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Abstract. We provide the first constructions of identity-based (injec-
tive) trapdoor functions. Furthermore, they are lossy. Constructions are
given both with pairings (DLIN) and lattices (LWE). Our lossy identity-
based trapdoor functions provide an automatic way to realize, in the
identity-based setting, many functionalities previously known only in the
public-key setting. In particular we obtain the first deterministic and effi-
ciently searchable IBE schemes and the first hedged IBE schemes, which
achieve best possible security in the face of bad randomness. Underlying
our constructs is a new definition, namely partial lossiness, that may be
of broader interest.

1 Introduction

A trapdoor function F specifies, for each public key pk , an injective, determin-
istic map Fpk that can be inverted given an associated secret key (trapdoor).
The most basic measure of security is one-wayness. The canonical example is
RSA [49].

Suppose there is an algorithm that generates a “fake” public key pk∗ such
that Fpk∗ is no longer injective but has image much smaller than its domain and,
moreover, given a public key, you can’t tell whether it is real or fake. Peikert
and Waters [47] call such a TDF lossy. Intuitively, Fpk is close to a function Fpk∗

that provides information-theoretic security. Lossiness implies one-wayness [47].
Lossy TDFs have quickly proven to be a powerful tool. Applications include

IND-CCA [47], deterministic [16], hedged [7] and selective-opening secure public-
key encryption [9]. Lossy TDFs can be constructed from DDH [47], QR [33],
DLIN [33], DBDH [23], LWE [47] and HPS (hash proof systems) [38]. RSA was
shown in [41] to be lossy under the Φ-hiding assumption of [25], leading to the
first proof of security of RSA-OAEP [13] without random oracles.
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Lossy TDFs and their benefits belong, so far, to the realm of public-key cryp-
tography. The purpose of this paper is to bring them to identity-based cryptogra-
phy, defining and constructing identity-basedTDFs (IB-TDFs), both one-way and
lossy. We see this as having two motivations, one more theoretical, the other more
applied, yet admittedly both foundational, as we discuss before moving further.

Theoretical angle. Trapdoor functions are the primitive that began pub-
lic key cryptography [30,49]. Public-key encryption was built from TDFs. (Via
hardcore bits.) Lossy TDFs enabled the first DDH and lattice (LWE) based
TDFs [47].

It is striking that identity-based cryptography developed entirely differently.
The first realizations of IBE [21,29,52] directly used randomization and were
neither underlain by, nor gave rise to, any IB-TDFs.

We ask whether this asymmetry between the public-key and identity-based
worlds (TDFs in one but not the other) is inherent. This seems to us a basic
question about the nature of identity-based cryptography that is worth asking
and answering.

Application angle. Is there anything here but idle curiosity? IBE has already
been achieved without IB-TDFs, so why go backwards to define and construct
the latter? The answer is that losssy IB-TDFs enable new applications that we
do not know how to get in other ways.

Stepping back, identity-based cryptography [53] offers several advantages over
its public-key counterpart. Key management is simplified because an entity’s
identity functions as their public key. Key revocation issues that plague PKI can
be handled in alternative ways, for example by using identity+date as the key
under which to encrypt to identity [21]. There is thus good motivation to go be-
yond basics like IBE [21,29,52,17,18,55,34] and identity-based signatures [11,31]
to provide identity-based counterparts of other public-key primitives.

Furthermore we would like to do this in a systematic rather than ad hoc way,
leading us to seek tools that enable the transfer of multiple functionalities in
relatively blackbox ways. The applications of lossiness in the public-key realm
suggest that lossy IBTDFs will be such a tool also in the identity-based realm.
As evidence we apply them to achieve identity-based deterministic encryption
and identity-based hedged encryption. The first, the counterpart of deterministic
public-key encryption [6,16], allows efficiently searchable identity-based encryp-
tion of database entries while maintaining the maximal possible privacy, bringing
the key-management benefits of the identity-based setting to this application.
The second, counterpart of hedged symmetric and public-key encryption [50,7],
makes IBE as resistant as possible in the face of low-quality randomness, which
is important given the widespread deployment of IBE and the real danger of bad-
randomness based attacks evidenced by the ones on the Sony Playstation and
Debian Linux. We hope that our framework will facilitate further such transfers.

We clarify that the solutions we obtain are not practical but they show that
the security goals can be achieved in principle, which was not at all clear prior
to our work. Allowed random oracles, we can give solutions that are much more
efficient and even practical.
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Contributions in brief. We define IB-TDFs and two associated security no-
tions, one-wayness and lossiness, showing that the second implies the first.

The first wave of IBE schemes was from pairings [21,52,17,18,55,54] but an-
other is now emerging from lattices [34,28,2,3]. We aim accordingly to reach our
ends with either route and do so successfully. We provide lossy IB-TDFs from a
standard pairings assumption, namely the Decision Linear (DLIN) assumption
of [19]. We also provide IB-TDFs based on Learning with Errors (LWE) [48],
whose hardness follows from the worst-case hardness of certain lattice-related
problems [48,46]. (The same assumption underlies lattice-based IBE [34,28,2,3]
and public-key lossy TDFs [47].) None of these results relies on random oracles.

Existing work brought us closer to the door with lattices, where one-way
IB-TDFs can be built by combining ideas from [34,28,2]. Based on techniques
from [46,42] we show how to make them lossy. With pairings, however it was
unclear how to even get a one-way IB-TDF, let alone one that is lossy. We adapt
the matrix-based framework of [47] so that by populating matrix entries with
ciphertexts of a very special kind of anonymous IBE scheme it becomes possi-
ble to implicitly specify per-identity matrices defining the function. No existing
anonymous IBE has the properties we need but we build one that does based
on methods of [22]. Our results with pairings are stronger because the lossy
branches are universal hash functions which is important for applications.

Public-key lossy TDFs exist aplenty and IBE schemes do as well. It is natural
to think one could easily combine them to get IB-TDFs. We have found no
simple way to do this. Ultimately we do draw from both sources for techniques
but our approaches are intrusive. Let us now look at our contributions in more
detail.

New primitives and definitions. Public parameters pars and an associated
master secret key having been chosen, an IB-TDF F associates to any identity
a map Fpars,id , again injective and deterministic, inversion being possible given
a secret key derivable from id via the master secret key. One-wayness means
Fpars,id∗ is hard to invert on random inputs for an adversary-specified challenge
identity id∗. Importantly, as in IBE, this must hold even when the adversary
may obtain, via a key-derivation oracle, a decryption key for any non-challenge
identity of its choice [21]. This key-derivation capability contributes significantly
to the difficulty of realizing the primitive. As with IBE, security may be selective
(the adversary must specify id∗ before seeing pars) [27] or adaptive (no such
restriction) [21].

The most direct analog of the definition of lossiness from the public-key set-
ting would ask that there be a way to generate “fake” parameters pars∗, indis-
tinguishable from the real ones, such that Fpars∗,id∗ is lossy (has image smaller
than domain). In the selective setting, the fake parameter generation algorithm
Pg∗ can take id∗ as input, making the goal achievable at least in principle, but
in the adaptive setting it is impossible to achieve, since, with id∗ not known in
advance, Pg∗ is forced to make Fpars∗,id lossy for all id , something the adversary
can immediately detect using its key-derivation oracle.
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ID-LS-A ID-OW-A

ID-LS-S ID-OW-S

PK-LS PK-OW
[47]

Primitive δ Achieved under

ID-LS-A 1/poly DLIN, LWE

ID-LS-S 1 DLIN, LWE

Fig. 1. Types of TDFs based on setting (PK=Public-key, ID=identity-based), security
(OW=one-way, LS=loss) and whether the latter is selective (S) or adaptive (A). An
arrow A → B in the diagram on the left means that TDF of type B is implied by
(can be constructed from) TDF of type A. Boxed TDFs are the ones we define and
construct. The table on the right shows the δ for which we prove δ-lossiness and the
assumptions used. In both the S and A settings the δ we achieve is best possible and
suffices for applications.

We ask whether there is an adaptation of the definition of lossiness that is
achievable in the adaptive case while sufficing for applications. Our answer is
a definition of δ-lossiness, a metric of partial lossiness parameterized by the
probability δ that Fpars∗,id∗ is lossy. The definition is unusual, involving an
adversary advantage that is the difference, not of two probabilities as is common
in cryptographic metrics, but of two differently weighted ones. We will achieve
selective lossiness with degree δ = 1, but in the adaptive case the best possible is
degree 1/ poly with the polynomial depending on the number of key-derivation
queries of the adversary, and this what we will achieve. We show that lossiness
with degree δ implies one-wayness, in both the selective and adaptive settings,
as long as δ is at least 1/ poly.

In summary, in the identity-based setting (ID) there are two notions of secu-
rity, one-wayness (OW) and lossiness (LS), each of which could be selective (S)
or adaptive (A), giving rise to four kinds of IB-TDFs. The left side of Fig. 1
shows how they relate to each other and to the two kinds of TDFs —OW and
LS— in the public-key setting (PK). The un-annotated implications are trivial,
ID-LS-A→ ID-LS-S meaning that δ-lossiness of the first type implies δ-lossiness
of the other for all δ. It is not however via this implication that we achieve
ID-LS-S, for, as the table shows, we achieve it with degree higher than ID-LS-A.

Closer Look. One’s first attempt may be to build an IB-TDF from an IBE
scheme. In the random oracle (RO) model, this can be done by a method of [8],
namely specify the coins for the IBE scheme by hashing the message with the
RO. It is entirely unclear how to turn this into a standard model construct and
it is also unclear how to make it lossy.

To build ID-TDFs from lattices we consider starting from the public-key TDF
of [47] (which is already lossy) and trying to make it identity-based, but it is
unclear how to do this. However, Gentry, Peikert and Vaikuntanathan (GPV) [34]
showed that the function gA : Bn+m

α → Z
n
q defined by gA(x, e) = AT · x + e is
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a TDF for appropriate choices of the domain and parameters, where matrix
A ∈ Z

n×m
q is a uniformly random public key which is constructed together

with a trapdoor as for example in [4,5,43]. We make this function identity-
based using the trapdoor extension and delegation methods introduced by Cash,
Hofheinz, Kiltz and Peikert [28], and improved in efficiency by Agrawal, Boneh
and Boyen [2] and Micciancio and Peikert [43]. Finally, we obtain a lossy IB-TDF
by showing that this construction is already lossy.

With pairings there is no immediate way to get an IB-TDF that is even one-
way, let alone lossy. We aim for the latter, there being no obviously simpler way
to get the former. In the selective case we need to ensure that the function is
lossy on the challenge identity id∗ yet injective on others, this setup being in-
distinguishable from the one where the function is always injective. Whereas the
matrix diagonals in the construction of [47] consisted of ElGamal ciphertexts, in
ours they are ciphertexts for identity id∗ under an anonymous IBE scheme, the
salient property being that the “anonymity” property should hide whether the
underlying ciphertext is to id∗ or is a random group element. Existing anony-
mous IBE schemes, in particular that of Boyen and Waters (BW) [22], are not
conducive and we create a new one. A side benefit is a new anonymous IBE
scheme with ciphertexts and private keys having one less group element than
BW but still proven secure under DLIN.

A method of Boneh and Boyen [17] can be applied to turn selective into
adaptive security but the reduction incurs a factor that is equal to the size of
the identity space and thus ultimately exponential in the security parameter, so
that adaptive security according to the standard asymptotic convention would
not have been achieved. To achieve it, we want to be able to “program” the public
parameters so that they will be lossy on about a 1/Q fraction of “random-ish”
identities, where Q is the number of key-derivation queries made by the attacker.
Ideally, with probability around 1/Q all of (a successful) attacker’s queries will
land outside the lossy identity-space, but the challenge identity will land inside
it so that we achieve δ-lossiness with δ around 1/Q.

This sounds similar to the approach of Waters [55] for achieving adaptively
secure IBE but there are some important distinctions, most notably that the
technique of Waters is information-theoretic while ours is of necessity computa-
tional, relying on the DLIN assumption. In the reduction used by Waters the
partitioning of the identities into two classes was based solely on the reduction
algorithm’s internal view of the public parameters; the parameters themselves
were distributed independently of this partitioning and thus the adversary view
was the same as in a normal setup. In contrast, the partitioning in our scheme
will actually directly affect the parameters and how the system behaves. This is
why we must rely on a computational assumption to show that the partitioning
in undetectable. A key novel feature of our construction is the introduction of
a system that will produce lossy public parameters for about a 1/Q fraction of
the identities.

Applications. Deterministic PKE is a TDF providing the best possible privacy
subject to being deterministic, a notion called PRIV that is much stronger
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than one-wayness [6]. An application is encryption of database records in a way
that permits logarithmic-time search, improving upon the linear-time search
of PEKS [20]. Boldyreva, Fehr and O’Neill [16] show that lossy TDFs whose
lossy branch is a universal hash (called universal lossy TDFs) achieve (via
the LHL [15,37]) PRIV-security for message sequences which are blocksources,
meaning each message has some min-entropy even given the previous ones,
which remains the best result without ROs. Deterministic IBE and the resulting
efficiently-searchable IBE are attractive due to the key-management benefits.
We can achieve them because our DLIN-based lossy IB-TDFs are also universal
lossy. (This is not true, so far, for our LWE based IB-TDFs.)

To provide IND-CPA security in practice, IBE relies crucially on the availabil-
ity of fresh, high-quality randomness. This is fine in theory but in practice RNGs
(random number generators) fail due to poor entropy gathering or bugs, leading
to prominent security breaches [35,36,24,45,44,1,56,32]. Expecting systems to do
a better job is unrealistic. Hedged encryption [7] takes poor randomness as a
fact of life and aims to deliver best possible security in the face of it, providing
privacy as long as the message together with the “randomness” have some min-
entropy. Hedged PKE was achieved in [7] by combining IND-CPA PKE with
universal lossy TDFs. We can adapt this to IBE and combine existing (random-
ized) IBE schemes with our DLIN-based universal lossy IB-TDFs to achieved
hedged IBE. This is attractive given the widespread use of IBE in practice and
the real danger of randomness failures.

Both applications are for the case of selective security. It remains open to
achieve them in the adaptive case.

Related Work. A number of papers have studied security notions of trapdoor
functions beyond traditional one-wayness. Besides lossiness [47] there is Rosen
and Segev’s notion of correlated-product security [51], and Canetti and Dak-
douk’s extractable trapdoor functions [26]. The notion of adaptive one-wayness
for tag-based trapdoor functions from Kiltz, Mohassel and O’Neill [40] can be
seen as the special case of our selective IB-TDF in which the adversary is denied
key-derivation queries. Security in the face of these queries was one of the main
difficulties we faced in realizing IB-TDFs.

Organization. We define IB-TDFs, one-wayness and δ-lossiness in Section 2.
We also define extended IB-TDFs, an abstraction that will allow us to unify and
shorten the analyses for the selective and adaptive security cases. In [10] we show
that δ-lossiness implies one-wayness as long as δ is at least 1/ poly. This allows
us to focus on achieving δ-lossiness. In Section 3 we provide our pairing-based
schemes and in [10] our lattice-based schemes. In [10] we sketch how to apply
δ-lossy IB-TDFs to achieve deterministic and hedged IBE.

2 Definitions

Notation and conventions. If x is a vector then |x| denotes the number of
its coordiates and x[i] denotes its i-th coordinate. Coordinates may be numbered
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proc Initialize(id) // OWF,RealF

(pars ,msk)
$← F.Pg ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // OWF,RealF

IS ← IS ∪ {id}
dk ← F.Kg(pars ,msk , id)
Return dk

proc Ch(id) // OWF

id∗ ← id ; x
$← InSp

y ← F.Ev(pars , id∗, x)
Return y

proc Finalize(x′) // OWF

Return ((x′ = x) and (id∗ �∈ IS))

proc Initialize(id) // LossyF,LF,�

(pars ,msk)
$← LF.Pg(id) ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // LossyF,LF,�

IS ← IS ∪ {id}
dk ← LF.Kg(pars ,msk , id)
Return dk

proc Ch(id) // RealF,LossyF,LF,�

id∗ ← id

proc Finalize(d′) // RealF

Return ((d′ = 1) and (id∗ �∈ IS))

proc Finalize(d′) // LossyF,LF,�

If (λ(F.Ev(pars , id∗, ·)) < �) then return false
Return ((d′ = 1) and (id∗ �∈ IS)

Fig. 2. Games defining one-wayness and δ-lossiness of IBTDF F with sibling LF

1, . . . , |x| or 0, . . . , |x| − 1 as convenient. A string x is identified with a vector
over {0, 1} so that |x| denotes its length and x[i] its i-th bit. The empty string
is denoted ε. If S is a set then |S| denotes its size, Sa denotes the set of a-
vectors over S, Sa×b denotes the set of a by b matrices with entries in S, and
so on. The (i, j)-th entry of a 2 dimensional matrix M is denoted M[i, j] and
the (i, j, k)-th entry of a 3 dimensional matrix M is denoted M[i, j, k]. If M is
a n by μ matrix then M[j, ·] denotes the vector (M[j, 1], . . . ,M[j, μ]). If a =
(a1, . . . , an) then (a1, . . . , an)← a means we parse a as shown. Unless otherwise

indicated, an algorithm may be randomized. By y
$← A(x1, x2, . . .) we denote the

operation of running A on inputs x1, x2, . . . and fresh coins and letting y denote
the output. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on
inputs x1, x2, . . .. The (Kronecker) delta function Δ is defined by Δ(a, b) = 1
if a = b and 0 otherwise. If a, b are equal-length vectors of reals then 〈a, b〉 =
a[1]b[1] + · · ·+ a[|a|]b[|b|] denotes their inner product.
Games. A game —look at Fig. 2 for an example— has an Initialize procedure,
procedures to respond to adversary oracle queries, and a Finalize procedure.
To execute a game G is executed with an adversary A means to run the adver-
sary and answer its oracle queries by the corresponding procedures of G. The
adversary must make exactly one query to Initialize, this being its first oracle
query. (This means the adversary can give Initialize an input, an extension of
the usual convention [14].) It must make exactly one query to Finalize, this
being its last oracle query. The reply to this query, denoted GA, is called the
output of the game, and we let “GA” denote the event that this game output
takes value true. Boolean flags are assumed initialized to false.

IBTDFs. An identity-based trapdoor function (IBTDF) is a tuple F = (F.Pg,
F.Kg,F.Ev,F.Ev−1) of algorithms with associated input space InSp and identity
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space IDSp. The parameter generation algorithm F.Pg takes no input and returns
common parameters pars and a master secret key msk . On input pars ,msk , id ,
the key generation algorithm F.Kg produces a decryption key dk for identity id .
For any pars and id ∈ IDSp, the deterministic evaluation algorithm F.Ev defines
a function F.Ev(pars , id , ·) with domain InSp. We require correct inversion: For
any pars , any id ∈ IDSp and any dk ∈ [F.Kg(pars , id)], the deterministic inver-
sion algorithm F.Ev−1 defines a function that is the inverse of F.Ev(pars , id , ·),
meaning F.Ev−1(pars , id , dk ,F.Ev(pars , id , x)) = x for all x ∈ InSp.

E-IBTDF. To unify and shorten the selective and adaptive cases of our analyses
it is useful to define and specify a more general primitive. An extended IBTDF
(E-IBTDF) E = (E.Pg,E.Kg,E.Ev,E.Ev−1) consists of four algorithms that are
just like the ones for an IBTDF except that F.Pg takes an additional auxiliary
input from an auxiliary input space AxSp. Fixing a particular auxiliary input
aux ∈ AxSp for F.Pg results in an IBTDF scheme that we denote E(aux) and
call the IBTDF induced by aux . Not all these induced schemes need, however,
satisfy the correct inversion requirement. If the one induced by aux does, we say
that aux grants invertibility. Looking ahead we will build an E-IBTDF and then
obtain our IBTDF as the one induced by a particular auxiliary input, the other
induced schemes being the basis of the siblings and being used in the proof.

One-wayness. One-wayness of IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) is defined
via game OWF of Fig. 2. The adversary is allowed only one query to its challenge
oracle Ch. The advantage of such an adversary I is Advow

F (I) = Pr
[
OWI

F

]
.

Selective versus adaptive ID. We are interested in both these variants for
all the notions we consider. To avoid a proliferation of similar definitions, we
capture the variants instead via different adversary classes relative to the same
game. To exemplify, consider game OWF of Fig. 2. Say that an adversary A is
selective-id if the identity id in its queries to Initialize and Ch is always the
same, and say it is adaptive-id if this is not necessarily true. Selective-id security
for one-wayness is thus captured by restricting attention to selective-id adver-
saries and full (adaptive-id) security by allowing adaptive-id adversaries. Now,
adopt the same definitions of selective and adaptive adversaries relative to any
game that provides procedures called Initialize and Ch, regardless of how these
procedures operate. In this way, other notions we will introduce, including par-
tial lossiness defined via games also in Fig. 2, will automatically have selective-id
and adaptive-id security versions.

Partial lossiness. We first provide the formal definitions and later explain
them and their relation to standard definitions. If f is a function with domain a
(non-empty) set Dom(f) then its image is Im(f) = { f(x) : x ∈ Dom(f) }. We
define the lossiness λ(f) of f via λ(f) = lg(|Dom(f)|/|Im(f)|) or equivalently
|Im(f)| = |Dom(f)| · 2−λ(f). We say that f is �-lossy if λ(f) ≥ �. Let IBTDF
F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be an IBTDF with associated input space InSp
and identity space IDSp. A sibling for F is an E-IBTDF LF = (LF.Pg, LF.Kg,F.Ev,
F.Ev−1) whose evaluation and inversion algorithms, as the notation indicates, are
those of F and whose auxiliary input space is IDSp. Algorithm LF.Pg will use
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this input in the selective-id case and ignore it in the adaptive-id case. Consider
games RealF and LossyF,LF,� of Fig. 2. The first uses the real parameter and key-
generation algorithms while the second uses the sibling ones. A los-adversaryA is
allowed just one Ch query, and the games do no more than record the challenge
identity id∗. The advantage Advδ-los

F,LF,�(A) = δ · Pr[RealAF ] − Pr[LossyAF,LF,�] of
the adversary is not, as usual, the difference in the probabilities that the games
return true, but is instead parameterized by a probability δ ∈ [0, 1].

Discussion. The PW [47] notion of lossy TDFs in the public-key setting asks
for an alternative “sibling” key-generation algorithm, producing a public key but
no secret key, such that two conditions hold. The first, which is combinatorial,
asks that the functions defined by sibling keys are lossy. The second, which is
computational, asks that real and sibling keys are indistinguishable. The first
change for the IB setting is that one needs an alternative parameter generation
algorithm which produces not only pars but a master secret key msk , and an
alternative key-generation algorithm that, based on msk , can issue decryption
keys to users. Now we would like to ask that the function F.Ev(pars , id∗, ·) be
lossy on the challenge identity id∗ when pars is generated via LF.Pg, but, in the
adaptive-id case, we do not know id∗ in advance. Thus the requirement is made
via the games.

We would like to define the advantage normally, meaning with δ = 1, but the
resulting notion is not achievable in the adaptive-id case. (This can be shown
via attack.) With the relaxation, a low (close to zero) advantage means that
the probability that the adversary finds a lossy identity id∗ and then outputs 1
is less than the probability that it merely outputs 1 by a factor not much less
than δ. Roughly, it means that a δ fraction of identities are lossy. The advantage
represents the computational loss while δ represents a necessary information-
theortic loss.

IBE. Recall that an IBE scheme IBE = (IBE.Pg, IBE.Kg, IBE.Enc, IBE.Dec) is a
tuple of algorithms with associated message space InSp and identity space IDSp.
The parameter generation algorithm IBE.Pg takes no input and returns common
parameters pars and a master secret key msk . On input pars ,msk , id , the key
generation algorithm IBE.Kg produces a decryption key dk for identity id . On
input pars , id ∈ IDSp and a messageM ∈ InSp the encryption algorithm IBE.Enc
returns a ciphertext. The decryption algorithm IBE.Dec is deterministic. The
scheme has decryption error ε if Pr[IBE.Dec(pars , id , dk , IBE.Enc(pars , id ,M)) �=
M ] ≤ ε for all pars , all id ∈ IDSp, all dk ∈ [F.Kg(pars , id)] and all M ∈ InSp.
We say that IBE is deterministic if IBE.Enc is deterministic. A deterministic IBE
scheme is identical to an IBTDF.

3 IB-TDFs from Pairings

In [10] we show that δ-lossiness implies one-wayness in both the selective and
adaptive cases. We now show how to achieve δ-lossiness using pairings.
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Setup. Throughout we fix a bilinear map e: G × G → GT where G,GT are
groups of prime order p. By 1,1T we denote the identity elements of G,GT ,
respectively. By G

∗ = G − {1} we denote the set of generators of G. The ad-
vantage of a dlin-adversary B is Advdlin(B) = 2Pr[DLINB] − 1, where game
DLIN is as follows. The Initialize procedure picks g, ĝ at random from G

∗, s
at random from Z

∗
p, ŝ at random from Zp and X at random from G. It picks

a random bit b. If b = 1 it lets T ← Xs+ŝ and otherwise picks T at random
from G. It returns (g, ĝ, gs, ĝŝ, X, T ) to the adversary B. The adversary out-
puts a bit b′ and Finalize, given b′ returns true if b = b′ and false otherwise.
For integer μ ≥ 1, vectors U ∈ G

μ+1 and y ∈ Z
μ+1
p , and vector id ∈ Z

μ
p

we let id = (1, id [1], . . . , id [μ]) ∈ Z
μ+1
p and H(U, id) =

∏μ
k=0U[k]id [k].

H is the BB hash function [17] when μ = 1, and the Waters’ one [22] when
IDSp = {0, 1}μ and an id ∈ IDSp is viewed as a μ-vector over Zp. We also let
f(y, id) =

∑μ
k=0y[k]id [k] and f(y, id ) = f(y, id) mod p.

Overview. In the Peikert-Waters [47] design, the matrix entries are ciphertexts
of an underlying homomorphic encryption scheme, and the function output is
a vector of ciphertexts of the same scheme. We begin by presenting an IBE
scheme, that we call the basic IBE scheme, such that the function outputs of
our eventual IB-TDF will be a vector of ciphertexts of this IBE scheme. Towards
building the IB-TDF, the first difficulty we run into in setting up the matrix is
that ciphertexts depend on the identity and we cannot have a different matrix
for every identity. Thus, our approach is more intrusive. We will have many
matrices which contain certain “atoms” from which, given an identity, one can
reconstruct ciphertexts of the IBE scheme. The result of this intrusive approach
is that security of the IB-TDF relies on more than security of the base IBE
scheme. Our ciphertext pseudorandomness lemma (Lemma 1) shows something
stronger, namely that even the atoms from which the ciphertexts are created
look random under DLIN. This will be used to establish Lemma 2, which moves
from the real to the lossy setup. The heart of the argument is the proofs of the
lemmas, which are in the appendices.

We introduce a general framework that allows us to treat both the selective-
id and adaptive-id cases in as unified a way as possible. We will first specify an
E-IBTDF. The selective-id and adaptive-id IB-TDFs are obtained via different
auxiliary inputs. Furthermore, the siblings used to prove lossiness also emanate
from this E-IBTDF. With this approach, the main lemmas become usable in
both the selective-id and adaptive-id cases with only minor adjustments for the
latter due to artifical aborts. This saves us from repeating similar arguments and
significantly compacts the proof.

Our basic IBE scheme. We associate to any integer μ ≥ 1 and any identity
space IDSp ⊆ Z

μ
p an IBE scheme IBE[μ, IDSp] that has message space {0, 1} and

algorithms as follows:

1. Parameters: Algorithm IBE[μ, IDSp].Pg lets g
$← G

∗ ; t $← Z
∗
p ; ĝ ← gt. It then

lets H, Ĥ
$← G ; U, Û

$← G
μ+1. It returns pars = (g, ĝ, H, Ĥ,U, Û) as the

public parameters and msk = t as the master secret key.
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2. Key generation:Given parameters (g, ĝ, H, Ĥ,U, Û), master secret t and iden-
tity id ∈ IDSp, algorithm IBE[μ, IDSp].Kg returns decryption key (D1, D2,

D3, D4) computed by letting r, r̂
$← Zp and setting

D1 ← H(U, id)tr ·Htr̂ ; D2 ← H(Û, id)r · Ĥ r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ, H, Ĥ,U, Û), identity id ∈ IDSp and
message M ∈ {0, 1}, algorithm IBE[μ, IDSp].Enc returns ciphertext (C1,

C2, C3, C4) computed as follows. If M = 0 then it lets s, ŝ
$← Zp and

C1 ← gs ; C2 ← ĝŝ ; C3 ← H(U, id)s · H(Û, id)ŝ ; C4 ← HsĤ ŝ. If M = 1 it

lets C1, C2, C3, C4
$← G.

4. Decryption: Given parameters (g, ĝ, H, Ĥ,U, Û), identity id ∈ IDSp, decryp-
tion key (D1, D2, D4, D4) for id and ciphertext (C1, C2, C3, C4), algorithm
IBE[μ, IDSp].Dec returns 0 if e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4) = 1T

and 1 otherwise.

This scheme has non-zero decryption error (at most 2/p) yet our IBTDF will
have zero inversion error. This scheme turns out to be IND-CPA+ANON-CPA
although we will not need this in what follows. Instead we will have to consider
a distinguishing game related to this IBE scheme and our IBTDF. In [10] we
give a (more natural) variant of IBE[μ, IDSp] that is more efficient and encrypts
strings rather than bits. The improved IBE scheme can still be proved IND-
CPA+ANON-CPA but it cannot be used for our purpose of building IB-TDFs.

Our E-IBTDF and IB-TDF. Our E-IBTDF E[n, μ, IDSp] is associated to any
integers n, μ ≥ 1 and any identity space IDSp ⊆ Z

μ
p . It has message space {0, 1}n

and auxiliary input space Z
μ+1
p , and the algorithms are as follows:

1. Parameters: Given auxiliary input y, algorithm E[n, μ, IDSp].Pg lets g
$←

G
∗ ; t $← Z

∗
p ; ĝ ← gt ; U

$← G
∗. It then lets H, Ĥ

$← G
n ; V, V̂

$← G
n×(μ+1)

and s
$← (Z∗

p)
n ; ŝ

$← Z
n
p . It returns pars = (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)

as the public parameters and msk = t as the master secret key where for
1 ≤ i, j ≤ n and 0 ≤ k ≤ μ:

G[i]← gs[i] ; Ĝ[i]← ĝŝ[i] ; J[i, j]← H[j]s[i]Ĥ[j]ŝ[i]

W[i, j, k]← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]y[k]Δ(i,j) ,

where we recall that Δ(i, j) = 1 if i = j and 0 otherwise is the Kronecker
Delta function.

2. Key generation: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), master

secret t and identity id ∈ IDSp, algorithm E[n, μ, IDSp].Kg returns decryption

key (D1,D2,D3,D4) where r
$← (Z∗

p)
n ; r̂

$← Z
n
p and for 1 ≤ i ≤ n

D1[i]← H(V[i, ·], id)tr[i] ·H[i]tr̂[i] ; D2[i]← H(V̂[i, ·], id)r[i] · Ĥ [i]r̂[i]

D3[i]← g−tr[i] ; D4[i]← g−tr̂[i] .
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3. Evaluate: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈
IDSp and input x ∈ {0, 1}n, algorithm E[n, μ, IDSp].Ev returns (C1, C2,C3,
C4) where for 1 ≤ j ≤ n

C1 ←
∏n

i=1G[i]x[i] ; C2 ←
∏n

i=1Ĝ[i]x[i]

C3[j]←
∏n

i=1

∏μ
k=0W[i, j, k]x[i]id[k] ; C4[j]←

∏n
i=1J[i, j]

x[i]

4. Invert:Givenparameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp,
decryption key (D1,D2,D3,D4) for id and output (ciphertext) (C1, C2,C3,
C4), algorithm E[n, μ, IDSp].Ev−1 returns x ∈ {0, 1}n where for 1 ≤ j ≤ n it
sets x[j] = 0 if e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = 1T

and 1 otherwise.

Invertibility. We observe that if parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)
were generated with auxiliary input y and (C1, C2,C3,C4) = E[n, μ, IDSp].Ev((g,
ĝ,G, Ĝ,J,W), id , x) then for 1 ≤ j ≤ n

C1 =
∏n

i=1g
s[i]x[i] = g〈s,x〉 (1)

C2 =
∏n

i=1ĝ
ŝ[i]x[i] = ĝ〈ŝ,x〉 (2)

C3[j] =
∏n

i=1

∏μ
k=0V[j, k]s[i]x[i]id [k]V̂[j, k]ŝ[i]x[i]id [k]U s[i]x[i]y[k]id[k]Δ(i,j)

=
∏n

i=1H(V[j, ·], id)s[i]x[i]H(V̂[j, ·], id)ŝ[i]x[i]U s[i]x[i]f(y,id)Δ(i,j)

= H(V[j, ·], id)〈s,x〉H(V̂[j, ·], id)〈ŝ,x〉U s[j]x[j]f(y,id) (3)

C4[j] =
∏n

i=1H[j]s[i]x[i]Ĥ[j]ŝ[i]x[i] = H[j]〈s,x〉Ĥ[j]〈ŝ,x〉 . (4)

Thus if x[j] = 0 then (C1, C2,C3[j],C4[j]) is an encryption, under our base
IBE scheme, of the message 0, with coins 〈s, x〉 mod p, 〈̂s, x〉 mod p, parame-
ters (g, ĝ,H[j], Ĥ[j],V[j, ·], V̂[j, ·]) and identity id . The inversion algorithm will
thus correctly recover x[j] = 0. On the other hand suppose x[j] = 1. Then
e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j])= e(U s[j]x[j]f(y,id),D3[j]).
Now suppose f(y, id) mod p �= 0. Then U s[j]x[j]f(y,id) �= 1 because we chose s[j]
to be non-zero modulo p and D3[j] �= 1 because we chose r[j] to be non-zero
modulo p. So the result of the pairing is never 1T , meaning the inversion algo-
rithm will again correctly recover x[j] = 1. We have established that auxiliary
input y grants invertibility, meaning induced IBTDF E[n, μ, IDSp](y) satisfies
the correct inversion condition, if f(y, id) mod p �= 0 for all id ∈ IDSp.

Our IBTDF. We associate to any integers n, μ ≥ 1 and any identity space
IDSp ⊆ Z

μ
p the IBTDF scheme induced by our E-IBTDF E[n, μ, IDSp] via aux-

iliary input y = (1, 0, . . . , 0) ∈ Z
μ+1
p , and denote this IBTDF scheme by F[n, μ,

IDSp]. This IBTDF satisfies the correct inversion requirement because f(y, id) =
id [0] = 1 �≡ 0 (mod p) for all id . We will show that this IBTDF is selective-id
secure when μ = 1 and IDSp = Zp, and adaptive-id secure when IDSp = {0, 1}μ.
In the first case, it is fully lossy (i.e. 1-lossy) and in the second it is δ-lossy for
appropriate δ. First we prove two technical lemmas that we will use in both
cases.
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proc Initialize(y) // ReC,RaC

(pars,msk)
$← IBE[μ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // ReC,RaC

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[μ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // ReC

s
$← Z

∗
p ; ŝ

$← Zp

G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , μ do

Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // RaC

G, Ĝ, S
$← G ; Z

$← G
μ+1

Return (G, Ĝ, S,Z)

proc Finalize(d′) // ReC,RaC

Return (d′ = 1)

Fig. 3. Games ReC (“Real Ciphertexts”) and RaC (“Random Ciphertexts”) associated
to IDSp ⊆ Z

μ
p

Ciphertext pseudorandomness lemma. Consider games ReC,RaC of Fig. 3
associated to some choice of IDSp ⊆ Z

μ
p . The adversary provides the Initialize

procedure with an auxiliary input y ∈ Z
μ+1
p . Parameters are generated as per our

base IBE scheme with the addition of U . The decryption key for id is computed
as per our base IBE scheme except that the games refuse to provide it when
f(y, id) = 0. The challenge oracle, however, does not return ciphertexts of our
IBE scheme. In game ReC, it returns group elements that resemble diagonal
entries of the matrices in the parameters of our E-IBTDF, and in game RaC it
returns random group elements. Notice that the challenge oracle does not take
an identity as input. (Indeed, it has no input.) As usual it must be invoked
exactly once. The following lemma says the games are indistinguishable under
DLIN. The proof is in [10].

Lemma 1. Let μ ≥ 1 be an integer and IDSp ⊆ Z
μ
p . Let P be an adversary.

Then there is an adversary B such that Pr
[
ReCP

] − Pr
[
RaCP

] ≤ (μ + 2) ·
Advdlin(B). The running time of B is that of P plus some overhead.

Real-to-lossy lemma. Consider games RL0,RLn of Fig. 4 associated to some
choice of n, μ, IDSp ⊆ Z

μ
p and auxiliary input generator Aux for E[n, μ, IDSp].

The latter is an algorithm that takes input an identity in IDSp and returns an
auxiliary input in Z

μ+1
p . Game RL0 obtains an auxiliary input y0 via Aux but

generates parameters exactly as E[n, μ, IDSp].Pg with the real auxiliary input y1.
The game will return true under the same condition as game Real but addition-
ally requiring that f(y0, id) �= 0 for all GetDK(id) queries and f(y0, id) = 0
for the Ch(id) query. Game RLn generates parameters with the auxiliary input
provided by Aux but is otherwise identical to game RL0. The following lemma
says it is hard to distinguish these games. We will apply this by defining Aux in
such a way that its output y0 results in a lossy setup. The proof of the following
is in [10].
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proc Initialize(id) // RL0

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk)
$← E[n, μ, IDSp].Pg(y1)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc Initialize(id) // RLn

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk)
$← E[n, μ, IDSp].Pg(y0)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc GetDK(id) // RL0,RLn

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, μ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL0,RLn

id∗ ← id
If f(y0, id) �= 0 then Win← false

proc Finalize(d′) // RL0,RLn

Return ((d′ = 1) and (id∗ �∈ IS) and Win)

Fig. 4.Games RL0,RLn (“Real-to-Losssy”) associated to n, μ, IDSp ⊆ Z
μ
p and auxiliary

input generator algorithm Aux

Lemma 2. Let n, μ ≥ 1 be integers and IDSp ⊆ Z
μ
p . Let Aux be an auxiliary

input generator for E[n, μ, IDSp] and A an adversary. Then there is an adversary
P such that Pr[RLA

0 ]−Pr[RLA
n ] ≤ 2n·(Pr [ReCP

]− Pr
[
RaCP

])
. The running

time of P is that of A plus some overhead. If A is selective-id then so is P .

The last statement allows us to use the lemma in both the selective-id and
adaptive-id cases.

Selective-id security. We show that IBTDF F[n, 1,Zp] is selective-id δ-lossy
for δ = 1, meaning fully selective-id lossy, and hence selective-id one-way. To do
this we define a sibling LF[n, 1,Zp]. It preserves the key-generation, evaluation
and inversion algorithms of F[n, 1,Zp] and alters parameter generation to

Algorithm LF[n, 1,Zp].Pg(id)

y← (−id , 1) ; (pars ,msk)
$← E[n, 1,Zp].Pg(y) ; Return (pars ,msk)

The following says that our IBTDF is 1-lossy under the DLIN assumption with
lossiness � = n− 2 lg(p). The proof is in [10].

Theorem 3. Let n > 2 lg(p) and let � = n − 2 lg(p). Let F = F[n, 1,Zp] be
the IBTDF associated by our construction to parameters n, μ = 1 and IDSp =
Zp. Let LF = LF[n, 1,Zp] be the sibling associated to it as above. Let δ = 1
and let be A a selective-id adversary. Then there is an adversary B such that
Advδ-los

F,LF,�(A) ≤ 2n(μ + 2) · Advdlin(B). The running time of B is that of A
plus overhead.

Adaptive-id Security. We show that IBTDF F[n, μ, {0, 1}μ] is adaptive-id δ-
lossy for δ = (4(μ+1)Q)−1 whereQ is the number of key-derivation queries of the
adversary. By [10] this means F[n, μ, {0, 1}μ] is adaptive-id one-way. To do this
we define a sibling LFQ[n, μ, {0, 1}μ]. It preserves the key-generation, evaluation
and inversion algorithms of F[n, μ, {0, 1}μ] and alters parameter generation to
LF[n, μ, {0, 1}μ].Pg(id) defined via

y← Aux ; (pars ,msk)
$← E[n, μ, {0, 1}μ].Pg(y) ; Return (pars ,msk) .
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where algorithm Aux is defined via

y′[0] $← {0, . . . , 2Q− 1} ; � $← {0, . . . , μ+ 1} ; y[0]← y′[0]− 2�Q

For i = 1 to μ do y[i]
$← {0, . . . , 2Q− 1}

Return y ∈ Z
μ+1
p

The following says that our IBTDF is δ-lossy under the DLIN assumption with
lossiness � = n− 2 lg(p). The proof is in [10].

Theorem 4. Let n > 2 lg(p) and let � = n − 2 lg(p). Let F = F[n, μ, {0, 1}μ]
be the IBTDF associated by our construction to parameters n, μ and IDSp =
{0, 1}μ. Let A be an adaptive-id adversary that makes a maximal number of
Q < p/(3m) queries and let δ = (4(μ + 1)Q)−1. Let LF = LFQ[n, μ, {0, 1}μ] be
the sibling associated to F, A as above. Then there is an adversary B such that
Advδ-los

F,LF,�(A) ≤ 2n(μ + 2) · Advdlin(B). The running time of B is that of A

plus O(μ2ρ−1((μQρ)−1)) overhead, where ρ = 1
2 ·Advδ-los

F,LF,�(A).

We remark that we could use the proof technique of [12] which avoids the artifi-
cial abort but this increases the value of δ, making it dependent on the adversary
advantage. The proof technique of [39] could be used to strengthen δ in Theo-
rem 4 to O(

√
mQ)−1 which is close to the optimal value Q−1.
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