev. 29, 62–71
(2001)

904. K. Vaidyanathan, D. Selvamuthu, K.S. Trivedi, Analysis of inspection-based preventive
maintenance in operational software systems, in Proceedings of 21st IEEE Symposium on
Reliable Distributed Systems (2002), pp. 286–295

905. K. Vaidyanathan, K.S. Trivedi, A measurement-based model for estimation of resource
exhaustion in operational software systems, in Proceedings of 10th International
Symposium on Software Reliability Engineering, (1999), pp. 84–93

906. K. Vaidyanathan, K.S. Trivedi, A comprehensive model for software rejuvenation. IEEE
Trans. Depend. Secure Comput. 2(2), 124–137 (2005)

907. A. van de Liefvoort, The moment problem for continuous distributions. Technical report
WP-CM-1990-02, University of Missouri, Kansas City (1990)

908. D. van Hertem, J. Verboomen, K. Purchala, R. Belmans, W.L. Kling, Usefulness of DC
power flow for active power flow analysis with flow controlling devices, in The 8th IEE
International Conference on AC and DC Power Transmission (ACDC 2006), London,
March 2006, pp. 58–62

909. A. van Moorsel, Y. Huang, Reusable software components for performability tools, and
their utilization for web-based configuration tools, in Proceedings of the 10th International
Conference in Computer Performance Evaluation: Modeling Techniques and Tools, Palma
de Mallorca, Sept 1998, pp. 37–50

910. A. van Moorsel, W. Sanders, Adaptive uniformization. Stoch. Model. 10(3), 619–648
(1994)

911. A. Varga, The omnet++ discrete event simulation system, in Proceedings of the European
Simulation Multiconference (ESM’2001), June 2001

912. F. Vargas, D.L. Cavalcante, E. Gatti, D. Prestes, D. Lupi, On the proposition of an EMI-
based fault injection approach, in 11th IEEE International On-Line Testing Symposium
(IOLTS 2005), IEEE Computer Society, Saint Raphael, 6–8 July 2005, pp. 207–208

913. V. Verendel, Quantified security is a weak hypothesis: a critical survey of results and
assumptions, in NSPW ’09: Proceedings of the New Security Pradigms Workshop 2009
(ACM, New York, 2009), pp. 37–50

914. A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration cost aware application
placement in virtualized systems, in International Conference on Middleware (2008)

915. M. Vieira, N. Laranjeiro, H. Madeira, Benchmarking the robustness of web services, in
Proceedings of the 13th Pacific Rim International Symposium on Dependable Computing
(2007), pp. 322–329

916. M. Vieira, N. Laranjeiro, H. Madeira, Benchmarking the robustness of web services, in
Proceedings of the 13th Pacific Rim International Symposium on Dependable Computing,
pp. 322–329 (2007)

917. M. Vieira, H. Madeira, Benchmarking the dependability of different oltp systems, in
Proceedings of the IEEE/IFIP 2003 International Conference on Dependable Systems and
Networks (DSN 2003) (2003)

918. M. Vieira, H. Madeira, A dependability benchmark for oltp application environments, in
Proceedings of the 29th International Conference on Very Large Data Bases (VLDB 2003)
(2003)

919. M. Vieira, H. Madeira, A dependability benchmark for OLTP application environments, in
Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29,
VLDB ’2003 (2003), pp. 742–753

920. M. Vieira, H. Madeira, Towards a security benchmark for database management systems, in
Proceedings of the 2005 International Conference on Dependable Systems and Networks
(DSN 2005) (2005)

486 References

921. W.G. Vincenti, What Engineers Know and How They Know it: Analytical Studies from
Aeronautical History, in Johns Hopkins Studies in the History of Technology (Johns
Hopkins University Press, 1993)

922. Virtualisierung bremst Energiebedarf. Virtualisierung bremst Energiebedarf. Computer
Zeitung Nr. 52, Dec 2008

923. VMWare, Vmware high availability (ha), restart your virtual machine, World Wide Web,
http://www.vmware.com/products/vi/vc/ha.html. Accessed May 2009

924. E. Walker, Benchmarking Amazon EC2 for high-performance scientific computing. Login
33(5), 18–23 (2008)

925. M. Wan, G. Ciardo, Symbolic state-space generation of asynchronous systems using
extensible decision diagrams, in Proceedings of the 35th Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM ’09 (Springer, 2009), pp. 582–594

926. D. Wang, W. Xie, K.S. Trivedi, Performability analysis of clustered systems with
rejuvenation under varying workload. Perform. Eval. 64, 247–265 (2007)

927. G. Wang, A.R. Butt, P. Pandey, K. Gupta, A simulation approach to evaluating design
decisions in mapreduce setups, in International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS) (IEEE, 2009),
pp. 1–11

928. N.J. Wang, S.J. Patel, Restore: symptom-based soft error detection in microprocessors.
IEEE Trans. Depend. Sec. Comput. 3(3), 188–201 (2006)

929. X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, Q. Wang, Appliance-based
autonomic provisioning framework for virtualized outsourcing data centre, in Proceedings
of the Fourth International Conference on Autonomic Computing (2007)

930. C. Warren, R. Saint, IEEE reliability indices standards. Ind. Appl. Mag. 11(1), 16–22 (2005)
931. I. Waseem, Impacts of distributed generation on the residential distributed network

operation. M.Sc. thesis, Virginia Polytechnic Institute (2008)
932. S. Weißleder, B.-H. Schlingloff, Deriving input partitions from UML models for automatic

test generation, in Models in Software Engineering, ed. by H. Giese (Springer, Heidelberg,
2008), pp. 151–163

933. R. Westrum, A typology of resilience situations, in Resilience Engineering. Concepts and
Precepts, ed. by E. Hollnagel, D.D. Woods, N. Leveson (Ashgate, Aldershot, 2006)

934. D. Wilson, B. Murphy, L. Spainhower, Progress on defining standardized classes for
comparing the dependability of computer systems, in Proceedings of the DSN 2002
Workshop on Dependability Benchmarking (2002)

935. R. Wimmer, S. Derisavi, H. Hermanns, Symbolic partition refinement with automatic
balancing of time and space. Perform. Eval. 67(9), 815–835 (2010)

936. B. Winterford, Stress tests rain on amazon’s cloud. IT News, http://www.itnews.com.
au/News/153451,stress-tests-rain-on-amazons-cloud.aspx. Accessed Aug 2009

937. K. Wolter, G. Horton, R. German, Non-markovian fluid stochastic petri nets. Technical
report 13, Technical University of Berlin (1996)

938. K. Wolter, P. Reinecke, A. Mittermaier, Evaluation and improvement of IEEE 1588
frequency synchronisation through detailed modelling and simulation of backhaul networks,
in Proceedings 8th European Performance Engineering Workshop. Lecture Notes in
Computer Science, vol. 6977, ed. by N. Thomas (2011)

939. K. Wolter, P. Reinecke, A. Mittermaier, Model-based evaluation and improvement of PTP
syntonisation accuracy in packet-switched Backhaul networks for mobile applications, in
Proceedings of the 8th European Performance Evaluation Workshop (EPEW 2011) (2011)

940. T. Wood, L. Cherkasova, K. Ozonat, P. Shenoy, Profiling and modeling resource usage of
virtualized applications, in Proceedings of 9th ACM/IFIP/USENIX International
Conference on Middleware (2008), pp. 366–387

941. D.D. Woods, Essential characteristics of resilience, in Resilience Engineering. Concepts
and Precepts, ed. by E. Hollnagel, D.D. Woods, N. Leveson (Ashgate, Aldershot, 2006),
pp. 21–34

References 487

http://www.vmware.com/products/vi/vc/ha.html
http://www.itnews.com.au/News/153451,stress-tests-rain-on-amazons-cloud.aspx
http://www.itnews.com.au/News/153451,stress-tests-rain-on-amazons-cloud.aspx

942. D.D. Woods, J. Wreathall, Stress-strain plots as a basis for assessing system resilience, in
Resilience Engineering Perspectives vol. 1: Remaining Sensitive to the Possibility of
Failure, ed. by E. Hollnagel, C.P. Nemeth, S. Dekker (Ashgate, 2008), pp. 145–161

943. C.M. Woodside, E. Neron, E.D.S. Ho, B. Mondoux, An ‘‘active server’’ model for the
performance of parallel programs written using rendezvouz. J. Syst. Softw. 125–131 (1986)

944. Wordpress.org (WordPress, 2010), http://wordpress.org
945. J.R. Wright, G.T. Vesonder, Expert systems in telecommunications. Expert Syst. Appl. 1(2),

127–136 (1990)
946. F. Xin-yuan, X. Guo-zhi, Y. Ren-dong, Z. Hao, J. Le-tian, Performance analysis of software

rejuvenation, in Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2003. PDCAT’2003, Aug 2003,
pp. 562–566

947. J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, On the use of fuzzy modeling in
virtualized data center management, in Proceedings of the 4th International Conference on
Autonomic Computing (2007)

948. W. Xu, L. Huang, A. Fox, D. Patterson, M.I. Jordan, Detecting large-scale system problems
by mining console logs, in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, Big Sky, MT, Oct 2009, pp. 117–132

949. Yahoo! M45 supercomputing project (2009), http://research.yahoo.com/node/1884
950. J. Yang, J. Qiu, Y. Li, A profile-based approach to just-in-time scalability for cloud

applications, in International Conference on Cloud Computing (2009)
951. M. Yang, Z. Li, W. Yang, T. Li, Analysis of software rejuvenation in clustered computing

system with dependency relation between nodes, in Computer and Information Technology
(CIT), 2010 IEEE 10th International Conference on, July 2010, pp. 46–53

952. S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie, High speed and robust event
correlation. Commun. Mag. IEEE 34(5), 82–90 (1996)

953. X. Yu, Improving tcp performance over mobile ad hoc networks by exploiting cross-layer
information awareness, in MobiCom ’04: Proceedings of the 10th Annual International
Conference on Mobile Computing and Networking (ACM, New York, 2004), pp. 231–244

954. C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, W.-Y. Ma, Automated known
problem diagnosis with event traces, in Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006, April 2006, pp. 375–388

955. P. Yuste, D. de Andres, L. Lemus, J.J. Serrano, P.J. Gil, INERTE: Integrated NExus-based
real-time fault injection tool for embedded systems, in Proceedings of the 2003
International Conference on Dependable Systems and Networks (DSN 2003), San
Francisco, CA, USA, June 2003 (IEEE Computer Society, New York, 2003), p. 669

956. Q. Zhang, L. Cherkasova, E. Smirni, A regression-based analytic model for dynamic
resource provisioning of multi-tier applications, in International Conference on Autonomic
Computing (2007)

957. S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, A. Fox, Ensembles of models for automated
diagnosis of system performance problems, in Proceedings of the 2005 International
Conference on Dependable Systems and Networks, Yokohoma, Japan, July 2005, pp. 644–653

958. L. Zhao, Q. Song, L. Zhu, Common software-aging-related faults in fault-tolerant systems,
in Computational Intelligence for Modelling Control Automation, 2008 International
Conference on, Dec 2008, pp. 327–331

959. J. Zhu, J. Mauro, I. Pramanick, R3—a framework for availability benchmarking, in
Proceedings of the IEEE/IFIP 2003 International Conference on Dependable Systems and
Networks (DSN 2003) (2003)

960. J. Zhu, J. Mauro, I. Pramanick, Robustness benchmarking for hardware maintenance events,
in Proceedings of the IEEE/IFIP 2003 International Conference on Dependable Systems
and Networks (DSN 2003) (2003)

488 References

http://wordpress.org
http://research.yahoo.com/node/1884

961. A. Zimmermann, D. Schaffrath, M. Faber, M. Wenig, M. Günes�, Improving tcp performance
through explicit corruption and route failure notification (ECRFN), in MSWiM ’07:
Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless
and Mobile Systems, New York, NY, USA (ACM, 2007), pp. 284–288

962. E. Zio, W.W. Krüger, Vulnerability assessment of critical infrastructures. IEEE Trans.
Reliab. 59, 449–482 (2010)

References 489

	Resilience Assessment and Evaluation of Computing Systems
	Preface
	Acknowledgments
	Contents
	Contributors
	Part I Introduction and Motivating Examples
	Part II Modelling Techniques
	Part III Model-Driven Prediction
	Part IV Measurement and Metrics
	Part V Testing Techniques
	Part VI Case Studies
	Part VII Conclusions and Outlook
	References

