
Mining Social Networks

for Significant Friend Groups

Carson Kai-Sang Leung� and Syed K. Tanbeer

Department of Computer Science, University of Manitoba, Canada
kleung@cs.umanitoba.ca

Abstract. The emergence of Web-based communities and hosted ser-
vices such as social networking sites has facilitated collaboration and
knowledge sharing between users. Hence, it has become important to
mine this vast pool of data in social networks, which are generally made
of users linked by some specific interdependency such as friendship. For
any user, some groups of his friends are more significant than others. In
this paper, we propose a tree-based algorithm to mine social networks
to help these users to distinguish their significant friend groups from all
the friends in their social networks.

Keywords: Advanced database applications, social networks, social me-
dia, social computing, knowledge discovery, data mining, social network
analysis and mining.

1 Introduction

Rapid growth and exponential use of social digital media has led to an increase
in popularity of social networks and the emergence of social network mining,
which combines data mining with social computing [6,10,17,20]. As social net-
works [3,15] are generally made of social entities (e.g., individuals, corporations,
collective social units, or organizations) that are linked by some specific types of
interdependency such as friendship, a social entity can be connected to another
entity as his friend. Similarly, a social entity can be linked to another entity as his
next-of-kin, friend, collaborator, co-author, classmate, co-worker, team member,
and/or business partner via other interdependency such as kinship, friendship,
common interest, beliefs, and financial exchange.

Social network mining [2,7,8,12] aims to discover implicit, previously un-
known, and potentially useful knowledge from a vast pool of data residing in the
social networking sites such as Facebook [4,14], Twitter [13,16,19], and LinkedIn.
In LinkedIn, a user can create a professional profile, add connections to other
users (as friends, colleagues, and/or classmates), and exchange messages. In ad-
dition, he can also join common-interest groups and participate in discussions.
Although the number of friends/connections may vary from one user to another,
it is not uncommon for a user p to have hundreds of friends/connections. Among

� Corresponding author.

H. Yu et al. (Eds.): DASFAA Workshops 2012, LNCS 7240, pp. 180–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Mining Social Networks for Significant Friend Groups 181

them, some groups of friends are more important or significant to p than oth-
ers. Significance of a friend group G depends on various measures including the
connectivity between G and p (e.g., friends in G who frequently view p’s profile,
send messages to p, and/or make postings to p’s discussion are considered to
be more significant to p than others) as well as the “rank” of G (e.g., friends
in G who have certain experience, skills and expertise, education, and/or role
are considered to be more significant to p than others). To elaborate, a group
of friends who frequently participate in p’s discussion by adding many posts are
considered to be significant to p. Moreover, their postings are considered to be
more significant if they are “ranked” as experts.

Note that, although we use LinkedIn in the above example, similar observa-
tions on the desire of mining significant groups of friends/connections/followers
can be made on other social networking sites (e.g., Facebook, Twitter). So, a
natural question to ask is how to find these significant friend groups, especially
when a user has hundreds of friends/connections in his social network and there
are many users in the network? Manually go through the entire friend list seems
to be impractical. A more algorithmic approach is needed. In this paper, we pro-
pose an algorithm to help users to mine social networks for their significant friend
groups. Key contributions of this paper are our proposal of a tree structure
called Significant Friend-tree (SF-tree) to capture important information about
friends/connections in social networks and our design of an efficient algorithm
to mine significant friend groups from the SF-tree.

This paper is organized as follows. Section 2 states the problem definition.
Section 3 describes our algorithm for constructing an SF-tree and mining those
significant friend groups from the SF-tree. Experimental results in Section 4
show the effectiveness of our algorithm. Section 5 presents the conclusions.

2 Problem Definition

Before we define the problem of mining social networks for significant friend
groups, let us consider Table 1 (which shows an illustrative friend database FDB

capturing social information about 10 users in a social network) and Table 2
(which shows the pre-computed confidence values of these 10 users). FDB =
{L1, ..., L7} in Table 1 consists of seven friend lists, each lists friends of a user.
For example, L2 lists four friends/connections of Gail—namely, Amy, Don, Ed,
and Jeff. Each friend fi in the friend list Lid(p) of a user p is associated with
a weight wt(fi, Lid(p)) that indicates the strength/association/measure value
of fi from p’s point of view. For example, “Don(20)” on L2 indicates that Don
added 20 posts to Gail’s discussion. Note that the weight is asymmetric (e.g.,
the weight of Don on Gail’s list is different from the weight of Gail on Don’s
list: wt(Don,L2)=20 �= wt(Gail,L5)=10) and can vary from one list to another
(e.g., the weight of Don on Gail’s and Carl’s lists are different: wt(Don,L2)=20 �=
wt(Don,L3)=30). Then, let G = {f1, f2, . . . , fk} be a group of k common friends
(i.e., friend group). For example, {Amy, Don} is a (common) friend group of Gail,
Carl, and Helen. Let FG

DB denote the set of lists in FDB that contain group G.
For example, if G={Amy, Don}, then FG

DB={L2, L3, L4}.



182 C.K.-S. Leung and S.K. Tanbeer

Table 1. A sample friend database FDB

Friend list Lid with weight wt(fi, Lid) limp(Lid) with sig=0.2
L1 ≡ Jeff:{Don(30), Gail(40), Ivy(60)} 61 49
L2 ≡ Gail:{Amy(20), Don(20), Ed(10), Jeff(50)} 56 56
L3 ≡ Carl:{Amy(10), Bob(10), Don(30), Ed(10), Jeff(20)} 52 44
L4 ≡ Helen:{Amy(50), Don(30), Ed(30)} 68 68
L5 ≡ Don:{Amy(20), Fred(10), Gail(10), Jeff(20)} 33 25
L6 ≡ Ed:{Amy(10), Fred(10), Helen(30)} 30 4
L7 ≡ Amy:{Carl(20), Don(20), Gail(30)} 45 35

Table 2. Confidence table

Friend fi Confidence conf (fi) Friend fi Confidence conf (fi)
Amy 0.40 Fred 0.80
Bob 0.80 Gail 0.70
Carl 0.50 Helen 0.60
Don 0.70 Ivy 0.20
Ed 0.90 Jeff 0.50

While the weight wt(fi, Lid(p)) indicates the strength/association/measure
value of fi with respect to a user p, the confidence value conf(fi) shown
in Table 2 indicates the “rank” of user fi (based on his experience, skills and
expertise, education, role, importance, reputation, prominence) in social net-
works. For example, opinions posted by an expert Don (with conf(Don)=0.70)
are considered to be more important than those posted by a non-expert Ivy
(with conf(Ivy)=0.20).

Then, the problem ofmining significant friend groups is to discover from friend
database FDB all groups of friends with high significance value (e.g., higher
than or equal to a user-specified minimum significance threshold minSig). In the
following, we define the significance of friend groups in a step-by-step fashion.

Definition 1. The importance of a friend fi in a friend list Lj—denoted
as fimp(fi, Lj)—measures the significance of fi in Lj and is calculated by
fimp(fi, Lj) = wt(fi, Lj)× con(fi).

Example 1. The importance of Don in L2 shown in Table 1 is fimp(Don,L2)
= 20 × 0.70 = 14, which reflects the number of posts Don made on Gail’s
discussion (20) and Don’s individual “rank” (0.70). ��
To a further extent, the list importance of a group G of friends in a friend
list Lj can be computed by summing the fimp(fi, Lj) values for every fi ∈ G.
For example, the list importance value of G={Amy, Don} in L2 is (20×0.40)
+ (20×0.70) = 8+14 = 22, which indicates the total importance of the group
(consisting of both Amy and Don) in Gail’s friend list L2.

Definition 2. The importance of a friend group G in friend database
FDB is defined as dgimp(G) =

∑
Lj∈FG

DB

∑
fi∈G fimp(fi, Lj).

Example 2. Recall that, if G={Amy, Don}, then FG
DB={L2, L3, L4} indicating

that Amy and Don appear as (common) friends of Gail (L2), Carl (L3), and



Mining Social Networks for Significant Friend Groups 183

Helen (L4). And, dgimp(G) = 22 + [(10×0.40) + (30×0.70)] + [(50×0.40) +
(30×0.70)] = 22 + 25 + 41 = 88. ��
Definition 3. The importance of a list Lj—denoted as limp(Lj)—is the
total importance of all friends in a friend list Lj and is defined as limp(Lj) =∑

fi∈Lj
fimp(fi, Lj).

Example 3. The importance of list L2 in Table 1 is limp(L2) = 8+14+(10×0.90)
+(50×0.50) = 56 as indicated in the second column of Table 1. This value
indicates that the overall combined importance of all friends of Gail (L2). ��
Definition 4. The importance of a friend database FDB is the total im-
portance of all friend lists in FDB , i.e., dimp(FDB) =

∑
Lj∈FDB

limp(Lj).

Example 4. Recall from Example 3 that limp(L2)=56. By computing the limp
values for the remaining six friend lists in FDB, we get 61+56+52+68+33+30
+45 = 345 (i.e., the sum of the second column in Table 1) as the total importance
of all seven friend lists in FDB. ��
Definition 5. The significance of a friend group G—denoted by sig(G)—is
defined as the ratio of the importance of G in FDB to the importance of FDB,

i.e., sig(G) = dgimp(G)
dimp(FDB) .

Example 5. Recall from Example 2 that dgimp({Amy, Don})=88, and recall
from Example 4 that dimp(FDB)=345. Then, the significance of {Amy, Don} in
Table 1 is sig({Amy, Don}) = 88

345 ≈ 0.26. ��
A friend group is significant in a social network media if its significance value is
no less than the user-specified minimum significance threshold (denoted as min-
Sig). If minSig=0.20 (which represent 20% of database importance dimp(FDB)),
then G={Amy, Don} is significant because its significance value sig(G)≈0.26 ≥
0.20=minSig.

Example 6. Recall from Example 5 that {Amy, Don} is a significant friend group
because sig({Amy, Don})≈0.26. Let us consider friend groups {Don} and {Amy}.
For {Don}, its significance value sig({Don})= 21+14+21+21+14

345 = 91
345 ≈ 0.26 ≥

0.20=minSig. However, sig({Amy}) = 8+4+20+8+4
345 = 44

345 ≈ 0.13 < 0.20=minSig.
In other words, although {Amy, Don} is a significant friend group, its subset
{Amy} is not a significant friend group. ��
As observed from Example 6, the significance of a friend group does not satisfy
the downward closure property (cf. support or frequency [1], which is down-
ward closed). This leads to a challenging problem when mining significant friend
groups from social networks. To address the issue, we define the following.

Definition 6. The containing list importance of a friend group G in FDB—
denoted as climp(G)—is the sum of importance of all lists in FDB that con-
tain G, i.e., climp(G) = dimp(FG

DB) =
∑

G⊆Lj∈FG
DB

limp(Lj).



184 C.K.-S. Leung and S.K. Tanbeer

Example 7. Recall that, if G={Amy, Don}, then FG
DB={L2, L3, L4} indicating

that Amy and Don appear as (common) friends of Gail (L2), Carl (L3), and
Helen (L4). Then, recall from Table 1 that the limp values for L2, L3 and L4 are
56, 52 and 68, respectively. Thus, climp(G) = 56+52+68 = 176.

Similarly, if G′={Amy}, then FG′
DB={L2, L3, L4, L5, L6} indicating that Amy

appears as a (common) friend of Gail (L2), Carl (L3), Helen (L4), Don (L5), and
Ed (L6). Thus, climp(G′) > climp(G) for G={Amy, Don}. This can be easily
verified that climp(G′)=176+33+30=239 as limp(L5)=33 and limp(L6)=30 in
Table 1. ��
Based on above definition, we observed that climp(G) ≤ climp(G′) where G′ ⊆
G. Hence, if G is a significant group, then G′ must be a significant group. In
other words, if G′ is not a significant group, then G cannot be a significant group.
Hence, we can maintain the downward closure property when significant friend
groups are mined based on climp(G) instead of dgimp(G). On the one hand,
an advantage of computing significance based on climp(G) is that we can take
advantage of the downward closure property. On the other hand, a drawback
is that we may generate some false positives, which can be removed with an
additional post-processing scan of FDB .

3 Construction and Mining of SF-Trees

In this section, we first propose a prefix tree based data structure to efficiently
capture the database content, and we then design a corresponding pattern-
growth based mining algorithm to discover significant friend groups from social
network database.

Our proposed tree structure is called Significant Friend Tree (SF-tree). It is
compact and easy to build. Each node in an SF-tree consists of (i) an item, and
(ii) climp (i.e., the sum of limp values of all lists that pass through or end at the
node). In addition, the last node of a list maintains the user information (i.e., p).
Note that, for any list, the information we maintain in all nodes of its path is
always the same (except the last node, which keeps the user information as well),
which makes the SF-tree compact. The key steps for the SF-tree construction
algorithm are presented below.

3.1 SF-Tree Construction

The SF-tree construction algorithm starts by scanning both the social network
database FDB and the confidence table once to capture the basic information
regarding users and their friend lists. With this scan, the algorithm calculates
dimp(FDB), climp and sig values of each group with a single friend. Then,
it removes friends with low climp values and sorts all the remaining friends
according to their climp values.

To demonstrate the SF-tree construction, let us consider FDB shown in Table 1
and the confidence table shown in Table 2 when mining with minSig=0.20. After



Mining Social Networks for Significant Friend Groups 185

Table 3. Significance and climp values of friends after the first DB scan

fi sig(fi) climp(fi) Remove? fi sig(fi) climp(fi) Remove?
Amy 0.13 239 No Fred 0.05 63 Yes
Bob 0.02 52 Yes Gail 0.16 139 No
Carl 0.03 45 Yes Helen 0.05 30 Yes
Don 0.26 282 No Ivy 0.03 61 Yes
Ed 0.13 176 No Jeff 0.13 141 No

the first scan of FDB , the sig and climp values of all single friends are calculated
(as shown in Table 3). Among the 10 friends, Bob, Carl, Fred, Helen and Ivy are
removed from the candidate set due to their low climp values. Afterwards, the
SF-tree is constructed in descending order of climp values. The H-table is then
created by arranging the remaining friends in descending order of their climp
values. Note that even though sig({Amy}), sig({Ed}), sig({Gail}) and sig({Jeff})
are all less than minSig, we avoid removing them from further consideration. The
reason is that their corresponding climp values are high, which indicates that
they may be significant to other friends.

With the second scan of FDB , an SF-tree is constructed in a similar fashion
as the FP-tree [5] by inserting each list of FDB. Before inserting a list into the
SF-tree, we remove all insignificant friends from the list and adjust its limp value
to reflect the removal of insignificant friends. Note that friends with low climp
values would have no influence on the computation of significant friend groups.
Hence, removing these friends at this early stage helps reduce the number of false
positives in the long run. Let us continue with our example, when minSig=0.20,
we remove Ivy from L1 and adjust limp(L1) from 61 to 49 (i.e., limp(L1) −
fimp(Ivy, L1) = 61− (60× 0.20) = 49). The adjusted limp value for each list is
shown in the last column in Table 1.

For each list, the algorithm stores the new limp value in the tree. Fig. 1(a)
shows contents of the SF-tree after inserting L1 (for Jeff). Note that the last
node in the tree (i.e., “Gail:49”) maintains the user information (i.e., p=Jeff)
of the list. L2 in FDB is then inserted with limp(L2) = 56 (ref. Fig. 1(b)).
Since L1 and L2 share a common prefix (i.e., “Don”), the algorithm increases
the climp value for nodes in the common prefix (i.e., “Don”) from limp(L1)=49
to limp(L1)+limp(L2)=105 by adding the value of limp(L2). Nodes in the re-
maining part of L2 carry the value of limp(L2). Since the second list is for Gail,

Don:49

Gail:49
(Jeff)

H-table

Don:252
Amy:197

Ed:168

Gail:109

Amy:29
(Ed)

Gail:25

Gail:84 Amy:168

Ed:168
(Helen)

Jeff:100

Gail:49
(Jeff)

Amy:56

Ed:56

Jeff:56
(Gail)

Jeff:125
Jeff:25

(Don)

Don:105

(Jeff, Amy)

(Gail, Carl)

Don:252

(a) (b) (c)
Fig. 1. SF-trees capturing (a) L1, (b) L1 and L2, and (c) L1–L7 in FDB in Table 1
when minSig=0.20



186 C.K.-S. Leung and S.K. Tanbeer

the last node in the path stores such user information (i.e., “Gail”) as shown
in Fig. 1(b). Other lists can be inserted in a similar fashion. Fig. 1(c) shows
contents of the SF-tree after inserting all seven lists in FDB .

To facilitate a fast tree traversal, in addition to keeping the climp value for
each friend, the H-table also maintains node pointers to the first occurrence of
each friend in the SF-tree. Similar to that of an FP-tree [5], the SF-tree also
maintains horizontal node pointers for all nodes having the same friend’s name.
For simplicity, we do not show these pointers in the figure.

Based on the above description of SF-tree construction, the resulting SF-tree
possesses the following important property: The climp value in a node x in an
SF-tree maintains the sum of limp values of all the lists that pass through or
end at x for all the nodes in the path from x to the root.

Lemma 1. Given a friend database FDB and a user-specified minimum signif-
icance threshold minSig, the complete set of all significant friend groups can be
mined from an SF-tree built when minSig is applied to FDB .

Proof. An SF-tree keeps a set of significant friends in a list Lj for every list Lj ,
and the tree stores the accumulated climp value for each node. Hence, SF-tree
mining based on this climp value ensures that no significant friend group will be
missed. Moreover, an SF-tree is constructed by considering only the candidate
significant friends (based on their climp values) in a list. As such, it can be
assured that all potentially significant friend groups can be mined from the
SF-tree built for a specific minSig. ��
Based on Lemma 1, we can find all significant friend groups from the constructed
SF-tree using a pattern-growth mining algorithm, which will be discussed in the
next section.

3.2 SF-Tree Mining

Recall from Section 3.1 that a complete set of significant friend groups can be
found with the first scan of FDB . Hence, the SF-tree can be used for finding
potentially significant friend groups having number of friends more than one.
We follow the usual tree-based [5] pattern mining approach when mining our
SF-tree. The basic operations in SF-tree mining are the construction of the
projected databases for a potentially significant friend group and the recursive
mining of the further potentially significant friend extensions of that group.
It does so by examining all the conditional SF-trees consisting of the set of
potentially significant friend groups occurring with a suffix group. Hence, the
mining proceeds to recursively mine the SF-tree of decreasing size to generate
candidate significant friend groups without additional database scan.

To illustrate how to mine the SF-tree, let us revisit our example. Specifi-
cally, given the SF-tree in Fig. 1(c) that captures FDB shown in Table 1 with
minSig=0.20, the SF-tree mining starts with the construction of a projected
database for the last friend (i.e., Gail) in the H-table. Such a projected database
for Gail is constructed by taking all the branches with suffix Gail as shown in



Mining Social Networks for Significant Friend Groups 187

Amy:25

Don:84

Jeff:25

H-table
Amy:25Don:84

(Jeff, Amy)

Jeff:25
(Don)

(Jeff, Amy)
Don:84

Don:84

H-table H-table

Don:252

Amy:197

Ed:168

Jeff:125

Don:252
(Jeff, Amy)

Amy:168

Ed:168
(Helen)

Jeff:100
(Gail, Carl)

Jeff:25
(Don)

(Ed)
Amy:29

(a) (b) (c)

Fig. 2. Applying SF-tree mining to FDB in Table 1 when minSig=0.20: (a) Projected
DB for {Gail}, (b) Conditional DB for {Gail}, and (c) SF-tree after projecting Gail

Table 4. Significant friend groups

Candidate group:climp(G) Friends of ... dgimp(G) sig(G) Significant?
{Gail, Don}:84 {Jeff, Amy} 84 0.24 Yes
{Jeff, Ed}:100 {Gail, Carl} 53 0.15 No
{Jeff, Ed, Amy}:100 {Gail, Carl} 65 0.19 No
{Jeff, Ed, Amy, Don}:100 {Gail, Carl} 100 0.29 Yes
{Jeff, Ed, Don}:100 {Gail, Carl} 88 0.26 Yes
{Jeff, Amy}:125 {Gail, Carl, Don} 65 0.19 No
{Jeff, Amy, Don}:100 {Gail, Carl} 82 0.24 Yes
{Jeff, Don}:100 {Gail, Carl} 70 0.20 Yes
{Ed, Amy}: 168 {Gail, Carl, Helen} 77 0.22 Yes
{Ed, Amy, Don}:168 {Gail, Carl, Helen} 133 0.39 Yes
{Ed, Don}:168 {Gail, Carl, Helen} 103 0.30 Yes
{Amy, Don}:168 {Gail, Carl, Helen} 88 0.26 Yes

Fig. 2(a). The table shows the sum of climp values of all friends that co-occur
with {Gail}. Based on this value for each friend in the SF-tree, we can find the
list of friends in the projected database of {Gail} that may generate potentially
significant friend group with {Gail}. For example, climp(Don) in the projected
database of {Gail} is at least minSig, while climp values for other friends (i.e.,
Amy and Jeff) are less than minSig. Hence, we can safely remove Amy and Jeff
from the projected database of {Gail} and construct the conditional database
for {Gail}, as shown in Fig. 2(b).

The potentially significant friend groups are generated from the correspond-
ing conditional databases. For example, the set of potentially significant friend
groups with {Gail} is generated as {Gail, Don}:84 from the conditional database
of {Gail} in Fig. 2(b), where 84 indicates the climp value of the group. Along
with the potentially significant friend group, we also keep the user information
for the group (i.e., {Jeff, Amy}) in the mining result.

After creating the projected database, the original SF-tree is adjusted by
pushing the user information at the node up to its parent. For example, the user
information of the node “Gail:84” (i.e., Jeff, Amy) and the node “Gail:25” (i.e.,
Don) are pushed to their respective parent nodes, as shown in Fig. 2(c). Such
operation enables us to obtain the correct user information for any node in the
SF-tree during the whole mining phase.

Further extension of the potentially significant friend group {Don, Gail} is
mined by creating a projected database for {Gail, Don} from the conditional



188 C.K.-S. Leung and S.K. Tanbeer

database of {Gail}. In our example, the projected database for {Gail, Don} is
empty, which indicates that no further candidate significant friend group will
be generated from {Gail}’s conditional database. Hence, mining for {Gail} is
terminated. Mining for the remaining friends in the H-table is carried out in a
similar fashion. The set of all candidate significant friend groups generated by
mining the SF-tree is shown in Table 4. With another database scan, we eliminate
all the non-significant friend groups from the set of candidate significant friend
groups.

4 Experimental Results

In this section, we evaluated different aspects (e.g., the number of generated
candidate groups, runtimes, and scalability) of SF-trees in mining significant
friend groups from social media. To the best of our knowledge, SF-tree mining is
the first approach to mine significant friend groups from social media databases.
However, as the mining of high utility patterns [18] can be considered to be
relevant to our mining of significant friend groups, we compared our SF-tree
mining with three existing high utility pattern mining algorithms (e.g., Two
Phase [11], FUM and DCG+ [9]). All programs were written in Microsoft Visual
C++ 6.0 and run with Windows XP operating system on a 2.13 GHz CPU
with 2GB main memory. There are some basic differences among our proposed
SF-tree mining, Two Phase, FUM, and DCG+. First, the three existing high
utility mining algorithms are all Apriori-based [1], i.e., they use the levelwise
candidate generation-and-test paradigm. They require N scans of FDB (where
N is the maximum size of high utility patterns) and a high computation cost
for generating the candidates. In contrast, our SF-tree mining explores the tree-
based pattern-growth mining technique, which allows us to mine the complete
set of significant friend groups with three scans of FDB without using the level-
wise candidate generation-and-test paradigm. Second, unlike our SF-tree, the
high utility mining algorithms do not maintain the user information in their
respective data structure, which restricts them from providing the knowledge of
association between significant friend groups and others.

Since the three high utility pattern mining algorithms were not designed
for social network mining, we used the datasets that are mostly used in fre-
quent pattern mining domain for fair comparison. In these datasets that are
available at the Frequent Itemset Mining Implementation dataset repository
(http://fimi.cs.helsinki.fi/data), each transaction consists of a unique
transaction ID and a set of items (which is similar to a list of friends described

Table 5. Characteristics of datasets

Dataset Type #transactions #items Max trans. len. Avg trans. len.
Mushroom Dense 8124 119 23 23
Retail Sparse 88162 16470 76 10.31
Kosarak Sparse 990002 41270 2498 8.1



Mining Social Networks for Significant Friend Groups 189

in this paper). Table 5 shows the characteristics (e.g., dense vs. sparse, large vs.
small dataset, long vs. short transactions) of these datasets. For example, Mush-
room is a dense dataset with many long frequent patterns. We use this dataset
to demonstrate the type of social media data with fewer number of people but
long/large groups in each person’s list. Both Retail and Kosarak are sparse and
very large datasets (in terms of number of transactions and domain items) with
a combination of long and short transactions. Hence, they may correspond to
scenarios when a very large number of individuals use a social network and/or
when the connectivity between a user and their friends in a social network vary
a lot. For all these datasets, we mapped transaction IDs into user information,
sets of items into friend groups in every list, and transactions into friend lists. In
addition, to represent wt(fi, Lj), we associated a random number to each item
in a transaction. We also generated random numbers as the confidence values
of friends in FDB . As ongoing work, we plan to conduct additional experiments
using social network data.

4.1 Candidate Significant Friend Group Generation

We compared the number of candidate significant friend groups (i.e., false pos-
itives) generated by our SF-tree mining with the three existing algorithms over
different datasets by varying minSig values. As shown in Fig. 3, the number of
candidates increased when lowering the value of minSig for all datasets and al-
gorithms. However, SF-tree outperformed the other three algorithms as SF-tree
generated significantly fewer candidates. The reason was that, for dense datasets
(e.g.,Mushroom), there is a very high probability for each friend to occur in every
list, which increases the number of potential groups when applying the candidate
generation-and-test paradigm. Hence, the three high utility mining algorithms
generated comparatively large number of candidates. Conversely, sparse datasets
(e.g., Retail) contain too many individual friends in many transactions, which
further increases the number of candidate groups for the three high utility min-
ing algorithms. In contrast, as SF-tree uses tree-based pattern-growth mining,
it avoids generating candidates in dense or sparse datasets.

Fig. 3. The number of candidates (i.e, false positives)



190 C.K.-S. Leung and S.K. Tanbeer

Fig. 4. Runtime

4.2 Runtimes

We measured runtimes of SF-tree and the three high utility mining algorithms.
The reported runtimes for SF-tree include times for tree construction (i.e., two
scans of FDB), mining, and candidate pruning (i.e., an additional scan of FDB);
the reported runtimes for the other three algorithms include times for multiple
database scans for candidate generation-and-test.

The number of generated candidates (which increased with the decrease of
minSig) directly influences the runtimes for all algorithms. The more the gen-
erated candidates, the longer were the runtimes. As shown in Fig. 4, SF-tree
performed better than the other three algorithms for all datasets. For example,
the three algorithms generated very large numbers of candidates for Mushroom.
To handle a large number of friends and friend lists in Retail, the three algo-
rithms required substantially longer runtimes to scan FDB when compared to
SF-tree (which required three scans of FDB). Although the performance of all
algorithms were similar for higher minSig values (due to a very small number
of generated candidate friend groups), the gap was widened for lower minSig
values.

4.3 Scalability Test

To test the scalability of our SF-tree mining, we used very large datasets such as
Kosarak. Fig. 5 shows results on scalability tests of all four algorithms. Due to
substantially long runtime required to handle Kosarak for some low thresholds,
we did not obtain reportable results for DCG+. Moreover, although both Two
Phase and FUM completed the mining process for high minSig, they suffered
from some problem for low minSig. Hence, we did not plot their runtimes for low
thresholds. In contrast, our SF-tree mining completed the mining process and
showed linear scalability with high and low minSig thresholds. SF-tree gener-
ated significantly fewer candidate friend groups within very reasonable runtimes
due to early pruning of non-significant friends during the tree construction and
mining process. This demonstrated that SF-tree mining is scalable.



Mining Social Networks for Significant Friend Groups 191

Fig. 5. Scalability test

5 Conclusions

In this paper, we proposed a novel algorithm to mine social networks for sig-
nificant friend groups. Our social network mining algorithm first constructs a
significant friend-tree (SF-tree) to capture important information about link-
age between users in the social networks, and it then uses the SF-tree to find
significant friend groups among all friends of users in the social networks.

Acknowledgement. This project is partially supported by NSERC (Canada)
and University of Manitoba.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, pp. 487–499 (1994)

2. Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends
among friends in social networks. In: IEEE DASC (SCA) 2011, pp. 824–831 (2011)

3. Carrington, P.J., Scott, J., Wasserman, S. (eds.): Models and Methods in Social
Network Analysis. Cambridge University Press (2005)

4. Fan, W., Yeung, K.H.: Virus propagation modeling in Facebook. In: ASONAM
2010, pp. 331–335 (2010)

5. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD 2000, pp. 1–12 (2000)

6. Lee, W., Lee, J.J.-H., Song, J.J., Eom, C.S.-H.: Maximum reliable tree for social
network search. In: IEEE DASC (CSN) 2011, pp. 1243–1249 (2011)

7. Leung, C.K.-S., Carmichael, C.L.: Exploring social networks: a frequent pattern
visualization approach. In: IEEE SocialCom 2010, pp. 419–424 (2010)

8. Leung, C.K.-S., Carmichael, C.L., Teh, E.W.: Visual Analytics of Social Networks:
Mining and Visualizing Co-authorship Networks. In: Schmorrow, D.D., Fidopiastis,
C.M. (eds.) FAC 2011, HCII 2011. LNCS (LNAI), vol. 6780, pp. 335–345. Springer,
Heidelberg (2011)

9. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discov-
ering high utility itemsets. DKE 64(1), 198–217 (2008)

10. Liu, H., Yu, P.S., Agarwal, N., Suel, T.: Guest editors’ introduction: social com-
puting in the blogosphere. IEEE Internet Computing 14(2), 12–14 (2010)



192 C.K.-S. Leung and S.K. Tanbeer

11. Liu, Y., Liao, W.-k., Choudhary, A.K.: A Two-Phase Algorithm for Fast Discovery
of High Utility Itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

12. Obradovic, D., Pimenta, F., Dengel, A.: Mining shared social media links to support
clustering of blog articles. In: CASoN 2011, pp. 181–184 (2011)

13. Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks affi-
cionados: user classification in Twitter. In: ACM KDD 2011, pp. 430–438 (2011)

14. Tang, C., Ross, K., Saxena, N., Chen, R.: What’s in a Name: A Study of Names,
Gender Inference, and Gender Behavior in Facebook. In: Xu, J., Yu, G., Zhou,
S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 344–356.
Springer, Heidelberg (2011)

15. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press (1994)

16. Weng, J., Lim, E.-P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influ-
ential twitterers. In: ACM WSDM 2010, pp. 261–270 (2010)

17. Xu, G., Zong, Y., Pan, R., Dolog, P., Jin, P.: On Kernel Information Propaga-
tion for Tag Clustering in Social Annotation Systems. In: König, A., Dengel, A.,
Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS
(LNAI), vol. 6882, pp. 505–514. Springer, Heidelberg (2011)

18. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SDM 2004, pp. 482–486 (2004)

19. Ye, S., Wu, S.F.: Measuring Message Propagation and Social Influence on Twit-
ter.com. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS,
vol. 6430, pp. 216–231. Springer, Heidelberg (2010)

20. Yumoto, T., Sumiya, K.: Measuring Attention Intensity to Web Pages Based on
Specificity of Social Tags. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun,
L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 264–273. Springer,
Heidelberg (2010)


	Mining Social Networks for Significant Friend Groups

	Introduction
	Problem Definition
	Construction and Mining of SF-Trees
	SF-Tree Construction
	SF-Tree Mining

	Experimental Results
	Candidate Significant Friend Group Generation
	Runtimes
	Scalability Test

	Conclusions
	References





