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Preface

These are the proceedings of Eurocrypt 2012, the 31st Annual IACR Eurocrypt
Conference. The conference, sponsored by the International Association for Cryp-
tologic Research, was held April 15–19, 2012, in Cambridge, UK, within the cele-
brations of Alan Turing Year. The General Chair was Nigel Smart, from University
of Bristol.

The Eurocrypt 2012 Program Committee (PC) consisted of 32 members.
There were 195 papers submitted to the conference. Each paper was assigned
to at least three PC members, while submissions co-authored by PC members
were reviewed by at least four PC members. Papers were refereed anonymously.
Due to the large number of high-quality submissions, the review process was
challenging: the PC, aided by reports from 177 external reviewers, produced a
total of 604 reviews in all. After the reviews were submitted, the committee
deliberated online for several weeks, exchanging 738 discussion messages. All of
our deliberations were aided by the iChair Web submission and review software
written by Thomas Baignères and Matthieu Finiasz. We are indebted to them
for letting us use their software and for providing us with some help.

The PC eventually selected 41 submissions for presentation during the con-
ference and these are the articles that are included in this volume. Note that
these proceedings contain the revised versions of the selected papers. Since the
revisions were not checked again before publication, the authors (and not the
committee) bear full responsibility of the contents of their papers.

The PC decided to give the Best Paper Award to Antoine Joux and Vanessa
Vitse for their paper “Cover and Decomposition Index Calculus on Elliptic
Curves made practical. Application to a previously unreachable curve over Fp6 .”
The conference program also included two invited lectures, and short abstracts
are provided in the proceedings: one by Antoine Joux entitled “A Tutorial
on High-Performance Computing Applied to Cryptanalysis,” and the other by
Alfred Menezes on “Another Look at Provable Security.” We would like to
thank them for accepting our invitation and for contributing to the success of
Eurocrypt 2012.

We wish to warmly thank the authors who submitted their papers. The hard
task of reading, commenting, debating and finally selecting the papers for the
conference fell on the PC members. We are very grateful to the committee mem-
bers and their sub-reviewers for their hard and conscientious work. We would
like to thank Jacques Beigbeder for setting up and maintaining the submission
and review server at ENS, and Nigel Smart for his great help.

Finally, we would like to say it has been a great honor to be PC Chairs for
Eurocrypt 2012!

April 2012 David Pointcheval
Thomas Johansson
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Zvika Brakerski
Billy Brumley
Christina Brzuska
Jesper Buus Nielsen
Ran Canetti
Debrup Chakraborty
Nishanth Chandran
Donghoon Chang
Lidong Chen
Jung Hee Cheon
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Ananth Raghunathan
Somindu C. Ramanna

Oded Regev
Leonid Reyzin
Yannis Rouselakis
Subhabrata Samajder
Bagus Santoso
Santanu Sarkar
Alessandra Scafuro
Christian Schaffner
Sven Schäge
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Peter Gaži and Stefano Tessaro

Secure Computation

Fair Computation with Rational Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Adam Groce and Jonathan Katz

Concurrently Secure Computation in Constant Rounds . . . . . . . . . . . . . . . 99
Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai

Identity-Based Encryption Resilient to Continual Auxiliary Leakage . . . . 117
Tsz Hon Yuen, Sherman S.M. Chow, Ye Zhang, and Siu Ming Yiu



XII Table of Contents

Protocols

Quantum Proofs of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Dominique Unruh

On Round-Optimal Zero Knowledge in the Bare Public-Key Model . . . . . 153
Alessandra Scafuro and Ivan Visconti

Robust Coin Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Gene S. Kopp and John D. Wiltshire-Gordon

Unconditionally-Secure Robust Secret Sharing with Compact Shares . . . . 195
Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani

Lossy Trapdoor Functions

All-But-Many Lossy Trapdoor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Dennis Hofheinz

Identity-Based (Lossy) Trapdoor Functions and Applications . . . . . . . . . . 228
Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters

Dual Projective Hashing and Its Applications — Lossy Trapdoor
Functions and More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Hoeteck Wee

Tools

Efficient Zero-Knowledge Argument for Correctness of a Shuffle . . . . . . . . 263
Stephanie Bayer and Jens Groth

Malleable Proof Systems and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Sarah Meiklejohn

Group to Group Commitments Do Not Shrink . . . . . . . . . . . . . . . . . . . . . . . 301
Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo

Tools for Simulating Features of Composite Order Bilinear Groups in
the Prime Order Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Allison Lewko

Symmetric Constructions II

Minimalism in Cryptography: The Even-Mansour Scheme Revisited . . . . 336
Orr Dunkelman, Nathan Keller, and Adi Shamir

Message Authentication, Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs



Table of Contents XIII

Property Preserving Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 375
Omkant Pandey and Yannis Rouselakis

Symmetric Cryptanalysis

Narrow-Bicliques: Cryptanalysis of Full IDEA . . . . . . . . . . . . . . . . . . . . . . . 392
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A Tutorial

on High Performance Computing
Applied to Cryptanalysis

(Invited Talk Abstract)

Antoine Joux

DGA and
Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM,

45 avenue des États-Unis, F-78035 Versailles Cedex, France
antoine.joux@m4x.org

Abstract. Cryptology and computers have a long common history; in
fact, some of the early computers were created as cryptanalytic tools.
The development of faster and widely deployed computers also had a
great impact on cryptology, allowing modern cryptography to become a
practical tool. Today, both computers and cryptology are not only prac-
tical, but they have became ubiquitous tools. In truth, computing devices
incorporating cryptography features range from very small low-end de-
vices to supercomputer, going through all possible intermediate sizes;
these devices include both general purpose computing devices and spe-
cific, often embedded, processors which enable computing and security
features in hundreds of technological objects.

In this invited talk, we mostly consider the cryptanalytic side of
things, where it is fair to use very large amounts of computing power to
break cryptographic primitives or protocols. As a consequence, demon-
strating the feasibility of new cryptanalytic methods often requires large
scale computations. Most articles describing such cryptanalyses usually
focus on the mathematical or algorithmic advances and gloss over the
implementation details, giving only sufficient data to show that the com-
putations are feasible. The goal of the present abstract is to give an idea
of the difficulty facing implementers of large scale cryptanalytic attacks.

Computers and cryptanalysis have a long common history. This is well-emphasized
by the location of this Eurocrypt conference located near Bletchley Park, the home
of the UK code-breaking during World War II. In particular, the park features
a working replica of the first digital computer, the Colossus and of the Turing-
Welchman Bombe, which was initially developed for cryptanalytic purposes. The
organization of the park itself reflects the duality of computers and cryptanalysis.
Indeed, the park hosts two museums, the “National Codes and Ciphers Centre”
and the “National Museum of Computing”.

Even if computers and other computing devices have become general purpose
tools in the present days, they still have a lot in common with cryptography.
Today, almost all computing devices, from credit cards to high-end computers

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 1–7, 2012.
c© International Association for Cryptologic Research 2012



2 A. Joux

implement some cryptographic functionality and cryptography is an essential
tool for securing the digital world. Moreover, most of the recent cryptographic
advances rely on the enhanced performances of modern computing devices.

On the cryptanalytic side, we encounter a similar situation. Having faster and
bigger computers allows cryptanalysts to run huge computations which would
not have been possible in their wildest dreams a few decades ago.

This article discuss this cryptanalytic application of supercomputers. In
Section 1, we classify the typical cryptanalytic applications. In Section 2, we
describe the hardware context of the last decade and discuss some possible evo-
lutions. Section 3 explains the practical issues that can be encountered while
managing the necessary computations to set new cryptanalysis records. Finally,
Section 4 describes some algorithm challenges that need to be solved to efficiently
use the potential power of forthcoming computers.

1 Typical Cryptanalytic Applications

The applications of high-performance computing to cryptanalysis are numerous
and varied. They range from attacks which are “embarrassingly-parallel” and
can trivially use a large distributed computing power to algorithms which are
essentially sequential by nature and are very difficult to adapt to take advantage
of the power of supercomputers.

The easiest case of embarrassingly parallel computations contains brute-force
attacks and their variants. In this case, each task can run completely independently
of the others, it only needs to receive a small amount of input data (such as a plain-
text/ciphertext pair) and a description of the part of the key space it should work
on. Note that this description is not enough necessary and, especially when the
control loop is loose, simply letting each task try a random subset of the key might
even be preferable. Some other attacks, such as differential collision searches on
hash functions are also of an embarrassingly parallel nature [4].

A slightly harder class of computations which can be parallelized in a reason-
able straightforward way, but require communications to send back some partial
results in a centralized place. This centralized place then redistributes the values
in order to conclude the computation. This is typically the case of parallelized
collision-finding algorithms [14, 21].

The next important class of problem contains the sieving-based index calculus
algorithm for factoring [1, 5, 15] and discrete logarithms [11–13]. In this class, the
largest phase of the computation (the sieving phase) is embarrassingly parallel,
however, it produces a large amount of data which needs to be collected in
a centralized place. Note that this amount of data is small compared to the
magnitude of the computation but it is still a difficult task to centralize this
data without introducing errors. The next phase consists in transforming this
data into a linear system of equations and then in solving this system. This offers
much more difficulty than the initial computation. Currently, this task is achieve
by first reducing the size of the system using ad’hoc heuristics called, structured
Gaussian Elimination. This is usually done on a small number of processor, but
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the computational cost required here is low enough and this is not a problem. The
reduced system is then solved using an iterative linear solver such as the Lanczos
or Wiedemann algorithms. The main problem is that these algorithms can be
distributed but require a large amount of communications between the individual
tasks. As a consequence, even when using the block Wiedemann variant [6, 20]
which lowers the amount of communications, this is usually the computational
bottleneck.

Finally, some cryptanalyses rely on algorithmic tasks for which no satisfactory
parallel descriptions are known. This is the case for many advanced algorithms
used in cryptanalysis (see Section 4). Note that even in the best cases, writ-
ing record-breaking codes is a very specific programming activity, which rarely
follows the tenants of modern software engineering. The reason for this discrep-
ancy is that the use of modern programming features has a cost in terms of
performance, which is rarely acceptable in this specific context.

2 Hardware Context

During the last decades of the twentiest century, the speed of processor increased
at the steady rhythm. More precisely, clock rates were at the MHz level in the
80s and raised to the GHz level in the 2000s. This increased the performance of
individual processors and permitted to do bigger computations while using at
most a small amount of parallelism. However, the clock rates of processors are no
longer increasing and the additional computing power of recent processors come
from their ability to perform more computations in parallel. This capability
is obtained either by allowing the machines to work on larger data types, by
giving CPUs the ability to parallelize micro-instructions or by building multi-
core processors. As a consequence, despite the stopped growth of clock rate, the
raw computing power of processors is still increasing steadily. However, taking
advantage of this power for cryptanalytic tasks requires much more effort on the
programmer’s part.

At the same time, the amount of memory available in modern machines has
increased considerably. In the 80s, 64 Kbytes of memory for a personal com-
puter was above standard, in the present days, the equivalent would be around
8 Gbytes. However, on modern processors, accessing memory is proportionally
more expensive. To palliate this problem, designers have added several levels of
memory-cache that greatly increase the memory accesses as long as they remain
reasonably localized. This is also an important constraint since in this model
some algorithmic techniques such as sieving are considerably slowed down.

Where personal computers are concerned, the main processor(s) is no longer
the only available computing ressource. Indeed, with the development of 3D-
games, graphics cards have progressively been transformed into massively paral-
lel computing ressources, capable of performing quite general computations. As a
consequence, it has become worthwhile to consider their potential as computing
devices in massive computations.

Above the personal computer scale, the development of cloud computing is
offering a new opportunity to run medium-scale computation at a moderate cost.
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At the present time, these infrastructures seem are more suited to embarrassingly
parallel tasks than to communication bounded computations. One advantage of
using cloud-computing, emphasized in [16], it that it gives a simple metric to
compare computations: their monetary cost.

Finally, turning to supercomputers, it is interesting to see that, even at this
large scale, many computers among the most powerful are built by assem-
bling many high-end “personal computers” tied together by a high-performance
network. As a consequence, running embarrassingly-parallel task on such com-
puters does not require much programming beyond the initial work of writing
the program for a general purpose computer. It also means that the previous
considerations about parallelism and memory accesses remain true. Of course,
thanks to the high-performance network, it is possible to perform tasks that
require a fairly high amount of communications. However, despite this improve
performance, communications often remain the bottleneck point for algorithms
which are not straightforward to parallelize.

Another possibility to perform very large computations is to consider the use
of specific hardware. However, the cost of building such hardware is high. As
a consequence, many papers [10, 18, 19] dealing with specific hardware remain
theoretical and aim at finding the limit of feasible computations. A notable
exception is the development of the DES-Cracker [9].

3 Running Record Computations

Once a new cryptanalytic algorithm has been discovered or improved and im-
plemented, running the algorithm to set some record computation is a nice way
to demonstrate the potential of the algorithm. This being said, one could easily
imagine that this final step of performing the computation is just a routine task.
Unfortunately, this is not the case and running record computations is a difficult
and tedious task.

The first step is to obtain the necessary computing resources. This can be easy
if the computation only requires dozens of desktop computers for a few weeks or
become a real nightmare for people trying to run a large scale computation by
recruiting tens of thousands of computers on the Internet. The easiest approach
for computations that requires significantly more power than a dozen of desk-
top computers is to apply for computing time one or several supercomputers.
Throughout the world, there exists several supercomputing organizations that
let researchers apply for computing power.

The next step, once computing power has been granted, is to port the com-
puting code to the computers that have been made available. Even when great
care has been taken to write portable code in the first place, there are always
specific “features” that call for modifications. This is especially true for complex
computations that have successive computing phases. Indeed, in that case, one
often discovers that one of the “negligible” phases of the computation does not
scale well and needs a complete rewriting to run correctly for the record being
considered.
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Once all this preparation has been settled and, contrary to what might be
expected, the really hard part of the computation starts. Indeed, while large
computations may become routine when series of similar computations are per-
formed1, record computations never are. A first problem is that by going to larger
sizes, one often triggers unexpected bugs, with rare probability of occurrences.
This may lead the program to make several passes over the same search space,
which not only wastes computing power but may trigger other bugs when unex-
pected data collisions are encountered later on. Another possible consequence is
that some intermediate computational data may contain corrupted information.
While benign in some application such as brute force, incorrect data may cause
major failures in other cases. For example, if a single incorrect equation is added
to a large linear system, then any hope of recovering the solution is lost. Note
that corrupted data is not always a consequence of coding bugs, supercomput-
ers are often experimental machines which may suffer from occasional hardware
problem and the sheer scale of the computation also makes physical corruption
of data, whether in memory or on disk, possible.

As a consequence, when programming with record computations in mind,
it is essential to add extra robustness in the processing. A good practice is
to check intermediate computational results whenever this can be done at a
reasonable cost. Such checking should use independently written code and should
do the verification at the highest achievable level of mathematical abstraction.
For example, before performing the iterative linear algebra step of a sieving
algorithm it is very good practice to pull back the equation to the mathematical
group being considered and check them on this group.

Also note that closely monitoring the computation is a must: processes may
get stuck, they may fail to restart after maintenance. To make it short, when
running record computations, one should always expect the unexpected.

4 Algorithmic Challenges

As computations grow bigger, the relevant metric to measure the computation
is shifting. We can no longer focus on running time and ignore other parame-
ters. Of course, running time has never been a perfect metric but it still gave a
good approximation of the efficiency of algorithms. With modern supercomput-
ers, the pictures is much more complicated. First, the gap between the cost of
time and memory is growing bigger. Second, another, very important parameter
should be taken into account: the cost of communication between the parts of
the supercomputer.

Combining all the relevant parameters is not easy because there the parame-
ters are not independent. Indeed, programs which require a lot of memory cannot
store their data locally in a single node and are going to use larger amount of
communications.

1 A typical example is the weather forecast computations which despite their large
scale become routine once the production code becomes stable enough.
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As a consequence, in order to use supercomputers to their full power, new
algorithms are becoming necessary. These new algorithms should be designed
with new metrics in mind. Basically, processes should be as independent of each
others as possible and memory use should be limited to fit within local memory
(or even better within cache memory).

Of course, embarrassingly parallel tasks are not going to be a problem. How-
ever, there are many more algorithms which need to be adapted or improved to
become more efficient on supercomputer. To give some example, let us mention
iterative linear algebra [17, 20], structured Gaussian elimination, computation of
Gröbner bases [8], SAT solvers [7], collision-search techniques [14, 21], large-scale
lattice reduction [2], generalized birthday algorithms [3], . . .

5 Conclusion

Performing cryptanalytic records computation is a very efficient tool to under-
stand the concrete security level of cryptographic primitive and this should re-
main true in the future. In particular, such computations can be used to bench-
mark lower security levels. Indeed, on the one hand, many low-end cryptographic
devices rely on a 80-bit security level. On the other hand, the current fastest
computer can perform more than 273 floating-point instructions per year. As a
consequence, since the figures are getting close, studying the evolution of record
computations is essential in order to decide when to phase out such low-end
systems before they become insufficiently secure.
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P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

16. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. IACR Cryptology ePrint Archive, p. 254 (2011)
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États-Unis, F-78035 Versailles cedex, France
vanessa.vitse@prism.uvsq.fr

Abstract. We present a new “cover and decomposition” attack on the
elliptic curve discrete logarithm problem, that combines Weil descent
and decomposition-based index calculus into a single discrete logarithm
algorithm. This attack applies, at least theoretically, to all composite
degree extension fields, and is particularly well-suited for curves defined
over Fp6 . We give a real-size example of discrete logarithm computations
on a curve over a 151-bit degree 6 extension field, which would not have
been practically attackable using previously known algorithms.

Keywords: elliptic curve, discrete logarithm, index calculus, Weil
descent, decomposition attack.

1 Introduction

Elliptic curves are used in cryptography to provide groups where the discrete
logarithm problem is thought to be difficult. We recall that given a finite groupG
(written additively) and two elements P,Q ∈ G, the discrete logarithm problem
(DLP) consists in computing, when it exists, an integer x such that Q = xP .
When elliptic curves are used in cryptographic applications, the DLP is usually
considered to be as difficult as in a generic group of the same size [31]. As a
consequence, for a given security level, the key size is much smaller than for
other popular cryptosystems based on factorization or discrete logarithms in
finite fields. The first elliptic curves considered in cryptography were defined over
either binary or prime fields [20,24]. But to speed up arithmetic computations,
it has been proposed to use various forms of extension fields. In particular,
Optimal Extension Fields have been proposed in [4] to offer high performance
in hardware implementations. They are of the form Fpd where p is a pseudo-
Mersenne prime and d is such that there exists an irreducible polynomial of

� This work was granted access to the HPC resources of CCRT under the allocation
2010-t201006445 made by GENCI (Grand Equipement National de Calcul Intensif).

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 9–26, 2012.
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the form Xd − ω ∈ Fp[X ]. In most examples, the degree d of the extension is
rather small. However, when curves defined over extension fields are considered,
some non-generic attacks, such as the Weil descent or decomposition attacks,
can be applied. The first one aims at transferring the DLP from E(Fqn) to
the Jacobian of a curve C defined over Fq and then uses index calculus on this
Jacobian [2,12,15] to compute the logarithm; it works well when the genus of the
curve C is small, ideally equal to n, but this occurs quite infrequently in practice.
Many articles have studied the scope of this technique (cf. [7,10,11,14,16]), but
even on vulnerable curves, the Weil descent approach is often just a little more
efficient than generic attacks on the DLP. Decomposition-based index calculus,
or decomposition attack, is a more recent algorithm (see [9,13,18,26]), which
applies equally well to all (hyper-)elliptic curves defined over an extension field.
Its asymptotic complexity is promising, but in practice, due to large hidden
constants in the complexity, it becomes better than generic attacks for group
sizes too large to be threatened anyway.

In this article, we combine both techniques into a cover and decomposition
attack, which applies as soon as the extension degree is composite. The idea is
to first transfer the DLP to the Jacobian of a curve defined on an intermediate
field, then use the decomposition method on this sub-extension instead of the
classical index calculus. This new attack is not a mere theoretical possibility:
we give concrete examples of curves defined over Fp6 that are practically secure
against all other attacks, but for which our method allows to solve the DLP in
a reasonable time. In particular, we have been able to compute logarithms on
a 149-bit elliptic curve group defined over a degree 6 extension field in about a
month real-time, using approximately 110 000 CPU.hours.

The paper is organized as follows: first we briefly recall the principles of Weil
descent and of the decomposition method. We then give an explicit description
of our attack in Section 3, introducing a useful variant of the decomposition step
that can be of independent interest. In particular, we study the case of elliptic
curves defined over Fp6 , list all the potentially vulnerable curves and give a
complexity analysis and a comparison with previously known attacks. Finally,
in Section 5, we describe in details the computations on our 149-bit example.

2 Survey of Previous Work

2.1 Weil Descent and Cover Attacks

Weil descent has been first introduced in cryptography by Frey [10]; the idea
is to view an abelian variety A of dimension d defined over an extension field
K/k as an abelian variety WK/k of dimension d · [K : k] over k. If WK/k turns
out to be the Jacobian of a curve C|k or can be mapped into such a Jacobian,
then the discrete logarithm in A(K) can be transferred to JacC(k), where it may
become much weaker due to the existence of efficient index calculus algorithms.
When the genus of C is small relative to the cardinality p of k, the complexity
is in O((g2 log3 p)g! p + (g2 log p)p2) as p grows to infinity [12]; the first term
comes from the relation search and the second from the sparse linear algebra.
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Following [15], it is possible to rebalance these two terms by using a double
large prime variation. In this variant, only a small number pα of prime divisors1

are considered as genuine, while the rest of the prime divisors are viewed as
“large primes”. The optimal value of α depends of the cost of the two phases;
asymptotically the choice that minimizes the total running time is 1 − 1/g,
yielding a complexity in Õ(p2−2/g) for fixed g as p goes to infinity.

The main difficulty of this Weil descent method is to find the curve C.
This problem was first addressed for binary fields by Gaudry, Hess and Smart
(GHS [14]) and further generalized by Diem [7] in odd characteristic. To attack
an elliptic curve E defined over Fpn (p a prime power), the GHS algorithm builds
a curve C defined over Fp such that there exists a cover map π : C → E defined
over Fpn . The construction is more easily explained in terms of function fields:
the Frobenius automorphism σFpn/Fp

can be extended to the composite field

F ′ =
∏n−1

i=0 Fpn(Eσi

), and the function field F = Fp(C) is defined as the sub-
field of F ′ fixed by σ. The GHS algorithm then uses the so-called conorm-norm
map NF ′/F ◦ ConF ′/Fpn (E) to transfer the discrete logarithm from E(Fpn) to
JacC(Fp). An important condition is that the kernel of this map must not inter-
sect the subgroup in which the discrete logarithm takes place, but as remarked
in [7,16], this is not a problem in most cryptographically relevant situations.
This technique is efficient when the genus g of C is close to n. In particular, for
some specific finite fields most elliptic curves are “weak” in the sense that Weil
descent algorithms are better, if only by a small margin, than generic attacks
[23]. Indeed, when the GHS method does not provide any low genus cover for E,
it may be possible to find a sequence of low degree isogenies (a.k.a. an isogeny
walk) from E to another, more vulnerable elliptic curve E′ [11]. Nevertheless,
we emphasize that the security loss is quite small for a random curve, and for
most curves on most fields Fpn , g is of the order of 2n which means that index
calculus in the Jacobian of C is slower than generic attacks on E(Fpn).

2.2 Decomposition Attack

Index calculus has become ubiquitous in the last decades for the DLP resolu-
tion. However its direct application to elliptic curves faces two major challenges:
contrarily to finite fields or hyperelliptic curves, there is no natural choice of
factor base and no equivalent of the notion of factorization of group elements.
The first main breakthrough was achieved in 2004 by Semaev [30] when he sug-
gested to replace factorization by decomposition into a fixed number of points;
for that purpose, he introduced the summation polynomials which give an alge-
braic expression of the fact that a given point decomposes into a sum of factor
base elements. But for a lack of an adequate factor base, this approach fails
in the general case. Then Gaudry and Diem [9,13] independently proposed to
use Semaev’s idea to attack all curves defined over small degree extension fields
Fpn/Fp. Their method shares the basic outline of index calculus, but to distin-
guish it from what has been presented in the previous subsection, we follow [26]

1 The term prime divisor is an abuse of language that denotes the linear irreducible
polynomials that are used in the index calculus algorithm on JacC(k).
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and call it the decomposition attack. On E(Fpn), a convenient choice of factor
base is the set of rational points of the curve with abscissae in Fp. By combining
Semaev’s summation polynomials and restriction of scalars, the relation search
then becomes a resolution of a multivariate polynomial system over Fp. The
complexity of this approach can be estimated using double large prime varia-
tion by Õ

(
p2−2/n

)
for fixed n as p grows to infinity. Unfortunately, the hidden

constants in this complexity become very large as n grows, and the resolution of
the systems is intractable as soon as n ≥ 4 (or n ≥ 5 with the variant of [18]).

The decomposition attacks can also be applied to higher genus curves. How-
ever, Semaev’s polynomials are no longer available in this case and the algebraic
expression of the group law is more complicated. In [26], Nagao proposes an ele-
gant way to circumvent this problem, using divisors and Riemann-Roch spaces.
For hyperelliptic curves, the decomposition search then amounts to solving a
quadratic multivariate polynomial system. This approach is less efficient than
Semaev’s in the elliptic case, but is the simplest otherwise. For fixed extension
degree n and genus g, the complexity of a decomposition attack is in Õ

(
p2−2/ng

)
with a double large prime variation. Again, the resolution of the polynomial sys-
tem is the main technical difficulty, and is easily feasible for only very few couples
(n, g), namely (2, 2), (2, 3) and (3, 2).

3 Cover and Decomposition Attack

Let Fqd/Fp be an extension of finite fields, where q is a power of p (in most
applications p denotes a large prime but in general, it can be any prime power),
and let E be an elliptic curve defined over Fqd of cryptographic interest, i.e. con-
taining a subgroup G of large prime order. As E is defined over an extension
field, it is subject to the attacks presented above. But if the degree [Fqd : Fp] of
the extension is larger than 5, then we have seen that E is practically immune to
decomposition attacks. In the following, we assume that the potential reduction
provided by the GHS attack or its variants is not significant enough to threaten
the security of the DLP on the chosen curve E.

When q is a strict power of p, we have a tower of extensions given by Fqd/Fq

and Fq/Fp. In this context, it becomes possible to combine both cover and de-
composition methods and obtain an efficient attack of the DLP on E. The idea is
to use Weil descent on the first extension Fqd/Fq to get a cover defined over Fq,
with small enough2 genus g. Then we can apply a decomposition attack on the
curve thus obtained, making use of the second extension Fq/Fp. As this cover and
decomposition attack is more efficient when Weil descent provides a hyperelliptic
cover over the intermediate field, we focus on this case in the following.

3.1 Description of the Attack

We now explicitly detail this cover and decomposition approach. We suppose
first that there exists an imaginary hyperelliptic curve H of small genus g with

2 Meaning that g should be small relatively to the genus that could be obtained by
direct Weil descent, using the extension Fqd/Fp.
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equation y2 = h(x), defined over Fq, together with a covering map π : H → E
defined over Fqd . This can be obtained by the GHS attack or its variants, possibly
preceded by an isogeny walk. This cover classically allows to transfer the DLP
from G to a subgroup G′ ⊂ JacH(Fq) via the conorm-norm map NF

qd
/Fq

◦ π∗ :

E(Fqd) � JacE(Fqd) → JacH(Fq), assuming that ker(NF
qd

/Fq
◦ π∗)∩G = {OE}.

The decomposition part of the attack is adapted from Gaudry and Nagao;
since it is quite recent, we detail the method. As in all index calculus approaches,
there are two time-consuming steps: first we have to collect relations between
factor base elements, then we compute discrete logarithms by using linear algebra
on the matrix of relations. We consider the same factor base as [13,26]

F = {DQ ∈ JacH(Fq) : DQ ∼ (Q) − (OH), Q ∈ H(Fq), x(Q) ∈ Fp},

which contains about p elements. As usual, we can use the hyperelliptic involu-
tion to reduce the size of F by a factor 2, so that only p/2 relations are needed.

Let n be the extension degree [Fq : Fp]. In Nagao’s decomposition method,
one tries to decompose an arbitrary divisor D (typically obtained by considering
a large multiple of some element in F) into a sum of ng divisors of F

D ∼
ng∑
i=1

((Qi) − (OH)) . (1)

Heuristically, there exist approximately png/(ng)! distinct sums of ng elements
of F , so the probability that a given divisor D is decomposable can be estimated
by 1/(ng)!. To check if D can be decomposed, one considers the Riemann-Roch
Fq-vector space

L (ng(OH) −D) = {f ∈ Fq(H)∗ : div(f) ≥ D − ng(OH)} ∪ {0}.

We can assume that the divisor D is reduced and has Mumford representa-
tion (u(x), v(x)) with deg u = g, so that this Fq-vector space is spanned by
u(x)xi, (y − v(x))xj , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, where m1 = �(n − 1)g/2 and
m2 = �((n−1)g−1)/2. A function f = λ0u(x)+λ1u(x)x+ . . .+λm1u(x)x

m1 +
μ0(y−v(x))+μ1x(y−v(x))+. . .+μm2x

m2(y−v(x)) vanishes on the support of D
and exactly ng other points (counted with multiplicity and possibly defined on
the algebraic closure of Fq) if its top-degree coefficient is not zero. We are looking
for a condition on λ0, . . . , λm1 , μ0, . . . , μm2 ∈ Fq such that the zeroes Q1 . . . , Qng

of f disjoint from Supp(D) have x-coordinate in Fp; this event yields a relation
as in (1). Therefore, we consider the polynomial F (x) = f(x, y)f(x,−y)/u(x)
where y2 has been replaced by h(x). Without loss of generality, we can fix either
λm1 = 1 or μm2 = 1 in order to have F monic of degree ng. The roots of F
are exactly the x-coordinates of the zeroes of f distinct from Supp(D), thus we
are looking for the values of λ and μ for which F splits in linear factors over
Fp. A first necessary condition is that all of its coefficients, which are quadratic
polynomials in λ and μ, belong to Fp; a scalar restriction on these coefficients
then yields a quadratic polynomial system of (n− 1)ng equations and variables
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coming from the components of the variables λ and μ. The corresponding ideal
is generically of dimension 0, and the solutions of the system can be found using
e.g. a Gröbner basis computation. Since the number of systems to solve is huge
(on average (ng)! · p/2, or more if a large prime variation is applied), techniques
such as the F4 variant of [19] should be preferred. Once the solutions are ob-
tained, it remains to check if the resulting polynomial F splits in Fp[x], and if
it is the case, to compute the corresponding decomposition of D.

In this article, we also consider a somewhat different approach to the relation
search that offers some similarity with the method used in the number field and
function field sieves [1,22]. More precisely, we no longer have a divisor D to
decompose, but instead search for sums of factor base elements equal to 0:

m∑
i=1

((Qi) − (OH)) ∼ 0. (2)

Heuristically, the expected number of relations of the form (2) involvingm points
of the factor base is approximately pm−ng/m!. Since we need to collect at least
about p/2 relations, we look for sums of m = ng + 2 points, assuming that
p ≥ (ng + 2)!/2. As before, we work with the Fq-vector space L(m(OH)), which
is spanned by 1, x, . . . , xm1 , y, xy, . . . , xm2y, wherem1 = �m/2 and m2 = �(m+
1)/2− g. We consider the function f = λ0+λ1x+ . . .+λm1x

m1 +μ0y+μ1xy+
. . .+ μm2x

m2y: it vanishes in exactly m points if its top-degree coefficient is not
zero, and the abscissae of its zeroes are the roots of

F (x) = f(x, y)f(x,−y) = (λ0+λ1x+ . . .+λm1x
m1)2−h(x)(μ0+μ1x+ . . .+μm2x

m2)2.

Again, we fix λm1 = 1 if m is even or μm2 = 1 otherwise, so that F is monic. In
order to obtain a relation of the form (2), we look for values of λ and μ for which
F splits over Fp. The first condition is that F belongs to Fp[x]; after a scalar
restriction on its coefficients, this translates as a quadratic polynomial system
of (n− 1)m equations and n(m− g) variables. With our choice of m = ng + 2,
this corresponds to an underdetermined system of n(n− 1)g + 2n− 2 equations
in n(n− 1)g+ 2n variables. When the parameters n and g are not too large, we
remark that it is possible to compute once for all the corresponding lexicographic
Gröbner basis. Each specialization of the last two variables should then provide
an easy to solve system, namely triangular with low degrees. It remains to check
whether the corresponding expression of F is indeed split and to deduce the
corresponding relations between the points of F .

Once enough relations of the form (2) have been collected, and possibly after
a structured Gaussian elimination or a large prime variation, we can deduce with
linear algebra the logarithms of all elements in F (up to a multiplicative con-
stant, since we have not specified the logarithm base). To compute the discrete
logarithm of an arbitrary divisor D, we proceed to a descent phase: we need
to decompose D as a sum of factor base elements. This decomposition search
can be done using the first method described above. Note that, if D does not
decompose as a sum, it suffices to try small multiples 2D, 3D . . . until we find
one correct decomposition. Thanks to this descent step, it is possible to compute
many discrete logarithms in the same group for negligible additional cost.
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When the cover of E is not hyperelliptic, one can still use the Riemann-
Roch based approach. It is not difficult to compute a basis of the vector spaces
L(ng(OH) −D) or L(m(OH)) and to consider a function f(x, y) (depending of
parameters λ and μ) in these spaces. Getting rid of the y-variable can be done
easily by computing the resultant in y of f and the equation of the curve (or
multiresultant if the curve is not planar); however, the resulting polynomial F (x)
no longer depends quadratically of the parameters λ and μ. The system obtained
by scalar restriction still has the same number of equations and variables but its
degree is greater than 2, so that the resolution is more complicated.

3.2 Sieving for Quadratic Extensions

This new decomposition technique is already faster than Nagao’s when the lex
Gröbner basis of the system coming from (2) is efficiently computable, but can
still be further improved. Indeed, checking that F is split has a non-negligible
cost, since we need to factor a polynomial of degree ng+2 into linear terms. To
avoid this, it is possible to modify the search for relations of the form (2) using
a sieving technique when [Fq : Fp] = 2 in the odd characteristic case. Let t be an
element such that Fp2 = Fp(t); we assume wlog that t2 = ω ∈ Fp. In this case,
f = λ0 + · · · + λgx

g + μy and the polynomial F is of the form

F (x) = (λ0x+ · · ·+ λgx
g + xg+1)2 − μ2h(x).

In particular, when the parameter μ equals 0, f is independent of the y variable;
the corresponding relation of type (2) is thus necessarily of the form (P1) +
(ι(P1))+ . . .+(Pg+1)+(ι(Pg+1))− (2g+2)OH ∼ 0, where ι(P ) is the image of P
by the hyperelliptic involution. To avoid these trivial relations, we look only for
solutions (λ0,0, . . . , λg,0, λ0,1, . . . , λg,1, μ0, μ1) ∈ VFp(I : (μ0, μ1)

∞), where I is the
ideal corresponding to the 2(g + 1) quadratic polynomials in 2(g + 2) variables
arising from the scalar restriction on F ∈ Fp2 [x], setting λi = λi,0 + tλi,1 and
μ2 = μ0 + tμ1. More precisely, with the type of extension considered here, the
ideal I is given by the equations corresponding to the vanishing of the coefficients
of the Fp[x]-polynomial

2(1 · xg+1 + λg,0x
g + · · ·+ λ0,0)(λg,1x

g + · · · + λ0,1) − μ0h1(x) − μ1h0(x),

where h(x) = h0(x) + th1(x), h0, h1 ∈ Fp[x]. This ideal I is not 2-dimensional,
but its saturation is. An easy but crucial remark is that the ideal is multi-
homogeneous, generated by polynomials of bi-degree (1, 1) in the variables (1 :
λ0,0 : . . . : λg,0), (λ0,1 : . . . : λg,1 : μ0 : μ1). This additional structure has two
major consequences. First, the lexicographic Gröbner basis computation is much
faster than for a generic quadratic system of the same size. Second, if we denote
by π1 the projection on the first block of variables (λ0,0, . . . , λg,0), then the

image π1(VFp(I : (μ0, μ1)
∞)) = π1(VFp(I) \ VFp(μ0, μ1)) is a dimension 1 variety

(whose equations are easily deduced from the lex Gröbner basis of I), and each
fiber is a 1-dimensional vector space.
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From this, we can simplify the relation search. Rather than evaluating a first
variable, we choose a point (λ0,0, . . . , λg,0) ∈ π1(VFp(I : (μ0, μ1)

∞)) and express
the remaining variables linearly in terms of λ0,1, so that now F belongs to
Fp[x, λ0,1] and has degree 2g + 2 in x and 2 in λ0,1. Instead of trying to factor
F for many values of λ0,1, the key idea is to compute for each x ∈ Fp the values
of λ0,1 such that F (x, λ0,1) = 0. Since F has degree 2 in λ0,1, this can be done
very efficiently by computing the square root of the discriminant. In fact, we can
speed the process even more by tabulating the square roots of Fp. Our sieving
process consists, for each root λ0,1, to increment a counter corresponding to this
value of λ0,1; when one of these counters reaches 2g + 2, then the polynomial
F evaluated at the corresponding value of λ0,1 splits into 2g + 2 distinct linear
terms, yielding a relation. This technique not only allows to skip the factorization
of a degree 2g + 2 polynomial, but is also well-suited to the double large prime
variation, as explained in next section.

3.3 Complexity Analysis

Constructing the cover H|Fq
of an elliptic curve E|F

qd
with the GHS method and

transferring the DLP from G ⊂ E(Fqd) to G
′ ⊂ JacH(Fq) has essentially a unit

cost, which is negligible compared to the rest of the attack. The complexity of
the decomposition phase is divided between the relation search and the linear
algebra steps. In order to collect about p/2 relations using Nagao’s decomposition
method, we need to solve on average (ng)! · p/2 quadratic polynomial systems.
The resolution cost of this kind of system using e.g. Gröbner bases is hard
to estimate precisely, but is at least polynomial in the degree 2(n−1)ng of the
corresponding zero-dimensional ideal. The linear algebra step then costsO(ngp2)
operations modulo #G, using sparse linear algebra techniques. With the second
decomposition method, we need to compute first the lexicographic Gröbner basis
of an ideal generated by n(n−1)g+2n−2 quadratic equations in n(n−1)g+2n
variables. This cost is also at least exponential in n2g, but the Gröbner basis
computation has to be done only once. Afterwards, we have to solve on average
(ng + 2)! · p/2 “easy” systems. The complexity of the linear algebra step is the
same (the cost of the descent is negligible compared to the sieving phase).

When p is large relatively to n and g, the linear algebra becomes the domi-
nating phase. It is nevertheless possible to rebalance the cost of the two steps.
Indeed, collecting extra relations can speed up the logarithm computations; this
is the idea behind structured Gaussian elimination [21] and double large prime
variation. The analysis of [15] shows that with the latter, the asymptotic com-
plexity of our cover and decomposition attack becomes either Õ(p2−2/ng) or
Õ(p2−2/(ng+2)) with the decomposition variant, as p grows to infinity for fixed n
and g. Although the complexity of the variant is asymptotically higher, the much
smaller hidden constant means that it is actually faster for accessible values of
p. Note that it is straightforward to parallelize the relation search phase; this is
also possible, but much less efficiently, for the linear algebra step. In particular,
the optimal choice of the balance depends not only of the implementation but
also of the computing power available.
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When n = 2, it is possible to improve the double large prime variation by
sieving only among the values of x corresponding to the abscissae of points
of the “small primes” factor base. As soon as 2g values of x are associated
to one value of λ0,1, we obtain a relation involving at most 2 large primes (if
the remaining degree 2 factor is split, which occurs with probability close to
1/2). This speeds up the relation search and decreases the overall complexity
from Õ(p2−2/(2g+2)) to Õ(p2−2/(2g+1)) as p grows to infinity, thus reducing the
asymptotic gap between the two decomposition methods without degrading the
practical performances.

Obviously, our approach outperforms generic algorithms only if the genus of
the intermediate cover is not too large. Otherwise, it may be possible to transfer
the DLP from E to a more vulnerable isogenous curve E′. There exist two
“isogeny walk” strategies to find E′ (if it exists) [17]: one can sample the isogeny
class of E via low-degree isogenies until a weak curve is found, or one can try
all the weak curves until a curve isogenous to E is found. The best strategy to
use depends on the size of the isogeny class, on the number of weak curves and
on the availability of an efficient algorithm for constructing these weak curves.
For the cases we have considered, this isogeny walk can become the dominating
part in the overall complexity (see below for details).

4 Application to Elliptic Curves Defined over Fp6

For an elliptic curve E defined over an extension field Fp6 , we can apply our
cover and decomposition attack either with the tower Fp6 —Fp2 —Fp or with
the tower Fp6 —Fp3 —Fp. We have seen in Section 2.2 that in practice, we can
compute decompositions only for a very limited number of values of (n, g). In
particular, our attack is feasible only if E admits a genus 3 (resp. 2) cover; we give
examples of such curves below. Of course, this attack needs to be compared with
the classic cover attacks or decomposition attacks using the base field Fp3 ,Fp2

or Fp, as recalled in Section 2.

4.1 Using a Genus 3 Cover

In the present subsection, we apply our cover and decomposition attack using
the first tower Fp6 —Fp2 —Fp. Thanks to the results of [7,25,32], in odd char-
acteristic, we know that the only elliptic curves defined over Fq3 (in our case,
q = p2) for which the GHS attack yields a cover by a hyperelliptic curve H of
genus 3 defined over Fq, are of the form

y2 = h(x)(x − α)(x − σ(α)) (3)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3\Fq and h ∈ Fq[x] is of
degree 1 or 2. Similar results are also available in characteristic 2 (see [27]), thus
our attack is also applicable in characteristic 2; we give details of the construction
of the cover in both cases in Appendix A. The number of curves admitting an
equation of the form (3) is Θ(q2), thus only a small proportion of curves is
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directly vulnerable to the cover and decomposition attack using this extension
tower. However, since this number of weak curves is much larger than the number
of isogeny classes (which is about q3/2), a rough reasoning would conclude that
essentially all curves should be insecure using an isogeny walk strategy. Assuming
that the probability for a curve to be weak is independent from its isogeny class,
we obtain that the average number of steps before reaching a weak isogenous
curve should be about q = p2 steps. It is thus the dominating phase of the
algorithm, but is still better than the Õ(p3)-generic attacks. Nevertheless, all
the curves of the form (3) have a cardinality divisible by 4, so obviously not all
curves are vulnerable to this isogeny walk. Still, we conjecture that all curves
with cardinality divisible by 4 are vulnerable to this cover and decomposition
attack using an isogeny walk.

We can also consider non-hyperelliptic genus 3 covers. In this case, weak
curves have equation y2 = c(x − α)(x − σ(α))(x − β)(x − σ(β)), where c ∈ Fq3

and either α, β ∈ Fq3 \ Fq or α ∈ Fq6 \
(
Fq2 ∪ Fq3

)
and β = σ3(α). This targets

much more curves: actually, about half of the curves having their full 2-torsion
defined over Fq3 admit an equation of this form [25]. For a genus 3 hyperelliptic
cover over Fp2 , the quadratic polynomial systems to solve over Fp are composed
of 6 variables and 6 equations, or 8 equations and 10 variables with our variant.
Such systems can be solved very quickly by any computational algebra system.
Unfortunately, with non-hyperelliptic covers, the systems of equations are much
more complicated, and we have not been able to compute decompositions with
available Gröbner basis implementations.

4.2 Using a Genus 2 Cover

We now consider the tower Fp6 —Fp3 —Fp. The existence of genus 2 covers
(which are necessarily hyperelliptic) defined over Fq, where q = p3, has been
studied in [3,29]. In odd characteristic, vulnerable curves admit an equation in
so-called Scholten form

y2 = ax3 + bx2 + σ(b)x + σ(a) (4)

where a, b ∈ Fq2 and σ is the Frobenius automorphism of Fq2/Fq. An elliptic
curve E can be transformed into Scholten form as soon as its full 2-torsion is
defined over Fq2 [29] or its cardinality is odd and j(E) /∈ Fq [3]. Consequently, a
large proportion of curves are vulnerable to our cover and decomposition attack.
Moreover, any curve without full 2-torsion but still with a cardinality divisible
by 4, is 2-isogenous to a curve with full 2-torsion. In this setting, the quadratic
polynomial systems to solve over Fp are composed of 12 variables and 12 equa-
tions, or 16 equations and 18 variables with the decomposition variant. Solving
such systems is still feasible on current personal computers, but is much lower
than in the case of hyperelliptic genus 3 cover defined over Fp2 .

4.3 Complexity and Comparison with Other Attacks

Apart from the generic algorithms, the existing ECDLP attacks over sextic
extensions are either Gaudry’s decomposition method [13] or the GHS attack
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followed by Gaudry’s or Diem’s index calculus [8,15], with base field Fp or Fp2

(using Fp3 as base field does not provide any advantage in this context). When

the base field is Fp2 , the asymptotic complexity is in Õ
(
p8/3

)
for both decom-

position and GHS (assuming a genus 3 cover), or even in Õ
(
p2
)
with a degree

4 planar cover. But in all cases, the memory requirement is then very large,
in Õ(p2). When the base field is Fp, computing direct decompositions is com-
pletely out of reach, and the GHS attack very rarely provides low genus covers:
the smallest possible genus is actually 9 (with corresponding degree 10 plane
model), which occurs for at most p3 curves; the resulting genus is much higher
for most curves [5], implying that this attack is rarely practical.

We give below a summary of the performances of the presented approaches. In
order to obtain actual (and not just asymptotic) comparisons, we also consider
the cryptographically significant example of a curve E|Fp6

where p is a prime

close to 227, whose cardinality is divisible by a 160-bit prime number. The values
given are obviously just estimates relying on extrapolations of relation searches
done on Magma V2-17-5 with an Intel Core 2 Duo processor (see details in
Appendix B); in particular, the two last estimates are greater than what could
be expected from the results obtained with optimized implementation presented
in Section 5.

Attack
Asymptotic
complexity

Memory
complexity

Time estimates
(years)

Pollard on E(Fp6) [28] Õ(p3) Õ(1) 5× 1013

Ind. calc. on JacH(Fp2), g = 3 [15] Õ(p8/3) Õ(p2) 6× 1010 †

Ind. calc. on JacC(Fp2), d = 4 [8] Õ(p2) Õ(p2) 700 000

Decompositions on E((Fp2)
3) [13] Õ(p8/3) Õ(p2) 1012

Ind. calc. on JacC(Fp), d = 10 [8] Õ(p7/4) Õ(p) 1 500(∗)

Decomp. on JacH(Fp3), g = 2 [this work] Õ(p5/3) Õ(p) 4× 106

Decomp. on JacH(Fp2), g = 3 [this work] Õ(p5/3) Õ(p) 750†

Sieving on JacH(Fp2), g = 3 [this work] Õ(p12/7) Õ(p) 300†

†: only for Θ(p4) curves before isogeny walk (∗): only for O(p3) curves

5 A 149-Bit Example

In this section, we give a practical example of the cover and decomposition
attack for an elliptic curve defined over the Optimal Extension Field Fp6 , where
p = 225 + 35 is the smallest 26-bit prime. We define Fp2 as Fp[t] where t

2 = 2
and Fp6 as Fp2 [θ] where θ3 = t. The elliptic curve E is given by the equation

y2 = x(x − α)(x − σ(α)),

where σ : x �→ xp2

and α=9819 275+31 072 607 θ+17 686 237 θ2+31 518 659 θ3+22 546 098 θ4+

17 001 125 θ5. It has a genus 3 cover by the hyperelliptic curve H defined over Fp2
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which is of the form y2 =
(
x + φ(x) + φσ(x) + φσ2

(x)
)
N(x)2, with N(x) the

minimal polynomial of α over Fp2 and φ : x �→ (α−σ2(α))(σ(α)−σ2(α))
x−σ2(α) + σ2(α).

The cover map π is given by:

π(x, y) =

(
x+φ(x)+φσ(x)+φσ2

(x)
4 , y(x−φσ(x))(x−φσ2

(x))
8N(x)(x−σ2(α))

)
.

The common cardinality of E over Fp6 and of the Jacobian of H over Fp2 is four
times the 149-bit prime � = 356814156285346166966901450449051336101786213,
and the number of elements in the factor base is 16 775 441.

For best performances, we use the sieving approach described in Section 3.2.
As a first step, we compute a lex Gröbner basis of the system composed of 10
quadratic equations in 8 variables in about 3 s on a 2.6GHz Intel Core 2 Duo
processor with Magma V2.16-12 [6]. Instead of the double large prime variation,
we execute a structured Gaussian elimination. During the sieving phase, we
used 1 024 cores of quadri-core Intel Xeon 5570 processors at 2.93 GHz. After
62 h, we had collected about 1.4 × 1010 � p2/(2 · 8!) relations, that is all the
possible relations of the form (2). For comparison, we also tested Nagao-style
decompositions on the same type of processors. Such a test takes about 22ms on
a single core, showing that our decomposition variant is about 960 times faster.

Thanks to the large number of extra relations, structured Gaussian elimina-
tion performed quite well and, after 25.5 h on 32 cores, it reduces the number of
unknowns to 3 092 914 (a fivefold reduction). For safety, the output system con-
tains 15 000 more equations than this number of unknowns, and each equation
involves between 8 and 182 basis elements. The total number of non-zero entries
in all the equations is 191 098 665 and all these entries are equal to ±1. The most
time-consuming step is the iterative linear algebra, which is done with a MPI
implementation of the Lanczos algorithm. It took about 28.5 days on 64 cores
of the same Intel Xeon processors. A large fraction of this time was taken by
the MPI communications, since at each round 200MB of data had to be broad-
cast between the 2 involved machines (32 cores/machine). This linear algebra
phase produced discrete logarithms for all the basis elements that remained af-
ter structured Gaussian elimination. Substituting these values back in the initial
linear system, we recovered, in less than 12h using 32 cores, the discrete loga-
rithms modulo � of all elements in the basis (given by their coordinates on H):

log(5,1 646 475+19 046 912 t) = 324090233616618447788899446283862317783046006

log(6,2 062 691+792 228 t) = 134424987842262695486611476989769052152832441

...
log(33 554 465,4 471 075+14 598 628 t) = 340713467460900419473167933722631654111145151

With the results of the above precomputation, computing logarithm of arbi-
trary points on the elliptic curve becomes easy. To demonstrate this, we con-
structed points on E with the following process and computed their logarithms.
First, we let X0=

∑5
j=0(�π·pj+1� mod p)θj=4751 066+748 974 θ+8367 234 θ2+24 696 290 θ3+

1372 315 θ4+7 397 713 θ5. We then constructed points on E with abscissa X0 + δ for
small offsets δ. Let P1, P2, P3, P4, and P5 be the points corresponding to offsets
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3, 4, 11, 14 and 15. We lift each of these points to the Jacobian of H using the
conorm-norm map, which takes negligible time in Magma. After that, we apply
the descent method of Section 3.1 to small multiples of the lifted element, until we
find a multiple that decomposes as a sum of elements from the smoothness basis.
Looking up the corresponding logarithms (and dividing back by the small mul-
tiples that have been included) yields the logarithm of each point. On average,
we expect to try 6! = 720 multiples before finding a decomposition. To actually
decompose the five considered points, we needed 61.3 s. As a consequence, each
individual logarithm on E can be performed in less than one minute. We give
details below: the points involved in the decomposition are described by their
abscissa together with a + or − sign that indicates whether the “real” part of
the ordinate has a positive or negative representative in (−p/2, p/2). Similarly,
we indicate the choice of the points on E (as produced by Magma) with a + or
a − depending on the representative of the constant term in the ordinate.

Points Mult. Nagao Points in decomposition

(X0 + 3)+ 97 2844007+ 3819744− 5618276− 8396644− 11841629− 23771773−

(X0 + 4)− 36 4673075− 11272201+ 12937918− 13869464− 14428213+ 21399158−

(X0 + 11)+ 742 4884810− 6230068− 8411592+ 12188294+ 20118618+ 20945232−

(X0 + 14)− 956 3660673− 4314732− 20180301+ 22563519+ 26157093− 27107773−

(X0 + 15)− 682 780652+ 8444164+ 10116987+ 11070139− 14566563− 32232816+

The group structure of E is Z/2Z× Z/(2�)Z and all the logarithms are com-
puted mod �. Thus, in order to obtain points of order �, we multiply each of the
points Pj by 2. To obtain the discrete logarithms in base P1, we simply divide
the results by the logarithm of P1. Finally, we obtain:

2·P2 = 44853429456306375520883685722551142750204929·2·P1

2·P3 = 245828744177202642167186866655188704860309093·2·P1

2·P4 = 241773698573992897197261454348760406499325884·2·P1

2·P5 = 47914434731086497860980273327037833732109767·2·P1

6 Conclusion and Perspectives

In this paper, we have proposed a new index calculus algorithm to compute
discrete logarithms on elliptic curves defined over extension fields of composite
degree. In particular, sextic extensions are very well-suited to this method, as we
have practically demonstrated on a 149-bit example. This combination of cover
and decomposition techniques raises many questions. For example, it would be
interesting to know if elliptic curves of prime cardinality defined over a degree
6 extension field can be efficiently attacked. A related problem is how to target
more curves easily: this requires either an improvement of the isogeny walk, or
an efficient use of non-hyperelliptic covers. Finally, whether our method applies
to different extension degrees is an important issue; as will be explained in the
extended version of this article, degree 4 extensions are also susceptible, but the
advantage over generic methods is then less significant.



22 A. Joux and V. Vitse

Acknowledgements. We acknowledge that the results in this paper have been
achieved using the PRACE Research Infrastructure resource Curie based in
France at TGCC, Bruyères-le-Chatel.

References

1. Adleman, L.M.: The Function Field Sieve. In: Huang, M.-D.A., Adleman, L.M.
(eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

2. Adleman, L.M., DeMarrais, J., Huang, M.-D.: A Subexponential Algorithm for
Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus
Hyperelliptic Curves over Finite Fields. In: Huang, M.-D.A., Adleman, L.M. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 28–40. Springer, Heidelberg (1994)

3. Arita, S., Matsuo, K., Nagao, K.-I., Shimura, M.: A Weil descent attack against
elliptic curve cryptosystems over quartic extension fields. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E89-A, 1246–1254 (2006)

4. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application
in elliptic curve cryptography. J. Cryptology 14(3), 153–176 (2001)

5. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in elliptic curve cryptog-
raphy. London Mathematical Society Lecture Note Series, vol. 317. Cambridge
University Press, Cambridge (2005)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

7. Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1),
1–32 (2003)

8. Diem, C.: An Index Calculus Algorithm for Plane Curves of Small Degree. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 543–557. Springer,
Heidelberg (2006)

9. Diem, C.: On the discrete logarithm problem in elliptic curves. Compos.
Math. 147(1), 75–104 (2011)

10. Frey, G.: How to disguise an elliptic curve (Weil descent). Talk at the 2nd Elliptic
Curve Cryptography Workshop (ECC) (1998)

11. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil Descent Attack.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer,
Heidelberg (2002)

12. Gaudry, P.: An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34.
Springer, Heidelberg (2000)

13. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symbolic Comput. 44(12), 1690–1702 (2008)

14. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)
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A Genus 3 Cover

A.1 Odd Characteristic

We consider elliptic curves defined over Fq3 of the form

y2 = h(x)(x − α)(x − σ(α)) (5)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3\Fq and h ∈ Fq[x] is of
degree 1 or 2. Such elliptic curves were studied in [7,32]; they are the only elliptic
curves for which the GHS attack yields a cover by a hyperelliptic curve H of
genus 3 defined over Fq. We give an explicit description of the cover π : H → E;
following [25], we express this cover as a quotient by a bi-elliptic involution,
instead of using the GHS approach. For simplicity, we will assume that h(x) = x
(this can always be achieved by an appropriate change of coordinates if h has

http://homes.esat.kuleuven.be/~jscholte/weilres.pdf
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a root in Fq). Let φ : x �→ D
x−σ2(α) + σ2(α) be the unique involution of P1(Fq)

sending σ2(α) to ∞ and α to σ(α), so that D =
(
α− σ2(α)

) (
σ(α) − σ2(α)

)
.

If φ lifts to an involution of a hyperelliptic curve H|Fq
, then necessarily φσ and

φσ2

will be also involutions of H. Observing that {Id, φ, φσ, φσ2} forms a group,

this leads us to consider the curve of equation y2 = x + φ(x) + φσ(x) + φσ2

(x);
a more usual form for this equation is

H : y2 = F (x)N(x) (6)

where N(x) = (x− α) (x− σ(α))
(
x− σ2(α)

)
is the minimal polynomial of α

over Fq and F (x) = N(x)
(
x+ φ(x) + φσ(x) + φσ2

(x)
)
∈ Fq[x]. It is clear that φ

gives an involution ofH, still denoted by φ : (x, y) �→
(

D
x−σ2(α)+σ2(α), yD2

(x−σ2(α))4

)
.

The quotient of this genus 3 hyperelliptic curve H by φ is the elliptic curve

E′ : y2 = (x− α− σ(α))
(
x2 − 4ασ(α)

)
and the quotient map π′ : H → E′ satisfies π′(x, y) =

(
x+ φ(x), y/(x − σ2(α))2

)
.

The curve E′ is 2-isogenous to the original curve E : y2 = x(x − α)(x − σ(α))

via the map (x, y) �→
(

x2−4ασ(α)
4(x−α−σ(α)) , y

(x−2α)(x−2σ(α))
8(x−α−σ(α))2

)
. Finally, the cover map

π : H → E has the expression

π(x, y) =

(
F (x)
4N(x) ,

y(x−φσ(x))(x−φσ2
(x))

8N(x)(x−σ2(α))

)
. (7)

In the general case, when E has equation (5), the cover (7) remains the same
and the corresponding hyperelliptic curve H of genus 3 defined over Fq has the
following equation:

H : y2 = 4N(x)2 h

(
F (x)

4N(x)

)
.

A.2 Characteristic 2

Let E y2 + xy = x3 + ax2 + b be an ordinary curve defined over a binary field
Fq3 , where b = 1/j(E). As already apparent in [14], the GHS attack produces a
genus 3 hyperelliptic cover of E when TrFq3/Fq

(b) = 0, so that Θ(q2) curves are

directly vulnerable. To describe this cover, we slightly adapt the description of
[25,27], already used in the previous subsection. Let σ : x �→ xq be the Frobenius
automorphism and let v = 4

√
b; by assumption its trace over Fq is zero. As in the

case of odd characteristic, we consider the involution φ : x �→ σ(v)σ2(v)/(x+v)+
v of P1(Fq) sending v to infinity and σ(v) to σ2(v). We denote by N the minimal

polynomial of v over Fq and by F the product N(x)
(
x+φ(x)+φσ(x)+φσ2

(x)
)
∈

Fq[x]. Then, φ lifts to a bi-elliptic involution of the hyperelliptic curve H|Fq

defined by

H : y2 +N(x)y = F (x)N(x) + aN(x)2. (8)



Improved Index Calculus on Some Elliptic Curves 25

The curve E is up to a change of variable the quotient of H by φ and the cover
map from H to E is given by:

π : (x, y) �→
(
x+ φ(x) + v, y(x+φ(x)+v)

N(x) + v2
)
. (9)

B Complexity Comparisons of Different Attacks on
E(Fp6) with log2 p ≈ 27

The basis of comparison for all attacks on the ECDLP comes from generic al-
gorithms such as Pollard’s Rho [28]. Using Floyd’s cycle-finding algorithm, the
expected number of iterations is approximately 0.94

√
� ≈ 1.14 × 1024 where �

is the 160-bit prime dividing the cardinality of E(Fp6). With Magma V2-17-
5 on Intel Core 2 Duo 2.6GHz, it takes 13.91 s to compute 10 000 iterations,
corresponding to 5× 1013 years for the complete DLP resolution.

The main difficulty with the index calculus methods is the estimation of
the linear algebra cost, which is needed to find the optimal balance in the
large primes variation. We base our extrapolations on the experiment of Sec-
tion 5, where the resolution of a sparse system of size 3 × 106 took about
44 000h·CPU. Thus we assume that for a factor base of size n, the linear al-
gebra costs (n/3 000 000)2 · 44 000 · 160/148h, or n2 · 2 × 10−5 s. On the other
hand, all the relation timings are obtained with Magma as we did not implement
optimized versions of all the different attacks.

We first consider index calculus methods for which the size of the factor
base is in p2/2. The corresponding memory complexity is clearly problematic
for any real implementation, since the sole storage of the factor base elements
requires about 260 bits. When E admits a hyperelliptic genus 3 cover H|Fp2

, we

can apply index calculus after transfer to its Jacobian. Our experiment takes
13.27 s to complete 10 000 tests, yielding 1 689 relations; the complete relation
search thus requires 2× 106 years. With our assumption, the linear algebra step
(memory issues notwithstanding) takes 5× 1019 years, a much more larger time.
To rebalance the two phases using double large primes, we divide the size of
factor base by about 40 000; the total computation time then becomes 6× 1010

years. If E admits a non-hyperelliptic genus 3 cover C|Fp2
, this cover admits a

degree 4 plane model on which we can apply Diem’s index calculus [8]. It then
takes 11.74 s to complete 10 000 tests, yielding 4 972 relations. This means that
700 000 years are necessary to collect p2/2 relations. With the adapted double
large prime variation, the optimal small factor base contains about p elements,
and the linear algebra cost becomes negligible compared to the relation search.
We can finally apply directly Gaudry’s attack [13] to E with base field Fp2 . Our
experiment needs 22.35 s for 100 tests, yielding 36 relations. This is 80 times
slower than with the genus 3 hyperelliptic cover, and so the optimal balances
are different. The size of the factor base should then be divided by 9 000, for an
overall computation time of 1012 years.

Now, we consider the index calculus method for which the size of the factor
base is in p/2. We recall that it is not possible to use Gaudry’s decomposition



26 A. Joux and V. Vitse

attack with base field Fp. In the very rare case whereE admits a non-hyperelliptic
genus 9 cover, it is possible to use the attack of [8] on a degree 10 plane model
and obtain after 200 000 tests 5 relations in 123 s, implying a time of 50 years for
the relation step. With our assumption, the linear algebra costs 3 000 years. The
rebalanced optimal size of the factor base corresponds to a twofold reduction, for
an overall computation time of 1 500 years. If E admits a genus 3 hyperelliptic
cover H|Fp2

, we can apply the techniques presented in this article and search for

decompositions in JacH(Fp2) either with Nagao’s method or our sieving variant.
In the first case, it takes 126 s to run 5 000 tests yielding 9 relations. This means
that the relation search would need 30 years, the linear algebra still lasting 3 000
years. The optimal balance corresponds to a reduction by a factor 2.7 of the
size of the factor base, for a total computation time of 750 years. In the second
case, using the sieving technique we obtained 3 300 relations in 1 800 s, which
is 25 times faster than with Nagao’s technique (in practice, we have seen in
Section 5 that with optimized implementation, the ratio is rather of the order of
900). With the adapted large prime variation, the optimal size of the factor base
corresponds to a factor 4.4 reduction, for an overall computation time of 300
years. Note that for this sieving method, we have more accurate experimental
data obtained with an optimized implementation in C instead of Magma. We
detail below the timings obtained for curves defined over OEF of sizes 138,
144 and 150 bits; the sieving times are given for the collection of all p2/(2 · 8!)
relations, and the linear algebra is done after a structured Gaussian elimination.
Based on these figures, we estimate more accurately that breaking the DLP over
a 160-bit elliptic curve group would take about 200 years on a single core.

Size of p
Sieving

(CPU.hours)
Sieving

(real time )
Lanczos

(CPU.hours)
Lanczos

(real time)

log2 p ≈ 23 3 600 3.5 hours 4 900 77 hours

log2 p ≈ 24 15 400 15 hours 16 000 250 hours

log2 p ≈ 25 63 500 62 hours 43 800 28.5 days

Eventually, it is possible to apply our cover and decomposition technique on
a hyperelliptic genus 2 cover defined over Fp3 , but without the sieving improve-
ment. On this curve, our experiment takes 3 780 s for a single decomposition test,
which is 150 000 times slower than with the same method on a genus 3 cover
defined over Fp2 . In particular, no rebalance is needed since the relation search
dominates the computation time of about 4× 106 years.
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1 Introduction

Elliptic curves were independently introduced to cryptography by Miller and
Koblitz in 1985 [37,32]. The security of curve-based cryptosystems often relies on
the difficulty of solving the well-known Discrete Logarithm Problem on Elliptic
Curves (ECDLP). Given a finite cyclic group G = 〈P 〉 and given an element Q
in G, the discrete logarithm problem asks for an integer k such that Q = kP .
For an elliptic curve E defined over a finite field K, the group G can chosen to
be the set E(K) of rational points on E.

One of the main method for solving (EC)DLP is Index Calculus. This ap-
proach, which was first introduced by Kraitchik [33] and later optimized by
Adleman [1], can be seen as a general framework [15]. To summarize, Index
Calculus algorithms are composed of the following three steps:
1. Factor Basis definition. Identify a subset F = {π1, . . . , πs} ⊂ G.
2. Sieving step. Collect more than #F relations of the form aP + bQ =∑s

i=1 eiπi where a, b are random integers.
3. Linear Algebra step. From these relations, construct a matrix with a non-

trivial kernel. Then, find a non-trivial vector in this kernel and deduce k (a
discrete logarithm) from such vector.

While the last step is independent of the choice of G, the efficiency of the first
two steps relies on specific properties of the group. Depending on the ability to
find a factor basis together with an algorithm for computing relations during the
sieving step, the index calculus method may achieve a subexponential complexity.
For instance, subexponential algorithms have been obtained for multiplicative
groups of finite fields [3,2,4,30] and for Jacobian groups of hyperelleptic curves
with large genus [3,27,26].

Related Works and Contributions. Our results are related to the sieving step of
the ECDLP index calculus method proposed by Semaev [40] and later developed
by Gaudry [28] and Diem [13,14]. The main idea introduced by Semaev is the use
of so-called summation polynomials. As soon as a factor basis is fixed, summa-
tion polynomials can be used for sieving elements of an elliptic curve E and thus
an index calculus method follows. The main problem to get an efficient index
calculus is to find a factor basis together with an efficient algorithm for solving
summation polynomials. During the ECC conference following publication of Se-
maev’s result, Gaudry and Diem independently proposed such solutions. More
precisely, when E is defined over an extension Fqn with n > 1 a composite integer,
Gaudry [28] proposed to use the following set F = {(x,y) ∈ E(Fqn) | x ∈ Fq}
as a factor basis and provides an algorithm for solving the ECDLP with a com-
plexity better than generic methods. Next, the problem of finding P1, . . . , Pm

in F such that R = P1 + · · · + Pm for a given R ∈ E is reduced to solve
the equation Sm+1((P1)x, . . . , (Pm)x, Rx) = 0, where Sr is the r-th Semaev’s
summation polynomial [40] and (P )x stands for the x-coordinate of P . Diem
proposed a generalization of this approach by considering (in a simpler form
here) the factor basis FV := {(x,y) ∈ E(K) | x ∈ V }, with V a vector subspace
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of Fqn/Fq. Thus, the main computational tool for sieving here is an algorithm
solving efficiently a specific polynomial system.

Recently, Diem presented in [14] new complexity results for this generaliza-
tion. He succeeds to prove – without any heuristic assumption – some subexpo-
nential complexity results for solving ECDLP. But, for q = 2 and n is a prime – the
setting considered here – he has an index calculus algorithm of exponential com-

plexity eO
(
n log(n)1/2

)
. The polynomial systems occurring in [14] are solved with a

geometrical algorithm proposed by Rojas [39]. Whilst such algorithm has a good
complexity estimate, it is well known that its hard to implement it in practice.

In this work, we focus on the specific case q = 2 and n prime. We show that
the polynomial systems occurring have a very specific structure. We provide a
new (heuristic) algorithm taking advantage of the structure for the sieving step.
We focus our study on the following point decomposition problem related to
some vector space:

Problem 1 (Point Decomposition Problem associated to a vector space V ). Let
V be a vector space of F2n/F2. Given a point R ∈ E(F2n), the problem is to find
– if any – m points P1, . . . , Pm such that R = P1 + · · ·+ Pm with the additional
constraint that (Pi)x ∈ V for all i ∈ {1, . . . , m}.
This problem can be reduced to a polynomial system solving problem using
Semaev’s summation polynomials (or using any other polynomial system mod-
eling). Here, we show that the multi-homogeneous structure of the system con-
structed from Semaev’s summation polynomials can be used to design a Gröbner
based algorithm. To be more precise, we design an efficient algorithm for:

Problem 2. Let t ≥ 1, V be a vector space of F2n/F2 and f ∈ F2n [x1, . . . ,xm] be
any multivariate polynomial of degree bounded by 2t − 1 in each variable. The
problem is to find (z1, . . . , zm) ∈ V m such that f(z1, . . . , zm) = 0.

Since F2n is a vector space over F2, f can be rewritten (or deployed) as a poly-
nomial system of m equations over F2 and then can be solved using Gröbner
bases algorithms. The prominent observation is to remark that this system is
(affine) multi-homogeneous. While the complexity of solving bi-linear systems
using Gröbner bases – that is to say polynomials of bi-degree (1, 1) – is now
well understood [24], the general case is not known. Consequently, we propose a
simple ad-hoc algorithm to take advantage of the multihomogeneous structure.
This is of independent interest in the more general context of computer algebra.

The main idea is to show that starting from the unique equation f = 0, we
can generate many low-degree equations by deploying the equations mf = 0
over F2 for a large number of appropriately chosen monomials m. Another main
difference with unstructured polynomials is that – in some degree d – the number
of monomials occurring in the polynomials coming from mf is much smaller than
the number of all possible monomials in degree d. Indeed, due to the choice of
m, the monomials occurring in the equations constructed from mf have still a
multi-homogeneous structure and their degrees are well controlled.
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As usual, to estimate the maximum degree D reached during the computa-
tion we study the number of equations minus the number of monomials. When
this number is > 0, and under a reasonable linear independence assumption
confirmed by our experimental results, the computation is finished. Using the
structure of the polynomials, we prove that this degree D is much smaller than
expected; assuming that a reasonable heuristic is true. It is worth noticing that
although we describe our algorithm as a linearization method [35], Gröbner basis
algorithms like F4 or F5 [16,17] can be advantageously used in practice to solve
the corresponding polynomial systems. The algorithm presented in this paper,
together with its complexity analysis, can thus be understood as a method to
(heuristically) bound the complexity of computing the corresponding Gröbner
basis similarly to the Macaulay’s bound obtain by Lazard [34] to bound the
complexity of Gröbner bases in the general case. More precisely, we obtain:

Theorem 2. Assuming some linear independence assumption (see Assumption
1, p. 36), Problem 2 can asymptotically be solved in time O(2ωτ ) and memory
O(22τ ), where ω is the linear algebra constant and τ ≈ n/2. Under the same
hypothesis, there exists an index calculus based algorithm solving ECDLP over
F2n in the same time complexity.

The index calculus algorithm presented here has a better complexity than the
one proposed recently by Diem [14]. Moreover, we propose a novel approach for
solving the sieving step. We consider that it is a major open challenge to further
exploit the intrinsic algebraic structure of Problem 2 using Gröbner bases algo-
rithms. The complexity obtained here for solving ECDLP is still exponential. We
hope that the structures identified here can be further used to get a complexity
better than generic algorithms (see preliminary experiments in Section 5.2) or
to get a subexponential algorithm in a near future. Finally, we emphasize that
the complexity analysis of our algorithm relies on a heuristic assumption on the
rank of a linearized system. The validity of this assumption was experimentally
checked (see Section 5.1). Whilst we pushed the experiments as far as possible,
we pointed out that – due to the size of the systems involved – it is very difficult
to verify experimentally the assumption for large parameters. Consequently, it
is an open issue to prove Assumption 1.

Outline. The remaining of this paper is organized as follows. In Section 2,
we detail our notations and we provide some background on Gröbner bases.
In Section 3, we introduce and analyze our algorithm for solving Problem 2. In
Section 4, we apply our new result to the ECDLP over binary fields. In Section 5,
we present experimental results to give first evidences for Assumption 1. Section 6
concludes the paper and introduces future extensions of our work.

2 Preliminaries

In this section, we introduce definitions, notations and recall well known results
concerning polynomial system solving.
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2.1 Definition and Notation

Let F2 be the finite field of cardinality 2. We will consider a degree n extension
F2n of F2. We will often see F2n as an n dimensional vector space over F2. Let
{θ1, . . . , θn} be a basis of F2n over F2. We will use bold letters for elements,
variables and polynomials over F2n and normal letters for elements, variables
and polynomials over F2. If x1, . . . , xm are algebraic independent variables over
a finite field K, we write R = K[x1, . . . , xm] for the polynomial ring in those
variables. Given a set of polynomials {f1, . . . , f�} ∈ R, the ideal generated by
this set will be denoted by 〈f1, . . . , f�〉 ⊂ R. We write Resxi(f1, f2) for the
resultant of f1 ∈ R and f2 ∈ R with respect to the variable xi. A power product,
i.e.

∏k
i=1 xei

i where ei ∈ N, is called a monomial. Finally, we introduce a structure
which will be very useful in this paper.

Definition 1 ([24]). Let X1∪X2∪· · ·∪Xt = {x1, . . . , xm} be a partition of the
variables set. We shall say that a polynomial f ∈ K[x1, . . . , xm] = K[X1, . . . , Xt]
is multi-homogeneous of multi-degree (d1, d2, . . . , dt) if:

∀(α1, . . . , αt) ∈ Kt, f(α1X1, . . . , αtXt) = αd1
1 · · ·αdtf(X1, . . . , Xt).

For all i, 1 ≤ i ≤ t, let Xi = {xi,1, . . . , xi,ni}. We shall say that f is affine
multi-homogeneous if there exists fh ∈ K[X1, . . . , Xt] a multi-homogeneous poly-
nomial of same degree such that when one replaces (homogenization) variables
xi,ni by 1 we obtains f , i.e.: f(x1,1, . . . , x1,n1−1, . . . , xt,1, . . . , xt,nt−1) is equal
to fh

i (x1,1, . . . , x1,n1−1, 1, . . . , xt,1, . . . , xt,nt−1, 1). Finally, we shall say that f
has a multi-homogeneous structure if it is multi-homogeneous or affine multi-
homogeneous. A system of equation has a multi-homogeneous structure if each
equation has a multi-homogeneous structure (the equations can have different
multi-degrees).

Given a number e =
∑∞

i=0 ei2i with ei ∈ {0, 1}, we define its Hamming weight as
the number of non-zero elements in its binary expansion, i.e. W (e) :=

∑∞
i=0 ei.

We write
(
n
k

)
for the number of choices of k elements among a set of n elements

without repetition. We write O for the “big O” notation: given two functions
f and g of n, we say that f = O(g) if there exist N, c ∈ Z+ such that n >
N ⇒ f(n) ≤ cg(n). The notation log stands for the binary logarithm. Finally,
we write ω for the linear algebra constant. Depending on the algorithm used for
linear algebra, we have 2.376 ≤ ω ≤ 3.

2.2 Gröbner Bases [10]

Recent methods such as Faugère’s F4 and F5 [16,17] algorithms reduce Gröb-
ner basis computation to Gaussian eliminations on several matrices. The link
between linear algebra and Gröbner bases has been established by Lazard [34].
He showed that computing a Gröbner basis is equivalent to perform Gaussian
elimination on the so-called Macaulay matrices as defined below:
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Definition 2 (Macaulay Matrix [35,36]).

c1
i,j c2

i,j . . .

⎛⎝ ⎞⎠
m1 > m2 > . . .

.

.

.

ti,jfi

Let F = {f1, . . . , f�} ⊂ R be a set of polynomials
of degree ≤ d. Let B = {m1 > m2 > · · · } ⊂ R be
the sorted set (w.r.t. a fixed monomial ordering)
of degree ≤ d monomials. The set B is a basis
of the vector space of degree ≤ d polynomials in
R. The Macaulay matrix Md(F ) of degree d is

defined as follows. We consider all the polynomials ti,jfi of degree ≤ d with
ti,j ∈ B and fi ∈ F . Rows of Md(F ) correspond to the coefficients vectors
(c1

i,j , c
2
i,j , . . .) of these polynomials ti,jfi =

∑
k ck

i,jmk with respect to the basis B.

Precisely, Lazard [34] proved the following fundamental result:

Theorem 1. Let F = {f1, . . . , f�} ⊂ R. There exists a positive integer D for
which Gaussian elimination on all matrices M1(F ),M2(F ), . . . ,MD(F ) com-
putes a Gröbner basis of 〈f1, . . . , f�〉.
F4 [16] can be seen as another way to use linear algebra without knowing an
a priori bound. It successively constructs and reduces matrices until a Gröbner
basis is found. The same is true for F5 when considered in “F4-style” [25].

It is clear that an important parameter in Gröbner basis computation is the
maximal degree D reached during the computation. This maximal degree is
called the degree of regularity. However, it is a difficult problem to estimate
a priori the degree of regularity. This degree is known and well mastered for
specific families of systems called regular and semi-regular [5,6,7]. It is classical to
assume that the regularity of regular/semi-regular systems provides an extremely
tight upper bound on the regularity of random system of equations (most of the
times, we have equality). For example, the regularity degree of a regular sequence
f1, . . . , f� ∈ R (with � ≤ n) is D = 1 +

∑�
i=1(deg(fi) − 1). Ideals with special

structures – typically arising in cryptography – may have a much lower regularity
degree, hence a much better time complexity. This has permitted Gröbner bases
techniques to successfully attack many cryptosystems (e.g. the Hidden Field
Equation cryptosystem (HFE) [38,31,18,29], Multi-HFE [9]). In many cases, the
algebraic systems appearing in these applications were not generic and could be
solved more efficiently than generic systems, sometimes using dedicated Gröbner
basis algorithms.

In our case, the algebraic system considered in Problem 2 has a multi-
homogeneous structure (more precisely multi-linear). Interestingly, the formal
study of computing Gröbner basis of multi-homogeneous systems has been initi-
ated by Faugère, Safey El Din and Spaenlehauer for bilinear systems [24] leading
already to new cryptanalytic results [19,23,21]. However, the general case (more
blocks, larger degrees) remains to be investigated.

As a consequence, we design in this paper a simple ad hoc algorithm to take
advantage of the multi-homogeneous structure arising in Problem 2. Basically,
the idea is to generate a submatrix of the Macaulay matrix at a degree DLin

which allows to linearize the system derived from Problem 2. To do so, we
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strongly exploit the multi-homogeneous structure of the equations. The fun-
damental remark is that many low-degree relations exist and can be explicitly
predicted. Moreover, the number of columns in the Macaulay matrix is less than
usual. This is due to the fact that all monomials occurring have still the multi-
homogeneous structure. Roughly, this allows to predict many zero columns for
a suitably chosen subset of the rows. In section 3.2, we derive a bound on the
degree DLin which needs to be considered.

It is worth noticing that although we describe our algorithm as a linearization
method, computing a Gröbner basis with F4 or F5 [16,17] can be advantageously
used in practice to solve the corresponding polynomial systems. The DLin ob-
tained has to be understood as an upper bound on the real regularity degree
of the system. Any new result on multi-homogeneous systems would allow to
improve the complexity of solving Problem 2 (partial results are presented in
Section 5.2).

3 Solving Multivariate Polynomials with Linear
Constraints

In this section, we describe the main result of this paper: an algorithm for solving
Problem 2. Let V be a F2-vector subspace ⊂ F2n of dimension n′ and let f ∈
F2n [x1, . . . ,xm] be a multivariate polynomial with degree < 2t in each variable.
We want to solve f(x1, . . . ,xm) = 0 under the linear constraints x1, . . . ,xm ∈ V .
To tackle this problem, we generalize the algorithm and analysis of [22] from the
multi-linear case (t = 1) to arbitrary values of t. From now on, we assume that
m · n′ ≈ n so that the problem has about one solution on average.

3.1 Modeling the Linear Constraints

Let {ν1, . . . , νn′} ⊂ F2n be a basis of V as a F2-vector space. Let yi,j be m · n′

variables defined by xi = ν1yi,1 + ν2yi,2 + · · ·+ νn′yi,n′ . We apply a Weil descent
to Problem 2 (see e.g. [11, Chapter 7]). By replacing the variables xi in the poly-
nomial f , we get a new polynomial fV ∈ F2n [y1,1, . . . , ym,n′ ] with m ·n′ variables.
The linear constraints on f are translated to Galoisian constraints by constrain-
ing the solutions of fV to F2. Using the field equations, fV is viewed more pre-
cisely as a a polynomial in the affine algebra A(F2n) := F2n [y1,1, . . . , ym,n′ ]/〈Sfe〉,
where 〈Sfe〉 is the 0-dimensional ideal generated by the field equations:

Sfe = {y2
i,j − yi,j}1≤j≤n′

1≤i≤m .

Problem 2 is then equivalent to compute a Gröbner basis of the ideal 〈fV ,Sfe〉 ⊂
F2n [y1,1, . . . , ym,n′ ]. It is generally more efficient to consider its resolution over F2.
To do so, we consider A(F2n) as a module over A(F2) = F2[y1,1, . . . , ym,n′ ]/〈Sfe〉
whose basis is {θ1, . . . , θn}. We consider fV as an element of A(F2n) and we
deploy it as a A(F2)-linear combination of the basis {θ1, . . . , θn}. Namely:

fV = [fV]↓1 θ1 + [fV]↓2 θ2 + · · · + [fV]↓n θn (1)
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for some [fV]↓1 , . . . , [fV]↓n ∈ A(F2) that depend on f and the vector subspace
V . Due to the linear independence of the θ1, . . . , θn, Problem 2 is equivalent to
solve:

Salg : [fV]↓1 = [fV]↓2 = · · · = [fV]↓n = 0. (2)

In order to solve Salg, we will generate many new equations by deploying mul-
tiples of f ∈ F2n [x1, . . . ,xm] over the vector subspace V . The key point of this
strategy is the existence of abnormally high number of low-degree equations
arising as algebraic combinations of the equations in (2).

From now on, we represent the classes of polynomials gV ∈ A(F2n) and
[gV]↓i ∈ A(F2) corresponding to g ∈ F2n [x1, . . . , xm] by their minimal elements,
in other words by their normal forms modulo Ife (whose generators form a
Gröbner basis). By abuse of notation, we use the same symbol for a class and
its minimal representative in the underlying polynomial ring. When the context
is not clear, we precise the algebra where the element is lying.

3.2 Low-Degree Equations

Let e1, . . . , em ∈ N and let m =
∏m

i=1 xi
ei be a monomial of F2n [x1, . . . ,xm].

Following the descent described in Section 3.1, we have

A(F2n) � (mf)V =
n∑

k=1

[(mf)V]↓k θk, with [(mf)V]↓k ∈ A(F2n).

The equation f = 0 clearly implies mf = 0, hence [(mf)V]↓k = 0 for k = 1, . . . , n.
We can then add these new equations to the polynomial system (2). The equa-
tions obtained in this way all share the same structure. More precisely, their
minimal representatives, due to the normal form computation modulo Ife, are
all affine multi-linear in F2n [y1,1, . . . , ym,n′ ]. Moreover, thanks to the evalua-
tions done during the deployments, each block of variables Xi = {yi,1, . . . yi,n′}
naturally corresponds to the variable xi. From these structures, we deduce the
following result.

Lemma 1. Let f ∈ F2n [x1, . . . ,xm] be a multivariate polynomial with degree
< 2t in each variable. Let e1, . . . , em ∈ N and m =

∏m
i=1 xi

ei be a monomial
of F2n [x1, . . . ,xm]. There exist polynomials pj,k ∈ F2[y1,1, . . . , ym,n′ ] such that
[(mf)V]↓k =

∑n
j=1 pj,k [fV]↓j . Each polynomial pj,k has degree ≤ W (ei) with re-

spect to every block of variables Xi = {yi,1, . . . yi,n′}, 1 ≤ i ≤ m. Moreover, each
minimal representative of [(mf)V]↓k has degree ≤ max0≤e′

i<2t W (ei + e′i) w.r.t.
each block of variables Xi, 1 ≤ i ≤ m.

This lemma implies that the new equations (obtained from mf) are algebraic com-
binations of the original ones (obtained from f). In particular, they can a pri-
ori be recovered “in a hidden form” with any Gröbner basis algorithm at degree
Dapriori = mt +

∑m
j=1 W (ej). The value Dapriori is the degree that the equations

[(mf)V]↓k should have a priori from the algebraic dependencies of Lemma 1. It is
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the sum of the degree of the deployments of f (at most mt) and the degree of each
polynomial pj,k

(
at most

∑m
j=1 W (ej)

)
. However, Lemma 1 also implies that the

[(mf)V]↓k only have degree Dactual =
∑m

j=1(max0≤e′
j<2t W (ej + e′j)). Thus:

Dapriori − mt ≤ Dactual ≤ Dapriori.

Therefore, [(mf)V]↓k may have a degree drop as large as mt depending on the
monomial m chosen. The existence such low-degree relations compared generic
systems makes Gröbner basis algorithms faster in practice and allows a lineariza-
tion strategy.

Following the general method of Macaulay [35], we will linearize the poly-
nomial system Salg∪{. . . , . . . , [(mf)V]↓1 , [(mf)V]↓2 , . . . , [(mf)V]↓n , . . . , . . .} using
the low-degree equations identified in this section. The choice of the monomials
m used to generate the equations are particularly important for the efficiency
of the linearization strategy. In particular, the equations with the lowest degrees
are the most interesting ones since they involve less monomial terms. Of course,
this strategy requires that a substantial subset of all low-degree relations are
linearly independent.

3.3 Linear Dependencies

In the previous section, we explained how low-degree relations can be produced.
To be used in a linearization strategy, these equations must be linearly indepen-
dent. In this section, we describe two sources of linear dependencies.

Frobenius Transforms. The first source of linear dependencies is due to the
Frobenius endomorphism (as identified in [22]). Let {θ1, . . . , θn} be a basis
of F2n/F2. The set {θ2

1, . . . , θ
2
n} is another basis of F2n/F2. Let aij ∈ F2 be

such that θ2
j =

∑
i aijθi. We have fV2 =

∑n
j=1

[
fV2

]↓
j
θj . However, fV2 =(∑n

j=1 [fV]↓j θj

)2

=
∑n

j=1 [fV]↓j θ2
j =

∑n
i=1

(∑n
j=1 aij [fV]↓j

)
θi. Thus, we obtain[

fV2
]↓
i

=
∑n

j=1 aij [fV]↓j . In other words, the polynomials
[
fV2

]↓
1
, . . .,

[
fV2

]↓
n

are
linear combinations of [fV]↓1 , . . . , [fV]↓n. Decomposing fV as a sum of monomials,
we deduce that

[
fV

2
]↓
i

=
∑

m∈Mon(fV) [(mf)V]↓i =
∑n

j=1 aij [fV]↓j . This provides
a non trivial linear relation between some low-degree equations. More generally,
we obtain similar relations if we replace f by m′f in the above equation (for any
monomial m′). These linear dependencies can be easily detected and prevented.
Indeed, we can simply avoid every monomial m that is the leading term of (m′f)
for some m′.

Vector Dependencies. Another source of dependency, that we call vector de-
pendencies, is induced by the vector space V . To illustrate the phenomena,
consider the simplest polynomial g = x1 ∈ F2n [x1, . . . ,xm]. We have gV =
ν1y1,1 + ν2y1,2 + · · · + νn′y1,n′ ∈ A(F2n). More generally, (g2i

)V = ν2i

1 y1,1 +
ν2i

2 y1,2 + ·+ ν2i

n′y1,n′ ∈ A(F2n). Since y1,1, . . . , y1,n′ are linearly independent, we
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obtain for any k > n′ a non trivial linear dependency by considering different
g2i

’s, i.e. ∃β1, . . . , βk ∈ F2n \{(0, . . . , 0)} such that β1(g2i1 )V +β2(g2i2 )V + · · ·+
βk(g2ik )V = 0. This simple example can be easily generalized to g = mf with
m a monomial. Such linear dependency can be clearly prevented during the
generation of equations [(mf)V ]↓i ’s by considering monomials m =

∏m
i=1 xi

ei ,
with 0 ≤ ei < 2n′

< 2n.

3.4 Description of the Linearization Algorithm

For any positive integer d, let MLinMonB(d) be the set of multi-linear mono-
mials in F2[y1,1, . . . , ym,n′ ] of degrees ≤ d with respect to each block Xi =
{yi,1, . . . , yi,n′}. The image of MLinMonB(d) in A(F2) is a basis of the vector
subspace A(F2)d composed of elements in A(F2) with a minimal representative
having degrees ≤ d with respect to each block Xi. Let also Mon(d) be the set
of monomials m =

∏m
i=1 xi

ei ∈ F2n [x1, . . . ,xn] with 1 ≤ ei < 2n′
, such that

all [(mf)V]↓k (1 ≤ k ≤ n) are in A(F2)d. Finally, let E(d) := n · #Mon(d) and
M(d) := #MLinMonB(d).

We are now ready to describe Algorithm 1, a simple linearization algorithm for
solving Problem 2. The algorithm constructs a sub-matrix of the Macaulay (see
Definition 2) matrix Md for system 2. We first gather M(d) equations [(mf)V]↓i
with m ∈ Mon(d). By definition, all these equations are in A(F2)d. Hence, they
can be decomposed with respect to the basis MLinMonB(d). We then form the
corresponding linear system Slin over F2, where each row corresponds to the
coefficients involves in the equations and each column corresponds to an element
in MLinMonB(d). We finally solve the linear system. This simple algorithm,
that we call Sub-Macaulay, is not aimed to be optimal in practice but to derive
complexity bounds.

The general linearization strategy and our analysis below rely on a heuristic
assumption formalized below:
Assumption 1. With a probability exponentially close to one, the equations
generated by Algorithm 1 are linearly independent.
Particularly, the assumption states that the solutions of Slin are in one-to-one
correspondence with the solutions of Problem 2.

3.5 Complexity Bounds for Solving Problem 2

We now derive an upper bound on the complexity of Algorithm 1. The main
task is to estimate the values of M(d) (number of columns in Slin) and E(d)
(number of equations in Slin). Due to the field equations, we only have multi-
linear monomials, i.e. variables can only have exponents 0 or 1. Therefore, the
number of monomials of total degree d′, 0 ≤ d′ ≤ d involving variables of the
block Xi is

(
n′

d′
)
. For the m blocks, we get:

M(d) =

(
d∑

d′=0

(
n′

d′

))m

. (3)



Improving the Complexity of Index Calculus Algorithms 37

Input: f ∈ F2n [x1, . . . ,xm] of degree in each variable is bounded by 2t − 1, and
V a F2-vector subspace ⊂ F2n of dimension n′.

Result: If not empty, the finite set {s1, . . .} ⊂ V m such that f(si) = 0.
begin1

Let d be the smallest integer such that E(d) ≥M(d);2
Mon← []; Salg ← [] // Empty lists of monomials and equations3
for k = 1, . . . , �E(d)/n� do4

Randomly pick a monomial m ∈Mon(d) \Mon;5

Let [(mf)V]↓1 , . . . , [(mf)V]↓n ∈ F2[y1 1, . . . , ym nm ] be such that6

(mf)V =
∑n

k=1 [(mf)V]↓k θk;
Salg ← Salg ∪ ([(mf)V]↓1 , . . . , [(mf)V]↓n); Mon← Mon ∪ [m];7

end8
Construct Slin the linear system over F2 obtained by linearizing Salg;9
If Slin has solutions then solve Slin and return {s1, . . . , } else return no10
solution end;

end11

Algorithm 1. Sub-Macaulay

By definition, the degree of each variable xi occurring in the monomials of f may
have any degree between 0 and 2t−1. By Lemma 1, the degree of [(mf)V]↓k with
respect to Xi is max0≤e′′

i <2t W (e′i + e′′i ) = W
(⌊

e′
i

2t

⌋)
+ t. Therefore, the number

of exponents e′i, 1 ≤ e′i ≤ 2n′
leading to degree d′ with respect to the block Xi is

2t
(
n′−t
d′−t

)
. As a consequence1

E(d) := n 2tm

(
d∑

d′=t

(
n′ − t

d′ − t

))m

. (4)

We derive the following asymptotic bound (proven in Appendix A) on the min-
imal value d that allows linearization.

Lemma 2. Let α be such that 1 − α < 1/2 < α < 1. Assuming that n′ =
nα, m = n1−α and t = m − 1, then E(d) ≥ M(d) for d ≈ nα

2 when n is large
enough.

In the next table, we have computed the smallest dreal such that E(dreal) ≥
M(dreal) for different values of n and α. Then, we compute βreal = logn(dreal).
According to Lemma 2, the theoretical value predicted for β = logn(d) is βtheo =
α− 1

log(n) . The last column columns shows that βtheo is extremely close to βreal.
Finally, we obtain an estimate on the complexity:

Theorem 2. Let α, n′, m, t be as in Lemma 2. Under Assumption 1, Problem 2
can asymptotically be solved in time O(2ωτ ) and memory O(22τ ), where ω is the
linear algebra constant and τ ≈ n

2 .

1 Note that we assume that d ≥ t.
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n dreal α βreal

(
α− 1

log(n)

)
− βreal

100000 1114 2/3 0.6093 -0.0029
1000000 5102 2/3 0.617956 -0.0014
10000000 23466 2/3 0.62435 -0.00069
100000000 108353 2/3 0.62936 -0.00032
1000000 1285 0.55 0.51815 -0.018
10000000 4331 0.55 0.51951 -0.012
100000000 14738 0.55 0.52105 -0.0089
1000000000 50577 0.55 0.52266 -0.0061
10000000000 174773 0.55 0.52425 -0.0043

Proof. The above linearization algorithm reduces the problem to linear algebra
on a matrix of rank M(d). According to Lemma 4 (Appendix A), we get that
log(M(d)) ≈ m log

(
nα

nβ

) ≈ n(1−α) nβ(α − β) log(n) = n(1− 1
log(n)) = n

2 . ��

4 Application to ECDLP over Binary Fields

4.1 Diem’s Variant of Index Calculus

Let E be an elliptic curve defined over F2n by the equation

E : y2 + xy = x3 + x2 + a6, for some a6 ∈ F2n . (5)

Semaev’ summation polynomials Sr [40] are multivariate polynomials with the
following property: Sr(x1, . . . ,xr) = 0 for some x1, . . . ,xr ∈ F2n if and only if
there exist y1, . . . ,yr ∈ F2n such that (xi,yi) ∈ E(F2n) and (x1,y1) + · · · +
(xr,yr) = P∞.

Proposition 1 ([40]). The summation polynomials of the elliptic curve (5) are
recursively given by: S2(x1,x2) := x2+x1, S3(x1,x2,x3) := x1

2x2
2+x1

2x3
2+

x1x2x3+x2
2x3

2+a6 and for r ≥ 4 and any k, 1 ≤ k ≤ r−3, the r-th summation
polynomial is

Sr(x1, . . . ,xr) := ResX
(
Sr−k(x1, . . . ,xm−k−1,X),Sk+2(xr−k, . . . ,xr,X)

)
.

Moreover, the polynomial Sr is symmetric and has degree 2r−2 in each variable
xi as soon as r ≥ 2. The cost of constructing this polynomial is bounded by
2O((r−1)2).

Following Diem [14], we use summation polynomials in the sieving stage of an
index calculus algorithm. Let V be a vector subspace of F2n/F2 with a dimension
n′ to be fixed later. We define the factor basis FV as

FV := {(x,y) ∈ E(F2n)|x ∈ V }.
Since the abscissas of points ∈ E are uniformly distributed in Fqn [13,14], we can
assume that the set FV has size about 2n′

. During the sieving stage, we compute
about 2n′

relations P∞ = aiP + biQ+
∑

Pj∈FV
ei

jPj with Pj ∈ FV for randomly
chosen integer couples (ai, bi). Each relation is obtained by solving an instance
of the following problem, for some integer parameter m to be fixed later.



Improving the Complexity of Index Calculus Algorithms 39

Problem 3. Let ai, bi be fixed random integers and R = aiP + biQ. Find - if any
- (x1, . . . ,xm) ∈ V m such that Sm+1(x1, . . . ,xm, (R)x) = 0.

Clearly, this problem is a particular instance of Problem 2.

4.2 A Linearization Strategy for Solving ECDLP over F2n

We now apply the analysis of Section 3 to Problem 3. Let α, 1/2 < α < 1. be a
parameter that will be optimized later. We set n′ := nα and m := n1−α as in
Lemma 2. According to Proposition 1, the (m+1)th Semaev’s polynomial Sm+1

can be computed in time O(2t1), where

t1 ≈ m2 ≈ n2(1−α).

For each relation computed in the sieving stage, we generate and solve an in-
stance of Problem 2 where f has degree 2m−1 with respect to each of the m
variables. According to Theorem 2, each instance can be solved in time O(2ωτ )
and memory O(22τ ), where τ ≈ n/2. The probability that a point R can be
written as a sum of m factor basis elements is 1

m! [14]. Hence, we need m!2n′

trials on average to obtain 2n′
valid relations. Since log(m!) ≈ n(1−α) log n(1−α),

the total cost of the sieving stage is bounded by O(2t2) where

t2 ≈ n(1−α) log n(1−α) + nα + ω
n

2
.

Finally, the last step of our algorithm consists in (sparse) linear algebra on a
matrix of rank about 2n′

with elements of size about n bits. The computation
time of this part can be approximated by O(2t3), where t3 ≈ ω′nα, ω′ being the
sparse linear algebra constant. Finally, we obtain the following theorem.

Theorem 3. Under Assumption 1, ECDLP over F2n can asymptotically be
solved in time O(2ω t), where t ≈ n/2.

This has to be compared with the algorithm presented [14] which is was so far
the best algebraic index calculus based approach. For q = 2 and n prime, the

algorithm of [14] has complexity eO
(
n log(n)1/2

)
(but such complexity holds with-

out any heuristic assumption). The complexity of our approach is also very close
to O(2n/2); the complexity of generic algorithms (e.g. Pollard’s rho algorithm).

5 Experimental Results

5.1 Validation of the Heuristic Assumption

We have experimentally checked the validity of Assumption 1 using the
computer algebra system Magma. During the sieving stage, most of polyno-
mial systems generated have no solution (only 1/m! polynomial systems will
produce a solution). Thus we mainly check the assumption for polynomial sys-
tems with no solution in the vector space V . In order to validate this assump-
tion we proceeded in the following way. We chose many random polynomials
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f with degree 2t < 2m−1 in each of its m < 5 variables. The coefficients
are in F2n with n a prime less than 40. Then, for each of these polynomials,
we construct a large binary matrix M of size N × M . This matrix represents
the deployed polynomials [(mf)V ]↓1 , . . . , [(mf)V ]↓n for all monomials in Mon(d)(
with d is the smallest integer with M(d) < E(d)

)
. We avoid the ones corre-

sponding to possible linear dependencies as identified in Section 3.3. We want
to demonstrate that a random square submatrix of size M × M of M is full
rank. We recall that the probability that a random N × M boolean matrix has

rank r is P (N, M, r) = 2−N M

r−1∏
j=0

(2N − 2j)
r−1∏
j=0

(2M − 2j)/
r−1∏
j=0

(2r − 2j). Hence

P (100, 100, 100) is only 28.8% but P (105, 100, 100) = 96.9%. For this reason, we
consider submatrices M′ of M of size (M +5)×M . We check that the rank is M
or M − 1 or M − 2; for a random Boolean matrix the probability is 99.999982%.
We repeated the test 100 times and deduced an approximation of the success
probability. In all our experiments we always obtain ≈ 100% of success. In par-
ticular, we validated the assumption for Problem 3 using Semaev’s summation
polynomials with m + 1 variables (m = 2, . . . , 4). These validations represent a
huge computational effort since some of the matrices M encountered during the
experiments had more than 10000 columns.

5.2 Gröbner Basis Computations

We performed actual Gröbner basis computation using the FGb software [20] to
compare the theoretical number of operations with a more realistic value.

n m Number of Theoretical bound
Operations (GB) bound (Algo 1)

41 2 223.5 M(d)2 ≈ 260

67 2 237.1 M(d)2 ≈ 290

97 2 251.1 M(d)2 ≈ 2125

131 2 274.5 M(d)2 ≈ 2160

For instance, for n = 131, m =
2 we can solve the point decom-
position problem in 274.5 opera-
tions using a variant of the hybrid
method [8]. We compare the cost
of solving Semaev’s equations us-

ing Algorithm 1 (complexity of solving a linear system of rank M(d)) and a
Gröbner basis computation. This is the dominating part in the complexity of
our index calculus based algorithm. Remark that the number of operations re-
ported in this table are much below the theoretical estimate for Algorithm 1. We
have a gain of (at least) a factor 2 in the exponent in favor of Gröbner computa-
tions. Further experiments suggest that a more advanced approach (i.e. Gröbner
basis instead of linearization) can lead to an algorithm of better complexity. One
can hope a gain of a factor m in the exponent. However, we are, for the moment,
not able to provide theoretical evidences supporting such an improvement.

6 Conclusion and Perspectives

As a conclusion, we emphasize that the algorithm of Section 3 is of independent
interest in the more general context of polynomial system solving. It shows that
algebraic systems arising by deploying a multivariate polynomial equation from
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F2n to F2 are easier to solve than generic systems. We have underlined the
intrinsic structures which help for solving such systems. This is an open problem
how to use such structure in an F4/F5 based algorithm. We hope that such
improvements may lead to a subexponential algorithm. Finally, the approach
generalizes quite easily to other composite fields with “small” characteristics,
resulting in similar algorithms with comparable asymptotic complexities. All
these extensions will be discussed in an extended version. Finally, although the
paper is mainly theoretical, we hope that it could be the building block towards
the development of more efficient methods to solve the ECDLP problem.
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A Proof of Lemma 2

In order to show Lemma 2, We use the following well-known technical result (a
proof is given in [22] for instance).

Lemma 3. Let n be an integer and let δ, 0 < δ < 1/2 be a number such that
δn ∈ N. Finally, let ν := δ

1−δ . Then, the following inequalities hold:

(
n

δn

)
<

δn∑
i=0

(
n

i

)
<

1
1 − ν

(
n

δn

)
.

We can now come back to the proof of Lemma 2.

Proof (of Lemma 2). We recall that 1 − α < 1
2 < α < 1, and n′ = nα, m =

n(1−α), t = m−1. The number of equations in the system generated in Algorithm
1 is E(d) = n 2t m

(∑d
d′=t

(
n′−t
d′−t

))m

and the number of columns is M(d) =(∑d
d′=0

(
n′

d′
))m

. We try to find β, 1/2 < β < α < 1 such that E(d) ≥ M(d),

where d = nβ for n big enough.

http://eprint.iacr.org/2004/031.pdf
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A sum of binomials can be bounded from above by the last binomial occurring
in the sum. We then get:

E(d)
1
m = n

1
m 2t

d∑
d′=t

(
n′ − t

d′ − t

)
≥ n

1
m 2t

(
n′ − t

d − t

)
.

Now, let δ := d
nα and ν := δ

1−δ . When n is large enough, we have δ < 1
3 . This

leads to ν ≤ 1
2 and 1

1−ν ≤ 2. We are now in position to apply Lemma 3.

M(d)
1
m ≤ 2

(
n′

d

)
. (6)

Hence, we want to find d such that n
1
m 2t

(
n′−d
d−t

) ≥ 2
(
n′

d

)
. We search now for the

equality and consider the logarithm of each side of (6):

log(n
1
m ) + t + log

(
n′ − t

d − t

)
= 1 + log

(
n′

d

)
. (7)

The following result is useful to derive an asymptotical equivalent of this equality:

Lemma 4. Let γ < 1/2 < β < α < 1. Forn large enough, we have: log
(
nα−nγ

nβ−nγ

) ≈
(nβ − nγ)(α − β) log(n).

Proof. We have log
(

nα−nγ

nβ−nγ

) ≈ (nα−nγ) log(nα−nγ)− (nβ −nγ) log(nβ −nγ)−
(nα − nβ) log(nα − nβ) and thus
log

(
nα−nγ

nβ−nγ

) ≈ (nα − nγ) α log(n)− (nβ − nγ)β log(n) − (nα − nβ) α log(n)

= −nγ α log(n)−(nβ − nγ) β log(n) + nβ α log(n)=(nβ − nγ) (α− β) log(n)

Taking γ = 0, we deduce log
(
nα

nβ

) ≈ nβ(α− β) log(n). Then, using γ = 1−α we
get log

(
nα−n1−α

nβ−n1−α

) ≈ (nβ − n1−α)(α − β) log(n). As a consequence (7) yields:

nα−1 log n + n1−α + (nβ − n1−α)(α − β) log(n) = log(2) + nβ(α − β) log(n)
nα−1 log n + n1−α − n1−α(α − β) log(n)=log(2) and n1−α ≈ n1−α(α − β) log(n)

So that 1 ≈ (α−β) log(n). Thus, β ≈ α−1/ log(n) and dβ ≈ n

(
α− 1

log(n)

)
= nα/2.

This concludes the proof of Lemma 2. ��
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3 Université catholique de Louvain, UCL Crypto Group
fstandae@uclouvain.be
4 Tsinghua University
jpsteinb@gmail.com

Abstract. This paper considers—for the first time—the concept of key-
alternating ciphers in a provable security setting. Key-alternating ciphers
can be seen as a generalization of a construction proposed by Even and
Mansour in 1991. This construction builds a block cipher PX from an
n-bit permutation P and two n-bit keys k0 and k1, setting PXk0,k1(x) =
k1 ⊕ P (x ⊕ k0). Here we consider a (natural) extension of the Even-
Mansour construction with t permutations P1, . . . , Pt and t + 1 keys,
k0, . . . , kt. We demonstrate in a formal model that such a cipher is secure
in the sense that an attacker needs to make at least 22n/3 queries to the
underlying permutations to be able to distinguish the construction from
random. We argue further that the bound is tight for t = 2 but there is
a gap in the bounds for t > 2, which is left as an open and interesting
problem. Additionally, in terms of statistical attacks, we show that the
distribution of Fourier coefficients for the cipher over all keys is close to
ideal. Lastly, we define a practical instance of the construction with t = 2
using AES referred to as AES2. Any attack on AES2 with complexity
below 285 will have to make use of AES with a fixed known key in a
non-black box manner. However, we conjecture its security is 2128.

Keywords: Block ciphers, provable security, Even-Mansour construc-
tion, AES.

1 Introduction

Block ciphers are one of the fundamental primitives in symmetric cryptography.
Often called the work horses of cryptography, they form the backbone of today’s
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secure communication. Therefore, their design has been an important research
focus over the last 20 years, giving rise to different well-established strategies
to prevent large classes of attacks. As typical examples, one can mention the
practical security approach against linear and differential cryptanalysis [23], and
the wide-trail strategy [15] that lead to the design of the AES Rijndael [14].
Another line of research is the so-called provable security approach against sta-
tistical attacks, that served as foundation for the block cipher MISTY [27, 28].
One can also mention the decorrelation theory [33] and the design of the ci-
phers C [1] and KFC [2]. At a high level, the three main design paradigms for
block ciphers are Feistel structures such as DES, Lai-Massey ciphers such as
IDEA [24], and key-alternating ciphers [12,14,15] for which the AES Rijndael is
a prominent representative. State-of-the-art block ciphers are quite well under-
stood and provide security against all known attacks. Though there has recently
been remarkable progress in the cryptanalysis of AES [7], these results are far
from being any threat for the use of AES in practice. Thus, from a practical
point of view, block ciphers in general and key-alternating ciphers in particular
can be seen as a success story.

Given the degree of confidence in properly designed key-alternating ciphers
on the practical side (e.g. with AES approved for the encryption of secret and
top secret data in the USA), it is even more surprising that there has been no
provable setting developed so far for the design of key-alternating ciphers on the
theoretical side. Nobody seems to have even formulated the problem of whether
the key-alternating cipher makes sense from this point of view. Clearly, given the
state of the art, proving AES secure in any strict sense is out of reach. However,
by modeling the round functions as fixed public randomly chosen permutations,
we are able to precisely formulate and—as we shall see—prove the soundness of
the key-alternating cipher design. The cipher we are dealing with is depicted in
Figure 2 and detailed in Section 2.

We note the difference of our setting to that of an idealized Feistel cipher, often
called the Luby-Rackoff construction [26], or to that of similar results obtained
for the Lai-Massey schemes [34]. In these former works, for each key it is assumed
that the function used in the Feistel (resp. Lai-Massey) construction is chosen
at random. Directly adopting this model to the case of a key-alternating cipher
immediately results in an ideal cipher (even for one round). At the same time,
in most key-alternating ciphers including AES, the key is the only part of the
design to define the cipher permutation and all round permutations are fixed for
the entire cipher, not varying from key to key. In other words, working along the
lines of [26] does not elucidate how to mix the key into the state. It is exactly this
point we deal with in the present paper, both at a high-level, i.e. in a provable
setting, as well as at lower-levels, i.e. considering statistical attacks and as a
guideline for actually designing ciphers.

Interestingly, another look at the construction and its properties arises from
the question of how to design the key schedule of a block cipher. This has been an
open problem in symmetric-key cryptography for decades. While some ciphers
are based upon simple linear or nearly linear key schedules [8, 18], a number of
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others opt for heavier and often highly nonlinear key schedules, sometimes as
complex as the round functions [3] or the cipher itself [31]. In the prominent case
of AES, for instance, the key schedule is iterative, mainly linear, and provides
relatively slow diffusion in the backward direction. It is precisely these properties
that facilitated the related-key cryptanalysis of the full AES-192 and AES-256,
e.g. [5,6] as well as the recent biclique cryptanalysis of all three full AES versions
in the classical single-key model [7]. In general, these examples emphasize a
relatively weak understanding of key scheduling algorithms, compared to the
design of block cipher rounds. In this context, the results of this paper can be
seen as a case for simple key schedules (or even no key scheduling at all). Hence,
they provide new insights into the design of block ciphers.

1.1 Related Work

An exception from the above-mentioned lack of theoretical studies of key-
alternating block ciphers is the Even-Mansour construction [16] depicted in
Figure 1. This construction can be seen as a one-round variant of a key-alternating

m

k0

P

k1

c

Fig. 1. The Even-Mansour construction

cipher. Informally, Even and Mansour proved that in order to have a reasonable
success probability in decrypting an (unqueried) message, an attacker has to
make roughly 2n/2 queries to the permutation P . In this setting, the attacker is
given oracle access to P , its inverse, and to an encryption and decryption oracle.
Later, Daemen [11] showed that this bound is actually tight. He presented a dif-
ferential attack on the Even-Mansour scheme that allows to successfully recover
the key with a good probability, after 2n/2 evaluations of both the permutation
P and the encryption oracle.

1.2 Our Contribution

Our contributions in this paper are twofold.
On the theoretical side (cf. Section 3), we provide the first treatment of the

concept of key-alternating ciphers in a provable security setting. We prove be-
low that, for any t-round version of the cipher with randomly drawn and fixed
underlying permutations, t ≥ 2, depicted in Figure 2, an attacker needs to make
at least 22n/3 queries before being able to distinguish the encryption oracle from
a random permutation. Here n is the block size of the cipher. Furthermore, we
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provide a simple attack that shows that an attacker, by making 2
t

t+1n queries,
is able to recover the secret key used in the decryption oracle. We do conjecture
that this lower bound — being tight only for t = 2 — is the actual bound. We
leave proving this as an important open question (see also Section 7). Note that
in this setup, we necessarily only consider the query complexity of an attacker,
ignoring the computational complexity. It seems unlikely that an attack with a
comparable computational complexity exists. Such an attack would in particular
imply an attack on e.g. AES-256 with a complexity of around 2120 operations.

On the practical side, we propose to actually use the construction of Figure 2.
Given our theoretical results, the merit of this approach is the following: Any
attack on a key-alternating cipher with complexity below 22n/3 will have to make
use of the round functions in a non-black box manner.

However, and we feel that it is important to make this point explicit even
though it might be obvious, the theoretical result does not carry over to any
efficient instance, as one must consider the round functions as black-boxes—
i.e. objects which the adversary must query to evaluate—in order to meaningfully
discuss the distinguishability of the cipher from a random permutation by an
information-theoretic adversary.

This fact and the fact that, as mentioned above, the theoretical bounds are
likely to be lower than the computational complexity of any attack, motivates
us to study the security of our proposal with respect to such statistical attacks
as linear cryptanalysis (see Section 5).

To capture the difference between the single-round Even-Mansour cipher and
the multiple-round key-alternating construction with respect to linear cryptanal-
ysis, we study the Fourier spectrum of the ciphers. We prove that once the fixed
underlying permutations are close to average (which is the case for randomly
drawn permutations with high probability), the distribution of Fourier coeffi-
cients for the key-alternating cipher over all keys for t ≥ 2 gets close to that
over all permutations — the natural reference point for any block cipher. At
the same time, we demonstrate that this is not the case for the original Even-
Mansour construction with t = 1 where the Fourier coefficients almost do not
change from key to key. It seems therefore unlikely that linear attacks are able
to break the multiple-round key-alternating cipher with t ≥ 2.

Finally, as the crypto community likes targets and we anticipate that having a
concrete proposal is a valuable stimulation for further research, we propose an ac-
tual cipher called AES2 following the 2-round version of the general construction
(see Section 6). Here we replace the random permutations by two instantiations
of AES-128 with fixed known keys. Given the new AES instructions on recent
Intel processors, AES2 performs very competitively on those platforms, with as
few as 2.65 cycles per byte required in the counter mode.

We conclude with a section dedicated to open questions and further work
(Section 7), discussing how to possibly improve and extend the research we
consider in the paper.
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2 The Construction

The cipher we consider is an idealized model of a key-alternating cipher — the
notion introduced under this name in [14, 15] in connection with the design of
AES and used without being explicitly named even before that [12] in simi-
lar contexts. Such a cipher consists of round functions interleaved with xoring
round keys to the current state. In our idealized model, the round functions
are the public, randomly chosen permutations Pi and the key consists of t + 1
independent round-keys are ki. More precisely, let P1, . . . , Pt be permutations
from {0, 1}n to {0, 1}n, t ≥ 1. Let k0, . . . , kt ∈ {0, 1}n be keys. The block cipher
E = Ek0,...,kt : {0, 1}n → {0, 1}n we consider is defined by

E(x) = Ek0···kt(x) = Pt(. . . P2(P1(x⊕ k0) ⊕ k1) . . .)⊕ kt (1)

for x ∈ {0, 1}n. The cipher is shown in Figure 2.

m

k0

P1

k1

P2 Pt

kt

c

Fig. 2. A key-alternating cipher

3 Indistinguishability Analysis

Putting N = 2n, we define the PRP security of E against an adversary A
expecting a (t+ 1)-tuple of oracles as

AdvPRP
E,N,t(A) = Pr[k0 · · · kt ← {0, 1}n;AEk0···kt ,P1,...,Pt = 1]−Pr[AQ,P1,...,Pt = 1]

where in each experiment Q,P1, . . . , Pt are independent and uniformly sampled
random permutations. Here A can make inverse queries to each of its oracles.
Thus, an attacker has to tell apart two worlds, depicted below.

World 1

E(x)
(cf. Eq. 1)

P1 Pt

World 2

Q P1 Pt

We note that one must consider the permutations P1, . . . , Pt as random (or
pseudorandom) black-boxes—i.e. objects which the adversary must query to
evaluate—in order to meaningfully discuss the distinguishability of Ek0,...,kt from
a random permutation by an information-theoretic adversary.
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We define
AdvPRP

E,N,t(q) = max
A

AdvPRP
E (A)

where the maximum is taken over all adversariesAmaking at most q queries. (We
note the parameters n and t are elided from both of the notations AdvPRP

E (A)
and AdvPRP

E (q); but it should be understood that AdvPRP
E (q) is a function n

and t as well as of q.)
Our main security result is the following:

Theorem 1. Let N = 2n and let q = N
t

t+1 /Z for some Z ≥ 1. Then, for any
t ≥ 1, and assuming q < N/100, we have

AdvPRP
E,N,t(q) ≤ 4.3q3t

N2
+
t+ 1

Zt
.

For t ≥ 2 the limiting term in the above bound is 4q3t/N2, which caps q at
around N2/3. The following corollary is more telling.

Corollary 1. Assume t ≥ 2. Let q = N
2
3 /λ 3

√
t for some λ ≥ 1. Then, assuming

q < N/100,

AdvPRP
E,N,t(q) ≤ 4.3

λ3
+

t+ 1

( 3
√
tλ)t

.

We also note that q < N/100 as long as n ≥ 20; this condition is therefore
compatible with practical parameters. We note that Corollary 1’s security of
q ≈ N

2
3 is optimal for t = 2 (cf. Section 3.1) and suboptimal for t > 2, in which

case we conjecture a security of q ≈ N
t

t+1 . Closing this gap might be obtained
by a tightening of Proposition 2 below.

Theorem 1 is proved by a hybrid argument involving an intermediate game. In
order to outline this hybrid argument we start by developing some new notation.

Note firstly that if E is defined as in (1) then, putting P0 = E−1, we have

P0(Pt(· · ·P1(· ⊕ k0) · · · ) ⊕ kt) = id.

Applying P−1
0 to both sides and then substituting P0(·) for the input, we find

Pt(· · ·P2(P1(P0(·) ⊕ k0) ⊕ k1) · · · ) ⊕ kt = id. (2)

It is easy to see that, for fixed k0, . . . , kt, randomly sampling P1, . . . , Pt, defining
E as in (1) and giving an adversary access to the tuple of oracles (E,P1, . . . , Pt)
(and their inverses) is equivalent to sampling P0, . . . , Pt uniformly at random
from all (t + 1)-tuples of permutations satisfying (2) and giving the adversary
access to (P−1

0 , P1, . . . , Pt) (and their inverses). Moreover, it is just a notational
change to give the adversary access to (P0, P1, . . . , Pt), since the adversary is
allowed inverse queries anyway (of course, the adversary is alerted to the fact
that its first oracle is now P0 and not P−1

0 ).
We now formally implement the interface (P0, . . . , Pt) via an oracle O(N, t)

taking k0, . . . , kt as implicit parameters. Rather than sampling P0, . . . , Pt uni-
formly at random from those sequences satisfying (2) at the start of the exper-
iment, O(N, t) implements the permutations P0, . . . , Pt by lazy sampling. More
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precisely, P0, . . . , Pt are initially set to be undefined everywhere. When the ad-
versary makes a query Pi(x) or P

−1
i (y), the adversary defines Pi at the relevant

point using the following procedure, illustrated for the case of a forward query
Pi(x) (the case of a backward query is analogous):

• Let P = P(P0, . . . , Pt) be the set of all (t + 1)-tuples of permutations
(P 0, . . . , P t) such that P i extends the currently defined portion of Pi, and
such that

P t(· · ·P 2(P 1(P 0(·) ⊕ k0) ⊕ k1) · · · ⊕ kt−1) ⊕ kt = id. (3)

Then O(N, t) samples uniformly at random an element (P 0, . . . , P t) from P .
The adversary sets Pi(x) = P i(x) and returns this value.

After the above, the adversary “forgets” about P 0, . . . , P t, and samples these
afresh at the next query. It is clear that this lazy sampling process gives the
same distribution as sampling the tuple (P0, . . . , Pt) at the start of the game.
Thus, giving the adversary oracle access to O(N, t) is equivalent to giving the
adversary oracle access to (E,P1, . . . , Pt), up to the cosmetic change that E is
replaced by E−1. We therefore have:

Proposition 1. With O(N, t) defined as above, we have:

AdvPRP
E,N,t(A) = Pr[k0 · · · kt ← {0, 1}n;AO(N,t) = 1]− Pr[AQ0,Q1,...,Qt = 1]

where Q0, . . . , Qt are independent random permutations.

(We emphasize that k0, . . . , kt are implicit arguments to O(N, t).)
Our hybrid will be an oracle Õ(N, t) (also taking k0, . . . , kt as implicit inputs)

that uses a slightly different lazy sampling procedure to define the permutations
P0, . . . , Pt. Say that a sequence of partially defined permutations is consistent
if P(P0, . . . , Pt) �= ∅, with P(·) defined as in the description of O(N, t) above.
Initially, Õ(N, t) also sets the permutations P0, . . . , Pt to be undefined every-
where. Upon receiving (say) a forward query Pi(x), Õ(N, t) uses the following
lazy sampling procedure to answer:

• Let U ⊆ {0, 1}n be the set of values y such that defining Pi(x) = y maintains
the consistency of P0, . . . , Pt, besides maintaining the fact that Pi is a per-
mutation. Then Õ(N, t) samples a value y uniformly from U , sets Pi(x) = y,
and returns y.

Inverse queries are lazy sampled the same way. While not immediately apparent,
the above lazy sampling procedure produces a slightly different distribution of
outputs than the first lazy sampling procedure.

Theorem 1 is an direct consequence of Proposition 1 and of the following two
propositions.

Proposition 2. Let q < N/100. With O(N, t) and Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;AO(N,t) = 1]− Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1] ≤ 4.3q3t

N2

for every adversary A making at most q queries.
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Proposition 3. Let q = N
t

t+1 /Z for some Z ≥ 1 be such that q < N/3. With
Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1]− Pr[AQ0,...,Qt = 1] ≤ t+ 1

Zt+1
.

for every adversary A making at most q queries, where Q0, . . . , Qt are indepen-
dent random permutations.

Proposition 2 is the main technical hurdle in our proof. Its proof, however, is
entirely combinatorial, given that we actually show this bound holds even when
A sees the keys k0, . . . , kt. The presence of keys is therefore actually irrelevant
for this proposition1. We refer to the full version for more details and a proof of
Proposition 2.

The proof of Proposition 3, on the other hand, is fairly accessible, and also
contains those ingredients that have the most “cryptographic interest”.

Proof (of Proposition 3.). We make the standard assumption that the adversary
never makes a redundant query (querying P±1

i (x) twice or querying, e.g., Pi(x)
after obtaining x as an answer to a query P−1

i (y)).
We modify Õ(N, t) to use a slightly different lazy sampling method, equivalent

to Õ(N, t)’s original sampling method. In this new method, we also maintain a
flag bad which is originally set to false.
Õ(N, t)’s new sampling method is as follows: when faced with a query Pi(x),

Õ(N, t) samples a value y uniformly at random from the remaining range of
Pi(x), that is, uniformly at random from

{0, 1}n\{Pi(x
′) : x′ ∈ {0, 1}n, Pi(x

′) is defined}.

Õ(N, t) then checks if setting Pi(x) = y would make P0, . . . , Pt inconsistent; if
so, it sets bad = true, and resumes its original sampling method for the rest of
the game (including to answer the last query); otherwise, it sets Pi(x) = y, and
returns y. Inverse queries are treated the same.

We can also define a value for the bad flag when the adversary has oracle
access to the random permutations (Q0, Q1, . . . , Qt). Originally, set bad = false
and select random values k0, . . . , kt. Set Q0, . . . , Qt to be undefined at all points,
and use lazy sampling to define them by simulating the lazy sampling process
for P0, . . . , Pt up until bad = true; after bad = true, simply keep lazy sampling
each permutation Qi while ignoring bad as well as k0, . . . , kt.

Obviously, the probability bad is set to true is equal in both worlds, and the
two worlds behave identically up until bad = true. Thus (a standard argument
shows that) the adversary’s advantage is upper bounded by the probability that
bad is set to true.

For simplicity, we upper bound the probability that bad becomes true when the
adversary has oracle access to Q0, . . . , Qt. In this case, note that it is equivalent

1 We note that the bound of Proposition 2 is the bottleneck of Theorem 1. A potential
improvement of Proposition 2 might exploit the fact that k0, . . . , kt aren’t known to
the adversary.
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to set the bad flag by sampling the values k0, . . . , kt randomly at the end of
the game, and then checking whether these values are inconsistent with the
partially defined permutations Q0, . . . , Qt. (To recall, k0, . . . , kt are inconsistent
with Q0, . . . , Qt if there exist no permutations Q0, . . . , Qt such that

Qt(· · ·Q2(Q1(Q0(·) ⊕ k0) ⊕ k1) · · · ⊕ kt−1) ⊕ kt = id.)

Given the partially defined permutations Q0, . . . , Qt and values k0, . . . , kt a con-
tradictory path is a sequence of values (x0, y0), . . . , (xt, yt) such that (i) Qi(xi) =
yi for all i and (ii) |{i : yi ⊕ xi+1 = ki, 0 ≤ i ≤ t}| = t, where we put xt+1 = x0.
Because q < N/3, one can show that Q0, . . . , Qt is consistent with k0, . . . , kt if
and only if there exists no contradictory path (again, we have to refer to the
full versions for details). Since each Qi contains at most q defined input-output
pairs (xi, yi) at the end of the game, there are at most qt+1 possible different
sequences ((x0, y0), . . . , (xt, yt)) such that Q(xi) = yi for 0 ≤ i ≤ t. For each
of these sequences, the probability that the random selection of k0, . . . , kt cre-
ates a contradictory path is upper bounded by (t + 1)N−t, since the condition
ki = yi ⊕ xi+1 must be satisfied for all but one value of i, 0 ≤ i ≤ t, and we can
union bound over this value of i. Hence, by a union bound over the (at most)
qt+1 possible different sequences, the probability that bad is set to true is at most
(t+1)qt+1

Nt = t+1
Zt as desired.

3.1 An Upper Bound

For any number of rounds t, there is an (non-adaptive) attack with a query com-

plexity of roughly t2
t

t+1n, thus meeting the bound on the query complexity for
t = 2. Note that this is not an attack in the practical sense, as the computational
cost is higher than brute force. The idea of this attack is to actually construct
(with high probability) a contradictory path for each possible key.

1. Make 2
t

t+1n queries to E and each of the oracles P1 to Pt. Denote the set of
queries to Pi by Pi and queries to Ek by M.

2. For each key candidate (k0, k1, . . . , kt) do:
(a) Find all sequences of values (x1, . . . , xt−1) such that x1 ∈ M and xi ⊕

ki−1 ∈ Pi, ∀1 ≤ i ≤ t and Pi(xi ⊕ ki−1) = xi+1, ∀1 ≤ i ≤ t− 1.
(b) Check if Pt(xt ⊕ kt−1)⊕ kt = E(x1) for all these sequences.
(c) If so, assume (k0, k1, . . . , kt) is the correct value of the key;
(d) otherwise, it is certainly the wrong value of the key.

To get a better reduction on key-candidates, a bit more than t2
t

t+1n queries are
sufficient.

4 Attacks

The bounds proved earlier are information-theoretic bounds which take into
account only the number of queries of the random permutations made by an



54 A. Bogdanov et al.

adversary. Of equal interest are attacks which take the computational complexity
into account. In this section we consider only attacks in the single key-model.
Note that, in the case where all round-keys are independent, related-key attacks
exist trivially. However, the situation might be very different in the case where
all round-keys are identical, see Section 7 for further discussion on this point.

4.1 Daemen’s Attack for t = 1

For the original Even-Mansour construction (in our setting, this corresponds to
t = 1), a differential attack has been published by Daemen [11] meeting the
lower bound of 2n/2 evaluations of P proven by Even and Mansour. It can be
described as follows:

1. Choose s plaintext pairs (mi,m
∗
i ), 1 ≤ i ≤ s, with mi ⊕ m∗

i = Δ for any
nonzero constant Δ.

2. Get the encryptions (ci, c
∗
i ) of the s pairs.

3. For 2n/s values v:
(a) Compute w′ := P (v) ⊕ P (v ⊕Δ).
(b) If w′ = ci⊕c∗i for some i: Output k0 := v⊕m1 and k1 := c1⊕P (m1⊕k0)

and stop.

For a random permutation P , only very few values of v are expected to satisfy
P (v) + P (v + Δ) = ci ⊕ c∗i . The wrong candidates can be easily filtered in
step (3b) by testing them on a few additional encryptions. After encrypting s
plaintext pairs, one has to perform about 2·2n/s evaluations of P . The expression
2(s + 2n/s) is minimal for s = 2n/2. In this case, the time complexity is 2n/2

with a storage requirement of 2n/2 plaintext pairs.

4.2 A Meet in the Middle Attack

There is a meet in the middle attack on the t-permutation construction which
finds the keys in time and space 2tn/2 for t > 1. This is a straight-forward attack
given here for the case t = 2:

1. From a pair of messages (m1,m2), compute and save in a sorted table, T ,
the values P (m1 ⊕ k) ⊕ P (m2 ⊕ k) for all possible 2n values of k.

2. Get the encryptions c1 and c2 of m1 respectively m2.
3. For all 2n possible values of k′ compute Q−1(c1⊕k′)⊕Q−1(c2⊕k′) and look

for a match in T .
4. Each match gives candidate values for the three keys, which are tested

against additional encryptions.

5 Statistical Properties

A fundamental cryptographic property of a block cipher is its Fourier spectrum
that completely defines the cipher via the Fourier transform and whose distri-
bution is closely related to the resistance against linear cryptanalysis [10].
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To support security claims, block cipher designs usually come with arguments
why these Fourier coefficients cannot take values exploitable by an attacker.
In most cases, however, formal proofs of these properties appear technically
infeasible and designers limit themselves to demonstrating upper bounds on
trail probabilities, that can be seen as summands to obtain the actual Fourier
coefficients. This solution is usually denoted as the practical security approach for
statistical cryptanalysis. Such an approach does not allow an accurate estimation
of the data complexity of statistical attacks, that typically depends on numerous
trails [25, 29].

As opposed to that, we analyze the construction of key alternating cipher fol-
lowing a provable security approach, by directly investigating its Fourier coeffi-
cients. In addition, we provide a more informative analysis than for standard block
ciphers, as we study the distribution of the Fourier coefficients for the cipher over
all keys, rather than bounding the mean value of this distribution. This is made
possible by the use of fixed public permutations in our construction. More pre-
cisely, in a key-alternating cipher using t ≥ 2 fixed public permutations, we study
the distribution of the Fourier coefficients over all cipher keys. If these permuta-
tions are close to the average over all permutations, we show that this distribu-
tion turns out to be very close to that over all permutations, suggesting that the
t-round key-alternating construction is theoretically sound from this perspective.
This implies that it behaves well with respect to linear cryptanalysis.

On the contrary, the distribution of Fourier coefficients for a fixed point in the
Fourier spectrum is nearly degenerated for the key-alternating cipher with t = 1
(the Even-Mansour cipher). This emphasizes the constructive effect of having 2
and more rounds in the key-alternating cipher.

5.1 Fourier Coefficients over All Permutations

Here we recall the definitions of Fourier coefficients and Fourier spectrum as
well as the distribution of Fourier coefficients over all permutations. We also
introduce some notations we will be using throughout the section.

Notations. The canonical scalar product of two vectors a, b ∈ {0, 1}n is denoted
by aT b. We denote the normal distribution with mean μ and variance σ2 as
N (μ, σ2). By X ∼v D, we denote a random variable X following a distribution
D taken over all values of v. The expectation of X with respect to v is denoted
by Ev[X ], its variance (with respect to v) by Varv[X ].

Fourier Coefficients and Fourier Spectrum. For a permutation P : {0, 1}n

→ {0, 1}n, its Fourier coefficient at point (α, β) is defined as

WP
α,β

def
=

∑
x∈{0,1}n

(−1)α
Tx+βT P (x).

The collection of Fourier coefficients at all points (α, β) ∈ {0, 1}n × {0, 1}n is
called the Fourier spectrum of P . For a block cipher F , we denote the Fourier
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coefficient at point (α, β) as WF
α,β [K] to emphasize its dependency on key K. If

F is the t-round key-alternating cipher, this is denoted by WP1,...,Pt

α,β [K].
The following characterisation for the distribution of Fourier coefficients in a

Boolean permutation has been proven.

Fact 1 ([13, Corollary 4.3, Lemma 4.6]). When n ≥ 5, the distribution of
the Fourier coefficient WP

α0,β0
with α0, β0 �= 0 over all n-bit permutations can be

approximated by the following distribution up to continuity correction:

WP
α0,β0

∼P N (0, 2n). (4)

The distribution of Fact 1 is the reference point throughout the section: A block
cipher cannot have a better distribution of Fourier coefficients than that close
to Fact 1.

5.2 Fourier Coefficients in the Single-Round Even-Mansour Cipher

Let F be the basic single-round Even-Mansour cipher, that is, a fixed public
permutation P surrounded by two additions with keys k0 and k1, respectively
(see Figure 1). IfWP

β0,β1
is the Fourier coefficient for the underlying permutation

P at point (β0, β1), then the Fourier coefficient for the cipher at this point is

WF
β0,β1

= (−1)β
T
0 k0⊕βT

1 k1WP
β0,β1

.

Now consider the distribution of WF
β0,β1

with β0 �= 0, β1 �= 0 taken over all keys

(k0, k1). Its support contains exactly two points: WP
β0,β1

and −WP
β0,β1

. Thus, the

value of WF
β0,β1

almost does not vary from key to key. This is crucially different
from the reference point – the distribution over all permutations of Fact 1.

5.3 Fourier Coefficients in the t-Round Key-Alternating Cipher

Now we state the main result of this section. The proof is given omitted in this
extended abstract and we refer to the full version.

Theorem 2. Fix a point (β0, βt) with β0, βt �= 0 in the Fourier spectrum of the
t-round key-alternating n-bit block cipher with round permutations P1, . . . , Pt

for t ≥ 2 and sufficiently high n. Then the distribution of the Fourier coefficient
WP1,...,Pt

β0,βt
at this point over all keys K is approximated by:

WP1,...,Pt

β0,βt
[K] ∼K N (0, (1 + ε)

(
2n − 1

2n

)t−1

2n), (5)

assuming that the distributions over points of the Fourier spectra of the permu-
tations Pi, 1 ≤ i ≤ t, have variances satisfying

Var
(βi−1,βi)

[
WPi

βi−1,βi

]
≥ 2n/2, (6)
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and that for any given key K, the signs of the Fourier coefficients behave in-
dependently for different points. The deviation of the permutations Pi from the
mean over all permutations Qi is quantified by factor (1 + ε):

∑
(β1,...,βt−1)

(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2

= (1 + ε) · EQ1,...,Qt

[∑
(β1,...,βt−1)

(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2
]
.

(7)

Interestingly, the latter deviation ε from the mean in (7) is small for most
choices of the Pi. For instance, in case t = 2, it can be shown that over all
permutations, mean and variance of each summand in (7) are 22n and 24n+2,
respectively. The whole sum then approximately follows a normal distribution
N (23n − 22n, 25n+2 − 24n+2). This means that for randomly drawn permutations

P1, P2, the sum
∑

β1

(
WP1

β0,β1
WP2

β1,β2

)2

will be within d standard deviations from

its mean with probability erf
(
d/

√
2
)
. Notably, this implies Pr(|ε| ≤ 2−n/2+3) ≈

0.9999, i.e. |ε| only very rarely exceeds 2−n/2+3.
Theorem 2 gives the distribution over all keys of the Fourier coefficient

WP1,...,Pt

β0,βt
individually for each nontrivial point (β0, βt). Appropriate choices for

the Pi should have distributions close to N (0, 2n) for each nontrivial point, not
only for some of them. Conversely, the distribution of the Fourier coefficient at
the (trivial) point (β0, 0) differs from (5) for any choice of the Pi, since it is
constant over the keys.

Note also that the result of Theorem 2 does not require the underlying permu-
tations to be different. Moreover, it does not require the permutations Pi to be
randomly drawn from the set of all permutations, but holds for any fixed choice
of permutations satisfying (6). To obtain a distribution close to ideal, however,
the set of underlying permutations has to ensure a small deviation ε in (7). As
argued above, drawing the underlying permutations at random from the set of
all permutations is highly likely to result in a very small deviation ε from the
average.

Summarising, the results of Theorem 2 suggest that once the small number of
t ≥ 2 underlying permutations are carefully chosen and fixed, the t-round key-
alternating cipher for each secret key is likely to be statistically sound which rules
out some crucial cryptanalytic distinguishers. More precisely, the distributions
of the Fourier coefficients for the t-round key-alternating cipher over all keys
become close to those over all permutations.

Note that, in contrast to the reference point, it is possible to identify large
but efficiently representable subsets of keys where the distribution is again de-
generated, as in the case for t = 1. Examples of such sets are sets of keys where
one fixes all keys k1 up to kt−1. For any point (β0, β1) the value of WP1,...,Pt

β0,βt

takes on only two possible values - over all possible sub-keys k0, kt. However, it
seems unlikely that this can be used in an attack.
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6 Practical Constructions

In this section, we discuss possible practical realisations of the t-round key-
alternating cipher.

A natural approach to building a practical cipher following the t-permutation
construction is to base the t fixed permutations on a block cipher by fixing some
keys. With t = 1, this corresponds to the original Even-Mansour construction, so
the security level is limited to 2n/2 operations with n denoting the cipher’s block
length. With a 128-bit block cipher such as the AES, we therefore only obtain a
security level of 264 in terms of computational complexity, so it is advisable to
choose t > 1.

In the following we describe a sample construction with t = 2, that is, we
consider the 2-round key alternating construction with permutations P1 and P2

and the keys k0, k1, k2.

6.1 AES2: A Block Cipher Proposal Based on AES

The construction is defined by fixing two randomly chosen 128-bit AES-128
keys, which specifies the permutations P1 and P2. The key is comprised by three
independently chosen 128-bit secret keys k0, k1, k2.

Let AES[k] denote the (10-round) AES-128 algorithm with the 128-bit key k
and the 128-bit quantities π1, π2 be defined based on the first 256 bits of the
binary digit expansion of π = 3.1415 . . . :

π1 := 0x243f6a8885a308d313198a2e03707344 and

π2 := 0xa4093822299f31d0082efa98ec4e6c89.

Then we denote the resulting 2-permutation construction by AES2[k0, k1, k2].
Its action on the 128-bit plaintext m is defined as:

AES2[k0, k1, k2](m) := AES[π2](AES[π1](m⊕ k0)⊕ k1) ⊕ k2. (8)

Security. Any attack on AES2 in the single secret-key model with complexity
below 285 will have to make use of AES with a fixed known key in a non-black
box manner. On the other hand, we are aware of no attack with a computational
complexity of less than 2128. Moreover, if the distribution of Fourier coefficients
for AES[π1] and AES[π2] meets the assumption of average behaviour, Theo-
rem 2 suggests that the Fourier coefficients for AES2 are distributed close to
ideal which implies resistance against basic linear cryptanalysis and some of its
variants. Intuitively, this construction can be seen to arguably transfer the se-
curity properties for AES with a single randomly fixed key to the entire cipher
as a set of permutations. For AES2, we explicitly do not claim any related-,
known- or chosen-key security.
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Performance. AES2 can be implemented very efficiently in software on general-
purpose processors. The two AES keys π1 and π2 are fixed and, therefore, the
round keys for the two AES transformations can be precomputed, so there is no
need to implement the key scheduling algorithm of AES. This ensures high key
agility of AES2.

On the Westmere architecture generation of Intel general-purpose processors,
AES2 can be implemented using the AES-NI instruction set [19]. As the AES
round instructions are pipelined, we fully utilise the pipeline by processing four
independent plaintext blocks in parallel implementing the basic electronic code-
book mode (ECB) and counter mode (CTR). The performance of these im-
plementations on recent processors is demonstrated and compared to two con-
ventional implementations of AES-128 (i.e. without AES-NI instructions) – the
bitsliced implementation of [21] and the OpenSSL 1.0.0e implementation based
on lookup tables. All numbers are given in cycles per byte (cpb).

Intel Xeon X5670 Intel Core i7 640M
2.93 GHz, 12 MB L3 cache 2.8 GHz, 4 MB L3 cache

AES2, AES-NI, ECB 2.54 cpb 2.69 cpb
AES2, AES-NI, CTR 2.65 cpb 2.76 cpb

AES-128, AES-NI, ECB 1.18 cpb 1.25 cpb
AES-128, AES-NI, CTR 1.32 cpb 1.36 cpb
AES-128, bitsliced, CTR 7.08 cpb 7.84 cpb
AES-128, OpenSSL, CTR 15.73 cpb 16.76 cpb

It turns out that on both platforms, the performance of AES2 is almost equal
to half that of AES, indicating that the overhead is very low. Compared to the
best implementations of the AES which are in widespread use now on standard
platforms, AES2 provides a performance improvement of almost factor three and
higher with the AES-NI instruction set.

7 Conclusion, Open Problems and Future Work

In this paper we gave the first formal treatment of the key-alternating cipher in a
provable setting. For two or more rounds an attacker needs to query the oracles
at least 22n/3 times for having a reasonable success probability. Furthermore,
we studied the security of the construction with respect to statistical attacks,
arguing that even for t = 2 linear attacks do not seem to be applicable. Finally
we gave a concrete proposal mimicking the construction for t = 2. There are
several lines of future work and open problems we like to mention.

On the theoretical side, it seems unlikely that the bounds given here are
tight. Thus, improving them is an important open problem. We actually con-
jecture that the correct bound on the query complexity is roughly 2t/(t+1)n. As
a first step, deriving bounds that increase with the number of rounds is a goal
worth aiming for. Secondly, for now, we have to assume that all round keys are
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independent. For aesthetical reasons, but also from a practical point of view (see
below) it would be nice to prove bounds for the case that all round keys are
identical.

On the practical side, mainly for efficiency reasons but also due to resistance
against related-key attacks, several variants for t = 2 are worth studying. First
of all, since the security level is at most 2n, due to the meet in the middle
attack, one could be tempted to derive three n-bit keys k0, k1, and k2 from one
n-bit word. The simplest case here is to have all three keys identical. Taking P
and Q different, we are not aware of any attack with computational complexity
below 2n. Furthermore, it seems reasonable to assume that such a construction
provides some security against certain types of related-key attacks as well. The
best attacks we are aware of in such a setting has birthday complexity 2n/2. See
the full version for details.

Eventually, it is an interesting open problem to determine whether the results
in this work can be used as directions for alternative block cipher designs, e.g.
with minimum key scheduling algorithms. As a typical example, one could con-
sider the possibility to generate public permutations from a variant of the AES,
where the round keys would be replaced with simple constants. In general, such
an approach could lead to efficient lightweight designs. Interestingly, it is also
the direction taken, to a certain extent, by the recently proposed block cipher
LED [20]. In its 64-bit version, this cipher just iterates blocks made of 4 rounds
and the addition of the master key.

Another tempting way, in order to increase efficiency, is to choose Q = P .
Similarly, it may be advantageous to have Q = P−1, which has the further
advantage that the decryption and encryption operations are similar, except for
using the keys in reverse order. However, with Q = P−1 there is an attack which
finds the value of k0 ⊕ k2 using 2n/2 queries and similar time. After k0 ⊕ k2
is known the cipher is easily distinguishable from a random permutation. Also,
with Q = P but now assuming that k0 ⊕ k2 is known, one finds the secret keys
using 2n/2 queries and similar time.
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Abstract. We consider the question of efficiently extending the key
length of block ciphers. To date, the approach providing highest security
is triple encryption (used e.g. in Triple-DES), which was proved to have
roughly κ+min{n/2, κ/2} bits of security when instantiated with ideal
block ciphers with key length κ and block length n, at the cost of three
block-cipher calls per message block.

This paper presents a new practical key-length extension scheme ex-
hibiting κ+ n/2 bits of security – hence improving upon the security of
triple encryption – solely at the cost of two block cipher calls and a key
of length κ + n. We also provide matching generic attacks showing the
optimality of the security level achieved by our approach with respect to
a general class of two-query constructions.

Keywords: Block ciphers, Cascade encryption, Provable security.

1 Introduction

1.1 Key-Length Extension for Block Ciphers

Several practical block cipher designs have been proposed over the last decades
and have been the object of extensive cryptanalytic efforts. Examples include
DES [1], IDEA [19], BLOWFISH [28], and the currently in-use AES [4]. Within
applications, we typically demand that these block ciphers are a good pseu-
dorandom permutation (PRP), i.e., in the eyes of a computationally bounded
attacker, they behave as a randomly chosen permutation under a random secret
key. For instance, PRP security of the underlying block cipher is necessary to
infer security of all modes of operations for message encryption (such as counter-
mode and CBC encryption [8]) as well as of message authentication codes like
CBC-MAC [9] and PMAC [12].

In practice, we define the PRP security level of a block cipher as the complex-
ity required to distinguish it from a random permutation with non-negligible
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advantage. The key length κ of a block cipher crucially limits the achievable
security level, since the secret key K can be recovered given black-box access to
E(K, ·) evaluating E(·, ·) approximately 2κ times; obviously, this also yields a
PRP distinguishing adversary with equal complexity. Such weakness is generic,
in the sense that it only depends on κ, and even an ideal block cipher suffers
from the same attack.1 In contrast, no real dependency exists between security
and the block length n of a block cipher: No generic attack faster than 2κ exists
even if n = 1. In the following, let us refer to a block cipher with key and block
lengths κ and n, respectively, as a (κ, n)-block cipher.

Key length extension.With a continuous increase of the availability of com-
puting resources, the role of the key length has hence never been more important.
Key lengths of say fewer than 64 bits are no longer sufficient to ensure security,
making key recovery a matter of a few hours even on modest architectures.
This is a serious problem for legacy designs such as DES which have very short
keys of length 56 bits, but which otherwise do not seem to present significant
non-generic security weaknesses. Constructions based on DES also remain very
attractive because of its short block length n = 64 which allows enciphering
short inputs. This is for example crucial in current applications in the financial
industry, such as the EMV standard [6], where the block cipher is applied to
PIN numbers, which are very short.

The above described situation motivates the problem of key-length extension,
which is the main object of this paper: We seek for very efficient constructions
provably transforming any (κ, n)-block cipher E into a (κ′, n)-block cipher E′

with both κ′ > κ and higher PRP security, i.e., the PRP security of E′ should
be higher than 2κ whenever E does not exhibit any non-generic weaknesses.
We aim both at providing very efficient approaches to key length extension and
at understanding the optimal security achievable by such constructions. Our
main contribution will be a new and very efficient two-call key-length extension
method outperforming the efficiency of existing solutions by a large margin, and
achieving security levels which we prove optimal, and which are comparable (and
even better) than those of earlier, less efficient, designs.

Ideal cipher model. In our proofs, we model the absence of generic weaknesses
of the underlying block cipher by analyzing our constructions when instantiated
with an ideal block cipher E. In this model, complexity is measured in terms of
the number of queries to E (so-called ideal block cipher queries) and to E′ or the
given random permutation (we refer to these as construction queries). It should
be noted that proving security of key-length extension in the ideal cipher model
implies absence of generic attacks, treating the underlying cipher as a black-box,
and as we will explain in the next section, all attacks on existing schemes are
indeed generic.

1 As usual, an ideal block cipher E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n is the system
associating with each key k ∈ {0, 1}κ an independent randomly chosen permutation
E(k, ·) and allowing the adversary to learn E(k, x) and E−1(k, y) for k, x, y of her
choice.
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1.2 Existing Approaches to Key-Length Extension

The short key length κ = 56 of DES has constituted the main motivation behind
previous work on key-length extension. However, we stress that all previous
constructions are generic, and can be applied to any block cipher with short
keys, hence extending the applicability of these results (as well as the results of
this paper) way beyond the specific case of DES.

A first proposal called DESX (due to Rivest) stretches the key length of DES
employing a technique called key whitening (this approach was later used by
Even and Mansour [15]): It is defined such that

DESXki,ko,k(m) = ko ⊕ DESk(ki ⊕m)

for all m, ki, ko ∈ {0, 1}64 and k ∈ {0, 1}56. DESX can be generalized to a
generic transformation from a (κ, n)-block cipher to a (κ + 2n, n)-block cipher
whose security was studied by Kilian and Rogaway [18]: They proved that any

successful PRP distinguishing attack requires 2
κ+n

2 queries.2 They also observe
that the same key may be used in both whitening steps (i.e., ki = ko) and provide
an attack using 2max{κ,n} queries.

An alternative to whitening is cascading (or cascade encryption), i.e., sequen-
tially composing � block-cipher calls with usually different keys. (This is referred
to as a cascade of length �.) It is well known that a cascade of length two does not
substantially increase security due to the meet-in-the-middle attack [13]. (Even
though a security increase in terms of distinguishing advantage is achieved for
low attack complexities [7].) The security properties of a cascade of different ci-
phers was studied by Even and Goldreich [14] showing that a cascade is at least
as strong as the strongest of the ciphers used; and by Maurer and Massey [23]
proving that it is at least as secure as the first cipher of the cascade, however in
a more general attack model.

The meet-in-the-middle attack makes triple encryption the shortest cascade
with a potential for significant security gain and indeed it has found widespread
usage as Triple-DES (3DES) [2,3,5], where given keys k1, k2, k3 ∈ {0, 1}56, a
64-bit message m is mapped to

3DESk1,k2,k3(m) = DESk1(DESk2(DESk3(m))) .

(A variant with shorter keys 3DES′k1,k2
(m) = DESk1(DES−1

k2
(DESk1(m))) is also

sometimes used.) For 3DES (and a variant of 3DES′ with independent keys),
Bellare and Rogaway [11] and subsequently Gaži and Maurer [16] have shown
security up to roughly 2κ+min{n,κ}/2 queries when DES is replaced by an ideal
block cipher. For the case of DES parameters, their result gives concretely secu-
rity up to 278 queries, whereas the best known attack due to Lucks [21] shows

2 Their result is in fact more fine-grained, as they show that 2ρ construction and
2κ+n−ρ ideal block cipher queries, respectively, are necessary for all integers ρ; while
different bounds for both query types are sometimes justified, we adopt a (by now
more standard) worst-case approach only bounding the sum of both query numbers.
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that no security better than 290 can be expected. (It should also be noted that
the proof of [16] extends to prove that longer cascades can achieve better security
for short keys.)

We emphasize that despite the availability of modern designs with built-in
larger keys (e.g., κ ∈ {128, 192, 256} for AES), Triple-DES remains nowadays
popular, not only because of backwards compatibility, but also because its short
block size (n = 64 vs. n ≥ 128 for AES) is well suited to applications enciphering
short inputs such as personal-identification numbers (PINs). For example, it is
the basis of the EMV standard for PIN-based authentication of debit and credit
card transactions [6]. However, the use of three calls per processed message block
is widely considered a drawback within applications which we address and solve
in this paper.

Other related work. It is worth mentioning that several works have studied
cascading-based security amplification of block ciphers only assumed to satisfy
weaker forms of PRP security, both in the information-theoretic [32,24,25,17] as
well as in the computational settings [20,26,31]. These results however consider
an orthogonal model to ours and are hence incomparable.

1.3 Our Results

None of the above efficient constructions provably achieves security beyond
2κ+min{κ,n}/2, and such security is achieved only at the fairly expensive cost
of at least three block-cipher calls per message block. This paper aims at im-
proving the efficiency-security trade-off in key-length extension. We ask the fol-
lowing question: Suppose that we only consider constructions making at most
two calls to the underlying cipher. What is the best security level we are expected
to achieve?

Better security and better efficiency.Quite surprisingly, our main re-
sult (presented in Section 4) exposes a “win-win” situation: We devise a two-call
construction of a (κ+ n, n)-block cipher from any (κ, n)-block cipher with secu-
rity 2κ+n/2 in the ideal block cipher model, i.e., the obtained security is higher
than that of existing three-call designs studied in [11,16].3 Our construction –
which we refer to as the double XOR-cascade (2XOR) – is obtained by careful
insertion of two randomization steps (with the same key value) to a related-key
version of double encryption. Concretely, we map each n-bit message m to

2XORk,z(m) = Ek̃(Ek(m⊕ z)⊕ z)

for all key values k ∈ {0, 1}κ and z ∈ {0, 1}n, and where k̃ is, for example,
obtained from k by flipping one individual bit.

We note that the key length is comparable to the one of the two-key variant
of 3DES (assuming κ ≈ n). Intuitively, our construction requires some mild

3 In fact, our construction tolerates arbitrarily many construction queries (i.e., up to
2n) and 2κ+n/2 ideal block cipher queries. However, we stress that in all practically
relevant cases κ ≥ n/2, hence we tacitly assume this property throughout the paper.
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Table 1. Required number of block-cipher queries, key lengths, security lower bounds
and best known attacks for various key-length extension schemes. The bounds are
parameterized by the key length of the underlying block cipher (denoted by κ) and its
block size (denoted by n), and are for the usual case where κ ≥ n/2.

# of key log of the number of queries
construction queries length security lower bound best known attack

(κ, n)-block cipher 1 κ κ κ

DESX [15,18] 1 κ+ n (κ+ n)/2 max{κ, n}
double encryption [13] 2 2κ κ κ

triple encryption [11,16,21] 3 3κ κ+min{κ, n}/2 90 (for 3DES)

double XOR-cascade [here] 2 κ+ n κ+ n/2 (Thm. 3) κ+ n/2 (Thm. 2)

form of related-key security [10] which we obtain for free when the underlying
block cipher is ideal, but may be a concern in practice. However, it should be
noted that an alternative version of the construction where k̃ is replaced by an
independent and unrelated key value k′ achieves the same security level at the
cost of a longer (2κ+n)-bit key, which is for instance still shorter than in DESX
with independent whitening keys (for DES parameters).

The core of our security proof (cf. Theorem 3) is a technical argument of
independent interest: Namely, we prove that it is hard to distinguish two random,
independent, permutations π1, π2 on the n-bit strings from two randomly chosen
permutations π1, π2 with the property that π2(π1(x⊕Z)⊕Z) = x for all x and
a random secret value Z even if we are allowed arbitrary queries to each of
π1, π2, π

−1
1 , and π−1

2 . This fact yields our main theorem by a careful adaptation
of the techniques from [11,16] to take into account both randomization and the
use of related keys.

Generic attacks and optimality.With the above result at hand, it is legit-
imate to ask whether we should expect two-call constructions with even better
security: In Section 3, we answer this in the negative, at least for a class of
natural constructions.

As a warm up of independent interest, we confirm that only much weaker secu-
rity can be achieved by a one-call construction: Regardless of the amount of key
material employed in the construction, an attack with query complexity 2max{κ,n}

always exists (using memory 2max{κ,n}),4 showing the optimality of DESX-like
constructions in the case κ = n. We then turn to two-call constructions, which
are necessary to achieve higher security: Here, we prove that any construction for
which distinct inputs map to distinct first queries and distinct answers from the
first call imply distinct inputs to the second call admits a distinguishing attack
making 2κ+n/2 ideal block cipher queries and 2n construction queries. This class
contains as a special case all constructions obtained by randomizing the cascade
of length two using arbitrarily many key bits, including ours.

4 More precisely, our attack requires roughly 2κ ideal block cipher queries and 2n con-
struction queries.
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In addition, we also show that simpler randomization methods for length-two
cascades admit distinguishing attacks with even lower complexity. For example,
randomizing the cascade of length two as Ek2(Ek1 (m⊕z1))⊕z2 instead of using
our approach yields a simple 2max{κ,n} meet-in-the middle attack. This shows
an interesting feature of our constructions, namely that while targeting CCA
security (i.e., we allow for forward and backward queries to the construction), our
design requires asymmetry, a fact which seems to contradict common wisdom.

Finally, note that all generic attacks presented in this paper (both against one-
query and two-query constructions) can be mounted even if the distinguisher is
only allowed to ask forward construction queries (i.e., in the CPA setting). In
contrast, the construction we propose is proven to be secure even with respect
to an adversary allowed to ask inverse construction queries (CCA adversary).

Final remarks.Table 1 summarizes the results of this paper in the context of
previously known results. To serve as an overview, some bounds are presented in
a simplified form. Note that the security of any key-length extension construction
in our model can be upper-bounded by 2κ+n which corresponds to the trivial
attack asking all possible block cipher and construction queries.

Our results and proofs are presented using Maurer’s random systems frame-
work [22], which we review in Section 2 in a self-contained way sufficient to follow
the contents of the paper.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters X ,Y, . . ., and by |X | , |Y| , . . . their cardi-
nalities. We also let X k be the set of k-tuples xk = (x1, . . . , xk) of elements of X .
Strings are elements of {0, 1}k and are usually denoted as s = s1s2 . . . sk, with ‖
denoting the usual string concatenation. Additionally, we let Func(m, �) be the
set of all functions from {0, 1}m to {0, 1}
 and Perm(n) be the set of all permu-
tations of {0, 1}n. In particular, id ∈ Perm(n) represents the identity mapping
when n is understood from the context. Throughout this paper logarithms will
always be to the base 2.

We denote random variables and concrete values they can take by upper-case
letters X,Y, . . . and lower-case letters x, y, . . ., respectively. For events A and B
and random variables U and V with ranges U and V , respectively, we let PUA|V B

be the corresponding conditional probability distribution, seen as a (partial)
function U ×V → [0, 1]. Here the value PUA|V B(u, v) = P[U = u∧A|V = v ∧B]
is well defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and undefined
otherwise. Two probability distributions PU and PU ′ on the same set U are equal,
denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional probability
distributions are equal if the equality holds for all arguments for which both of
them are defined. To emphasize the random experiment E in consideration, we
sometimes write it in the superscript, e.g. PE

U|V (u, v). Finally, the complement

of an event A is denoted by A.
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2.2 Random Systems

The presentation of this paper relies on Maurer’s random systems framework
[22]. However, we stress that most of the paper remains understandable at a very
high level, even without the need of a deeper understanding of the techniques
behind the framework; we provide a self-contained introduction.

The starting point of the random-system framework is the basic observation
that the input-output behavior of any kind of discrete system with inputs in X
and outputs in Y can be described by an infinite family of functions describing,
for each i ≥ 1, the probability distribution of the i-th output Yi ∈ Y given the
values of the first i inputs X i ∈ X i and the previous i− 1 outputs Y i−1 ∈ Yi−1.
Formally, hence, an (X ,Y)-(random) system F is an infinite sequence of functions
pFYi|XiY i−1 : Y × X i × Yi−1 → [0, 1] such that,

∑
yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1

for all i ≥ 1, xi ∈ X i and yi−1 ∈ Yi−1. We stress that the notation pFYi|XiY i−1 ,
by itself, involves some abuse, as we are not considering any particular random
experiment with well-defined random variables Yi, X

i, Y i−1 until the system will
be interacting with a distinguisher (see below), in which case the random vari-
ables will exist and take the role of the transcript. In general, we shall also
typically define discrete systems by a high level description, as long as the re-
sulting conditional probability distributions can be derived uniquely from this
description.

We say that a system F is deterministic if the range of pFYi|XiY i−1 is {0, 1}
for all i ≥ 1. Moreover, it is stateless if the probability distribution of each
output depends only on the current input, i.e., if there exists a distribution
pY |X : Y × X → [0, 1] such that pFYi|XiY i−1(yi, x

i, yi−1) = pY |X(yi, xi) for all

yi, x
i and yi−1.

We also consider systems CF that arise from constructions C(·) accessing a
sub-system F. Note that while a construction C(·) does not define a random
system by itself, CF does define a random system. The notions of being de-
terministic and of being stateless naturally extend to constructions.5 We also
consider the parallel composition of two (possibly dependent) discrete systems F
and G, denoted (F,G), which is the system that allows queries to both systems
F and G.

Examples.A random function F : {0, 1}m → {0, 1}n is a system which imple-
ments a function f initially chosen according to some distribution on Func(m,n).6

In particular, the uniform random function (URF)R : {0, 1}m → {0, 1}
 realizes
a uniformly chosen function f ∈ Func(m, �), whereas the uniform random per-
mutation (URP) on {0, 1}n, denoted P : {0, 1}n × {+,−} → {0, 1}n, realizes a
uniformly chosen permutation P ∈ Perm(n) allowing both forward queries of the
form (x,+) returning P (x) as well as backward queries (y,−) returning P−1(y).
More generally, we meet the convention (for the purpose of this paper) that any

5 We dispense with a formal definition. However, we point out that we allow a stateless
construction to keep a state during invocations of its subsystem.

6 As is the case with the notion of a random variable, the word “random” does not
imply uniformity of the distribution.
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system realizing a random function (possibly by means of a construction) which
is a permutation will always allow both forward and backward queries.

Another important example of a random function is the ideal block cipher
E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n which realizes an independent uniform
random permutation Ek ∈ Perm(n) for each key k ∈ {0, 1}κ; in particular, the
system allows both forward and backward queries to each Ek.

Finally, note that with some abuse of notation, we often write Ek or P to
refer to the randomly chosen permutation P implemented by the system Ek or
P, respectively.

Distinguishers and indistinguishability.A distinguisher D for an (X ,Y)-
random system asking q queries is a (Y,X )-random system which is “one query
ahead:” its input-output behavior is defined by the conditional probability dis-
tributions of its queries pDXi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (The first query of D is

determined by pDX1
.) After the distinguisher asks all q queries, it outputs a bit

Wq depending on the transcript (Xq, Y q). For a random system F and a distin-
guisherD, let DF be the random experiment whereD interacts with F, with the
distributions of the transcript (Xq, Y q) and of the bitWq being uniquely defined
by their conditional probability distributions. Then, for two (X ,Y)-random sys-
tems F and G, the distinguishing advantage of D in distinguishing systems F
andG by q queries is the quantityΔD(F,G) =

∣∣PDF(Wq = 1)− PDG(Wq = 1)
∣∣.

We are usually interested in the maximal distinguishing advantage over all dis-
tinguishers asking q queries, which we denote by Δq(F,G) = maxDΔD(F,G)
(with D ranging over all such distinguishers).

For a random system F, we often consider an internal monotone condition
defined on it. Such a condition is initially satisfied (true), but once it gets vio-
lated, it cannot become true again (hence the name monotone). Typically, the
condition captures whether the behavior of the system meets some additional
requirement (e.g. distinct outputs, consistent outputs) or this was already vi-
olated during the interaction. We formalize such a condition by a sequence of
events A = A0, A1, . . . such that A0 always holds, and Ai holds if the condition
holds after query i. The probability that a distinguisher D issuing q queries to
F makes a monotone condition A fail in the random experiment DF is denoted
by νD(F, Aq) = PDF(Aq) and we are again interested in the maximum over
all such distinguishers, denoted by ν(F, Aq) = maxD νD(F, Aq). For a random
system F with a monotone condition A = A0, A1, . . . and a random system
G, we say that F conditioned on A is equivalent to G, denoted F|A ≡ G, if
pFYi|XiY i−1Ai

= pGYi|XiY i−1 for i ≥ 1, for all arguments for which pFYi|XiY i−1Ai
is

defined. Intuitively, this captures the fact that as long as the condition A holds
in F, it behaves the same as G.

Let F be a random system with a monotone condition A. Following [25], we
define F blocked by A to be a new random system that behaves exactly like F
while the condition A is satisfied. Once A is violated, it only outputs a special
blocking symbol ⊥ not contained in the output alphabet of F.

We make use of the following helpful claims proven in previous papers. Below,
we also present an informal explanation of their merits.
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Lemma 1. Let C(·) and C′(·) be two constructions invoking a subsystem, and
let F and G be random systems. Let A and B be two monotone conditions defined
on F and G, respectively.

(i) [22, Theorem 1] If F|A ≡ G then Δq(F,G) ≤ ν(F, Aq).
(ii) [16, Lemma 2] Let F⊥ denote the random system F blocked by A and let

G⊥ denote G blocked by B. Then for every distinguisher D asking q queries
we have ΔD(F,G) ≤ Δq(F

⊥,G⊥) + νD(F, Aq).
(iii) [22, Lemma 5] Δq(C

F,CG) ≤ Δq′(F,G), where q′ is the maximum number
of invocations of any internal system H for any sequence of q queries to
CH, if such a value is defined.

(iv) [16, Lemma 3] There exists a fixed permutation S ∈ Perm(n) (represented
by a deterministic stateless system) such that Δq(C

P,C′P) ≤ Δq(C
S ,C′S).

The first claim can be seen as a generalized version of the Fundamental Lemma
of Game-Playing for the context of random systems, stating that if two systems
are equivalent as long as some condition is satisfied, then the advantage in distin-
guishing these systems can be upper-bounded by the probability of violating this
condition. The second claim is even more general, analyzing the situation where
the systems are not equivalent even if the conditions defined on them are satis-
fied, but their behavior is similar (which is captured by the term Δq(F

⊥,G⊥)).
The third claim states the intuitive fact that interacting with the distinguished
systems through an additional enveloping construction C cannot improve the
distinguishing advantage and the last claim is just an averaging argument over
all the possible values taken by P.

3 Generic Attacks against Efficient Key-Length
Extension Schemes

We start by addressing the following question: What is the maximum achievable
security level for very efficient key-length extension schemes? To this end, this
section presents generic distinguishing attacks against one- and two-call block-
cipher constructions in Sections 3.1 and 3.2, respectively. These attacks are in
the same spirit as the recent line of work on generic attacks on hash functions (cf.
e.g. [27,29,30]). Along the same lines, here attack complexity will be measured in
terms of query- rather than time-complexity. This allows us to consider arbitrary
constructions, while being fully sufficient to assess security in the ideal cipher
model, where distinguishers are computationally unrestricted.

More formally, we consider stateless and deterministic (keyed) constructions
C(·) invoking an ideal cipher E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n to im-
plement a function CE : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n to serve as a
block cipher with key length κ′. We assume that the construction CE realizes
a permutation for each k′ ∈ {0, 1}κ′

and hence it also provides the interface for
inverse queries as indicated. Consequently, for a random (secret) κ′-bit string
K ′, we let CE

K′ denote the system which only gives access to the permutation
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CE(K ′, ·) and its inverse (i.e., takes inputs from {0, 1}n×{+,−}). (In fact, none
of the attacks in this section will require backward queries.)

Since the goal of this section is mainly to serve as a supporting argument
for the optimality of our construction presented in Section 4, due to space re-
strictions we omit the proofs of our claims and only provide some intuition. All
statements are proved in a more general setting in the full version of this paper.

3.1 One-Query Constructions

Throughout this section, we assume that C(·), to evaluate input (x,+) for x ∈
{0, 1}n under a key k′ ∈ {0, 1}κ′

, makes exactly one query to the underlying
subsystem, and we denote this query as q(k′, x). We consider two different cases,
depending on the structure of q(·, ·), before deriving the final attack.

The injective case.We first consider the case where the mapping x �→ q(k′, x)
is injective for each k′. We shall denote this as a one-injective-query construction.
In this case, distinct queries to CE

k′ lead to distinct internal queries to E and
hence if the distinguisher queries both CE

K′ and E at sufficiently many random

positions, one can expect that during the evaluation of the outer queries, C
(·)
K′

asks E for a value that was also asked by the distinguisher. If this occurs, the

distinguisher can, while trying all possible keys k′, evaluate C
(·)
k′ on its own by

simulating C(·) and using the response from E; and by comparing the outcomes
it can distinguish the construction from a truly random permutation. This is the
main idea behind the following lemma.

Lemma 2. Let E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n be an ideal block cipher,
let C(·) : {0, 1}κ′ ×{0, 1}n ×{+,−} → {0, 1}n be a one-injective-query construc-
tion and let P be a URP on {0, 1}n. Then, for a random key K ′ ∈ {0, 1}κ′

and
every parameter 0 < t < 2min{n,k}−1,7 there exists a distinguisher D such that

ΔD((E,CE
K′), (E,P)) ≥ 1 − 2/t− 2κ′−t·(n−1) ,

and which makes at most 4t · 2max{(κ+n)/2,κ} queries to the block cipher E, as
well as at most 2 · 2min{(κ+n)/2,n} forward queries to either of CE

K′ and P.

The above lemma covers most of the natural one-query constructions, since these
typically satisfy the injectivity requirement (e.g. the DESX construction). In the
following we see that constructions asking non-injective queries do not achieve
any improvement in security.

Non-injective queries.We now permit that the construction C(·) might, for
some key k′, invoke the underlying ideal cipher in a non-injective way, i.e., q(k′, ·)
is not an injective map. We prove that, roughly speaking, such a construction
CE

K′ might be distinguishable from a URP P based solely on an entropy argu-
ment. The intuitive reasoning is that if C(·) allows on average (over the choice of

7 Roughly speaking, higher t increases the advantage but also the required number
of queries; we obtain the desired bound using a constant t. For a first impression,
consider e.g. t = 4 and κ′ ≈ 2n.
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the key k′) that too many queries x map to the same q(k′, x), then it also does
not manage to obtain sufficient amount of randomness from the underlying ran-
dom function to simulate P convincingly, opening the door to a distinguishing
attack. In the following, let q(k′) = |{q(k′, x) : x ∈ {0, 1}n}| for all k′ ∈ {0, 1}κ.

Lemma 3. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a one-query con-
struction, let P be a URP on {0, 1}n and let E : {0, 1}κ × {0, 1}n × {+,−} →
{0, 1}n be an ideal block cipher. Also, let K ′ ∈ {0, 1}κ′

be a random key, and as-
sume that there exists q∗ such that q(K ′) ≤ q∗ with probability at least 1

2 . Then,
there exists a distinguisher D asking 2n forward queries such that

ΔD
(
CE

K′ ,P
)
≥ 1

2 − 2κ′+n·q∗−log(2n!) .

Putting the pieces together.We can combine the techniques used to prove
Lemma 2 (somewhat relaxing the injectivity requirement) and Lemma 3, to
obtain the following final theorem yielding an attack for arbitrary one-query
block-cipher constructions.

Theorem 1. Let n ≥ 6 and κ′ ≤ 2n − 1, let E : {0, 1}κ × {0, 1}n × {+,−} →
{0, 1}n be an ideal block cipher, let C(·) : {0, 1}κ′×{0, 1}n×{+,−} → {0, 1}n be a
one-query construction, and let P be a URP on {0, 1}n. Then, for a random key
K ′ ∈ {0, 1}κ′

and for all parameters 0 < t < 2n−2, there exists a distinguisher
D such that

ΔD
(
(E,CE

K′), (E,P)
)
≥ min

{
1
4 ,

1
2 − 2

t − 2κ′−t·(n−1)
}
,

and which asks at most 8t · 2κ queries to E and 2n forward queries to either of
CE

K′ and P.

Theorem 1 shows that no one-query construction can achieve security beyond
2max{κ,n} queries, hence in our search for efficient key-length extension schemes
we have to we turn our attention towards constructions issuing at least two
queries.

3.2 Two-Query Constructions

We now consider an arbitrary deterministic stateless constructionC(·) : {0, 1}κ′×
{0, 1}n × {+,−} → {0, 1}n that makes exactly two queries to an ideal block ci-
pher E : {0, 1}k × {0, 1}n × {+,−} → {0, 1}n to evaluate each query. In the
following, these constructions shall be referred to as two-query constructions.
We denote by q1(k

′, x) ∈ {0, 1}κ × {0, 1}n × {+,−} the first query C(·) asks its
subsystem when it is itself being asked a forward query (k′, x,+). Moreover, we
denote by q2(k

′, x, s) ∈ {0, 1}κ ×{0, 1}n ×{+,−} the second query it asks when
it is itself being asked a forward query (k′, x,+) and the answer to the first query
q1(k

′, x) was s ∈ {0, 1}n. Since C(·) is deterministic and stateless, both q1 and
q2 are well-defined mappings.
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EK̃(EK(x ⊕ Z) ⊕ Z)EK(.)

K

EK̃(.)

K̃ZZ

x

Fig. 1. The double XOR-cascade construction analyzed in Theorem 3

Theorem 2. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a two-query
construction satisfying the following two conditions:

1. for every k′ ∈ {0, 1}κ′
the mapping q1(k

′, ·) is injective,
2. distinct answers to the first query imply distinct second queries, i.e., for

every k′ ∈ {0, 1}κ′
and every x, x′ ∈ {0, 1}n if s �= s′ then q2(k

′, x, s) �=
q2(k

′, x′, s′).

Then for a random key K ′ ∈ {0, 1}κ′
, for a URP P on {0, 1}n and for every

parameter 0 < t < 2n/2−1, there exists a distinguisher D such that

ΔD((E,CE
K′), (E,P)) ≥ 1 − 2/t− 13 · 2−n

2 − 2κ′−t·(n−1),

where D makes at most 2(t + 4) · 2κ+n/2 queries to E as well as 2n forward
queries to either of CE

K′ and P.

Hence, no two-query construction from a large class described in the above the-
orem can achieve security beyond 2κ+n/2 queries. In the following section we
present a simple and efficient construction from this class that achieves the
above limit.

4 The Double XOR-Cascade Construction

We present a two-query construction matching the upper bound 2κ+n/2 on se-
curity proved in the previous section. The construction, which we call the double
XOR-cascade construction (2XOR), consists of two applications of the block-
cipher interleaved with two XOR operations: Given a (κ, n)-block cipher E, we
define the (κ+ n, n)-block cipher 2XORE such that

2XORE
k,z(m) = Ek̃(Ek(m⊕ z)⊕ z)

for all k ∈ {0, 1}κ, z,m ∈ {0, 1}n, and where k̃ = π(k) for some understood
fixpoint-free permutation π ∈ Perm(κ) (e.g., π(k) = k ⊕ 0κ−11, i.e., π flips
the last bit). The construction is depicted in Figure 1. Note that both XOR
transformations use the same value z and the two block-cipher calls use two
distinct keys such that one can be deterministically derived from the other one.
We also consider a construction 2XOR′ of a (2κ + n)-block cipher where k̃ is
replaced by an (independent) κ-bit key.
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Security of 2XOR.We now discuss the security of the double XOR-cascade
construction in the ideal cipher model. To this end, let X(·) : {0, 1}κ ×{0, 1}n ×
{0, 1}n×{+,−} → {0, 1}n denote a (deterministic stateless) construction which
expects a subsystem E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n realizing a block
cipher. XE then answers each query (k, z, x,+) by Ek̃ (Ek (x⊕ z)⊕ z) and each

query (k, z, y,−) by E−1
k (E−1

k̃
(y)⊕z)⊕z. As before, for randomly chosen (secret)

keys (K,Z) ∈ {0, 1}κ×{0, 1}n, we let XE
K,Z be the system which gives access to

the permutation XE(K,Z, ·) in both directions (i.e., takes inputs from {0, 1}n×
{+,−}).

Theorem 3. Let P and E denote a URP on {0, 1}n and an ideal (κ, n)-block
cipher, respectively; let (K,Z) ∈ {0, 1}κ ×{0, 1}n be uniformly chosen keys. For

the construction X
(·)
K,Z defined as above, and for every distinguisher D making

q queries to E,

ΔD
((
E,XE

K,Z

)
, (E,P)

)
≤ 4 ·

( q

2κ+n/2

)2/3

.

In particular, D can make arbitrarily many queries to either of XE
K,Z and P.

We also note that an analogous statement for the construction 2XOR′ can be
easily derived from the presented claim.

Proof intuition.The proof, given below, follows a two-step approach. In the
first part, we prove that for any parameter h ≤ 2n/2, the above advantage is
upper bounded by ε(h)+ q

h2κ−1 , where ε(h) is an upper bound on the advantage
of a h-query distinguisher in telling apart the following two settings, in both of
which it issues both forward and backward queries to two permutations π1, π2 ∈
Perm(n):

1. In the first case, π1, π2 are chosen uniformly and independently.
2. In the second setting, a uniform n-bit string Z is chosen, and π1 and π2 are

chosen uniformly at random such that π2(π1(· ⊕ Z)⊕ Z) = id.

This step follows a pattern similar to the one used in [11,16] to analyze the
security of plain cascades, but with obvious modifications and extra care to take
into account randomization as well as key dependency.

Then, the main technical part of the proof consists of proving a bound 3h2/2n+1

on ε(h), which is a new result of independent interest. The intuition here is that
without knowing Z, it is hard to come up with two queries, one to π1 and one
to π2, which result in input-output pairs π1(x) = y and π2(x

′) = y′ satisfying
x = y′ ⊕ Z and x′ = y ⊕ Z simultaneously. However, as long as this does not
happen, both permutations appear independent and random.

We stress that our double-randomization is crucial here: omitting one of the
randomization steps, as well as adding a third randomization step for the same
Z, would all result in invalidating the argument. The full version of this paper
also provides some useful extra intuition as for why other simpler randomization
methods for the cascade fail to provide the required security level.
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Proof. We start by noting that the system (E,XE
K,Z) simply can be seen as

providing an interface to query 2κ + 1 (dependent) permutations

Ek1 ,Ek2 , . . . ,Ek2κ
,EK̃ (EK (· ⊕ Z)⊕ Z) ,

each both in forward and backward direction, where k1, k2, . . . , k2κ is an enu-
meration of the κ-bit strings. By the group structure of Perm(n) under compo-
sition, the joint distribution of these permutations does not change if we start
by choosing the last permutation uniformly at random, i.e., we replace it by P,
then choose K and Z and finally choose the permutations of the block cipher in-
dependently and randomly except for the one corresponding to the key K̃, which
we set to x �→ P

(
E−1

K (x⊕ Z) ⊕ Z
)
. Hence, let G(·) be a system that expects a

single permutation as its subsystem (let us denote it P ) and itself provides an
interface to a block cipher (let us denote it G). It answers queries to G in the
following way: in advance, it chooses random keys (K,Z) and then generates
random independent permutations for G used with any key except K̃. For K̃,
G realizes the permutation x �→ P

(
G−1

K (x⊕ Z)⊕ Z
)
, querying P for any nec-

essary values. Then the above argument shows that (E,XE
K,Z) = (GP,P) and

hence we obtain

Δq

((
E,XE

K,Z

)
, (E,P)

)
= Δq

((
GP,P

)
, (E,P)

)
≤ Δq

((
GS , S

)
, (E, S)

)
,

where the last inequality follows from claim (iv) in Lemma 1 and S denotes the
fixed permutation whose existence is guaranteed by this claim. Since S is fixed
and hence known to the distinguisher, it makes no sense to query it and thus it
remains to bound Δq

(
GS ,E

)
for any permutation S. From now on, we denote

the system GS by G to simplify the notation.
We shall refer to all forward or backwards queries to G involving the per-

mutations indexed by K or K̃ as relevant. Similarly, the system E can be seen
as also choosing some random key K (and hence K̃), this just does not affect
its behavior, and we can hence define relevant queries for E in an analogous
way. Let Ah and Bh denote monotone conditions defined on systems E and G
respectively, such that each of these conditions remains satisfied as long as at
most h of the queries asked so far were relevant. The parameter h will be chosen
optimally at the end of the proof. We require h < 2n/2.

It is easy to upper-bound the probability of asking more than h relevant
queries in E: since the key K does not affect the responses of the system (and
therefore the behavior is also independent of the associated monotone condition),
we only have to consider non-adaptive strategies. Hence, for any distinguisher D
asking q queries, the expected number of relevant queries among them is q ·21−κ

and using Markov inequality, we obtain ν(E,Ah

q ) ≤ q/h2κ−1. Let E⊥ and G⊥

denote the systems E and G blocked by Ah and Bh, respectively. Then we can
apply claim (ii) of Lemma 1 to obtain

Δq(G,E) ≤ Δq(G
⊥,E⊥) + ν(E,Ah

q ) ≤ Δq(G
⊥,E⊥) + q/h2κ−1 .

Now, one can observe that the systems G⊥ and E⊥ only differ in a small part.
More specifically, we have G⊥ = CS and E⊥ = CT, where:
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- S is a system that chooses Z ∈ {0, 1}n at random and provides access
(by means of both forward and backward queries) to two randomly cho-
sen permutations π1, π2 on {0, 1}n such that they satisfy the equation
π2(π1(· ⊕ Z) ⊕ Z) = id;

- T is a system providing access (by means of both forward and back-
ward queries) to two independent uniformly random permutations π1, π2 ∈
Perm(n);

- C(·) is a (randomized) construction that expects a subsystem which provides
two permutations π1 and π2. C

(·) itself provides access to a block cipher C
as follows: it chooses a uniformly random key K and sets CK := π1 and
CK̃ := π2 ◦ S. (C only queries its subsystem once it is asked a relevant
query). The permutations for all other keys are chosen independently at
random. Moreover, C only allows h relevant queries, after that it returns ⊥.

By Lemma 1(iii), the above observation gives us Δq(G
⊥,E⊥) ≤ Δh(S,T) and

hence it remains to bound Δh(S,T). We start by taking a different view of
the internal workings of the system S. Once the values Z, π1, π2 are chosen, the
internal state of S can be represented by a set T of 2n 4-tuples (x1, y1, x2, y2)
such that π1(x1) = y1 and π2(x2) = y2, and x2 = y1 ⊕ Z and x1 = y2 ⊕ Z. For
any I ⊆ {1, . . . , 4}, let TI be the projection of T on the components in I. Then
note that for any two distinct tuples (x1, y1, x2, y2), (x

′
1, y

′
1, x

′
2, y

′
2) ∈ T we have

x1 �= x′1, y1 �= y′1, x2 �= x′2, and y2 �= y′2, in other words T{i} = {0, 1}n for every
i ∈ {1, . . . , 4}.

Equivalently, it is not hard to verify that S can be implemented using lazy-
sampling to set up T : Initially, T = ∅ and Z is a uniform n-bit string. Then, S
answers queries as follows:

- Upon a query π1(x), it returns y if (x, y) ∈ T{1,2} for some y. Otherwise, it
returns a random y ∈ {0, 1}n \ T{2} and adds (x, y, y ⊕ Z, x⊕ Z) to T .

- Upon a query π−1
1 (y), it returns x if (x, y) ∈ T{1,2} for some x. Otherwise,

it returns a random x ∈ {0, 1}n \ T{1} and adds (x, y, y ⊕ Z, x⊕ Z) to T .
- Upon a query π2(x), it returns y if (x, y) ∈ T{3,4} for some y. Otherwise, it
returns a random y ∈ {0, 1}n \ T{4} and adds (y ⊕ Z, x⊕ Z, x, y) to T .

- Upon a query π−1
2 (y), it returns x if (x, y) ∈ T{3,4} for some x. Otherwise,

it returns a random x ∈ {0, 1}n \ T{3} and adds (y ⊕ Z, x⊕ Z, x, y) to T .

We consider an intermediate system S′ obtained from S: In addition to T , it also
keeps track of sets P1 and P2, both consisting of ordered pairs of n-bit strings.
(Again Pi,1 and Pi,2 denote the strings appearing as first and second component
in Pi, respectively.) Initially each Pi is empty and during the experiment, Pi

keeps track of input-output pairs for πi which were already defined by directly
answering a πi query in either direction (as opposed to those that were defined
internally by S′ when answering a π3−i query). Concretely, S

′ answers a query
π1(x) by y if (x, y) ∈ T{1,2} ∪ P1 for some y. Otherwise, it returns a uniformly
chosen y ∈ {0, 1}n \ P1,2 and adds (x, y) to P1. Moreover, if y /∈ T{2}, it also

adds the tuple (x, y, y ⊕ Z, x ⊕ Z) to T . Queries π−1
1 (y), π2(x), and π−1

2 (y)
are answered in a symmetric fashion. Having this description of S′, note that
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we obtain the system T if a query π1(x) is answered by some given y only if
(x, y) ∈ P1, and otherwise a fresh random output is generated (but the 4-tuples
are still added to T as above).

We now define two monotone conditions A and B on S′:

- A = A0, A1, . . . fails at the first query πi(x) answered by a random y which
satisfies y ∈ T{2(i−1)+2}, or π

−1
i (y) answered by a random x such that x ∈

T{2(i−1)+1}.
- B = B0, B1, . . . fails at the first query πi(x) such that there exists y satisfying
(x, y) ∈ T{2(i−1)+1,2(i−1)+2} \Pi, or π

−1
i (y) such that there exists x satisfying

(x, y) ∈ T{2(i−1)+1,2(i−1)+2} \ Pi.

By the above representations of S and T, one can easily verify that S′|A ≡ S and
S′|B ≡ T. Therefore, by the triangle inequality and by claim (i) from Lemma 1,

Δh(S,T) ≤ Δh(S,S
′) +Δh(S

′,T) ≤ ν(S′, Ah) + ν(S′, Bh).

To upper bound ν(S′, Ah), note that each time a fresh random value is chosen
from {0, 1}n\Pi,j when answering the ith query, it is in T2(i−1)+j with probability

at most i−1
2n−i ≤ 2 i−1

2n , hence the union bound gives us ν(S′, Ah) ≤ h2

2n .

In order to bound ν(S′, Bh), let us introduce a monotone condition C =
C0, C1, . . . on T which fails under the same circumstances as B in S′ (note that
this can be done since T also keeps track of the sets T and Pi). As a consequence
of these equivalent definitions and the fact that the behaviors of S′ and T are
the same as long as the respective associated conditions are satisfied, we have
ν(S′, Bh) = ν(T, Ch). However, the input-output behavior of T is independent
of Z (and C failing), and hence we can equivalently postpone the sampling of Z
to the end of the interaction, go through the generated transcript to construct
T , and upper bound the probability that C has failed at some query. This implies
that for the choice of Z, one query must have been bad in the following sense:

- query π1(x) is preceded by a π2-query resulting in an input-output pair
(x′, y′) such that y′ ⊕ Z = x;

- query π−1
1 (y) preceded by a π2-query resulting in pair (x′, y′) s.t. x′⊕Z = y;

- query π2(x
′) preceded by a π1-query resulting in pair (x, y) s.t. y ⊕ Z = x′;

- query π−1
2 (y′) is preceded by a π1-query resulting in pair (x, y) s.t. x⊕Z = y′.

Given the transcript, and for randomly chosen Z, the ith query is bad with
probability at most (i−1)/2n, and the probability that at least one query is bad

is thus at most h2

2n+1 by the union bound.
Putting all the obtained terms together, the part of the distinguisher’s advan-

tage that depends on h is f(h) = q/h2κ−1+3h2/2n+1. This term is minimal for

h∗ = (13q2
n−κ+1)1/3 which gives us f(h∗) < 4 ·

(
q

2κ+n/2

)2/3
as desired. ��
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Abstract. We consider the problem of fairness in two-party computa-
tion, where this means (informally) that both parties should learn the
correct output. A seminal result of Cleve (STOC 1986) shows that fair-
ness is, in general, impossible to achieve for malicious parties. Here, we
treat the parties as rational and seek to understand what can be done.

Asharov et al. (Eurocrypt 2011) recently considered this problem and
showed impossibility of rational fair computation for a particular func-
tion and a particular set of utilities. We observe, however, that in their
setting the parties have no incentive to compute the function even in
an ideal world where fairness is guaranteed. Revisiting the problem, we
show that rational fair computation is possible, for arbitrary functions
and utilities, as long as at least one of the parties has a strict incentive
to compute the function in the ideal world. This gives a novel setting
in which game-theoretic considerations can be used to circumvent an
impossibility result in cryptography.

1 Introduction

Cryptography and game theory are both concerned with understanding interac-
tions between mutually distrusting parties with potentially conflicting interests.
Cryptography typically adopts a “worst case” viewpoint; that is, cryptographic
protocols are designed to protect the interests of each party against arbitrary
(i.e., malicious) behavior of the other parties. The game-theoretic perspective,
however, views parties as being rational ; game-theoretic protocols, therefore,
only need to protect against rational deviations by other parties.

Significant effort has recently been devoted to bridging cryptography and
game theory; see [9,21] for surveys. This work has tended to focus on two general
sets of questions:

“Using cryptographic protocols to implement games” (e.g.,
[7,10,4,8,25,1,19]). Given a game played by parties relying an external
trusted entity (a mediator), when can the externa; trusted party be replaced by
a cryptographic protocol executed by the parties themselves?

“Applying game-theoretic analysis to cryptographic protocols” (e.g.,
[17,21,13,26,1,15,16]). What game-theoretic definitions are appropriate for com-
putationally bounded, rational players executing a network protocol? Can

� Research supported by NSF awards #0830464 and #1111599.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 81–98, 2012.
c© International Association for Cryptologic Research 2012



82 A. Groce and J. Katz

impossibility results in the cryptographic setting be circumvented if we are will-
ing to take a game-theoretic approach?

Here, we turn our attention to the question of fair two-party computation
in a rational setting, where fairness means that both parties should learn the
value of some function f evaluated on the two parties’ inputs. Following recent
work of Asharov et al. [2] (see further below), our goal is to understand when
fairness is achievable by rational parties running some cryptographic protocol,
without the aid of any external trusted entity. Our work touches on both the
issues outlined above. Our motivation was to circumvent the strong impossi-
bility result of Cleve [6] for fair two-party computation in a malicious setting.
In this sense, our work is a generalization of results on rational secret shar-
ing [17,13,26,1,22,23,29,27,3,11], which can be seen as a special case of fair com-
putation for a specific function with parties’ inputs provided by a trusted dealer.
It is also possible to view the problem of rational fair computation from a differ-
ent perspective. Specifically, one could define a natural “fairness game” involving
a trusted mediator who computes a function f on behalf of the parties (and gives
both parties the result), and where parties can choose whether or not to partic-
ipate and, if so, what input to send to the mediator. One can then ask whether
there exists a real-world protocol (replacing the mediator) that preserves equi-
libria of the original mediated game. Our work demonstrates a close connection
between these two complementary viewpoints; see further below.

1.1 Our Results

Our setting is the same as that studied by Asharov, Canetti, and Hazay [2].
Informally, there are two parties P0 and P1 who wish to compute a function f
of their respective inputs x0 and x1, where the joint distribution of x0 and x1
is common knowledge. (In [2] independent uniform distributions were assumed
but we consider arbitrary joint distributions.) Following work on rational secret
sharing, the parties’ utilities are such that each party prefers to learn the correct
answer f(x0, x1) and otherwise prefers that the other party outputs an incorrect
answer. Informally, a cryptographic protocol computing f is fair if having both
parties run the protocol is a (computational) Nash equilibrium with respect to
fail-stop deviations,1 i.e., it is assumed that parties may abort the protocol early,
but cannot otherwise deviate.

Asharov et al. show a strong negative result in this context: they give a func-
tion f , a pair of distributions on the inputs, and a set of utilities for which they
prove there is no fair protocol computing f with correctness better than 1/2.
They also show that correctness 1/2 can be achieved for that function and utili-
ties, but their work seemed to suggest that the power of rational fair computation
is relatively limited.

Looking more closely at the impossibility result of Asharov et al., we ob-
serve that for their specific choices of f , the input distributions, and the utility

1 We will consider Byzantine deviations as well, but stick to fail-stop deviations here
for simplicity.
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functions, the parties have no incentive to run a protocol at all! Namely, the
utility each party obtains by running any protocol that correctly (and fairly)
computes f is equal to the expected utility that each party obtains if it sim-
ply guesses the input of the other party and computes the function on its own
(without any interaction).2 A cleaner way of stating this is that even in an ideal
world with a trusted entity computing f with complete fairness, the parties
would be indifferent between using the trusted entity or not. In game-theoretic
terms, computing f in this ideal world is not a strict Nash equilibrium for the
specific setting considered in [2]. If running a (real-world) protocol incurs any
cost at all, there is thus little hope that parties will prefer to run any protocol
for computing f .

Asharov et al. rule out rational fair computation for a specific function, specific
input distributions, and a specific set of utilities. Are there any settings where
rational fair computation (with complete correctness) is possible? Assuming the
existence of (standard) secure computation, we show a strong, general result for
when this is the case:

Main Theorem. (Informal) Fix f , a distribution on inputs, and utility func-
tions such that computing f in the ideal world (with complete fairness) is a strict
Nash equilibrium for at least one party. Then, for the same input distributions
and utility functions, there is a protocol Π for computing f (where correctness
holds with all but negligible probability) such that following Π is a computational
Nash equilibrium. This holds in both the fail-stop and Byzantine settings.

In addition to the fact that we show a positive result, our work goes beyond the
setting considered in [2] in several respects: we handle (deterministic) functions
over arbitrary domains where parties receive possibly different outputs, and treat
arbitrary distributions over the parties’ inputs. (In [2], only single-output func-
tions and independent, uniform input distributions were considered.) Moreover,
we also treat the Byzantine setting where, in particular, parties have the option
of changing their inputs; Asharov et al. [2] only treat the fail-stop case.

1.2 Other Related Work

The most relevant prior work is that of Asharov et al. [2], already discussed
extensively above. Here we merely add that an additional contribution of their
work was to develop formal definitions of various cryptographic goals (with fair-
ness being only one of these) in a game-theoretic context. Their paper takes an
important step toward that worthy goal.

As observed earlier, work on rational secret sharing [17,13,26,1,22,23,29,27,3,11]
can be viewed as a special case of fair secure computation, where the function

2 Specifically, using the input distributions and utility functions from [2], P0’s utility
if both parties (run some protocol and) output the correct answer is 0, whereas if
both parties guess then each party is (independently) correct with probability 1/2
and so the expected utility of P0 is 1

4
· 1 + 1

4
· (−1) + 1

2
· 0 = 0. A similar calculation

holds for P1.
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being computed is the reconstruction function of the secret-sharing scheme be-
ing used, and the parties’ inputs are generated by a dealer. Depending on the
utilities and input distributions, our results would give rational secret-sharing
protocols where following the protocol is a (computational) Nash equilibrium.
In contrast, most of the work on rational secret sharing has focused on achieving
stronger equilibrium notions, in part because constructing Nash protocols for
rational secret sharing is trivial in the multi-party setting. (We stress that in
the two-party setting we consider here, constructing Nash protocols for rational
secret sharing is not trivial.) We leave for future work consideration of stronger
equilibrium notions for rational fair computation of general functions.

An analogue of our results is given by Izmalkov et al. [24,25,20,18] who, essen-
tially, also show protocols for rational fair computation whenever parties would
prefer to compute the function in the ideal world. The main difference is that
we work in the cryptographic setting where parties communicate using stan-
dard channels, whereas the protocols of Izmalkov et al. require strong physical
assumptions such as secure envelopes and ballot boxes.

There has recently been a significant amount of work on fairness in the cryp-
tographic setting, showing functions that can be computed with complete fair-
ness [12] and exploring various notions of partial fairness (see [14] and references
therein). The relationship between complete fairness and rational fairness is not
clear. In particular, completely fair protocols are not necessarily rationally fair:
if the distributions and utilities are such that aborting is preferable even in the
ideal world then no protocol can be rationally fair (with respect to the same dis-
tributions and utilities). In any case, relatively few functions are known that can
be computed with complete fairness. Partial fairness is similarly incomparable
to rational fairness.

2 Model and Definitions

Given a deterministic function f : X×Y → {0, 1}∗×{0, 1}∗, we let f0 (resp., f1)
denote the first (resp., second) output of f , so that f(x, y) = (f0(x, y), f1(x, y)).
We consider two settings where parties P0 and P1 wish to compute f on their re-
spective inputs x0 and x1, with P0 receiving f0(x0, x1) and P1 receiving f1(x0, x1):
an ideal world computation of f using a trusted third party, and a real-world
computation of f using some protocol Π . In each setting, x0 and x1 are cho-
sen according to some joint probability distribution D, and in each setting we
consider both fail-stop and Byzantine strategies.

The output of P0 is correct if it is equal to f0(x0, x1) and incorrect otherwise;
this is defined analogously for P1. The parties’ utilities are given by the following
table, where the first value in each ordered pair is the utility of P0 on the specified
outcome, and the second is the utility of P1:

P1’s output
correct incorrect

P0’s output
correct (a0, a1) (b0, c1)
incorrect (c0, b1) (d0, d1)
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We assume that parties prefer to output the correct answer, and otherwise prefer
that the other party outputs an incorrect answer; i.e., we assume b0 > a0 ≥
d0 ≥ c0 (and analogously for P1’s utilities). Asharov et al. [2] assume that the
parties’ utilities are symmetric, with b0 = b1 = 1, a0 = a1 = d0 = d1 = 0, and
c0 = c1 = −1; we consider more general utilities here.

2.1 Execution in the Ideal World

Our ideal world includes a trusted third party who computes f with complete
fairness. This defines a natural game that proceeds as follows:

1. Inputs x0 and x1 are sampled according to a joint probability distribution D
over input pairs. Then x0 (resp., x1) is given to P0 (resp., P1).

2. Each player sends a value to the trusted third party. We also allow parties
to send a special value ⊥ denoting an abort. Let x′0 (resp., x′1) denote the
value sent by P0 (resp., P1).

3. If x′0 =⊥ or x′1 =⊥, the trusted party sends ⊥ to both parties. Otherwise,
the trusted party sends f0(x

′
0, x

′
1) to P0, and f1(x

′
0, x

′
1) to P1.

4. Each party outputs some value, and obtains a utility that depends on whether
the parties’ outputs are correct or not. (We stress that correctness is defined
with respect to the “real” inputs x0, x1, not the effective inputs x′0, x

′
1.)

In the fail-stop setting, we restrict x′0 ∈ {x0,⊥} and x′1 ∈ {x1,⊥}. In the
Byzantine setting we allow x′0, x

′
1 to be arbitrary.

The “desired” play in this game is for each party to send its input to the
trusted third party, and then output the value returned by the trusted party. To
fully define an honest strategy, however, we must specify what each party does
for every possible value (including ⊥) it receives from the trusted third party.
We formally define strategy (cooperate,W0) for P0 as follows:

P0 sends its input x0 to the trusted party. If the trusted party returns
anything other than ⊥, then P0 outputs that value. If instead ⊥ is re-
turned, then P0 generates output according to the distribution W0(x0).

The strategy (cooperate,W1) for P1 is defined analogously. The situation in which
P0 plays (cooperate,W0) and P1 plays (cooperate,W1) is a (Bayesian) strict
Nash equilibrium if every (allowed3) deviation that has x′0 �= x0 with nonzero
probability results in a strictly lower expected utility for P0, and analogously
for P1. (The expectation is computed over the distribution of the other party’s
input.) Since the utility obtained by P0 when the honest strategies are followed
is exactly a0, this means that the honest strategies form a Bayesian strict Nash
equilibrium if, for every possible input x0 of P0, the expected utility of P0 is
strictly less than a0 if it sends any (allowed) x′0 �= x0 to the third party, and
similarly for P1.

3 I.e., in the fail-stop case the only allowed deviation is aborting, whereas in the
Byzantine case parties are allowed to send arbitrary inputs. In either case a deviating
party may determine its output any way it likes.
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As long as both parties follow honest strategies, W0 and W1 are irrelevant
(as they are never used). They are important, however, insofar as they serve as
“empty threats” in case of an abort by the other party: namely, P0 knows that
if he aborts then P1 will determine its own output according to W1(x1), and so
P0 must take this into account when deciding whether to abort or not. We now
define what it means for the parties to have an incentive to compute f .

Definition 1. Fix f , a distribution D, and utilities for the parties. We say
these are incentive compatible in the fail-stop (resp., Byzantine) setting if there

exist W0,W1 such that the strategy profile
(
(cooperate,W0), (cooperate,W1)

)
is

a Bayesian strict Nash equilibrium in the game above.

As discussed in the Introduction, we require the Nash equilibrium to be strict to
ensure that the parties have some incentive to use the trusted party to compute
the function. If carrying out the computation with the trusted party is a Nash
(but not strict Nash) equilibrium, then the parties are indifferent between using
the trusted party and just guessing the output on their own.

We remark that for our positive results it is sufficient for the ideal-world
equilibrium to be strict Nash for only one of the parties; this follows directly
from the proofs and we omit further discussion.

The Setting of Asharov et al. [2]. For completeness, we show that the setting
considered by Asharov et al. is not incentive compatible. Recall that they fix the
utilities such that (1) getting the correct answer while the other party outputs an
incorrect answer gives utility 1; (2) getting an incorrect answer while the other
party outputs the correct answer gives utility −1; and (3) any other outcome
gives utility 0. Furthermore (cf. [2, Definition 4.6]), f can be taken to be boolean
XOR, with inputs for each party chosen uniformly and independently. We claim

that there is no choice of W0,W1 for which
(
(cooperate,W0), (cooperate,W1)

)
is a Bayesian strict Nash equilibrium. To see this, fix W0,W1 and note that

playing
(
(cooperate,W0), (cooperate,W1)

)
gives utility 0 to both parties. On

the other hand, if P0 aborts and outputs a random bit, then regardless of the
guessing strategy W1 employed by P1, we see that P0 and P1 are each correct
with independent probability 1/2 and so the expected utility of P0 remains 0.
This is an allowed deviation that results in no change to the expected utility.

In contrast, if the utilities are modified so that when both parties get the
correct answer they each obtain utility 1/2 (and everything else is unchanged),
the setup is incentive compatible in the fail-stop setting. To see this, let W0,W1

be the uniform distribution. Playing
(
(cooperate,W0), (cooperate,W1)

)
gives

utility 1/2 to both parties. If, on the other hand, P0 ever aborts then — no
matter how P0 determines its output — P0 and P1 are each correct with inde-
pendent probability 1/2. (Recall that P1 is assumed to guess according to W1

when we consider possible deviations by P0.) The expected utility of deviating
is 1/8, which is strictly smaller than 1/2; thus, we have a Bayesian strict Nash
equilibrium. Our results imply that a rational fair protocol can be constructed
for this setting.
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Incentive Compatibility in the Byzantine Setting. The preceding discus-
sion gives an example of an incentive-compatible setup in the fail-stop setting. In
Appendix A we show an example of a simple function, a distribution on inputs,
and utilities that are incentive compatible in the Byzantine setting.

2.2 Execution in the Real World

In the real world there is no trusted party, and the players instead must commu-
nicate in order to compute f . We thus have a real-world game in which inputs
x0 and x1 are jointly sampled according to D, then x0 (resp., x1) is given to
P0 (resp., P1), and the parties finally execute some strategy (i.e., protocol) and
decide on their respective outputs. The goal is to construct a protocol Π such
that running the protocol is a (computational) Nash equilibrium. The running
times of the parties, as well as the protocol itself, are parameterized in terms of
a security parameter n; however, the function f as well as the parties’ utilities
are fixed and independent of n. We only consider protocols where correctness
holds with all but negligible probability.

We again consider two types of deviations. In the fail-stop setting, each party
follows the protocol as directed except that it may choose to abort at any point.
Upon aborting, a party may output whatever value it likes (and not necessarily
the value prescribed by the protocol). We stress that in the fail-stop setting
a party is assumed not to change its input when running the protocol. In the
Byzantine setting, parties may behave arbitrarily (and, in particular, may run
the protocol using a different input). In either setting, we will only be interested
in players whose strategies can be implemented in probabilistic polynomial-time.

We now define what it means for Π to induce a game-theoretic equilibrium.
We consider computational Nash equilibria, rather than computational strict
Nash equilibria, since the latter are notoriously difficult to define [11]; also, the
goal of our work is only to construct real-world protocols that induce a Nash
equilibrium. (We define strict Nash equilibria in the ideal world because we use
it for our results.) The following definition is equivalent to (a generalized version
of) the definition used by Asharov et al. [2, Definition 4.6].

Definition 2. Fix f , a distribution D, utilities for the parties, and a proto-
col Π computing f . We say Π is a rational fair protocol (with respect to these
parameters) in the fail-stop (resp., Byzantine) setting if running the protocol is a
Bayesian computational Nash equilibrium in the game defined above.

For example, if we let Π1 denote the algorithm that honestly implements P1’s
role in Π , then Π is a rational fair protocol in the fail-stop setting if for all
(efficient) fail-stop algorithms P ′

0 there is a negligible function μ such that the
expected utility of P ′

0(1
n) (when running against P1 playing Π1(1

n)) is at most
a0 + μ(n) (and analogously for deviations by P1). We stress that if P ′

0 aborts
here, then P1 determines its output as directed by Π1.

Note that it only makes sense to speak of Π being a rational fair protocol
with regard to some input distribution and utilities. In particular, it is possible
for Π to be rational for one set of utilities but not another.
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3 Positive Results for Rational Fair Computation

We show broad positive results for rational fair computation in both the fail-
stop and Byzantine settings. Specifically, we show that whenever computing
the function honestly is a Bayesian strict Nash equilibrium in the ideal world,
then there exists a protocol Π computing f such that running Π is a Bayesian
computational Nash equilibrium in the real world.

Our protocols all share a common structure. As in prior work on fairness (in
the cryptographic setting) [12,28,14], our protocols have two stages. The first
stage is a “pre-processing” step that uses any protocol for (standard) secure
two-party computation, and the second stage takes place in a sequence of n
iterations. In our work, the stages have the following form:

First stage:

1. A value i∗ ∈ {1, . . .} is chosen according to a geometric distribution. This
represents the iteration (unknown to the parties) in which both parties will
learn the correct output.

2. Values r01 , r
1
1 , . . . , r

0
n, r

1
n are chosen, with the {r0i }n

i=1 intended for P0 and
the {r1i }n

i=1 intended for P1. For i ≥ i∗ we have r0i = f0(x0, x1) and r1i =
f1(x0, x1), while for i < i∗ the {r0i } (resp., {r1i }) values depend on P0’s
(resp., P1’s) input only.

3. Each rbi value is randomly shared as sbi and tbi (with rbi = sbi ⊕ tbi), where s
b
i

is given to P0 and tbi is given to P1.

Second stage: For n iterations, each consisting of two rounds, the parties al-
ternate sending shares to each other. In the ith iteration, P1 sends t0i to P0,
enabling P0 to learn r0i ; then P0 sends s1i to P1, enabling P1 to learn r1i . When
the protocol ends (either through successful termination or an abort by the other
party) a party outputs the most-recently-learned ri.

The key difference with respect to prior work is how we set the distribution
of the {rbi} for i < i∗. Here we use the assumption that f,D, and the utilities
are incentive compatible, and thus there are “guessing strategies” W0(x0) and
W1(x1) for the parties (in case the other party aborts) that are in equilibrium
(see Section 2.1). We use exactly these distributions in our protocol.

3.1 The Fail-Stop Setting

We first analyze the fail-stop setting. We let W0 (resp., W1) denote the distri-
bution that P0 (resp., P1) uses to determine its output in the ideal world in
case P1 (resp., P0) aborts, where this distribution may depend on P0’s input x0
(resp., P1’s input x1). We sayW0 has full support if for every x0 the distribution
W0(x0) puts non-zero probability on every element in the range of f ; we define
this notion analogously for W1. We begin with a technical claim.

Lemma 1. Fix a function f , a distribution D, and utilities for the parties that
are incentive compatible in the fail-stop (resp., Byzantine) setting. Then there
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exist W0,W1 with full support such that
(
(cooperate,W0), (cooperate,W1)

)
is a Bayesian strict Nash equilibrium in the fail-stop (resp., Byzantine) setting.

Proof. We focus on the fail-stop setting, though the proof follows along the
same lines for the Byzantine case. Incentive compatibility implies that there

exist W ′
0,W

′
1 such that the strategy vector

(
(cooperate,W ′

0), (cooperate,W ′
1)
)

is a Bayesian strict Nash equilibrium. Distributions W ′
0,W

′
1 may not have full

support, but we show that they can be modified so that they do. Specifically, we
simply modify each distribution so that with some sufficiently small probability
it outputs a uniform element from the range of f . Details follow.

When P0 and P1 cooperate and both output the correct answer, P0 obtains
utility a0. Consider now some input x0 for P0, and let u∗0(x0) denote the maxi-
mum utility P0 can obtain if it aborts on input x0. (Recall that when P0 aborts,
P1 chooses its output according to W ′

1(x1). Here, P0 knows W ′
1 as well as the

marginal distribution of x1 conditioned on P0’s input x0.) Because cooperating
is a Bayesian strict Nash equilibrium, we must have u∗0(x0) < a0. Define

u∗0
def
= max

x
{u∗0(x)} < a0

(the maximum is taken over all x that have non-zero probability as input to P0);
i.e., u∗0 denotes the highest expected utility P0 can hope to obtain when aborting
on some input. Define u∗1 analogously with respect to deviations by P1. Set

λ
def
=

1

2
· min

{
a0 − u∗0
b0 − c0

,
a1 − u∗1
b1 − c1

}
> 0.

We define a distribution W0(x0) as follows: with probability λ output a uniform
element from the range of f , and with probability (1 − λ) choose an output ac-
cording to W ′

0(x0); define W1 similarly. Note that W0 and W1 have full support.

We claim that
(
(cooperate,W0), (cooperate,W1)

)
is a Bayesian strict Nash equi-

librium. Assume the contrary; then, without loss of generality, there is an input
x0 such that P0 obtains expected utility at least a0 by aborting on input x0.
(Note that now P1 chooses its output according toW1(x1) when P0 aborts.) But
then, by following the same strategy, P0 can obtain utility at least a0−λ·(b0−c0)
when playing against a P1 who chooses his output according to W ′

1(x1). Since
a0 − λ · (b0 − c0) > u∗0, this is a contradiction to the way u∗0 was defined. ��

Theorem 1. Fix a function f , a distribution D, and utilities for the parties. If
these are incentive compatible in the fail-stop setting, then (assuming the exis-
tence of general secure two-party computation for semi-honest adversaries) there
exists a protocol Π computing f such that Π is a rational fair protocol (with re-
spect to the same distribution and utilities) in the fail-stop setting.

Proof. By definition of incentive compatibility, there exist distributions W0,W1

(that can depend on x0 and x1, respectively) for which the strategy profile
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Functionality ShareGen

Inputs: ShareGen takes as input a value x0 from P0 and a value x1 from P1.
If either input is invalid, then ShareGen simply outputs ⊥ to both parties.

Computation: Proceed as follows:
1. Choose i∗ according to a geometric distribution with parameter p.
2. Set the values of r0i and r1i for i ∈ {1, . . . , n} as follows:

– If i < i∗, choose r0i ←W0(x0) and r1i ←W1(x1).
– If i ≥ i∗, set r0i = f0(x0, x1) and r1i = f1(x0, x1).

3. For each rbi , choose two values sbi and tbi as random secret shares of rbi .
(I.e., sbi is random and sbi ⊕ tbi = rbi .)

Output: Send s01, s
1
1, . . . , s

0
n, s

1
n to P0, and t01, t

1
1, . . . , t

0
n, t

1
n to P1.

Fig. 1. Functionality ShareGen. The security parameter is n. This functionality is pa-
rameterized by a real number p > 0.

(
(cooperate,W0), (cooperate,W1)

)
is a Bayesian strict Nash equilibrium. By

Lemma 1, we may assume that W0 and W1 both have full support. We de-
fine a functionality ShareGen (cf. Figure 1) based on these distributions; this
functionality is parameterized by a real number p > 0 that we will set later. We
define our protocol Π , that uses ShareGen as a building block, in Figure 2.

Since p is a constant (independent of n), we have i∗ ≤ n with all but negligible
probability and hence both parties obtain the correct answer with all but negli-
gible probability. In the analysis it is easiest to simply assume that i∗ ≤ n; this
does not affect the analysis since computational Nash equilibria are robust to
negligible changes in the utility. Alternately, one could simply modify ShareGen
to enforce that i∗ ≤ n always (namely, by setting i∗ = n in case i∗ > n).

We will analyze Π in a hybrid world where there is a trusted entity comput-
ing ShareGen. One can show (following [5]) that if Π is a computational Nash
equilibrium in this hybrid world, then so is Π when executed in the real world

Protocol Π

Stage one: Both players use their inputs to execute a secure protocol for
computing ShareGen. This results in P0 obtaining output s01, s

1
1, . . . , s

0
n, s

1
n,

and P1 obtaining output t01, t
1
1, . . . , t

0
n, t

1
n.

Stage two: There are n iterations. In each iteration i ∈ {1, . . . , n} do:
1. P1 sends t0i to P0, and P0 computes r0i := t0i ⊕ s0i .
2. P0 sends s1i to P1, and P1 computes r1i := t1i ⊕ s1i .

Output: Players determine their outputs as follows:
– If P1−i aborts before Pi has computed any ri value, then Pi chooses

its output according to Wi(xi).
– If P1−i aborts at any other point, or the protocol completes success-

fully, then Pi outputs the last ri value it received.

Fig. 2. Formal definition of our protocol
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(with a secure protocol implementing ShareGen). Once we have moved to this
hybrid world, we may in fact take the parties to be computationally unbounded.

Our goal is to show that there exists a p > 0 for which Π (in the hybrid
world described above) is a rational fair protocol. We first observe that there are
no profitable deviations for a fail-stop P1; this is because P0 always “gets the
output first” in every iteration. (More formally, say P1 aborts after receiving its
iteration-i message. If i ≥ i∗ then P0 will output the correct answer and so P1

cannot possibly get utility greater than a1. If i < i∗ then P0 has no information
beyond what it could compute from its input x1, and P0 will generate output
according to W0(x0); by incentive compatibility, P1 will obtain utility strictly
lower than a1 regardless of how it determines its output.) We are thus left with
the more difficult task of analyzing deviations by P0.

Before continuing, it is helpful to introduce two modifications to the pro-
tocol that can only increase P0’s utility. First, in each iteration i we tell P0

whether i∗ < i. (One can easily see that P0 cannot increase its utility by abort-
ing when i∗ < i, and so the interesting question is whether P0 can improve its
utility by aborting when i∗ ≥ i.) Second, if P0 ever aborts the protocol in some
iteration i with i∗ ≥ i, then we tell P0 whether i∗ = i before P0 generates its
output. (P0 is not, however, allowed to change its decision to abort.)

So, fix some input x0 for P0, and consider some iteration i < n. Say P0 has
just learned that ri = y (for some y in the range of f) and is told that i∗ ≥ i.
If P0 does not abort, but instead runs the protocol honestly to the end, then
it obtains utility a0. If P0 aborts, then with some probability α it learns that
i∗ = i; in that case, P0 may possibly get utility b0. Otherwise, with probability
1 − α it learns that i∗ > i. In this latter case, P0 has no information beyond
what it could compute from its input, and P1 will output a value distributed
according to W1(x1); hence, incentive compatibility implies that the maximum
expected utility of P0 is u∗0 < a0. (This u

∗
0 is the same as defined in the proof of

Lemma 1; for our purposes all we need is that u∗0 is strictly less than a0.) That
is, the expected utility of aborting is at most α · b0 + (1 − α) · u∗0. If

α <
a0 − u∗0
b0 − u∗0

(1)

then α · b0 + (1− α) · u∗0 < a0, implying that P0 has no incentive to deviate. We
show that p can be set such that (1) holds.

We have

α
def
= Pr[i∗ = i | ri = y ∧ i∗ ≥ i] =

Pr[i∗ = i ∧ ri = y | i∗ ≥ i]

Pr[ri = y | i∗ ≥ i]

=
Pr[i∗ = i | i∗ ≥ i] · Pr[ri = y | i∗ = i]

Pr[i∗ = i | i∗ ≥ i] · Pr[ri = y | i∗ = i] + Pr[i∗ > i | i∗ ≥ i] · Pr[ri = y | i∗ > i]

=
p · Pr[ri = y | i∗ = i]

p · Pr[ri = y | i∗ = i] + (1 − p) · Pr[ri = y | i∗ > i]
.
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Let q
def
= minx0,y {Pr[W0(x0) = y]}, where the minimum is taken over all inputs

x0 for P0 and all y in the range of f . Since W0 has full support, we have q > 0.
Thus,

α =
p · Pr[ri = y | i∗ = i]

p · Pr[ri = y | i∗ = i] + (1 − p) · Pr[ri = y | i∗ > i]

≤ p

p+ (1 − p) · q
=

p

p · (1 − q) + q
≤ p

q
,

and by setting p < q · (a0 − u∗0)/(b0 − u∗0) we ensure that (1) holds.
Assuming p is set as just discussed, the above analysis shows that in any it-

eration i < n and for any value ri = y received by P0 in that iteration, P0 has
no incentive to abort. (In fact, P0 has strict incentive not to abort.) The only
remaining case to analyze is when i = n. In this case it would indeed be advan-
tageous for P0 to abort when i∗ ≥ i; however, this occurs with only negligible
probability and so does not impact the fact that we have a computational Nash
equilibrium (which is insensitive to negligible changes in the utility). ��

Although security notions other than fairness are not the focus of our work,
we note that the protocol Π presented in the proof of the previous theorem is
private in addition to being rationally fair. That is, the parties learn the function
output only, but nothing else regarding the other party’s input. We omit formal
definitions and the straightforward proof.

3.2 The Byzantine Setting

We next consider the Byzantine setting, where in the ideal world a deviating
party can change the input it sends to the trusted third party (or may choose to
abort, as before), and in the real world a deviating party may behave arbitrarily.

The protocol and proof of fairness in the Byzantine setting are similar to
those of the fail-stop setting, however we must modify our protocol to ensure
that it will work in the Byzantine setting. In particular, we require ShareGen
to now apply a message-authentication code (MAC) to each sbi and tbi value so
that parties can detect if these values have been modified. The remaining issue
to deal with is the effect of changing inputs; however, we show that if incentive
compatibility holds — so parties have disincentive to change their inputs in the
ideal world — then parties have no incentive to change their inputs in the real
world either.

Theorem 2. Fix a function f , a distribution D, and utilities for the parties. If
these are incentive compatible in the Byzantine setting, then (assuming the ex-
istence of general secure two-party computation for malicious adversaries) there
exists a protocol Π computing f such that Π is a rational fair protocol (with
respect to the same distribution and utilities) in the Byzantine setting.
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Functionality ShareGen

Inputs: ShareGen takes as input a value x0 from P0 and a value x1 from P1.
If either input is invalid, then ShareGen simply outputs ⊥ to both parties.

Computation: Proceed as follows:
1. Choose i∗ according to a geometric distribution with parameter p.
2. Choose MAC keys k0, k1 ← {0, 1}n.
3. Set the values of r0i and r1i for i ∈ {1, . . . , n} as follows:

– If i < i∗, choose r0i ←W0(x0) and r1i ←W1(x1).
– If i ≥ i∗, set r0i = f0(x0, x1) and r1i = f1(x0, x1).

4. For each rbi , choose two values sbi and tbi as random secret shares of rbi .
(I.e., sbi is random and sbi ⊕ tbi = rbi .)

5. For i = 1, . . . , n, set tag1i ← Mack1(i‖s1i ) and tag0i ← Mack0(i‖t0i ).
Output: Send k0, s01, s

1
1, tag

1
1, . . . , s

0
n, s

1
n, tag

1
n to P0, and k1, t01, tag

0
1, t

1
1,

. . . , t0n, tag
0
n, t

1
n to P1.

Fig. 3. Functionality ShareGen. The security parameter is n. This functionality is
parameterized by a real number p > 0.

Proof. By definition of incentive compatibility, there exist distributions W0,W1

(that can depend on x0 and x1, respectively) for which the strategy profile(
(cooperate,W0), (cooperate,W1)

)
is a Bayesian strict Nash equilibrium. By

Lemma 1, we may assume that W0 and W1 both have full support. We de-
fine a protocol Π based on a functionality ShareGen (cf. Figures 3 and 4), where
the latter is parameterized by a real number p > 0. These are largely identical to
the protocols used in the proof of Theorem 1, with the exception that the secret
shares exchanged by the parties are authenticated by a message-authentication
code (MAC) as part of the computation of ShareGen, and the resulting tags are
verified by the parties (as part of Π). For our proof, we assume the MAC be-
ing used is an information-theoretically secure, n-time MAC; a computationally
secure MAC would also be fine.

Since p is a constant (independent of n), it is again easy to check that correct-
ness holds with all but negligible probability. As in the proof of Theorem 1, in
our analysis we assume that i∗ ≤ n always and this does not affect our results.

The proof that Π is rationally fair in the Byzantine setting is similar to
the proof of Theorem 1, and we assume familiarity with that proof here. Once
again, we analyze Π in a hybrid world where there is a trusted entity computing
ShareGen on behalf of the parties. We also ignore the possibility of a MAC forgery,
and treat a party who sends a different share/tag from the one it received from
ShareGen as if that party had simply aborted. This is justified by the fact that
a successful forgery occurs with only negligible probability.

Our goal, as in the proof of Theorem 1, is to show that there exists a p > 0 for
which Π (in the hybrid world described above, and ignoring the possibility of a
MAC forgery) is a rational fair protocol. As in the preceding proof, there are no
profitable deviations for P1. Note that here, P1 may either abort early or change
its input to ShareGen. The former does not help because P0 always “gets the
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Protocol Π

Stage one: Both players use their inputs to execute a secure pro-
tocol for computing ShareGen. This results in P0 obtaining
output k0, s01, s

1
1, tag

1
1, . . . , s

0
n, s

1
n, tag

1
n, and P1 obtaining output

k1, t01, tag
0
1, t

1
1, . . . , t

0
n, tag

0
n, t

1
n.

Stage two: There are n iterations. In each iteration i ∈ {1, . . . , n} do:
1. P1 sends t0i and tag0i to P0. If Vrfyk0(i‖t0i , tag0i ) = 1, then P0 computes

r0i := t0i ⊕ s0i . Otherwise, this is treated as if P1 had aborted.
2. P0 sends s1i and tag1i to P1. If Vrfyk1(i‖s1i , tag1i ) = 1, then P1 computes

r1i := t1i ⊕ s1i . Otherwise, this is treated as if P0 had aborted.
Output: Players determine their outputs as follows:

– If P1−i aborts before Pi has computed any ri value, then Pi chooses
its output according to Wi(xi).

– If P1−i aborts at any other point, or the protocol completes success-
fully, then Pi outputs the last ri value it received.

Fig. 4. Formal definition of our protocol

output first” in every iteration; incentive compatibility in the Byzantine setting
implies that the latter — whether in combination with aborting early or not —
cannot help, either.

We are thus left with analyzing deviations by P0. We again introduce two
modifications that can only increase P0’s utility. First, in each iteration i we tell
P0 whether i∗ < i. It follows immediately from incentive compatibility that P0

cannot increase its utility by aborting when i∗ < i (regardless of what input it
sends to ShareGen), and so we assume that P0 never does so. Second, if P0 ever
aborts the protocol in some iteration i, then we tell P0 whether i∗ = i before P0

generates its output. (P0 may not, however, change its decision to abort.)
There are two cases to analyze: either P0 sends its actual input x0 to ShareGen,

or P0 sends a different input x′0 �=⊥. In the former case, the analysis is exactly
the same as in the proof of Theorem 1, and one can show that p can be set such
that P0 has no incentive to abort the protocol at any point. It remains to show
that, in the second case, P0 cannot increase its expected utility beyond a0, the
utility it obtains by running the protocol honestly using its actual input x0.

If P0 substitutes its input and then runs the protocol to the end, then (by
incentive compatibility) P0’s expected utility is strictly less than a0. Can P0 do
better by aborting early? Fix some input x0 for P0, let x

′
0 �=⊥ be the input

that P0 sends to the trusted entity computing ShareGen, and consider some
iteration i < n. (The case of i = n is handled as in the proof of Theorem 1.)
Say P0 has just learned that ri = y (for some y in the range of f) and is told
that i∗ ≥ i. If P0 aborts, then with some probability α it learns that i∗ = i;
in that case, P0 may possibly get utility b0. Otherwise, with probability 1 − α
it learns that i∗ > i. In this latter case, P0 has no information beyond what it
could compute from its input, and P1 will output a value distributed according
to W1(x1); hence, incentive compatibility implies that the maximum expected
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utility of P0 is u∗0 < a0. (This u
∗
0 is the same as in the proof of Theorem 1.) That

is, the expected utility of aborting is at most α · b0 + (1 − α) · u∗0. If

α <
a0 − u∗0
b0 − u∗0

then α · b0 + (1 − α) · u∗0 < a0, implying that P0 does not gain anything beyond
what it could have obtained by running the protocol honestly with its actual
input.4 A calculation exactly as in the proof of Theorem 1 shows that p can be
set in such a way that this condition holds.

4 Conclusions and Future Work

Given the stark impossibility results for fairness in a purelymalicious context [6],
it is natural to try to understand whether, or to what extent, fairness is achiev-
able in a rational setting. Recent work of Asharov et al. [2] seemed to give a
pessimistic answer to this question, as they show a specific case where rational
fairness cannot be achieved (if correctness better than 1/2 is desired). Our work,
in contrast, shows broad feasibility results for rational fairness: roughly, we show
that whenever computing the function is a strict Nash equilibrium in the ideal
world, then it is possible to construct a rational fair protocol computing the
function in the real world.

Within the broader context of research at the intersection of game theory and
cryptography, our result can be interpreted in two ways:

– Given a “fairness game” defined in an ideal world where there is a trusted
entity (i.e., a “mediator”) computing some function on behalf of the parties,
a natural question to ask is when a game-theoretic equilibrium in the ideal
world can be implemented via a real-world protocol. We do not provide a
complete answer to this question, but we do show a partial characterization:
roughly, whenever there is a strict Nash equilibrium in the ideal world, there
is a protocol that induces a computational Nash equilibrium in the real world.

– We show a new setting in which cryptographic impossibility results can be
circumvented by assuming rational behavior. Viewed in this light, our results
can be seen as a generalization of work on rational secret sharing.

Our work suggests several interesting directions for future research. First, it
would be interesting to prove a converse of our result. Fix some f , a distribution
on the inputs, and utility functions for the parties. We conjecture that if there
exists a rational fair protocolΠ for computing f (with respect to this distribution
and utilities), then incentive compatibility holds.5

4 It is possible that, conditioned on the fact that P0 sent input x′
0 �= x0 to ShareGen,

party P0 can obtain better expected utility by aborting early than by running the
protocol to the end. What we claim here, though, is that P0 will never obtain better
expected utility than it would have obtained by using its actual input x0 and then
running the protocol to the end.

5 As noted earlier, for our positive results it is sufficient for the ideal-world equilibrium
to be strict for only one of the parties. With regard to this conjecture, then, the
definition of incentive compatibility should be modified appropriately.
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It will also be interesting to explore stronger game-theoretic solution concepts
in the real world. We construct real-world protocols that induce a computational
Nash equilibrium, but one could also aim to construct protocols satisfying some
of the stronger equilibrium notions proposed, e.g., in [17,22,23,11].

Another natural extension is the multi-party case. Our protocols can easily be
extended to handle single-player deviations in that setting; we leave the general
case (where parties may collude) as an interesting open question.

Finally, one could consider even more complex settings of the players’ utilities,
e.g., where the utilities depend on the true output and the actual output of the
parties and not just on whether the outputs are correct or incorrect. This would
model situations where being “closer” to the right answer is better, or where
some answers are more important to get right than others.
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A Incentive Compatibility in the Byzantine Setting

Here, for the sake of illustration, we present a function f , input distributions,
and a set of utilities that are incentive compatible in the Byzantine setting.
Let f be the equality predicate over domain {0, 1, 2}, and assume the parties’
inputs are independently and uniformly distributed over this set. The utilities
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of the parties are symmetric, and correspond to each player receiving utility 3
from getting the correct answer and (independently) utility 1 if the other player
outputs the wrong answer. I.e.,

a0 = a1 = 3; b0 = b1 = 4; c0 = c1 = 0; d0 = d1 = 1.

Let W0,W1 be point distributions on the output ‘0’. (These do not have full
support, though Lemma 1 shows that they can be modified so that they do.)

We want to show that
(
(cooperate,W0), (cooperate,W1)

)
is a strict Nash equi-

librium in the Byzantine setting.
By playing honestly, each party gets utility 3. Consider deviations by P0 (the

case of a deviating P1 is analogous), and assume without loss of generality that
the true input x0 is equal to 0.
P0 could send ⊥ to the trusted third party. In that case, P0 does best by

outputting ‘0’; its expected utility (recalling that P1 also outputs ‘0’) is then

3 · Pr[x1 �= 0] + 1 · Pr[x1 = 0] =
2

3
∗ 3 +

1

3
∗ 1 = 7/3 < 3.

Alternately, P0 may change its input; without loss of generality, say it uses in-
put x′0 = 1. Here there are two sub-cases, depending on the output returned by
the trusted party. If this output is ‘0’, then x1 �= 1 but P1 will output ‘0’. Re-
gardless of what P0 outputs, it is correct (and gets utility 3) with probability 1/2
and P1 is incorrect (and so P0 gets utility 1) with probability 1/2; the expected
utility of P0 is thus 2. If the trusted party returns ‘1’ then P1 outputs ‘1’ (recall
that P1 outputs what it is given by the trusted party) which is wrong, whereas
P0 learns P1’s input and so can output the correct answer. Thus, in this case,
P0 obtains utility 4. Overall, then, the expected utility P0 obtains by changing
its input is

2

3
· 2 + 1

3
· 4 = 8/3 < 3.

We conclude that the given scenario is a (Bayesian) strict Nash equilibrium.
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Abstract. We study the problem of constructing concurrently secure
computation protocols in the plain model, where no trust is required
in any party or setup. While the well established UC framework for
concurrent security is impossible to achieve in this setting, meaningful
relaxed notions of concurrent security have been achieved.

The main contribution of our work is a new technique useful for de-
signing protocols in the concurrent setting (in the plain model). The core
of our technique is a new rewinding-based extraction procedure which
only requires the protocol to have a constant number of rounds. We show
two main applications of our technique.

We obtain the first concurrently secure computation protocol in the
plain model with super-polynomial simulation (SPS) security that uses
only a constant number of rounds and requires only standard assump-
tions. In contrast, the only previously known result (Canetti et al.,
FOCS’10) achieving SPS security based on standard assumptions re-
quires polynomial number of rounds. Our second contribution is a new
definition of input indistinguishable computation (IIC) and a constant
round protocols satisfying that definition. Our definition of input indis-
tinguishable computation is a simplification and strengthening of the
definition of Micali et al. (FOCS’06) in various directions. Most notably,
our definition provides meaningful security guarantees even for random-
ized functionalities.

1 Introduction

The notion of secure computation is central to cryptography. Introduced in the
seminal works of [49,19], secure multi-party computation allows a group of (mu-
tually) distrustful parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly
compute any functionality f in such a manner that the honest parties obtain
correct outputs and no group of malicious parties learn anything beyond their
inputs and prescribed outputs. The original definition of secure computation,
although very useful and fundamental to cryptography, is only relevant to the
stand-alone setting where security holds only if a single protocol session is ex-
ecuted in isolation. As it has become increasingly evident over the last two
decades, stand-alone security does not suffice in real-world scenarios where sev-
eral protocol sessions may be executed concurrently – a typical example being
protocols executed over modern networked environments such as the Internet.
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Concurrent Security. Towards that end, the last decade has seen a push to-
wards obtaining protocols that have strong concurrent composability properties.
For example, we could require concurrent self-composability: the protocol should
remain secure even when there are multiple copies executing concurrently. The
framework of universal composability (UC) was introduced by Canetti [10] to
capture the more general security requirements when a protocol may be ex-
ecuted concurrently with not only several copies of itself but also with other
protocols in an arbitrary manner.

Unfortunately, strong impossibility results have been shown ruling out the
existence of secure protocols in the concurrent setting. UC secure protocols for
most functionalities of interest have been ruled out in [11,8]. These results were
further generalized [35] to rule out the existence of protocols providing even
concurrent self-composability. Protocols in even less demanding settings (where
all honest party inputs are fixed in advance) were ruled out in [4]. All these
impossibility results refer to the “plain model,” where parties do not trust any
external entity or setup. We stress that, in fact, some of these impossibility results
provide an explicit attack in the concurrent setting using which the adversary
may even fully recover the input of an honest party (see, e.g., the chosen protocol
attack in [4]). Hence, designing secure protocols in the concurrent setting is a
question of great theoretical as well as practical interest. Unfortunately, the only
known positive results for concurrent composition in the plain model are for the
zero-knowledge functionality [46,30,44].

To overcome these impossibility results, UC secure protocols were proposed
based on various “trusted setup assumptions” such as a common random string
that is published by a trusted party [11,9,1,14,28,15]. Nevertheless, a driving goal
in cryptographic research is to eliminate the need to trust other parties. In the
context of UC secure protocols based on setup assumptions, while there has been
some recent effort [26,24,18] towards reducing the extent of trust in any single
party (or entity), obviously this approach cannot completely eliminate trust in
other parties (since that is the very premise of a trusted setup assumption).
Ideally, we would like to obtain concurrently-secure protocols in the plain model
(which is the main focus of this paper).

Relaxing the Security Notion. To address the problem of concurrent security
for secure computation in the plain model, a few candidate definitions have been
proposed, including input-indistinguishable security [37] and super-polynomial
simulation [40,45,5]. We discuss the each of these notions (and the state of the
art) separately.

Super-Polynomial Simulation. The notion of security with super-polynomial sim-
ulators (SPS) is one where the adversary in the ideal world is allowed to run
in (fixed) super-polynomial time. Very informally, SPS security guarantees that
any polynomial-time attack in the real execution can also be mounted in the
ideal world execution, albeit in super-polynomial time. This is directly applica-
ble and meaningful in settings where ideal world security is guaranteed statisti-
cally or information-theoretically (which would be the case in most “end-user”
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functionalities that have been considered, from privacy-preserving data mining
to electronic voting). SPS security for concurrently composable zero knowledge
proofs was first studied by [40], and SPS security for concurrently composable
secure computation protocols was first studied by [45,5]. The SPS definition
guarantees security with respect to concurrent self-composition of the secure
computation protocol being studied, and guarantees security with respect to
general concurrent composition with arbitrary other protocols in the context of
super-polynomial adversaries.

In recent years, the design of secure computation protocols in the plain model
with SPS security has been the subject of several works [45,5,34,13]. Very re-
cently, Canetti, Lin, and Pass [13] obtained the first secure computation protocol
that achieves SPS security based on standard assumptions1.

Unfortunately, however, the improvement in terms of assumptions comes at
the cost of the round complexity of the protocol. Specifically, the protocol of
[13] incurs polynomial-round complexity. The latency of sending messages back
and forth has been shown to often be the dominating factor in the running time
of cryptographic protocols [36,6]. Indeed, round complexity has been the sub-
ject of a great deal of research in cryptography. For example, in the context of
concurrent zero knowledge (ZK) proofs, round complexity was improved in a
sequence of works [46,30,44] from polynomial to slightly super-logarithmic (that
nearly matches the lower bound w.r.t. black-box simulation [12]). The round
complexity of non-malleable commitments in the stand-alone and concurrent
settings has also been studied in several works [17,2,43,42,31,48,22,32], improv-
ing the round complexity from logarithmic rounds to constant rounds under
minimal assumptions. We observe that for the setting of concurrently secure
computation protocols with SPS security, the situation is much worse since the
only known protocol that achieves SPS security based on standard assumptions
incurs polynomial-round complexity [13].

Input-Indistinguishable Computation. The notion of input indistinguishable com-
putation [37] is a relaxation of the standard notion of secure computation akin to
how witness indistinguishability is a relaxation of the notion of zero-knowledge.
In input indistinguishable computation (IIC), very roughly, given the output
vector (consisting of outputs in all concurrent sessions), consider any two hon-
est party input vectors x1 and x2 “consistent” with the output vector. The
security guarantee requires the adversary to have only a negligible advantage
in distinguishing which of these is the actual input vector. While SPS security
definition is based on the ideal/real world paradigm, the security definition of
IIC is a game based one where various required properties (such as input inde-
pendence) are formalized separately. In IIC, no guarantees are provided for any
two input vectors which don’t lead to the identical output (e.g., the functional-
ity may be randomized; furthermore, the outputs may only be computationally
indistinguishable as opposed to coming from identical or statistically close dis-
tributions).

1 In fact, the work of [13], together with [45,5], considers the stronger “angel-based
security model” of [45]. In this work, we focus only on SPS security.
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1.1 Our Contributions

The main contribution of our work is a new technique useful for designing pro-
tocols in the concurrent setting (in the plain model). The core of our technique
is a new rewinding-based extraction procedure which only requires the protocol
to have a constant number of rounds. Overall, our technique allows us to im-
prove upon the previous works in terms of round complexity, the security notion
being achieved as well the assumptions. We show two main applications of our
technique in this work.

Super Polynomial Simulation.We construct the first constant-round concur-
rently composable secure computation protocol that achieves SPS security based
on only standard assumptions. In addition, our construction only uses black-box
simulation techniques.

In contrast to prior works where several powerful tools were employed to
obtain positive results, e.g., CCA-secure commitments [13], our new proof tech-
nique allows us to only use relatively less powerful primitives, such as standard
non-malleable commitments. Our positive result relies on the nearly minimal as-
sumptions that constant-round (semi-honest) oblivious transfer (OT) exists and
collision-resistant hash functions (CRHFs) exist.2

Input Indistinguishable Computation. We introduce a new definition of
input indistinguishable computation and prove that, in fact, the same protocol
(as for constant round super-polynomial simulation) satisfies this notion as well.
Our definition of input indistinguishable computation is a simplification and
strengthening of the definition in [37] in various directions. In particular, our
definition provides meaningful security guarantees even for randomized function-
alities. Furthermore, the security guarantees hold even when the output distri-
butions resulting from the two honest party inputs (among which the adversary
is trying to distinguish) are computationally indistinguishable (as opposed to
coming from identical distributions)3. We follow the real/ideal world paradigm
for formalizing the security guarantees which leads to an arguably simpler defi-
nition. Additionally, we show that our definition implies the definition of [37].

The essence of our new definition can be understood as follows. Consider a real
world adversary. For any two input vectors x1 and x2, we require the existence
of a (PPT) ideal world simulator such that the output distribution in the ideal
and the real world are indistinguishable. Hence, the only relaxation compared to
the standard ideal/real world definition is now the ideal world simulator could be
different for different pairs (x1, x2). The key intuition behind such a guarantee is
that for any two honest party input vectors (x1, x2) leading to the same output
vector (on the input vector chosen by the adversary), the simulator in the ideal
world has no advantage in distinguishing which of the two was used. This implies

2 We believe that our assumption of CRHFs can be removed by employing techniques
from the recent work of [33], leaving only the minimal assumption that constant-
round OT exists. We leave this for the full version of this paper.

3 This is comparable to the relationship between witness indistinguishability and
strong witness indistinguishability.
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that even to the real world adversary should only have a negligible distinguishing
advantage. We stress that in our definition, this holds even if the functionality is
randomized and the outputs are computationally indistinguishable (as opposed
to being identical). In addition, as opposed to [37], our ideal world simulator is
required to extract the input being used by the adversary (in PPT) and send it
to the trusted party. This provides a form of “input-awareness” guarantee.

While the above simple definition already provides meaningful security guar-
antees, the guarantees are unsatisfactory if there exists a “splitting input” which
the ideal world simulator uses even when the real world adversary is such that
it does not use a splitting input. A more detailed discussion of such issues can
be found in [37]. Towards that end, we propose an extension of our definition
and finally show that it implies the definition in [37]. To see an example of a
functionality for which our definition provides meaningful security guarantees
which neither the definition in [37] nor the SPS definition provide, please refer
to the full version.

1.2 The Main Technique

A ubiquitous technique for simulation-based proofs in cryptography is that of
rewinding the adversary. In the concurrent setting (which is the setting we con-
sider in this paper), where an adversary can interleave messages from different
protocols in any arbitrary manner, rewinding an adversary (to correctly simulate
each session) is often problematic. The rewinding becomes recursive because of
which the protocols typically requires a large number of rounds (in a single proto-
col). For example, in the context of concurrent zero knowledge, the best known
result [44] requires super-logarithmic round complexity, which nearly matches
the lower bound w.r.t. black-box simulation [12].

To deal with the problem of concurrent rewinding, we develop a novel proof
technique using which we can limit the depth of such recursion to at most 2. Such
a significant relaxation of the properties we need from our rewinding technique
allows us to obtain our result. In the following discussion, we give a more detailed
intuition behind our techniques, where we assume somewhat greater familiarity
with recent work in this area. The discussion is primarily for obtaining constant
round providing with SPS security although similar intuition applies for IIC as
well.

We first note that all prior works on obtaining secure computation proto-
cols with SPS security crucially use the super-polynomial time simulator to
“break” some cryptographic scheme and extract some “secret information”.
Then, to avoid any complexity-leveraging type technique (which would lead
to non-standard assumptions), and yet argue security, the technique used in
[13] was to replace the super-polynomial time simulator with a polynomial-time
rewinding “hybrid experiment” via a hybrid argument in the security proof. In-
deed, this is why their protocol incurs large round complexity (so as to facilitate
concurrent-rewinding). We also make use of rewinding, but crucially, in a weaker
way. The main insights behind our rewinding technique are explained as follows:
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– We first note that (like other works) we will restrict our usage of rewinding
only to the creation of “look-ahead threads”. Very roughly, this means that
a rewinding simulator never changes its actions on the “main thread” of exe-
cution; and as such, the rewinding is employed only to extract some informa-
tion from the adversary. Here, we again stress that our final simulator does
not perform any rewinding, and that we only perform rewindings in hybrid
experiments to bridge the gap between the real and ideal world executions.

– Now that we use rewindings only to extract some information from the ad-
versary, and only in hybrid experiments, we make the critical observation
that, in fact, we can make use of the secret inputs of the honest parties in
the look-ahead threads. Indeed, in all our intermediate hybrid experiments,
we perform rewindings to create look-ahead threads where we make “judi-
cious” use of the honest party’s inputs. In this manner, we eventually end up
with a rewinding (hybrid) simulator that simulates the main thread without
the honest party’s inputs, but still uses them in the look-ahead threads (in a
manner that guarantees extraction). This is our main conceptual deviation
from prior work, where, to the best of our knowledge, honest party’s inputs
were only used in some intermediary hybrids, with the main goal being to
eventually remove their usage even from the look-ahead threads. We show
that this is in fact unnecessary, since our final simulator does not perform
any rewindings, but instead runs in super-polynomial time to extract the
same information that was being earlier extracted via rewinding in the hy-
brid experiments. We only need to argue that the main thread output by the
rewinding (hybrid) experiment and the main thread output by the final sim-
ulator be indistinguishable. Indeed, we are able to argue that there is only a
small statistical distance between our final simulator (that corresponds to the
ideal execution) and the previous rewinding-based hybrid experiment. This
statistical distance corresponds to the probability that the rewinding-based
extraction is unsuccessful, since the SPS extraction is always successful.

– We further note that since we use the honest party’s inputs in the look-
ahead threads, we can bypass complex recursive rewinding schedules used in
previous works and simply use “local rewindings” that only require constant
rounds (in fact, only “one slot”).

– Finally, we observe that since we perform rewindings only in hybrid experi-
ments, we do not need the rewinding to succeed with probability negligibly
close to 1, as is needed for concurrent ZK. Instead, we only require rewinding
to succeed with probability 1−ε, where ε is related to the success probability
of the distinguisher that is assumed to exist for the sake of contradiction.
This observation, yet again, allows us to use a simpler rewinding strategy.

– Our overall proof strategy only makes use of relatively well understood primi-
tives like standard non-malleable commitments. This is a departure from [13]
which introduces a new primitive called CCA-secure commitment schemes.

At this point, an informed reader may question the feasibility of a “sound imple-
mentation” of the above approach. Indeed, a-priori it is not immediately clear
whether it is even possible for the simulator to “cheat” on the main thread, yet
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behave honestly in look-ahead threads at the same time. In a bit more detail,
recall that any given look-ahead thread shares a prefix with the main thread of
execution. Now consider any session i on a look-ahead thread. Note that since
some part of session i may already be executed on the shared prefix, it is not clear
how the simulator can continue simulating session i on the look-ahead thread
without ever performing any recursive rewindings if it was already cheating in
session i on the shared prefix.

We address the above issues by a careful protocol design that guarantees that
a rewinding simulator can always extract some “trapdoor” information before
it “commits” to cheating in any session. As a result, during the simulation,
whenever a look-ahead thread is forked at any point from the main thread,
the simulator can either always continue cheating, or simply behave honestly
(without any conflict with the main thread) in any session.

In our overall proof, SPS is used only at the very last step to stop the look-
ahead threads (which required knowledge of honest party inputs to execute). A
modification of this step is required to prove that the protocols satisfies our new
notion of IIC as well. Instead of stopping the look-ahead threads (which used
honest party inputs), we will now run “two-sets” of look-ahead threads one for
each input vector given to the ideal world simulator. Since of these two is the
real honest party input vector, at least one of the sets of look-ahead threads is
guaranteed to be successful.

1.3 Other Related Work

Here we discuss some additional prior work related to the work in this paper.
We note that while the focus of this work is on the notions of SPS security and
IIC as means to obtain concurrently-secure protocols in the plain model, some
recent works have investigated alternative security models for the same. Very
recently, [25,23] considered a model where the ideal world adversary is allowed
to make additional queries (as compared to a single query, as per the standard
definition) to the ideal functionality per session. While our protocol bears much
similarity to the construction in [23], our rewinding technique (and the overall
proof) is quite different.

Independent of our work, a constant round protocol providing SPS security
was recently obtained by Lin, Pass and Venkitasubramaniam [41]. Their tech-
nique are quite different from ours and make use of a non-uniform argument. An
advantage of our work over that of Lin et. al. is that we provide a uniform reduc-
tion to the underlying hardness assumptions. Hence, our construction guarantees
security against uniform adversaries assuming that the underlying primitives are
only secure against uniform adversaries. Lin et. al. crucially require the under-
lying primitives to be secure against non-uniform adversaries to provide any
meaningful security guarantees.

We note that their techniques seem not to apply to get a construction satisfy-
ing our IIC security notion. Since the IIC simulator has to extract the adversar-
ial inputs in PPT, a rewinding technique in the concurrent setting is crucially
required.
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2 Our Definitions

2.1 UC Security and SPS

In this section we briefly review UC security. For full details see [10]. Follow-
ing [21,20], a protocol is represented as an interactive Turing machine (ITM),
which represents the program to be run within each participant.

Security of Protocols. Protocols that securely carry out a given task (or, protocol
problem) are defined in three steps, as follows. First, the process of executing a
protocol in an adversarial environment is formalized. Next, an “ideal process”
for carrying out the task at hand is formalized. In the ideal process the par-
ties do not communicate with each other. Instead they have access to an “ideal
functionality,” which is essentially an incorruptible “trusted party” that is pro-
grammed to capture the desired functionality of the task at hand. A protocol
is said to securely realize an ideal functionality if the process of running the
protocol amounts to “emulating” the ideal process for that ideal functionality.

Securely Realizing an Ideal Functionality. We say that a protocol Π emulates
protocol φ if for any adversary A there exists an adversary S such that no
environment Z, on any input, can tell with non-negligible probability whether
it is interacting with A and parties running Π , or it is interacting with S and
parties running φ. This means that, from the point of view of the environment,
running protocolΠ is ‘just as good’ as interacting with φ. We say thatΠ securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More
precise definitions follow. A distribution ensemble is called binary if it consists
of distributions over {0, 1}.

Definition 1. Let Π and φ be protocols. We say that Π UC-emulates φ if for
any adversary A there exists an adversary S such that for any environment
Z that obeys the rules of interaction for UC security we have EXECφ,S,Z ≈
EXECπ,A,Z .

Definition 2. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-realizes F if Π UC-emulates the ideal process Π(F).

UC Security with Super-Polynomial Simulation. We next provide a relaxed no-
tion of UC security by giving the simulator access to super-poly computational
resources. The universal composition theorem generalizes naturally to the case
of UC-SPS, the details of which we skip.

Definition 3. Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial time adversary S such that
for any environment Z that obeys the rules of interaction for UC security we
have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 4. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-SPS-realizes F if Π UC-SPS-emulates the ideal process Π(F).
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For simplicity of exposition, in the rest of this paper we assume authenticated
communication; that is, the adversary may deliver only messages that were ac-
tually sent. (This is however not essential as shown previously [3].)

2.2 Input Indistinguishable Computation

Under our notion, very roughly, an adversaries’ goal is to guess the input, among
two pre-specified inputs, used by the honest party. We say that a protocol is
input indistinguishable if an adversary can not guess the honest parties input
in the protocol execution any better than what it could have done in the ideal
scenario. We formalize this by saying that the adversary learns nothing more
than the two pre-specified inputs (which it already knows) and the output it
learns in the ideal world. This naturally implies that if the adversary can not
guess the honest parties input in the ideal scenario then it can not do so in the
protocol execution as well.

Concurrent execution in the Ideal model. In the ideal model, there is
a trusted party F that computes the functionality f (described above) based
on the inputs handed to it by the two parties – P1, P2 which are involved in
m = m(n) sessions (polynomial in the security parameter, n). An execution in
the ideal model with an adversary that controls P1 or P2 proceeds as follows:

Inputs: The honest party and adversary each obtain a vector of m inputs each
of length n; denote this vector by w (i.e., w = x or w = y).

Honest Parties Send Inputs to Trusted Party: The honest party sends its
entire input vector w to the trusted party F .

Adversary Interacts with Trusted Party: For every i = 1, . . . ,m, the ad-
versary can send (i, w′

i) to the trusted party, for any w′
i ∈ {0, 1}∗ of its

choice. Upon sending this pair, it receives back its output based on w′
i and

the input sent by the honest party. (That is, if P1 is corrupted, then the ad-
versary receives f1(w

′
i, yi) and if P2 is corrupted then it receives f2(xi, w

′
i).)

The adversary can send the (i, w′
i) pairs in any order it wishes and can also

send them adaptively (i.e., choosing inputs based on previous outputs). The
only limitation is that for any i, at most one pair indexed by i can be sent
to the trusted party.

Adversary Answers Honest Party: Having received all of its own outputs,
the adversary specifies which outputs the honest party receives. That is, the
adversary sends the trusted party a set I ⊆ {1, . . . ,m}. Then, the trusted
party supplies the honest party with a vector v of length m such that for
every i �∈ I, vi = ⊥ and for every i ∈ I, vi is the party’s output from the ith

execution. (That is, if P1 is honest, then for every i ∈ I, vi = f1(xi, w
′
i) and

if P2 is honest, then vi = f2(w
′
i, yi) .)

Outputs: The honest party always outputs the vector v that it obtained from
the trusted party. The adversary may output an arbitrary (probabilistic
polynomial-time computable) function of its initial-input and the messages
obtained from the trusted party.
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Let S be a non-uniform probabilistic polynomial-time ideal-model machine (rep-
resenting the ideal-model adversary). Then, the ideal execution of f (on input vec-
tors (x,y) of length m and auxiliary input z to S) denoted by idealF ,S(x,y, z),
is defined as the output pair of the honest party and S from the above ideal
execution.

Execution in the Real model. We next consider the real model in which
a real two-party protocol is executed (and there exists no trusted third party).
Let m = m(n) be a polynomial, let f be as above and let Π be a two-party
protocol for computing f . Furthermore, let A be a non-uniform probabilistic
polynomial-time machine that controls either P1 or P2. Then, the real concurrent
execution of Π (on input vectors (x,y) of length m(n) and auxiliary input z to
A), denoted realΠ,A(x,y, z), is defined as the output pair of the honest party
and A, resulting from m(n) executions of the protocol interaction, where the
honest party always inputs its ith input into the ith execution. The scheduling
of all messages throughout the executions is controlled by the adversary. That
is, the execution proceeds as follows. The adversary sends a message of the form
(i, α) to the honest party. The honest party then adds α to the view of its ith

execution of Π and replies according to the instructions of Π and this view. The
adversary continues by sending another message (j, β), and so on. Adversary can
schedule these the messages in any way it likes. (Formally, view the schedule as
the ordered series of messages of the form (index,message) that are sent by the
adversary.)

Definition 5 (Input Indistinguishable Computation (IIC)). Let F and
Π be the ideal trusted parted and the protocol realizing functionality f , as defined
above. Protocol Π is said to input indistinguishably compute (or, IIC) f for P1

under concurrent composition if for every polynomial m = m(n), for every inputs
x0,x1 ∈ ({0, 1}n)m of the honest party P1, for every real-model non-uniform
probabilistic polynomial-time adversary A controlling party P2, there exists an
ideal-model non-uniform probabilistic polynomial-time adversary S controlling
P2 such that ∀x ∈ {x0,x1},

{idealF ,S(x,y, z)}n∈N;z∈{0,1}∗
c≡ {realΠ,A(x,y, z)}n∈N;z∈{0,1}∗

Protocol Π is said to input indistinguishably compute (or, IIC) f if it input
indistinguishably computes f both for P1 and P2.

The above definition has various shortcomings and can be seen as only a stepping
stone to our final definition (which implies the one in [37]). We refer the reader
to the full version for our extended definition and for the relationship between
various notions.

3 Building Blocks

We now discuss the main cryptographic primitives that we use in our construction.
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Statistically Binding String Commitments. In our protocol, we will use a
(2-round) statistically binding string commitment scheme, e.g., a parallel version
of Naor’s bit commitment scheme [38] based on one-way functions. For simplicity
of exposition, in the presentation of our results in this manuscript, we will actu-
ally use a non-interactive perfectly binding string commitment.4 Such a scheme
can be easily constructed based on a 1-to-1 one way function. Let com(·) denote
the commitment function of the string commitment scheme. For simplicity of
exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment function.

Extractable Commitment Scheme. We will also use a simple challenge-
response based extractable statistically-binding string commitment scheme 〈C,R〉
that has been used in several prior works, most notably [44,47]. We note that in
contrast to [44] where a multi-slot protocol was used, here (similar to [47]), we
only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive
perfectly binding string commitment scheme (as described in Section 3). Let n de-
note the securityparameter.Thecommitment scheme 〈C,R〉 is describedas follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random
pairs {α0

i , α
1
i }k

i=1 of strings such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits
to all of them to R using com. Let B ← com(str), and A0

i ← com(α0
i ),

A1
i ← com(α1

i ) for every i ∈ [k].
2. R sends k uniformly random bits v1, . . . , vn.
3. For every i ∈ [k], if vi = 0, C opens A0

i , otherwise it opens A1
i to R by

sending the appropriate decommitment information.

Open Phase: C opens all the commitments by sending the decommitment in-
formation for each one of them.

This completes the description of 〈C,R〉.
Modified Commitment Scheme. Due to technical reasons, we will also use a minor
variant, denoted 〈C′, R′〉, of the above commitment scheme. Protocol 〈C′, R′〉 is
the same as 〈C,R〉, except that for a given receiver challenge string, the commit-
ter does not “open” the commitments, but instead simply reveals the appropriate
committed values (without revealing the randomness used to create the corre-
sponding commitments). More specifically, in protocol 〈C′, R′〉, on receiving a
challenge string v1, . . . , vn from the receiver, the committer uses the following
strategy: for every i ∈ [k], if vi = 0, C′ sends α0

i , otherwise it sends α1
i to R′.

Note that C′ does not reveal the decommitment values associated with the re-
vealed shares.
4 It is easy to see that the construction given in Section 4 does not necessarily require
the commitment scheme to be non-interactive, and that a standard 2-round scheme
works as well. As noted above, we choose to work with non-interactive schemes only
for simplicity of exposition.
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When we use 〈C′, R′〉 in our main construction, we will require the committer
C′ to prove the “correctness” of the values (i.e., the secret shares) it reveals in
the last step of the commitment protocol. In fact, due to technical reasons, we
will also require the the committer to prove that the commitments that it sent
in the first step are “well-formed”. Below we formalize both these properties in
the form of a validity condition for the commit phase.

Proving Validity of the Commit Phase.We say that commit phase between C′ and
R′ is valid with respect to a value ˆstr if there exist values {α̂0

i , α̂
1
i }k

i=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and
2. Commitments B, {A0

i , A
1
i }k

i=1 can be decommitted to ˆstr, {α̂0
i , α̂

1
i }k

i=1 re-
spectively.

3. Let ᾱv1
1 , . . . , ᾱ

vk

k denote the secret shares revealed by C in the commit phase.
Then, for all i ∈ [k], ᾱvi

i = α̂vi

i .

We can define validity condition for the commitment protocol 〈C,R〉 in a similar
manner.

Constant-Round Non-Malleable Zero Knowledge Argument. In our
main construction, we will use a constant-round non-malleable zero knowledge
(NMZK) argument for every language in NP with perfect completeness and neg-
ligible soundness error. In particular, we will use a specific (stand-alone) NMZK
protocol, denoted 〈P, V 〉, based on the concurrent-NMZK protocol of Barak et
al [4]. Specifically, we make the following two changes to Barak et al’s proto-
col: (a) Instead of using an ω(logn)-round PRS preamble [44], we simply use
the one-slot commitment scheme 〈C,R〉 (described above). (b) Further, we re-
quire that the non-malleable commitment scheme being used in the protocol be
constant-round and public-coin w.r.t. receiver. We note that such commitment
schemes are known due to Pass, Rosen [43]. Further, in full version, we show
how to adapt the scheme of Goyal [22] to incorporate the public-coin property.5

We now describe the protocol 〈P, V 〉.
Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively.
Let L be an NP language with a witness relation R. The common input to P
and V is a statement π ∈ L. P additionally has a private input w (witness for
π). Protocol 〈P, V 〉 consists of two main phases: (a) the preamble phase, where
the verifier commits to a random secret (say) σ via an execution of 〈C,R〉 with
the prover, and (b) the post-preamble phase, where the prover proves an NP
statement. In more detail, protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in the execution of 〈C,R〉 where V commits to a random
string σ.

5 We note that while the commitment scheme of [43] admits a non black-box security
proof, the security proof of Goyal’s scheme is black-box. As such, the resultant NMZK
protocol has a black-box security proof as well.
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Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be
the commitment string. Additionally, P proves the knowledge of a valid
decommitment to c using a statistical zero-knowledge argument of knowledge
(SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉
that was executed in step 1.

4. P commits to the witness w using a constant-round public-coin extractable
non-malleable commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to π (i.e.,
R(π,w) = 1, where w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Decoupling the Preamble Phase from the Protocol. Note that the preamble phase
in 〈P, V 〉 is independent of the proof statement and can therefore be executed
by P and V before the proof statement is fixed. Indeed, this is the case when
we use 〈P, V 〉 in our main construction in Section 4. Specifically, in our main
construction, the parties first engage in multiple executions of 〈C,R〉 at the
beginning of the protocol. Later, when a party (say) Pi wishes to prove the
validity of a statement π to (say) Pj , then Pi and Pj engage in an execution of
the post-preamble phase of 〈P, V 〉 for statement π. The protocol specification
fixes a particular instance of 〈C,R〉 that was executed earlier as the preamble
phase of this instance of 〈P, V 〉. In the description of our main construction, we
will abuse notation and sometimes refer to the post-preamble phase as 〈P, V 〉.
Straight-line Simulation of 〈P, V 〉. A nice property of protocol 〈P, V 〉 is that it
allows straight-line simulation of the prover if the trapdoor secret σ is available to
the simulator S. (Note that S can rewind V during the execution of 〈C,R〉 in or-
der to extract σ.) See the full version for a description of the simulation strategy.

Constant-Round Statistically Witness Indistinguishable Arguments.
In our construction, we shall use a constant-round statistically witness indis-
tinguishable (SWI) argument 〈Pswi, Vswi〉 for proving membership in any NP
language with perfect completeness and negligible soundness error. Such a pro-
tocol can be constructed by using ω(log n) copies of Blum’s Hamiltonicity pro-
tocol [7] in parallel, with the modification that the prover’s commitments in
the Hamiltonicity protocol are made using a constant-round statistically hiding
commitment scheme [39,27,16].

Semi-Honest Two Party Computation. We will also use a constant-round
semi-honest two party computation protocol 〈P sh

1 , P
sh
2 〉 for any functionality F

in the stand-alone setting. The existence of such a protocol follows from the
existence of constant-round semi-honest 1-out-of-2 oblivious transfer [49,19,29].
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4 Our Construction

Let F be any well-formed functionality6 that admits a constant round two-
party computation protocol in the semi-honest setting. In particular, F can be
a universal functionality. In this section we will give a protocol Π that UC-SPS-
realizes F . Note that in the UC framework any two parties (say Pi and Pj)
might interact as per the protocol Π on initiation by the environment for some
session corresponding to a SID sid. For simplicity of notation, we will describe
the protocol in terms of two parties P1 and P2, where these roles could be taken
by any two parties in the system. Further we will skip mentioning the SID to
keep the protocol specification simple.

In order to describe our construction, we first recall the notation associated
with the primitives that we use in our protocol. Let com(·) denote the commit-
ment function of a non-interactive perfectly binding commitment scheme, and
let 〈C,R〉 denote the one-slot extractable commitment scheme, and 〈C′, R′〉 be
its modified version (see Section 3). Further, we will use a constant-round NMZK
protocol 〈P, V 〉 (see Section 3), a constant-round SWI argument 〈Pswi, Vswi〉, and
a constant-round semi-honest two party computation protocol 〈P sh

1 , P
sh
2 〉 that

securely computes F as per the standard simulation-based definition of secure
computation.

Let P1 and P2 be two parties with inputs x1 and x2 provided to them by
the environment Z. Let n be the security parameter. Protocol Π = 〈P1, P2〉
proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 samples a random string σ1 (of appropriate length; see below)
and engages in an execution of 〈C,R〉 with P2, where P1 commits to σ1. We
will denote this commitment protocol by 〈C,R〉1→2.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, P2 samples a random string
σ2 and commits it via an execution of 〈C,R〉 (denoted as 〈C,R〉2→1) with
P1.

3. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends
com1 to P2. P1 and P2 now engage in an execution of (the post-preamble
phase of) 〈P, V 〉, where P1 proves that com1 is a commitment to bit 0. The
commitment protocol 〈C,R〉2→1 (executed earlier in step 2) is fixed as the
preamble phase for this instance of 〈P, V 〉 (see Section 3).

4. P2 ⇒ P1 : P2 now acts symmetrically.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining
a “trapdoor” to be used during the simulation of the protocol. As discussed
earlier in Section 1.2, in order to bypass the need of recursive rewindings (even
though we consider concurrent security), we want to ensure that a “hybrid”
simulator (that performs rewindings) can always extract a “trapdoor” before

6 See [9] for a definition of well-formed functionalities.
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it begins cheating in any protocol session. Here, we achieve this effect by de-
coupling the preamble phase of 〈P, V 〉 from the post-preamble phase (see Section
3) and executing the preamble phase at the very beginning of our protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs
and random coins (to be used in the next phase) via the commitment protocol
〈C′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to
be used as P1’s randomness in the execution of 〈P sh

1 , P
sh
2 〉 in phase III) and

engages in an execution of 〈C′, R′〉 (denoted as 〈C′, R′〉1→2) with P2, where
P1 commits to x1‖r1. Next, P1 and P2 engage in an execution of 〈Pswi, Vswi〉
where P1 proves the following statement to P2: (a) either there exist values
x̂1, r̂1 such that the commitment protocol 〈C′, R′〉1→2 is valid with respect
to the value x̂1‖r̂1 (see Section 3), or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1)
be the random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting
the adversary’s input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution
of 〈P sh

1 , P
sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since

〈P sh
1 , P

sh
2 〉 is secure only against semi-honest adversaries, we first enforce that

the coins of each party are truly random, and then execute 〈P sh
1 , P

sh
2 〉, where

with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its honest
behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends
it to P2. Similarly, P2 samples a random string r′1 and sends it to P1. Let
r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now, r

′′
1 and r′′2 are the random coins that P1

and P2 will use during the execution of 〈P sh
1 , P

sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P

sh
2 〉, where one round consists of a

message from P sh
1 followed by a reply from P sh

2 . Let transcript T1,j (resp.,
T2,j) be defined to contain all the messages exchanged between P sh

1 and P sh
2

before the point P sh
1 (resp., P sh

2 ) is supposed to send a message in round j.
For j = 1, . . . , t:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j, x1, r
′′
1 ) and send it to P2. P1 and P2

now engage in an execution of 〈Pswi, Vswi〉, where P1 proves the following
statement:
i. either there exist values x̂1, r̂1 such that (a) the commitment proto-

col 〈C′, R′〉1→2 is valid with respect to the value x̂1‖r̂1 (see Section
3), and (b) β1,j = P sh

1 (T1,j, x̂1, r̂1 ⊕ r′1)
ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of protocol Π . We now claim the following.



114 S. Garg et al.

Theorem 1. Assume the existence of constant round semi-honest OT and col-
lision resistant hash functions.Then for every well-formed functionality F , there
exists a constant-round protocol that UC-SPS-realizes F .

We prove the above claim by arguing that the protocol Π = 〈P1, P2〉 described
earlier UC-SPS-realizes F . Note that our simulator will run in sub-exponential
time, where the desired parameters can be obtained by using a “scaled-down”
security parameter of the commitment scheme com. See the full version for the
proof.
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Abstract. We devise the first identity-based encryption (IBE) that re-
mains secure even when the adversary is equipped with auxiliary input
(STOC ’09) – any computationally uninvertible function of the master
secret key and the identity-based secret key. In particular, this is more
general than the tolerance of Chow et al.’s IBE schemes (CCS ’10) and
Lewko et al.’s IBE schemes (TCC ’11), in which the leakage is bounded
by a pre-defined number of bits; yet our construction is also fully secure
in the standard model based on only static assumptions, and can be
easily extended to give the first hierarchical IBE with auxiliary input.

Furthermore, we propose the model of continual auxiliary leakage
(CAL) that can capture both memory leakage and continual leakage.
The CAL model is particularly appealing since it not only gives a clean
definition when there are multiple secret keys (the master secret key, the
identity-based secret keys, and their refreshed versions), but also gives a
generalized definition that does not assume secure erasure of secret keys
after each key update. This is different from previous definitions of con-
tinual leakage (FOCS ’10, TCC ’11) in which the length-bounded leakage
is only the secret key in the current time period. Finally, we devise an
IBE scheme which is secure in this model. A major tool we use is the
modified Goldreich-Levin theorem (TCC ’10), which until now has only
been applied in traditional public-key encryption with a single private
key.

1 Introduction

In cryptography, security guarantees are usually proven under the assumption
that the secret key must be kept safely and other internal (random) state is
not leaked to the adversary. Even if a single bit of these secrets is leaked, the
protection guaranteed by the proof is lost. In practice, however, it is difficult to
avoid all possible kinds of leakage, such as side-channel attacks that exploit the
physical nature of cryptographic operations (e.g., timing, power, radiation, cold
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boot attacks, etc.) or the reuse of the secret key and/or the randomness in a
number of applications.

Leakage-resilient cryptography was introduced to provide formal security guar-
antees even when the leakage of the secret keying material is allowed. In this
paper, we focus on public key encryption that is secure against memory leak-
age. More precisely, the adversary is allowed to specify an efficiently computable
leakage function f and obtain the output of f applied to the secret key and
other internal state. This function f aims to model the possible leakage that the
adversary can learn in practice.

In recent years, we have seen a number of leakage models that impose different
restriction on f . Recall themajor (open) problem in leakage-resilient cryptography
[10]:

“allowing for continual (overall unbounded) leakage, without additionally
restricting its type.”

An ongoing line of research is on loosening the restriction of leakage types. The
relative leakage model [1] restricts the function f to output at most l bits, where
l is smaller than the secret key size. This restriction is later relaxed by allow-
ing f to lower the entropy of the secret key by at most l bits [15]. To sum up
these two models, l is defined as a fraction of the key (either in terms of the
bit size or the entropy). The bounded retrieval model (e.g., see [2,8]), on the
other hand, treats the leakage l as a system parameter. The size of the secret
key can be increased to allow l bits of leakage, without affecting the public key
size, communication and computation efficiency. To further relax the restriction,
Dodis et al. [9] considered auxiliary inputs, which allow any f that no polyno-
mial time adversary can invert (i.e., to output the secret key being leaked) with
non-negligible probability. For example, any (computationally) one-way permu-
tation can be used by the adversary as its auxiliary input, but is not allowed in
the relative (leakage/entropy) model (as a permutation information-theoretically
reveals the entire key). Therefore, auxiliary inputs allow us to consider a larger
class of leakage functions.

The above line of research bounds the leakage throughout the entire lifetime
of the secret key. Another paradigm considers a key update algorithm that con-
tinually refreshes the secret key, while bounding the leakage between updates.
It addresses the first part of the aforementioned major problem. This model is
known as the continual leakage model. There are signature, identification [10]
and public key encryption schemes [6] secure in this model. Lewko et al. [12] re-
cently proposed signature and encryption schemes that allow a constant fraction
leakage of the secret key and the randomness during updates. In these papers,
the leakage bound between updates is either based on the relative leakage or the
bounded retrieval model. Therefore, the number of bits leaked between updates
is still restricted.

IBE with Auxiliary Inputs. Dodis et al. [9] only considered public key en-
cryption and there is no known identity-based encryption (IBE) scheme that is
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secure with auxiliary input, even though there are a number of (bounded) leakage-
resilient IBE schemes [1,2,8,6,13]. A distinctive feature of IBE is that any string
can be used as a public key and potentially an exponential number of identities
can be supported. This feature has many applications (e.g., see [2,3,5,8]), and
furthermore makes the auxiliary input model appealing to IBE for various rea-
sons. First, the auxiliary input model is useful in the context of composition.
One may use the encryption public key (and corresponding secret key) in other
applications (e.g., digital signatures and identification), and their composition
remains secure as long as these other schemes were proved secure in the stan-
dard (no leakage) sense [9]. With the versatility of identity-based (ID-based) keys
this guarantee appears to be more desirable. Second, the auxiliary input model
not only tolerates a wider class of leakage, but also gives a “clean” definition
of the necessary restriction on leakage. The model is free from numeric bounds
(e.g., number of bits leaked from the master secret key, or number of bits leaked
from the ID-based secret key of the target user) which are necessary in bounded
retrieval model.

Continual Auxiliary Leakages. Recall that the key idea to achieve continual
memory leakage (CML) resilience is to refresh the secret key in each time pe-
riod. Previous CML models for IBE [6,13] only consider leakage of the current
secret key for a given time. In other words, after a user has computed a new
secret key for the next period, the old secret key should be securely erased from
memory (so the leakage via the key-update query is the “last chance” for the
adversary)1. This greatly diminishes the benefits offered by the formal leakage-
resilience guarantee since with frequent secure erasures it is less disastrous to
have memory leakage.

Combining the concept of auxiliary inputs with CML brings the possibility of
new leakage-resilience guarantees. Our continual auxiliary leakage (CAL) model
allows continual leakage, and the leakage between updates has minimal restric-
tion: no polynomial time algorithm can use the leaked information to output
a valid secret key. The CAL model still inherits the simplicity of the standard
(non-continual) auxiliary input/leakage model. In particular, we do not need to
keep track of the “version number” of keys.

Our Contributions. We tackle the problem of allowing continual (overall un-
bounded) leakage, without additionally restricting its type, for IBE. Brakerski
et al.’s CML-resilient IBE [6] does not tolerate leakage from the master secret
key and is only selective-secure. Lewko et al. [13] proposed a fully-secure CML-
resilient IBE, but the leakage size during updates is limited to logarithmic. It
is fair to say there is no complete solution for this major problem in leakage-
resilient cryptography. To achieve our goal, we propose the continual auxiliary
leakage (CAL) model and construct an IBE scheme secure in this strong model.

1 We do not claim to have discovered any attack against the schemes in the respective
papers exploiting this more general form of leakage. We are merely pointing out that
the stronger attack is not covered by the current proofs.
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We begin by constructing the first IBE scheme that is secure in the presence
of auxiliary inputs. Our construction in §3.3 preserves the nice features of recent
leakage-resilient IBE schemes [8,13]: adaptive security in the standard model and
based on static assumptions, and moderate increases the size of the ciphertext
and computational complexity.

Our work combines a number of techniques in the literature. We use the dual
system encryption [14] for both adaptive security regarding the ID-based keys,
and for the leakage-resilience via the proof technique [13] which allows the leakage
of the master secret key and the ID-based secret keys. For leakage in the form
of auxiliary input (or “auxiliary leakage”), we use the modified Goldreich-Levin
theorem [9]. We overcome a number of technical difficulties when combining
these techniques. Firstly, we cannot directly use the modified Goldreich-Levin
theorem as it restricts the blinding factor of the semi-functional key (an artifact
in the security reduction for allowing bounded leakage, which is created using a
blinding factor from Zm

p2
where m ∈ N and p2 is a large prime of size 2λ; see [13,

Lemmata 6.2, 6.7]) to be a λ-bit number. Therefore, we need to construct the
semi-functional key subject to this design constraint. It is also interesting to note
that the λ-bit number is used as a real secret key of the public key encryption
with auxiliary input [9], but in our case it just appears in the “imaginary” semi-
functional secret key in the simulation. Secondly, Lewko et al.’s IBE [13] does
not allow any leakage during setup. We twist their idea of using multiple tags
(instead of a single tag in [8]) and do the “replication” in another level. (Thus we
retain the same order of complexity for performance.) Although this technique
by itself (see §3.3) does not allow leakage during setup, this structure leads us
to construct an IBE scheme (in §4.4) which can be proven secure in the CAL
model (i.e., leakage is allowed during setup). Furthermore, our scheme in §3.3
can be extended to give the first hierarchical IBE with auxiliary inputs.

In §4, we present the CAL model and propose the first IBE scheme secure in
this strengthened model. There are a few problems that arise when we tried to
borrow the construction technique from the (Diffie-Hellman-based) BHHO en-
cryption in [9] to extend our IBE scheme in §3.3. Firstly, the modified Goldreich-
Levin theorem [9] states that if the master secret keys αi belongs to a subgroupH
of Zp1 , then there exists an inverter with running time poly(|H |). If H = Zp1 and
p1 is a λ-bit prime, the running time of the inverter is poly(2λ), which is undesir-
able. Secondly, if we simply change the scheme such that αi belongs to a subgroup
H = {0, 1}, then the master public key becomes yi = ê(g1, vi)

0 or ê(g1, vi)
1.

Then any adversary can determine αi by brute-force. The same attack applies if
|H | $ p1. We then try to construct the public key as in the BHHO encryption in
[9], and the master public key becomes y =

∏n
i=1 ê(g1, vi)

αi . The master secret
key msk becomes vαi

i for i ∈ [1, n]. (It seems one may setmsk be
∏n

i=1 v
αi

i , but we
want to split it into n pieces in order to apply the modified Goldreich-Levin the-
orem.) That means leakage will be in the form of f(vα1

1 , . . . , vαn
n ). Intuitively, to

simulate all possible uninvertible function f , the knowledge vαi

i is needed, which
implies the knowledge of αi since the brute-force attack is easy on αi. This leads
to a contradiction since the αi’s is the solution of the underlying intractability
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problem. To resolve these issues, we change the structure of msk to
∏m

j=1 v
αj

i,j .
We use a random (n ×m) matrix V = {vi,j}i∈[1,n],j∈[1,m] and m random num-
bers (α1, . . . , αm) to obtain n master secret keys and public keys. Similar to
(the semi-functional key in) our IBE in §3.3, this V is a conceptual building
block for leakage-resilience and the knowledge of these group elements is not
required anywhere else including key-update, encryption and decryption. This
new msk does not reveal αi under some intractability assumptions. Interestingly,
these assumptions are required for a variant of Gentry-Peikert-Vaikuntanathan’s
(GPV) encryption scheme [11] based on learning with error (LWE) [9], which
gives some evidence that our construction is not a trivial extension from the
IBE in §3.3. Using lattice-based assumptions to help constructing pairing-based
cryptosystems seems to be interesting on its own right. We leave it as an open
problem to build a CAL-resilient IBE scheme without these assumptions.

2 Background

Composite Order Bilinear Groups [4]. Let G be a group generator, that
takes a security parameter 1λ as input where λ ∈ N, outputs a description of
bilinear group (N = p1p2p3,G,GT , ê), where p1, p2, p3 are distinct λ-bit primes,
G and GT are cyclic groups of order N , and ê : G × G → GT is a bilinear map
such that ∀g, h ∈ G and a, b ∈ ZN , ê(ga, hb) = ê(g, h)ab; ê(g, g) generates GT if g
is a generator of G. We denote Gpi as the subgroup of order pi in G (i = 1, 2, 3).
Let gi be the generator of the subgroup Gpi . For all hi ∈ Gpi and hj ∈ Gpj , if
i �= j, ê(hi, hj) = 1. We denote Gp1p2 as the subgroup of order p1p2 in G. For all
T ∈ Gp1p2 , T can be written uniquely as the product of an element of Gp1 and
an element of Gp2 . We refer to these elements as the “Gp1 part of T ” and the
“Gp2 part of T ” respectively. We also define Gp1p3 and G = Gp1p2p3 similarly.

Decisional Problems [14]. For a group generator G, the following experiments
define subgroup decision problem for Gp1 and Gp1p2 , subgroup decision problem
for Gp1p3 and G, and subgroup decisional bilinear Diffie-Hellman problem.

Experiment Exp
(1)
G,A1,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g,X1

R← Gp1 , X2
R← Gp2 , X3

R← Gp3

T0
R← Gp1p2 , T1

R← Gp1 .

Return β′ ← A1(N,G,GT , ê, g,X1X2, X3, Tβ).

Experiment Exp
(2)
G,A2,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g,X1, Z1

R← Gp1 , Xi, Yi, Zi
R← Gpi(i = 2, 3),

T0 = Z1Z3, T1 = Z1Z2Z3.

Return β′ ← A2(N,G,GT , ê, g,X1X2, X3, Y2Y3, Tβ).
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Experiment Exp
(3)
G,A3,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g

R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 ,

α, s
R← ZN , T0 = ê(g, g)αs, T1

R← GT .

Return β′ ← A3(N,G,GT , ê, g, g
αX2, g

sY2, Z2, X3, Tβ).

For i = 1, 2, 3, we define the advantage of an algorithm Ai in breaking As-

sumption i to be Adv
(i)
G,Ai

(λ) :=∣∣∣Pr[Exp
(i)
G,Ai,1

(1λ) = 1]− Pr[Exp
(i)
G,Ai,0

(1λ) = 1]
∣∣∣ .

Definition 1. For i = 1, 2, 3, we say that G satisfies Assumption i if Adv
(i)
G,Ai

(λ)
is a negligible function of λ for any polynomial time algorithm Ai.

Goldreich-Levin Theorem for Large Fields. Dodis et al. [9] proved the
following theorem – Goldreich-Levin theorem over any field GF (q) for prime q.

Theorem 2 ([9]). Let q be a prime, and let H be an arbitrary subset of GF (q).
Let f : Hm → {0, 1}∗ be any function. s ← Hm, y ← f(s), r ← GF (q)m. If there
is a distinguisher D that runs in time t such that∣∣∣∣∣Pr[D(y, r, 〈r, s〉) = 1]− Pr[u ← GF (q) : D(y, r, u) = 1]

∣∣∣∣∣ = ε,

then there is an inverter A that runs in time t′ = t · poly(m, |H |, 1/ε) such that

Pr[s ← Hm, y ← f(s) : A(y) = s] ≥ ε3

512 ·m · q2 .

Modular Lattices. Here we review some theorems for modular lattices. The
first is a lemma on additive groups simplified from the lemma in [16].

Lemma 3 ([11]). Let q be prime and let m ≥ 2n log q. For all but an at most
qn fraction of A ∈ Zn×m

q , the subset-sums of the columns of A generate Zn
q ; i.e.,

for every u ∈ Zn
q there exists e ∈ {0, 1}m such that Ae = u.

We give the definition of the average-case problem of inhomogeneous small inte-
ger solution problem (ISIS), which is related to the shortest independent vectors
problem and decision shortest vector problem [11].

Definition 4 (ISISq,m,β). Given an integer q, a uniformly random matrix
A ∈ Zn×m

q , a random u ∈ Zq
n, and a real β, find an integer vector e ∈ Zm

such that Ae = u mod q and ||e||2 ≤ β, where ||e||2 is the Euclidean �2 norm.
We say that the ISISq,m,β assumption holds if no polynomial time algorithm can
output e with a non-negligible probability.
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3 Identity-Based Encryption with Auxiliary Inputs

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:

1. Setup: On input a security parameter 1λ, it generates a master public key
mpk and a master secret key msk.

2. Ext: On input msk and an identity ID from an identity space I, it outputs
an identity-based secret key skID.

3. Enc: On input mpk, ID and a messageM from a message space M, it outputs
a ciphertext C.

4. Dec: On input skID, and C, it outputs a message M or ⊥ symbolizing the
failure of decryption.

∀M ∈ M and ∀ID ∈ I, M ← Dec(skID, Enc(mpk, ID,M)), where (mpk,msk) ←
Setup(1λ), skID ← Ext(msk, ID).

We denote the space of the master secret key and that of ID-based secret keys
by MK and SK respectively.

3.1 Auxiliary Input Model for Confidentiality

We consider the following indistinguishability based game against adaptive cho-
sen identity and chosen plaintext attacks (IND-ID-CPA) for semantic security
with leakage in the form of auxiliary inputs. Denote a polynomial-time (in λ)
computable function family F . We define the attack game as follows.

1. Setup. The challenger runs (mpk,msk) ← Setup(1λ) and gives mpk to the
adversary A. The challenger also constructs an initially empty list LID.

2. Query 1. The following oracles can be queried by A:
– Extraction Oracle KEO(ID, i): On input ID ∈ I, i ∈ N

+, it first checks
the list LID for the tuple in the form of (skID, ID, j). If there is no such
tuple, j̄ is set to 1, then it runs skID ← Ext(msk, ID) and puts (skID, ID, j̄)
in the list LID. Otherwise, the maximum j is retrieved. If i ≤ j, then skID
from the tuple (skID, ID, i) in the list LID is returned.

– Leakage OracleLO(f, ID): On input f ∈ F , it returns f(msk,LID,mpk, ID).
– UpdateUSK Oracle USO(ID): This oracle is useful for schemes with

probabilistic ID-based secret key generation, where a user of identity
ID may request for another ID-based secret key after obtained the first
copy. It first checks the list LID for the tuple in the form of (skID, ID, j)
where j is a positive integer. If there is no such tuple, j̄ is set to 1. Oth-
erwise, the maximum j is retrieved and j̄ is set to (j + 1). Then, it runs
s̄kID ← Ext(msk, ID). It puts (s̄kID, ID, j̄) in the list LID and returns j̄.

KEO, USO and LO can be queried for at most qe, qu and q
 times throughout
this game respectively.

3. Challenge. A sends two messages M0,M1 ∈ M and an identity ID∗ ∈ I to
the challenger. The challenger picks a random bit b′ and computes C∗ ←
Enc(mpk, ID∗,Mb′). The challenger sends C∗ to A.

4. Query 2. A is allowed to query the Extraction Oracle adaptively.
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5. Output. A returns a guess b∗ of b′.

A wins the game if b′ = b∗ and there was no query in the form of KEO(ID∗, ·).
The advantage of A is

∣∣Pr[A wins] − 1
2

∣∣. An IBE scheme is IND-ID-CPA secure
w.r.t. auxiliary inputs from F if there is no PPT A with non-negligible advantage
in the game above.

It remains to define a class of function families F . For convenience, we will
parametrize these families by the min-entropy ku of the ID-based secret key
respectively, as opposed to the security parameter 1λ. (In our schemes the secret
keys will be random, so ku is simply the length of the ID-based secret key.)

Let S∗ denote a set of all possible valid identity-based secret keys with respect
to ID∗2. Let S denote a set of qe identity-based secret keys such that S∗ ∩ S =
∅. Finally, let F id−ow(g

u(ku)) be the class of all polynomial-time computable
functions f ; such that for all i ∈ [1, q
], given

mpk, ID∗, S, and {fi(msk,LID,mpk, IDi)}i∈[1,q�],

(for (msk,mpk, {skIDi}i∈[1,q�],S,LID) that is randomly generated, and {ID∗} ∪
{IDi}i∈[1,q�] ⊆ I), no PPT algorithm can find a valid secret key skID∗ of ID∗ with

probability greater than gu(ku), where g
u(ku) ≥ 2−ku is the hardness parameter.

Our goal is to make gu(ku) as large (i.e., as close to negl(ku)) as possible.

Definition 5. An identity-based encryption is said to be (gu(ku))-AI-CPA (aux-
iliary input CPA) secure if it is IND-ID-CPA secure w.r.t. family F id−ow(g

u(ku)).

Discussions. Our model for IBE with auxiliary inputs bears some differences
from the existing model of public key encryption (PKE) with auxiliary input [9]
and IBE with length-bounded leakage [13].

– For PKE, the public key itself leaks some information about the secret key.
Therefore, in [9], they define the family Fpk−ow such that, given f(msk,mpk)
and mpk (where f ∈ Fpk−ow), it is difficult to output msk. For IBE, the
master public key leaks some information about the master secret key, which
may be exploited to compromise the security since ID-based secret key can
be computed from the master secret. Therefore, we define the family F id−ow

such that given the above information, it is difficult to output skID∗ .
– The CPA security for PKE only has one single oracle which is for leakage, so

adaptive leakage can be modeled by a single oracle query [9]. On the other
hand, for IBE (e.g., the bounded retrieval model in [13]), the adversary can
either query the leakage of msk or skID, or unlock all bits of skID. Thus we
need to model the leakage via multiple queries for adaptive adversary.

– We combine the two separate leakage oracles in [13], for modeling the case
that the adversary may obtain leakage from msk and skID at the same time,
and they may share the same internal randomness.

2 A valid ID-based secret key for ID∗ can decrypt all ciphertext encrypted to ID∗,
hence every ID-based secret key for ID∗ from Ext are in the set S∗.
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– Same as [13], multiple keys are allowed for each identity. For leakage oracle,
we allow leakage of all these keys. Moreover, we do not need to store the
amount of leakage for the master secret key and the identity-based secret
keys, therefore we do not need to create a set which stores the handles of
secret keys. For extraction, we could just return a new key upon each query
(and store them for later leakage), but we chose to allow the adversary to
supply a handle to specify which particular key to be extracted. The gener-
ality here may be useful for other higher applications of IBE, for example,
those assigning keys for the same identity to different users.

3.2 Intuition

The Scheme. This construction is a parallel repetition of the Lewko-Waters
IBE [14]. The key generation centre (KGC) splits the master secret key msk into
m pieces {αi}. This idea can be found in many leakage-resilient schemes, e.g. [9].
The ID-based secret keys contain n components, each of which is created from a
share of msk. The ciphertext also contains n components. Pairing the secret key
and the ciphertext component-wise recovers a encapsulated key corresponding
to αi. Their product is the padding for hiding the actual message.

Like Lewko-Waters IBE [14] (and the underlying IBE [3]), an identity ID ∈ ZN

is mapped to a group element uIDh, where u, h ∈ Gp1 . To allow leakage of the
master secret key, instead of keeping αi ∈ ZN , we store msk in a form similar to
the structure of an ID-based secret key [14]. Recall that a “basic” [3] ID-based
secret key contains (gαi

1 · (uIDh)ri , vrii ) (the second term embeds ri for cancelling
the (uIDh)ri part in decryption), one can store (gαi

1 · hri , uri, vrii ) as the master
secret for “undetermined” ID.

The Proof. Our proof uses the dual-system encryption technique [17,14,13].
The keys and the ciphertexts are masked by random group elements in Gp3

for adaptive security, and in the proof all these will be turned into their semi-
functional (SF) version by introducing random factors from Gp2 [17]. The basic
technique [14] ensures that the real key is indistinguishable to an SF key. For
leakage, an SF key is further classified into two types: truly SF and nominally
SF. The latter can still decrypt an SF ciphertext, but the former will make the
decryption fails. Thus, a truly SF key is used to simulate the leakage oracle,
which does not help the adversary.

If the adversary can distinguish between these two types of SF keys, we hope
to leverage this to break the underlying assumption. In our case, we want to
invert the leakage function which is supposed to be uninvertible. For Lewko-
Waters IBE, it was done by applying their Lemma 6.2 for bounded leakage [14].
However, we cannot directly replace it with Theorem 2 for auxiliary input as
it restricts the blinding factor of an SF key to be a λ-bit number. Therefore,
these SF structures have to be changed accordingly. Since they only appear in
the proof, the actual scheme is not affected.
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3.3 Concrete Construction

Setup(1λ): The KGC runs the bilinear group generator G(1λ) to get (N =
p1p2p3,G,GT , ê) as defined in §2. Suppose G also gives g1 and X3 which are
generators of the subgroups Gp1 and Gp3 respectively. Let 0 < ε < 1 and
m = (3λ)1/ε. The KGC randomly picks α1, . . . , αm ∈ ZN , u, h, v1, . . . , vm ∈ Gp1 .
The master public key is{

N,G,GT , ê, g1, u, h,X3, {vi, yi = ê(g1, vi)
αi}i∈[1,m]

}
.

The KGC also randomly picks ti ∈ ZN , and T1,i, T2,i, T3,i ∈ Gp3 for i ∈ [1,m].
The master secret key is {K1,i,K2,i,K3,i}i∈[1,m] where

K1,i = gαi
1 · hti · T1,i, K2,i = uti · T2,i, K3,i = vtii · T3,i.

The message space M is GT and the identity space I is ZN .

Ext(msk, ID): For i ∈ [1,m], randomly picks ri ∈ ZN and R1,i, R2,i ∈ Gp3 , it
outputs the identity-based secret key skID = {D1, E1, . . . , Dm, Em} where

Di = K1,i ·K ID
2,i · (uIDh)ri · R1,i, Ei = K3,i · vrii ·R2,i.

Enc(ID,M): For i ∈ [1,m], it randomly picks si ∈ ZN and outputs the ciphertext
C = {A, {Bi}i∈[1,m], {Ci}i∈[1,m]} where

A =M ·
m∏

i=1

ysii , Bi = vsii , Ci = (uIDh)si .

Dec(skID,C): Given a ciphertext C = {A, {Bi}i∈[1,m], {Ci}i∈[1,m]}, and a secret
key skID = {D1, E1, . . . , Dm, Em} for an identity ID, it outputs

M = A ·
∏m

i=1 ê(Ci, Ei)∏m
i=1 ê(Bi, Di)

.

Hierarchical Extension. Similar to existing HIBE schemes [3,14], one can
extend the above IBE to n-level HIBE by extending the master public key. Due
to page limitation, we just outline the modifications and omit its security proof.
Specifically, mpk contains u1, . . . , un ∈ Gp1 instead of a single u. Accordingly, to
extract a key or encrypt a message for a vector of identity (ID1, . . . , IDn) instead
of just ID, (uIDh) in the computation of Di in Ext and in the computation of Ci

in Enc is replaced by (
∏n

j=1 u
IDj

j h). The Dec algorithm remains the same.

3.4 Security

Under the dual system encryption paradigm [17], we define the following three
semi-functional (SF) structures which are used in the security proofs only. These
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SF structures just like their normal version in the actual scheme, but “perturbed”
by a Gp2 generator, denoted by either ḡ2 or ĝ2 below.

An SF master-key {K ′
1,i,K

′
2,i,K

′
3,i}i∈[1,m] is given by:

K ′
1,i = K1,i · ḡθi2 , K ′

2,i = K2,i · ḡτθi
2 , K ′

3,i = K3,i · ḡwi
2 ,

where θ1, . . . , θm ∈ [0, λ], τ, w1, . . . , wm ∈ ZN and {K1,i,K2,i,K3,i} is a normal
master key.

An SF ID-based key (or just SF key) is in the form of

{D′
i = Di · ḡγi

2 , E′
i = Ei · ḡzi2 }i∈[1,m],

where z1, . . . , zm, γ1, . . . , γm ∈ ZN and {Di, Ei}i∈[1,m] is a normal ID-based key.

An SF ciphertext is in the form of{
A′ = A, {B′

i = Bi · ĝδi2 , C′
i = Ci · ĝxi

2 }i∈[1,m]

}
,

where δ1, x1, . . . , δm, xm ∈ ZN and {A, {Bi, Ci}i∈[1,m]} is a normal ciphertext.
Decryption will succeed if an SF key is used to decrypt a normal ciphertext,

or a normal key is used to decrypt an SF ciphertext. However, decrypting an SF
ciphertext using an SF key will result in a message “blinded” by

ê(ḡ2, ĝ2)
∑m

i=1 zixi−
∑m

i=1 γiδi .

Furthermore, the ID-based secret key generated by applying Ext with an SF
master key is also semi-functional. If we use it to decrypt an SF ciphertext,
result will be shifted by a factor

ê(ḡ2, ĝ2)
∑m

i=1 wixi−
∑m

i=1(1+τ ID)θiδi .

In case that the exponents in these extra blinding factors are zeros, decryption
still works and this leads us to the notion of nominally semi-functional (NSF)
keys. An NSF ID-based key is a special kind of SF key which can be used to
decrypt SF ciphertext, that means

∑m
i=1 γiδi =

∑m
i=1 zixi. Similarly, an NSF

master-key is a special kind of SF master-key which can be used to decrypt SF
ciphertext, that means

∑m
i=1(1 + τ ID)θiδi =

∑m
i=1 wixi. If an SF identity-based

/ master key is not nominally semi-functional, then it is truly semi-functional.

Theorem 6. Our IBE scheme is (2−mε

)-AI-ID-CPA secure under Assumptions
1, 2 and 3.

Proof. We prove by a hybrid argument using a sequence of games. The first game
Gamereal is the real AI-ID-CPA game and we denote the challenge identity as
ID∗. The second game Gamerestricted is the same as Gamereal except that the
adversary cannot ask for the secret key of identity ID where ID ≡ ID∗ mod p2.
This restriction will be retained throughout the subsequent games. After that,
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we denote q := qe + qu + q
 as the number of extraction oracle, UpdateUSK
oracle and leakage oracle queries. For k = 0 to q, we define Gamek as follows.

Gamek: It is the same as Gamereal, except that both the challenge ciphertext
and the keys used to answer first k-th distinct oracle queries3 are semi-functional.
The keys for the rest of the queries are normal. So, for the first k-th queries:

1. If it is for extraction oracle, it returns the semi-functional key sk′ID.

2. If it is for leakage oracle, it returns f(msk′,LID,mpk, ID) where msk′ is semi-
functional and for the last entry (sk′ID, ID, ·) ∈ LID, sk′ID is semi-functional.

3. If it is for UpdateUSK oracle, it puts a semi-functional key sk′ID into LID.

As a result, all keys are normal and the challenge ciphertext is semi-functional
in Game0. In Gameq, all keys and the challenge ciphertext are semi-functional.

The last game is Gamefinal, which is the same as Gameq except that the
challenge ciphertext is a semi-functional encryption of a randommessage, instead
of one of the two challenge messages.

We will prove the indistinguishability between these games.

Lemma 7. If there exists an adversary A such that AdvA(Gamereal) - AdvA
(Gamerestricted) = ε, then we can construct an algorithm B with non-negligible
advantage in breaking Assumption 2.

Lemma 8. If there exists an adversary A such that AdvA(Gamerestricted) -
AdvA(Game0) = ε, then we can construct an algorithm B with advantage ε in
breaking Assumption 1.

Lemma 9. If there exists an adversary A such that AdvA(Game
−1) - AdvA
(Game
) = ε, then we can construct an algorithm B with advantage ε in breaking
Assumption 2.

Lemma 10. If there exists an adversary A such that AdvA(Gameq) - AdvA
(Gamefinal) = ε, then we can construct an algorithm B with advantage ε in
breaking Assumption 3.

The proofs of lemma 7, 8, 9 and 10 are given in the the full version.
Finally in Gamefinal, the value of b is information theoretically hidden from

A. Hence A has no advantage in winning Gamefinal. If Assumptions 1, 2 and
3 hold, Gamereal is indistinguishable from Gamefinal. Hence the attacker has
negligible advantage in winning Gamereal. Therefore, our scheme is (2−mε

)-AI-
ID-CPA secure. ��

3 We consider the following parameters to determine if two queries are the same, i.e.,
not distinct. For leakage queries, we consider the function f and its argument. In
particular, when they are the same, the same version of the secret key for the same
ID is leaked in the same way. For extraction, we consider ID and the counter i.
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4 IBE with Continual Auxiliary Inputs

4.1 Continual Auxiliary Leakage Model

We propose the continual auxiliary leakage model for IBE. First, we separate the
setup algorithm into two, one for common reference string (CRS) generation and
another for master key pair generation. This separation has been done previously
[7] for specific security goals. It is necessary in our case since leakage is only
allowed from the later part. We also introduce two additional update algorithms.

– CRSGen: On input a security parameter 1λ, it generates a CRS param.
– Setup: On input a CRS param, it generates a master public key mpk and a

master secret key msk. Denote the randomness used (msk,mpk) as rs.
– UpdateMSK: On input a master key pair (msk,mpk), it outputs a re-

randomized master secret key m̄sk. Denote the randomness used as rm.
– UpdateUSK: On input an identity-based secret key skID for the identity ID

and mpk, it outputs a re-randomized identity-based secret key s̄kID. Denote
the randomness used as ru.

After running both UpdateMSK and UpdateUSK algorithms, the corresponding
public keys remain unchanged after the re-randomization; and the size of the
secret keys also remain unchanged.

Denote the master secret key’s, identity-based secret keys’, messages’ and
identities’ spaces as MK, SK, M and I respectively. Denote a polynomial-time
computable function family F . The security of IBE in the continual auxiliary
leakage model is defined via the following game.

1. Setup. The challenger firstly runs param ← CRSGen(1λ) and (mpk,msk) ←
Setup(param). Denote the randomness used in Setup as rs. The adversary
specifies a function f0 ∈ F . Denote ε as an empty string. The challenger
gives param, mpk and f0(rs, ε, ε, ε, ε, ε, ε) to the adversary A. The challenger
constructs the list Lmsk, which stores the tuples (msk, ·)4, and the lists Le

and LID, which are initially empty.
2. Phase 1. The following oracles can be queried by A adaptively:

– Extraction Oracle KEO(ID): On input an identity ID ∈ I, it looks for
the last (ID, skID) entry from the list Le. If such entry does not exist, it
runs skID ← Ext(msk, ID) and stores (ID, skID) in the list Le. Finally, it
returns the identity-based secret key skID.

– Leakage Oracle LO(f): On input a polynomial-time computable function
f ∈ F , it returns f(ε,Lmsk, ε,msk, ε,mpk, ε).

– UpdateMSK Oracle UMO: It runs m̄sk ← UpdateMSK(msk). Denote the
randomness used as rm. It puts (msk, rm) in the list Lmsk. After that, it
sets msk ← m̄sk and outputs msk.

Denote qe, q
, qm as the number of oracle queries to the KEO, LO and UMO
respectively in this game.

4 An alternative definition is to include rs in the list Lmsk, which is part of the input
for the leakage queries in the later phase.
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3. Challenge Identity. A sends a challenge identity ID∗ ∈ I to the challenger.
The challenger runs skID∗ ← Ext(msk, ID∗).

4. Phase 2. The following oracles can be queried by A adaptively:
– Extraction Oracle KEO(ID): Same as that in Phase 1.
– Leakage Oracle LO(f): On input a polynomial-time computable function
f ∈ F , it returns f(ε,Lmsk,LID,msk, skID∗ ,mpk, ID∗).

– UpdateMSK Oracle UMO: Same as that in Phase 1.
– UpdateUSK Oracle USO: It runs s̄kID∗ ← UpdateUSK(skID∗). Denote the

randomness used as ru. It puts (skID∗ , ru) in LID and sets skID∗ = s̄kID∗ .
Denote qu as the number of oracle queries to the USO in this game.

5. Challenge. A sends two messages M0,M1 ∈ M to the challenger. The chal-
lenger picks a random bit b′ and computes C∗ ← Enc(mpk, ID∗,Mb′).

6. Phase 3. The challenger sends C∗ to A. A is allowed to query KEO adaptively.
7. Output. A returns a guess b∗ of b′. A wins the game if b′ = b∗ and there was

no KEO(ID∗) query.

The advantage of A is
∣∣Pr[A wins] − 1

2

∣∣. An IBE scheme is IND-ID-CPA secure
in the continual auxiliary leakage model for F (or CAL-CPA secure) if there is
no PPT A with non-negligible advantage in the game above.

Class of Auxiliary Functions. Let S∗ denote a set of all possible valid
identity-based secret keys with respect to ID∗. Let S denote a set of qe identity-
based secret keys such that S∗ ∩ S = ∅. Let F id−ow(g

u(ku)) be the class of all
polynomial-time computable functions f ; such that given

mpk, ID∗, S, f0(rs, · · · ) and {fi(ε,Lmsk,LID,msk, skID∗ ,mpk, ID∗)}i∈[1,q�],

(for a randomly generated (msk,mpk, rs, skID∗ ,S,Lmsk,LID), and ID∗ ⊆ I)5, no
PPT algorithm can find a skID∗ ∈ S∗ with probability greater than gu(ku), where
gu(ku) ≥ 2−ku is the hardness parameter.

Definition 11. An IBE scheme is said to be (gu(ku))-CAL-CPA secure if it is
IND-ID-CPA secure w.r.t. family Fu

id−ow(g
u(ku)).

4.2 Construction in the Continual Auxiliary Leakage Model

We can extend our basic IBE in §3.3 to give an IBE scheme secure in the continual
leakage model. The advantage is that it does not have much difference from our
basic IBE. However, the extended scheme does not allow leakage during the
setup phase. It implies that in the security model, the leakage f0 is not allowed.
Firstly, the common reference string is (N = p1p2p3,G,GT , ê) as generated by
the bilinear group generator, i.e. CRSGen(·) = G(). Then, the rest of Setup in
§3.3 constitutes our new Setup. Finally, we introduce the two algorithms below.

5 The msk here is the current value of msk when the leakage oracle query for f is
made. It may be changed by the UpdateMSK oracle, hence it is not a fixed value.
The same applies for other variables such as Lmsk and LID.
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UpdateMSK: Given {K1,i,K2,i,K3,i}, the KGC randomly picks t′i ∈ ZN and
T ′
1,i, T

′
2,i, T

′
3,i ∈ Gp3 , for i ∈ [1,m]. The new master secret key is defined by:

K ′
1,i = K1,i · ht′i · T ′

1,i, K ′
2,i = K2,i · ut′i · T ′

2,i, K ′
3,i = K3,i · vt

′
i

i · T ′
3,i.

UpdateUSK: Given skID = {D1, E1, . . . , Dm, Em} for the identity ID, it randomly
picks r′i ∈ ZN and R′

1,i, R
′
2,i ∈ Gp3 for i ∈ [1,m], then the new key is given by:

D′
i = Di · (uIDh)r

′
i · R′

1,i, E′
i = Ei · vr

′
i · R′

2,i.

Theorem 12. Our IBE scheme is (2−mε

)-CAL-CPA secure if Assumption 1,
Assumption 2 and Assumption 3 hold.

Compared with our basic IBE, we have to additionally simulate the oracles for
updating and leak the randomness used. These updates all used random elements
in Gp3 , which which has no impact to the previous proof. So the proof is similar
to that of our basic IBE and hence is omitted.

4.3 Further Discussions on the Continual Auxiliary Input Model

Our continual auxiliary input model extends the traditional continual mem-
ory leakage model in two dimensions. Previous definitions consider only length-
bounded leakage with the requirement of secure erasure. For length-bounded
leakage, continual leakage is obviously stronger than non-continual leakage since
it allows more bits to be leaked, or, there cannot be arbitrarily large leakage on
the same copy of the (static) secret key in the non-continual model.

Here, we consider “continual leakage without erasure” for an even stronger
attack model – for example, an adversary may decide to leak more bits of the old
secret key after seeing some bits of its refreshed version. But that seems to bring
us back to the original non-continual scenario. If the old keys are not erased,
the adversary can always choose to keep leaking the old keys even in the later
“epochs” when the secret keys are refreshed. One may consider a model which
allows “fine-grained” leakage, say, only allowing a particular query to leak a cer-
tain number of bits of an old key and keeping track of the number of bits leaked
from the refreshed key via the same leakage function. But it might be difficult to
have a clean definition for that. On the other hand, in the auxiliary input model,
we can capture this stronger attack model by a simple uninvertibility condition.

Indeed, the basic auxiliary input model seems to be so “powerful” that any
scheme that is secure in the basic model for a certain function family F is also
secure in the continual auxiliary leakage model for another family F ′. However, it
does not mean that the additional key-refreshing algorithms we just introduced
have no significance. Instead, a careful design of these algorithms can enlarge the
size of the allowed function family, which means a more general form of leakage is
allowed. To see, consider an artificial scheme which “keeps state” across epochs
and puts one bit of the same identity-based secret key in each version of a certain
secret key. Eventually, this secret key can be recovered by leaking a single bit of
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each of these keys, so any set of queries containing these leakages is ruled out
by the uninvertibility condition, i.e., they are excluded from the function family.
On the other hand, our scheme could allow this set of leakage queries.

4.4 Construction Supporting Leakage-Resilient Setup

Intuition. In the IBE scheme in [13], the KGC first picks an α ∈ ZN and uses
n random tags (and other elements) to blind it. The master secret key contains
multiple elements but α is enough for decryption of every ciphertexts. It seems
leaking a part of the randomness is sufficient to break the scheme. To allow aux-
iliary leakage in the setup, we resort to Theorem 2 again. Our scheme picks a
random n×mmatrix V and multiplies it with αi’s to obtainmmaster public keys
Y , where αi ∈ {0, 1} for i ∈ [1, n]. Similar method is used in (LWE-based) GPV
encryption in [9]. Denote the randomness α = (α1, . . . , αn) and the generator
g = (g1, . . . , gn). Roughly speaking, we set Y = ê(g,V α), where the pairing op-
eration is taken entry-wise. The master secret key is V α = {

∏m
j=1 v

αj

i,j}i∈[1,n]. In
the security proof, the simulator can use the uninvertible function F (α1, . . . , αn)
to output v

αj

i,j . It is difficult to invert if the ISIS assumption holds.

Construction.
CRSGen: On input the security parameter 1λ, the setup algorithm runs (N =
p1p2p3,G,GT , ê) ← G(1λ). We suppose the group generator G also gives the
generators (u, h) and X3 of the subgroups Gp1 and Gp3 respectively.

Setup: Let 0 < ε < 1, n = O(λ) and m = ((n + 4)λ)1/ε. The KGC randomly
picks α1, . . . , αm ∈ {0, 1}, a random matrix V ∈ Gn×m

p1
and a random G ∈ Gn

p1
:

V =

⎡⎢⎢⎢⎣
v1,1 v1,2 . . . v1,m
v2,1 v2,2 . . . v2,m
...

...
. . .

...
vn,1 vn,2 . . . vn,m

⎤⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎣
g1
g2
...
gn

⎤⎥⎥⎥⎦ .
Then we define qi =

∏m
j=1 v

αj

i,j for i ∈ [1, n], and

α =

⎡⎢⎢⎢⎣
α1

α2

...
αm

⎤⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎣
y1 = ê(g1, q1)
y2 = ê(g2, q2)

...
yn = ê(gn, qn)

⎤⎥⎥⎥⎦ .
The system parameter param is {N,G,GT , ê, u, h,X3,G}. The master public
key mpk is Y. The KGC randomly picks ti ∈ ZN and T1,i, T2,i, T3,i ∈ Gp3 for
i ∈ [1, n]. The master secret key msk is

{
{K1,i,K2,i,K3,i}i∈[1,n]

}
where

K1,i = qi · hti · T1,i, K2,i = uti · T2,i, K3,i = gtii · T3,i.

The randomness used to generate msk are {αi, ti, T1,i, T2,i, T3,i} for i ∈ [1, n].



Identity-Based Encryption Resilient to Continual Auxiliary Leakage 133

Define the message space M as GT and the identity space I as a λ-bit integer.

Ext: Given the master secret key
{
{K1,i,K2,i,K3,i}i∈[1,n]

}
, and an identity ID,

it picks a random ri ∈ ZN and some random R1,i, R2,i ∈ Gp3 , then it calculates:

Di = K1,i ·K ID
2,i · (uIDh)riR1,i, Ei = K3,i · grii R2,i,

for i ∈ [1, n]. It is equivalent to Di =
∏m

j=1 v
αj

i,j · (uIDh)r̄i · R̄1,i and Ei = gr̄ii · R̄2,i,

for random r̄i ∈ ZN , R̄1,i, R̄2,i ∈ Gp3 . The output is skID = {D1, E1, . . . , Dn, En}.
Enc: To encrypt a message M ∈ GT for a user ID, for i ∈ [1, n], it randomly
picks si ∈ ZN and calculates the ciphertext is {A,B1, C1, . . . , Bn, Cn} as:

A =M ·
n∏

i=1

ysii , Bi = gsii , Ci = (uIDh)si .

Dec: Given C = {A,B1, C1, . . . , Bn, Cn}, and skID = {D1, E1, . . . , Dn, En}, the
message is recovered from the ciphertext C by:

M = A ·
∏n

i=1 ê(Ci, Ei)∏n
i=1 ê(Bi, Di)

.

UpdateMSK: Given
{
{K1,i,K2,i,K3,i}i∈[1,n]

}
, the KGC randomly picks t′i ∈ ZN

and T ′
1,i, T

′
2,i, T

′
3,i ∈ Gp3 , for i ∈ [1, n], it sets the new master secret key as:

K ′
1,i = K1,i · ht′i · T ′

1,i, K ′
2,i = K2,i · ut′i · T ′

2,j, K ′
3,i = K3,i · gt

′
i

i · T ′
3,i.

UpdateUSK: Given skID = {D1, E1, . . . , Dn, En} for the identity ID, it picks some
random r′i ∈ ZN and some random R′

1,i, R
′
2,i ∈ Gp3 for i ∈ [1, n], then it calcu-

lates the new identity-based secret key by:

D′
i = Di · (uIDh)r

′
i · R′

1,i, E′
i = Ei · vr′

i · R′
2,i.

Theorem 13. Our IBE scheme is (2−mε

)-CAL-CPA secure if Assumptions 1,
2, 3 and the ISISp1,m,

√
m assumption hold.

The structure of the proof is similar to the proof of Theorem 6. We prove by
a hybrid argument using a sequence of games. The Gamerestricted and Gamek
are almost the same as the proof of Theorem 6. After that, a new Gameleaki is
defined as the same as Gameq, except that q1, . . . , qi in the mpk are replaced by
random elements in Gp1 . The Gamefinal is also defined as the previous proof:
the challenge ciphertext is changed to a semi-functional ciphertext encrypting a
random message. The details of the proof are given in the full version.
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Abstract. We motivate, define and construct quantum proofs of knowledge,
proofs of knowledge secure against quantum adversaries. Our constructions
are based on a new quantum rewinding technique that allows us to extract
witnesses in many classical proofs of knowledge. We give criteria under which
a classical proof of knowledge is a quantum proof of knowledge. Combining
our results with Watrous’ results on quantum zero-knowledge, we show that
there are zero-knowledge quantum proofs of knowledge for all languages in NP
(assuming quantum 1-1 one-way functions).

1 Introduction

Cryptographic protocols, with few exceptions, are based on the assumption that
certain problems are computationally hard. Typical examples include specific
number-theoretic problems such as the difficulty of finding discrete logarithms,
and general problems such as inverting one-way functions. It is well-known, how-
ever, that many such problems would become easy in the advent of quantum
computers. Shor’s algorithm [16], e.g., efficiently solves the discrete logarithm
problem and allows to factor large integers. While quantum computers do not
exist today, it is not unreasonable to expect quantum computers to be available
in the future. To meet this threat, we need cryptographic protocols that are
secure even in the presence of an adversary with a quantum computer. We stress
that this does not necessarily imply that the protocol itself should make use
of quantum technology; instead, it is preferable that the protocol itself can be
easily implemented on today’s readily-available classical computers.

Finding such quantum-secure protocols, however, is not trivial. Even when
we have found suitable complexity-theoretic assumptions such as the hardness
of certain lattice problems, a classical protocol based on these assumptions may
fail to be secure against quantum computers. The reason for this is that many
cryptographic proofs use a technique called rewinding. This technique requires
that it is possible, when simulating some machine, to make snapshots of the
state of that machine and then later to go back to that snapshot. As first ob-
served by van de Graaf [9], classical rewinding-based proofs do not carry over to
the quantum case. Two features unique to the quantum setting prohibit (naive)
rewinding: The no-cloning theorem [21] states that quantum-information cannot
be copied, so we cannot make snapshots. Furthermore, measurements destroy
information, so interacting with a simulated machine may destroy information
that would be needed later.
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This leads to the following observation: Even if a classical protocol is proven
secure based on the hardness of some problem, and even if that problem is
hard even for quantum computers, we have no guarantee that the protocol is
secure against quantum computers. The reduction of the protocol’s security to
the problem’s hardness may be based on inherently classical features such as the
possibility of rewinding.

An example of a protocol construction that suffers from this difficulty is zero-
knowledge proofs. Zero-knowledge proofs are interactive proofs with the special
property that the verifier does not learn anything except the validity of the
proven statement. Zero-knowledge proofs are inherently based on rewinding (at
least as long as we do not assume additional trusted setup such as so-called
common-reference strings). Yet, zero-knowledge proofs are one of the most pow-
erful tools available to the cryptographer; a multitude of protocol constructions
use zero-knowledge proofs. These protocol constructions cannot be proven se-
cure without using rewinding. To resolve this issue, Watrous [19] introduced a
quantum rewinding technique. This technique allows to prove the quantum se-
curity of many common zero-knowledge proofs. One should note, however, that
Watrous’ technique is restricted to a specific type of rewinding: If we use Wa-
trous’ technique, whenever some machine rewinds another machine to an earlier
point, the rewinding machine forgets everything it learned after that point (we
call this oblivious rewinding). That is, we can only use Watrous’ technique to
backtrack if the rewinding machine made a mistake that should be corrected, but
it cannot be used to collect and combine information from different branches of
an execution.

Constructing quantum zero-knowledge proofs solves, however, only half of the
problem. In many, if not most, applications of zero-knowledge proofs one needs
zero-knowledge proofs of knowledge. A proof of knowledge [7,3] is a proof system
which does not only show the truth of a certain statement, but also that the
prover knows a witness for that statement. This is made clearer by an example:
Assume that Alice wishes to convince Bob that she (the prover) is in possession
of a signature issued by some certification authority. For privacy reasons, Alice
does not wish to reveal the signature itself. If Alice uses a zero-knowledge proof,
she can only show the statement “there exists a signature with respect to the
CA’s public key”. This does not, however, achieve anything: A signature always
exists in a mathematical sense, even if it has never been computed. What Al-
ice wishes to say is: “I know a signature with respect to the CA’s public key.”
To prove such a statement, Alice needs a zero-knowledge proof of knowledge; a
proof of knowledge would convince Bob that Alice indeed knows a witness, i.e.,
a signature. Very roughly, the definition of a proof of knowledge is the following:
Whenever the prover can convince the verifier, one can extract the witness from
the prover given oracle access to the prover. Here oracle access means that one
can interact with the prover and rewind him. Thus, we have the same problem
as in the case of quantum zero-knowledge proofs: To get proofs of knowledge
that are secure against quantum adversaries, we need to use quantum rewind-
ing. Unfortunately, Watrous’ oblivious rewinding does not work here; proofs of
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knowledge use rewinding to produce two (or more) different protocol traces and
compute the witness by combining the information from both traces. Thus, we
are back to where we started: to make classical cryptographic protocols work in
a quantum setting, we need (in many cases) quantum zero-knowledge proofs of
knowledge, but we only have constructions for quantum zero-knowledge proofs.

Our Contribution. We define and construct quantum proofs of knowledge. Our
protocols are classical (i.e., honest parties do not use quantum computation or
communication) but secure against quantum adversaries. Our constructions are
based on a new quantum rewinding technique (different from Watrous’ technique)
that allows us to extract witnesses in many classical proofs of knowledge. We
give criteria under which a classical proof of knowledge is a quantum proof of
knowledge. Combining our results with Watrous’ results on zero-knowledge, we
can show that there are zero-knowledge quantum proofs of knowledge for all
languages in NP (assuming quantum 1-1 one-way functions). (We leave it as an
open question whether unconditionally secure protocols exist for more restricted
languages related, e.g., to lattice-problems.)

Also, we believe that the use of our rewinding technique is not limited to
QPoKs. For example, we encourage the reader to try to prove the following
without using our technique: Given a quantum computationally binding com-
mitment scheme, first let the adversary commit, and then give a random value v
to the adversary. Then the probability that the adversary opens the commitment
to v is negligible.1

Follow-up Work. In subsequent work, Lunemann and Nielsen [14] and Hallgren,
Smith, and Song [12] developed zero-knowledge QPoKs with the additional ad-
vantage of allowing to simultaneously simulate an interaction with the malicious
prover and extract the witness; this property is necessary in some multi-party
computations. (In contrast, in our setting the initial state of the prover could be
lost after extracting.) We stress, however, that this powerful feature comes at a
cost: They need considerably stronger assumptions, namely quantum mixed com-
mitments (while we only need quantum 1-1 one-way functions). Both their zero-
knowledge property and their extractability hold only against polynomial-time
adversaries. In contrast, we get unconditional extractability and computational
zero-knowledge; and by adapting our construction to unconditionally hiding com-
mitments, we could instead make the zero-knowledge property unconditional –
this would be necessary, e.g., for constructions that achieve everlasting security.
Finally, note that the protocols from [14,12] are much more involved than their
classical counterparts while we only slightly modify existing classical protocols.
Thus, [14,12] give valuable alternatives to our protocols but do not supersede
them.

1 The definition of a computationally binding commitment only guarantees that the
adversary cannot simultaneously produce opening information for two different val-
ues. Thus, to get a contradiction, we need to rewind the adversary to extract two
values. If the commitment is strictly binding (Definition 9), our rewinding technique
can be used.
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Organization. In Section 1.1, we give an overview over the techniques under-
lying our results. In Section 2 we present and discuss the definition of quantum
proofs of knowledge (QPoKs). In Section 3, we give criteria under which a proof
system is a QPoK. In Section 4, we show that zero-knowledge QPoKs exist for
all languages in NP. Omitted proofs and definitions are presented in the full
version [18].

1.1 Our Techniques

Defining Proofs of Knowledge. In the classical setting, proofs of knowledge
are defined as follows:2 A proof system consisting of a prover P and a verifier V is
a proof of knowledge (PoK) with knowledge error κ if there is a polynomial-time
machine K (the extractor) such that the following holds: For any prover P∗, if P∗

convinces V with probability PrV ≥ κ, then KP∗
(the extractor K with rewinding

black-box access to P∗) outputs a witness with probability PrK ≥ 1
p (PrV−κ)d for

some polynomial p and constant d > 0. In order to transfer this definition to the
quantum setting, we need to specify what it means that K has quantum rewinding
black-box access to P∗. We choose the following definition: Let U denote the
unitary transformation describing one activation of P∗ (if P∗ is not unitary, this
needs to work for all purifications of P∗). K may invoke U (this corresponds to
running P∗), he may invoke the inverse U † of U (this corresponds to rewinding
P∗ by one activation), and he may read/write a shared register N for exchanging
messages with P∗. But K may not make snapshots of the state of P∗. Allowing
K to invoke U † is justified by the fact that all quantum circuits are reversible;
given a circuit for U , we can efficiently apply U †. Note that previous black-box
constructions such as Watrous’ rewinding technique and Grover’s algorithm [10]
make use of this fact. We can now define quantum proofs of knowledge: (P, V)
is a quantum proof of knowledge (QPoK) with knowledge error κ iff there is a
polynomial-time quantum algorithm K such that for all malicious provers P∗,
KP∗

(the extractor K with quantum rewinding black-box access to P∗) outputs a
witness with probability PrK ≥ 1

p (PrV −κ)d for some polynomial p and constant
d > 0.

We illustrate that QPoKs according to this definition are indeed useful for
analyzing cryptographic protocols. Assume the following toy protocol: In phase
1, a certification authority (CA) signs the pair (Alice, a) where a is Alice’s
age. In phase 2, Alice uses a zero-knowledge QPoK with negligible knowledge
error κ to prove to Bob that she possesses a signature σ on (Alice, a′) for some
a′ ≥ 21. That is, a witness in this QPoK would consist of an integer a′ ≥ 21 and
a signature σ on (Alice, a′) with respect to the CA’s public key. We can now
show that, if Alice is underage, i.e., if a < 21, Bob accepts the QPoK only with
negligible probability: Assume that Bob accepts with non-negligible probability
ν. Then, by the definition of QPoKs, KAlice will, with probability 1

p (ν − κ)d,

2 This is one of different possible definitions, loosely following [11]. It permits us to
avoid the use of expected polynomial-time. We discuss alternatives in Section 2.2
“On the success probability of the extractor”.
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output an integer a′ ≥ 21 and a (forged) signature σ on (Alice, a′) with respect
to the CA’s public key (given the information learned in phase 1 as auxiliary
input). Notice that 1

p (ν − κ)d is non-negligible. However, the CA only signed
(Alice, a) with a < 21. This implies that KAlice can produce with non-negligible
probability a valid signature of a message that has never been signed by the CA.
This contradicts the security of the signature scheme (assuming, e.g., existential
unforgeability [8]). This shows the security of our toy protocol.

Relation to Classical Proofs of Knowledge. Notice that a quantum proof of
knowledge according to our definition is not necessarily a classical PoK because
the quantum extractor might have more computational power. (E.g., in a proof
system where the witness is a factorization, a quantum extractor could just com-
pute this witness himself.) We stress that this “paradox” is not particular to our
definition, it occurs with all simulation-based definitions (e.g., zero-knowledge
[19], universal composability [17]). If needed, one can avoid this “paradox” by
requiring the extractor/simulator to be classical if the malicious prover/verifier
is. (This would actually be equivalent to requiring that the scheme is both a
classical ZK PoK and a quantum one.)

Amplification. Our toy example shows that QPoKs with negligible knowledge
error can be used to show the security of protocols. But what about QPoKs with
non-negligible knowledge error? In the classical case, we know that the knowl-
edge error of a PoK can be made exponentially small by sequential repetition.
Fortunately, this result carries over to the quantum case; its proof follows the
same lines.

Elementary Constructions. In order to understand our constructions of
QPoKs, let us first revisit a common method for constructing classical PoKs.
Assume a protocol that consists of three messages: the commitment (sent by
the prover), the challenge (picked from a set C and sent by the verifier), and
the response (sent by prover). Assume that there is an efficient algorithm K0

that computes a witness given two conversations with the same commitment
but different challenges; this property is called special soundness. Then we can
construct the following (classical) extractor K: KP∗

runs P∗ using a random chal-
lenge ch. Then KP∗

rewinds P∗ to the point after it produced the commitment,
and then KP∗

runs P∗ with a random challenge ch ′. If both executions lead to an
accepting conversation, and ch �= ch ′, K0 can compute a witness. The probability
of getting two accepting conversations can be shown to be Pr2V, where PrV is the
probability of the verifier accepting P∗’s proof. From this, a simple calculation
shows that the knowledge error of the protocol is 1/#C.

If we directly translate this approach to the quantum setting, we end up with
the following extractor: K runs one step of P∗, measures the commitment com,
provides a random challenge ch, runs the second step of P∗, measures the re-
sponse, runs the inverse of the second step of P∗, provides a random challenge
ch ′, runs the second step of P∗, and measures the response resp′. If ch �= ch′,
and both (com , ch, resp) and (com , ch′, resp′) are accepting conversations, then
we get a witness using K0. We call this extractor the canonical extractor. The
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problem is to bound the probability F of getting two accepting conversations. In
the classical setting, one uses that the two conversations are essentially indepen-
dent (given a fixed commitment), and each of them is, from the point of view
of P∗, the same as an interaction with the honest verifier V. In the quantum
setting, this is not the case. Measuring resp disturbs the state of P∗; we hence
cannot make any statement about the probability that the second conversation
is accepting.

How can we solve this problem? Note that we cannot use Watrous’ oblivious
rewinding since we need to remember both responses resp and resp′ from two
different execution paths of P∗. Instead, we observe that, the more information
we measure in the first conversation (i.e., the longer resp is), the more we destroy
the state of P∗ used in the second conversation. Conversely, if would measure
only one bit, the disturbance of P∗’s state would be small enough to still get a
sufficiently high success probability. But if resp would contain only one bit, it
would clearly be too short to be of any use for K0. Yet, it turns out that this
conflict can be resolved: In order not to disturb P∗’s state, we only need that the
resp information-theoretically contains little information. For K0, however, even
an information-theoretically determined resp is still useful; it might, for example,
reveal a value which P∗ was already committed to. To make use of this observa-
tion, we introduce an additional condition on our proof systems, strict soundness.
A proof system has strict soundness if for any commitment and challenge, there
is at most one response that makes the conversation accepting. Given a proof
system with special and strict soundness, we can show that measuring resp does
not disturb P∗’s state too much; the canonical extractor is successful with prob-
ability approximately Pr3V. A precise calculation shows that a proof system with
special and strict soundness has knowledge error 1/

√
#C.

QPoKs for All Languages in NP. Blum [4] presents a classical zero-
knowledge PoK for showing the knowledge of a Hamiltonian cycle. Using a
suitable commitment scheme (it should have the property that the opening infor-
mation is uniquely determined by the commitment), the proof system is easily
seen to have special and strict soundness, thus it is a QPoK. By sequential rep-
etition, we get a QPoK for Hamiltonian cycles. Using the Watrous’ results, we
get that the QPoK is also zero-knowledge. Using the fact that the Hamiltonian
cycle problem is NP-complete, we get zero-knowledge QPoKs for all languages
in NP (assuming quantum 1-1 one-way functions).

1.2 Preliminaries

General. A non-negative function μ is called negligible if for all c > 0 and all
sufficiently large k, μ(k) < k−c. ⊕ denotes the XOR operation on bitstrings. #C
is the cardinality of the set C.

Quantum Systems. We can only give a terse overview over the formalism used
in quantum computing. For a thorough introduction, we recommend the text-
book by Nielsen and Chuang [15, Chap. 1–2]. A (pure) state in a quantum system
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is described by a unit vector |Φ〉 in some Hilbert space H. We always assume a
designated orthonormal basis for each Hilbert space, called the computational
basis. The tensor product of several states (describing a joint system) is written
|Φ〉 ⊗ |Ψ〉. We write 〈Ψ | for the linear transformation mapping |Φ〉 to the scalar
product 〈Ψ |Φ〉. The norm ‖|Φ〉‖ is defined as

√〈Φ|Φ〉. A unit vector is a vector
with ‖|Φ〉‖ = 1. The Hermitean transpose of a linear operator A is written A†.

2 Quantum Proofs of Knowledge

2.1 Definitions

Interactive Machines. A quantum interactive machine M (machine, for short)
is a machine that gets two inputs, a classical input x and a quantum input |Φ〉.
M operates on two quantum registers; a network register N and a register SM for
the state. SM is initialized with |Φ〉. The operation of M is described by a unitary
transformation Mx (depending on the classical input x). In each activation of M,
Mx is applied to N, SM. We write 〈M(x, |Φ〉), M′(x′, |Φ′〉)〉 for the classical output
of M′ in an interaction where M is activated first (and where M and M′ share
the register N). Often, we will omit the quantum input |Φ〉 or |Φ′〉. In this case,
we assume the input |0〉.
Oracles Algorithms with Rewinding. A quantum oracle algorithm A is an
algorithm that has oracle access to a machine M. In an execution AM(x′,|Φ〉)(x),
two registers N, SM are used for the communication with and the state of M. A’s
behavior is described by a quantum circuit; A has access to two special gates
� and �† that invoke the unitary transformations Mx′ and M†

x′ , respectively.
This corresponds to running and rewinding M. A is not allowed to access SM

directly, and he is allowed to apply � and �† only to N, SM. (I.e., A has no
access to the internal state and the quantum input of the prover. Any access to
this information is done by communicating with M.) Details on the definitions of
interactive quantum machines and quantum oracle algorithms are given in the
full version [18].

Proof Systems. A quantum proof system for a relation R is a pair of two
machines (P, V). We call P the prover and V the verifier. The prover expects a
classical input (x, w) with (x, w) ∈ R, the verifier expects only the input x. We
call (P, V) complete if there is a negligible function μ such that for all (x, w) ∈ R,
we have that Pr[〈P(x, w), V(x)〉 = 1] ≥ 1− μ(|x|). (Remember that, if we do not
explicitly specify a quantum input, we assume the quantum input |0〉.) Although
we allow P and V to be quantum machines, and in particular to send and receive
quantum messages, we will not need this property in the following; all protocols
constructed in this paper will consist of classical machines. We call a (P, V) sound
with soundness error s iff for all malicious prover P∗, all auxiliary inputs |Φ〉, and
all x with �w : (x, w) ∈ R, we have Pr[〈P∗(x, |Φ〉), V(x)〉 = 1] ≤ s(|x|). A proof
system is computational zero-knowledge iff for all polynomial-time verifiers V∗

there is a polynomial-time machine S (the simulator) such that for all auxiliary
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inputs |Φ〉, and all (x, w) ∈ R, we have that the quantum state of V∗ after an
interaction 〈P(x, w), V∗(x, |Φ〉)〉 is computationally indistinguishable from the
output of S(x, |Φ〉); we refer to [19] for details.

Quantum Proofs of Knowledge. We can now define quantum proofs of knowl-
edge (QPoKs). Roughly, a quantum proof system (P, V) is a QPoK if there is a
quantum oracle algorithm K (the extractor) that achieves the following: When-
ever some malicious prover P∗ convinces V that a certain statement holds, the
extractor KP∗

with oracle access to P∗ is able to return a witness. Here, we allow
a certain knowledge error κ; if P∗ convinces V with a probability smaller than κ,
we do not require anything. Furthermore, we also do not require that the success
probability of KP∗

is as high as the success probability of P∗; instead, we only
require that it is polynomially related. Finally, to facilitate the use of QPoKs as
subprotocols, we give the malicious prover an auxiliary input |Φ〉. We get the
following definition:

Definition 1 (Quantum Proofs of Knowledge). We call a proof system
(P, V) for a relation R quantum extractable with knowledge error κ if there exists
a constant d > 0, a polynomially-bounded function p > 0, and a polynomial-time
quantum oracle machine K such that for any interactive quantum machine P∗,
any state |ψ〉, and any x ∈ {0, 1}∗, we have that

Pr[〈P∗(x, |ψ〉), V(x)〉 = 1] ≥ κ(|x|) =⇒
Pr[(x, w) ∈ R : w ← KP∗(x,|ψ〉)(x)] ≥ 1

p(|x|)
(
Pr
[〈P∗(x, |ψ〉), V(x)〉 = 1

]−κ(|x|)
)d

.

A quantum proof of knowledge for R with knowledge error κ (QPoK, for short)
is a complete3 quantum extractable proof system for R with knowledge error κ.

Note that by quantifying over all unitary provers P∗, we implicitly quantify over
all purifications of all possible non-unitary provers. Note that extractability
with knowledge error κ implies soundness with soundness error κ. We thus do
not need to explicitly require soundness in Definition 1. The knowledge error κ
can be made exponentially small by sequential repetition:

Theorem 2. Let n be a polynomially bounded and efficiently computable func-
tion. Let (P, V) be extractable with knowledge error κ. Let (P′, V′) be the proof
system consisting of n-sequential executions of (P, V). Then (P′, V′) is extractable
with knowledge error κn.

2.2 Discussion

In this section, we motivate various design choices made in the definition of
QPoKs.

Access to the Black-Box Prover’s State and Input. The extractor has no
access to the prover’s state nor to its quantum input. (This is modeled by the fact
3 I.e., for honest prover and verifier, the proof succeeds with overwhelming probability.
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that an oracle algorithm may not apply any gates except for �, �† to the register
containing the oracle’s state and quantum input.) In this, we follow [3] who argue
in Section 4.3 that a proof of knowledge is supposed to “capture the knowledge
of the prover demonstrated by the interaction” and that thus the extractor is not
supposed to see the internal state of the prover. We stress, however, that our
results are independent of this issue; they also hold if we allow the extractor to
access the prover’s state directly.

Unitary and Invertible Provers – Technical View. Probably the most im-
portant design choice in our definition is to require the prover to be a unitary
operation, and to allow the extractor to also execute the inverse of this oper-
ation. We begin with a discussion of this design choice from a technical point
of view. First, we stress that seems that these assumptions are necessary: Since
in a quantum world, making a snapshot/copy of a state is not possible or even
well-defined, we have to allow the extractor to run the prover “backwards”. But
the inverse of a non-unitary quantum operation does not, in general, exist. Thus
rewinding seems only possible with respect to unitary provers. Second, the prob-
ably most important question is: Does the definition, from an operational point
of view, make sense? That is, does our definition behave well in cryptographic,
reduction-based proofs? A final answer to this question can only be given when
more protocols using QPoKs have been analyzed. However, the toy protocol dis-
cussed on page 138 gives a first indication that our definition can be used in a
similar fashion to classical proofs of knowledge. Third, we would like to remind
the reader that any non-unitary prover can be transformed into a unitary one by
purification before applying the definition of QPoKs. Thus allowing only unitary
malicious provers does not seem to be a restriction in practice.

Unitary and Invertible Provers – Philosophical View. Intuitively, a QPoK
should guarantee that a prover that convinces the verifier “knows” the witness.4
The basic idea is that if an extractor can extract the witness using only what
is available to the prover, then the prover “knew” the witness (or could have
computed it). In particular, we may allow the extractor to run a purified (unitary)
version of the prover because the prover himself could have done so. Similarly
for the inverse of that operation. Of course, this leaves the question why we give
these two capabilities to the extractor but not others (e.g., access to the circuit of
the prover)? We would like to stress that analogous questions are still open (from
a philosophical point) even in the classical case: Why is it natural to allow an
extractor to rewind the prover? Why is it natural to give a trapdoor for a common
reference string to the extractor? We would like to point out one justification for
the assumption that the prover is unitary, though: [3] suggests that we “capture
the knowledge of the prover demonstrated by the interaction”. A prover that
performs non-unitary operations is identical in terms of its interaction to one
that is purified. Thus, by restricting to unitary provers, we come closer to only
capturing the interaction but not the inner workings of the prover.

4 We believe, though, that this issue is secondary to the technical suitability; it is
much more important that a QPoK is useful as a cryptographic subprotocol.
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On the Success Probability of the Extractor. We require the extractor
to run in polynomial-time and to succeed with probability 1

p (PrV − κ)d where
PrV is the probability that the prover convinces the verifier. (We call this an
A-style definition.) In classical PoKs, a more common definition is to require
the extractor to have expected runtime p

PrV−κ and to succeed with probability 1.
(We call this a B-style definition.) This definition is known to be equivalent
to the definition in which the extractor runs in expected polynomial-time and
succeeds with probability 1

p (PrV − κ). (We call this a C-style definition.) The
advantage of an A-style definition (which follows [11]) is that we can consider
polynomial-time extractors (instead of expected polynomial-time extractors). To
get extractors for B-style and C-style definitions, one has to increase the success
probability of an extractor by repeatedly invoking it until it outputs a correct
witness. In the quantum case, however, this does not work directly: If the invoked
extractor fails once, the auxiliary input of the prover is destroyed. The oblivious
rewinding technique by Watrous’ would seem to help here, but when trying
to apply that technique one gets the requirement that the invoked extractors’
success probability must be independent of the auxiliary input. This condition is
not necessarily fulfilled. To summarize, all three styles of definitions have their
advantages, but it is not clear how one could fulfil B- and C-style definitions
in the quantum case. This is why we chose an A-style definition. There are,
however, applications that would benefit from a proof system fulfilling a C-style
definition. For example, general multi-party computation protocols such as [5]
use extractors as part of the construction of the simulator for the multi-party
computation; these extractors must then succeed with probability close to 1. We
leave the construction of C-style QPoKs as an open problem.

3 Elementary Constructions
In this section, we show that under certain conditions, a classical PoK is also
a QPoK (i.e., secure against malicious quantum provers). The first condition
refers to the outer form of the protocol; we require that the proof systems is
a protocol with three messages (commitment, challenge, and response) with a
public-coin verifier. Such protocols are called Σ-protocols. Furthermore, we re-
quire that the proof system has special soundness. This means that given two
accepting conversations between prover and verifier that have the same commit-
ment but different challenges, we can efficiently compute a witness. Σ-protocols
with special soundness are well-studied in the classical case; many efficient clas-
sical protocols with these properties exist. The third condition (strict soundness)
is non-standard. We require that given the commitment and the challenge of a
conversation, there is at most one response that would make the verifier accept.
We require strict soundness to ensure that the response given by the prover does
not contain too much information; measuring it will then not disturb the state
of the prover too much. Not all known protocols have strict soundness (the proof
for graph isomorphism [6] is an example). Fortunately, many protocols do satisfy
strict soundness; a slight variation of the proof for Hamiltonian cycles [4] is an
example (see Section 4).
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Definition 3 (Σ-protocol). A proof system (P, V) is called a Σ-protocol if P
and V are classical, the interaction consists of three messages com , ch, resp (sent
by P, V, and P, respectively, and called commitment, challenge, and response),
and ch is uniformly chosen from some set Cx (the challenge space) that may only
depend on the statement x. Furthermore, the verifier decides whether to accept
or not by a deterministic polynomial-time computation on x, com , ch, resp. (We
call (com , ch, resp) an accepting conversation for x if the verifier would accept
it.) We also require that it is possible in polynomial time to sample uniformly
from Cx, and that membership in Cx should be decidable in polynomial time.

Definition 4 (Special soundness). We say a Σ-protocol (P, V) for a relation
R has special soundness if there is a deterministic polynomial-time algorithm
K0 (the special extractor) such that the following holds: For any two accept-
ing conversations (com , ch, resp) and (com , ch ′, resp′) for x such that ch �= ch ′

and ch, ch ′ ∈ Cx, we have that w := K0(x, com , ch, resp, ch′, resp′) satisfies
(x, w) ∈ R.

Definition 5 (Strict soundness). We say a Σ-protocol (P, V) has strict sound-
ness if for any two accepting conversations (com , ch, resp) and (com , ch, resp′)
for x, we have that resp = resp′.

Canonical Extractor. Let (P, V) be a Σ-protocol with special soundness and
strict soundness. Let K0 be the special extractor for that protocol. We define
the canonical extractor K for (P, V). K will use measurements, even though our
definition of quantum oracle algorithms only allows for unitary operations. This
is only for the sake of presentation; by purifying K one can derive a unitary
algorithm with the same properties. Given a malicious prover P∗, KP∗(x,|Φ〉)(x)
operates on two quantum registers N, SP∗ . N is used for communication with
P∗, and SP∗ is used for the state of P∗. The registers N, SP∗ are initialized with
|0〉, |Φ〉. Let P∗

x denote the unitary transformation describing a single activation
of P. First, K applies P∗

x to N, SP∗ . (This can be done using the special gate �.)
This corresponds to running the first step of P∗; in particular, N should now
contain the commitment. Then K measures N in the computational basis; call
the result com . Then K initializes N with |0〉. Then K chooses uniformly random
values ch, ch ′ ∈ Cx. Let Uch denote the unitary transformation operating on
N such that Uch |x〉 = |x ⊕ ch〉. Then K applies P∗

xUch . (Now N is expected to
contain the response for challenge ch.) Then K measures N in the computational
basis; call the result resp. Then K applies (P∗

xUch)† (we rewind the prover). Then
P∗

xUch′ is applied. (Now N is expected to contain the response for challenge ch ′.)
Then N is measured in the computational basis; call the result resp′. Then
(P∗

xUch′)† is applied. Finally, K outputs w := K0(x, com , ch, resp, ch ′, resp′).

Analysis of the Canonical Extractor. In order to analyze the canonical
extractor (Theorem 8 below), we first need a lemma that bounds the probability
that two consecutive binary measurements Pch and Pch′ with random ch �= ch′

succeed in terms of the probability that a single such measurement succeeds. In
a classical setting (or in the case of commuting measurements), the answer is
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simple: the outcomes of the measurements are independent; thus the probability
that two measurements succeed is the square of the probability that a single
measurement succeeds. In the quantum case, however, the first measurement
may disturb the state; this makes the analysis considerably more involved. We
first prove some inequalities needed in the proof:

Lemma 6. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors
on a Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖2

and F :=
∑

i,j∈C
1
c2 ‖PiPj |Φ〉‖2. Then F ≥ V 3.

Proof. To prove the lemma, we first show two simple facts:

Claim. For any positive operator A on H and any unit vector |Φ〉 ∈ H, we have
that (〈Φ|A|Φ〉)3 ≤ 〈Φ|A3|Φ〉.

Since A is positive, it is diagonalizable. Thus we can assume without loss of
generality that A is diagonal (by applying a suitable basis transform to A and
|Φ〉). Let ai be the i-th diagonal element of A, and let fi be the i-th component
of |Φ〉. Then

(〈Φ|A|Φ〉)3 =
(∑

i

|fi|2ai

)3 (∗)

≤
∑

i

|fi|2a3
i = 〈Φ|A3|Φ〉.

Here (∗) uses Jensen’s inequality [13] and the facts that ai ≥ 0, that ai �→ a3
i is a

convex function on nonnegative numbers, and that
∑

i|fi|2 = 1. This concludes
the proof of Lemma 3.

Claim. For vectors |Ψ1〉, . . . , |Ψc〉 ∈ H, it holds that ‖ 1
c

∑
i|Ψi〉‖2 ≤ 1

c

∑
i‖|Ψi〉‖2.

To show the claim, let |Ψ̄〉 :=
∑

i
1
c |Ψi〉. Then

∑
i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
=
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)(
‖|Ψi〉‖ − ‖|Ψ̄〉‖ + 2‖|Ψ̄〉‖

)
=
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)2

+ 2‖|Ψ̄〉‖
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)
≥ 2‖|Ψ̄〉‖

∑
i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)
= 2‖|Ψ̄〉‖

(∑
i

‖|Ψi〉‖ − ‖n|Ψ̄〉‖
)

(1)

= 2‖|Ψ̄〉‖
(∑

i

‖|Ψi〉‖ −
∥∥∥∑

i

|Ψi〉
∥∥∥) (2)

From the triangle inequality, it follows that
∑

i‖|Ψi〉‖ ≥ ‖∑i|Ψi〉‖, hence with
(2), we have

∑
i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
≥ 0. Since 1

c

∑
i‖|Ψi〉‖2 − ‖ 1

c

∑
i|Ψi〉‖2 =

1
c

∑
i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
≥ 0, Lemma 3 follows.
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We proceed to prove Lemma 6. Let A :=
∑

i
1
cPi, let |Ψij〉 := PjPi|Φ〉. Then

A is positive. Furthermore,

V 3 =
(∑

i

1
c 〈Φ|Pi|Φ〉

)3

=
(〈Φ|A|Φ〉)3 (∗)

≤ 〈Φ|A3|Φ〉 =
∑
i,j,k

1
c3 〈Φ|PiPjPk|Φ〉

=
∑
i,j,k

1
c3 〈Ψij |Ψkj〉 =

∑
j

1
c

(∑
i

1
c 〈Ψij |

)(∑
k

1
c |Ψkj〉

)
=
∑

j

1
c

∥∥∥∑
i

1
c |Ψij〉

∥∥∥2

(∗∗)≤
∑

j

1
c

∑
i

1
c‖|Ψij〉‖2 = F.

Here (∗) uses Lemma 3 and (∗∗) uses Lemma 3. Thus we have F ≥ V 3 and
Lemma 6 follows.

Lemma 7. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors
on a Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖2

and E :=
∑

i,j∈C,i
=j
1
c2 ‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c ).

Proof. Let F be as in Lemma 6. Then

E =
∑

i,j∈C
i
=j

1
c2
‖PiPj |Φ〉‖2 =

∑
i,j∈C

1
c2
‖PiPj |Φ〉‖2 −

∑
i∈C

1
c2

‖PiPi|Φ〉‖2

(∗)=
∑

i,j∈C

1
c2
‖PiPj |Φ〉‖2 −

∑
i∈C

1
c2
‖Pi|Φ〉‖2 = F − V

c

(∗∗)≥ V 3 − V

c
= V (V 2 − 1

c )

Here (∗) uses that Pi = PiPi since Pi is a projection, and (∗∗) uses Lemma 6. ��
Theorem 8. A Σ-protocol (P, V) for a relation R with special and strict sound-
ness and challenge space Cx is extractable with knowledge error 1√

#Cx
.

Proof. To show that (P, V) is extractable, we will use the canonical extractor K.
Fix a malicious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrV
denote the probability that the verifier accepts when interacting with P∗. Let
PrK denote the probability that KP∗(x,|Φ〉)(x) outputs some w with (x, w) ∈ R.
We will show that PrK ≥ PrV · (Pr2V − 1

#Cx
). For PrV ≥ 1√

#Cx
, we have that

PrV(Pr2V − 1
#Cx

) ≥ (PrV − 1√
#Cx

)3. Since furthermore K is polynomial-time, this
implies that (P, V) is extractable with knowledge error 1√

#Cx
.

In order to show PrK ≥ PrV · (Pr2V − 1
#Cx

), we will use a short sequence of
games. Each game will contain an event Succ, and in the first game, we will
have Pr[Succ : Game 1] = PrK. For any two consecutive games, we will have
Pr[Succ : Game i] ≥ Pr[Succ : Game i + 1], and for the final game, we will
have Pr[Succ : Game 7] ≥ PrV · (Pr2V − 1

#Cx
). This will then conclude the proof.

The description of each game will only contain the changes with respect to the
preceding game.
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Game 1. An execution of KP∗(x,|Φ〉)(x). Succ denotes the event that K outputs
a witness for x. By definition, PrK = Pr[Succ : Game 1].

Game 2. Succ denotes the event that (com, ch, resp) and (com , ch ′, resp′) are
accepting conversations for x and ch �= ch ′. (The variables (com , ch, resp) and
(com , ch′, resp′) are as in the definition of the canonical extractor.) Since (P, V)
has special soundness, if Succ occurs, K outputs a witness. Thus Pr[Succ :
Game 1] ≥ Pr[Succ : Game 2].

Game 3. Before K measures resp, it first measures whether measuring
resp would yield an accepting conversation. More precisely, it measures N
with the orthogonal projector Pch projecting onto Vch := span{|resp〉 :
(com , ch, resp) is accepting}. Analogously for the measurement of resp′ (using
the projector Pch′ .) Since a complete measurement (of resp and resp′, respec-
tively) is performed on N after applying the measurement Pch and Pch′ , in-
troducing the additional measurements does not change the outcomes resp and
resp′ of these complete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].

Game 4. Succ denotes the event that ch �= ch′ and both measurements Pch and
Pch′ succeed. By definition of these measurements, this happens iff (com , ch, resp)
and (com , ch ′, resp′) are accepting conversations. Thus Pr[Succ : Game 3] =
Pr[Succ : Game 4].

Game 5. We do not execute K0, i.e., we stop after applying (P∗
xUch′)†. Since

at that point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ :
Game 5].

Game 6. We remove the measurements of resp and resp′. Note that the out-
comes of these measurements are not used any more. Since (P, V) has strict
soundness, Vch = span{|resp0 〉} for a single value resp0 (depending on com and
ch, of course). Thus if the measurement Pch succeeds, the post-measurement
state in N is |resp0〉. That is, the state in N is classical at this point. Thus,
measuring N in the computational basis does not change the state. Hence, the
measurement of resp does not change the state. Analogously for the measurement
of resp′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].

Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitary
transformation P∗

x is applied. Then com is measured (complete measurement
on N), and N is initialized to |0〉. Random ch, ch′ ∈ Cx are chosen. Then
P∗

xUch is applied. Then the measurement Pch is performed. Then (P∗
xUch)† is

applied. Then P∗
xUch′ is applied. Then the measurement Pch′ is performed. Then

(P∗
xUch′)† is applied. The event Succ holds if ch �= ch′ and both measurements

succeed. Games 6 and 7 are identical; we have just recapitulated the game for
clarity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].

In Game 7, for some value d , let pd denote the probability that com = d is
measured. Let |Φd〉 denote the state of N, SP∗ after measuring com = d and
initializing N with |0〉. (I.e., the state directly before applying P∗

xUch .) Let Kd

denote the probability that starting from state |Φd〉, both measurements Pch and
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Pch′ succeed. Let c := #Cx. Then we have that Pr[Succ : Game 7] =
∑

d pdKd

and

Kd =
∑

ch,ch′∈Cx

ch 
=ch′

1
c2
‖(P∗

xUch′)†Pch′(P∗
xUch′)(P∗

xUch)†Pch(P∗
xUch)|Φd〉‖2

=
∑

ch,ch′∈Cx

ch 
=ch′

1
c2
‖P ∗

ch′P ∗
ch |Φd〉‖2

where P ∗
ch := (P∗

xUch)†Pch(P∗
xUch). Since Pch is an orthogonal projector and

P∗
xUch is unitary, P ∗

ch is an orthogonal projector. Let ϕ(v) := v(v2 − 1
c ) for

v ∈ [ 1√
c
, 1] and ϕ(v) := 0 for v ∈ [0, 1√

c
]. Then, by Lemma 7, Kd ≥ ϕ(Vd) for

Vd :=
∑

ch∈Cx

1
c‖P ∗

ch |Φd〉‖2.
Furthermore, by construction of the honest verifier V, we have that

PrV =
∑

d

pd

∑
ch∈Cx

1
c‖PchP∗

xUch |Φd〉‖2

(∗)=
∑

d

pd

∑
ch∈Cx

1
c‖(P∗

xUch)†Pch (P∗
xUch)|Φd〉‖2 =

∑
d

pdVd

where (∗) uses that (P∗
xUch)† is unitary. Finally, we have

PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7]

=
∑

d

pdKd ≥
∑

d

pdϕ(Vd)
(∗)≥ ϕ(PrV).

Here (∗) uses Jensen’s inequality [13] and the fact that ϕ is convex on [0, 1]. As
discussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2V − 1

c ) for
PrV ≥ 1√

c
implies that (P, V) is a QPoK with knowledge error 1/

√
#Cx.

4 QPoKs for All Languages in NP

In the preceding section, we have seen that complete proof systems with strict
and special soundness are QPoKs. The question that remains to be asked is: do
such proof systems, with the additional property of being zero-knowledge, exist
for interesting languages? In this section, we will show that for any language
in NP (more precisely, for any NP-relation), there is a zero-knowledge QPoK.
(Assuming the existence of quantum 1-1 one-way functions.) Here and in the
following, by zero-knowledge we mean quantum computational zero-knowledge.

The starting point for our construction will be the Blum’s zero-knowledge
PoK for Hamiltonian cycles [4]. In this Σ-protocol, the prover’s commits to the
vertices of a graph using a perfectly binding commitment scheme. In the prover’s
response, some of these commitments are opened. That is, the response contains
the opening information for some of the commitments. The problem is that
standard definitions of commitment schemes do not guarantee that the opening
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information is unique; only the actual content of the commitment has to be deter-
mined by the commitment. This means that the prover’s response is not unique.
Thus, with a standard commitment scheme we do not get strict soundness. In-
stead we need a commitment scheme such that the sender of the commitment
scheme is committed not only to the actual content of the commitment, but also
to the opening information.

Definition 9 (Strict binding). A commitment scheme COM is a determinis-
tic polynomial-time function taking two arguments a, y, the opening information
a and the message y. We say COM is strictly binding if for all a, y, a′, y′ with
(a, y) �= (a′, y′), we have that COM(a, y) �= COM(a′, y′).

Furthermore, in order to get the zero-knowledge property, we will need that
our commitment schemes are quantum computationally concealing. We refer to
[19] for a precise definition of this property. In [2], an unconditionally binding,
quantum computationally concealing commitment scheme based on quantum 1-1
one-way function is presented.5 Unfortunately, to the best of our knowledge, no
candidates for quantum 1-1 functions are known. Their definitions differ some-
what from those of [19], but as mentioned in [19], their proof carries over to
the definitions from [19]. Furthermore, in the scheme from [2], the commitment
contains the image of the opening information under a quantum 1-1 one-way
function. Thus the strict binding property is trivially fulfilled. Thus strictly bind-
ing, quantum computationally concealing commitment schemes exist under the
assumption that quantum 1-1 one-way functions exist.

Given such a commitment scheme COM, we can construct the proof system
(P, V). This proof system differs from the original proof system for Hamiltonian
cycles [4] only in the following aspect: The prover does not only commit to
the vertices in the graph π(x), but also to the permutation π and the cycle H .
Without these additional commitments, we would not get strict soundness; there
might be several permutations leading to the same graph, or the graph might
contain several Hamiltonian cycles. The full description of the protocol is given
in Figure 1.

Theorem 10. Let (x, w) ∈ R iff w is a Hamiltonian cycle of the graph x. As-
sume that COM is a strictly binding, quantum computationally concealing com-
mitment scheme. Then the proof system (P, V) is a zero-knowledge QPoK for R
with knowledge error 1√

2
.

The zero-knowledge property is proven using the techniques from [19]. Ex-
tractability is shown by proving special and strict soundness. The strict sound-
ness follows from the fact that the prover is committed to all the information
sent in his response using a strictly binding commitment.
5 In [2], the result is stated for quantum one-way permutations f : {0, 1}n → {0, 1}n.

(To the best of our knowledge, no candidates for quantum one-way permutations
are known.) Inspection of their proof reveals, however, that the result also holds for
families of quantum 1-1 one-way functions fi : {0, 1}n → D for arbitrary domain
D and efficiently samplable indices i, assuming that given an index i, it can be
efficiently verified that fi is injective.
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Inputs: A directed graph x (the statement) with vertices W , and a Hamiltonian
cycle w in x (the witness).
Protocol:
1. P picks a random permutation π on W . Let A be the adjacency matrix of the

graph π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P commits to π, H ,
and to each entry Aij of A. P sends the resulting commitments to V.

2. V picks ch ∈ {0, 1} and sends ch to P.
3. If ch = 0, P opens the commitments to π and A. If ch = 1, P opens the commit-

ments to H and to all Aij with (i, j) ∈ H .
4. If ch = 0, V checks that the commitments are opened correctly, that π is a permu-

tation, and that A is the adjacency matrix of π(x). If ch = 1, V checks that the
commitments are opened correctly, that H is a cycle, that exactly the Aij with
(i, j) ∈ H are opened, and that Aij = 1 for all (i, j) ∈ H . If all checks succeed, V
outputs 1.

Fig. 1. A QPoK (P, V) for Hamiltonian cycles

Corollary 11 (QPoKs for all languages in NP). Let R be an NP-relation.6
Then there is a zero-knowledge QPoK for R with negligible knowledge error.
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Abstract. In this paper we revisit previous work in the BPK model
and point out subtle problems concerning security proofs of concurrent
and resettable zero knowledge (cZK and rZK, for short). Our analy-
sis shows that the cZK and rZK simulations proposed for previous (in
particular all round-optimal) protocols are distinguishable from real ex-
ecutions. Therefore some of the questions about achieving round optimal
cZK and rZK in the BPK model are still open. We then show our main
protocol, ΠcZK, that is a round-optimal concurrently sound cZK argu-
ment of knowledge (AoK, for short) for NP under standard complexity-
theoretic assumptions. Next, using complexity leveraging arguments, we
show a protocol ΠrZK that is round-optimal and concurrently sound rZK
for NP. Finally we show that ΠcZK and ΠrZK can be instantiated effi-
ciently through transformations based on number-theoretic assumptions.
Indeed, starting from any language admitting a perfect Σ-protocol, they
produce concurrently sound protocols Π̄cZK and Π̄rZK, where Π̄cZK is
a round-optimal cZKAoK, and Π̄rZK is a 5-round rZK argument. The
rZK protocols are mainly inherited from the ones of Yung and Zhao [31].

1 Introduction

The notion of concurrent zero knowledge (cZK, for short) introduced in [11]
deals with proofs given in asynchronous networks controlled by the adversary.

In [3] Canetti et al. studied the case of an adversary that can reset the prover,
forcing it to re-use the same randomness in different executions. They defined as
resettable zero knowledge (rZK, for short) the security of a proof system against
such attacks. Very interestingly, rZK is proved to be stronger than cZK.

Motivated by the need of achieving round-efficient rZK, in [3] the Bare Public-
Key (BPK, for short) model has been introduced, with the goal of relying on a
setup assumption that is as close as possible to the standard model. Indeed,
round-efficient cZK and rZK are often easy to achieve in other models (e.g.,
with trusted parameters) that unfortunately are hard to justify in practice.

The BPK Model. The sole assumption of the BPK model is that when proofs
are played, identities of (polynomially many) verifiers interacting with honest
provers are fixed. Identities have to be posted to a public directory before proofs
start. This registration phase is non-interactive, does not involve trusted parties
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or other assumptions, and can be fully controlled by an adversarial verifier. When
proofs starts, it is assumed that honest provers interact with registered verifiers
only. The BPK model is very close to the standard model, indeed the proof
phase does not have any requirement beyond the availability of the directory
to all provers, and for verifiers, of a secret key associated to their identities.
Moreover, in both phases the adversary has full control of the communication
network, and of corrupted players.

The first constant-round rZK argument for NP in the BPK model has been
given in [3]. Then in [18] it is pointed out the subtle separations among sound-
ness notions in the BPK model. Indeed, in contrast to the standard model, the
notions of one-time, sequential and concurrent soundness, are distinct in the
BPK model. In [18] it is then proved that the protocol of [3] is actually sequen-
tially sound only. Moreover in [18] it is proven that 4 rounds are necessary for
concurrent soundness and finally, they showed a 4-round rZK argument with
sequential soundness. In light of the impossibility proved by [1] (i.e., there ex-
ists no 3 round sequentially sound cZK conversation-based argument in the
BPK model for non-trivial languages) the above 4-round rZK argument is round
optimal. Concurrent soundness along with rZK was achieved in [7], requiring
4 rounds. Further improvements on the required complexity assumptions have
been showed in [31] where a 4-round protocol under generic assumptions and an
efficient 5-round protocol under number-theoretic assumptions are shown. All
previously discussed results on constant-round rZK in the BPK model relied
on the assumptions that some cryptographic primitives are secure against sub-
exponential time adversaries (i.e., complexity leveraging) and obtained black-box
simulation.

The question of achieving a constant-round black-box cZK argument of knowl-
edge (AoK, for short) in the BPK model without relying on complexity leveraging
has been first addressed in [32] and then in [9]. The protocol of [32] needs 4 rounds
and enjoys sequential soundness. The protocol given in [9] needs only 4 rounds and
enjoys concurrent soundness. A follow up result of [27] showed an efficient transfor-
mation that starting from a language admitting a Σ-protocol produces a cZK AoK
with concurrent soundness needing only 4 rounds and adding only a constant num-
ber of modular exponentiations. A more recent result [6] obtains both round opti-
mality and optimal complexity assumptions (i.e., OWFs) in a concurrently sound
cZK AoK. More sophisticated notions of arguments of knowledge have been given
in [10] and in [29,28]. Indeed these papers focus on concurrent knowledge extrac-
tion (under different formulations). All above results achieving cZK are based on
hardness assumptions with respect to polynomial-time adversaries.

1.1 Our Results and Techniques

In this paper we show subtle problems concerning security proofs of various
cZK and rZK arguments in the BPK model [18,32,7,9,27,31,6,29], including all
round-optimal constructions published so far.
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The Source of the Problem: Parallel Execution of Different Sub-Protocols. In
order to achieve round efficiency, various known protocols, including all round-
optimal protocols, consist in parallel executions of sub-protocols that are useful
in different ways in the proofs of soundness and cZK/rZK. Roughly speaking,
there is always a sub-protocol π0 where in 3 rounds the verifier is required to use
a secret related to its identity. Then there is a 3-round sub-protocol π1 in which
the prover convinces the verifier about the validity of the statement and the
simulator can do the same by using knowledge of a secret information obtained
by rewinding π0 (in this session or in other sessions corresponding to the same
identity). To obtain a 4-round protocol1, π1 starts during the second round of
π0. Such round combination yields the following two cases.

First we consider the case in which the simulator needs the extracted secret
in order to play the first message of π1 so that such a message can appear in the
final transcript of the simulation. In this case when the simulator needs to run
π1 for the first time with a given identity, it needs first to obtain some secret
information by the verifier in π0. The use of look-ahead threads (i.e., trying to
go ahead with a virtual simulation with the purpose of obtaining the required
information needed in the main thread of the simulation) would not help here
since only a limited polynomial amount of work can be invested for them, and
there is always a non-negligible probability that look-ahead threads fail, while in
the main thread the verifier plays the next message. Given the above difficulty,
the simulator needs to play a bad first round in π1 so that later, when the needed
secret information is obtained, the simulator can play again the second round of
the protocol, this time playing a good first round in π1. However, this approach
suffers of a problem too. Indeed, stopping the main thread and trying to start
and complete a new thread leads to a detectable deviation in the final transcript
that the simulator will output. Indeed, the fact that the simulator gives up with
a thread each time it is stuck, and then starts a new one, as we shall see later,
modifies the distribution of the output of the simulator, since the output will
then include with higher probability threads that are “easier” to complete (e.g.,
where the simulator does not get stuck because new sessions for new identities do
not appear). Notice that this issue motivates the simulation strategies adopted
in previous work on cZK (e.g., [25,23]) where the main thread corresponds to
the construction of the view that will be given in output, while other threads
are started with the sole purpose of extracting secrets useful to go ahead in the
main thread. Similar issues concerning the use of a main thread during the whole
simulation have been recently considered in [21] for analyzing previous work on
selective decommitments.

We now consider the second case where the simulator does not need any secret
to compute the first round of π1. We observe that this approach could hurt the
proof of concurrent soundness, when the latter is proved by means of witness
extraction. Indeed, a malicious concurrent prover can exploit the execution of π0

in a session j, for completing the execution of π1 in another concurrent session
j′ �= j by playing a man-in-the-middle attack such that, when (in the proof

1 Similar discussions hold for some 5-round protocols when π0 requires 4 rounds.
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of concurrent soundness) one tries to reach a contradiction by extracting the
witness from the proof π1 given in session j′, it instead obtains the secret used
to simulate π0 in session j. Instead, if the secret to be extracted from π1 is fixed
from the very first round of π1, then one can show that it is either independent
from the one used in session j (this happens when the secret is used in π0 of
session j after the first round of π1 in session j′ is played), or is dependent but
not affected by the rewind of the extraction of session j′ (this happens when
the secret is used in π0 of session j before the first round of π1 in session j′ is
played).

The use of the secret in the last round of π1 only, could instead be helpful
in the following three cases: I) when one is interested in rZK since in this case
soundness is proved through a reduction based on complexity leveraging; II)
when cZK with sequential soundness only is desired; III) when the secret needed
by the simulator when running π1 in a session j′ is different from the witness
used by the verifier in the execution of π0 in the other sessions. Indeed, in
those cases the above discussion does not necessarily apply, and indeed some
proposed round-optimal protocols might be secure (see discussion in Section 2),
even though their security proofs seem to ignore at least in part the problems
that we are pointing out.

Because of the above case I, we believe that achieving 4-round cZK with
concurrent soundness in the BPK model under standard assumptions is defini-
tively harder2 than obtaining 4-round rZK with concurrent soundness in the
BPK model through complexity leveraging. This is the reason why we mainly
concentrate on achieving ΠcZK and this will require a new technique. Instead,
to obtain ΠrZK, we will just rely on a previous protocol given in [31] and make
some minor variations in order to recycle part of the analysis given for ΠcZK.

We stress that in all previous constructions, one could obtain a different proto-
col that satisfies the desired soundness and zero-knowledge properties by simply
running π0 and π1 sequentially. Indeed, in this case the simulator can complete
π0 in the main thread, then can run the extractor in another thread, and finally
can continue the main thread running π1 having the secret information. We also
stress that all papers that we revisit in this work, achieved also other results
that are not affected by our analysis.

We finally note that we did not investigate other round-efficient results in
variations of the BPK model [17,33,8], and other results in the BPK model that
do not focus on (almost) optimal round complexity [20,30,4].

New Techniques for Round-Optimal cZK and rZK in the BPK Model. In the
main contribution of this paper we show a protocol and a security proof that
close the gap in between lower and upper bounds for the round complexity of
concurrently sound cZKAoK in the BPK model. The result is achieved by using
a new technique where in addition to the secret of the verifier corresponding to
her identity, there is a temporary secret per session that enables the simulator to

2 However, when we will then focus on efficient instantiations, we will obtain a 4-round
protocol for cZK while rZK will require 5 rounds.
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proceed in two modes. Indeed, knowledge of the permanent secret of the verifier
allows the simulator to proceed in straight-line in the main thread in sessions
started after the extraction of the permanent secret. We show that temporary
secrets allow the simulator to proceed with the main thread even for sessions
started before the extraction of such secrets.

We implement this technique by means of trapdoor commitments. The proof
of cZK will be tricky since it requires the synergy of the two above simulation
modes. Each time an extraction procedure is started, the simulator is straight-
line in the new thread, and aborts in case an unknown secret key is needed to
proceed. Essentially, we can show that the number of extraction procedures of
temporary and permanent secret keys correspond to the number of sessions3.
The proof of concurrent soundness also requires special attention. Indeed while
the interplay of temporary and permanent secrets helps the simulator, it could
also be exploited by the malicious prover.

Our specifically designed protocol ΠcZK is a round-optimal concurrently sound
black-box perfect cZKAoK for NP, under standard complexity-theoretic assump-
tions. Then, we show that by using complexity leveraging (and thus assuming the
existence of complexity-theoretic primitives secure against sub-exponential time
adversaries) a variation of a previous protocol due to Yung and Zhao [31] produces
a protocol ΠrZK that is black-box rZK, round-optimal and concurrently sound for
NP. The variations with respect to the work of [31] allow us to recycle part of the
analysis used for ΠcZK. Indeed, as we show in Section 2.2, although fixable, the
security proof provided in [31] relies on a simulator that outputs a transcript that
is distinguishable from the real execution.

We then show that ΠcZK and ΠrZK admit efficient transformations that
starting from any language admitting a perfect Σ-protocol, produce concurrently-
sound protocols Π̄cZK and Π̄rZK, where Π̄cZK is a round-optimal black-box per-
fect cZKAoK, while Π̄rZK is a 5-round black-box rZK argument. Both transfor-
mations only require a constant number of modular exponentiations, and Π̄cZK
is secure under standard number-theoretic assumptions, while Π̄rZK also needs
number-theoretic assumptions w.r.t. sub-exponential time adversaries. Π̄rZK will
again correspond to a variation of a protocol presented in [31].

It is plausible that motivated by different purposes one can get more general
constructions or constructions with better efficiency, assumptions or security,
but this is out of the scope of this work.

Notation and Tools. We denote by n ∈ N the security parameter and by PPT the
property of an algorithm of running in probabilistic polynomial-time. We assume
confidence with the concepts of witness indistinguishability (WI) and of proof of
knowledge. A Σ-protocol (pok1, pok2, pok3) is a 3-round public-coin WI proof of
knowledge enjoying the honest-verifier zero knowledge property (HVZK), that
is, there exists a PPT simulator that on input the theorem to be proved and the
message pok2, outputs a transcript that is indistinguishable from the transcript

3 This contrasts with the main technique used in the past in the BPK model, where the
extraction procedure were applied only for the identities registered in the directory.
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output by the prover. If the output is perfectly indistinguishable the Σ-protocol
is called perfect. We call special a Σ-protocol in which the prover can compute
the message pok1 without knowing the theorem to be proved. We refer to [5] for
details on Σ-protocols and to [16] for details on special Σ-protocols.

2 Issues in Security Proofs of Previous Results

We now show issues in the proofs of cZK and rZK of known protocols.

2.1 The Case of ΠMR [18]

Description of ΠMR. In [18], it is shown a 4-round rZK argument with sequential
soundness, ΠMR, in the BPK model. The identity of the verifier V is a public-
key pk for a semantically secure encryption scheme, and the secret key sk is the
corresponding private key. In the 1st round, V sends an encryption c under pk of
a random string σV . The prover P sends in the 2nd round a random string σP .
In the 3rd round V sends σV and the randomness used to compute c. Moreover
in these first 3 rounds, V proves to P knowledge of sk using Blum’s protocol
for Hamiltonicity [2]. In the 4th round P sends a non-interactive zero knowledge
(NIZK, for short) proof [12] on string σ = σV ⊕ σP proving that x ∈ L.

The Proof of rZK for ΠMR. The simulator S discussed in [18] (see also [24]) for
ΠMR goes as follows. It runs the extractor associated to the proof of knowledge,
therefore obtaining sk. Then, it can run in straight-line since the encryption c of
σV can be decrypted using sk, and thus S can choose σP so that the resulting σ
corresponds to the fake random string generated by the NIZK simulator. Then
S can complete the protocol running in the 4th round the NIZK simulator.

The above simulation produces a transcript that is distinguishable from the
one generated by an honest prover. Indeed, we can give two interpretations to
the above simulation and in both cases there exists a successful adversary.

Case 1. The first interpretation is to assume that the extraction of sk is per-
formed in a look-ahead thread that is played before the main thread (where the
simulator computes the actual messages to be given in output). In this case,
notice that the proof of knowledge of sk could be completed by V ∗ with some
probability p unknown to S (S is black-box, and there can be different adver-
sarial verifiers using different values for p, and some of them can be negligible).
Therefore, since the attempt of S to extract sk can not be (in order to have an
expected polynomial time simulation) unlimited in time, S must give up if af-
ter some polynomial effort sk has not been extracted. When such a look-ahead
thread is aborted, then S continues the main thread and it can happen with
non-negligible probability p (since S stopped after a polynomial number of at-
tempts) that V ∗ completes the proof of knowledge of sk. Since in this case S
has already played the second round σp, the outcome σ of the coin flipping does
not allow S to complete the protocol; if one gives in output such a failure, then
the transcript of the simulation would be easily distinguishable. S will therefore
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need to abort this main thread and start a new one, having now sk as input.
The problem in this case corresponds to Case 2 below.

Case 2. The second interpretation consists in assuming that once the verifier
completes the proof of knowledge, then S solves the identity by running the
extractor of the proof of knowledge, therefore obtaining the secret in time roughly
poly(n)/p, where p is the probability that V completes the proof of knowledge.
Once the secret key is obtained, S can rewind the verifier and start the proof
phase of the simulation from scratch, without changing the key generation phase.
S now using knowledge of the secret key can complete in straight-line all sessions
that correspond to that solved identity.

The above approach is often used in literature in the BPK model and consists
therefore in dividing the simulation in phases. Each time the current phase is not
completed in straight-line, an extraction is performed, one more identity is solved
and then a new phase is started. Since the number of identities is polynomial,
at some point there will be a phase that can be executed in straight-line by
the simulator. We show now that this approach is affected by a subtle problem.
Indeed the approach of S in this case follows the standard procedure of [14] for
the case of stand-alone zero knowledge. Here however, a concurrent malicious
verifier V ∗ can nest polynomially many other sessions each one corresponding
to a different identity, and each one using a different abort probability.

Consider the simple case of V ∗ that only runs two nested sessions, corre-
sponding to two different identities and such that in each session the 3rd round
is played with probability 1/2, adaptively to the transcript so far (i.e., this can
be easily done by assuming that the coins used for such a probability are taken
from the output of a PRF on input the transcript so far and a seed hardwired
in V ∗). The nesting is performed by including the whole execution of the 2nd
session in between the 2nd and 3rd round of the first session. The view of V ∗ in
the real game with probability 1/4 includes the two sessions both aborted.

Instead, the output of S will be computed as follows. First of all, it can
happen that the simulation is straight-line when V ∗ aborts in both sessions, and
this event happens with probability 1/4. Then, it can happen that the second
session is aborted (probability 1/2) and the first one is not aborted (probability
1/2). In this case S performs the extraction of the secret from the first session,
and once this is done, since it can not continue the previous execution (in the
previous execution σ has been already computed and does not allow S to finish
the protocol), it will have to start a new phase, this time having the secret key of
the first identity as input. However notice that in this new phase (that happens
with probability 1

4 ), it can happen that both executions abort since the messages
sent by S are different, and therefore the coins used by V ∗ to decide whether
to abort or not, will be computationally independent. Since when an execution
starts the case of getting two aborts happens with probability 1/4, and since this
new phase of S starts with probability 1/4, we have that this produces in the
output of S both sessions aborted with probability 1

16 = 1
4 · 1

4 . Therefore we have
that with probability at least 5

16 = 1
4 + 1

16 the simulator outputs a transcript
where both sessions are aborted. Given that in the real game this probability is
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only 1/4, we have that the output of the simulator is trivially distinguishable.
For simplicity in the above analysis we have ignored the fact that V ∗ uses a PRF
instead of independent coins.

Given the above explicit attack, one might wonder if the protocol is anyway
valid and a different simulator or a different interpretation of S can be used to
prove the same theorem. Indeed, the above attack is certainly addressable with a
slightly more sophisticated ad-hoc simulator. However other more sophisticated
attacks can easily hurt the new simulation strategy, as in a cat and mouse game
where given an adversary one can find a valid simulator for it; but given the
valid simulator for that adversary one can find another adversary that requires
another simulator. It is not clear at all whether one can finally design a simulator
that works against any adversary, as required by the definition of black-box zero
knowledge.

The above difficulties4 are not an issue when considering the simulators for
concurrent zero knowledge [25,23] that indeed use the following strategy: the
simulator starts a main thread that is updated with new messages exchanged
with V ∗; other threads are started only to allow the main thread to proceed suc-
cessfully, but no thread ever replaces the main thread. This is a well understood
strategy that we will also use in our constructions. It however will require a new
technique to design a protocol where new threads can help the execution of the
main thread (this is precisely the problem of some of previous constructions).
The strategy of [25] is actually based on starting look-ahead threads, and the
large round complexity tolerates failures of look-ahead threads.

The Same Attack Can Be Replicated to All Other Simulators. We have given
details to explain the problem with the simulation of ΠMR, and under minor
variations, all other results [18,32,7,9,27,31,6,29] suffer of similar problems. We
will now focus on protocols that however could have a different simulation.

2.2 Replacing Simulation in Phases by Threads

We now discuss 4 previous protocols that besides the issues in the proposed
simulation strategies discussed above, seem (in some cases with some fixes) still
to be able to admit a simulation strategy based on maintaining a main thread. We
stress that later we will show a new technique based on the use of temporary keys
along with permanent keys so that the simulator works in two modes that allow it
to stick with the main thread. Our technique was never used in previous papers.
Protocols below when using a different simulation strategy (in some cases, our
new simulation strategy) can potentially achieve some of the 4 results that we
will achieve in the next sections. We did not go through details of the proofs
of such (in some cases, fixed) 4 protocols. Summing up, we do not claim their
security and here we only explain how such protocols and their (distinguishable)
simulations in phases could potentially be adjusted in light of our results and
techniques.
4 We stress that such difficulties disappears if round optimality is not needed.
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The Case of ΠZ [32]. A 4-round conversation-based cZK argument enjoying
sequential soundness only is shown in [32]. While the security proof still relies
on the use of a simulator that works in phases, we notice that a different simulator
based on keeping a main thread could be used instead. The reason, is that the
secret information is needed by the simulator only in the 3rd round of π1 (see
our discussion in Section 1) and, since the achieved result is only sequentially
sound, there is no concurrent attack to soundness to take care of.

The Case of ΠY Z [31]. In [31], Yung and Zhao showed protocols ΠY Z and Π̄Y Z

that are respectively a 4-round concurrently sound rZK argument in the BPK
model under general complexity-theoretic assumptions and an efficient 5-round
concurrently sound rZK argument under number theoretic assumptions. Both
protocols use complexity leveraging and we will now concentrate on ΠY Z since
the analysis extends also to Π̄Y Z with one more round.

ΠY Z consists of 3 sub-protocols played in parallel. In the first three rounds the
verifier, using a special Σ-protocol Σfls, gives a proof of knowledge of its secret
key sk or of a solution of a puzzle. The puzzle was sent by the prover during the
second round, and Σfls is such that knowledge of the theorem (and therefore of
the witness) is not required in the first round. The prover gives a resettable WI
proof (i.e., the verifier commits to the challenge in the first round) in rounds 2, 3
and 4 where it proves that x ∈ L or it knows sk. Since black-box extraction of the
witness (necessary for the proof of concurrent soundness) is not allowed in the
resetting verifier setting, they enforce the extraction using complexity leveraging
as follows. The challenge is committed through a trapdoor commitment scheme
with a 2-round decommitment phase, where the trapdoor, that is needed only
in the opening, corresponds to the solution of the puzzle sent by the prover.
Therefore there exists a sub-exponential time extractor that can find the solution
of the puzzle, open the commitment in multiple ways and thus extract the actual
witness of the prover. This proof of concurrent soundness falls down when one
would like to use standard hardness assumptions only (e.g., to prove cZK under
standard assumptions). The technical difficulty of implementing efficiently Σfls

is solved by requiring the prover to send the puzzle in a first round, so that
an OR composition of Σ-protocols can be used, therefore obtaining a 5-round
protocol Π̄Y Z .

As discussed in [31] (see page 136), the simulator runs in different phases, try-
ing in each phase to complete the simulation, but in case it can not, it obtains
a new secret key and starts a new phase, with new randomness. This approach
as previously discussed makes the output of the simulator distinguishable when
playing with some specific adversarial concurrent verifiers. However, we notice
that in this case an alternative simulation strategy could be possible. Indeed,
when the simulator starts the main thread and gets stuck, it does not actually
need to abort it, but instead can start a new thread just to get the secret in-
formation to complete the main thread. The reason why this can be possible
here (in contrast to previous protocols), is that the simulator needs the secret of
the verifier only when it plays the last message of the protocol, therefore it can
always perform the extraction (in a new thread) before being stuck. However, as
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discussed in the introduction, playing the extracted secret only in the last round
exposes the protocol to concurrent soundness attacks. In the very specific case
of rZK, since soundness is proved through complexity leveraging, the proof of
soundness could go through.

The Case of ΠY Y Z [29,28]. In the concurrently sound cZK protocol presented
in [29,28], the simulator is required to commit in the second round to one of the
two secret keys of the verifier. This must be done before the verifier completes
its proof of knowledge of one of her secret keys. It is immediate to see that
precisely as we discussed above, this requires the simulator to try to complete
the simulation using new phases (see page 24 of [28]). Therefore the same attacks
showed before can be mounted against this simulator too.

In Section 6.2 of [28] an update of the protocol yielding round optimality is
suggested. The update consists in replacing a strong WI proof with a 4-round
zero-knowledge AoK due to Feige and Shamir [13] (FSZK, for short) such that
this protocol can share the statistical WI proof of knowledge given by the verifier.
However, in the same section it is then observed that such update hurts the
concurrent soundness of their scheme.

Here we observe that since their first subprotocol is a statistical WI argu-
ment of knowledge given by the verifier, it can be instantiated under general
complexity-theoretic assumptions only requiring a first round from prover to
verifier. Indeed this message is needed to establish the parameters for a statis-
tically hiding commitment scheme to be used in the statistical WI argument.
Therefore, the resulting construction can be round optimal only when using
number-theoretic assumptions, that can be used to implement the statistical WI
proof in 3 rounds [26,5].

Our technique based on temporary keys and simulation in two modes can
potentially be applied when using FSZK differently, so that concurrent soundness
could be preserved. This could be possible when FSZK is played independently
of the public keys of the verifier, therefore including some session keys (which
would have a role similar to the temporary keys of our technique). Then our
new simulation technique could be used to maintain a main thread working in
two modes (in one mode using the extracted permanent keys, in the other mode
using the simulator of FSZK that use the extracted session keys).

The Case of ΠD [6]. A 4-round concurrently sound cZK argument ΠD in the
BPK model under the existence of one-way functions only is showed in [6]. In the
first round, the verifier sends a message mv. Then in the second round the prover
sends a statistically binding commitments of potential signatures of messages
(under the public-key of the verifier) and a message mp. In the third round the
verifier sends a signature of (mv|mp) (instead of the usual proof of knowledge
of a secret). In the last 3 rounds P proves that x ∈ L or the commitment sent
in the second round corresponds to messages (m′|m′

0) and (m′|m′
1) and their

signatures, where m′
0 �= m′

1.
Of course since the concurrent adversarial prover can not rewind the ver-

ifier, the above argument is sufficient to prove concurrent soundness. Indeed,



On Round-Optimal Zero Knowledge in the Bare Public-Key Model 163

signatures received in concurrent proofs always correspond to messages with a
different prefix selected by the verifier. The cZK property of the protocol how-
ever is problematic again for the very same reasons discussed above. Indeed, the
simulator does not have any signature at all when it plays the second round, and
thus later on, in order to be able to complete proofs it will have to start new
phases where knowledge of the signatures accumulated during previous execu-
tions is sufficient to run in straight-line. Indeed, the simulator presented in [6]
rewinds the verifier when it is stuck, and produces a new transcript committing
to the extracted signatures. As already explained, this makes distinguishable its
output w.r.t. real executions.

We finally argue that the protocol could be adjusted to then admit a simulator
that keeps a main thread. In contrast to previously discussed protocols, the main
advantage of ΠD is that the verifier uses his secret keys to generate signatures of
messages with different formats in different sessions. This makes problematic the
attack of concurrent soundness, since the execution of concurrent sessions does
not provide useful messages to cheat in a specific session. Therefore one could
tweak the protocol so that the simulator needs to use the obtained signatures
only at the last round. In this way, the simulator could obtain through rewinds
two signatures for messages with the same structure, and could use them in the
main thread and in all future sessions that correspond to that verifier.

3 Round-Optimal cZK and rZK in the BPK Model

We show under standard complexity-theoretic assumptions round-optimal con-
currently sound cZKAoK and a rZK argument with complexity leveraging.

3.1 Concurrent Zero Knowledge in the BPK Model

Overview, Techniques and Proof Intuition. In light of the attacks shown in the
previous section, we construct a protocol that allows a simulation strategy in
which the transcript generated in main thread is kept unchanged. In the following
we describe the protocol incrementally.

The public identity of the verifier V corresponds to a pair of public keys pk0 =
f(sk0), pk1 = f(sk1), where f is a one-way function, for which V knows one of
the pre-images skb, that we call the secret key. Following the usual paradigm
used in the BPK model, we require that V provides a proof of knowledge, using
a Σ-protocol, that we denote by Σpkj , of the secret key associated to the public
identity pkj = (pk0, pk1). In the second round, the prover P first commits to
a bit (representing the selection of one of V ’s public keys), then it provides a
proof that either x ∈ L or it knows the secret corresponding to the public key
selected in the commitment, using a Σ-protocol as well, which we denote by ΣLj .
Requiring that P selects the key already in the first message allows to use the
witness-indistinguishability property of Σ-protocols and the binding property of
the commitment scheme to prove the concurrent-soundness property.
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A simulator for this protocol would extract the secret (by exploiting the proof
of knowledge property of Σpkj ) and would complete the protocol ΣLj using the
extracted secret key as witness. However, this step is done without changing
the commitment sent in the first message only if S has committed to the bit
corresponding to the extracted secret key. Instead, if this is not the case, S
has to rewind the verifier and change the commitment, therefore changing the
transcript of the main thread, that is precisely the problem of previous works.

We overcome this problem by tweaking the protocol in two ways. First, we
require that upon each new execution, V freshly generates a pair of public pa-
rameters and the respective trapdoors for a two-round trapdoor commitment
scheme. Such parameters can be seen as temporary keys. V then sends the pub-
lic parameters to P and proves knowledge of one of the trapdoors running an
additional Σ-protocol that we denote by Σtrap. This will allow the simulator
to extract the trapdoor. Second, we require that P , instead of sending the first
message of ΣLj in clear, it sends a trapdoor commitment of it, using both public
parameters received from V , i.e., P computes two commitments, each one with
a distinct parameter, of two shares of the first message. The shares are revealed
only in the third round of ΣLj , precisely only after P has seen the challenge
for ΣLj sent by V . Intuitively, due to the binding of the commitment scheme P
is not able to take advantage of the knowledge of the challenge. Furthermore,
since the parameters of the trapdoor commitment are freshly generated by V
upon each execution, due to the witness indistinguishability property of Σtrap,
P cannot take advantage of concurrent executions with many verifiers, thus con-
current soundness still holds5. Indeed, we are able to prove concurrent soundness
by showing a concurrent extractor, that extracts the witness from any accept-
ing transcript obtained by any malicious prover. The guarantee of the witness
extraction is necessary for the proof of soundness to go through.

Instead the simulator can use its rewinding capabilities to extract the trap-
door by exploiting the proof of knowledge property Σtrap, so that in the main
thread it can open the commitments of the first round of ΣLj , according to the
challenge received from V . Here, the simulator uses the HVZK property of ΣLj .
We stress that the simulator does not change messages previously played in the
main thread, i.e., the commitments of the first round of ΣLj , but it cheats only
in the third round by equivocating one of the commitments by using the trap-
door extracted in the rewinding thread. Since commitments computed by the
prover are perfectly hiding and ΣLj is a perfect Σ-protocol, the simulation will
be perfectly indistinguishable from a real execution.

Note that, in order to prevent the blow-up of the running time, it is crucial
that the simulator extracts the trapdoor only for sessions for which it has not
extracted the secret key yet. Once a secret corresponding to an identity has
been extracted, all sessions played by the malicious verifier with such identity
are simulated in straight-line.

5 If instead parameters of the trapdoor commitments were fixed for all executions, then
in the proof of soundness one can not derive a contradiction in case P equivocates
the commitment associated to the same trapdoor used as witness in Σtrap.
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Formal construction. In the following we provide the formal specification of
the cZKAoK protocol that we denote by ΠcZK.

The Public File. Let f be a given one-way function f : {0, 1}poly(n) → {0, 1}∗.
The jth identity of the public file F is pkj := (pk0

j = f(sk0
j ), pk

1
j = f(sk1

j )) for
some values sk0

j , sk
1
j ∈ {0, 1}n.

Sub-Protocols. Let TCom = (TSen, TRec, TDec) be a two-round perfectly-hiding
trapdoor commitment scheme and PHCom = (PHSen, PHRec) a two-roundperfectly-
hiding commitment scheme. For simplicity we assume that the public parameter pk
for the scheme PHCom is included in the identity of V . The parameters’ generation
procedure is denoted by pk ← PHRec(1n, r) (resp. (pk, trap) ← TRec(1n, r)) where
r is a random string and n is the security parameter. The commitment procedure
(C, D) ← PHSen(pk, m) (resp. TSen) takes as input the public parameter pk and a
message m and outputs the commitment C and the decommitment D. The verifica-
tion procedure PHRec(pk, C, D, m) (resp. TRec) outputs 1 if D is a valid decommit-
ment of C for the message m, under pk. Finally, (m′, D) ← TDec(trap, C, m′, z) is
the procedure that allows to open C as any message using the trapdoor trap and
some auxiliary information z inherited from the commitment phase.

Auxiliary Languages. We use the following NP relations and in turn the respec-
tive NP-languages Lpkj

, Ltrap, Lskj , Lj :

– Rpkj
= {(pk0

j , pk
1
j), sk) s.t. pk0

j = f(sk) OR pk1
j = f(sk)};

– Rtrap = {((k0, k1), (t, r)) s.t. (k0, t) ← TRec(1n, r) OR (k1, t) ← TRec(1n, r)};
– Rskj

= {((C, pk0
j , pk

1
j), (d, D, sk)) s.t. PHRec(pk, C, D, d) = 1 ∧ pkj

d = f(sk)};
– RLj := RL ∨ Rskj

= {(x, C, pk0
j , pk1

j), (w, d, D, sk)) s.t. (x, w) ∈ RL ∨
((C, pk0

j , pk
1
j), (d, D, sk)) ∈ Rskj

}.

Σ-Protocols. The languages showed above are proved by means of Σ-protocols.
We denote by Σpkj = (pok

pkj

1 ,pok
pkj

2 ,pok
pkj

3 ), Σtrap = (poktrap1 ,poktrap2 ,poktrap3 )
the Σ-protocols run by V with identity pkj = (pk0

j , pk
1
j) to prove instances of

relations Rpkj
and Rtrap respectively. We denote by ΣLj = (pokLj1 , pok

Lj
2 , pok

Lj
3 )

the perfect Σ-protocol run by P for instances of RLj when interacting with the
verifier with identity pkj .

The Protocol. The protocol is depicted in Fig. 1. By noticing that Blum’s proto-
col [2] is a perfect HVZK Σ-protocol (when the first message is computed with
a perfectly-hiding commitment scheme) for NP languages, we conclude that
Protocol ΠcZK is a black-box perfect cZKAoK for all NP.

Theorem 1. If Σpkj , Σtrap are Σ-protocols, ΣLj is a perfect Σ-protocol, PHCom
is a two-round perfectly-hiding commitment scheme and TCom is a two-round
perfectly-hiding trapdoor commitment scheme then ΠcZK is a 4-round concur-
rently sound black-box perfect cZKAoK in the BPK model for all NP.
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Common input: the public file F , n-bit string x ∈ L and index j specifying the
jth entry of F , i.e. (pk0

j = f(sk0
j), pk

1
j = f(sk1

j)). P’s private input: a witness w

for x ∈ L. V’s private input: a randomly chosen secret skb
j between sk0

j and sk1
j .

V-round-1:

– r0, r1
$← {0, 1}n, (k0, t0)← TRec(1n, r0); (k1, t1)← TRec(1n, r1);

– compute pok
pkj

1 and pok
trap
1 ;

– send k0, k1, pok
pkj

1 , poktrap1 to P .

P-round-2:

– (C, D)← PHSen(pk, d) for a randomly chosen bit d; compute pok
pkj

2 , poktrap2 ;
– compute pok

Lj
1 and compute shares s0, s1 s.t. s0 ⊕ s1 = pok

Lj
1 ;

– (tcom0, tdec0) ← TSen(k0, s0), (tcom1, tdec1)← TSen(k1, s1);
– send pok

pkj

2 , poktrap2 , C, tcom0, tcom1 to V.

V-round-3:

– compute pok
pkj

3 using as witness skb
j ;

– compute pok
trap
3 using as witness te, re for a randomly selected bit e;

– compute pok
Lj
2 ;

– send pok
pkj

3 , poktrap3 , pok
Lj
2 to P .

P-round-4:

– verify that (pok
pkj

1 , pok
pkj

2 , pok
pkj

3 ) is an accepting transcript of Σpkj for the
statement (pk0

j , pk
1
j ) ∈ Lpkj

, if not abort;
– verify that (poktrap1 , poktrap2 , poktrap3 ) is an accepting transcript of Σtrap for the

statement (k0, k1) ∈ Ltrap , if not abort;
– compute pok

Lj
3 using the witness w;

– send pok
Lj
3 , tdec0, tdec1, s0, s1 to V.

V-decision: if TRec(k0, tcom0, tdec0, s0) = 1 AND TRec(k1, tcom1, tdec1, s1) = 1

then pok
Lj
1 ← s0 ⊕ s1 and accept iff (pok

Lj
1 , pok

Lj
2 , pok

Lj
3 ) is an accepting transcript

of ΣLj for the statement (x, C, pk0
j , pk

1
j) ∈ L′

j ; else, abort.

Fig. 1. ΠcZK: 4–round concurrently-sound cZKAoK in the BPK model for all NP

3.2 Resettable Zero Knowledge in the BPK Model

In this section we discuss the updates to (a simpler version of) ΠcZK to deal
with the resetting power of the adversarial verifier V ∗.

To suppress the resetting power of V ∗ we add the commitment of the challenge
pok

Lj
2 in the first round, and we require that the randomness of P is computed

by applying a PRF on the transcript obtained so far. This ensures that on the
same prefix of interaction the verifier will always get the same response from the
prover. V will then provide the opening of the commitment in the third round.
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Unfortunately, this approach prevents the (black-box) extraction of the witness
that we need to prove concurrent soundness.

Thus, to allow extraction we need to resort to complexity leveraging argu-
ments. As mentioned in Section 1.1, the use of such techniques allows one to
design round-optimal protocols in which the use of the secret extracted from the
malicious verifier can be postponed to the last round, ruling out the issues about
the indistinguishability of the transcript pointed out in this work (of course only
if the simulation strategy does not work in phases).

Therefore, designing a rZK protocol using complexity leveraging is a much
simpler task that does not require the two-mode simulation that we used for
ΠcZK. Thus, in ΠrZK we do not need the use of temporary keys along with
protocol Σtrap, and the prover sends the first round of ΣLj in clear (we assume
that the witness is used only in the third round of ΣLj), instead of sending a
trapdoor commitment of it. Moreover in ΠrZK, we do not need that P commits
to one secret already in the second round, and thus the theorem proved with
ΣLj is that either P knows the witness for x ∈ L or it knows one of the secret
keys (instead of proving that the opening of the commitment points to one of
the secrets keys). Instead we need that P , in the second round, computes and
sends a puzzle that is solvable in sub-exponential time. Then, we require that
instead of the opening of the commitment, in the third round V sends only the
message pokLj2 and it proves, using again a Σ-protocol that we denote by FLScom,
that either message pok

Lj
2 is the valid opening or it knows the solution of the

puzzle. Moreover, while Σtrap disappear, in Σpkj the verifier proves knowledge
of one of the secret keys or of the solution of the puzzle (this update is necessary
for the proof of concurrent soundness giving that the prover does not commit
in the second round). Note that to preserve round-optimality, FLScom and Σpkj

must be special Σ-protocols [16] since the puzzle, that is part of the theorem, is
sent by P only in the second round.

Obviously any malicious verifier, running in polynomial time is not able to
solve the puzzle, and is bound on the challenge committed in the first round (thus
the zero-knowledge property is preserved). Instead, the extraction of the witness
is possible by running in sub-exponential time and solving the puzzle. When
the theorem proved is instead false, the extraction will produce a contradiction,
breaking the WI of FLScom or Σpkj , or inverting the one-way function used to
produce the public keys. All these primitives are setup with ad-hoc security
parameters so that they are secure against adversaries that by exhaustive search
can solve the puzzle and check membership of the common instances (i.e., the
size of such instances must be known before the experiment starts) of the rZK
protocol in the language. The final protocol is a variation of the one proposed
in [31].

Theorem 2. If 2-round perfectly hiding commitments and OWPs secure against
sub-exponential time adversaries exist then protocol ΠrZK is a 4-round rZK ar-
gument in the BPK model with concurrent soundness for all NP.
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4 Efficient Instantiations

Here we show efficient transformations that starting from any language L admit-
ting a perfect Σ-protocol, and adding a constant number of modular exponen-
tiations, produce: 1) a 4-round concurrently sound cZKAoK in the BPK model
Π̄cZK based on the Discrete Logarithm (DL) assumption; 2) a 5-round concur-
rently sound rZK argument in the BPK model Π̄rZK based on the hardness of
the DDH assumption w.r.t. sub-exponential time adversaries.

Interestingly, both protocols are obtained essentially for free, by properly in-
stantiating the sub-protocols in the constructions of ΠcZK and ΠrZK. All Σ-
protocols used in the following transformations are perfect.

Π̄cZK. Let (G, p, q, g) such that p, q are primes, p = 2q+1 and g is a generator of
the only subgroup G of order q of Z�

p. The one-way function f used to compute
the identities of the public file is instantiated with the DL function. Therefore,
pk0 = gsk0 (mod p) and pk1 = gsk1 (mod p), where sk0, sk1

$← Zq. An identity
also contains a pairs (g, h) of generators of G as parameters for a perfectly-hiding
commitment scheme. To prove knowledge of one of the secret keys associated to
identity pkj = (pk0, pk1) is sufficient to prove the knowledge of the DL of either
pk0 or pk1, that can be instantiated with Schnorr’s [26] Σ-protocol under OR
composition, as discussed in [5]. This is the efficient implementation of Σpkj .

The trapdoor commitment scheme is instantiated with the scheme proposed
by Pedersen [22]. Thus, temporary keys consist of the parameters for Pedersen
commitment, i.e., kb = (gb, hb), where hb = gtb

b (mod p), and gb is a generator
of G, for b = 0, 1 and the corresponding trapdoors are t0, t1. We stress that t0, t1
are generated on the fly and are not contained in the public file. Thus, Σtrap is
instantiated again with Schnorr’s protocol under OR composition.

The most interesting part consists in the implementation of protocol ΣLj ,
more specifically the implementation of the Σ-protocol for the relation Rskj

.
The perfectly-hiding commitment of a bit b (i.e., the commitment C of Fig. 1) is
replaced by the Pedersen commitment of skb computed as C = hrpkb for some
random string r and bit b. Then, to prove that C corresponds to a commitment
of sk0 or sk1, P is required to prove the AND of the following statements: 1)
knowledge of the DL of (C/pkb), for some bit b, 2) knowledge of the decommit-
ment of C. Both statements can be proved by efficient Σ-protocols based on DL
assumption. Since we have a Σ-protocol for L too, putting everything together,
ΣL′

j is obtained as the composition of these Σ-protocols by means of AND and
OR logic operators. All the above computations require a constant number of
modular exponentiations. Π̄cZK is secure under the DL assumption.

Π̄rZK. The PRF is implemented by the efficient Naor-Reingold PRF [19] based
on DDH assumption. The commitment pokLj2 is implemented with the El Gamal
encryption scheme (based on the DDH assumption), i.e., the commitment of a
string m corresponds to the pair com = (u = gr

c (mod p), v = hr
cm (mod p),

for a randomly chosen r, where gc is a generator of G and hc = gβ
c (mod p)
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for some β ← Zq. Proving knowledge of the decommitment of com corresponds
to prove that (G, g, h,u,v/m) is a DDH tuple. The puzzle can be implemented
by using again the DL assumption (obviously the use of complexity leveraging
requires to work with groups of appropriate size). Having a Σ-protocol (i.e.,
Schnorr’s protocol) to prove knowledge of a solution for the puzzle, and having a
Σ-protocol for DDH problem [15], Σfls is implemented as the OR composition
of these two Σ-protocols. In Π̄rZK the protocol Σpkj is used for an augmented
theorem in which V proves also knowledge of the solution of the puzzle. Thus
in Π̄rZK, the protocol Σpkj implemented above is used in OR composition with
Schnorr’s protocol for DL. However, there is a technicality here. When instanti-
ating Σfls, Σpkj with the OR composition protocol as shown in [5], we have that
V needs to know the theorem already when computing the first round. There-
fore, as already discussed in Section 2 for the case of Π̄Y Z the puzzle must be
sent in the first round and thus Π̄rZK is a 5 round protocol. All the above com-
putations require a constant number of modular exponentiations. The resulting
protocol is secure under the DDH assumption w.r.t. sub-exponential time ad-
versaries. The perfect Σ-protocol has to require the use of the witness in the last
round only.
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Robust Coin Flipping

Gene S. Kopp and John D. Wiltshire-Gordon�

University of Michigan

Abstract. Alice seeks an information-theoretically secure source of pri-
vate random data. Unfortunately, she lacks a personal source and must
use remote sources controlled by other parties. Alice wants to simulate
a coin flip of specified bias α, as a function of data she receives from p
sources; she seeks privacy from any coalition of r of them. We show: If
p/2 ≤ r < p, the bias can be any rational number and nothing else; if
0 < r < p/2, the bias can be any algebraic number and nothing else.
The proof uses projective varieties, convex geometry, and the probabilis-
tic method. Our results improve on those laid out by Yao, who asserts
one direction of the r = 1 case in his seminal paper [Yao82]. We also
provide an application to secure multiparty computation.

Keywords: multiparty computation, outsourcing randomness, biased
coin flip, algebraic number, projective duality, hyperdeterminant.

1 Introduction

Alice has a perfectly fair penny—one that lands heads exactly 50% of the time.
Unfortunately, the penny is mixed in with a jar of ordinary, imperfect pennies.
The truly fair penny can never be distinguished from the other pennies, since
no amount of experimentation can identify it with certainty. Still, Alice has
discovered a workable solution. Whenever she needs a fair coin flip, she flips all
the pennies and counts the Lincolns; an even number means heads, and an odd
number means tails.

Alice’s technique is an example of “robust coin flipping.” She samples many
random sources, some specified number of which are unreliable, and still man-
ages to simulate a desired coin flip. Indeed, Alice’s technique works even if the
unreliable coin flips somehow fail to be independent.

Bob faces a sort of converse problem. He’s marooned on an island, and the
nearest coin is over three hundred miles away. Whenever he needs a fair coin flip,
he calls up two trustworthy friends who don’t know each other, asking for ran-
dom equivalence classes modulo two. Since the sum of the classes is completely
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for pointing us to Lind’s article [Lin84]; and Matthew Woolf, Nic Ford, Vipul Naik,
and Steven J. Miller for reading drafts and providing helpful comments. We are also
grateful to several anonymous referees for their suggestions.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 172–194, 2012.
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mysterious to either of the friends, Bob may safely use the sum to make private
decisions.

Bob’s technique seems similar to Alice’s, and indeed we shall see that the two
predicaments are essentially the same. We shall also see that the story for biased
coin flips is much more complex.

1.1 Preliminaries and Definitions

Informally, we think of a random source as a (possibly remote) machine capable
of sampling from certain probability spaces. Formally, a random source is a
collection C of probability spaces that is closed under quotients. That is, if X ∈ C
and there is a measure-preserving map1 X → Y , then Y ∈ C. Random sources
are partially ordered by inclusion: We say that C is stronger than D iff C ⊃ D.

The quotients of a probability space X are precisely the spaces a person can
model with X . For example, one can model a fair coin with a fair die: Label three
of the die’s faces “heads” and the other three “tails.” Similarly, one can model
the uniform rectangle [0, 1]2 with the uniform interval [0, 1]: Take a decimal
expansion of each point in [0, 1], and build two new decimals, one from the odd-
numbered digits and one from the even-numbered digits.2 Thus, forcing C to be
closed under quotients is not a real restriction; it allows us to capture the notion
that “a fair die is more powerful that a fair coin.”3

We define an infinite random source to be one that contains an infinite
space.4 A finite random source, on the other hand, contains only finite proba-
bility spaces. Further, for any set of numbers S, we define an S-random source
to be one which is forced to take probabilities in S. That is, all the measurable
sets in its probability spaces have measures in S.

Sometimes we will find it useful to talk about the strongest random source in
some collection of sources. We call such a random source full-strength for that
collection. For instance, a full-strength finite random source can model any finite
probability space, and a full-strength S-random source can model any S-random
source.

In practice, when p people simulate a private random source for someone else,
they may want to make sure that privacy is preserved even if a few people blab
about the data from their random sources or try to game the system. Define an r-
robust function of p independent random variables to be one whose distribution

1 A measure-preserving map (morphism in the category of probability spaces) is a
function for which the inverse image of every measurable set is measurable and has
the same measure. Any measure-preserving map may be thought of as a quotient
“up to measure zero.”

2 In fact, this defines an isomorphism of probability spaces between the rectangle and
the interval.

3 It would also be natural (albeit unnecessary) to require that C is closed under finite
products.

4 An infinite space is one that is not isomorphic to any finite space. A space with
exactly 2012 measurable sets will always be isomorphic to a finite space, no matter
how large it is as a set.
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does not change when the joint distribution of any r of the random variables is
altered. Saying that p people simulate a random source r-robustly is equivalent
to asserting that the privacy of that source is preserved unless someone learns the
data of more than r participants. Similarly, to simulate a random source using p
sources, at least q of which are working properly, Alice must run a (p−q)-robust
simulation.

By a robust function or simulation, we mean a 1-robust one.
We use J to denote the all-ones tensor of appropriate dimensions. When we

apply J to a vector or hypermatrix, we always mean “add up the entries.”

1.2 Results

This paper answers the question “When can a function sampling from p indepen-
dent random sources be protected against miscalibration or dependency among
p− q of them?” (Alice’s predicament), or equivalently, “When can p people with
random sources simulate a private random source for someone else5 in a way
that protects against gossip among any p− q of them?” (Bob’s predicament). In
the first question, we assume that at least q of the sources are still functioning
correctly, but we don’t know which. In the second question, we assume that at
least q of the people keep their mouths shut, but we don’t know who. In the
terminology just introduced, we seek a (p− q)-robust simulation.

Consider the case of p full-strength finite random sources. We prove: If
1 ≤ q ≤ p/2, the people may simulate any finite Q-random source and nothing
better; if p/2 < q < p, they may simulate any finite Q-random source and nothing
better. The proof uses projective varieties, convex geometry, and the probabilis-
tic method. We also deal briefly with the case of infinite random sources, in
which full-strength simulation is possible, indeed easy (see Appendix C).

1.3 Yao’s Robust Coin Flipping

Our work fits in the context of secure multiparty computation, a field with roots
in A. C. Yao’s influential paper [Yao82]. In the last section of his paper, entitled
“What cannot be done?”, Yao presents (a claim equivalent to) the following
theorem:

Theorem 1 (A. C. Yao). Alice has several finite random sources, and she
wants to generate a random bit with bias α. Unfortunately, she knows that one
of them may be miscalibrated, and she doesn’t know which one. This annoyance
actually makes her task impossible if α is a transcendental number.

It does not not suffice for Alice to just program the distribution (α 1− α) into
one of the random sources and record the result; this fails because she might
use the miscalibrated one! We require—as in our jar of pennies example—that

5 Later, we give an application to secure multiparty computation in which the output
of the simulated random source has no single recipient, but is utilized by the group
without any individual gaining access; see Section 3.
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Alice’s algorithm be robust enough to handle unpredictable results from any
single source.

Unfortunately, Yao provides no proof of the theorem, and we are not aware of
any in the literature. Yao’s theorem is a special case of the results we described
in the previous section.

2 Simulating Finite Random Sources

The following result is classical.

Proposition 2. If p players are equipped with private d-sided dice, they may
(p− 1)-robustly simulate a d-sided die.

Proof. We provide a direct construction. Fix a group G of order d (such as the
cyclic group Z/dZ). The ith player uses the uniform measure to pick gi ∈ G at
random. The roll of the simulated die will be the product g1g2 · · · gp.

It follows from the G-invariance of the uniform measure that any p-subset of

{g1, g2, . . . , gp, g1g2 · · · gp} (1)

is independent! Thus, this is a (p− 1)-robust simulation.

For an example of this construction, consider how Alice and Bob may robustly
flip a coin with bias 2/5. Alice picks an element a ∈ Z/5Z, and Bob picks an
element b ∈ Z/5Z; both do so using the uniform distribution. Then, a, b, and a+b
are pairwise independent! We say that the coin came up heads if a+ b ∈ {0, 1}
and tails if a+ b ∈ {2, 3, 4}.

This construction exploits the fact that several random variables may be pair-
wise (or (p− 1)-setwise) independent but still dependent overall. In cryptology,
this approach goes back to the one-time pad. Shamir [Sha79] uses it to develop
secret-sharing protocols, and these are exploited in multiparty computation to
such ends as playing poker without cards [GM82,GMW87].

Corollary 3. If p players are equipped with private, full-strength finiteQ-random
sources, they may (p−1)-robustly simulate a private, full-strength finiteQ-random
source for some other player.

Proof. Follows from Proposition 2 because any finite rational probability space
is a quotient of some finite uniform distribution.

2.1 Cooperative Numbers

We define a useful class of numbers.

Definition 4. If p people with private full-strength finite random sources can
robustly simulate a coin flip with bias α, we say α is p-cooperative. We denote
the set of p-cooperative numbers by C(p).
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The ability to robustly simulate coin flips of certain bias is enough to robustly
simulate any finite spaces with points having those biases, assuming some hy-
potheses about C(p) which we will later see to be true.

Lemma 5. Suppose that, if α, α′ ∈ C(p) and α < α′, then α/α′ ∈ C(p). If p peo-
ple have full-strength finite random sources, they can robustly simulate precisely
finite C(p)-random sources.

Proof. Clearly, any random source they simulate must take p-cooperative prob-
abilities, because any space with a subset of mass α has the space (α 1−α) as
a quotient.

In the other direction, consider a finite probability space with point masses

(α1 α2 · · · αn ) (2)

in C(p). Robustly flip a coin of bias α1. In the heads case, we pick the first point.
In the tails case, we apply induction to robustly simulate

(α2/(1 − α1) · · · αn/(1 − α1) ). (3)

This is possible because 1 − α1 ∈ C(p) by symmetry, and so the ratios
αi/(1− α1) ∈ C(p) by assumption.

2.2 Restatement Using Multilinear Algebra

Consider a {heads, tails}-valued function of several independent finite proba-
bility spaces that produces an α-biased coin flip when random sources sample
the spaces. If we model each probability space as a stochastic vector—that is,
a nonnegative vector whose coordinates sum to one—we may view the product
probability space as the Kronecker product of these vectors. Each entry in the
resulting tensor represents the probability of a certain combination of outputs
from the random sources. Since the sources together determine the flip, some of
these entries should be marked “heads,” and the rest “tails.”

For instance, if we have a fair die and a fair coin at our disposal, we may cook
up some rule to assign “heads” or “tails” to each combination of results:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6
1
6
1
6
1
6
1
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1
6
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1
2

)
=
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1
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1
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1
12

1
12

1
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1
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1
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1
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1
12

1
12

1
12
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H T

H T

T H

H T

T H

T H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

If we want to calculate the probability of heads, we can substitute 1 for H and
0 for T in the last matrix and evaluate
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(
1
6

1
6

1
6

1
6

1
6

1
6

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
1 0
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎠
(

1
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2

)
=

1

2
. (5)

This framework gives an easy way to check if the algorithm is robust in the sense
of Yao. If one of the random sources is miscalibrated (maybe the die is a little
uneven), we may see what happens to the probability of heads:

(
1
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1
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1
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1
4

1
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1
3

)
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1 0
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It’s unaffected! In fact, defining

A
(
x(1), x(2)

)
= x(1)

⎛⎜⎜⎜⎜⎜⎜⎝
1 0
1 0
0 1
1 0
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎠ x(2)
�
, (7)

we see that letting β(1) =
(

1
6
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6
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6

1
6

1
6
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6

)
and β(2) =

(
1
2

1
2

)
gives us

A
(
x(1), β(2)

)
=

1

2

A
(
β(1), x(2)

)
=

1

2
(8)

for all x(1) and x(2) of mass one. These relations express Yao’s notion of robust-
ness; indeed, changing at most one of the distributions to some other distribution
leaves the result unaltered. As long as no two of the sources are miscalibrated,
the bit is generated with probability 1/2.

If α denotes the bias of the bit, we may write the robustness condition as

A
(
x(1), β(2)

)
= αJ

(
x(1), β(2)

)
A
(
β(1), x(2)

)
= αJ

(
β(1), x(2)

)
(9)

since the β(i) both have mass one. (Here as always, J stands for the all-ones
tensor of appropriate dimensions.) These new equations hold for all x(i), by
linearity. Subtracting, we obtain
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0 = (αJ −A)
(
x(1), β(2)

)
0 = (αJ −A)

(
β(1), x(2)

)
(10)

which says exactly that the bilinear form (αJ −A) is degenerate, i.e., that

Det(αJ −A) = 0.6 (11)

These conditions seem familiar: Changing the all-ones matrix J to the identity
matrix I would make α an eigenvalue for the left and right eigenvectors β(i).
By analogy, we call α a mystery-value of the matrix A and the vectors β(i)

mystery-vectors. Here’s the full definition:

Definition 6. A p-linear form A is said to have mystery-value α and corre-
sponding mystery-vectors β(i) when, for any 1 ≤ j ≤ p,

0 = (αJ −A)
(
β(1), . . . , β(j−1), x(j), β(j+1), . . . , β(p)

)
for all vectors x(j). (12)

We further require that J(β(i)) �= 0.

We will see later that these conditions on (αJ −A) extend the notion of degen-
eracy to multilinear forms in general. This extension is captured by a generaliza-
tion of the determinant—the hyperdeterminant.7 Hyperdeterminants will give
meaning to the statement Det(αJ −A) = 0, even when A is not bilinear.

This organizational theorem summarizes our efforts to restate the problem
using multilinear algebra.

Theorem 7. A function from the product of several finite probability spaces to
the set {H,T } generates an α-biased bit robustly iff the corresponding multilin-
ear form has mystery-value α with the probability spaces as the accompanying
mystery-vectors.

We may now show the equivalence of robustness and privacy more formally. Pri-
vacy requires that (αJ−A)

(
⊗β(i)

)
remains zero, even if one of the distributions

in the tensor product collapses to some point mass, that is, to some basis vec-
tor.8 This condition must hold for all basis vectors, so it extends by linearity to
Yao’s robustness.

6 If the matrix (αJ−A) is not square, this equality should assert that all determinants
of maximal square submatrices vanish.

7 Hyperdeterminants were first introduced in the 2×2×2 case by Cayley [Cay45], and
were defined in full generality and studied by Gelfand, Kapranov, and Zelevinsky
[GKZ94, Chapter 14].

8 That is, the simulated bit remains a “mystery” to each player, even though she can
see the output of her own random source.
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2.3 Two Players

The case p = 2 leaves us in the familiar setting of bilinear forms.

Proposition 8 (Uniqueness). Every bilinear form has at most one mystery-
value.

Proof. Suppose α and α′ are both mystery-values for the matrix A with mystery-

vectors β(i) and β(i)′, respectively. We have four equations at our disposal, but
we will only use two:

A
(
x(1) , β(2)

)
= α

A
(
β(1)′, x(2)

)
= α′ (13)

We observe that a compromise simplifies both ways:

α = A
(
β(1)′, β(2)

)
= α′, (14)

so any two mystery-values are equal.

Corollary 9. Two players may not simulate an irrationally-biased coin.

Proof. Say the {0, 1}-matrix A has mystery-value α. Any field automorphism
σ ∈ Gal(C/Q) respects all operations of linear algebra, so σ(α) is a mystery-value
of the matrix σ(A). But the entries of A are all rational, so σ(A) = A. Indeed,
σ(α) must also be a mystery-value of A itself. By the uniqueness proposition,
σ(α) = α. Thus, α is in the fixed field of every automorphism over Q and cannot
be irrational.

Theorem 10. C(2) = Q ∩ [0, 1]. Two people with finite random sources can
robustly simulate only Q-random sources; indeed, they can already simulate a
full-strength finite Q-random source if they have full-strength finite Q-random
sources.

Proof. The previous corollary shows that no probability generated by the source
can be irrational, since it could be used to simulate an irrationally-biased coin.
The other direction has already been shown in Corollary 3.

Proposition 11. If p people have full-strength finite Q-random sources, they
may (p− 1)-robustly simulate any finite Q-random source.

Proof. Follows from Proposition 2 just as the constructive direction of Theorem
10 does.
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2.4 Three or More Players: What Can’t Be Done

Even if three or more players have private finite random sources, it remains im-
possible to robustly simulate a transcendentally-biased coin. The proof makes
use of algebraic geometry, especially the concept of the dual of a complex projec-
tive variety. We describe these ideas briefly in Appendix A. For a more thorough
introduction, see [Har92, Lec. 14, 15, 16] or [GKZ94, Ch. 1].

Let A be a rational multilinear functional of format n1 × · · ·×np (see Section
A.2), and let X be the Segre variety of the same format. Set n := n1 · · ·np − 1,
the dimension of the ambient projective space where X lives. In what follows, we
prove that A has algebraic mystery-values. This is trivial when A is a multiple
of J , and for convenience we exclude that case.

Proposition 12. LetA havemystery-valueαwith corresponding mystery-vectors
β(i). Define β = ⊗β(i), and let B denote the hyperplane of elements of (Pn)∗ that
yield zero when applied to β. Now (B, (αJ −A)) is in the incidence variety WX∨

(see Section A.1).

Proof. By the biduality theorem 31, the result would follow from the statement,

“The hyperplane {x : (αJ − A)(x) = 0} is tangent to X at β.” (15)

But this statement is true by the partial derivatives formulation (Definition 32)
of the degeneracy of (αJ −A).

It is a standard fact (see e.g. [Mum95, p. 6]) that any variety has a stratification
into locally closed smooth sets. The first stratum of X∨ is the Zariski-open set of
smooth points of the variety. This leaves a subvariety of strictly smaller dimen-
sion, and the procedure continues inductively. Equations for the next stratum
may be found by taking derivatives and determinants.

Since X∨ itself is defined over Q, it follows that each of its strata is as well.
We conclude that there must be some subvariety S ⊆ X∨, defined over Q, that
contains (αJ −A) as a smooth point.

Theorem 13. Any mystery-value of A must be an algebraic number.

Proof. Let A′ = αJ−A, and let � be the unique projective line through A and J .
Let A be some open affine in (Pn)∗ containing A′ and J . The hyperplane B∩A is
the zero locus of some degree one regular function f on A. On �∩A, this function
will be nonzero at J (since J(β) �= 0), so f is linear and not identically zero. It
follows that f(A) = 0 is the unique zero of f on �, occurring with multiplicity
one. Thus, the restriction of f to the local ring of � at A′ is in the maximal ideal
but not its square:

f �= 0 ∈ m
/m
2

 = T ∗

A′(�) where m
 denotes the maximal ideal in O
,A′ . (16)

On the other hand, Proposition 12 shows that (B, A′) ∈ WX∨ . Consequently, B
must be tangent to S, that is, f restricted to S is in the square of the maximal
ideal of the local ring of S at A′:
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f = 0 ∈ mS/m
2
S = T ∗

A′(S) where mS denotes the maximal ideal in OS,A′. (17)

The function f must be zero in the cotangent space of the intersection S ∩ �
since the inclusion S ∩ � ↪→ S induces a surjection

T ∗
A′(S) � T ∗

A′(S ∩ �), (18)

so the corresponding surjection

T ∗
A′(�) � T ∗

A′(S ∩ �) (19)

must kill f . This first space is the cotangent space of a line, hence one dimen-
sional. But f is nonzero in the first space, so the second space must be zero. It
follows that S ∩ � is a zero dimensional variety.

Of course, [α : 1] lies in S ∩ �, which is defined over Q! The number α must
be algebraic.

Therefore, the set of p-cooperative numbers is contained in Q ∩ [0, 1], and we
have established the following proposition:

Proposition 14. If several people with finite random sources simulate a private
random source for someone else, that source must take probabilities in Q.

2.5 Three Players: What Can Be Done

We prove that three players with private full-strength finite random sources
are enough to simulate any private finite Q-random source. First, we give a con-
struction for a hypermatrix with stochastic mystery-vectors for a given algebraic
number α, but whose entries may be negative. Next, we use it to find a nonnega-
tive hypermatrix with mystery-value (α+r)/s for some suitable natural numbers
r and s. Then, after a bit of convex geometry to “even out” this hypermatrix,
we scale and shift it back, completing the construction.

Remark 15. Our construction may easily be made algorithmic, but in practice
it gives hypermatrices that are far larger than optimal. An optimal algorithm
would need to be radically different to take full advantage of the third person.
The heart of our construction (see Proposition 18) utilizes 2× (n+ 1)× (n+ 1)
hypermatrices, but the degree of the hyperdeterminant polynomial grows much
more quickly for (near-)diagonal formats [GKZ94, Ch. 14]. We would be excited
to see a method of producing (say) small cubic hypermatrices with particular
mystery-values.

Hypermatrices with Cooperative Entries Recall that a {heads, tails}-
function of several finite probability spaces may be represented by a {1, 0}-
hypermatrix. The condition that the entries of the matrix are either 1 or 0
is inconvenient when we want to build simulations for a given algebraic bias.
Fortunately, constructing a matrix with cooperative entries will suffice.
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Lemma 16. Suppose that A is a p-dimensional hypermatrix with p-cooperative
entries in [0, 1] and stochastic mystery-vectors β(1), . . . , β(p) for the mystery-
value α. Then, α is p-cooperative.

Proof. Let the hypermatrix A have entries w1, w2, . . . , wn. Each entry wk is p-
cooperative, so it is the mystery-value of some p-dimensional {0, 1}-hypermatrix

Ak with associated stochastic mystery-vectors β
(1)
k , β

(2)
k , . . . , β

(p)
k . We now build

a {0, 1}-hypermatrix A′ with α as a mystery-value. The hypermatrix A′ has
blocks corresponding to the entries of A. We replace each entry wi of A with a
Kronecker product:

wi becomes J1 ⊗ J2 ⊗ · · · ⊗ Ji−1 ⊗Ai ⊗ Ji+1 ⊗ · · · ⊗ Jn. (20)

It is easy to check that the resulting tensor A′ has α as a mystery-value with

corresponding mystery-vectors β(i) ⊗ β
(i)
1 ⊗ β

(i)
2 ⊗ · · · ⊗ β

(i)
n .

Because rational numbers are 2-cooperative, this lemma applies in particular to
rational p-dimensional hypermatrices, for p ≥ 2. In this case and in others, the
construction can be modified to give an A′ of smaller format.

Readers who have been following the analogy betweenmystery-values and eigen-
values will see that Lemma 16 corresponds to an analogous result for eigenval-
ues of matrices. Nonetheless, there are striking differences between the theories
of mystery-values and eigenvalues. For instance, we are in the midst of showing
that it is always possible to construct a nonnegative rational hypermatrix with
a given nonnegative algebraic mystery-value and stochastic mystery-vectors. The
analogous statement for matrix eigenvalues is false, by the Perron-Frobenius the-
orem: any such algebraic number must be greater than or equal to all of its Galois
conjugates (which will also occur as eigenvalues). Encouragingly, the inverse prob-
lem for eigenvalues has been solved: Every “Perron number” may be realized as
a “Perron eigenvalue” [Lin84]. Our solution to the corresponding inverse problem
for mystery-values uses different techniques. It would be nice to see if either proof
sheds light on the other.

Constructing Hypermatrices from Matrices

Proposition 17. If λ is a real algebraic number of degree n, then there is some
M ∈ Mn(Q) having λ as an eigenvalue with non-perpendicular positive left and
right eigenvectors.

Proof. Let f ∈ Q[x] be the minimal polynomial for λ over Q, and let L be the
companion matrix for f . That is, if

f(x) = xn +

n−1∑
k=0

akx
k for ak ∈ Q, (21)
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then

L =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...
...
. . .

...
...

0 0 · · · 1 −an−1

⎞⎟⎟⎟⎟⎟⎠ . (22)

The polynomial f is irreducible over Q, so it has no repeated roots in C. The
matrix L is therefore diagonalizable, with diagonal entries the roots of f . Fix a
basis for which L is diagonal, with λ in the upper-left entry. In this basis, the
right and left eigenvectors, v0 and w0, corresponding to λ are zero except in the
first coordinate. It follows that v0(w0) �= 0.

The right and left eigenvectorsmay now be visualized as two geometric objects:
a real hyperplane and a real vector not contained in it. It’s clear that GLn(R) acts
transitively on the space S := {(v, w) ∈ (Rn)∗ ×Rn : v(w) = v0(w0)}. Moreover,
GLn(Q) is dense in GLn(R), so the orbit of (v0, w0) under the action of GLn(Q)
is dense in S. The set of positive pairs in S is non-empty and open, so we may
rationally conjugate L to a basis which makes v0 and w0 positive.

Proposition 18. If λ is real algebraic, then there exist integers r ≥ 0, s > 0
such that (λ + r)/s ∈ C(3).

Proof. By Proposition 17, there is a rational n × n matrix M with non-
perpendicular positive right and left eigenvectors v, w for the eigenvalue λ.
Rescale w so that v(w) = 1, and choose an integer q ≥ max {J(v), J(w)}. Define
the block 2× (n+ 1)× (n+ 1) hypermatrix

A :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · 0
0
... q2M
0

1 1 · · · 1
1
... q2(M − I) + J
1

⎞⎟⎟⎟⎟⎟⎟⎠ , (23)

where I and J are the n×n identity and all-ones matrices, respectively. Consider
A as a trilinear form, where the metacolumns correspond to the coordinates of
the first vector, the rows the second, and the columns the third. Define the block
vectors

β(1) = ( 1 − λ λ ) ,

β(2) = ( 1 − J(v)/q | v1/q v2/q · · · vn/q ) , and
β(3) = ( 1 − J(w)/q | w1/q w2/q · · · wn/q ) .

(24)

Clearly, these are all probability vectors. It’s easy to verify that

A
(
x(1), β(2), β(3)

)
= λJ

(
x(1)

)
,

A
(
β(1), x(2), β(3)

)
= λJ

(
x(2)

)
, and

A
(
β(1), β(2), x(3)

)
= λJ

(
x(3)

)
. (25)
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Choose a nonnegative integer r large enough so that all the entries of A+ rJ are
positive, and then a positive integer s so that all the entries of A′ := (A+ rJ)/s
are between 0 and 1.

A′
(
x(1), β(2), β(3)

)
=
λ+ r

s
J
(
x(1)

)
,

A′
(
β(1), x(2), β(3)

)
=
λ+ r

s
J
(
x(2)

)
, and

A′
(
β(1), β(2), x(3)

)
=
λ+ r

s
J
(
x(3)

)
. (26)

By Lemma 16, it follows that (λ+ r)/s is 3-cooperative.

Finishing the Proof The following lemma, which we we prove later, enables
us to complete the goal of this section: to classify which private random sources
three or more people can simulate.

Lemma 19 (Approximation lemma). Let α be a p-cooperative number. Now
for any ε > 0 there exists a p-dimensional rational hypermatrix whose entries are
all within ε of α, having α as a mystery-value with stochastic mystery-vectors.

Theorem 20. C(p) = Q ∩ [0, 1] for each p ≥ 3.

Proof. Certainly 0 and 1 are 3-cooperative. Let α be an algebraic number in
(0, 1). By Proposition 18, there are integers r ≥ 0, s > 0 so that (α + r)/s is
3-cooperative. Let ε := (min{α, 1 − α}) /s.

By Proposition 19, there is some three-dimensional rational hypermatrix A
whose entries are all within ε of (α+ r)/s, having (α+ r)/s as a mystery-value
with stochastic mystery-vectors. Then, sA − rJ is a three-dimensional rational
hypermatrix with entries between 0 and 1, having α as a mystery-value with
stochastic mystery-vectors. By Lemma 16, α is 3-cooperative.

We already showed that all cooperative numbers are algebraic. Thus, for p ≥ 3,

Q ∩ [0, 1] ⊆ C(3) ⊆ C(p) ⊆ Q ∩ [0, 1], (27)

so C(p) = Q ∩ [0, 1].

In conclusion, we have the following theorem.

Theorem 21. Three or more people with finite random sources can robustly sim-
ulate only Q-random sources. Indeed, if they have full-strength finite Q-random
sources, they can already robustly simulate a full-strength finite Q-random source.

Proof of the Approximation Lemma. The proof that follows is a somewhat
lengthy “delta-epsilon” argument broken down into several smaller steps. As we
believe our construction of a hypermatrix with mystery-value α to be far from
optimal, we strive for ease of exposition rather than focusing on achieving tight
bounds at each step along the way.
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Recall that a finite probability space may be usefully modeled by a positive9

vector of mass one. Let β be such a vector. We denote by #β the number of
coordinates of β . We say β′ is a refinement of β when β is the image of a
measure-preserving map from β′; that is, when the coordinates of β′ may be
obtained by splitting up the coordinates of β.

The following easy lemma states that any positive vector of unit mass can be
refined in such a way that all the coordinates are about the same size.

Lemma 22 (Refinement lemma). Let β be a positive vector of total mass 1.
For any δ > 0 there exists a refinement β′ of β with the property that

min
j
β′
j ≥ 1 − δ

#β′ . (28)

Proof. Without loss of generality, assume that β1 is the smallest coordinate of
β. Let γ = β1δ, and let k = #β. The vector β is in the standard open k-simplex

Δk = {positive vectors of mass 1 and dimension k}. (29)

The rational points in Δk are dense (as in any rational polytope), and

U := {x ∈ Δk : (∀i) |βi − xi| < γ and β1 < x1} (30)

is an open subset of the simplex. So U contain a rational point
(
n1

n , . . . ,
nk

n

)
,

with n =
∑
ni. Thus,

∣∣βi − ni

n

∣∣ < γ and β1 <
n1

n , so∣∣∣∣βi

ni
− 1

n

∣∣∣∣ < γ

ni
≤ γ

n1
<

γ

βjn
=
δ

n
. (31)

Let β′ be the refinement of β obtained by splitting up βi into ni equal-sized
pieces. We have #β′ = n, and the claim follows from this last inequality.

Remark 23. The best general bounds on the smallest possible #β′ given β and
δ are not generally known, but fairly good bounds may be obtained from the mul-
tidimensional version of Dirichlet’s theorem on rational approximation, which is
classical and elementary [Dav54]. Actually calculating good simultaneous rational
approximations is a difficult problem, and one wishing to make an algorithmic
version of our construction should consult the literature on multidimensional
continued fractions and Farey partitions, for example, [Lag82,NS06].

The next proposition is rather geometrical. It concerns the n× n matrix Sδ :=
(1 − δ)(J/n) + δI, which is a convex combination of two maps on the standard
simplex: the averaging map and the identity map. Each vertex gets mapped
almost to the center, so the action of Sδ can be visualized as shrinking the
standard simplex around its center point. The proposition picks up where the
refinement lemma left off:

9 We may leave out points of mass zero.
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Proposition 24. If a stochastic vector β satisfies

min
i
βi ≥ 1 − δ

#β
(32)

then its image under the map S−1
δ is still stochastic.

Proof. First note that [(1 − δ) (J/#β) + δI] [(1 − 1/δ) (J/#β) + (1/δ)I] = I, so
we have an explicit form for S−1

δ . We know that mini βi ≥ (1 − δ)/#β, so the
vector

E =
1

δ

[
β −

(
1 − δ

#β

)
J

]
(33)

is still positive. Now β = (1 − δ) (J/#β) + δE, a convex combination of two
positive vectors. The vector β has mass 1, and (J/#β) as well, so E also has
mass 1.

Now compute:

S−1
δ β =

[
(1 − 1/δ) (J/#β) + (1/δ)I

][
(1 − δ) (J/#β) + δE

]
=

[
(1 − 1/δ)(1 − δ) + (1/δ)(1 − δ) + (1 − 1/δ)δ

]
(J/#β) + E

= E. (34)

This completes the proof.

The following proposition shows that applying the matrix Sδ in all arguments
of some multilinear functional forces the outputs to be close to each other.

Proposition 25. Let A be a hypermatrix of format n1 × n2 × · · · × np with
entries in [0, 1], and take δ := ε/(2p). Now the matrix A′ defined by

A′
(
⊗x(i)

)
:= A

(
⊗Sδx

(i)
)

(35)

satisfies |A′(x) −A′(x′)| ≤ ε for any two stochastic tensors x and x′.

Proof. Let m := A (⊗(J/ni)), the mean of the entries of A. We show that for
any stochastic vectors x(i), ∣∣∣A′

(
⊗x(i)

)
−m

∣∣∣ ≤ ε/2. (36)

Since any other stochastic tensor is a convex combination of stochastic pure
tensors, it will follow that |A′(x) −m| ≤ ε/2. Then the triangle inequality will
yield the result.

It remains to show that A′ applied to a stochastic pure tensor gives a value
within ε/2 of m.

A′
(
⊗x(i)

)
= A

(
⊗Sδx

(i)
)

= A
(
⊗ [(1 − δ)(J/ni) + δI]x(i)

)
= A

(
⊗
[
(1 − δ)(J/ni) + δx(i)

])
. (37)
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Each argument of A—that is, factor in the tensor product—is a convex combi-
nation of two stochastic vectors. Expanding out by multilinearity, we get convex
combination with 2p points. Each point—let’s call the kth one yk—is an ele-
ment of [0, 1] since it is some weighted average of the entries of A. This convex
combination has positive μk such that

∑
μk = 1 and

A′
(
⊗x(i)

)
=

2p∑
k=1

μkyk. (38)

Taking the first vector in each argument ofA in (37), we see that y1 = A (⊗(J/ni))
= m, the average entry of A. Thus, the first term in the convex combination is
μ1y1 = (1 − δ)pm.

The inequality (1−ε/2) ≤ (1−δ)p allows us to split up the first term. Let μ0 :=
1−ε/2 and μ′

1 := μ1−μ0 ≥ 0. We have μ1y1 = (μ0+μ
′
1)y1 = (1−ε/2)m+μ′

1m.
After splitting this term, the original convex combination becomes

A′
(
⊗x(i)

)
= (1 − ε/2)m+ μ′

1m+

2p∑
k=2

μkyk. (39)

Let e denote the weighted average of the terms after the first. We may rewrite
the convex combination

A′
(
⊗x(i)

)
= (1 − ε/2)m+ (ε/2)e. (40)

Since m, e ∈ [0, 1],

m− ε/2 ≤ (1 − ε/2)m ≤ A′
(
⊗x(i)

)
≤ (1 − ε/2)m+ ε/2 ≤ m+ ε/2, (41)

and ∣∣∣A′
(
⊗x(i)

)
−m

∣∣∣ ≤ ε/2, (42)

so we are done.

These results are now strong enough to prove the approximation lemma 19.

Proof. The number α is p-cooperative, so it comes with some p-dimensional
nonnegative rational hypermatrix A and positive vectors β(1), β(2), . . . , β(p) of
mass one, satisfying (in particular) A

(
⊗β(i)

)
= α. The refinement lemma allows

us to assume that each β(i) satisfies

min
j
β
(i)
j ≥ 1 − δ

#β(i)
. (43)

If one of the β(i) fails to satisfy this hypothesis, we may replace it with the
refinement given by the lemma, and duplicate the corresponding slices in A to
match.

Now, by Proposition 24, each S−1
δ β(i) is a stochastic vector.
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Let A′ be as in Proposition 25. It will still be a rational hypermatrix if we
pick ε to be rational. We know

A′
(
⊗S−1

δ β(i)
)
= α. (44)

On the other hand, any entry of the matrix A′ is given by evaluation at a tensor
product of basis vectors. Both α and any entry of A′ can be found by evaluating
A′ at a stochastic tensor. Thus, by Proposition 25, each entry of A′ is within ε
of α.

2.6 Higher-Order Robustness

We complete the proof of our main theorem.

Proposition 26. If r ≥ p/2, then p people with finite random sources may
r-robustly simulate only finite Q-random sources.

Proof. Consider an r-robust simulation. Imagine that Alice has access to half
of the random sources (say, rounded up), and Bob has access to the remaining
sources. Because Alice and Bob have access to no more than r random sources,
neither knows anything about the source being simulated. But this is precisely
the two-player case of ordinary 1-robustness, so the source being simulated is
restricted to rational probabilities.

In the constructive direction, we show the following:

Proposition 27. If r < p/2, then p people with full-strength finite Q-random
sources may r-robustly simulate a full-strength finite Q-random source.

The proof is to simulate simulations (and simulate simulations of simulations,
etc.). We treat the p = 3 case of our 1-robust simulation protocol as a black box.
If a majority of the random sources put into it are reliable, the one that comes
out (the simulated random source) will also be reliable. This viewpoint leads us
into a discussion of majority gates.

Definition 28. A p-ary majority gate is a logic gate that computes a boolean
function returning 1 if a majority of its inputs are 1 and 0 if a majority of its
inputs are 0. (The output doesn’t matter when there are ties.)

Lemma 29 (Bureaucracy). A p-ary majority gate may be built by wiring to-
gether ternary majority gates.

The proof of the bureaucracy lemma is a straightforward application of the
probabilistic method, and is covered in detail in Appendix B. Now, by iterating
simulations of simulations according to the wiring provided by the bureaucracy
lemma, we can overcome any minority of malfunctioning sources. So the bureau-
cracy lemma, together with the “black box” of our three-player construction,
implies Proposition 27.

Now we’re finally ready to prove our main result. The statement here is equiv-
alent to the ones in the abstract and in Section 1.2 but uses the language of
robustness.
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Theorem 30. Say p people have full-strength finite random sources. If
p/2 ≤ r < p, the people may r-robustly simulate any finite Q-random source
and nothing better; if 1 ≤ r < p/2, they may r-robustly simulate any finite
Q-random source and nothing better.

Proof. The claim simply combines Proposition 11, Proposition 26, Theorem 30,
and Proposition 27.

3 Application to Secure Multiparty Computation and
Mental Poker

We begin with the classical case: Three gentlemen wish to play poker, but they
live far away from each other, so playing with actual cards is out of the question.
They could play online poker, in which another party (the remotely hosted poker
program) acts as a dealer and moderator, keeping track of the cards in each
player’s hand, in the deck, etc., and giving each player exactly the information
he would receive in a physical game. But this solution require our gentlemen to
trust the moderator! If they fear the moderator may favor one of them, or if they
wish to keep their game and its outcome private, they need another system.

A better solution is to use secure multiparty computation. Our gentlemen
work to simulate a moderator in a way that keeps the outcomes of the moder-
ator’s computations completely hidden from each of them. An unconditionally-
secure method of playing poker (and running other games/computations) “over
the phone” has been described in [GM82].

In the classical case, the players may perform finite computations, commu-
nicate along private channels, and query full-strength finitary private random
sources. The simulated moderator has the almost same abilities as the players,
except that its private random source is limited to rational probabilities. The
work of this paper expands this to all algebraic probabilities, and shows that
one can do no better.

To see how this may be useful, think back to our poker players. They may
be preparing for a poker tournament, and they may want to simulate opponents
who employ certain betting strategies. But poker is a complicated multiplayer
game (in the sense of economic game theory), and Nash equilibria will occur at
mixed strategies with algebraic coefficients.10

A Relevant Constructions in Algebraic Geometry

Comprehensive introductions to these constructions may be found in [Har92, Lec.
14, 15, 16] and [GKZ94, Ch. 1].

10 The appearance of algebraic (but not transcendental) coefficients in mixed strategies
is explained by R. J. Lipton and E. Markakis in [LM04].
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A.1 Tangency and Projective Duality

Let k be an algebraically closed field of characteristic zero. (For our purposes,
it would suffice to take k = C, but the methods are completely general.) Let
X ⊆ Pn be a projective variety over k. A hyperplane H ∈ (Pn)∗ is (algebraically)
tangent to X at a point z if every regular function on an affine neighborhood of
z vanishing on H lies in the square of the maximal ideal of the local ring OX,z .

This notion of tangency agrees with geometric intuition on the set of smooth
points Xsm of X . To get a more complete geometric picture, we define an inci-
dence variety:

WX := {(z,H) : z ∈ Xsm, H is tangent to X at z} ⊆ Pn × (Pn)∗. (45)

The bar denotes Zariski closure. Membership in WX may be thought of as ex-
tending the notion of tangency at a smooth point to include singular points “by
continuity.”

The image of a projective variety under a regular map is Zariski closed, so the
projection of WX onto the second coordinate is a variety, called the dual variety
and denoted X∨.

The following theorem explains why projective duality is called “duality.” We
omit the proof; see [Har92, p. 208–209] or [GKZ94, p. 27–30].

Theorem 31 (Biduality theorem). Let X be a variety in Pn. For z ∈ Pn,
let z∗∗ be the image under the natural isomorphism to (Pn)∗∗. Then, (z,H) �→
(H, z∗∗) defines an isomorphism WX

∼= WX∨ . (Specializing to the case when
(z,H) and (H, z∗∗ are smooth points X and X∨, respectively, this says that H
is tangent to X at z if and only if z is tangent to X∨ at H.) Moreover, z �→ z∗∗

defines an isomorphism X ∼= (X∨)∨.

A.2 Segre Embeddings and Their Duals

Consider the natural map kn1 × · · · × knp → kn1 ⊗ · · · ⊗ knp = kn1···np given
by the tensor product. Under this map, the fiber of a line through the origin
is a tuple of lines through the origin. Thus, this map induces an embedding
Pn1−1×· · ·×Pnp−1 ↪→ Pn1···np−1. The map is known as the Segre embedding, and
the image is known as the Segre variety X of format n1 ×· · ·×np. It is, in other
words, the pure tensors considered as a subvariety of all tensors, up to constant
multiples. This variety is cut out by the determinants of the 2 × 2 subblocks.
Also, it is smooth because it is isomorphic as a variety to Pn1−1 × · · · × Pnp−1.

When a projective variety is defined over the rational numbers,11 its dual is
also defined over the rationals, by construction [GKZ94, p. 14]. In particular,
the dual X∨ of the Segre embedding is defined over Q.

When the dimensions ni satisfy the “p-gon inequality”

(nj − 1) ≤
∑
i=j

(ni − 1), (46)

11 That is, it is the zero set of a system of homogeneous rational polynomials.
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Gelfand, Kapranov, and Zelevinsky [GKZ94, p. 446] show that the dual of the
Segre variety is a hypersurface. The polynomial for this hypersurface is irre-
ducible, has integer coefficients, and is known as the hyperdeterminant of format
n1 × · · · ×np. It is denoted by Det. When p = 2 and n1 = n2, the hyperdetermi-
nant is the same as the determinant of a square matrix [GKZ94, p. 36].

Gelfand, Kapranov, and Zelevinsky provide us with two equivalent definitions
of degeneracy.

Definition 32. A p-linear form T is said to be degenerate if either of the
following equivalent conditions holds:

– there exist nonzero vectors β(i) so that, for any 0 ≤ j ≤ p,

T
(
β(1), . . . , β(j−1), x(j), β(j+1), . . . , β(p)

)
= 0 for all x(j); (47)

– there exist nonzero vectors β(i) so that T vanishes at ⊗β(i) along with every
partial derivative with respect to an entry of some β(i):

T and
∂T

∂β
(i)
j

vanish at ⊗β(i). (48)

The dual of the Segre variety is useful to us because it can tell whether a mul-
tilinear form is degenerate.

Theorem 33 (Gelfand, Kapranov, and Zelevinsky). For any format, the
dual X∨ of the Segre embedding is defined over Q and satisfies, for every multi-
linear form T of that format,

T ∈ X∨ ⇐⇒ T is degenerate. (49)

When the format satisfies the “p-gon inequality,” X∨ is defined by a polynomial
in the entries of T with coefficients in Z, called the hyperdeterminant:

Det(T ) = 0 ⇐⇒ T is degenerate. (50)

B Proof of the Bureaucracy Lemma

Here, we show that a p-ary majority gate may be built out of ternary majority
gates.

Proof. We prove the existence of the majority gate by showing that a random
gate built in a certain way has a positive probability of being a majority gate.
For simplicity, we assume p is odd. The even case follows from the odd case: A
(2k − 1)-ary majority gate functions as a (2k)-ary majority gate if we simply
ignore one of the inputs.

Make a balanced ternary tree of depth n out of 30 + 31 + · · · + 3n−1 ternary
majority gates, where n is to be specified later. Let S be the set of possible
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assignments of p colors (one for each input slot) to the 3n leaves of the tree.
Each s ∈ S defines a p-ary gate; we prove that, for n large enough, a positive
fraction of these are majority gates. Let T be the set of p-tuples of input values
with exactly p+1

2 coordinates equal to 1. For (s, t) ∈ S ×T , let χ(s, t) be the bit
returned by the gate defined by s on input t.

If each input of a 3-ary majority gate is chosen to be 1 with probability x,
and 0 with probability 1 − x, we may compute the probability f(x) that the
resulting bit is 1:

f(x) =

(
3

2

)
x2(1 − x) +

(
3

3

)
x3 = x2(3 − 2x). (51)

Fixing the choice of t ∈ T and letting s vary uniformly, it’s as if we’re assigning
1 or 0 to each leaf with probabilities p+1

2 and p−1
2 , respectively. We have

1

|S|
∑
s∈S

χ(s, t) = fn

(
p+ 1

2

)
, (52)

where fn denotes iterated composition. Whenever 1
2 < ξ ≤ 1, it’s easy to see that

fn(ξ) approaches 1 as n becomes large.12 Choose n so that fn
(
p+1
2

)
> 1 − 1

|T | .

Now,

1

|S|
∑
s∈S

∑
t∈T

χ(s, t) =
∑
t∈T

1

|S|
∑
s∈S

χ(s, t)

=
∑
t∈T

fn

(
p+ 1

2

)
= |T |fn

(
p+ 1

2

)
> |T |

(
1 − 1

|T |

)
= |T | − 1. (53)

This is an average over S, and it follows that there must be some particular
s0 ∈ S so that the inner sum

∑
t∈T χ(s0, t) is greater than |T |− 1. But that sum

clearly takes an integer value between 0 and |T |, so it must take the value |T |,
and we have χ(s0, t) = 1 for every t ∈ T . That is, the gate specified by s0 returns
1 whenever exactly p+1

2 of the inputs are 1. By construction, setting more inputs
to 1 will not alter this outcome, so the gate returns 1 whenever a majority of
the inputs are 1. By the symmetry between 1 and 0 in each ternary component,
the gate returns 0 whenever a majority of the inputs are 0. Thus, s0 defines a
p-ary majority gate.

We illustrate a 5-ary majority gate of the type obtained in the bureaucracy
lemma:
12 In fact, the convergence is very fast. While we’re ignoring computational complexity

questions in this paper, more careful bookkeeping shows that this proof gives a
polynomial bound (in p) on the size of the tree.
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3 2 5 2 3 4 2 2 4 3 5 1 3 5 3 5 2 4 1 1 1 5 1 2 4 4 5

C Simulating Infinite Random Sources

Say Alice and Bob are both equipped with private, full-strength random sources;
they wish to simulate a private, full-strength random source for some other
player.

For technical reasons, we will take “full-strength random source” to mean “a
random source capable of sampling from any Haar measure.” This restriction is
mostly to avoid venturing into the wilds of set theory. After all, the pathologies
available to probability spaces closely reflect the chosen set-theoretic axioms. We
call these restricted spaces “Haar spaces.”

Definition 34. A probability space P is a Haar space if there exists some com-
pact topological group G, equipped with its normalized Haar measure, admitting
a measure-preserving map to P .

Remark 35. The following probability spaces are all Haar spaces: any contin-
uous distribution on the real line; any standard probability space in the sense of
Rokhlin [Rok49]; any Borel space or Borel measure on a Polish space; any finite
probability space; arbitrary products of the above.

The following construction is an easy generalization of the classical construction
given in Proposition 2.

Proposition 36. Let G be a compact group with normalized Haar measure.
Now, p players equipped with private sources that sample from G may (p − 1)-
robustly simulate an source that samples from G.

Proof. We provide a direct construction. The ith player uses the Haar measure
to pick gi ∈ G at random. The output of the simulated source will be the product
g1g2 · · · gp.

It follows from the invariance of the Haar measure that any p-subset of

{g1, g2, ..., gp, g1g2 · · · gp} (54)

is independent! Thus, this is a (p− 1)-robust simulation.
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Corollary 37. If p players are equipped with private, full-strength random
sources, they may (p− 1)-robustly simulate may simulate a private, full-strength
random source for some other player.

Proof. By Proposition 36, they may simulate a private random source capable
of sampling from any compact group with Haar measure. But such a random
source may also sample from all quotients of such spaces.

Corollary 38. If p players are equipped with private random sources capable of
sampling from the unit interval, they may (p − 1)-robustly simulate a random
source capable of sampling from any standard probability space—in particular,
any finite probability space.

Proof. Immediate from Proposition 36.
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Abstract. We consider the problem of reconstructing a shared secret in
the presence of faulty shares, with unconditional security. We require that
any t shares give no information on the shared secret, and reconstruction
is possible even if up to t out of the n shares are incorrect. The interesting
setting is n/3 ≤ t < n/2, where reconstruction of a shared secret in the
presence of faulty shares is possible, but only with an increase in the share
size, and only if one admits a small failure probability. The goal of this
work is to minimize this overhead in the share size. Known schemes either
have a Ω(κn)-overhead in share size, where κ is the security parameter,
or they have a close-to-optimal overhead of order O(κ+ n) but have an
exponential running time (in n).

In this paper, we propose a new scheme that has a close-to-optimal
overhead in the share size of order Õ(κ + n), and a polynomial run-
ning time. Interestingly, the shares in our new scheme are prepared in
the very same way as in the well-known scheme by Rabin and Ben-Or,
which relies on message authentication, but we use a message authen-
tication code with short tags and keys and with correspondingly weak
security. The short tags and keys give us the required saving in the share
size. Surprisingly, we can compensate for the weakened security of the au-
thentication and achieve an exponentially small (in κ) failure probability
by means of a more sophisticated reconstruction procedure.

1 Introduction

Background. Secret sharing, invented independently by Shamir [18] and Blak-
ley [2] in 1979, is a fundamental cryptographic primitive that has found numerous
applications. In its basic form, it permits a dealer to share a secret s among a set
of n players in such a way that: (1) up to t of the players learn no information
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on s by means of their shares, and (2) any t + 1 of the players can (efficiently)
recover s from their shares. The most famous example, Shamir’s secret sharing
scheme, works by choosing a random polynomial f(X) ∈ F[X ] of degree at most
t with s as constant coefficient (assuming that s comes from a finite field F), and
the n shares are computed as s1 = f(x1), . . . , sn = f(xn) for publicly known
pairwise-distinct non-vanishing interpolation points x1, . . . , xn. Properties (1)
and (2) follow easily from Lagrange’s interpolation theorem.

In its basic form, secret sharing assumes the players to be honest and to pro-
vide the correct shares when asked. However, in cryptographic scenarios we often
want/need to protect against malicious behavior of the participants. Therefore,
strengthened versions of secret sharing have been proposed and studied over
the years. One natural strengthening is to require that the shared secret can
be recovered even if some players hand in incorrect shares. This is sometimes
referred to as robust secret sharing. Formally, it is required that if all the n
players pool together their shares, but up to t of them are incorrect (and it is
not known which ones), then the shared secret can still be reconstructed (except
maybe with small probability). Robust secret sharing has direct applications to
secure storage and unconditionally secure message transmission. The goal of se-
cure storage is to outsource the storing of sensitive data to a group of servers, in
such a way that any coalition of up to t dishonest servers does not compromise
the privacy nor the retrievability of the data. In unconditionally secure message
transmission, as introduced in [8], (for follow-up works, see [9,10]) a sender wants
to send some message to a receiver via a communication network that consists of
n wires of which up to t may be under the control of an adversary, and privacy
and receipt of the message should be guaranteed. It is immediate that “good”
robust secret sharing schemes lead to “good” secure storage and “good” secure
message transmission schemes. Furthermore, robust secret sharing schemes may
act as stepping stone towards secret sharing schemes with yet stronger security
guarantees. For instance, a verifiable secret sharing (VSS) scheme, as introduced
in [4], additionally protects against a possibly malicious dealer who hands out
inconsistent shares.

It follows immediately from the theory of Reed-Solomon error correcting codes
that Shamir’s secret sharing scheme is robust if (and only if) t < n/3. On the
other hand, it is easy to see that robust secret sharing is impossible if t ≥ n/2,
and alternative definitions are needed [12]. Therefore, in this paper, we consider
the range n/3 ≤ t < n/2. In this range, robust secret sharing is possible, but
only if one admits a small but positive failure probability. What makes robust
secret sharing in the range n/3 ≤ t < n/2 tricky is the fact that, say, Shamir
shares alone do not carry enough redundancy to recover the correct secret in
the presence of faulty shares, not even in principle. Indeed, if n = 2t + 1, and
s1, . . . , sn are Shamir shares of a secret s but t of the shares are incorrect, then
any t+ 1 of the shares lie on a degree t polynomial and thus could actually be
the t+1 correct shares. There is no way to reconstruct the correct secret s from
the list of partly modified Shamir shares. Additional redundancy needs to be
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added to the shares to permit reconstruction in the presence of incorrect shares.
In the computational setting, this can be done by means of commitments (as
e.g. in [16]); however, we aim for unconditional security, i.e., we do not put any
computational restrictions on the adversary.

In this paper, we address the question of how much redundancy needs to be
added to the shares in order to obtain robustness, for the maximal possible value
of t, i.e., when n = 2t+1. In other words, how small can the shares be in robust
secret sharing?

Known Schemes. Interestingly, rather little is known about robust secret
sharing with unconditional security for the range n/3 ≤ t < n/2. To the best
of our knowledge, up to small modifications, there exist two known (classes of)
robust secret sharing schemes for this setting; we briefly discuss them here.

The first one is due to Rabin and BenOr [17] (called “secret sharing when the
dealer is a knight” there). The Rabin-BenOr scheme consists of standard Shamir
secret sharing, but enhanced my means of an (unconditionally secure) message
authentication code. Specifically, for every pair of players Pi and Pj , Pi’s Shamir
share si is authenticated with an authentication tag τij , where the correspond-
ing authentication key keyji is given to player Pj . During reconstruction, every
player Pj can then verify the correctness of all the shares with the help of his
authentication keys (and he detects every incorrect share except with small prob-
ability). If the reconstruction is performed by an outside reconstructor R that
has no authentication keys, the reconstruction is slightly trickier. Every share si
is then declared to be correct and used for reconstructing the secret by means
of Lagrange interpolation if and only if it is accepted by the authentication keys
of at least t+ 1 players.

In order for this scheme to have a failure probability (in reconstructing the
correct secret) of 2−κ, the message authentication code must have a failure prob-
ability smaller than 2−κ, which means that keys and tags must be of bitsize at
least κ. As a consequence, beyond the actual Shamir share, every player gets
another Ω(nκ) bits of redundancy as part of his share.1

The other scheme was first pointed out by Cramer, Damg̊ard and Fehr [5],
based on an idea by [3]. This scheme works as follows. Using standard Shamir
secret sharing, the dealer shares independently the actual secret s ∈ F, a ran-
domly chosen field element r ∈ F, and its product p = s · r. To reconstruct the
secret, the reconstructor does the following for every subset of t+ 1 players. He
reconstructs s′, r′ and p′, supposed to be s, r and p, respectively, using the (pos-
sibly partly incorrect) shares of these t+1 players, checks if s′ ·r′ = p′, and halts
and outputs s′ if it is the case. One can show that for any subset of t+1 players:
if s′ �= s then s′ ·r′ �= p′ except with probability 1/|F|. Thus, taking into account
union bound over all subsets of size t + 1, choosing F to be of cardinality 2κ+n

gives a robust secret sharing scheme with failure probability 2−κ and shares of
size O(κ+ n).

1 There are some additional log terms that we ignore, for instance due to applying
union bound over the players.



198 A. Cevallos et al.

Hence, much less redundancy is added to the actual share than in the Rabin-
BenOr scheme.2 Furthermore, it is not too hard to see that an increase in share
size of κ bits is necessary for robust reconstruction (with t < n/2); thus, this
scheme has close-to-optimal share size (at least if n is of order κ). The obvious
downside of the scheme is that the reconstruction has exponential (in n) running
time, as it loops over all possible subsets of size t + 1. Up to now, it is not
known if there is an efficient reconstruction procedure for this robust secret
sharing scheme. Another drawback of this scheme is that it is insecure in case
the dishonest players get to see the shares (of r) of the honest players before they
have to submit their own shares. Thus, it cannot be used, say, if reconstruction
is performed by the (partly corrupted) players, and the adversary is rushing,
meaning that the corrupt players wait with announcing their shares and then
rush to announce their (correspondingly modified) shares.3

The latter scheme can be understood as being obtained, in a generic way,
from a secret sharing scheme that allows error detection, i.e., that detects if a set
of t+ 1 shares contains some incorrect ones (but can not necessarily tell which
ones). Indeed, as rigorously analyzed in [14], any secret sharing scheme with
error detection (as in [20,3,15]) can be transformed into a robust secret sharing
scheme by looping over all sets of size t+1; but of course, any such scheme will
suffer from the same exponential running time. For dishonest majority, a notion
of identifiable secret sharing is explored in [12].

Our Contribution. We propose a new robust secret sharing scheme that
combines the advantages of both the above schemes. Our new scheme has a
similar overhead in share size as the scheme by Cramer et al., i.e., of the order
Õ(κ + n) rather than Ω(κn), yet it is computationally efficient, meaning that
sharing and reconstruction run in polynomial time in n, κ and the bitsize of
the secret. Furthermore, security is preserved when reconstruction takes place
among the partly corrupted players and the adversary is rushing.

Maybe somewhat surprisingly, the sharing procedure of our new robust secret
sharing scheme is identical to that of the Rabin-BenOr scheme, except that we
use a message authentication code with short keys and tags and with correspond-
ingly weak security. In order to compensate for that, we need a more sophisticated
reconstruction procedure, which inspects the acceptance graph, which describes
which share is accepted by which player’s key, more carefully. Essentially, the
idea is to accept a share as being correct not as soon as it is correctly verified by
t+1 players (as is the case in Rabin-BenOr), but only if it is correctly verified by
t+ 1 players that hold accepted shares. In other words, once a share is declared
incorrect, then this player’s vote is not counted anymore, making it harder for

2 If the bitsize of the secret is much bigger than κ, then one can employ an adaptation
of the scheme for which r and p can still live in a field of order 2κ+n, and thus the
redundancy added to the actual share of s remains O(κ+ n) (see [6]).

3 We stress that the Rabin-BenOr scheme does not suffer from this when the recon-
struction is done in two rounds, where the players first announce their shares and
tags, and only once everyone has revealed their shares and tags, then the keys are
revealed. Looking ahead, the same will hold for our new scheme.
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other incorrect shares to be accepted. In order to take care of a few incorrect
shares that might survive, Reed-Solomon error correction is applied to the set of
accepted shares. As will be seen later, although the basic idea of the new scheme
is rather simple, its analysis is not. What makes the analysis tricky is that the
probability of a bad share being detected now depends on how many other bad
shares are detected. Thus, we cannot analyze the bad shares independently.

Interestingly, in [5] Cramer et al. prove a lower bound of Ω(κn) on the nec-
essary redundancy in the shares necessary to reconstruct a shared secret in the
presence of up to a minority of incorrect shares. The discrepancy to our positive
result stems from the fact that they consider a slightly stronger notion of robust
secret sharing (which they called “single-round honest-dealer VSS” there): the
reconstruction procedure must produce the correct secret except with probabil-
ity 2−κ, but if it fails then it must output “failure”. Thus, in their definition,
reconstructing an incorrect secret is strictly prohibited, whereas we allow recon-
struction of an incorrect secret with negligible probability. Also, they assume
that reconstruction is done by the players with one round of communication and
then each player deciding locally (possibly based on some part of his share he
did not announce) on the reconstructed secret. Our new scheme does not seem
to fit into this model since its security crucially relies on the fact that players
release their shares in two rounds.

2 Preliminaries

2.1 Robust Secret Sharing

In order to define the robustness property of a secret sharing scheme, we formal-
ize the latter by means of two interactive protocols, Share and Rec, where Share
involves a dealer D and n players P1, . . . , Pn, and Rec involves the n players and
a reconstructor R. More formally, an n-player secret sharing scheme for a mes-
sage space S consists of two phases, the sharing and the reconstruction phase,
specified by two protocols Share and Rec. During the sharing phase, the dealer
D takes as input a secret s ∈ S, locally computes shares σ1, . . . , σn, and sends
the i-th share σi to player Pi for every i ∈ [n]. During reconstruction, player
Pi (for every i ∈ [n]) communicates, possibly by means of several synchronous
communication rounds, σi to the reconstructor R. Based on the received shares,
R then produces an output s′, which is supposed to be the original secret s.

Before we formalize the security requirements, we specify the capabilities (and
limitations) of the adversary that tries to break the scheme. During the sharing
phase, the adversary remains inactive, and he does not get to learn any infor-
mation at all. In particular, he does not get to see the shares that D sends
to the players. After the sharing phase, the adversary can adaptively corrupt
up to t of the players Pi (but not D), where t is some parameter.4 Once a
player Pi is corrupted, the adversary learns Pi’s share σi, and from now on, the

4 Since the sharing phase only involves one round of communication from D to the
players, it does not help the adversary to corrupt players during the sharing phase.
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adversary has full control over Pi. The corruptions being adaptive means that af-
ter each corruption, the adversary can decide on who to corrupt next depending
on the shares he has seen so far. During the reconstruction phase, the adversary
gets to see the communication between all players Pi and the reconstructor R.5

Furthermore, he controls the information that the dishonest players send to R.
Namely, in every communication round, he can decide for every dishonest player
on what this player should send to R, depending on what he has seen so far and
depending on what the honest players have sent to R in the current round. The
latter means that the adversary is rushing. Finally, if he has not yet corrupted
t players, he can between each round of communication adaptively corrupt ad-
ditional players, as long as the total number of corrupt players does not exceed
t. We stress that the adversary cannot corrupt D or R.

Definition 2.1. An n-player secret sharing scheme (Share,Rec) is (t, δ)-robust
if the following properties hold for any distribution of s ∈ S and for any adversary
as specified above.

Privacy: Before Rec is started, the adversary has no more information on the
shared secret s than he had before the execution of Share.

Reconstructability: At the end of Rec, the reconstructor R outputs s′ = s except
with probability at most δ.

It is known that in any (not necessarily robust but perfectly private) secret
sharing scheme, the bit-size of every share σi is at least the bit-size log |S| of
the secret. In this paper, we are interested in how much redundancy needs to
be added to this minimal share size in order to achieve robustness, i.e., in the
quantity maxi(log |Σi|)− log |S|, where Σi denotes the set of all possible shares
σi for player i. We call this quantity the overhead of a scheme.

2.2 Message Authentication Codes

A message authentication code (MAC) is a tool that enables to verify the in-
tegrity of a message. Unconditionally secure MACs were initially invented by
Carter and Wegman [21,22]. We give here a definition that suits our needs.

Definition 2.2. A message authentication code (or MAC) for a finite message
space M consists of a function MAC : M × K → T for finite sets K and T . It is
called ε-secure if for all m, m̂ ∈ M with m �= m̂ and for all τ, τ̂ ∈ T :

P [MAC(m̂,K) = τ̂ |MAC(m,K) = τ ] ≤ δ ,

where the random variable K is uniformly distributed over K.

5 It may look unnatural at first glance that the adversary does not get to see the com-
munication between D and the players, but he does get to see the communication be-
tween the players andR. The reason why we want to allow him to observe the commu-
nication with R is that in certain applications, it is actually the set of all players that
wants/needs to reconstruct the secret. In this case, whenever the reconstruction proce-
dure dictates player Pi to send some information to R, it has to send that information
to all the players. But this of course then means that if at least one of the players is
corrupt, then the adversary gets to see all the communication intended for R.
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It is well known that if M is a finite field F, then MAC : F × F2 → F with
(m, (α, β)) �→ α · m + β is a ε-secure MAC with ε = 1/|F|. More generally, as
first shown in [7,13,19],

MAC : Fd × F2 → F, ((m1 . . . ,md), (α, β)) �→
d∑

k=1

αi ·mi + β

is a ε-secure MAC with ε = d/|F|.

2.3 Reed-Solomon Error Correction

Let F be a finite field, let n′ be a positive integer, and let x1, . . . , xn′ be pair-
wise distinct interpolation points in F. We consider the problem of recovering a
polynomial f(X) ∈ F[X ] of degree at most t, when given a perturbed version
of its evaluations (f(x1), . . . , f(xn′)), i.e., when given a vector (y1, . . . , yn′) for
which it is promised that yi = f(xi) for all but e of the indexes i ∈ {1, . . . , n′},
where e is some parameter, but it is not known for which indices. This is known
as Reed-Solomon error correction. It is not hard to see, using Lagrange inter-
polation, that f(X) is uniquely determined from (y1, . . . , yn′) if (and only if)
n′ ≥ t + 1 + 2e. Indeed, if there are two such polynomials, then they must co-
incide in at least t+ 1 points, and hence are identical. Furthermore, there exist
algorithms that permit to efficiently compute f(X) from (y1, . . . , yn′) in case
n′ ≥ t + 1 + 2e, for instance the Berlekamp-Welch algorithm [1]. A simplified
version of the original Berlekamp-Welch algorithm, provided by Gemmell and
Sudan, can be found in [11].

3 The New Scheme and Its Analysis

Let t be an arbitrary positive integer, and n = 2t+ 1. Consider Shamir’s secret
sharing scheme over a field F with |F| > n, with pairwise-distinct non-vanishing
interpolation points x1, . . . , xn ∈ F. Furthermore, let MAC : F × K → T be an
ε-secure MAC with message space F. The sharing procedure Share of our new
scheme is presented in Figure 1.

Local computation: On input s ∈ F, the dealer D chooses a random sharing
polynomial f(X) ∈ F[X] with degree at most t and f(0) = s, and he computes
the Shamir shares s1 = f(x1), . . . , sn = f(xn). Furthermore, for every pair
i, j ∈ [n], he chooses a random keyij ∈ K and computes τij = MAC(keyji, si).

Share distribution: For every i ∈ [n], the dealer D sends to player Pi the share
σi = (si, τi1, . . . , τin, keyi1, . . . , keyin).

Fig. 1. Sharing procedure Share
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The new sharing procedure is identical to the sharing procedure of the Rabin-
BenOr robust secret sharing scheme, except that we describe it by means of
an arbitrary MAC. However, in the end we will use a MAC with short keys
and tags and a correspondingly weak security, which would render the original
Rabin-BenOr scheme insecure. The reader may think of ε being 1/n; indeed, as
we will see later, this will give us δ-robustness with δ approximately 2−n/4.

In order to deal with a non-negligible ε for the security of the MAC, we need
a sophisticated reconstruction procedure. The idea is to inspect the acceptance
graph, which describes which share si is consistent (together with the corre-
sponding tag) with which authentication key keyji, more carefully. Instead of
accepting a share si as being correct as soon as it is consistent with (the keys
of) at least t + 1 players (which means that a dishonest player only needs to
fool one honest player to get his share accepted), we will require, for a share to
be accepted, that it is consistent with at least t + 1 players that hold accepted
shares. In other words, once a share is declared incorrect, then this player’s vote
is not counted anymore, making it harder for other incorrect shares to be ac-
cepted. Some might still survive, though; to take care of that, Reed-Solomon
error correction is then applied to the set of accepted shares. The procedure is
described in Figure 2. It is easy to see that the set I in step 2 is well defined and
can efficiently be computed by starting with the set of all i ∈ [n] and inductively
eliminating “bad” players.

First round: Every player Pi sends si and τi1, . . . , τin to the reconstructor R.

Second round: Every player Pi sends keyi1, . . . , keyin to R.

Local computation:

1. For every i, j ∈ [n], R sets vij to be 1 if the share si is accepted by (the
key of) player Pj , i.e., if τij = MAC(keyji, si), and else to 0.

2. R computes the largest set I ⊆ [n] with the property that

∀ i ∈ I :
∣∣{j ∈ I | vij = 1}

∣∣ = ∑
j∈I

vij ≥ t+ 1 ;

in other words, such that every share of a player in I is accepted by at
least t+ 1 players in I.
Clearly, I contains all honest players. Let c = |I|−(t+1) be the maximum
number of corrupt players in I.

3. Using Berlekamp-Welch, R computes a polynomial f(X) ∈ F[X] of degree
at most t such that f(xi) = si for at least (t+1) + c

2
players i in I. If no

such polynomial exists then R outputs ⊥; otherwise, he outputs s = f(0).

Fig. 2. Reconstruction procedure Rec
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The intuition behind the security is the following. If the corrupt players hand
in only a few incorrect shares and many correct shares, then the incorrect shares
have a good chance of surviving since they only need to be consistent with the keys
of a few honest players. However, since there are only a few incorrect shares, the
Reed-Solomon decoding will take care of them. On the other hand, if the corrupt
players hand inmany incorrect shares, then, because there aremany of them, some
will probably be detected as being incorrect, which will make it harder for the re-
maining incorrect shares because they now need to be consistent with more honest
players, which means that some more incorrect shares will probably be detected,
whichwill make it even harder for the remaining ones, etc., so that in the end, hope-
fully only a few survive so that again Reed-Solomon error correction takes care.
The following theorem shows that the above intuition is indeed correct. However,
the formal reasoning is quite involved, as we will see later.

Theorem 3.1. For any positive integer t, any finite field F with |F| > n = 2t+1,
and any ε-secure MAC : F × K → T with ε ≤ 1/(t + 1), the pair (Share,Rec)
forms an n-player (t, δ)-robust secret sharing scheme for message space F with

δ ≤ e ·
(
(t+ 1)ε

)(t+1)/2
,

where e = exp(1).

The crucial property on δ is that it is not of order ε, as in the Rabin-BenOr
scheme, but of order εΩ(n). This allows us to reduce the authentication key and
tag sizes by a factor (linear in) n.

Specifically, we can get the following instantiation. Let λ be an arbitrary
parameter, and let GF (2m) be the binary field with 2m > n elements. By Sec-
tion 2.2, there exists an ε-secure MAC : GF (2m) × K → T with K = GF (2λ)2

and T = GF (2λ) and ε ≤ m/2λ. By Theorem 3.1, the resulting secret sharing
scheme is δ-robust for δ ≤ e · ((t+1)m/2λ)(t+1)/2. Therefore, for a given security
parameter κ, setting λ = (log(t + 1) + log(m) + 2

t+1 (κ + log(e))�, we obtain

δ ≤ 2−κ, and every share consists of the ordinary m-bit Shamir share plus an
overhead of

3nλ ≤ 12κ+ 3n(log(t+ 1) + log(m) + 3)

bits.

Corollary 3.2. For any positive integers t,m, κ, and for n = 2t+1, there exists
an n-player (t, δ)-robust secret sharing scheme for message space S = {0, 1}m,
with δ = 2−κ and an overhead of O

(
κ+ n(log n+ logm)

)
.

We will now prove Theorem 3.1. Although the idea for the new scheme is rather
simple and natural, the security analysis is non-trivial. One reason is that it
is not clear what the optimal strategy for the adversary is. In comparison, in
the Rabin-BenOr scheme, it is obvious that the best the adversary can do is
to have every corrupt player hand in an incorrect share and hope that at least
one gets accepted. In our new scheme, however, it might be advantages to have
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some corrupt players hand in correct shares; the reason being that such players
could support incorrect shares of other corrupt players, making it easier for them
to survive the elimination round. On the other hand, having too many corrupt
players handing in correct shares will facilitate Reed-Solomon decoding. Another
reason is that there seems to be some circularity: in order to argue that many
incorrect shares get eliminated, we want to argue that incorrect shares need to
be accepted by many honest players in order to survive, but this is only true
once many incorrect shares got eliminated.

Our proof below is pretty much “brute force”. We work out a bound on the
failure probability (for an arbitrary strategy) by essentially listing all possible
scenarios of which incorrect shares might be accepted by which honest players,
and then we simplify the resulting unhandy expression.

Proof (of Theorem 3.1). Privacy is obvious. It remains to prove the recon-
structability property. Consider the state of the reconstruction phase right before
the second round of communication, i.e., after R has received the shares and tags,
but before the keys are communicated. We may assume that at this stage, the
adversary has corrupted t players. We define the following sets. A ⊂ [n] is the
set of corrupt players i that have handed in a modified Shamir share si, and
P ⊂ [n] is the set of corrupt players i that have handed in the correct Shamir
share si. It holds that |A|+ |P| = t. The remaining set H = [n] \ (A ∪ P) is the
set of uncorrupt players.6

We consider the probability space specified by the random choices of the
authentication keys held by the uncorrupt players, conditioned on the shares
and tags handed out by the dealer D during the sharing procedure, plus the
choices of the (possibly modified) authentication keys claimed in the second
round of the reconstruction procedure by the corrupt players. For every pair
i, j ∈ [n], we can define the binary random variable Vij that specifies if player
Pi’s (possibly incorrect) share with the corresponding tag is accepted by player
Pj ’s key. Since the authentication keys of uncorrupt players have been chosen
independently, all the Vij with i ∈ [n] and j ∈ H are independent. Also, Vij = 1
with probability 1 for every pair i, j ∈ H, i.e., honest players accept each others
shares. Furthermore, by the security of the MAC (Definition 2.2), P [Vij =1] ≤ ε
for all i ∈ A and j ∈ H. Finally, it is not too hard to see that it does not help the
corrupt players to hand in correct Shamir shares but incorrect authentication
tags: a player in P that is eliminated is of no use for the adversary; thus, we
may assume that Vij = 1 for every pair i ∈ P , j ∈ [n].

It follows that the set I computed during Rec (which depends on the Vij ’s
and thus we treat it as a random variable here) contains H and P with certainty.
Thus, the reconstruction procedure is guaranteed to output the correct secret if
at most p players i ∈ A end up in I, where p = |P|. Indeed, if |A ∩ I| ≤ p, then
the requirement for Reed-Solomon decoding is satisfied (see Section 2.3 with
n′ = |I| = t+ 1 + c = t+ 1+ p+ e where e = |A ∩ I| ≤ p), and the polynomial

6 The mnemonic is: A for actively corrupt, P for passively corrupt, and H for honest,
but we stress that the players in P are merely passive with respect to their respective
Shamir shares si; they may very well lie about their authentication keys and tags.
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f(X) computed during Rec is guaranteed to satisfy f(xi) = si for at least t+ 1
correct shares, and thus it is the correct sharing polynomial and f(0) the correct
secret.

It thus remains to analyze the probability P [|A ∩ I| > p]. For this, it is
sufficient to consider the case p ≤ (t − 1)/2; indeed, if p > (t − 1)/2 and thus
p ≥ t/2 then obviously |A| ≤ p and hence P [|A∩I| ≤ p] with certainty. Actually,
we will now show that P [|A ∩ I| > 0] is small if p ≤ (t− 1)/2.

We can write P [|A ∩ I| > 0] =
∑


 P [|A ∩ I| = �] where the sum ranges from
� = 1 to t− p. In order to bound the probability P [|A ∩ I| = �], it is convenient
to introduce for every i ∈ A the random variable

Ni =
∑
j∈H

Vij =
∣∣{j ∈ H |Vij =1}

∣∣ ,
i.e., the number of honest players that accept Pi’s incorrect share. Note that since
the Vij ’s are independent for all i ∈ [n] and j ∈ H, so are all the Ni’s. We can now
bound P [|A ∩ I| = �] for an arbitrary � in the range 1 ≤ � ≤ t− p as follows.

P
[
|A ∩ I| = �

]
≤ P

[
∃A◦⊆A : (|A◦|=�) ∧ (∀ i∈A◦ : Ni ≥ t+ 1 − p− �)

]
≤

∑
A◦⊆A
|A◦|=�

P
[
∀ i∈A◦ : Ni ≥ t+ 1 − p− �

]
=

∑
A◦⊆A
|A◦|=�

∏
i∈A◦

P
[
Ni ≥ t+ 1 − p− �

]
≤

∑
A◦⊆A
|A◦|=�

∏
i∈A◦

P
[
∃H◦⊆H : (|H◦| = t+ 1 − p− �) ∧ (∀ j∈H◦ : Vij = 1)

]
≤

∑
A◦⊆A
|A◦|=�

∏
i∈A◦

∑
H◦⊆H

|H◦|=t+1−p−�

P
[
∀ j∈H◦ : Vij = 1

]
Now, since P

[
∀ j∈H◦ : Vij = 1

]
=
∏

j∈H◦
P [Vij = 1] and P [Vij = 1] ≤ ε for all

i ∈ A and j ∈ H, we can proceed as follows, where we write a = |A| = t − p ≥
(t+ 1)/2 and ε̃ = (t+ 1)ε.

P
[
|A ∩ I| = �

]
≤
(
a

�

)
·
((

t+ 1

a− �+ 1

)
· εa−
+1

)


≤
(
a

�

)
·
(
(t+ 1)a−
+1

(a− �+ 1)!
· εa−
+1

)


=
a!

�!(a− �)!
·
(

ε̃a−
+1

(a− �+ 1)!

)


=
ε̃
(a−
+1)

((a− �)!)

· a!/(a− �)!

�!(a− �+ 1)

=

ε̃
(a−
+1)

((a− �)!)

·


∏
k=1

a− �+ k

k(a− �+ 1)︸ ︷︷ ︸
≤1

≤ ε̃
(a−
+1)

((a− �)!)

≤ ε̃
(a−
+1)

(a− �)!
≤ ε̃a

(a− �)!
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where the very last inequality follows from ε̃ = (t+1)ε ≤ 1 (by assumption on ε)
and the fact that min{�(a− �+ 1) | 1 ≤ � ≤ t− p = a} = a, which can easily be
verified.7 We can now conclude that

P [|A ∩ I| > 0] =

t−p∑

=1

P [|A ∩ I| = �] ≤
t−p∑

=1

ε̃a

(a− �)!

≤ ε̃a
a−1∑
k=0

1

k!
≤ ε̃a

∞∑
k=0

1

k!
≤ ε̃(t+1)/2 e

which proves the claim. ��

4 Conclusion and Open Questions

We have shown and analyzed a new robust secret sharing scheme, which com-
bines the computational efficiency of the Rabin-BenOr scheme [17] with a close-
to-optimal overhead of Õ(κ+ n) in the share size, as featured by the (computa-
tionally inefficient) scheme of Cramer et al. [5].

It is interesting to see that our new scheme is based on a completely different
approach than the scheme of Cramer et al., but displays the same order-n gap
to the known lower bound of Ω(κ) for the share size in robust secret sharing.
This raises the question of the true optimal share size in robust secret sharing:
is the linear term in n inherent, or is it an artifact of current constructions?
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vol. 1684, pp. 185–194. Springer, Heidelberg (1999)

4. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 383–395
(1985)

5. Cramer, R., Damg̊ard, I., Fehr, S.: On the Cost of Reconstructing a Secret, or VSS
with Optimal Reconstruction Phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

6. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic
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All-But-Many Lossy Trapdoor Functions
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Abstract. We put forward a generalization of lossy trapdoor functions (LTFs).
Namely, all-but-many lossy trapdoor functions (ABM-LTFs) are LTFs that are
parametrized with tags. Each tag can either be injective or lossy, which leads to
an invertible or a lossy function. The interesting property of ABM-LTFs is that
it is possible to generate an arbitrary number of lossy tags by means of a special
trapdoor, while it is not feasible to produce lossy tags without this trapdoor.

Our definition and construction can be seen as generalizations of all-but-one
LTFs (due to Peikert and Waters) and all-but-N LTFs (due to Hemenway et al.).
However, to achieve ABM-LTFs (and thus a number of lossy tags which is not
bounded by any polynomial), we have to employ some new tricks. Concretely, we
give two constructions that use “disguised” variants of the Waters, resp. Boneh-
Boyen signature schemes to make the generation of lossy tags hard without trap-
door. In a nutshell, lossy tags simply correspond to valid signatures. At the same
time, tags are disguised (i.e., suitably blinded) to keep lossy tags indistinguishable
from injective tags.

ABM-LTFs are useful in settings in which there are a polynomial number of
adversarial challenges (e.g., challenge ciphertexts). Specifically, building on work
by Hemenway et al., we show that ABM-LTFs can be used to achieve selective
opening security against chosen-ciphertext attacks. One of our ABM-LTF con-
structions thus yields the first SO-CCA secure encryption scheme with compact
ciphertexts (O(1) group elements) whose efficiency does not depend on the num-
ber of challenges. Our second ABM-LTF construction yields an IND-CCA (and
in fact SO-CCA) secure encryption scheme whose security reduction is indepen-
dent of the number of challenges and decryption queries.

Keywords: lossy trapdoor functions, public-key encryption, selective opening
attacks.

1 Introduction

Lossy Trapdoor Functions. Lossy trapdoor functions (LTFs) have been formalized by
Peikert and Waters [30], in particular as a means to construct chosen-ciphertext (CCA)
secure public-key encryption (PKE) schemes from lattice assumptions. In a nutshell,
LTFs are functions that may be operated with an injective key (in which case a trapdoor
allows to efficiently invert the function), or with a lossy key (in which case the function
is highly non-injective, i.e., loses information). The key point is that injective and lossy
keys are computationally indistinguishable. Hence, in a security proof (say, for a PKE
scheme), injective keys can be replaced with lossy keys without an adversary noticing.
But once all keys are lossy, a ciphertext does not contain any (significant) information
anymore about the encrypted message. There exist quite efficient constructions of LTFs

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 209–227, 2012.
c© International Association for Cryptologic Research 2012
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based on a variety of assumptions (e.g., [30, 7, 10, 20]). Besides, LTFs have found
various applications in public-key encryption [22, 7, 6, 5, 23, 19] and beyond [16, 30,
27] (where [16] implicitly uses LTFs to build commitment schemes).

LTFs with Tags and All-but-one LTFs. In the context of CCA-secure PKE schemes,
it is useful to have LTFs which are parametrized with a tag1. In all-but-one LTFs (ABO-
LTFs), all tags are injective (i.e., lead to an injective function), except for one single
lossy tag. During a proof of CCA security, this lossy tag will correspond to the (single)
challenge ciphertext handed to the adversary. All decryption queries an adversary may
make then correspond to injective tags, and so can be handled successfully. ABO-LTFs
have been defined, constructed, and used as described by Peikert and Waters [30].

Note that ABO-LTFs are not immediately useful in settings in which there is more
than one challenge ciphertext. One such setting is the selective opening (SO) security
of PKE schemes ([6], see also [11, 18]). Here, an adversary A is presented with a vec-
tor of ciphertexts (which correspond to eavesdropped ciphertexts), and gets to choose
a subset of these ciphertexts. This subset is then opened for A; intuitively, this corre-
sponds to a number of corruptions performed by A. A’s goal then is to find out any
nontrivial information about the unopened ciphertexts. It is currently not known how
to reduce this multi-challenge setting to a single-challenge setting (such as IND-CCA
security). In particular, ABO-LTFs are not immediately useful to achieve SO-CCA se-
curity. Namely, if we follow the described route to achieve security, we would have to
replace all challenge ciphertexts (and only those) with lossy ones. However, an ABO-
LTF has only one lossy tag, while there are many challenge ciphertexts.

All-but-N LTFs and their Limitations. A natural solution has been given by Hemen-
way et al. [23], who define and construct all-but-N LTFs (ABN-LTFs). ABN-LTFs have
exactly N lossy tags; all other tags are injective. This can be used to equip exactly the
challenge ciphertexts with the lossy tags; all other ciphertexts then correspond to injec-
tive tags, and can thus be decrypted. Observe that ABN-LTFs encode the set of lossy
tags in their key. (That is, a computationally unbounded adversary could always brute-
force search which tags lead to a lossy function.) For instance, the construction of [23]
embeds a polynomial in the key (hidden in the exponent of group elements) such that
lossy tags are precisely the zeros of that polynomial.

Hence, ABN-LTFs have a severe drawback: namely, the space complexity of the keys
is at least linear in N . In particular, this affects the SO secure PKE schemes derived in
[23]: there is no single scheme that would work in arbitrary protocols (i.e., for arbitrary
N ). Besides, their schemes quickly become inefficient as N gets larger, since each
encryption requires to evaluate a polynomial of degree N in the exponent.

Our Contribution: LTFs with Many Lossy Tags. In this work, we define and con-
struct all-but-many LTFs (ABM-LTFs). An ABM-LTF has superpolynomially many
lossy tags, which however require a special trapdoor to be found. This is the most cru-
cial difference to ABN-LTFs: with ABN-LTFs, the set of lossy tags is specified initially,
at construction time. Our ABM-LTFs have a trapdoor that allows to sample on the fly

1 What we call “tag” is usually called “branch.” We use “tag” in view of our later construction,
in which tags have a specific structure, and cannot be viewed as branches of a (binary) tree.
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from a superpolynomially large pool of lossy tags. (Of course, without that trapdoor,
and even given arbitrarily many lossy tags, another lossy tag is still hard to find.) This
in particular allows for ABM-LTF instantiations with compact keys and images whose
size is independent of the number of lossy tags.

Our constructions can be viewed as “disguised” variants of the Waters, resp. Boneh-
Boyen (BB) signature schemes [33, 8]. Specifically, lossy tags correspond to valid sig-
natures. However, to make lossy and injective tags appear indistinguishable, we have to
blind signatures by encrypting them, or by multiplying them with a random subgroup
element. We give more details on our constructions below.

A DCR-Based Construction. Our first construction operates in�Ns+1 . (Larger s yield
lossier functions. For our applications, s = 2 will be sufficient.) A tag consists of two
Paillier/Damgård-Jurik encryptions E(x) ∈ �Ns+1 . At the core of our construction is a
variant of Waters signatures over �Ns+1 whose security can be reduced to the problem
of computing E(ab) from E(a) and E(b), i.e., of multiplying Paillier/DJ-encrypted mes-
sages. This “multiplication problem” may be interesting in its own right. If it is easy,
then Paillier/DJ is fully homomorphic; if it is infeasible, then we can use it as a “poor
man’s CDH assumption” in the plaintext domain of Paillier/DJ.

We stress that our construction does not yield a signature scheme; verification of Wa-
ters signatures requires a pairing operation, to which we have no equivalent in �Ns+1 .
However, we will be able to construct a matrix M ∈ �

3×3
Ns+1 out of a tag, such that

the “decrypted matrix” M̃ = D(M) ∈ �3×3
Ns has low rank iff the signature embedded

in the tag is valid. Essentially, this observation uses products of plaintexts occurring
in the determinant det(M̃) to implicitly implement a “pairing over �Ns+1” and verify
the signature. Similar techniques to encode arithmetic formulas in the determinant of a
matrix have been used, e.g., by [25, 2] in the context of secure computation.

Our function evaluation is now a suitable multiplication of the encrypted matrix M
with a plaintext vectorX ∈ �3

Ns , similar to the one from Peikert and Waters [30]. Con-
cretely, on input X , our function outputs an encryption of the ordinary matrix-vector
product M̃ ·X . If M̃ is non-singular, then we can invert this function using the decryp-
tion key. If M̃ has low rank, however, the function becomes lossy. This construction
has compact tags and function images; both consist only of a (small) constant number
of group elements, and only the public key has O(k) group elements, where k is the
security parameter. Thus, our construction does not scale in the numberN of lossy tags.

A Pairing-Based Construction. Our second uses a product group�1 = 〈g1〉 × 〈h1〉
that allows for a pairing. We will implement BB signatures in 〈h1〉, while we blind with
elements from 〈g1〉. Consequently, our security proof requires both the Strong Diffie-
Hellman assumption (SDH, [8]) in 〈h1〉 and a subgroup indistinguishability assumption.

Tags are essentially matrices (Wi,j)i,j for Wi,j ∈ �1 = 〈g1〉 × 〈h1〉. Upon eval-
uation, this matrix is first suitably paired entry-wise to obtain a matrix (Mi,j)i,j over
�T = 〈gT 〉 × 〈hT 〉, the pairing’s target group. This operation will ensure that (a) Mi,j

(for i �= j) always lies in 〈gT 〉, and (b) Mi,i lies in 〈gT 〉 iff the h1-factor of Wi,i con-
stitutes a valid BB signature for the whole tag. With these ideas in mind, we revisit the
original matrix-based LTF construction from [30] to obtain a function with trapdoors.
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Unfortunately, using the matrix-based construction from [30] results in rather large
tags (of size O(n2) group elements for a function with domain {0, 1}n). On the bright
side, a number of random self-reducibility properties allow for a security proof whose
reduction quality does not degrade with the number N of lossy tags (i.e., challenge
ciphertexts) around. Specifically, neither construction nor reduction scale in N .

Applications. Given the work of [23], a straightforward application of our results is
the construction of an SO-CCA secure PKE scheme. (However, a slight tweak is re-
quired compared to the construction from [23] — see Section 5.3 for details.) Unlike
the PKE schemes from [23], both of our ABM-LTFs give an SO-CCA construction that
is independent of N , the number of challenge ciphertexts. Moreover, unlike the SO-
CCA secure PKE scheme from [19], our DCR-based SO-CCA scheme has compact
ciphertexts of O(1) group elements. Finally, unlike both [23] and [19], our pairing-
based scheme has a reduction that does not depend on N and the number of decryption
queries (see the full version for details).

As a side effect, our pairing-based scheme can be interpreted as a new kind of CCA
secure PKE scheme with a security proof that is tight in the number of challenges
and decryption queries. This solves an open problem of Bellare et al. [4], although the
scheme should be seen as a (relatively inefficient) proof of concept rather than a practi-
cal system. Also, to be fair, we should mention that the SDH assumption we use in our
pairing-based ABM-LTF already has a flavor of accommodating multiple challenges:
an SDH instance contains polynomially many group elements.

Open Problems. An interesting open problem is to find different, and in particular ef-
ficient and tightly secure ABM-LTFs under reasonable assumptions. This would imply
efficient and tightly (SO-)CCA-secure encryption schemes. (With our constructions,
one basically has to choose between efficiency and a tight reduction.) Also, our pairing-
based PKE scheme achieves only indistinguishability-based, but not (in any obvious
way) simulation-based SO security [6]. (To achieve simulation-based SO security, a
simulator must essentially be able to efficiently explain lossy ciphertexts as encryp-
tions of any given message, see [6, 19].) However, as we demonstrate in case of our
DCR-based scheme, in some cases ABM-LTFs can be equipped with an additional “ex-
plainability” property that leads to simulation-based SO security (see the full version
for details). It would be interesting to find other applications of ABM-LTFs. One re-
viewer suggested that ABM-LTFs can be used instead of ABO-LTFs in the commitment
scheme from Nishimaki et al. [27], with the goal of attaining reusable commitments.

Organization. After fixing some notation in Section 2, we proceed to our defini-
tion of ABM-LTFs in Section 3. We define and analyze our DCR-based ABM-LTF
in Section 4. We then show how ABM-LTFs imply CCA-secure (indistinguishability-
based) selective-opening security in Section 5. Due to lack of space, we postpone a
detailed description and analysis of our pairing-based ABM-LTF to the full version.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , n}. Throughout the paper, k ∈ � de-
notes the security parameter. For a finite set S, we denote by s ← S the process of
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sampling s uniformly from S. For a probabilistic algorithmA, we denote y ← A(x;R)
the process of running A on input x and with randomness R, and assigning y the
result. We let RA denote the randomness space of A; we require RA to be of the
form RA = {0, 1}r. We write y ← A(x) for y ← A(x;R) with uniformly cho-
sen R ∈ RA, and we write y1, . . . , ym ← A(x) for y1 ← A(x), . . . , ym ← A(x)
with fresh randomness in each execution. If A’s running time is polynomial in k, then
A is called probabilistic polynomial-time (PPT). The statistical distance of two ran-
dom variables X and Y over some countable domain S is defined as SD (X ; Y ) :=
1
2

∑
s∈S |Pr [X = s] − Pr [Y = s]|.

Chameleon Hashing. A chameleon hash function (CHF, see [26]) is collision-resistant
when only the public key of the function is known. However, this collision-resistance
can be broken (in a very strong sense) with a suitable trapdoor. We will assume an input
domain of {0, 1}∗. We do not lose (much) on generality here, since one can always first
apply a collision-resistant hash function on the input to get a fixed-size input.

Definition 1 (Chameleon Hash Function). A chameleon hash function CH consists of
the following PPT algorithms:
Key Generation. CH.Gen(1k) outputs a key pkCH along with a trapdoor tdCH.
Evaluation. CH.Eval(pkCH, X ;RCH) maps an input X ∈ {0, 1}∗ to an image Y . By

RCH, we denote the randomness used in the process. We require that if RCH is
uniformly distributed, then so is Y (over its respective domain).

Equivocation. CH.Equiv(tdCH, X,RCH, X
′) outputs randomnessR′

CH with

CH.Eval(pkCH, X ;RCH) = CH.Eval(pkCH, X
′;R′

CH) (1)

for the corresponding key pkCH. We require that for anyX,X ′, if RCH is uniformly
distributed, then so is R′

CH.
We require that CH is collision-resistant in the sense that given pkCH, it is infeasible to
find X,RCH, X

′, R′
CH with X �= X ′ that meet (1). Formally, for every PPT B,

AdvcrCH,B(k) := Pr
[
X �= X ′ and (1) holds | (X,RCH, X

′, R′
CH) ← B(1k, pkCH)

]
is negligible, where (pkCH, tdCH) ← CH.Gen(1k).

Lossy Trapdoor Functions. Lossy trapdoor functions (see [30]) are a variant of trap-
door one-way functions. They may be operated in an “injective mode” (which allows to
invert the function) and a “lossy mode” in which the function is non-injective. For sim-
plicity, we restrict to an input domain {0, 1}n for polynomially bounded n = n(k) > 0.

Definition 2 (Lossy Trapdoor Function). A lossy trapdoor function (LTF) LTF with
domain Dom consists of the following algorithms:
Key generation. LTF.IGen(1k) yields an evaluation key ek and an inversion key ik .
Evaluation. LTF.Eval(ek , X) (withX ∈ Dom) yields an image Y . Write Y =fek(X).
Inversion. LTF.Invert(ik , Y ) outputs a preimage X . Write X = f−1

ik (Y ).
Lossy key generation. LTF.LGen(1k) outputs an evaluation key ek ′.
We require the following:
Correctness. For all (ek , ik ) ← LTF.IGen(1k), X ∈ Dom, it is f−1

ik (fek (X)) = X .
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Indistinguishability. The first output of LTF.IGen(1k) is indistinguishable from the
output of LTF.LGen(1k), i.e.,

AdvindLTF,A(k) := Pr
[
A(1k, ek ) = 1

]
− Pr

[
A(1k, ek ′) = 1

]
is negligible for all PPT A, for (ek , ik ) ← LTF.IGen(1k), ek ′ ← LTF.LGen(1k).

Lossiness. We say that LTF is �-lossy if for all possible ek ′ ← LTF.LGen(1k), the
image set fek′(Dom) is of size at most |Dom|/2
.

3 Definition of ABM-LTFs

We are now ready to define ABM-LTFs. As already discussed in Section 1, ABM-LTFs
generalize ABO-LTFs and ABN-LTFs in the sense that there is a superpolynomially
large pool of lossy tags from which we can sample. We require that even given oracle
access to such a sampler of lossy tags, it is not feasible to produce a (fresh) non-injective
tag. Furthermore, it should be hard to distinguish lossy from injective tags.

Definition 3 (ABM-LTF). An all-but-many lossy trapdoor function (ABM-LTF) ABM
with domain Dom consists of the following PPT algorithms:
Key generation. ABM.Gen(1k) yields an evaluation key ek , an inversion key ik , and

a tag key tk . The evaluation key ek defines a set T = Tp × {0, 1}∗ that contains
the disjoint sets of lossy tags Tloss ⊆ T and injective tags Tinj ⊆ T . Tags are of the
form t = (tp, ta), where tp ∈ Tp is the core part of the tag, and ta ∈ {0, 1}∗ is the
auxiliary part of the tag.

Evaluation. ABM.Eval(ek , t,X) (for t ∈ T , X ∈ Dom) produces Y =: fek,t(X).
Inversion. ABM.Invert(ik , t, Y ) (with t ∈ Tinj) outputs a preimage X =: f−1

ik ,t(Y ).
Lossy tag generation. ABM.LTag(tk , ta) takes as input an auxiliary part ta ∈ {0, 1}∗

and outputs a core tag tp such that t = (tp, ta) is lossy.
We require the following:
Correctness. For all possible (ek , ik , tk) ← ABM.Gen(1k), t ∈ Tinj, and X ∈ Dom,

it is always f−1
ik ,t(fek ,t(X)) = X .

Lossiness. We say that ABM is �-lossy if for all possible (ek , ik , tk) ← ABM.Gen(1k),
and all lossy tags t ∈ Tloss, the image set fek,t(Dom) is of size at most |Dom|/2
.

Indistinguishability. Even multiple lossy tags are indistinguishable from random tags:

AdvindABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk,·) = 1

]
− Pr

[
A(1k, ek)OTp (·) = 1

]
is negligible for all PPT A, where (ek , ik , tk) ← ABM.Gen(1k), and OT (·) ig-
nores its input and returns a uniform and independent core tag tp ← Tp.

Evasiveness. Non-injective tags are hard to find, even given multiple lossy tags:

AdvevaABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk ,·) ∈ T \ Tinj

]
is negligible with (ek , ik , tk) ← ABM.Gen(1k), and for any PPT algorithm A
that never outputs tags obtained through oracle queries (i.e., A never outputs tags
t = (tp, ta), where tp has been obtained by an oracle query ta).
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On Our Tagging Mechanism. Our tagging mechanism is different from the mecha-
nism from ABO-, resp. ABN-LTFs. In particular, our tag selection involves an auxiliary
and a core tag part; lossy tags can be produced for arbitrary auxiliary tags. (Conceptu-
ally, this resembles the two-stage tag selection process from Abe et al. [1] in the context
of hybrid encryption.) On the other hand, ABO- and ABN-LTFs simply have fully ar-
bitrary (user-selected) bitstrings as tags.

The reason for our more complicated tagging mechanism is that during a security
proof, tags are usually context-dependent and not simply random. For instance, a com-
mon trick in the public-key encryption context is the following: upon encryption, choose
a one-time signature keypair (v, s), set the tag to the verification key v, and then finally
sign the whole ciphertext using the signing key s. This trick has been used numerous
times (e.g., [17, 12, 30, 31]) and ensures that a tag cannot be re-used by an adversary in
a decryption query. (To re-use that tag, an adversary would essentially have to forge a
signature under v.)

However, in our constructions, in particular lossy tags cannot be freely chosen. (This
is different from ABO- and ABN-LTFs and stems from the fact that there are superpoly-
nomially many lossy tags.) But as outlined, during a security proof, we would like to
embed auxiliary information in a tag, while being able to force the tag to be lossy. We
thus divide the tag into an auxiliary part (which can be used to embed, e.g., a verification
key for a one-time signature), and a core part (which will be used to enforce lossiness).

4 A DCR-Based ABM-LTF

We now construct an ABM-LTF ABMD in rings �Ns+1 for composite N . Domain and
codomain of our function will be �3

Ns and (�∗
Ns+1)3, respectively. One should have in

mind a value of s ≥ 2 here, since we will prove that ABMD is ((s− 1) log2(N))-lossy.

4.1 Setting and Assumptions

In the following, let N = PQ for primes P and Q, and fix a positive integer s. Write
ϕ(N) := (P − 1)(Q − 1). We will silently assume that P and Q are chosen from
a distribution that depends on the security parameter. Unless indicated otherwise, all
computations will take place in �Ns+1 , i.e., modulo Ns+1. It will be useful to es-
tablish the notation h := 1 + N ∈ �Ns+1 . We also define algorithms E and D by
E(x) = rN

s

hx for x ∈ �Ns and a uniformly and independently chosen r ∈ �∗
Ns+1 ,

and D(c) = ((cϕ(N))1/ϕ(N) mod Ns − 1)/N ∈ �Ns for c ∈ �Ns+1 . That is, E and D
are Paillier/Damgård-Jurik encryption and decryption operations as in [28, 14], so that
D(rN

s

hx) = x and D(E(x)) = x. Moreover, D can be efficiently computed using the
factorization of N . We will also apply D to vectors or matrices over �Ns+1 , by which
we mean component-wise application. We make the following assumptions:

Assumption 1. The s-Decisional Composite Residuosity (short: s-DCR) assumption
holds iff

Advs-dcr
D (k) := Pr

[
D(1k, N, rN

s

) = 1
]
− Pr

[
D(1k, N, rN

s

h) = 1
]

is negligible for all PPT D, where r ← �∗
Ns+1 is chosen uniformly.
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Assumption 1 is rather common and equivalent to the semantic security of the Pail-
lier [28] and Damgård-Jurik (DJ) [14] encryption schemes. In fact, it turns out that all
s-DCR assumptions are (tightly) equivalent to 1-DCR [14]. Nonetheless, we make s
explicit here to allow for a simpler exposition. Also note that Assumption 1 supports a
form of random self-reducibility. Namely, given one challenge element c ∈ �∗

Ns+1 , it is
possible to generate many fresh challenges ci with the same decryption D(ci) = D(c)
by re-randomizing the rN

s

part.

Assumption 2. The No-Multiplication (short: No-Mult) assumption holds iff

Advmult
A (k) := Pr

[
A(1k, N, c1, c2) = c∗ ∈ �∗

N2 for D(c∗) = D(c1) · D(c2) mod Ns
]

is negligible for all PPT A, where c1, c2 ← �
∗
N2 are chosen uniformly.

The No-Mult assumption stipulates that it is infeasible to multiply Paillier-encrypted
messages. If No-Mult (along with s-DCR and a somewhat annoying technical assump-
tion explained below) hold, then our upcoming construction will be secure. But if the
No-Mult problem is easy, then Paillier encryption is fully homomorphic.2

The following technical lemma will be useful later on, because it shows how to lift
�N2 -encryptions to �Ns+1-encryptions.

Lemma 1 (Lifting, Implicit in [14]). Let s ≥ 1 and τ : �N2 → �Ns+1 be the canon-
ical embedding with τ(c mod N2) = c mod Ns+1 for c ∈ �N2 interpreted as an
integer from {0, . . . , N2 − 1}. Then, for any c ∈ �∗

N2 , and X := D(τ(c)) ∈ �Ns and
x := D(c) ∈ �N , we have X = x mod N .

Proof. Consider the canonical homomorphism π : �Ns+1 → �N2 . Write �∗
Ns+1 =

〈gs〉 × 〈hs〉 for some gs ∈ �∗
Ns+1 of order ϕ(N) and hs := 1 + N mod Ns+1. We

have π(〈gs〉) = 〈g1〉 and π(hx
s ) = hx mod N

1 . Since π◦π̂ = id�N2 , this gives π̂(gu
1h

x
1) =

gu′

s hx+x′N
s for suitable u′, x′.

Unfortunately, we need another assumption to exclude certain corner cases:

Assumption 3. We require that the following function is negligible for all PPT A:

AdvnoninvA (k) := Pr
[
A(1k, N) = c ∈ �N2 such that 1 < gcd(D(c), N) < N

]
.

Intuitively, Assumption 3 stipulates that it is infeasible to generate Paillier encryptions
of “funny messages.” Note that actually knowing any such message allows to factor N .

4.2 Our Construction

Overall Idea. The first idea in our construction will be to use the No-Mult assump-
tion as a “poor man’s CDH assumption” in order to implement Waters signatures [33]
over �Ns+1 . Recall that the verification of Waters signatures requires a pairing oper-
ation, which corresponds to the multiplication of two Paillier/DJ-encrypted messages

2 Of course, there is a third, less enjoyable possibility. It is always conceivable that an algorithm
breaks No-Mult with low but non-negligible probability. Such an algorithm may not be useful
for constructive purposes. Besides, if either s-DCR or the annoying technical assumption do
not hold, then our construction may not be secure.
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in our setting. We do not have such a multiplication operation available; however, for
our purposes, signatures will never actually have to be verified, so this will not pose a
problem. We note that the original Waters signatures from [33] are re-randomizable and
thus not strongly unforgeable. To achieve the evasiveness property from Definition 3,
we will thus combine Waters signatures with a chameleon hash function, much like
Boneh et al. [9] did to make Waters signatures strongly unforgeable.

Secondly, we will construct 3 × 3-matrices M = (Mi,j)i,j over �Ns+1 , in which
we carefully embed our variant of Waters signatures. Valid signatures will correspond
to singular “plaintext matrices” M̃ := (D(Mi,j))i,j ; invalid signatures correspond to

full-rank matrices M̃ . We will define our ABM-LTF f as a suitable matrix-vector mul-
tiplication ofM with an input vectorX ∈ �3

Ns . For a suitable choice of s, the resulting
f will be lossy if det(M̃) = 0.

Key Generation. ABM.Gen(1k) first chooses N = PQ, and a key pkCH along with
trapdoor tdCH for a chameleon hash function CH. Finally, ABM.Gen chooses a, b ←
�Ns , as well as k + 1 values hi ← �Ns for 0 ≤ i ≤ k, and sets

A ← E(a) B ← E(b) Hi ← E(hi) (for 0 ≤ i ≤ k)

ek = (N,A,B, (Hi)
k
i=0, pkCH) ik = (ek , P,Q) tk = (ek , a, b, (hi)

k
i=0, tdCH).

Tags. Recall that a tag t = (tp, ta) consists of a core part tp and an auxiliary part
ta ∈ {0, 1}∗. Core parts are of the form tp = (R,Z,RCH) with R,Z ∈ �∗

Ns+1 and
randomness RCH for CH. (Thus, random core parts are simply uniform values R,Z ∈
�∗

Ns+1 and uniform CH-randomness.) With t, we associate the chameleon hash value
T := CH.Eval(pkCH, (R,Z, ta)), and a group hash value H := H0

∏
i∈T Hi, where

i ∈ T means that the i-th bit of T is 1. Let h := D(H) = h0 +
∑

i∈T hi. Also, we
associate with t the matrices

M =

⎛⎝Z A R
B h 1
H 1 h

⎞⎠ ∈ �3×3
Ns+1 M̃ =

⎛⎝z a rb 1 0
h 0 1

⎞⎠ ∈ �3×3
Ns , (2)

where M̃ = D(M) is the component-wise decryption of M , and r = D(R) and z =

D(Z). It will be useful to note that det(M̃) = z − (ab + rh). We will call t lossy if
det(M̃) = 0, i.e., if z = ab+ rh; we say that t is injective if M̃ is invertible.

Lossy Tag Generation. ABM.LTag(tk , ta), given tk=((N,A,B, (Hi)i), a, b, (hi)
k
i=0,

tdCH) and an auxiliary tag part ta ∈ {0, 1}∗, picks an image T of CH that can later
be explained (using tdCH) as the image of an arbitrary preimage (R,Z, ta). Let h :=
h0 +

∑
i∈T hi and R ← E(r) for uniform r ← �Ns , and set Z ← E(z) for z =

ab+rh. Finally, letRCH be CH-randomness for which T = CH.Eval(pkCH, (R,Z, ta)).
Obviously, this yields uniformly distributed lossy tag parts (R,Z,RCH).

Evaluation. ABM.Eval(ek , t,X), for ek = (N,A,B, (Hi)i, pkCH), t = ((R,Z,RCH),
ta), and a preimage X = (Xi)

3
i=1 ∈ �3

Ns , first computes the matrix M = (Mi,j)i,j as
in (2). Then, ABM.Eval computes and outputs
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Y :=M ◦X :=

⎛⎝ 3∏
j=1

M
Xj

i,j

⎞⎠3

i=1

.

Note that the decryption D(Y ) is simply the ordinary matrix-vector product D(M) ·X .

Inversion and Correctness. ABM.Invert(ik , t, Y ), given an inversion key ik , a tag t,
and an image Y = (Yi)

3
i=1, determines X = (Yi)

3
i=1 as follows. First, ABM.Invert

computes the matrices M and M̃ = D(M) as in (2), using P,Q. For correctness, we
can assume that the tag t is injective, so M̃ is invertible; let M̃−1 be its inverse. Since
D(Y ) = M̃ ·X , ABM.Invert can retrieve X as M̃−1 · D(Y ) = M̃−1 · M̃ ·X .

4.3 Security Analysis

Theorem 1 (Security of ABMD). Assume that Assumption 1, Assumption 2, and As-
sumption 3 hold, that CH is a chameleon hash function, and that s ≥ 2. Then the
algorithms described in Section 4.2 form an ABM-LTF ABMD as per Definition 3.

We have yet to prove lossiness, indistinguishability, and evasiveness.

Lossiness. Our proof of lossiness loosely follows Peikert and Waters [30]:

Lemma 2 (Lossiness of ABMD). ABMD is ((s− 1) log2(N))-lossy.

Proof. Assume an evaluation key ek = (N,A,B, (Hi)i, pkCH), and a lossy tag t, so
that the matrix M̃ from (2) is of rank ≤ 2. Hence, any fixed decrypted image

D(fek,t(X)) = D(M ◦X) = M̃ ·X

leaves at least one inner product 〈C,X〉 ∈ �Ns (for C ∈ �3
Ns that only depends on

M̃ ) completely undetermined. The additional information contained in the encryption
randomness of an image Y = fek,t(X) fixes the components of X and thus 〈C,X〉
only moduloϕ(N) < N . Thus, for any given image Y , there are at least �Ns/ϕ(N) ≥
Ns−1 possible values for 〈C,X〉 and thus possible preimages. The claim follows.

Indistinguishability. Observe that lossy tags can be produced without knowledge of
the factorization ofN . Hence, even while producing lossy tags, we can use the indistin-
guishability of Paillier/DJ encryptions E(x). This allows to substitute the encryptions
R = E(r), Z = E(z) in lossy tags by independently uniform encryptions. This step
also makes the CH-randomness independently uniform, and we end up with random
tags. We omit the straightforward formal proof and state:

Lemma 3 (Indistinguishability of ABMD). Given the assumptions from Theorem 1,
ABMD is indistinguishable. Concretely, for any PPT adversary A, there exists an s-
DCR distinguisher D of roughly the same complexity as A, such that

AdvindABMD,A(k) = Advs-dcr
D (k). (3)

The tightness of the reduction in (3) stems from the random self-reducibility of s-DCR.
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Evasiveness. It remains to prove evasiveness.

Lemma 4 (Evasiveness of ABMD). Given the assumptions from Theorem 1, ABMD
is evasive. Concretely, for any PPT adversary A that makes at most Q = Q(k) oracle
queries, there exist adversaries B, D, and F of roughly the same complexity asA, with

AdvevaABMD,A(k) ≤ O(kQ(k))·Advmult
F (k)+AdvnoninvE (k)+

∣∣∣Advs-dcr
D (k)

∣∣∣+AdvcrCH,B(k).

At its core, the proof of Lemma 4 adapts the security proof of Waters signatures to
�Ns+1 . That is, we will create a setup in which we can prepareQ(k) lossy tags (which
correspond to valid signatures), and the tag the adversary finally outputs will be inter-
preted as a forged signature. Crucial to this argument will be a suitable setup of the
group hash function (Hi)

k
i=0. Depending on the (group) hash value, we will either be

able to create a lossy tag with that hash, or use any lossy tag with that hash to solve a
underlying No-Mult challenge. With a suitable setup, we can hope that with probability
O(1/(kQ(k))), Q(k) lossy tags can be created, and the adversary’s output can be used
to solve an No-Mult challenge. The proof of Lemma 4 is somewhat complicated by the
fact that in order to use the collision-resistance of the employed CHF, we have to first
work our way towards a setting in which the CHF trapdoor is not used. This leads to a
somewhat tedious “deferred analysis” (see [21]) and the s-DCR term in the lemma.

Proof. We turn to the full proof of Lemma 4. Fix an adversaryA. We proceed in games.
In Game 1,A(ek ) interacts with an ABM.LTag(tk , ·) oracle that produces core tag parts
for lossy tags tp = ((R,Z,RCH), ta) that satisfy z = ab+rh for r = D(R), z = D(Z),
and h = D(H) with H = H0

∏
i∈T Hi and T = CH.Eval(pkCH, (R,Z, ta)). Without

loss of generality, we assume that A makes exactly Q oracle queries, where Q = Q(k)
is a suitable polynomial. Let badi denote the event that the output of A in Game i is a
lossy tag, i.e., lies in Tloss. By definition,

Pr [bad1] = Pr
[
AABM.LTag(tk ,·)(ek ) ∈ Tloss

]
, (4)

where the keys ek and tk are generated via (ek , ik , tk) ← ABM.Gen(1k).

Getting Rid of (Chameleon) Hash Collisions. To describe Game 2, let badhash be
the event that A finally outputs a tag t = ((R,Z,RCH), ta) with a CHF hash T =
CH.Eval((R,Z, ta);RCH) that has already appeared as the CHF hash of an ABM.LTag
output (with the corresponding auxiliary tag part input). Now Game 2 is the same as
Game 1, except that we abort (and do not raise event bad2) if badhash occurs. Obviously,

Pr [bad1] − Pr [bad2] ≤ Pr [badhash] . (5)

It would seem intuitive to try to use CH’s collision resistance to bound Pr [badhash].
Unfortunately, we cannot rely on CH’s collision resistance in Game 2 yet, since we use
CH’s trapdoor in the process of generating lossy tags. So instead, we use a technique
called “deferred analysis” [21] to bound Pr [badhash]. The idea is to forget about the
storyline of our evasiveness proof for the moment and develop Game 2 further up to a
point at which we can use CH’s collision resistance to bound Pr [badhash].
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This part of the proof largely follows the argument from Lemma 3. Concretely, we
can substitute the lossy core tag parts output by ABM.LTag by uniformly random core
tag parts. At this point, CH’s trapdoor is no longer required to implement the oracle
A interacts with. Hence we can apply CH’s collision resistance to bound Pr [badhash]
in this modified game. This also implies a bound on Pr [badhash] in Game 2: since the
occurrence of badhash is obvious from the interaction between A and the experiment,
Pr [badhash] must be preserved across these transformations. We omit the details, and
state the result of this deferred analysis:

Pr [badhash] ≤
∣∣∣Advs-dcr

D (k)
∣∣∣+ AdvcrCH,B(k) (6)

for suitable adversaries D, E, and B. This ends the deferred analysis step, and we are
back on track in our evasiveness proof.

Preparing the Setup for Our Reduction. In Game 3, we set up the group hash func-
tion given by (Hi)

k
i=0 differently. Namely, for 0 ≤ i ≤ k, we choose independent

γi ← �Ns , and set

Hi := AαiE(γi), so that hi := D(Hi) = αia+ γi mod Ns (7)

for independentαi ∈ � yet to be determined. Note that this yields an identical distribu-
tion of the Hi no matter how concretely we choose the αi. For convenience, we write
α = α0 +

∑
i∈T αi and γ = γ0 +

∑
i∈T γi for a given tag t with associated CH-image

T . This in particular implies h := D(H) = αa + γ for the corresponding group hash
H = H0

∏
i∈T Hi. Our changes in Game 3 are purely conceptual, and so

Pr [bad3] = Pr [bad2] . (8)

To describe Game 4, let t(i) denote the i-th lossy core tag part output by ABM.LTag

(including the corresponding auxiliary part t(i)a ), and let t∗ be the tag finally output by
A. Similarly, we denote with T (i), α∗, etc. the intermediate values for the tags output by
ABM.LTag and A. Now let goodsetup be the event that gcd(α(i), N) = 1 for all i, and
that α∗ = 0. In Game 4, we abort (and do not raise event bad4) if ¬goodsetup occurs.
(In other words, we only continue if each H(i) has an invertible A-component, and if
H∗ has no A-component.)

Waters [33] implicitly shows that for a suitable distribution of αi, the probability
Pr

[
goodsetup

]
can be kept reasonably high:

Lemma 5 (Waters [33], Claim 2, Adapted to Our Setting). In the situation of Game
4, there exist efficiently computable distributions αi, such that for every possible view
view that A could experience in Game 4, we have

Pr
[
goodsetup | view

]
≥ O(1/(kQ(k))). (9)

This directly implies

Pr [bad4] ≥ Pr
[
goodsetup

]
· Pr [bad3] . (10)
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An Annoying Corner Case. Let Pr [badtag] be the event that A outputs a tag t∗ for

which det(M̃∗) = z∗ − (ab + r∗h∗) is neither invertible nor 0 modulo N . This in
particular means that t∗ is neither injective nor lossy. A straightforward reduction to
Assumption 3 shows that

Pr [badtag] ≤ AdvnoninvE (k) (11)

for an adversaryE that simulates Game 4 and outputs Z∗/(hab · (R∗)h
∗
) mod N2.

The Final Reduction. We now claim that

Pr [bad4] ≤ Advmult
F (k) + Pr [badtag] (12)

for the following adversary F on the No-Mult assumption. Our argument follows in the
footsteps of the security proof of Waters’ signature scheme [33]. Our No-Mult adversary
F obtains as input c1, c2 ∈ �N2 , and is supposed to output c∗ ∈ �N2 with D(c1) ·
D(c2) = D(c∗) ∈ �N . In order to do so, F simulates Game 4. F incorporates its own
challenge as A := τ(c1)E(a

′N) and B := τ(c2)E(b
′N) for the embedding τ from

Lemma 1 and uniform a′, b′ ∈ �Ns−1 . This gives uniformly distributedA,B ∈ �∗
Ns+1 .

Furthermore, by Lemma 1, we have a = D(c1) mod N and b = D(c2) mod N for
a := D(A) and b := D(B). Note that F can still compute all Hi and thus ek efficiently
using (7).

We now describe how F constructs lossy tags, as required to implement oracle Tloss

of Game 4. Since the CH trapdoor tdCH is under F ’s control, we can assume a given
CH-value T to which we can later map our tag ((R,Z), ta). By our changes from Game
4, we can also assume that the corresponding α = α0 +

∑
i∈T αi is invertible modulo

Ns and known. We pick δ ← �Ns , and set

R := B−1/α mod Ns

E(δ) Z := AαδBγ/αE(γδ).

With the correspondingCH-randomnessRCH, this yields perfectly distributed lossy tags
satisfying

D(A)·D(B)+D(R)·D(H) = ab+(−b/α+δ)(αa+γ) = αδa−(γ/α)b+γδ = D(Z).

Note that this generation of lossy tags is not possible when α = 0.
So far, we have argued that F can simulate Game 4 perfectly for A. It remains to

show how F can extract an No-Mult solution out of a tag t∗ output by A. Unless badtag
occurs or t∗ is injective, we have

z∗ = D(Z∗) = D(A) · D(B) + D(R∗) · D(H∗) = ab+ r∗h∗ mod N.

Since we abort otherwise, we may assume that α∗ = 0, so that z∗ = ab + r∗h∗ =
ab + γ∗r∗ mod N for known γ∗. This implies ab = z∗ − γ∗r∗ mod N , so F can
derive and output a �N2 -encryption of ab as Z∗/(R∗)γ

∗
mod N2. This shows (12).

Taking (4)-(12) together shows Lemma 4.
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5 Application: Selective Opening Security

5.1 ABM-LTFs with Explainable Tags

For the application of SOA-CCA security, we need a slight variant of ABM-LTFs. Con-
cretely, we require that values that are revealed during a ciphertext opening can be
explained as uniformly chosen “without ulterior motive,” if only their distribution is
uniform. (This is called “invertible sampling” by Damgård and Nielsen [15].)

Definition 4 (Efficiently samplable and explainable). A finite set S is efficiently sam-
plable and explainable if any element of S can be explained as the result of a uniform
sampling. Formally, there are PPT algorithms SampS , ExplS , such that
1. SampS(1

k) uniformly samples from S, and
2. for any s ∈ S, ExplS(s) outputs random coins for Samp that are uniformly dis-

tributed among all random coins R with SampS(1
k;R) = s.

Definition 5 (ABM-LTF with explainable tags). An ABM-LTF has explainable tags
if the core part of tags is efficiently samplable and explainable. Formally, if we write
T = Tp × Taux, where Tp and Taux denote the core and auxiliary parts of tags, then Tp

is efficiently samplable and explainable.

Explainable tags and our ABM-LTFs. Our DCR-based ABM-LTF ABMD has ex-
plainable tags, as �∗

Ns+1 is efficiently explainable. Concretely, Samp�∗
Ns+1

can choose

a uniform s ← �Ns+1 and test s for invertibility. If s is invertible, we are done; if not,
we can factor N and choose a uniform s′ ← �∗

Ns+1 directly, using the group order of
�∗

Ns+1 . Similarly, our pairing-based ABM-LTF ABMP has explainable tags as soon as
the employed group�1 is efficiently samplable and explainable. We will also have to
explain the CHF randomness RCH in both of our constructions. Fortunately, the CHF
randomness of many known constructions [29, 26, 16, 3, 13, 24] consists of uniform
values (over an explainable domain), which are efficiently samplable and explainable.

5.2 Selective Opening Security

PKE Schemes. A public-key encryption (PKE) scheme consists of three PPT algo-
rithms (PKE.Gen,PKE.Enc,PKE.Dec). Key generation PKE.Gen(1k) outputs a pub-
lic key pk and a secret key sk . Encryption PKE.Enc(pk ,msg) takes a public key pk
and a message msg , and outputs a ciphertext C. Decryption PKE.Dec(sk , C) takes
a secret key sk and a ciphertext C, and outputs a message msg . For correctness, we
want PKE.Dec(sk , C) = msg for all msg , all (pk , sk) ← PKE.Gen(1k), and all
C ← (pk ,msg). For simplicity, we only consider message spaces {0, 1}k.

Definition of Selective Opening Security. Following [18, 6, 23], we present a defini-
tion for security under selective openings that captures security under adaptive attacks.
The definition is indistinguishability-based; it demands that even an adversary that gets
to see a vector of ciphertexts cannot distinguish the true contents of the ciphertexts from
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independently sampled plaintexts.3 To model adaptive corruptions, our notion also al-
lows the adversary to request “openings” of adaptively selected ciphertexts.

Definition 6 (Efficiently Re-samplable). Let N = N(k) > 0, and let dist be a joint
distribution over ({0, 1}k)N . We say that dist is efficiently re-samplable if there is a
PPT algorithm ReSampdist such that for any I ⊆ [N ] and any partial vector msg′

I :=
(msg ′(i))i∈I ∈ ({0, 1}k)|I|, ReSampdist(msg′

I) samples from the distribution dist,
conditioned on msg (i) = msg ′(i) for all i ∈ I.

Definition 7 (IND-SO-CCA Security). A PKE scheme PKE = (PKE.Gen,PKE.Enc,
PKE.Dec) is IND-SO-CCA secure iff for every polynomially bounded function N =
N(k) > 0, and every stateful PPT adversary A, the function

Advcca-so
PKE,A(k) := Pr

[
Expind-so-cca-b

PKE,A (k) = 1
]
− 1

2

is negligible. Here, the experiment Expind-so-cca-b
PKE,A (k) is defined as follows:

Experiment Expind-so-cca-b
PKE,A

b ← {0, 1}
(pk , sk) ← PKE.Gen(1k)
(dist,ReSampdist) ← APKE.Dec(sk ,·)(pk )
msg0 := (msg (i))i∈[n] ← dist

R := (R(i))i∈[n] ← (RPKE.Enc)
N

C := (C(i))i∈[n] := (PKE.Enc(pk ,msg(i);R(i)))i∈[n]

I ← APKE.Dec(sk ,·)(select,C)
msg1 := ReSampdist(msgI)
outA ← APKE.Dec(sk ,·)(output, (msg (i), R(i))i∈I ,msgb)
return (outA = b)

We only allow A that (a) always output efficiently re-samplable distributions dist over
({0, 1}k)N with corresponding efficient re-sampling algorithms ReSampdist, (b) never
submit a received challenge ciphertext C(i) to their decryption oracle PKE.Dec(sk , ·),
and (c) always produce binary final output outA.

This definition can be generalized in many ways, e.g., to more opening phases, or more
encryption keys. We focus on the one-phase, one-key case for ease of presentation; our
techniques apply equally to a suitably generalized security definitions.

5.3 IND-SO-CCA Security from ABM-LTFs

The Construction. To construct our IND-SO-CCA secure PKE scheme, we require
the following ingredients:

3 Like previous works, we restrict ourselves to message distributions that allow for an efficient
re-sampling. We explain in the full version how to achieve simulation-based selective opening
security for arbitrary message spaces.
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– an LTF LTF = (LTF.IGen, LTF.Eval, LTF.Invert, LTF.LGen) with domain {0, 1}n

(as in Definition 2) that is �′-lossy,
– an efficiently explainable ABM-LTF ABM = (ABM.Gen,ABM.Eval,ABM.Invert,
ABM.LTag) with domain4 {0, 1}n and tag set T = Tp × Taux (as in Definition 5)
that is �-lossy, and

– a family UH of universal hash functions h : {0, 1}n → {0, 1}k, so that for any
f : {0, 1}n → {0, 1}
′+
, it is SD ((h, f(X), h(X)) ; (h, f(X), U)) = O(2−2k),
where h ← UH, X ← {0, 1}n, and U ← {0, 1}k.

Then, consider the following PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec):

Alg. PKE.Gen(1k)
(ek ′, ik ′) ← LTF.IGen(1k)
(ek , ik , tk) ← ABM.Gen(1k)
pk := (ek ′, ek )
sk := (ik ′, ek)
return (pk , sk)

Alg. PKE.Enc(pk ,msg)
parse pk =: (ek ′, ek)
X ← {0, 1}n

ρ := h(X)⊕ msg
Y ′ := fek′(X)
tp := SampTp

(1k;Rtp)
Y := fek,(tp,(ρ,Y ′))(X)
C := (ρ, Y ′, tp, Y )
return C

Alg. PKE.Dec(sk , C)
parse sk =: (ik ′, ek),
C =: (ρ, Y ′, tp, Y )

X ← f−1
ik ′ (Y ′)

if Y �= fek ,(tp,(ρ,Y ′))(X)
return ⊥

msg := h(X)⊕ ρ
return msg

The core of this scheme is a (deterministic) double encryption as in [30, 23]. One en-
cryption (namely, Y ′) is generated using an LTF, and the other (namely, Y ) is generated
using an ABM-LTF. In the security proof, the LTF will be switched to lossy mode,
and the ABM-LTF will be used with lossy tags precisely for the (IND-SO-CCA) chal-
lenge ciphertexts. This will guarantee that all challenge ciphertexts will be lossy. At
the same time, the evasiveness property of our ABM-LTF will guarantee that no adver-
sary can come up with a decryption query that corresponds to a lossy ABM-LTF tag.
As a consequence, we will be able to answer all decryption queries during the security
proof.

Relation to the Construction of Hemenway et al.. Our construction is almost identi-
cal to the one of Hemenway et al. [23], which in turn builds upon the construction of an
IND-CCA secure encryption scheme from an all-but-one lossy trapdoor function [30].
However, while we employ ABM-LTFs, [23] employ “all-but-N lossy trapdoor func-
tions” (ABN-LTFs), which are defined similarly to ABM-LTFs, only with the number
of lossy tags fixed in advance (to a polynomial value N ). Thus, unlike in our schemes,
the number of challenge ciphertexts N has to be fixed in advance with [23]. Further-
more, the complexity of the schemes from [23] grows (linearly) in the number N of
challenge ciphertexts. On the other hand, ABN-LTFs also allow to explicitly determine
all lossy tags in advance, upon key generation. (For instance, all lossy tags can be cho-
sen as suitable signature verification keys or chameleon hash values.) With ABM-LTFs,
lossy tags are generated on the fly, through ABM.LTag. This difference is the reason for
the auxiliary tag parts in the ABM-LTF definition, cf. Section 3.

4 In case of our DCR-based ABM-LTF ABMD, the desired domain {0, 1}n must be suitably
mapped to ABMD’s “native domain” �3

Ns .
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Theorem 2. If LTF is an LTF, ABM is an efficiently explainable ABM-LTF, and UH is
an UHF family as described, then PKE is IND-SO-CCA secure. In particular, for every
IND-SO-CCA adversary A on PKE that makes at most q = q(k) decryption queries,
there exist adversaries B, C, and D of roughly same complexity as A, and such that∣∣Advcca-so

PKE,A(k)
∣∣ ≤ ∣∣∣AdvindABM,B(k)

∣∣∣+ q(k) · AdvevaABM,C(k) +
∣∣∣AdvindLTF,D(k)

∣∣∣ +O(2−k).

Note that the reduction does not depend on N , the number of challenge ciphertexts.
On the other hand, the number of an adversary’s decryption queries goes linearly into
the reduction factor. We can get rid of this factor of q(k) in case of our pairing-based
ABM-LTF ABMP; see the full version. We also prove Theorem 2 in the full version.
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Kiltz, and Hoeteck Wee for helpful discussions concerning SO-CCA security. The
anonymous Crypto 2011 and Eurocrypt 2012 referees, and in particular one Eurocrypt
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Abstract. We provide the first constructions of identity-based (injec-
tive) trapdoor functions. Furthermore, they are lossy. Constructions are
given both with pairings (DLIN) and lattices (LWE). Our lossy identity-
based trapdoor functions provide an automatic way to realize, in the
identity-based setting, many functionalities previously known only in the
public-key setting. In particular we obtain the first deterministic and effi-
ciently searchable IBE schemes and the first hedged IBE schemes, which
achieve best possible security in the face of bad randomness. Underlying
our constructs is a new definition, namely partial lossiness, that may be
of broader interest.

1 Introduction

A trapdoor function F specifies, for each public key pk , an injective, determin-
istic map Fpk that can be inverted given an associated secret key (trapdoor).
The most basic measure of security is one-wayness. The canonical example is
RSA [49].

Suppose there is an algorithm that generates a “fake” public key pk∗ such
that Fpk∗ is no longer injective but has image much smaller than its domain and,
moreover, given a public key, you can’t tell whether it is real or fake. Peikert
and Waters [47] call such a TDF lossy. Intuitively, Fpk is close to a function Fpk∗

that provides information-theoretic security. Lossiness implies one-wayness [47].
Lossy TDFs have quickly proven to be a powerful tool. Applications include

IND-CCA [47], deterministic [16], hedged [7] and selective-opening secure public-
key encryption [9]. Lossy TDFs can be constructed from DDH [47], QR [33],
DLIN [33], DBDH [23], LWE [47] and HPS (hash proof systems) [38]. RSA was
shown in [41] to be lossy under the Φ-hiding assumption of [25], leading to the
first proof of security of RSA-OAEP [13] without random oracles.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 228–245, 2012.
c© International Association for Cryptologic Research 2012
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Lossy TDFs and their benefits belong, so far, to the realm of public-key cryp-
tography. The purpose of this paper is to bring them to identity-based cryptogra-
phy, defining and constructing identity-basedTDFs (IB-TDFs), both one-way and
lossy. We see this as having two motivations, one more theoretical, the other more
applied, yet admittedly both foundational, as we discuss before moving further.

Theoretical angle. Trapdoor functions are the primitive that began pub-
lic key cryptography [30,49]. Public-key encryption was built from TDFs. (Via
hardcore bits.) Lossy TDFs enabled the first DDH and lattice (LWE) based
TDFs [47].

It is striking that identity-based cryptography developed entirely differently.
The first realizations of IBE [21,29,52] directly used randomization and were
neither underlain by, nor gave rise to, any IB-TDFs.

We ask whether this asymmetry between the public-key and identity-based
worlds (TDFs in one but not the other) is inherent. This seems to us a basic
question about the nature of identity-based cryptography that is worth asking
and answering.

Application angle. Is there anything here but idle curiosity? IBE has already
been achieved without IB-TDFs, so why go backwards to define and construct
the latter? The answer is that losssy IB-TDFs enable new applications that we
do not know how to get in other ways.

Stepping back, identity-based cryptography [53] offers several advantages over
its public-key counterpart. Key management is simplified because an entity’s
identity functions as their public key. Key revocation issues that plague PKI can
be handled in alternative ways, for example by using identity+date as the key
under which to encrypt to identity [21]. There is thus good motivation to go be-
yond basics like IBE [21,29,52,17,18,55,34] and identity-based signatures [11,31]
to provide identity-based counterparts of other public-key primitives.

Furthermore we would like to do this in a systematic rather than ad hoc way,
leading us to seek tools that enable the transfer of multiple functionalities in
relatively blackbox ways. The applications of lossiness in the public-key realm
suggest that lossy IBTDFs will be such a tool also in the identity-based realm.
As evidence we apply them to achieve identity-based deterministic encryption
and identity-based hedged encryption. The first, the counterpart of deterministic
public-key encryption [6,16], allows efficiently searchable identity-based encryp-
tion of database entries while maintaining the maximal possible privacy, bringing
the key-management benefits of the identity-based setting to this application.
The second, counterpart of hedged symmetric and public-key encryption [50,7],
makes IBE as resistant as possible in the face of low-quality randomness, which
is important given the widespread deployment of IBE and the real danger of bad-
randomness based attacks evidenced by the ones on the Sony Playstation and
Debian Linux. We hope that our framework will facilitate further such transfers.

We clarify that the solutions we obtain are not practical but they show that
the security goals can be achieved in principle, which was not at all clear prior
to our work. Allowed random oracles, we can give solutions that are much more
efficient and even practical.
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Contributions in brief. We define IB-TDFs and two associated security no-
tions, one-wayness and lossiness, showing that the second implies the first.

The first wave of IBE schemes was from pairings [21,52,17,18,55,54] but an-
other is now emerging from lattices [34,28,2,3]. We aim accordingly to reach our
ends with either route and do so successfully. We provide lossy IB-TDFs from a
standard pairings assumption, namely the Decision Linear (DLIN) assumption
of [19]. We also provide IB-TDFs based on Learning with Errors (LWE) [48],
whose hardness follows from the worst-case hardness of certain lattice-related
problems [48,46]. (The same assumption underlies lattice-based IBE [34,28,2,3]
and public-key lossy TDFs [47].) None of these results relies on random oracles.

Existing work brought us closer to the door with lattices, where one-way
IB-TDFs can be built by combining ideas from [34,28,2]. Based on techniques
from [46,42] we show how to make them lossy. With pairings, however it was
unclear how to even get a one-way IB-TDF, let alone one that is lossy. We adapt
the matrix-based framework of [47] so that by populating matrix entries with
ciphertexts of a very special kind of anonymous IBE scheme it becomes possi-
ble to implicitly specify per-identity matrices defining the function. No existing
anonymous IBE has the properties we need but we build one that does based
on methods of [22]. Our results with pairings are stronger because the lossy
branches are universal hash functions which is important for applications.

Public-key lossy TDFs exist aplenty and IBE schemes do as well. It is natural
to think one could easily combine them to get IB-TDFs. We have found no
simple way to do this. Ultimately we do draw from both sources for techniques
but our approaches are intrusive. Let us now look at our contributions in more
detail.

New primitives and definitions. Public parameters pars and an associated
master secret key having been chosen, an IB-TDF F associates to any identity
a map Fpars,id , again injective and deterministic, inversion being possible given
a secret key derivable from id via the master secret key. One-wayness means
Fpars,id∗ is hard to invert on random inputs for an adversary-specified challenge
identity id∗. Importantly, as in IBE, this must hold even when the adversary
may obtain, via a key-derivation oracle, a decryption key for any non-challenge
identity of its choice [21]. This key-derivation capability contributes significantly
to the difficulty of realizing the primitive. As with IBE, security may be selective
(the adversary must specify id∗ before seeing pars) [27] or adaptive (no such
restriction) [21].

The most direct analog of the definition of lossiness from the public-key set-
ting would ask that there be a way to generate “fake” parameters pars∗, indis-
tinguishable from the real ones, such that Fpars∗,id∗ is lossy (has image smaller
than domain). In the selective setting, the fake parameter generation algorithm
Pg∗ can take id∗ as input, making the goal achievable at least in principle, but
in the adaptive setting it is impossible to achieve, since, with id∗ not known in
advance, Pg∗ is forced to make Fpars∗,id lossy for all id , something the adversary
can immediately detect using its key-derivation oracle.
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ID-LS-A ID-OW-A

ID-LS-S ID-OW-S

PK-LS PK-OW
[47]

Primitive δ Achieved under

ID-LS-A 1/poly DLIN, LWE

ID-LS-S 1 DLIN, LWE

Fig. 1. Types of TDFs based on setting (PK=Public-key, ID=identity-based), security
(OW=one-way, LS=loss) and whether the latter is selective (S) or adaptive (A). An
arrow A → B in the diagram on the left means that TDF of type B is implied by
(can be constructed from) TDF of type A. Boxed TDFs are the ones we define and
construct. The table on the right shows the δ for which we prove δ-lossiness and the
assumptions used. In both the S and A settings the δ we achieve is best possible and
suffices for applications.

We ask whether there is an adaptation of the definition of lossiness that is
achievable in the adaptive case while sufficing for applications. Our answer is
a definition of δ-lossiness, a metric of partial lossiness parameterized by the
probability δ that Fpars∗,id∗ is lossy. The definition is unusual, involving an
adversary advantage that is the difference, not of two probabilities as is common
in cryptographic metrics, but of two differently weighted ones. We will achieve
selective lossiness with degree δ = 1, but in the adaptive case the best possible is
degree 1/ poly with the polynomial depending on the number of key-derivation
queries of the adversary, and this what we will achieve. We show that lossiness
with degree δ implies one-wayness, in both the selective and adaptive settings,
as long as δ is at least 1/ poly.

In summary, in the identity-based setting (ID) there are two notions of secu-
rity, one-wayness (OW) and lossiness (LS), each of which could be selective (S)
or adaptive (A), giving rise to four kinds of IB-TDFs. The left side of Fig. 1
shows how they relate to each other and to the two kinds of TDFs —OW and
LS— in the public-key setting (PK). The un-annotated implications are trivial,
ID-LS-A → ID-LS-S meaning that δ-lossiness of the first type implies δ-lossiness
of the other for all δ. It is not however via this implication that we achieve
ID-LS-S, for, as the table shows, we achieve it with degree higher than ID-LS-A.

Closer Look. One’s first attempt may be to build an IB-TDF from an IBE
scheme. In the random oracle (RO) model, this can be done by a method of [8],
namely specify the coins for the IBE scheme by hashing the message with the
RO. It is entirely unclear how to turn this into a standard model construct and
it is also unclear how to make it lossy.

To build ID-TDFs from lattices we consider starting from the public-key TDF
of [47] (which is already lossy) and trying to make it identity-based, but it is
unclear how to do this. However, Gentry, Peikert and Vaikuntanathan (GPV) [34]
showed that the function gA : Bn+m

α → Zn
q defined by gA(x, e) = AT · x + e is
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a TDF for appropriate choices of the domain and parameters, where matrix
A ∈ Zn×m

q is a uniformly random public key which is constructed together
with a trapdoor as for example in [4,5,43]. We make this function identity-
based using the trapdoor extension and delegation methods introduced by Cash,
Hofheinz, Kiltz and Peikert [28], and improved in efficiency by Agrawal, Boneh
and Boyen [2] and Micciancio and Peikert [43]. Finally, we obtain a lossy IB-TDF
by showing that this construction is already lossy.

With pairings there is no immediate way to get an IB-TDF that is even one-
way, let alone lossy. We aim for the latter, there being no obviously simpler way
to get the former. In the selective case we need to ensure that the function is
lossy on the challenge identity id∗ yet injective on others, this setup being in-
distinguishable from the one where the function is always injective. Whereas the
matrix diagonals in the construction of [47] consisted of ElGamal ciphertexts, in
ours they are ciphertexts for identity id∗ under an anonymous IBE scheme, the
salient property being that the “anonymity” property should hide whether the
underlying ciphertext is to id∗ or is a random group element. Existing anony-
mous IBE schemes, in particular that of Boyen and Waters (BW) [22], are not
conducive and we create a new one. A side benefit is a new anonymous IBE
scheme with ciphertexts and private keys having one less group element than
BW but still proven secure under DLIN.

A method of Boneh and Boyen [17] can be applied to turn selective into
adaptive security but the reduction incurs a factor that is equal to the size of
the identity space and thus ultimately exponential in the security parameter, so
that adaptive security according to the standard asymptotic convention would
not have been achieved. To achieve it, we want to be able to “program” the public
parameters so that they will be lossy on about a 1/Q fraction of “random-ish”
identities, where Q is the number of key-derivation queries made by the attacker.
Ideally, with probability around 1/Q all of (a successful) attacker’s queries will
land outside the lossy identity-space, but the challenge identity will land inside
it so that we achieve δ-lossiness with δ around 1/Q.

This sounds similar to the approach of Waters [55] for achieving adaptively
secure IBE but there are some important distinctions, most notably that the
technique of Waters is information-theoretic while ours is of necessity computa-
tional, relying on the DLIN assumption. In the reduction used by Waters the
partitioning of the identities into two classes was based solely on the reduction
algorithm’s internal view of the public parameters; the parameters themselves
were distributed independently of this partitioning and thus the adversary view
was the same as in a normal setup. In contrast, the partitioning in our scheme
will actually directly affect the parameters and how the system behaves. This is
why we must rely on a computational assumption to show that the partitioning
in undetectable. A key novel feature of our construction is the introduction of
a system that will produce lossy public parameters for about a 1/Q fraction of
the identities.

Applications. Deterministic PKE is a TDF providing the best possible privacy
subject to being deterministic, a notion called PRIV that is much stronger
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than one-wayness [6]. An application is encryption of database records in a way
that permits logarithmic-time search, improving upon the linear-time search
of PEKS [20]. Boldyreva, Fehr and O’Neill [16] show that lossy TDFs whose
lossy branch is a universal hash (called universal lossy TDFs) achieve (via
the LHL [15,37]) PRIV-security for message sequences which are blocksources,
meaning each message has some min-entropy even given the previous ones,
which remains the best result without ROs. Deterministic IBE and the resulting
efficiently-searchable IBE are attractive due to the key-management benefits.
We can achieve them because our DLIN-based lossy IB-TDFs are also universal
lossy. (This is not true, so far, for our LWE based IB-TDFs.)

To provide IND-CPA security in practice, IBE relies crucially on the availabil-
ity of fresh, high-quality randomness. This is fine in theory but in practice RNGs
(random number generators) fail due to poor entropy gathering or bugs, leading
to prominent security breaches [35,36,24,45,44,1,56,32]. Expecting systems to do
a better job is unrealistic. Hedged encryption [7] takes poor randomness as a
fact of life and aims to deliver best possible security in the face of it, providing
privacy as long as the message together with the “randomness” have some min-
entropy. Hedged PKE was achieved in [7] by combining IND-CPA PKE with
universal lossy TDFs. We can adapt this to IBE and combine existing (random-
ized) IBE schemes with our DLIN-based universal lossy IB-TDFs to achieved
hedged IBE. This is attractive given the widespread use of IBE in practice and
the real danger of randomness failures.

Both applications are for the case of selective security. It remains open to
achieve them in the adaptive case.

Related Work. A number of papers have studied security notions of trapdoor
functions beyond traditional one-wayness. Besides lossiness [47] there is Rosen
and Segev’s notion of correlated-product security [51], and Canetti and Dak-
douk’s extractable trapdoor functions [26]. The notion of adaptive one-wayness
for tag-based trapdoor functions from Kiltz, Mohassel and O’Neill [40] can be
seen as the special case of our selective IB-TDF in which the adversary is denied
key-derivation queries. Security in the face of these queries was one of the main
difficulties we faced in realizing IB-TDFs.

Organization. We define IB-TDFs, one-wayness and δ-lossiness in Section 2.
We also define extended IB-TDFs, an abstraction that will allow us to unify and
shorten the analyses for the selective and adaptive security cases. In [10] we show
that δ-lossiness implies one-wayness as long as δ is at least 1/ poly. This allows
us to focus on achieving δ-lossiness. In Section 3 we provide our pairing-based
schemes and in [10] our lattice-based schemes. In [10] we sketch how to apply
δ-lossy IB-TDFs to achieve deterministic and hedged IBE.

2 Definitions

Notation and conventions. If x is a vector then |x| denotes the number of
its coordiates and x[i] denotes its i-th coordinate. Coordinates may be numbered
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proc Initialize(id) // OWF,RealF

(pars ,msk)
$← F.Pg ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // OWF,RealF

IS ← IS ∪ {id}
dk ← F.Kg(pars ,msk , id)
Return dk

proc Ch(id) // OWF

id∗ ← id ; x
$← InSp

y ← F.Ev(pars , id∗, x)
Return y

proc Finalize(x′) // OWF

Return ((x′ = x) and (id∗ �∈ IS))

proc Initialize(id) // LossyF,LF,�

(pars ,msk)
$← LF.Pg(id) ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // LossyF,LF,�

IS ← IS ∪ {id}
dk ← LF.Kg(pars ,msk , id)
Return dk

proc Ch(id) // RealF,LossyF,LF,�

id∗ ← id

proc Finalize(d′) // RealF

Return ((d′ = 1) and (id∗ �∈ IS))

proc Finalize(d′) // LossyF,LF,�

If (λ(F.Ev(pars , id∗, ·)) < 
) then return false
Return ((d′ = 1) and (id∗ �∈ IS)

Fig. 2. Games defining one-wayness and δ-lossiness of IBTDF F with sibling LF

1, . . . , |x| or 0, . . . , |x| − 1 as convenient. A string x is identified with a vector
over {0, 1} so that |x| denotes its length and x[i] its i-th bit. The empty string
is denoted ε. If S is a set then |S| denotes its size, Sa denotes the set of a-
vectors over S, Sa×b denotes the set of a by b matrices with entries in S, and
so on. The (i, j)-th entry of a 2 dimensional matrix M is denoted M[i, j] and
the (i, j, k)-th entry of a 3 dimensional matrix M is denoted M[i, j, k]. If M is
a n by μ matrix then M[j, ·] denotes the vector (M[j, 1], . . . ,M[j, μ]). If a =
(a1, . . . , an) then (a1, . . . , an) ← a means we parse a as shown. Unless otherwise

indicated, an algorithm may be randomized. By y
$← A(x1, x2, . . .) we denote the

operation of running A on inputs x1, x2, . . . and fresh coins and letting y denote
the output. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on
inputs x1, x2, . . .. The (Kronecker) delta function Δ is defined by Δ(a, b) = 1
if a = b and 0 otherwise. If a, b are equal-length vectors of reals then 〈a, b〉 =
a[1]b[1] + · · ·+ a[|a|]b[|b|] denotes their inner product.
Games. A game —look at Fig. 2 for an example— has an Initialize procedure,
procedures to respond to adversary oracle queries, and a Finalize procedure.
To execute a game G is executed with an adversary A means to run the adver-
sary and answer its oracle queries by the corresponding procedures of G. The
adversary must make exactly one query to Initialize, this being its first oracle
query. (This means the adversary can give Initialize an input, an extension of
the usual convention [14].) It must make exactly one query to Finalize, this
being its last oracle query. The reply to this query, denoted GA, is called the
output of the game, and we let “GA” denote the event that this game output
takes value true. Boolean flags are assumed initialized to false.

IBTDFs. An identity-based trapdoor function (IBTDF) is a tuple F = (F.Pg,
F.Kg,F.Ev,F.Ev−1) of algorithms with associated input space InSp and identity



Identity-Based LTDFs and Applications 235

space IDSp. The parameter generation algorithm F.Pg takes no input and returns
common parameters pars and a master secret key msk . On input pars ,msk , id ,
the key generation algorithm F.Kg produces a decryption key dk for identity id .
For any pars and id ∈ IDSp, the deterministic evaluation algorithm F.Ev defines
a function F.Ev(pars , id , ·) with domain InSp. We require correct inversion: For
any pars , any id ∈ IDSp and any dk ∈ [F.Kg(pars , id)], the deterministic inver-
sion algorithm F.Ev−1 defines a function that is the inverse of F.Ev(pars , id , ·),
meaning F.Ev−1(pars , id , dk ,F.Ev(pars , id , x)) = x for all x ∈ InSp.

E-IBTDF. To unify and shorten the selective and adaptive cases of our analyses
it is useful to define and specify a more general primitive. An extended IBTDF
(E-IBTDF) E = (E.Pg,E.Kg,E.Ev,E.Ev−1) consists of four algorithms that are
just like the ones for an IBTDF except that F.Pg takes an additional auxiliary
input from an auxiliary input space AxSp. Fixing a particular auxiliary input
aux ∈ AxSp for F.Pg results in an IBTDF scheme that we denote E(aux) and
call the IBTDF induced by aux . Not all these induced schemes need, however,
satisfy the correct inversion requirement. If the one induced by aux does, we say
that aux grants invertibility. Looking ahead we will build an E-IBTDF and then
obtain our IBTDF as the one induced by a particular auxiliary input, the other
induced schemes being the basis of the siblings and being used in the proof.

One-wayness. One-wayness of IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) is defined
via game OWF of Fig. 2. The adversary is allowed only one query to its challenge
oracle Ch. The advantage of such an adversary I is Advow

F (I) = Pr
[
OWI

F

]
.

Selective versus adaptive ID. We are interested in both these variants for
all the notions we consider. To avoid a proliferation of similar definitions, we
capture the variants instead via different adversary classes relative to the same
game. To exemplify, consider game OWF of Fig. 2. Say that an adversary A is
selective-id if the identity id in its queries to Initialize and Ch is always the
same, and say it is adaptive-id if this is not necessarily true. Selective-id security
for one-wayness is thus captured by restricting attention to selective-id adver-
saries and full (adaptive-id) security by allowing adaptive-id adversaries. Now,
adopt the same definitions of selective and adaptive adversaries relative to any
game that provides procedures called Initialize and Ch, regardless of how these
procedures operate. In this way, other notions we will introduce, including par-
tial lossiness defined via games also in Fig. 2, will automatically have selective-id
and adaptive-id security versions.

Partial lossiness. We first provide the formal definitions and later explain
them and their relation to standard definitions. If f is a function with domain a
(non-empty) set Dom(f) then its image is Im(f) = { f(x) : x ∈ Dom(f) }. We
define the lossiness λ(f) of f via λ(f) = lg(|Dom(f)|/|Im(f)|) or equivalently
|Im(f)| = |Dom(f)| · 2−λ(f). We say that f is �-lossy if λ(f) ≥ �. Let IBTDF
F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be an IBTDF with associated input space InSp
and identity space IDSp. A sibling for F is an E-IBTDF LF = (LF.Pg, LF.Kg,F.Ev,
F.Ev−1) whose evaluation and inversion algorithms, as the notation indicates, are
those of F and whose auxiliary input space is IDSp. Algorithm LF.Pg will use
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this input in the selective-id case and ignore it in the adaptive-id case. Consider
games RealF and LossyF,LF,
 of Fig. 2. The first uses the real parameter and key-
generation algorithms while the second uses the sibling ones. A los-adversaryA is
allowed just one Ch query, and the games do no more than record the challenge
identity id∗. The advantage Advδ-los

F,LF,
(A) = δ · Pr[RealAF ] − Pr[LossyA
F,LF,
] of

the adversary is not, as usual, the difference in the probabilities that the games
return true, but is instead parameterized by a probability δ ∈ [0, 1].

Discussion. The PW [47] notion of lossy TDFs in the public-key setting asks
for an alternative “sibling” key-generation algorithm, producing a public key but
no secret key, such that two conditions hold. The first, which is combinatorial,
asks that the functions defined by sibling keys are lossy. The second, which is
computational, asks that real and sibling keys are indistinguishable. The first
change for the IB setting is that one needs an alternative parameter generation
algorithm which produces not only pars but a master secret key msk , and an
alternative key-generation algorithm that, based on msk , can issue decryption
keys to users. Now we would like to ask that the function F.Ev(pars , id∗, ·) be
lossy on the challenge identity id∗ when pars is generated via LF.Pg, but, in the
adaptive-id case, we do not know id∗ in advance. Thus the requirement is made
via the games.

We would like to define the advantage normally, meaning with δ = 1, but the
resulting notion is not achievable in the adaptive-id case. (This can be shown
via attack.) With the relaxation, a low (close to zero) advantage means that
the probability that the adversary finds a lossy identity id∗ and then outputs 1
is less than the probability that it merely outputs 1 by a factor not much less
than δ. Roughly, it means that a δ fraction of identities are lossy. The advantage
represents the computational loss while δ represents a necessary information-
theortic loss.

IBE. Recall that an IBE scheme IBE = (IBE.Pg, IBE.Kg, IBE.Enc, IBE.Dec) is a
tuple of algorithms with associated message space InSp and identity space IDSp.
The parameter generation algorithm IBE.Pg takes no input and returns common
parameters pars and a master secret key msk . On input pars ,msk , id , the key
generation algorithm IBE.Kg produces a decryption key dk for identity id . On
input pars , id ∈ IDSp and a messageM ∈ InSp the encryption algorithm IBE.Enc
returns a ciphertext. The decryption algorithm IBE.Dec is deterministic. The
scheme has decryption error ε if Pr[IBE.Dec(pars , id , dk , IBE.Enc(pars , id ,M)) �=
M ] ≤ ε for all pars , all id ∈ IDSp, all dk ∈ [F.Kg(pars , id)] and all M ∈ InSp.
We say that IBE is deterministic if IBE.Enc is deterministic. A deterministic IBE
scheme is identical to an IBTDF.

3 IB-TDFs from Pairings

In [10] we show that δ-lossiness implies one-wayness in both the selective and
adaptive cases. We now show how to achieve δ-lossiness using pairings.
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Setup. Throughout we fix a bilinear map e: G × G → GT where G,GT are
groups of prime order p. By 1,1T we denote the identity elements of G,GT ,
respectively. By G∗ = G − {1} we denote the set of generators of G. The ad-
vantage of a dlin-adversary B is Advdlin(B) = 2Pr[DLINB] − 1, where game
DLIN is as follows. The Initialize procedure picks g, ĝ at random from G∗, s
at random from Z∗

p, ŝ at random from Zp and X at random from G. It picks

a random bit b. If b = 1 it lets T ← Xs+ŝ and otherwise picks T at random
from G. It returns (g, ĝ, gs, ĝŝ, X, T ) to the adversary B. The adversary out-
puts a bit b′ and Finalize, given b′ returns true if b = b′ and false otherwise.
For integer μ ≥ 1, vectors U ∈ Gμ+1 and y ∈ Zμ+1

p , and vector id ∈ Zμ
p

we let id = (1, id [1], . . . , id [μ]) ∈ Zμ+1
p and H(U, id) =

∏μ
k=0U[k]id [k].

H is the BB hash function [17] when μ = 1, and the Waters’ one [22] when
IDSp = {0, 1}μ and an id ∈ IDSp is viewed as a μ-vector over Zp. We also let
f(y, id) =

∑μ
k=0y[k]id [k] and f(y, id ) = f(y, id) mod p.

Overview. In the Peikert-Waters [47] design, the matrix entries are ciphertexts
of an underlying homomorphic encryption scheme, and the function output is
a vector of ciphertexts of the same scheme. We begin by presenting an IBE
scheme, that we call the basic IBE scheme, such that the function outputs of
our eventual IB-TDF will be a vector of ciphertexts of this IBE scheme. Towards
building the IB-TDF, the first difficulty we run into in setting up the matrix is
that ciphertexts depend on the identity and we cannot have a different matrix
for every identity. Thus, our approach is more intrusive. We will have many
matrices which contain certain “atoms” from which, given an identity, one can
reconstruct ciphertexts of the IBE scheme. The result of this intrusive approach
is that security of the IB-TDF relies on more than security of the base IBE
scheme. Our ciphertext pseudorandomness lemma (Lemma 1) shows something
stronger, namely that even the atoms from which the ciphertexts are created
look random under DLIN. This will be used to establish Lemma 2, which moves
from the real to the lossy setup. The heart of the argument is the proofs of the
lemmas, which are in the appendices.

We introduce a general framework that allows us to treat both the selective-
id and adaptive-id cases in as unified a way as possible. We will first specify an
E-IBTDF. The selective-id and adaptive-id IB-TDFs are obtained via different
auxiliary inputs. Furthermore, the siblings used to prove lossiness also emanate
from this E-IBTDF. With this approach, the main lemmas become usable in
both the selective-id and adaptive-id cases with only minor adjustments for the
latter due to artifical aborts. This saves us from repeating similar arguments and
significantly compacts the proof.

Our basic IBE scheme. We associate to any integer μ ≥ 1 and any identity
space IDSp ⊆ Zμ

p an IBE scheme IBE[μ, IDSp] that has message space {0, 1} and
algorithms as follows:

1. Parameters: Algorithm IBE[μ, IDSp].Pg lets g
$← G∗ ; t

$← Z∗
p ; ĝ ← gt. It then

lets H, Ĥ
$← G ; U, Û

$← Gμ+1. It returns pars = (g, ĝ, H, Ĥ,U, Û) as the
public parameters and msk = t as the master secret key.
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2. Key generation:Given parameters (g, ĝ, H, Ĥ,U, Û), master secret t and iden-
tity id ∈ IDSp, algorithm IBE[μ, IDSp].Kg returns decryption key (D1, D2,

D3, D4) computed by letting r, r̂
$← Zp and setting

D1 ← H(U, id)tr ·Htr̂ ; D2 ← H(Û, id)r · Ĥ r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ, H, Ĥ,U, Û), identity id ∈ IDSp and
message M ∈ {0, 1}, algorithm IBE[μ, IDSp].Enc returns ciphertext (C1,

C2, C3, C4) computed as follows. If M = 0 then it lets s, ŝ
$← Zp and

C1 ← gs ; C2 ← ĝŝ ; C3 ← H(U, id)s · H(Û, id)ŝ ; C4 ← HsĤ ŝ. If M = 1 it

lets C1, C2, C3, C4
$← G.

4. Decryption: Given parameters (g, ĝ, H, Ĥ,U, Û), identity id ∈ IDSp, decryp-
tion key (D1, D2, D4, D4) for id and ciphertext (C1, C2, C3, C4), algorithm
IBE[μ, IDSp].Dec returns 0 if e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4) = 1T

and 1 otherwise.

This scheme has non-zero decryption error (at most 2/p) yet our IBTDF will
have zero inversion error. This scheme turns out to be IND-CPA+ANON-CPA
although we will not need this in what follows. Instead we will have to consider
a distinguishing game related to this IBE scheme and our IBTDF. In [10] we
give a (more natural) variant of IBE[μ, IDSp] that is more efficient and encrypts
strings rather than bits. The improved IBE scheme can still be proved IND-
CPA+ANON-CPA but it cannot be used for our purpose of building IB-TDFs.

Our E-IBTDF and IB-TDF. Our E-IBTDF E[n, μ, IDSp] is associated to any
integers n, μ ≥ 1 and any identity space IDSp ⊆ Zμ

p . It has message space {0, 1}n

and auxiliary input space Zμ+1
p , and the algorithms are as follows:

1. Parameters: Given auxiliary input y, algorithm E[n, μ, IDSp].Pg lets g
$←

G∗ ; t
$← Z∗

p ; ĝ ← gt ; U
$← G∗. It then lets H, Ĥ

$← Gn ; V, V̂
$← Gn×(μ+1)

and s
$← (Z∗

p)
n ; ŝ

$← Zn
p . It returns pars = (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)

as the public parameters and msk = t as the master secret key where for
1 ≤ i, j ≤ n and 0 ≤ k ≤ μ:

G[i] ← gs[i] ; Ĝ[i] ← ĝŝ[i] ; J[i, j] ← H[j]s[i]Ĥ[j]ŝ[i]

W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]y[k]Δ(i,j) ,

where we recall that Δ(i, j) = 1 if i = j and 0 otherwise is the Kronecker
Delta function.

2. Key generation: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), master

secret t and identity id ∈ IDSp, algorithm E[n, μ, IDSp].Kg returns decryption

key (D1,D2,D3,D4) where r
$← (Z∗

p)
n ; r̂

$← Zn
p and for 1 ≤ i ≤ n

D1[i] ← H(V[i, ·], id)tr[i] ·H[i]tr̂[i] ; D2[i] ← H(V̂[i, ·], id)r[i] · Ĥ [i]r̂[i]

D3[i] ← g−tr[i] ; D4[i] ← g−tr̂[i] .
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3. Evaluate: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈
IDSp and input x ∈ {0, 1}n, algorithm E[n, μ, IDSp].Ev returns (C1, C2,C3,
C4) where for 1 ≤ j ≤ n

C1 ←
∏n

i=1G[i]x[i] ; C2 ←
∏n

i=1Ĝ[i]x[i]

C3[j] ←
∏n

i=1

∏μ
k=0W[i, j, k]x[i]id[k] ; C4[j] ←

∏n
i=1J[i, j]

x[i]

4. Invert:Givenparameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp,
decryption key (D1,D2,D3,D4) for id and output (ciphertext) (C1, C2,C3,
C4), algorithm E[n, μ, IDSp].Ev−1 returns x ∈ {0, 1}n where for 1 ≤ j ≤ n it
sets x[j] = 0 if e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = 1T

and 1 otherwise.

Invertibility. We observe that if parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)
were generated with auxiliary input y and (C1, C2,C3,C4) = E[n, μ, IDSp].Ev((g,
ĝ,G, Ĝ,J,W), id , x) then for 1 ≤ j ≤ n

C1 =
∏n

i=1g
s[i]x[i] = g〈s,x〉 (1)

C2 =
∏n

i=1ĝ
ŝ[i]x[i] = ĝ〈ŝ,x〉 (2)

C3[j] =
∏n

i=1

∏μ
k=0V[j, k]s[i]x[i]id [k]V̂[j, k]ŝ[i]x[i]id [k]U s[i]x[i]y[k]id[k]Δ(i,j)

=
∏n

i=1H(V[j, ·], id)s[i]x[i]H(V̂[j, ·], id)ŝ[i]x[i]U s[i]x[i]f(y,id)Δ(i,j)

= H(V[j, ·], id)〈s,x〉H(V̂[j, ·], id)〈ŝ,x〉U s[j]x[j]f(y,id) (3)

C4[j] =
∏n

i=1H[j]s[i]x[i]Ĥ[j]ŝ[i]x[i] = H[j]〈s,x〉Ĥ[j]〈ŝ,x〉 . (4)

Thus if x[j] = 0 then (C1, C2,C3[j],C4[j]) is an encryption, under our base
IBE scheme, of the message 0, with coins 〈s, x〉 mod p, 〈̂s, x〉 mod p, parame-
ters (g, ĝ,H[j], Ĥ[j],V[j, ·], V̂[j, ·]) and identity id . The inversion algorithm will
thus correctly recover x[j] = 0. On the other hand suppose x[j] = 1. Then
e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j])= e(U s[j]x[j]f(y,id),D3[j]).
Now suppose f(y, id) mod p �= 0. Then U s[j]x[j]f(y,id) �= 1 because we chose s[j]
to be non-zero modulo p and D3[j] �= 1 because we chose r[j] to be non-zero
modulo p. So the result of the pairing is never 1T , meaning the inversion algo-
rithm will again correctly recover x[j] = 1. We have established that auxiliary
input y grants invertibility, meaning induced IBTDF E[n, μ, IDSp](y) satisfies
the correct inversion condition, if f(y, id) mod p �= 0 for all id ∈ IDSp.

Our IBTDF. We associate to any integers n, μ ≥ 1 and any identity space
IDSp ⊆ Zμ

p the IBTDF scheme induced by our E-IBTDF E[n, μ, IDSp] via aux-

iliary input y = (1, 0, . . . , 0) ∈ Zμ+1
p , and denote this IBTDF scheme by F[n, μ,

IDSp]. This IBTDF satisfies the correct inversion requirement because f(y, id) =
id [0] = 1 �≡ 0 (mod p) for all id . We will show that this IBTDF is selective-id
secure when μ = 1 and IDSp = Zp, and adaptive-id secure when IDSp = {0, 1}μ.
In the first case, it is fully lossy (i.e. 1-lossy) and in the second it is δ-lossy for
appropriate δ. First we prove two technical lemmas that we will use in both
cases.
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proc Initialize(y) // ReC,RaC

(pars,msk)
$← IBE[μ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // ReC,RaC

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[μ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // ReC

s
$← Z

∗
p ; ŝ

$← Zp

G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , μ do

Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // RaC

G, Ĝ, S
$← G ; Z

$← G
μ+1

Return (G, Ĝ, S,Z)

proc Finalize(d′) // ReC,RaC

Return (d′ = 1)

Fig. 3. Games ReC (“Real Ciphertexts”) and RaC (“Random Ciphertexts”) associated
to IDSp ⊆ Z

μ
p

Ciphertext pseudorandomness lemma. Consider games ReC,RaC of Fig. 3
associated to some choice of IDSp ⊆ Zμ

p . The adversary provides the Initialize
procedure with an auxiliary input y ∈ Zμ+1

p . Parameters are generated as per our
base IBE scheme with the addition of U . The decryption key for id is computed
as per our base IBE scheme except that the games refuse to provide it when
f(y, id) = 0. The challenge oracle, however, does not return ciphertexts of our
IBE scheme. In game ReC, it returns group elements that resemble diagonal
entries of the matrices in the parameters of our E-IBTDF, and in game RaC it
returns random group elements. Notice that the challenge oracle does not take
an identity as input. (Indeed, it has no input.) As usual it must be invoked
exactly once. The following lemma says the games are indistinguishable under
DLIN. The proof is in [10].

Lemma 1. Let μ ≥ 1 be an integer and IDSp ⊆ Zμ
p . Let P be an adversary.

Then there is an adversary B such that Pr
[
ReCP

]
− Pr

[
RaCP

]
≤ (μ + 2) ·

Advdlin(B). The running time of B is that of P plus some overhead.

Real-to-lossy lemma. Consider games RL0,RLn of Fig. 4 associated to some
choice of n, μ, IDSp ⊆ Zμ

p and auxiliary input generator Aux for E[n, μ, IDSp].
The latter is an algorithm that takes input an identity in IDSp and returns an
auxiliary input in Zμ+1

p . Game RL0 obtains an auxiliary input y0 via Aux but

generates parameters exactly as E[n, μ, IDSp].Pg with the real auxiliary input y1.
The game will return true under the same condition as game Real but addition-
ally requiring that f(y0, id) �= 0 for all GetDK(id) queries and f(y0, id) = 0
for the Ch(id) query. Game RLn generates parameters with the auxiliary input
provided by Aux but is otherwise identical to game RL0. The following lemma
says it is hard to distinguish these games. We will apply this by defining Aux in
such a way that its output y0 results in a lossy setup. The proof of the following
is in [10].
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proc Initialize(id) // RL0

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk)
$← E[n, μ, IDSp].Pg(y1)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc Initialize(id) // RLn

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk)
$← E[n, μ, IDSp].Pg(y0)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc GetDK(id) // RL0,RLn

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, μ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL0,RLn

id∗ ← id
If f(y0, id) �= 0 then Win← false

proc Finalize(d′) // RL0,RLn

Return ((d′ = 1) and (id∗ �∈ IS) and Win)

Fig. 4.Games RL0,RLn (“Real-to-Losssy”) associated to n, μ, IDSp ⊆ Z
μ
p and auxiliary

input generator algorithm Aux

Lemma 2. Let n, μ ≥ 1 be integers and IDSp ⊆ Zμ
p . Let Aux be an auxiliary

input generator for E[n, μ, IDSp] and A an adversary. Then there is an adversary
P such that Pr[RLA

0 ]−Pr[RLA
n ] ≤ 2n·

(
Pr

[
ReCP

]
− Pr

[
RaCP

])
. The running

time of P is that of A plus some overhead. If A is selective-id then so is P .

The last statement allows us to use the lemma in both the selective-id and
adaptive-id cases.

Selective-id security. We show that IBTDF F[n, 1,Zp] is selective-id δ-lossy
for δ = 1, meaning fully selective-id lossy, and hence selective-id one-way. To do
this we define a sibling LF[n, 1,Zp]. It preserves the key-generation, evaluation
and inversion algorithms of F[n, 1,Zp] and alters parameter generation to

Algorithm LF[n, 1,Zp].Pg(id)

y ← (−id , 1) ; (pars ,msk)
$← E[n, 1,Zp].Pg(y) ; Return (pars ,msk)

The following says that our IBTDF is 1-lossy under the DLIN assumption with
lossiness � = n− 2 lg(p). The proof is in [10].

Theorem 3. Let n > 2 lg(p) and let � = n − 2 lg(p). Let F = F[n, 1,Zp] be
the IBTDF associated by our construction to parameters n, μ = 1 and IDSp =
Zp. Let LF = LF[n, 1,Zp] be the sibling associated to it as above. Let δ = 1
and let be A a selective-id adversary. Then there is an adversary B such that
Advδ-los

F,LF,
(A) ≤ 2n(μ + 2) · Advdlin(B). The running time of B is that of A
plus overhead.

Adaptive-id Security. We show that IBTDF F[n, μ, {0, 1}μ] is adaptive-id δ-
lossy for δ = (4(μ+1)Q)−1 whereQ is the number of key-derivation queries of the
adversary. By [10] this means F[n, μ, {0, 1}μ] is adaptive-id one-way. To do this
we define a sibling LFQ[n, μ, {0, 1}μ]. It preserves the key-generation, evaluation
and inversion algorithms of F[n, μ, {0, 1}μ] and alters parameter generation to
LF[n, μ, {0, 1}μ].Pg(id) defined via

y ← Aux ; (pars ,msk)
$← E[n, μ, {0, 1}μ].Pg(y) ; Return (pars ,msk) .



242 M. Bellare et al.

where algorithm Aux is defined via

y′[0]
$← {0, . . . , 2Q− 1} ; �

$← {0, . . . , μ+ 1} ; y[0] ← y′[0]− 2�Q

For i = 1 to μ do y[i]
$← {0, . . . , 2Q− 1}

Return y ∈ Zμ+1
p

The following says that our IBTDF is δ-lossy under the DLIN assumption with
lossiness � = n− 2 lg(p). The proof is in [10].

Theorem 4. Let n > 2 lg(p) and let � = n − 2 lg(p). Let F = F[n, μ, {0, 1}μ]
be the IBTDF associated by our construction to parameters n, μ and IDSp =
{0, 1}μ. Let A be an adaptive-id adversary that makes a maximal number of
Q < p/(3m) queries and let δ = (4(μ + 1)Q)−1. Let LF = LFQ[n, μ, {0, 1}μ] be
the sibling associated to F, A as above. Then there is an adversary B such that
Advδ-los

F,LF,
(A) ≤ 2n(μ + 2) · Advdlin(B). The running time of B is that of A

plus O(μ2ρ−1((μQρ)−1)) overhead, where ρ = 1
2 ·Advδ-los

F,LF,
(A).

We remark that we could use the proof technique of [12] which avoids the artifi-
cial abort but this increases the value of δ, making it dependent on the adversary
advantage. The proof technique of [39] could be used to strengthen δ in Theo-
rem 4 to O(

√
mQ)−1 which is close to the optimal value Q−1.
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Abstract. We introduce the notion of dual projective hashing. This is similar
to Cramer-Shoup projective hashing, except that instead of smoothness, which
stipulates that the output of the hash function looks random on NO instances,
we require invertibility, which stipulates that the output of the hash function on
NO instances uniquely determine the hashing key, and moreover, that there is a
trapdoor which allows us to efficiently recover the hashing key.

– We show a simple construction of lossy trapdoor functions via dual projec-
tive hashing. Our construction encompasses almost all known constructions
of lossy trapdoor functions, as given in the works of Peikert and Waters
(STOC ’08) and Freeman et al. (PKC ’10).

– We also provide a simple construction of deterministic encryption schemes
secure with respect to hard-to-invert auxiliary input, under an additional
assumption about the projection map. Our construction clarifies and encom-
passes all of the constructions given in the recent work of Brakerski and
Segev (Crypto ’11). In addition, we obtain a new deterministic encryption
scheme based on LWE.

1 Introduction

In [14], Cramer and Shoup introduced a new primitive called smooth projective hashing
as an abstraction of their earlier chosen-ciphertext (CCA) secure encryption scheme
[13]. This primitive has since found numerous applications beyond CCA security,
notably password-authenticated key exchange, two-message oblivious transfer, and
leakage-resilient encryption [20, 22, 31]. In each of these cases, the connection to
smooth projective hashing provided two important benefits: first, a more intuitive
description and analysis of previous (sometimes seemingly ad-hoc) schemes given
respectively in [27], [30, 1] and [2]; second, new instantiations based on different cryp-
tographic assumptions, such as quadratic residuocity (QR) and decisional composite
residuocity (DCR) [33].

Informally, smooth projective hashing refers to a family of hash functions {Hk}
indexed by a hashing key k and whose input u comes from some “hard” language. The
projective property stipulates that there is a projective map α defined on hashing keys
such that for all YES instances u, the hash value Hk(u) is completely determined by u
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and α(k). In contrast, the smoothness property stipulates that on NO instances, Hk(·)
should be completely undetermined. Typically in applications, the hash value Hk(·) is
used to “mask” and hide an input (e.g. the plaintext in encryption, or sender’s input in
oblivious transfer).

1.1 Our Contributions

We introduce the notion of dual projective hashing. As with smooth projective hashing,
we consider a family of projective hash functions {Hk} indexed by a hashing key k
and whose input u comes from some “hard” language. As before, we require that on
YES instances u, the hash value Hk(u) is completely determined by u and α(k). On the
other hand, for NO instances u, we require invertibility — that α(k) and Hk(u) jointly
determine k; moreover, there is some inversion trapdoor that allows us to efficiently
recover k given (α(k),Hk(u)) along with u. We proceed to describe two applications
of dual projective hashing. In both of these applications, we will think of u as an index
and k as an input to some hash function. As such, we will henceforth use Λ∗

u(k) to
denote Hk(u) whenever we refer to dual projective hashing.

Lossy Trapdoor Functions. Lossy trapdoor functions (TDF) [34] is a strengthened
variant of the classical notion of trapdoor functions and were introduced with the main
goal of enabling simple and black-box constructions of CCA-secure encryption. A
collection of lossy trapdoor functions consists of two families of functions. Functions in
one family are injective and can be efficiently inverted using a trapdoor. Functions in the
other family are “lossy,” which means that the size of their image is signicantly smaller
than the size of their domain. The only computational requirement is that a description
of a randomly chosen function from the family of injective functions is computationally
indistinguishable from a description of a randomly chosen function from the family of
lossy functions.

Lossy trapdoor functions were introduced by Peikert and Waters [34], who showed
that they imply fundamental cryptographic primitives such as trapdoor functions,
collision-resistant hash functions, oblivious transfer, and CCA-secure public-key en-
cryption. In addition, lossy trapdoor functions have already found various other ap-
plications, including deterministic public-key encryption [7], OAEP-based public-key
encryption [28], “hedged” public-key encryption for protecting against bad randomness
[5], security against selective opening attacks [6], and efficient non-interactive string
commitments [32].

Starting from dual projective hashing, we may derive a family of lossy trapdoor
functions indexed by u and given by:

Fu : x �→ α(x)‖Λ∗
u(x)

The injective mode is given by uniformly sampling u from NO instances, and the lossy
mode is given by uniformly sampling u from YES instances. The injective property
guarantees that if u is a NO instance, then we can efficiently recover x from the output
of the function. On the other hand, the projective property guarantees that if u is a YES

instance, then the output is fully determined by α(x), and therefore reveals at most
log |α(x)| bits of information about x.
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Deterministic Encryption. Deterministic public-key encryption (where the encryption
algorihtm is deterministic) was introduced by Bellare, Boldyreva and O’Neil [3],
with additional constructions given in [7, 4, 11] and in concurrent works [19, 26].
Deterministic encryption has a number of practical applications, such as efficient search
on encrypted data and securing legacy protocols. Our framework further clarify the
constructions of deterministic encryption schemes of Boldyreva, Fehr and O’Neill [7]
for high-entropy inputs and of Brakerski and Segev [11] for hard-to-invert auxiliary
input (which in particular, generalize high-entropy inputs). The former combines lossy
trapdoor functions and extractors, whereas the latter rely on algebraic properties of
specific instantiations of lossy trapdoor functions. Specifically, the latter presented two
seemingly different schemes, one based on DDH/DLIN and the other based on QR and
DCR.

We consider the deterministic encryption scheme that follows from our lossy
trapdoor function (following the approach used in [7]):

– the public key is a random NO instance u and the secret key is the inversion
trapdoor;

– to encrypt a message M , we output α(M)‖Λ∗
u(M).

We show that:

– if α(·) is a strong extractor (where the seed is provided by the public parameter)
for high min-entropy sources, then we obtain a deterministic encryption for high
min-entropy message distributions;

– if α(·) is a “reconstructive” extractor (which is similar to a hard-core function), then
we obtain a deterministic encryption secure with respect to hard-to-invert auxiliary
input.

In particular, a reconstructive extractor is also a strong extractor [35], and random
linear functions are both good strong extractors and good reconstructive extractors (via
the left-over hash lemma [23], the Goldreich-Levin theorem [21] and generalizations
there-of). These results provide a unifying framework for deterministic encryption and
clarify the relation between the previous schemes and the connections to the literature
on pseudorandomness. It is also interesting to contrast this construction with leakage-
resilient public-key encryption derived from smooth projective hashing [31], where the
extractor comes from the hash function instead of the projection map (and the seed
comes from the instance instead of the public parameter).

Instantiations. We present instantiations of dual projective hashing from all three
major classes of cryptographic assumptions: (1) Diffie-Hellman assumptions like DDH
and DLIN, (2) number-theoretic assumptions like QR and DCR, and (3) lattice-based
assumptions like LWE. Most of these instantiations are already implicit in recent works.
In fact, the early constructions of hash proof systems based on DDH and QR in [14]
already satisfy the invertibility property, albeit inefficiently. However, since the hashing
key k is encoded in the exponent, efficiently recovering the key seems as hard as
computing discrete log. Instead, we will rely on hashing keys that are vectors and/or
matrices over {0, 1}. (Similar constructions have been used in KDM-security [9, 10]
for different technical issues.) On the other hand, the DCR-based hash proof system
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in [14, 12] does yield a dual projective hash function, since we can efficiently solve
discrete log for base 1 +N over Z∗

N2 , given the factorization of N .
Combining these instantiations with our generic transformations, we obtain:

– a unified treatment of almost all known constructions of lossy trapdoor functions,
as given in [34, 18] (the exceptions being the QR-based constructions in [18, 29]
and the one based on the Φ-hiding assumption in [28]);

– a unified treatment of both of the deterministic encryption schemes secure with
respect to hard-to-invert auxiliary input given in [11];

– the first lattice-based deterministic encryption scheme that is secure with respect to
hard-to-invert auxiliary input.

Relation to Smooth Projective Hashing. Having presented the applications, we would
like to highlight several conceptual differences between smooth projective hashing and
dual projective hashing. In smooth projective hashing, we are interested in quantifying
what the projected key and the instance tells us about the hash value, whereas in
dual projective hashing, we want to know what the projected key and hash value
tells us about the hashing key. Moreover, in essentially all applications of smooth
projective hashing, YES instances are used for functionality/correctness and NO are used
to establish security; it is the other way around for dual projective hashing. Finally, in
smooth projective hashing, we use the hash value to hide information; in dual projective
hashing, we publish the hash value as part of the output.

1.2 Previous Work

Comparison with Previous Constructions. Peikert and Waters constructed lossy
trapdoor functions from the DDH and LWE assumptions, and more generally, from
any homomorphic encryption schemes with reusable randomness. The description of
the trapdoor functions in their constructions are a matrix of ciphertexts, and evaluation
corresponds to matrix multiplication. Hemenway and Ostrovsky [24] constructed lossy
trapdoor functions from smooth projective hashing where the hash function is homo-
morphic, which may in turn be instantiated from the QR, DDH and DCR assumptions.
The construction is syntactically very similar to the matrix-based construction in [34]
(although the analysis is somewhat different): the description of the trapdoor functions
are a matrix of hash values, and evaluation corresponds to matrix multiplication.

Freeman et al. [18] gave direct constructions of lossy trapdoor functions from the
QR, DCR and DLIN assumptions. Each of these constructions are fairly different
and there is no evident unifying theme to these constructions. Specifically, the DLIN
construction is a variant of the matrix-based scheme in [34]. Mol and Yilek [29] and
Bellare et al. [4] independently constructed lossy trapdoor functions from the QR and
the DCR assumptions respectively. We note that the QR-based schemes in these two
papers only handle bounded lossiness.

In contrast to the Hemenway-Ostrovsky construction, our construction does not rely
on smoothness nor any algebraic structure on the underlying hash proof system; we
also have a more direct transformation from the hash function to the lossy trapdoor
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function, which are syntactically and conceptually quite different from that in [24].
(For instance, we use NO instances for injective functions and YES instances for lossy
functions, and it is the other way around in [24].) On the other hand, in order to
instantiate the hash functions, we do rely on a vector/matrix of values, similar to the
constructions developed in the different context of key dependent message security and
leakage resilience [9, 31, 10].

Additional Related Work. A lossy encryption scheme is a standard public-key
encryption scheme where the public key may be generated in one of two modes:
in the injective mode, the ciphertext uniquely determines the plaintext and there is
an associated secret key which allows correct decryption, and in the lossy mode,
the ciphertext reveals no information about the plaintext [6]. Given a lossy trapdoor
function, it is easy to construct a lossy encryption scheme [6]. Hemenway et al. [25]
gave a direct construction of a lossy encryption scheme from any hash proof system.
In the construction, the public key is also an instance from the language. However, the
usage is reversed: for lossy encryption, the injective mode uses a YES instance, and the
lossy mode uses a NO instance.

Organization. We formalize dual projective hashing in Section 2. We present both
the definition and our results on lossy trapdoor functions in Section 3, and those for
deterministic encryption in Section 4. We present the instantiations of dual projective
hashing in Sections 5 through 8.

Notation. We denote by s ←R S the fact that s is picked uniformly at random
from a finite set S and by x, y, z ←R S that all x, y, z are picked independently and
uniformly at random from S. We denote by negl(·) a negligible function. By PPT,
we denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the
security parameter. We use · to denote multiplication (or group operation) as well as
component-wise multiplication. We use boldface to denote vectors (always column
vectors) and matrices.

2 Dual Projective Hashing

In this section, we describe dual projective hashing more formally. We warn the
reader that we use slightly different notation from the outline given in the introduction
(in particular, we denote the input to Λ∗

u(·) by x instead of k).

Setup. There is a setup algorithm Setup that given the security parameter 1λ, outputs
the public parameters HP for the hash function. All algorithms are given HP as part of its
input; we omit HP henceforth whenever the context is clear. Associated with each HP are
a pair of disjoint sets ΠY and ΠN corresponding to YES and NO instances respectively.
We require that the uniform distributions over each of ΠY and ΠN be efficiently
samplable. Specifically, there exist a pair of sampling algorithms: SampYes(HP) outputs
a random pair of values (u,w) where the first output u is uniformly distributed overΠY

andw is the corresponding witness; SampNo(HP) outputs a random pair of values (u, τ)
where the first output u is uniformly distributed over ΠN and τ is the corresponding
trapdoor. We discuss the roles of the witness and the trapdoor below.
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Subset Membership Assumption. The subset membership assumption states that the
uniform distributions over ΠY and ΠN are computationally indistinguishable, even
given HP. More formally, for an adversary A, we consider the advantage function
AdvSubsetA(λ) given by

Pr
[
A(HP, u) = 1 : HP ← Setup(1λ), u ←R ΠY

]
− Pr

[
A(HP, u) = 1 : HP ← Setup(1λ), u ←R ΠN

]

The subset membership assumption states that for all PPT A, the advantage
AdvSubsetA(λ) is a negligible function in λ.

Projective Hashing. Fix a public parameter HP. We consider a family of hash functions
{Λ∗

u(·)} indexed by an instance u ∈ ΠY ∪ΠN. We also require that the hash function be
efficiently computable; we call the algorithm for computingΛ∗

u(·) the private evaluation
algorithm. We say that Λ∗

u(·) is projective if there exists a projection map α(·) such that
for all u ∈ ΠY and for all inputs x, α(x) completely determines Λ∗

u(x). Specifically,
we require that there exists an efficient public evaluation algorithm Pub that on input
α(x) and for all (u,w) ← SampYes(HP), outputs Λ∗

u(x). That is,

Pub(α(x), u, w) = Λ∗
u(x)

Invertibility. We say that Λ∗
u(·) is invertible if there is an efficient trapdoor inversion

algorithm TdInv that for all (u, τ) ← SampNo(HP) and for all x, recovers x given
(α(x), Λ∗

u(x)) and the trapdoor τ . That is,

TdInv(τ, α(x), Λ∗
u(x)) = x

We note here that for two of our factoring-related instantiations, SampNo(HP) also
requires as input the coin tosses used to sample HP in order to compute the inversion
trapdoor (there, HP is a public RSA modulus N and τ is the factorization of N ). For
these instantiations, we cannot treat HP as a global system parameter; instead, it will be
part of the public key in the case of deterministic encryption and part of the function
index in the case of lossy trapdoor functions. We suppress this subtlety in our main
constructions since SampNo is only used for functionality and not in the proof of
security.

3 Lossy Trapdoor Functions

In this section, we present our results on lossy trapdoor functions. We first describe the
definition of lossy TDFs given in [34].

Definition 1 (Lossy Trapdoor Functions). A collection of (m, k)-lossy trapdoor
functions is a 4-tuple of probabilistic polynomial-time algorithms (G0,G1,F,F

−1) such
that:

1. (SAMPLING A LOSSY FUNCTION.) G0(1
λ) outputs a function index u.

2. (SAMPLING AN INJECTIVE FUNCTION.) G1(1
λ) outputs a pair (u, τ) where u is a

function index and τ is a trapdoor.
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3. (EVALUATION OF LOSSY FUNCTIONS.) For every function index u produced by
G0, the algorithm F(u, ·) computes a function fu : {0, 1}m → {0, 1}∗, whose
image is of size at most 2m−k.

4. (EVALUATION OF INJECTIVE FUNCTIONS.) For every pair (u, τ) produced by G1,
the algorithm F(u, ·) computes a injective function fu : {0, 1}m → {0, 1}∗.

5. (INVERSION OF INJECTIVE FUNCTIONS.) For every pair (u, τ) produced by G1

and every x ∈ {0, 1}m, we have F−1(τ,F(σ, x)) = x.
6. (SECURITY.) The first outputs of G0(1

λ) and G1(1
λ) are computationally indistin-

guishable.

Here λ is the security parameter, and the value k is called the lossiness.

Our Construction. Given a dual projective hash function, we may construct a family
of lossy trapdoor functions, as shown in Fig 1.

Lossy TDF

(SAMPLING A LOSSY FUNCTION.) G0(1
λ): Run (u,w)← SampYes(HP). Output HP‖u.

(SAMPLING AN INJECTIVE FUNCTION.) G1(1
λ): Run (u, τ ) ← SampNo(HP). Output

(HP‖u, τ ).

(EVALUATION.) F(u, x): Output α(x)‖Λ∗
u(x).

(INVERSION.) F−1(τ, y0‖y1): Output TdInv(τ, y0, y1).

Note: We assume here all algorithms receive as input HP ← Setup(1λ).

Fig. 1. Lossy TDF from dual projective hashing

Theorem 1. Under the subset membership assumption, the above construction yields
a collection of (m,m− log | Imα|)-lossy trapdoor functions.

Proof. Correctness for injective functions follows readily from the invertibility prop-
erty. Lossiness for lossy functions follows readily from the projective property, which
implies that for u ∈ ΠY, | Im fu| ≤ | Imα|. Security is equivalent to the subset
membership assumption. ��

4 Deterministic Encryption

In this section, we present our results for deterministic encryption. We begin with the
definition, then some results about extractors, and finally our construction.
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4.1 Deterministic Encryption

A deterministic encryption scheme is a triplet of algorithms (Gen,Enc,Dec) where
Gen is randomized and Enc,Dec are deterministic. Via (PK, SK) ← Gen(1λ), the
randomized key-generation algorithm, produces public/secret keys for security pa-
rameter 1λ. Enc on input a public key PK and a message M , produces a ciphertext.
Dec(SK, ψ) on input a secret key SK and a ciphertext ψ, outputs a message. We
require correctness, namely that with overwhelming probability over (PK, SK), for all
M , Dec(Enc(M)) =M .

Hard-to-Invert Auxiliary Inputs. Following [11, 16, 17], we consider auxiliary
input f(x) from which it is hard to recover x. The source of hardness may be any
combination of information-theoretic hardness (where the function is many-to-one) and
computational hardness (e.g. if f is a one-way permutation). An efficiently computable
function F = {fλ} is δ-hard-to-invert w.r.t. an efficiently samplable distribution D
if for every PPT algorithm A, it holds that Pr[A(1λ, fλ(x)) = x] ≤ δ where the
probability is taken over x ←R D and over the internal coin tosses of A.

Security with Auxiliary Input. We follow the definition of security for deterministic
encryption with auxiliary input from [11, 3, 4, 7].1 For simplicity, we will only consider
security while encrypting a single message, although our proofs of security extend to
multiple messages and block-wise hard-to-invert auxiliary inputs. For an adversary A,
auxiliary input function F and message distribution M over {0, 1}m, we define the
advantage function

AdvPrivSIndA,F ,M(λ) := Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

(M0,M1) ← M;

(PK, SK) ← Gen(1λ);

b ←R {0, 1};
ψ ← Enc(PK,Mb);

b′ ← A(PK, ψ, f(M0), f(M1))

⎤⎥⎥⎥⎥⎥⎥⎦− 1

2

A deterministic encryption scheme is (F ,M)-PrivSInd secure if for all PPT A, the
advantage AdvPrivSIndA,F ,M(λ) is a negligible function in λ.

4.2 Extractors

Reconstructive Extractors. A (ε, δ)-reconstructive extractor is a pair of functions
(Ext,Rec):

– an extractor Ext : {0, 1}n × {0, 1}d → Σ

– a (uniform) oracle machine Rec that on input (1n, 1/ε) runs in time poly(n, 1/ε,
log |Σ|).

1 Specifically, we use the notion of strong indistinguishability (PRIV-sIND) [11, Definition 4.4]
restricted to single messages.
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that satisfy the following property: for every x ∈ {0, 1}n and every function D such
that ∣∣∣ Pr

r←R{0,1}d
[D(r,Ext(x, r)) = 1]− Pr

r←R{0,1}d,σ←RΣ
[D(r, σ) = 1]

∣∣∣ ≥ ε

we have:
Pr[RecD(1n, 1/ε) = x] ≥ δ

where the probability is over the coin tosses of Rec.
It was shown in [35] that any (ε, δ)-reconstructive extractor is a (strong) extractor for

sources of min-entropy roughly log 1/δ. It is also easy to show that the output of any
(ε, δ)-reconstructive extractor is pseudorandom for δ · negl(·)-hard-to-invert auxiliary
inputs.

Extractors from Linear Functions. It turns out that random linear functions are not
only good randomness extractors (a fact commonly referred to as the left-over hash
lemma), but also good reconstructive extractors.

Lemma 1 ([21, 17, 10]). Let q be a prime. Then, the function Ext : {0, 1}n×Zn
q → Zq

given by (x, a) �→ x�a is a (ε, ε3

512·n·q2 )-reconstructive extractor.

That is, Ext maps (x1, . . . , xn), (a1, . . . , an) to a1x1 + · · · anxn (mod q). Moreover,
the lemma extends to the following settings:

– q is a random RSA modulus, assuming that factoring is hard on average.
– G is a group of prime order q with generator g, and we consider the extractor
Ext : {0, 1}n × Gn → G given by (x, ga) �→ gx

�a.

4.3 Our Construction

Given a dual projective hash function, we may construct a deterministic encryption
scheme, as shown in Fig 2. For this construction, it is important that we state explicitly
that the projection map α(·) takes the public parameter HP as its first input.

Theorem 2. If (x, HP) �→ α(HP, x) is a (ε, δ)-reconstructive extractor and the subset
membership assumption holds, then the encryption scheme as shown above is PrivSInd-
secure with respect to hard-to-invert auxiliary input.

Correctness of the encryption scheme follows readily the invertibility property of dual
projective hashing. IND-PRIV security follows from the next technical claim.

Lemma 2. Let A be an adversary against (F ,M)-PrivSInd security of the above
encryption scheme (Gen,Enc,Dec). Then, we can construct adversaries A0 and A1

such that for any ε:

either AdvPrivSIndA,F ,M(λ) ≤ AdvSubsetA0(λ) + 2ε

or PrM←M
[
A1(f(M)) =M

]
≥ δε

The running time of A0 is roughly that of A and the running time of A1 is
poly(n, 1/ε, log |Σ|) times that of A.
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Deterministic Encryption Scheme

(KEY GENERATION.) Gen(1λ): Run HP ← Setup(1λ) and (u, τ ) ← SampNo(HP).
Output

PK := HP‖u and SK := τ

(ENCRYPTION.) Enc(PK,M): On input PK = HP‖u and message M , output the ciphertext

α(HP,M)‖Λ∗
u(M)

(DECRYPTION.) Dec(SK, ψ): On input SK = τ and ciphertext ψ = y0‖y1, output

TdInv(τ, y0, y1)

Fig. 2. Deterministic encryption scheme from dual projective hashing

Proof. We proceed via a sequence of games. We start with Game 0 as in the PrivSInd
experiment and end up with a game where the view of A is statistically independent
of the challenge bit b. We write u ∈ ΠN to denote the public key PK in Game 0. This
means that the view of the adversary A is given by:〈

HP‖u, α(HP,Mb) ‖Λ∗
u(Mb), f(M0), f(M1)

〉
GAME 1: SWITCHING TO u ←R ΠY. We replace u ←R ΠN with sampling (u,w) ←

SampYes(HP). Clearly, Game 0 and 1 are computationally indistinguishable by
hardness of subset membership, and the advantage of the adversary changes by at
most AdvSubset(λ).

GAME 2: ENCRYPTING USING Pub. In the challenge ciphertext, we replace Λ∗
u(Mb)

with Pub(α(HP,Mb), u, w). By the projective property, Games 1 and 2 are
identically distributed.

GAME 3: SWITCHING THE OUTPUT OF α(·) TO RANDOM. We replace α(HP,Mb) in
the challenge ciphertext with a random σ ←R Σ. That is, we change the ciphertext
from

α(HP,Mb)‖Pub(α(HP,Mb), u, w) to σ‖Pub(σ, u, w)
If the advantage of the adversary from Game 2 to Game 3 changes by at most 2ε,
then we are done. Otherwise, we may use A to construct a distinguisher D such
that ∣∣∣Pr[D(HP, α(HP,m), f(M)

)
= 1

]
− Pr

[
D
(

HP, σ, f(M)
)
= 1

]∣∣∣ > 2ε

where HP ← Setup(1λ),M ← M, σ ←R Σ. (D simply chooses b ←R {0, 1}, uses
its input as Mb, choosesM1−b ←R M, simulates the view of A using Pub(·, u, w)
to obtain an output b′ and outputs 1 if b′ = b.) By an averaging argument, with
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probability ε over M ← M, D achieves distinguishing probability ε, upon which
we can use RecD to compute M from f(M) with probability δ. This means that
we can invert f on the distribution M with probability ε · δ.

We conclude by observing that in Game 3, the view of the adversary is statistically
independent of the challenge bit b. Hence, the probability that b′ = b is exactly 1/2.

��

Remark 1. It follows fairly readily from the analysis that if (x, HP) �→ α(HP, x) is
a strong extractor (which is a weaker guarantee than a reconstructive extractor), then
the above encryption scheme is PrivSInd-secure with respective to high min-entropy
inputs. We defer the details and a more precise statement to the full version of this
paper. We also point out here that the distribution for HP must be independent of the
message distribution M (for the same reason the seed to an extractor must be chosen
independently of the weaker random source). For this reason, all known constructions
of deterministic encryption only achieve security for message distributions that do not
depend on the public key.

5 Instantiations from DDH and DLIN

Let G be a group of prime order q specified using a generator g. The DDH assumption
asserts that gab is pseudorandom given g, ga, gb where g ←R G; a, b ←R Zq . The d-LIN
assumption asserts that gr1+···+rd

d+1 is pseudorandom given g1, . . . , gd+1, g
r1
1 , . . . , g

rd
d

where g1, . . . , gd+1 ←R G; r1, . . . , rd ←R Zq . DDH is equivalent to 1-LIN. We present
the DLIN-based hash proof system in [9, 31], also used in [18, 11]. When instantiated
with our generic transformations, this yields the DLIN-based (m,m − d log q)-lossy
trapdoor functions given in [18] and the DLIN-based deterministic encryption scheme
in [11].

Setup. HP := (G, gP),P ←R Zd×m
q . The language is given by

ΠY :=
{
gWP : W ∈ Zm×d

q

}
and ΠN :=

{
gA : A ∈ Zm×m

q with full rank
}

A uniformly chosen matrix A ←R Zm×m
q has full rank with overwhelming

probability, so ΠN is efficiently samplable via rejection sampling. The uniform
distributions over ΠY and ΠN are computationally distinguishable under the d-LIN
assumption as shown in [31, 9].

Hashing. The hashing input is given by x ∈ {0, 1}m, with

α(gP,x) := gPx

Private and public evaluation are given by:

Λ∗
U(x) := Ux ∈ Gm and Pub(gPx,U,W) := gW·Px

where (Ux)i :=
∑m

j=1 U
xj

ij . Observe that for U = gWP ∈ ΠY, we have

Λ∗
U(x) = gWPx = Pub(gPx,U,W)
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Inversion. The inversion trapdoor is A−1. Observe that for U = gA ∈ ΠN, we have

Λ∗
U(x) = gAx

Given the inversion trapdoor A−1 and Λ∗
U(x), we can compute gx and thus x.

6 Instantiations from QR

Fix a Blum integerN = PQ for safe primes P,Q ≡ 3 (mod 4) (such that P = 2p+1
and Q = 2q + 1 for primes p, q). Let JN denote the subgroup of Z∗

N with Jacobi
symbol +1, and let QRN denote the cyclic subgroup of quadratic residues. Observe
that |JN | = 2pq = 2|QRN |. The QR assumption states that the uniform distributions
over QRN and JN \ QRN are computationally indistinguishable.

First Construction. We present a QR-based hash proof system based on the IBE
scheme of Boneh et. al [8]. When instantiated with our generic transformations, this
yields a new family of QR-based (logφ(N) − 1, 1)-lossy trapdoor functions; however,
it is less efficient than that given in [18].

Setup. HP := (N). The language is given by

ΠY := QRN and ΠN := JN \ QRN

The uniform distributions over ΠY and ΠN are computationally indistinguishable
under the QR assumption.

Hashing. The hashing input is given by x ∈ Z∗
N/{±1}, with

α(x) := x2

Private and public evaluation are given by:

Λ∗
u(x) := f(x) and Pub(N, u,w) := g(w)

where f, g are the polynomials obtained by running the “IBE compatible algo-
rithm” [8, Section 4] on inputs x2, u. For u = w2 ∈ ΠY, we have f(x) = g(w) by
correctness of the IBE compatible algorithm.

Inversion. The inversion trapdoor (which depends on HP) is the factorization of N .
For u = −w2 ∈ ΠN, we have J(f(x)) is equally likely to be 1 and −1 given x2.
Given the inversion trapdoor (i.e. the factorization of N ), we can compute all four
square roots ±x0,±x1 of x2 along with both J(f(x0)) and J(f(x1)); we can then
recover x.

Second Construction. We present a QR-based hash proof system implicit in [11, 24],
which is a matrix analogue of original Cramer-Shoup construction [14]. When instanti-
ated with our generic transformations, this yields the QR-based (m,m − log |φ(N)|)-
lossy trapdoor functions in [24]. and the QR-based deterministic encryption scheme
in [11]
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Setup. HP := (N, gp),p ←R Zm
N/2, g ←R QRN . The language is given by

ΠY :=
{
gwp� : w ∈ Zm

N/2

}
and ΠN :=

{
(−1)Im · gwp� : w ∈ Zm

N/2

}
where in the expression for ΠN, the matrix dot product refers to element-wise
multiplication. The uniform distributions over ΠY and ΠN are computationally
indistinguishable under the QR assumption as shown in [11, 24, 10].

Hashing. The hashing input is given by x ∈ {0, 1}m, with

α(gp,x) := gp
�x ∈ Z∗

N

Here, Λ∗
U : {0, 1}m → (Z∗

N )m, with private and public evaluation given by:

Λ∗
U(x) := Ux and Pub(PK,U,w) := PKw

where (Ux)i :=
∑m

j=1 U
xj

ij . Observe that for U = gwp� ∈ ΠY, we have

Λ∗
U(x) = gwp�x = (gp

�x)w = Pub(PK,U,w)

Inversion. The inversion trapdoor is the vector w. Observe that for U = (−1)Im ·
gwp� ∈ ΠN, we have

Λ∗
U(x) = (−1)x · gwp�x = (−1)x · PKw

Given the inversion trapdoor w and Λ∗
U(x), we can compute (−1)x and thus x.

7 Instantiations from DCR

Fix a Blum integerN = PQ for safe primes P,Q ≡ 3 (mod 4) (such that P = 2p+1
and Q = 2q + 1 for primes p, q). Let m ∈ Z+ be a parameter. The group Z∗

Nm+1 is
isomorphic to Zφ(N) × ZNm .

First Construction. We present the Cramer-Shoup DCR-based hash proof system
[14], extended to the Damgård-Jurik scheme [15]. When instantiated with our generic
transformation, this yields the DCR-based (m logN,m logN − log |φ(N)|)-lossy
trapdoor functions given in [18].

Setup. HP := (N, gN
m

), g ←R Z∗
Nm+1 . The language is given by

ΠY :=
{
gN

mw : w ∈ ZNm

}
and ΠN :=

{
gN

mw(1 +N) : w ∈ ZNm

}
The uniform distributions over ΠY and ΠN are computationally indistinguishable
under the DCR assumption, as shown in [15].
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Hashing. The hashing input is given by x ∈ ZNm , with

α(gN
m

, x) := gN
mx

Private and public evaluation are given by:

Λ∗
u(x) := ux and Pub(PK, u, w) := PKw

Observe that for u = gN
mw ∈ ΠY, we have

Λ∗
u(x) = gN

mwx = (gN
mx)w = Pub(PK, u, w)

Inversion. The inversion trapdoor (which depends on HP) is the factorization ofN . For
u = gN

mw(1 +N) ∈ ΠN, we have

Λ∗
u(x) = gN

mwx(1 +N)x

Given the inversion trapdoor (i.e. factorization of N ), we can efficiently compute x
from gN

mwx(1 +N)x, c.f. [15].

Second Construction. There is a second DCR-based hash proof system implicit in
[11], which is a matrix analogue of original Cramer-Shoup construction [14]. It is
similar to the second QR-based construction, except we replace (−1) with 1+N . When
instantiated with our generic transformations, this yields the DCR-based deterministic
encryption scheme in [11].

8 Instantiations from LWE

We present the LWE-based construction, which is based on the lossy trapdoor functions
in [34, Section 6.3]. For a real parameter β ∈ (0, 1), we denote by Ψβ the distribution
overR/Z of a normal variable with mean 0 and standard deviationβ/

√
2 π then reduced

modulo 1. Denote by Ψ̄β the discrete distribution over Zq of the random variable �q X�
mod q where the random variable X has distribution Ψβ .

In the following, we consider the standard LWE parameters m,n, q as well as
additional parameters ñ, p such that

m = O(n log q) and α = Θ(1/q) and p ≤ q/4n and ñ = m/ log p

In particular, fix γ < 1 to be a constant. Then, we will set

q = Θ(n1+1/γ) and p = Θ(n1/γ)

When instantiated with our generic transformations, this yields the LWE-based lossy
trapdoor functions in [34] and a new LWE-based deterministic encryption scheme.

Setup. HP := A ←R Zn×m
q . The language is given by

ΠY ←R A�S+E and ΠN ←R A�S+E+G

where S ←R Zn×ñ
q ,E ←R (Ψ̄β)

m×ñ. Here, G ∈ Zm×ñ
q is a fixed public matrix

with special structure for which the bounded error-decoding problem is easy (see
[34, Section 6.3.2]). These distributions are computationally distinguishable under
LWE.
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Hashing. The hashing input is given by a column vector x ←R {0, 1}m, with

α(A,x) := Ax ∈ Zn
q

Here, Λ∗
U : {0, 1}m → Zñ

q , with private and public evaluation given by:

Λ∗
U(x) := x�U and Pub(p,U,S) := p�S

The projective property is approximate, that is,

x�(A�S+E) ≈ (Ax)�S

In fact, for all x, with overwhelming probability over E, we have x�E ⊆ [q/p]ñ.
That is, the projective property holds up to an additive error term in [q/p]ñ.

Inversion. The inversion trapdoor is the matrix S. For U ← ΠN, we have

(α(A,x), Λ∗
U(x)) = (Ax, (Ax)�S+ x�E+ x�G)

Given S, we can recover x�E+x�G. The quantity x�E has small norm, so we can
do bounded-error decoding to recover x�G and thus x.

Lossy TDF. For lossy TDF, in the lossy mode, we can bound the size of the image by
| Imα| ·(q/p)ñ, where the latter term accounts for the error incurred by the approximate
projective property. That is, the lossiness is given by

m−
(
n log q +

m

log p
log

q

p

)
= (1 − γ)m− n log q

Deterministic Encryption. For deterministic encryption, the adversary A1 will guess
the error term x�E, which incurs a multiplicative loss of (p/q)ñ = 1/2γm. The rest of
the security loss is q2n · poly(m,λ). This means that for every constant γ < 1, we have
a deterministic encryption scheme for m-bit messages, secure with respect to 2−γm-
hard-to-invert auxiliary input, based on the hardness of solving certain lattice problems
with approximation factor better than Õ(n2+1/γ).

Acknowledgments. I would like to thank Gil Segev and the anonymous referees for
helpful and detailed comments.
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Efficient Zero-Knowledge Argument
for Correctness of a Shuffle

Stephanie Bayer and Jens Groth�
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Abstract. Mix-nets are used in e-voting schemes and other applications that re-
quire anonymity. Shuffles of homomorphic encryptions are often used in the con-
struction of mix-nets. A shuffle permutes and re-encrypts a set of ciphertexts, but
as the plaintexts are encrypted it is not possible to verify directly whether the
shuffle operation was done correctly or not. Therefore, to prove the correctness
of a shuffle it is often necessary to use zero-knowledge arguments.

We propose an honest verifier zero-knowledge argument for the correctness
of a shuffle of homomorphic encryptions. The suggested argument has sublinear
communication complexity that is much smaller than the size of the shuffle itself.
In addition the suggested argument matches the lowest computation cost for the
verifier compared to previous work and also has an efficient prover. As a result
our scheme is significantly more efficient than previous zero-knowledge schemes
in literature.

We give performance measures from an implementation where the correctness
of a shuffle of 100,000 ElGamal ciphertexts is proved and verified in around 2
minutes.

Keywords: Shuffle, zero-knowledge, ElGamal encryption, mix-net, voting,
anonymous broadcast.

1 Introduction

A mix-net [4] is a multi-party protocol which is used in e-voting or other applications
which require anonymity. It allows a group of senders to input a number of encrypted
messages to the mix-net, which then outputs the messages in random order. It is com-
mon to construct mix-nets from shuffles.

Informally, a shuffle of ciphertexts C1, . . . , CN is a set of ciphertexts C′
1, . . . , C

′
N

with the same plaintexts in permuted order. In our work we will examine shuffle proto-
cols constructed from homomorphic encryption schemes. That means for a given pub-
lic key pk, messages M1,M2, and randomness ρ1, ρ2 the encryption function satisfies
Epk(M1M2; ρ1 + ρ2) = Epk(M1; ρ1)Epk(M2; ρ2). Thus, we may construct a shuffle
of C1, . . . , CN by selecting a permutation π ∈ ΣN and randomizers ρ1, . . . ρN , and
calculating C′

1 = Cπ(1)Epk(1; ρ1), . . . , C
′
N = Cπ(N)Epk(1; ρN ).

A common construction of mix-nets is to let the mix-servers take turns in shuffling
the ciphertexts. If the encryption scheme is semantically secure the shuffle C′

1, . . . , C
′
N

� Both authors are supported by EPSRC grant number EP/G013829/1.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 263–280, 2012.
c© International Association for Cryptologic Research 2012
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output by a mix-server does not reveal the permutation or the messages. But this also
means that a malicious mix-server in the mix-net could substitute some of the cipher-
texts without being detected. In a voting protocol, it could for instance replace all
ciphertexts with encrypted votes for candidate X. Therefore, our goal is to construct
an interactive zero-knowledge argument that makes it possible to verify that the shuf-
fle was done correctly (soundness), but reveals nothing about the permutation or the
randomizers used (zero-knowledge).

Efficiency is a major concern in arguments for the correctness of a shuffle. In large
elections it is realistic to end up shuffling millions of votes. This places considerable
strain on the performance of the zero-knowledge argument both in terms of communi-
cation and computation. We will construct an honest verifier zero-knowledge argument
for correctness of a shuffle that is highly efficient both in terms of communication and
computation.

1.1 Related Work

The idea of a shuffle was introduced by Chaum [4] but he didn’t give any method to
guarantee the correctness. Many suggestions had been made how to build mix-nets or
prove the correctness of a shuffle since then, but many of these approaches have been
partially or fully broken, and the remaining schemes sometimes suffer from other draw-
backs. None of these drawbacks are suffered by the shuffle scheme of Wikström [27]
and approaches based on zero-knowledge arguments. Since zero-knowledge arguments
achieve better efficiency they will be the focus of our paper.

Early contributions using zero-knowledge arguments were made by Sako and
Killian [23], and Abe [1–3]. Furukawa and Sako [10] and Neff [20, 21] proposed the
first shuffle arguments for ElGamal encryption with a complexity that depends linearly
on the number of ciphertexts.

Furukawa and Sako’s approach is based on permutation matrices and has been re-
fined further [7, 16]. Furukawa, Miyachi, Mori, Obana, and Sako [8] presented an im-
plementation of a shuffle argument based on permutation matrices and tested it on mix-
nets handling 100,000 ElGamal ciphertexts. Recently, Furukawa and Sako [9] have re-
ported on another implementation based on elliptic curve groups.

Wikström [28] also used the idea of permutation matrices and suggested a shuffle
argument which splits in an offline and online phase. Furthermore, Terelius and Wik-
ström [25] constructed conceptually simple shuffle arguments that allowed the restric-
tion of the shuffles to certain classes of permutations. Both protocols are implemented
in the Verificatum mix-net library [29].

Neff’s approach [20] is based on the invariance of polynomials under permutation
of the roots. This idea was picked up by Groth who suggested a perfect honest verifier
zero-knowledge protocol [14]. Later Groth and Ishai [15] proposed the first shuffle ar-
gument where the communication complexity is sublinear in the number of ciphertexts.

1.2 Our Contribution

Results. We propose a practical efficient honest verifier zero-knowledge argument for
the correctness of a shuffle. Our argument is very efficient; in particular we drastically
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decrease the communication complexity compared to previous shuffle arguments. We
cover the case of shuffles of ElGamal ciphertexts but it is possible to adapt our argument
to other homomorphic cryptosystems as well.

Our argument has sublinear communication complexity. When shuffling N cipher-
texts, arranged in an m× n matrix, our argument transmits O(m + n) group elements
giving a minimal communication complexity of O(

√
N) if we choose m = n. In com-

parison, Groth and Ishai’s argument [15] communicatesΘ(m2+n) group elements and
all other state of the art shuffle arguments communicateΘ(N) elements.

The disadvantage of Groth and Ishai’s argument compared to the schemes with lin-
ear communication was that the prover’s computational complexity was on the order of
O(Nm) exponentiations. It was therefore only possible to choose small m. In compar-
ison, our prover’s computational complexity is O(N logm) exponentiations for con-
stant round arguments and O(N) exponentiations if we allow a logarithmic number of
rounds. In practice, we do not need to increase the round complexity until m gets quite
large, so the speedup in the prover’s computation is significant compared to Groth and
Ishai’s work and is comparable to the complexity seen in arguments with linear commu-
nication. Moreover, the verifier is fast in our argument making the entire process very
light from the verifier’s point of view.

In Sect. 6 we report on an implementation of our shuffle argument using shuffles
of 100,000 ElGamal ciphertexts. We compare this implementation on the parameter
setting for ElGamal encryption used in [8] and find significant improvements in both
communication and computation. We also compare our implementation to the shuffle
argument in the Verificatum mix-net [29] and find significant improvements in commu-
nication and moderate improvements in computation.

New Techniques. Groth [13] proposed efficient sublinear size arguments to be used
in connection with linear algebra over a finite field. We combine these techniques
with Groth and Ishai’s sublinear size shuffle argument. The main problem in apply-
ing Groth’s techniques to shuffling is that they were designed for use in finite fields and
not for use with group elements or ciphertexts. It turns out though that the operations are
mostly linear and therefore it is possible to carry them out “in the exponent”; somewhat
similar to what is often done in threshold cryptography. Using this adaptation we are
able to construct an efficient multi-exponentiation argument that a ciphertext C is the
product of a set of known ciphertexts C1, . . . , CN raised to a set of hidden committed
values a1, . . . , aN . This is the main bottleneck in our shuffle argument and therefore
gives us a significant performance improvement.

Groth’s sublinear size zero-knowledge arguments also suffered from a performance
bottleneck in the prover’s computation. At some juncture it is necessary to compute the
sums of the diagonal strips in a product of two matrices. This problem is made even
worse in our setting because when working with group elements we have to compute
these sums in the exponents. By adapting techniques for polynomial multiplication such
as Toom-Cook [5, 26] and the Fast Fourier Transform [6] we are able to reduce this
computation. Moreover, we generalize the interactive technique of Groth [13] to further
reduce the prover’s computation.
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2 Preliminaries

We use vector notation in the paper, and we write xy = (x1y1, . . . , xnyn) for the entry-
wise product and correspondingly xz = (xz

1, . . . , x
z
n) for vectors of group elements.

Similar, we write xπ if the entries of vector x are permuted by the permutation π, i.e.,
xπ = (xπ(1), . . . , xπ(n)). We use the standard inner product x · y =

∑n
i=1 xiyi for

vectors of field elements .
Our shuffle argument is constructed with homomorphic encryption. An en-

cryption scheme is homomorphic if for a public key pk, messages M1,M2,
and randomness ρ1, ρ2 the encryption function satisfies Epk(M1M2; ρ1 + ρ2) =
Epk(M1; ρ1)Epk(M2; ρ2). We will focus on ElGamal encryption, but our construc-
tion works with many different homomorphic encryption schemes where the mes-
sage space has large prime order q. To simplify the presentation, we will use notation
from linear algebra. We define Ca =

∏n
i=1 C

ai

i for vectors (C1, . . . , Cn) ∈ Hn and
(a1, . . . , an)

T ∈ Zn
q , where H is the ciphertext space.

Likewise, we need a homomorphic commitment scheme in our protocol. Again in-
formally, a commitment scheme is homomorphic if for a commitment key ck, messages
a, b, and randomizers r, s it holds that comck(a+ b; r + s) = comck(a; r)comck(b; s).
We also demand that it is possible to commit to n elements in Zq , where q is a large
prime, at the same time. I.e., given a vector (a1, . . . , an)T ∈ Zn

q we can compute a
single short commitment c = comck(a; r) ∈ G, where G is the commitment space.
The length-reducing property of the commitment scheme mapping n elements to a sin-
gle commitment is what allows us to get sublinear communication complexity. Many
homomorphic commitment schemes with this property can be used, but for conve-
nience we just focus on a generalization of the Pedersen commitment scheme [22].
To simplify notation, we write cA = comck(A; r) for the vector (cA1 , . . . , cAm) =
(comck(a1; r1), . . . , comck(am; rm) when A is a matrix with column vectors
a1, . . . ,am.

2.1 Special Honest Verifier Zero-Knowledge Argument of Knowledge

In the shuffle arguments we consider a prover P and a verifier V both of which are prob-
abilistic polynomial time interactive algorithms. We assume the existence of a prob-
abilistic polynomial time setup algorithm G that when given a security parameter λ
returns a common reference string σ.

The common reference string will be σ = (pk, ck), where pk and ck are public
keys for the ElGamal encryption scheme and the generalized Pedersen commitment
scheme. The encryption scheme and the commitment scheme may use different under-
lying groups, but we require that they have the same prime order q. We will write G for
the group used by the commitment scheme and write H for the ciphertext space.

The setup algorithm can also return some side-information that may be used by an
adversary; however, we require that even with this side-information the commitment
scheme should remain computationally binding. The side-information models that the
keys may be set up using some multi-party computation protocol that leaks some infor-
mation, the adversary may see some decryptions or even learn the decryption key, etc.
Our protocol for verifying the correctness of a shuffle is secure in the presence of such
leaks as long as the commitment scheme is computationally binding.



Efficient Zero-Knowledge Argument for Correctness of a Shuffle 267

Let R be a polynomial time decidable ternary relation, we call w a witness for a
statement x if (σ, x, w) ∈ R. We define the language

Lσ := {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w for the relation R.
The public transcript produced by P and V when interacting on inputs s and t is

denoted by tr ← 〈P(s),V(t)〉. The last part of the transcript is either accept or reject
from the verifier. We write 〈P(s),V(t)〉 = b, b ∈ {0, 1} for rejection or acceptance.

Definition 1 (Argument). The triple (G,P ,V) is called an argument for a relation R
with perfect completeness if for all non-uniform polynomial time interactive adversaries
A we have:
Perfect completeness:

Pr[(σ, hist)← G(1λ); (x,w)← A(σ, hist) : (σ, x, w) �∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1

Computational soundness:

Pr[(σ, hist) ← G(1λ);x ← A(σ, hist) : x �∈ Lσ and 〈A,V(σ, x)〉 = 1] ≈ 0

Definition 2 (Public coin). An argument (G,P ,V) is called public coin if the verifier
chooses his messages uniformly at random and independently of the messages sent by
the prover, i.e., the challenges correspond to the verifier’s randomness ρ.

Definition 3 (Special honest verifier zero-knowledge). A public coin argument (G,P ,
V) is called a perfect special honest verifier zero knowledge (SHVZK) argument for R
with common reference string generator G if there exists a probabilistic polynomial time
simulator S such that for all non-uniform polynomial time interactive adversaries A we
have

Pr[(σ, hist) ← G(1λ); (x,w, ρ) ← A(σ, hist);

tr ← 〈P(σ, x, w),V(σ, x; ρ)〉 : (σ, x, w) ∈ R and A(tr) = 1]

= Pr[(σ, hist) ← G(1λ); (x,w, ρ) ← A(σ, hist);

tr ← S(σ, x, ρ) : (σ, x, w) ∈ R and A(tr) = 1]

To construct a fully zero-knowledge argument secure against arbitrary verifiers in the
common reference string model one can first construct a SHVZK argument and then
convert it into a fully zero-knowledge argument [11, 12]. This conversion has constant
additive overhead, so it is very efficient and allows us to focus on the simpler problem
of getting SHVZK against honest verifiers.

To define an argument of knowledge we follow the approach of Groth and Ishai [15]
and do it through witness-extended emulation first introduced by Lindell [19]. This
definition informally says that given an adversary that produces an acceptable argument
with some probability, there exist an emulator that produces a similar argument with the
same probability and at the same time provides a witness w.
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Definition 4 (Witness-extended emulation). A public coin argument (G,P ,V) has
witness extended emulation if for all deterministic polynomial time P∗ there exists an
expected polynomial time emulator X such that for all non-uniform polynomial time
interactive adversaries A we have

Pr[(σ, hist) ← G(1λ); (x, s) ← A(σ, hist); tr ← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr)=1]

≈ Pr[(σ, hist) ← G(1λ); (x, s) ← A(σ, hist); (tr, w) ← X 〈P∗(σ,x,s),V(σ,x)〉(σ, x, ρ) :

A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R].

In the definition, s can be interpreted as the state of P∗, including the randomness. So
whenever P∗ is able to make a convincing argument when in state s, the emulator can
extract a witness at the same time giving us an argument of knowledge. This definition
automatically implies soundness.

3 Shuffle Argument

We will give an argument of knowledge of a permutation π ∈ ΣN and randomness
{ρi}N

i=1 such that for given ciphertexts {Ci}N
i=1, {C′

i}N
i=1 we haveC′

i=Cπ(i)Epk(1; ρi).
The shuffle argument combines a multi-exponentiation argument, which allows us to
prove that the product of a set of ciphertexts raised to a set of committed exponents
yields a particular ciphertext, and a product argument, which allows us to prove that a
set of committed values has a particular product. The multi-exponentiation argument is
given in Sect. 4 and the product argument is given in Sect. 5. In this section, we will give
an overview of the protocol and explain how a multi-exponentiation argument can be
combined with a product argument to yield an argument for the correctness of a shuffle.

The first step for the prover is to commit to the permutation. This is done by com-
mitting to π(1), . . . , π(N). The prover will now receive a challenge x and commit to
xπ(1), . . . , xπ(N). The prover will give an argument of knowledge of openings of the
commitments to permutations of 1, . . . , N and x1, . . . , xN and demonstrate that the
same permutation has been used in both cases. This means the prover has a commit-
ment to x1, . . . , xN permuted in an order that was fixed before the prover saw x.

To check that the same permutation has been used in both commitments the ver-
ifier sends random challenges y and z. By using the homomorphic properties of the
commitment scheme the prover can in a verifiable manner compute commitments to
d1 − z = yπ(1) + xπ(1) − z, . . . , dN − z = yπ(N) + xπ(N) − z. Using the product
argument from Sect. 5 the prover shows that

∏N
i=1(di − z) =

∏N
i=1(yi+ xi − z). Ob-

serve that we have two identical degreeN polynomials in z since the only difference is
that the roots have been permuted. The verifier does not know a priori that the two poly-
nomials are identical but can by the Schwartz-Zippel lemma deduce that the prover has
negligible chance over the choice of z of making a convincing argument unless indeed
there is a permutation π such that d1 = yπ(1)+xπ(1), . . . , dN = yπ(N)+xπ(N). Fur-
thermore, there is negligible probability over the choice of y of this being true unless
the first commitment contains π(1), . . . , π(N) and the second commitment contains
xπ(1), . . . , xπ(N).
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The prover has commitments to xπ(1), . . . , xπ(N) and uses the multi-exponentiation
argument from Sect. 4 to demonstrate that there exists a ρ such that

∏N
i=1 C

xi

i =

Epk(1; ρ)
∏N

i=1(C
′
i)

xπ(i)

. The verifier does not see the committed values and thus does
not learn what the permutation is. However, from the homomorphic properties of the en-
cryption scheme the verifier can deduce

∏N
i=1M

xi

i =
∏N

i=1(M
′
i)

xπ(i)

for some permu-
tation π that was chosen before the challenge x was sent to the prover. Taking discrete
logarithms we have the polynomial identity

∑N
i=1 log(Mi)x

i =
∑N

i=1 log(M
′
π−1(i))x

i.
There is negligible probability over the choice of x of this equality holding true unless
M ′

1 =Mπ(1), . . . ,M
′
N =Mπ(N). This shows that we have a correct shuffle.

Common reference string: pk, ck.
Statement: C,C′ ∈ HN with N = mn.
Prover’s witness: π ∈ ΣN and ρ ∈ ZN

q such that C′ = Epk(1;ρ)Cπ.
Initial message: Pick r ← Zm

q , set a = {π(i)}N
i=1 and compute cA = comck(a; r).

Send: cA

Challenge: x ← Z∗
q .

Answer Pick s ∈ Zm
q , set b = {xπ(i)}N

i=1 and compute cB = comck(b; s).
Send: cB

Challenge: y, z ← Z∗
q .

Answer: Define c−z = comck(−z, . . . ,−z;0) and cD = c y
AcB . Compute d = ya+

b, and t = yr+s. Engage in a product argument as described in Sect. 5 of openings
d1 − z, . . . , dN − z and t such that

cDc−z = comck(d − z; t ) and
N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z) .

Compute ρ=−ρ·b and set x=(x, x2, . . . , xN )T . Engage in a multi-exponentiation
argument as described in Sect. 4 of b, s and ρ such that

Cx = Epk(1; ρ)C
′b and cB = comck(b; s)

The two arguments can be run in parallel. Furthermore, the multi-exponentiation
argument can be started in round 3 after the computation of the commitments cB .

Verification: The verifier checks cA, cB ∈ Gm and computes c−z, cD as described
above and computes

∏N
i=1(yi+x

i − z) and Cx. The verifier accepts if the product
and multi-exponentiation arguments both are valid.

Theorem 5 (Full paper). The protocol is a public coin perfect SHVZK argument of
knowledge of π ∈ ΣN and ρ ∈ ZN

q such that C′ = Epk(1;ρ)Cπ.

4 Multi-exponentiation Argument

Given ciphertexts C11, . . . , Cmn, and C we will in this section give an argument of
knowledge of openings of commitments cA to A = {aij}n,m

i,j=1 such that

C = Epk(1; ρ)
m∏
i=1

C ai

i and cA = comck(A; r) ,

where Ci = (Ci1, . . . , Cin) and aj = (a1j , . . . , anj)
T .
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To explain the idea in the protocol let us for simplicity assume ρ = 0 and the prover
knows the openings of cA, and leave the question of SHVZK for later. In other words,
we will for now just explain how to convince the verifier in a communication-efficient
manner that C =

∏m
i=1 C

ai

i . The prover can calculate the ciphertexts

Ek =
∏

1≤i,j≤m
j=(k−m)+i

C
aj

i ,

where Em = C. To visualize this consider the following matrix(
a1 . . . am

)
⎛⎜⎜⎜⎝

C1

C2

...
Cm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

C a1
1

. . . C am
1

C a1
2

. . . C am
2

. . .
. . .

. . .
. . .

C a1
m

. . . C am
m

⎞⎟⎟⎟⎟⎟⎟⎠
E2m−1

...
Em+1

E1 . . . Em−1 Em

The prover sends the ciphertextsE1, . . . , E2m−1 to the verifier. The ciphertextC = Em

is the product of the main diagonal and the other Ek’s are the products of the other
diagonals. The prover will use a batch-proof to simultaneously convince the verifier
that all the diagonal products give their correspondingEk.

The verifier selects a challenge x ← Z∗
q . The prover sets x = (x, x2, . . . , xm)T ,

opens c x
A to a =

∑m
j=1 x

jaj , and the verifier checks

Cxm
2m−1∏
k=1
k =m

Exk

k =

m∏
i=1

C
(xm−ia)
i .

Since x is chosen at random, the prover has negligible probability of convincing the
verifier unless the xk-related terms match on each side of the equality for all k. In
particular, since a =

∑m
j=1 x

jaj the xm-related terms give us

Cxm

=
m∏
i=1

C

xm−i ∑
1≤j≤m

m=m−i+j

xjaj

i =

(
m∏
i=1

C ai

i

)xm

and allow the verifier to conclude C =
∏m

i=1 C
ai

i .
Finally, to make the argument honest verifier zero-knowledge we have to avoid leak-

ing information about the exponent vectors a1, . . . ,am. The prover therefore com-
mits to a random vector a0 ← Zn

q and after she sees the challenge x she reveals
a = a0 +

∑m
j=1 x

jaj . Since a0 is chosen at random this vector does not leak any
information about the exponents.
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Another possible source of leakage is the products of the diagonals. The prover will
therefore randomize each Ek by multiplying it with a random ciphertext Epk(G

bk ; τk).
Now each Ek is a uniformly random group element in H and will therefore not leak
information about the exponents. Of course, this would make it possible to encrypt
anything in the Ek and allow cheating. To get around this problem the prover has to
commit to the bk’s used in the random encryptions and the verifier will check that the
prover uses bm = 0. The full argument that also covers the case ρ �= 0 can be found
below.

Common reference string: pk, ck.
Statement: C1, . . . ,Cm ∈ Hn , C ∈ H, and cA ∈ Gm

Prover’s witness: A = {aj}m
j=1 ∈ Zn×m

q , r ∈ Zm
q , and ρ ∈ Zq such that

C = Epk(1; ρ)

m∏
i=1

C ai

i and cA = comck(A; r)

Initial message: Pick a0 ← Zn
q , r0 ← Zq , and b0, s0, τ0 . . . , b2m−1, s2m−1, τ2m−1 ←

Zq and set bm = 0, sm = 0, τm = ρ. Compute for k = 0, . . . , 2m− 1

cA0 = comck(a0; r0) , cBk
= comck(bk; sk) , Ek = Epk(G

bk ; τk)

m,m∏
i=1,j=0

j=(k−m)+i

C
aj

i

Send: cA0 , {cBk
}2m−1
k=0 , {Ek}2m−1

k=0 .
Challenge: x ← Z∗

q .
Answer: Set x = (x, x2, . . . , xm)T and compute

a = a0 +Ax r = r0 + r · x b = b0 +

2m−1∑
k=1

bkx
k

s = s0 +

2m−1∑
k=1

skx
k τ = τ0 +

2m−1∑
k=1

τkx
k .

Send: a, r, b, s, τ .
Verification: Check cA0 , cB0 , . . . , cB2m−1 ∈ G, and E0, . . . , E2m−1 ∈ H, and a ∈

Zn
q , and r, b, s, τ ∈ Zq , and accept if cBm = comck(0; 0) and Em = C, and

cA0c
x
A = comck(a; r) cB0

2m−1∏
k=1

cx
k

Bk
= comck(b; s)

E0

2m−1∏
k=1

Exk

k = Epk(G
b; τ)

m∏
i=1

C xm−ia
i .
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Theorem 6 (Full paper). The protocol above is a public coin perfect SHVZK ar-
gument of knowledge of openings a1, . . . ,am, r and randomness ρ such that C =
Epk(1; ρ)

∏m
i=1 C

ai

i .

4.1 The Prover’s Computation

The argument we just described has efficient verification and very low communication
complexity, but the prover has to compute

E0, . . . , E2m−1 .

In this section we will for clarity ignore the randomization needed to get honest verifier
zero-knowledge, which can be added in a straightforward manner at little extra compu-
tational cost. So let us say we need to compute for k = 1, . . . , 2m− 1 the elements

Ek =

m,m∏
i=1,j=1

j=(k−m)+i

C
aj

i .

This can be done by first computing the m2 products C
aj

i and then computing the
Ek’s as suitable products of some of these values. Since each product C aj

i is of the
form

∏n

=1 C

aj�

i
 this gives a total ofm2n exponentiations in H. For largem this cost is
prohibitive.

It turns out that we can do much better by using techniques inspired by multiplica-
tion of integers and polynomials, such as Karatsuba [17], Toom-Cook [5, 26] and using
the Fast Fourier Transform [6]. A common theme in these techniques is to compute the
coefficients of the product p(x)q(x) of two degreem−1 polynomials p(x) and q(x) by
evaluating p(x)q(x) in 2m− 1 points ω0, . . . , ω2m−2 and using polynomial interpola-
tion to recover the coefficients of p(x)q(x) from p(ω0)q(ω0), . . . , p(ω2m−2)q(ω2m−2).

If we pick ω ∈ Zq we can evaluate the vectors

m∏
i=1

C ωm−i

i and
m∑

j=1

ωj−1aj .

This gives us

(
m∏
i=1

C ωm−i

i

) ∑m
j=1 ωj−1aj

=
2m−1∏
k=1

⎛⎜⎜⎝ m,m∏
i=1,j=1

j=(k−m)+i

C
aj

i

⎞⎟⎟⎠
ωk−1

=
2m−1∏
k=1

E ωk−1

k .

Picking 2m− 1 different ω0, . . . , ω2m−2 ∈ Zq we get the 2m− 1 ciphertexts

2m−1∏
k=1

E
ωk−1

0

k , . . . ,

2m−1∏
k=1

E
ωk−1

2m−2

k .
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The ω0, . . . , ω2m−2 are different and therefore the transposed Vandermonde matrix⎛⎜⎝ 1 . . . 1
...

...
ω2m−2
0 . . . ω2m−2

2m−2

⎞⎟⎠
is invertible. Let yi = (y0, . . . , y2m−2)

T be the ith column of the inverse matrix. We
can now compute Ei as

Ei =

2m−2∏

=0

(
2m−1∏
k=1

E
ωk−1

�

k

)y�

=

2m−2∏

=0

(( m∏
i=1

C
ωm−i

�
i

) ∑m
j=1 ωj−1

� aj

)y�

.

This means the prover can compute E1, . . . , E2m−1 as linear combinations of( m∏
i=1

C
ωm−i

0

i

) ∑m
j=1 ωj−1

0 aj

. . .
( m∏

i=1

C
ωm−i

2m−2

i

) ∑m
j=1 ωj−1

2m−2aj

.

The expensive step in this computation is to compute
∏m

i=1 C
ωm−i

0

i , . . . ,
∏m

i=1 C
ωm−i

2m−2

i .
If 2m − 2 is a power of 2 and 2m − 2|q − 1 we can pick ω1, . . . , ω2m−2 as roots

of unity, i.e., ω2m−2
k = 1. This allows us to use the Fast Fourier Transformation “in

the exponent” to simultaneously calculate
∏m

i=1 C
ωm−i

k

i in all of the roots of unity
using only O(mn logm) exponentiations. This is asymptotically the fastest technique
we know for computing E0, . . . , E2m−2.

Unfortunately, the FFT is not well suited for being used in combination with multi-
exponentiation techniques and in practice it therefore takes a while before the asymp-
totic behavior kicks in. For small m it is therefore useful to consider other strategies.
Inspired by the Toom-Cook method for integer multiplication, we may for instance
choose ω0, ω1, . . . , ω2m−2 to be small integers. When m is small even the largest
exponent ω2m−2

k will remain small. For instance, if m = 4 we may choose ωk ∈
{0,−1, 1,−2, 2,−3, 3}, which makes the largest exponent ωm−1

k = 33 = 27. This

makes it cheap to compute each
∏m

i=1 C
ωm−i

k
i because the exponents are very small.

The basic step of Toom-Cook sketched above can be optimized by choosing the
evaluation points carefully. However, the performance degrades quickly as m grows.
Using recursion it is possible to get subquadratic complexity also for largem, however,
the cost still grows relatively fast. In the next section we will therefore describe an
interactive technique for reducing the prover’s computation. In our implementation, see
Sect. 6, we have used a combination of the interactive technique and Toom-Cook as the
two techniques work well together.

4.2 Trading Computation for Interaction

We will present an interactive technique that can be used to reduce the prover’s com-
putation. The prover wants to show that C has the same plaintext as the product of the
main diagonal of following matrix (here illustrated for m = 16).
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C a1
1 C a2

1 C a3
1 C a4

1

C a1
2 C a2

2 C a3
2 C a4

2

. . .
C a1

3 C a2
3 C a3

3 C a4
3

C a1
4 C a2

4 C a3
4 C a4

4

. . .
C a13

13 C a14
13 C a15

13 C a16
13

. . . C a13
14 C a14

14 C a15
14 C a16

14

C a13
15 C a14

15 C a15
15 C a16

15

C a13
16 C a14

16 C a15
16 C a16

16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the previous section the prover calculated all m2 entries of the matrix. But we are

only interested in the product along the diagonal so we can save computation by just
focusing on the blocks close to the main diagonal.

Let us explain the idea in the case of m = 16. We can divide the matrix into 4 × 4
blocks and only use the four blocks that are on the main diagonal. Suppose the prover
wants to demonstrate C =

∏16
i=1 C

ai

i . Let us for now just focus on soundness and re-
turn to the question of honest verifier zero-knowledge later. The prover starts by sending
E0, E1, E2, E3, E4, E5, E6 that are the products along the diagonals of the elements in
the blocks that we are interested in. I.e., E0 =

∏4
i=1 C

a4i−3

4i , . . . , E6 =
∏4

i=1 C
a4i

4i−3

and E3 = C. The verifier sends a random challenge x and using the homomorphic
properties of the encryption scheme and of the commitment scheme both the prover
and the verifier can compute C′

1, . . . ,C
′
4 and cA′

1
, . . . , cA′

4
as

C ′
i = C x3

4i−3C
x2

4i−2C
x
4i−1C4i cA′

j
= cA4j−3c

x
A4j−2

c x2

A4j−1
c x3

A4j
.

They can also both compute C′ =
∏6

k=0 E
xk

k . The prover and the verifier now engage

in an SHVZK argument for the smaller statement C′ =
∏4

i=1 C
′ a′

i

i . The prover can
compute a witness for this statement with a′

i = a4i−3 + xa4i−2 + x2a4i−1 + x3a4i.
This shows

Cx3
6∏

k=0
k =3

Exk

k =

4∏
i=1

(C x3

4i−3C
x2

4i−2C
x
4i−1C4i)

(a4i−3+xa4i−2+x2a4i−1+x3a4i) .

Looking at the x3-related terms, we see this has negligible chance of holding for a
random x unless C =

∏16
i=1 C

ai

i , which is what the prover wanted to demonstrate.
We will generalize the technique to reduce a statementC1, . . . ,Cm, C, cA1 , . . . , cAm

with a factor μ to a statement C ′
1, . . . ,C

′
m′ , C′, cA′

1
, . . . , cA′

m′ , where m = μm′. To
add honest verifier zero-knowledge to the protocol, we have to prevent the Ek’s from
leaking information about a1, . . . ,am. We do this by randomizing each Ek with a ran-
dom ciphertext Epk(G

bk ; tk). To prevent the prover to use the randomization to cheat
she will have to commit the bk’s before seeing the challenge x.
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Common Reference string: pk, ck.
Statement: C1, . . . ,Cm ∈ Hn and C ∈ H and cA1 , . . . , cAm ∈ G where m = μm′.
Prover’s witness: A ∈ Zn×m

q , r ∈ Zm
q and ρ ∈ Zq such that

C = Epk(1; ρ)

m∏
i=1

C ai

i and cA = comck(A; r) .

Initial message: Pick b = (b0, . . . , b2μ−2), s, τ ← Z2μ−1
q and set bμ−1 = 0, sμ−1 =

0, τμ−1 = ρ. Compute for k = 0, . . . , 2μ− 2

cbk = comck(bk; sk) Ek = Epk(G
bk ; τk)

m′−1∏

=0

μ,μ∏
i=1,j=1

j=(k+1−μ)+i

C
aμ�+j

μ
+i .

Send: cb = (cb0 , . . . , cb2μ−2) and E = (E0, . . . , E2μ−2).
Challenge: x ← Z∗

q .
Answer: Set x = (1, x, . . . , x2μ−2)T and send b = b · x and s = s · x to the verifier.

Compute for � = 1, . . . ,m′

a′

 =

μ∑
j=1

xj−1aμ(
−1)+j r′
 =

μ∑
j=1

xj−1rμ(
−1)+j ρ′ = τ · x .

Define C ′
1, . . . ,C

′
m′ and cA′

1
, . . . , cA′

m′ and C′ by

C ′

 =

μ∏
i=1

C xμ−i

μ(
−1)+i cA′
�
=

μ∏
j=1

c xj−1

Aμ(�−1)+j
C′ = Epk(G

−b; 0)Ex.

Engage in an SHVZK argument of openingsa′
1, . . . ,a

′
m′ , r′, and ρ′ such thatC′ =

Epk(1; ρ
′)
∏m′


=1 C
′ a′

�


 .
Verification: Check cb ∈ G2μ−1 and E0, . . . , E2μ−2 ∈ H and b, s ∈ Zq . Accept if

cbμ−1 = comck(0; 0) Eμ−1 = C c x
b = comck(b; s)

and if the SHVZK argument for C ′
1, . . . ,C

′
m′ , C′, cA′

1
, . . . , cA′

m′ is valid.

Theorem 7 (Full paper). The protocol above is a public coin perfect SHVZK argument
of knowledge of a1, . . . ,am, r such that C = Epk(1; ρ)

∏m
i=1 C

ai

i

5 Product Argument

We will sketch an argument that a set of committed values have a particular product.
More precisely, given commitmentsA1, . . . , Am to a11, . . . , amn and a value bwe want
to give an argument of knowledge for

∏m
i=1

∏n
j=1 aij = b. Our strategy is to compute

a commitment

B = comck(

m∏
i=1

ai1, . . . ,

m∏
i=1

ain; s) .
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We give an argument of knowledge that B is true, i.e., it contains
∏m

i=1 ai1, . . . ,∏m
i=1 ain. Groth [13] described how to do this efficiently. Next, we give an argument

of knowledge that b is the product of the values inside B. This can be done using an
argument given in [14]. Here, we just give an overview of the protocol.

Common reference string: pk, ck.
Statement: A1, . . . , Am ∈ G and b ∈ Zq .
Prover’s witness: a11, . . . , amn, r1, . . . , rm ∈ Zq such that

A1 = comck(a11, . . . , a1n; r1)
...

...
Am = comck(am1, . . . , amn; rm) ,

and
m∏
i=1

n∏
j=1

aij = b .

Initial message: Pick s ← Zq and compute B = comck(
∏m

i=1 ai1, . . . ,
∏m

i=1 ain; s).
Send B to the verifier. Engage in an SHVZK argument of knowledge as described
in [13] of B = comck(

∏m
i=1 ai1, . . . ,

∏m
i=1 ain; s), where a11, . . . , amn are the

committed values in A1, . . . , Am. Engage (in parallel) in an SHVZK argument of
knowledge as described in [14] of b being the product of the values in B.

Verification: The verifier accepts if B ∈ G and both SHVZK arguments are valid.

Theorem 8. The protocol is a public coin perfect SHVZK argument of knowledge of
openings a11, . . . , amn, r1, . . . , rm ∈ Zq such that b =

∏m
i=1

∏n
i=1 aij .

The proof along with details of the underlying arguments can be found in the full paper.

6 Implementation and Comparison

We will now compare our protocol with the most efficient shuffle arguments for ElGa-
mal encryption. First, we compare the theoretical performance of the schemes without
any optimization. Second, we compare an implementation of our protocol with the im-
plementation by Furukawa et al. [8] and with the implementation in the Verificatum
mix-net library [29].

Theoretical Comparison. Previous work in the literature mainly investigated the case
where we use ElGamal encryption and commitments over the same group G, i.e.,
H = G × G. Table 1 gives the asymptotic behavior of these protocols compared to
our protocol for N = mn as m and n grows.

In our protocol, we may as detailed in Sect. 4.1 use FFT techniques to reduce the
prover’s computation to O(N logm) exponentiations as listed in Table 1. Furthermore,
by increasing the round complexity as in Sect. 4.2 we could even get a linear complexity
ofO(N) exponentiations. These techniques do not apply to the other shuffle arguments;
in particular it is not possible to use FFT techniques to reduce the factorm in the shuffle
by Groth and Ishai [15].
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Table 1. Comparison of the protocols with ElGamal encryption

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[10] 3 8N 10N 5N G+ N Zq

[8] 5 9N 10N 5N G + N Zq

[14] 7 6N 6N 3N Zq

[7] 3 7N 8N N G+ 2N Zq

[25] 5 9N 11N 3N G+ 4N Zq

[15] 7 3mN 4N 3m2 G+ 3n Zq

This paper 9 2 log(m)N 4N 11mG+ 5n Zq

As the multi-exponentiation argument, which is the most expensive step, already
starts in round 3 we can insert two rounds of interactive reduction as described in
Sect. 4.2 without increasing the round complexity above 9 rounds. For practical pa-
rameters this would give us enough of a reduction to make the prover’s computation
comparable to the schemes with linear O(N) computation.

The figures in Table 1 are for non-optimized versions of the schemes. All of the
schemes may for instance benefit from the use of multi-exponentiation techniques, see
e.g. Lim [18] for how to compute a product of n exponentiations using only O( n

logn )
multiplications. The schemes may also benefit from randomization techniques, where
the verifier does a batch verification of all the equations it has to check.

Experimental Results. We implemented our shuffle argument in C++ using the NTL
library by Shoup [24] for the underlying modular arithmetic. We experimented with
five different implementations to compare their relative merit:

1. Without any optimizations at all.
2. Using multi-exponentiation techniques.
3. Using multi-exponentiation and the Fast Fourier transform.
4. Using multi-exponentiation and a round of the interactive technique with μ = 4

and Toom-Cook for m′ = 4 giving m = μm′ = 16.
5. Using multi-exponentiation and two rounds of the interactive technique first with
μ = 4 and Toom-Cook for m′ = 4 giving m = μ2m′ = 64.

In our experiments we used ElGamal encryption and commitments over the same group
G, which was chosen as an order q subgroup of Z∗

p, where |q| = 160 and |p| = 1024.
These security parameters are on the low end for present day use but facilitate com-
parison with earlier work. The results can be found in Table 2 for N = 100, 000,
m = 8, 16, 64 on our machine. We see that the plain multi-exponentiation techniques
yield better results than the FFT method for small m; the better asymptotic behavior of
the FFT only kicks in for m > 16. As expected the Toom-Cook inspired version with
added interaction has the best running time and communication cost.
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Table 2. Run time of the shuffle arguments in seconds on a Core2Duo 2.53 GHz, 3 MB L2-Cache,
4 GB Ram machine for N = 100, 000 and m = 8, 16, 64

Optimization Total time Time P Time V Size
m = 8 Unoptimized 570 462 108 4.3 MB

Multi-expo 162 125 37
FFT 228 190 38

m = 16 Unoptimized 900 803 97 2.2 MB
Multi-expo 193 169 24
FFT 245 221 24
Toom-Cook 139 101 38

m = 64 Multi-expo 615 594 21 0.7MB
FFT 328 307 20
Toom-Cook 128 91 18

Comparison with Other Implementations. Furukawa, Miyauchi, Mori, Obana, and
Sako [8] gave performance results for a mix-net using a version of the Furukawa-
Sako [10] shuffle arguments. They optimized the mix-net by combining the shuffling
and decryption operations into one. They used three shuffle centers communicating with
each other and their results included both the process of shuffling and the cost of the
arguments. So, to compare the values we multiply our shuffle argument times with 3
and add the cost of our shuffling operation on top of that. The comparison can be found
in Table 3.

Table 3. Runtime comparison of [8] (CPU: 1 GHz, 256 MB) to our shuffle argument (Toom-Cook
with m = 64, CPU: 1.4 GHz, 256 MB)

N = 100, 000 [8] This paper
Single argument 51 min 15 min
Argument size 66 MB 0.7 MB
Total mix-net time 3 hrs 44 min 53 min

We expected to get better performance than they did and indeed we see that our
argument is faster and the communication is a factor 100 smaller. When adding the cost
of shuffling and decryption to our argument we still have a speedup of a factor 3 in
Table 3 when comparing the two mix-net implementations and taking the difference in
the machines into account.

Recently, Furukawa et al. [9] announced a new implementation based on elliptic
curve groups. Due to the speed of using elliptic curves this gave them a speedup of a
factor 3. A similar speedup can be expected for our shuffle argument if we switch to
using elliptic curves in our implementation.

Recently Wikström made a complete implementation of a mix-net in Java in [29]
called Verificatum, which is based on the shuffle argument in [25]. To produce compa-
rable data, we ran the demo file with only one mix party in the non-interactive mode
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Table 4. Runtime comparison of [25] to our shuffle argument on our machine (CPU: 2.53 GHz,
4 GB)

N = 100, 000 [25] This paper Toom-Cook
Single argument 5 min 2 min
Argument size 37.7 MB 0.7 MB

using the same modular group as in our protocol. Verificatum is a full mix-net imple-
mentation; for fairness in the comparison we only counted the time of the relevant parts
for the shuffle argument. As described in Table 1 the theoretical performance of Veri-
ficatum’s shuffle argument is 20N exponentiations, while our prover with Toom-Cook
and 2 extra rounds of interaction uses 12N exponentiations and our verifier 4N , so
in total 16N exponentiations. So we expect a similar running time for the Verificatum
mix-net. As shown in Table 4 we perform better, but due to the different programming
languages used and different levels of optimization in the code we will not draw any
conclusion except that both protocols are efficient and usable in current applications. In
terms of size it is clear that our arguments leave a much smaller footprint than Verifica-
tum; we save a factor 50 in the communication.

Acknowledgment. We would like to thank Douglas Wikström for discussions and help
regarding our comparison with the shuffle argument used in Verificatum [29].
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Abstract. Malleability for cryptography is not necessarily an oppor-
tunity for attack; in many cases it is a potentially useful feature that
can be exploited. In this work, we examine notions of malleability for
non-interactive zero-knowledge (NIZK) proofs. We start by defining a
malleable proof system, and then consider ways to meaningfully control
the malleability of the proof system, as in many settings we would like to
guarantee that only certain types of transformations can be performed.

As our motivating application, we consider a shorter proof for ver-
ifiable shuffles. Our controlled-malleable proofs allow us for the first
time to use one compact proof to prove the correctness of an entire
multi-step shuffle. Each authority takes as input a set of encrypted votes
and a controlled-malleable NIZK proof that these are a shuffle of the
original encrypted votes submitted by the voters; it then permutes and
re-randomizes these votes and updates the proof by exploiting its con-
trolled malleability. As another application, we generically use controlled-
malleable proofs to realize a strong notion of encryption security.

Finally, we examine malleability in existing proof systems and observe
that Groth-Sahai proofs are malleable. We then go beyond this observa-
tion by characterizing all the ways in which they are malleable, and use
them to efficiently instantiate our generic constructions from above; this
means we can instantiate our proofs and all their applications using only
the Decision Linear (DLIN) assumption.

1 Introduction

Let L be a language in NP. For concreteness, consider the language of Diffie-
Hellman tuples: (G, g,X, Y, Z) ∈ LDH if there exist (x, y) such that g,X, Y, Z
are elements of the group G, X = gx, Y = gy, and Z = gxy. Suppose that we
have a polynomial time prover P , and a verifier V , and P wants to convince V
that (G, g,X, Y, Z) ∈ LDH . Does the efficient prover need to know the values

� Work done as an intern at Microsoft Research Redmond.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 281–300, 2012.
c© International Association for Cryptologic Research 2012
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(x, y) in order to convince the verifier? Not necessarily. Suppose that P is in
possession of a non-interactive zero-knowledge (NIZK) proof π′ that another
tuple, (G, g,X ′, Y ′, Z ′) ∈ LDH ; suppose in addition that P happens to know
(a, b) such that X = (X ′)a, Y = (Y ′)b, and Z = (Z ′)ab. Can he, using the
fact that he knows (a, b), transform π′ into a NIZK π for the related instance
(G, g,X, Y, Z)? In the sequel, we say that a proof system is malleable if it allows
a prover to derive proofs of statements (such as (G, g,X, Y, Z) ∈ LDH ) not just
from witnesses for their truth, but also from proofs of related statements (such
as the proof π′ that (G, g,X ′, Y ′, Z ′) ∈ LDH ).

In this paper, we consider malleability for non-interactive zero-knowledge
proof systems. Our contributions are threefold: (1) definitions; (2) constructions;
and (3) applications.

Motivating Application. Why is malleability for non-interactive zero-knowledge
proof systems an interesting feature? Let us present, as a motivating application,
a verifiable vote shuffling scheme that becomes much more efficient if constructed
using malleable proofs.

In a vote shuffling scheme, we have a set of encrypted votes (v1, . . . , vn) sub-
mitted by n voters; each vote vi is an encryption of the voter’s ballot under some
trusted public key pk . The set of encrypted votes is then re-randomized1 and

shuffled, in turn, by several shuffling authorities. More precisely, let (v
(0)
1 , . . . , v

(0)
n )

= (v1, . . . , vn); then each authority Aj takes as input (v
(j−1)
1 , . . . , v

(j−1)
n ), picks

a random permutation ρ and outputs (v
(j)
1 , . . . , v

(j)
n ) = (ṽ

(j)
ρ(1), . . . , ṽ

(j)
ρ(n)), where

ṽ
(j)
i is a randomization of v

(j−1)
i . At the end, the final set of encrypted votes

(v
(
)
1 , . . . , v

(
)
n ) is decrypted (for example, by a trustee who knows the decryption

key corresponding to pk , or via a threshold decryption protocol) and the election
can be tallied.

It is easy to see that, if we are dealing with an honest-but-curious adversary,
this scheme guarantees both correctness and privacy as long as at least one of
the authorities is honest. To make it withstand an active adversary, however, it
is necessary for all participants (both the voters and the shuffling authorities)
to prove (using a proof system with appropriate, technically subtle soundness
and zero-knowledge guarantees) that they are correctly following the protocol.
If these proofs are non-interactive, then the protocol gets the added benefit of
being universally verifiable: anyone with access to the original encrypted votes
and the output and proofs of each authority can verify that the votes were
shuffled correctly. Thus, any party wishing to verify an election with n voters
and � shuffling authorities (and � can potentially be quite large, for example a
large polynomial in n for cases where a small group is voting on a very sensitive
issue) will have to access Ω(n�) data just to read all the proofs.

Can the proof that the verifier needs to read be shorter than that? The state-

ment that needs to be verified is that the ciphertexts (v
(
)
1 , . . . , v

(
)
n ) can be

1 It is therefore important that the encryption scheme used is randomizable, so that
on input a ciphertext c = Encpk (m; r) and randomness r′ one can compute c′ =
Encpk(m; r ∗ r′), where ∗ is some group operation.
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obtained by randomizing and permuting the original votes (v1, . . . , vn). The wit-
ness for this statement is just some permutation (that is obtained by composing
the permutations applied by individual authorities) and randomness that went
into randomizing each ciphertext (that can be obtained by applying the group
operation repeatedly to the randomness used by each authority); thus, ignoring
the security parameter, the length of the witness can potentially be only O(n).2

Of course, no individual authority knows this witness. But each authorityAj is
given a proof πj−1 that, up until now, everything was permuted and randomized
correctly. Using controlled malleable proofs, from this πj−1 and its own secret

permutation ρj and vector of random values (r
(j)
1 , . . . , r

(j)
n ), Aj should be able

to compute the proof π that his output is a permutation and randomization of
the original votes.

In this paper, we give a construction that roughly corresponds to this outline,
and prove its security. We must stress that even though this construction is a
more or less direct consequence of the new notion of controllable malleability, and
therefore may seem obvious in hindsight, it is actually a significant breakthrough
as far as the literature on efficient shuffles is concerned: for the first time, we
obtain a non-interactive construction in which the complexity of verifying the
tally with � authorities is not � times the complexity of verifying the tally with
one authority!

Our Definitions. Care needs to be taken when defining malleable NIZKs suitable
for the above application. We first need malleability itself: from an instance x′

and a proof π′ that x′ ∈ L, we want to have an efficient algorithm ZKEval that
computes another instance x = T (x′) and a proof π that x ∈ L, where T is
some transformation (in the above example, x′ is a set of ciphertexts, and T is a
re-randomization and permutation of these ciphertexts). We want the resulting
proof to be derivation private, so that, from x and π, it is impossible to tell from
which T and x′ they were derived. (In the above example, it should be impossible
to tell how the ciphertexts were shuffled.) Finally, we want to ensure that the
proof system is sound, even in the presence of a zero-knowledge simulator that
provides proofs of adversarially chosen statements (so that we can relate the real-
world experiment where the adversary participates in shuffling the ciphertexts
to an ideal-world process that only has access to the final tally). To this end, we
define controlled malleability (as opposed to malleability that is out of control!)
that guarantees that, from proofs computed by an adversary, an extractor (with
a special extracting trapdoor) can compute either a witness to the truth of the
statement, or the transformation T and some statement for which the simulator
had earlier provided a proof.

2 In our concrete construction we use a very simple approach to proving a shuffle in
which we represent the permutation as a matrix, thus the length of a single shuffle
proof is O(n2). This could potentially be improved using more sophisticated verifiable
shuffle techniques as we will mention later. Additionally, because we want to be able
to verify the fact that each authority participated in the shuffle, we will include a
public key for each authority involved and the size will actually grow to O(n2 + 
).
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Our definitional approach to derivation privacy is inspired by circuit privacy
for fully homomorphic encryption [27,40,39,13], also called function privacy or
unlinkability. Our definitional approach to controlled malleability is inspired by
the definitions of HCCA (homomorphic-CCA) secure encryption due to Prab-
hakaran and Rosulek [36]; it is also related to the recently proposed notion of
targeted malleability due to Boneh, Segev, and Waters [12]. (See the full version
of our paper [15] for more detailed comparison with these notions.)

Our Construction. Our construction of controlled-malleable and derivation-
private NIZK proof systems consists of two steps. First, in Section 3, we show how
to construct a controlled-malleable derivation-private NIZK from any derivation-
private non-interactive witness-indistinguishable (NIWI) proof system and se-
cure signature scheme. Then, in Section 4.1 we show how to instantiate the
appropriate NIWI proof system and signature scheme using the Groth-Sahai
proof system [33] and a recent structure-preserving signature due to Chase and
Kohlweiss [14]; this combination means we can instantiate our proofs (and in fact
all of the constructions in our paper) using the Decision Linear (DLIN) assump-
tion [11]. The size of the resulting proof is linear in the size of the statement,
although the size of the structure-preserving signature does make it admittedly
much less efficient than Groth-Sahai proofs alone.

At the heart of our construction is the observation that the Groth-Sahai (GS)
proof system is malleable in ways that can be very useful. This feature of GS
proofs has been used in prior work in a wide variety of applications: Belenkiy
et al. [8] use the fact that the GS proof system can be randomized in order
to construct delegatable anonymous credentials; Dodis et al. [20] uses homo-
morphic properties of GS proofs in order to create a signature scheme resilient
to continuous leakage; Acar and Nguyen [7] use malleability to delegate and
update non-membership proofs for a cryptographic accumulator in their imple-
mentation of a revocation mechanism for delegatable anonymous credentials;
and Fuchsbauer [24] uses malleability to transform a proof about the contents
of a commitment into a proof of knowledge of a signature on the committed
message in his construction of commuting signatures.

Compact Verifiable Shuffles. Armed with a construction of a controlled-malleable
and derivation-private NIZK, we proceed, in Section 6, to consider the problem
of obtaining a verifiable shuffle with compact proofs. We formally define this
concept, describe a generic construction from a semantically-secure encryption
scheme and a controlled-malleable and derivation-private NIZK following the
outline above, and finally argue that we can in fact construct such a proof system
for the appropriate set of transformations based on the instantiation described
in Section 4.1.

An Application to Encryption. Can controlled malleability of NIZKs give us
controlled malleability for encryption? That is to say, can we achieve a mean-
ingful notion of adaptively secure encryption, even while allowing computations
on encrypted data? Similarly to controlled malleability for proofs, we define in
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Section 5 controlled malleability for encryption (directly inspired by the notion
of HCCA security; in this, our work can be considered closely related to that
of Prabhakaran and Rosulek), and show a general method for realizing it for
broad classes of unary transformations, using a semantically secure encryption
scheme with appropriate homomorphic properties and a controlled-malleable
and derivation-private NIZK for an appropriate language as building blocks.
Our construction follows easily from these properties, resulting in a much sim-
pler proof of security than was possible in previous works. (We note that our
methods do not extend to n-ary transformations for n > 1, because the same
limitations that apply for HCCA security, pointed out by Prabhakaran and Ro-
sulek, also apply here. The work of Boneh et al. overcomes this and allows for
binary transformations as well, with the sacrifice that, unlike both our scheme
and the Prabhakaran-Rosulek scheme, the encryption scheme can no longer sat-
isfy function privacy.)

Related Work on Shuffling Ciphertexts. Shuffles and mixing in general were
introduced by Chaum in 1981 [16], and the problem of verifiable shuffles was
introduced by Sako and Kilian in 1995 [38]; the work on verifiable shuffles in the
ensuing sixteen years has been extensive and varied [2,26,6,34,29,25,41,31]. In
1998, Abe [1] considered the problem of compact proofs of shuffles. Unlike our
non-interactive solution, his solution is based on an interactive protocol3 wherein
all mixing authorities must jointly generate a proof with size independent of �;
in comparison, our solution allows each authority to be offline before and after
it performs its shuffling of the ciphertexts. In terms of approaches most similar
to our own, Furukawa and Sako [26] use a permutation matrix to shuffle the
ciphertexts; they then prove that the matrix used was in fact a permutation
matrix, and that it was applied properly. Most recently, Groth and Lu [31] give
a verifiable shuffle that is non-interactive (the only one to do so without use
of the Fiat-Shamir heuristic [23]), uses pairing-based verifiability, and obtains
O(n) proof size for a single shuffle. The advantage, as outlined above, that our
construction has over all of these is that one proof suffices to show the security
of the entire shuffle; we do not require a separate proof from each mix server. An
interesting open problem is to see if there is some way to combine some of these
techniques with an appropriate controlled-malleable proof system to obtain a
multi-step shuffle with optimal proof size O(n+ �).

2 Definitions and Notation

Our definitional goal is to formulate what it means to construct a proof of
a particular statement using proofs of related statements. Let R(·, ·) be some
relation that is polynomial-time computable in the size of its first input; in the
sequel we call such a relation an efficient relation. Associated with R, there is
an NP language LR = {x | ∃ w such that R(x,w) = TRUE}.4 For example, let

3 The protocol could in fact be made non-interactive, but only using the Fiat-Shamir
heuristic [23] and thus the random oracle model.

4 Without the restriction that R is efficient in its first input, the resulting language
won’t necessarily be in NP.
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R(x,w) be a relation that holds if the witness w = (a, b) demonstrates that the
instance x = (G, g,A,B,C) is a Diffie-Hellman tuple; i.e. it holds if g,A,B,C ∈
G and A = ga, B = gb, C = gab. Then the language associated with R is
LDH defined in the introduction. We often write (x,w) ∈ R to denote that
R(x,w) = TRUE .

Let T = (Tx, Tw) be a pair of efficiently computable n-ary functions, where
Tx : {{0, 1}∗}n → {0, 1}∗, Tw : {{0, 1}∗}n → {0, 1}∗. In what follows, we refer
to such a tuple T as an n-ary transformation.

Definition 2.1. An efficient relation R is closed under an n-ary transforma-
tion T = (Tx, Tw) if for any n-tuple {(x1, w1), . . . , (xn, wn)} ∈ Rn, the pair
(Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈ R. If R is closed under T , then we say that
T is admissible for R. Let T be some set of transformations; if for every T ∈ T ,
T is admissible for R, then T is an allowable set of transformations.

For example, for the DH relation R described above, consider T = (Tx, Tw)
where for some (a′, b′), Tx(G, g,A,B,C) = (G, g,Aa′

, Bb′ , Ca′b′) and Tw(a, b) =
(aa′, bb′); then the Diffie-Hellman relation R is closed under transformation T ,
and additionally the set T of transformations of this form (i.e., where there
is a transformation T corresponding to any pair (a′, b′)) is an allowable set of
transformations.

Our goal is to define non-interactive zero-knowledge and witness-indistinguish-
able proof systems for efficient relations R that are (1) malleable with respect to
an allowable set of transformations T ; that is to say, for any T ∈ T , given proofs
for x1, . . . xn ∈ LR, they can be transformed into a proof that Tx(x1, . . . , xn) ∈
LR; and (2) derivation-private; that is to say, the resulting proof cannot be
distinguished from one freshly computed by a prover on input (Tx(x1, . . . , xn),
Tw(w1, . . . , wn)). Before we can proceed, however, we need to recall the definition
of a non-interactive zero-knowledge proof system.

A proof system for an efficient relation R allows a prover to prove that a
value x is in the associated language LR. A non-interactive (NI) proof system
with efficient provers [10,21] consists of three PPT algorithms: the algorithm
CRSSetup(1k) that generates a common reference string (CRS) σcrs, the algo-
rithm P(σcrs, x, w) that outputs a proof π that x ∈ LR, and the algorithm
V(σcrs, x, π) that verifies the proof; such a proof system must be complete (mean-
ing the verifier will always accept an honestly generated proof) and sound (mean-
ing that a verifier cannot be fooled into accepting a proof for a false statement).
A NI zero-knowledge proof (NIZK) [28,10], additionally requires the existence
of a simulator S that can generate proofs without access to a witness, while a
NI witness-indistinguishable proof system [22] has the requirement that proofs
generated using two different witnesses for the same x are indistinguishable from
each other. A NI proof of knowledge [28,9] additionally requires an efficient ex-
tractor algorithm E that, on input a proof that x ∈ LR, finds a witness for the
instance x.

We use the original definitions for completeness and soundness of NI proof
systems in the common-reference-string model [10]. The version of the defini-
tion of zero-knowledge for NIZK we give is originally due to Feige, Lapidot and
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Shamir (FLS) [21]; they call it “adaptive multi-theorem NIZK.” We also use the
FLS definition of witness indistinguishability. The version of knowledge extrac-
tion we use is a generalization of the definition of knowledge extraction given
by Groth, Ostrovsky and Sahai (GOS) [32]: they defined the notion of perfect
knowledge extraction, while here we find it useful to generalize their definition,
in the straightforward way, to the case when extraction is not perfect. Due to
space constraints, a formal definition for non-interactive zero-knowledge proofs
of knowledge (NIZKPoK) systems and non-interactive witness-indistinguishable
proofs of knowledge (NIWIPoK) systems combining all of these concepts can be
found in the full version of our paper [15].

Next, we define a malleable proof system; i.e., one in which, from proofs
(π1, . . . , πn) that (x1, . . . , xn) ∈ L, one can compute a proof π that Tx(x1, . . . , xn)
∈ L, for an admissible transformation T = (Tx, Tw):

Definition 2.2 (Malleable non-interactive proof system). Let (CRSSetup,
P ,V) be a non-interactive proof system for a relation R. Let T be an allowable set
of transformations for R. Then this proof system is malleable with respect to T if
there exists an efficient algorithm ZKEval that on input (σcrs, T, {xi, πi}), where
T ∈ T is an n-ary transformation and V(σcrs, xi, πi) = 1 for all i, 1 ≤ i ≤ n,
outputs a valid proof π for the statement x = Tx({xi}) (i.e., a proof π such that
V(σcrs, x, π) = 1).

Going back to our above example, the algorithm ZKEval will take as input the
transformation T (which is equivalent to taking as input the values a′ and b′),
and a proof π1 that x1 = (G, g,A,B,C) is a DH tuple, and output a proof π
that x = Tx(x1) = (G, g,Aa′

, Bb′ , Ca′b′) is a DH tuple.

2.1 Derivation Privacy for Proofs

In addition to malleability, we must also consider a definition of derivation pri-
vacy analogous to the notion of function privacy for encryption. (In the encryp-
tion setting this is also called unlinkability [36]; for a formal definition see the
full version [15].) We have the following definition:

Definition 2.3 (Derivation privacy). For a NI proof system (CRSSetup,P ,V ,
ZKEval) for an efficient relation R malleable with respect to T , an adversary A,
and a bit b, let pAb (k) be the probability of the event that b′ = 0 in the following
game:

– Step 1. σcrs
$←− CRSSetup(1k).

– Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T )
$←− A(σcrs).

– Step 3. If V(σcrs, xi, πi) = 0 for some i, (xi, wi) �∈ R for some i, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{

P(σcrs, Tx(x1, . . . , xq), Tw(w1, . . . , wq)) if b = 0
ZKEval(σcrs, T, {xi, πi}) if b = 1.

– Step 4. b′
$←− A(state, π).
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We say that the proof system is derivation private if for all PPT algorithms
A there exists a negligible function ν(·) such that |pA0 (k) − pA1 (k)| < ν(k).

In some cases, we would like to work with a stronger definition that applies only
for NIZKs. In this case, the adversary will not be asked to provide witnesses or
distinguish between the outputs of the prover and ZKEval, but instead between
the zero-knowledge simulator and ZKEval. It will also be given the simulation
trapdoor so that it can generate its own simulated proofs.

Definition 2.4 (Strong derivation privacy). For a malleable NIZK proof
system (CRSSetup,P ,V ,ZKEval) with an associated simulator (S1, S2), a given
adversary A, and a bit b, let pAb (k) be the probability of the event that b′ = 0 in
the following game:

– Step 1. (σsim, τs)
$←− S1(1

k).

– Step 2. (state, x1, π1, . . . , xq, πq, T )
$←− A(σsim, τs).

– Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of
Tx, or T /∈ T , abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tx(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}) if b = 1.

– Step 4. b′
$←− A(state, π).

We say that the proof system is strongly derivation private if for all PPT algo-
rithms A there exists a negligible function ν(·) such that |pA0 (k)−pA1 (k)| < ν(k).

As we will see in Section 3, schemes that satisfy the weaker notion of derivation
privacy can in fact be generically “boosted” to obtain schemes that satisfy the
stronger notion. We can also show a generic way to obtain derivation privacy us-
ing malleability and the notion of randomizability for proofs, defined by Belenkiy
et al. [8]; this can be found in the full version of the paper [15].

3 Controlled Malleability for NIZKs

Is the notion of malleability compatible with the notion of a proof of knowledge or
with strong notions like simulation soundness? Recall that to achieve simulation
soundness, as defined by Sahai and de Santis et al. [37,19], we intuitively want an
adversary A to be unable to produce a proof of a new false statement even if it
can request many such proofs from the simulator; for the even stronger notion of
simulation-extractability as defined by de Santis et al. and Groth [19,30], a proof
system must admit an efficient extractor that finds witnesses to all statements
proved by an adversary, again even when the adversary has access to a simulator.

Malleability, in contrast, explicitly allows an adversary to take as input the
values x′, π′, apply some admissible transformation T to x′ to obtain x = Tx(x

′),
and compute a proof π that x ∈ LR; importantly, the adversary can do all this
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without knowing the original witness w′. Suppose, for a malleable proof system,
that the adversary is given as input a simulated proof π′ that was generated
without access to the witness w′ for x′, and for concreteness let T be the identity
transformation. Then requiring that, on input (x, π), the extractor should output
w, implies that membership in LR can be tested for a given x by computing a
simulated proof, mauling it, and then extracting the witness from the resulting
proof (formally, this would mean that LR ∈ RP). Thus, seemingly, one cannot
reconcile the notion of malleability with that of a simulation-extractable proof
of knowledge.

Surprisingly, however, under a relaxed but still meaningful extractability re-
quirement, we can have a proof system that is both malleable and simulation-
extractable to a satisfactory extent; we call this notion controlled malleability.
Essentially this definition will require that the extractor can extract either a
valid witness, or a previously proved statement x′ and a transformation T in our
allowed set T that could be used to transform x′ into the new statement x. To
demonstrate that our definition is useful, we will show in Section 5 that it can
be used to realize a strong notion of encryption security, and in Section 6 that
it can also be used to reduce the overall size of proofs for verifiable shuffles.

Definition 3.1 (Controlled-malleable simulation sound extractability).
Let (CRSSetup,P ,V) be a NIZKPoK system for an efficient relation R, with
a simulator (S1, S2) and an extractor (E1, E2). Let T be an allowable set of
unary transformations for the relation R such that membership in T is efficiently
testable. Let SE1 be an algorithm that, on input 1k outputs (σcrs, τs, τe) such
that (σcrs, τs) is distributed identically to the output of S1. Let A be given, and
consider the following game:

– Step 1. (σcrs, τs, τe)
$←− SE1(1

k).

– Step 2. (x, π)
$←− AS2(σcrs,τs,·)(σcrs, τe).

– Step 3. (w, x′, T ) ← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound ex-
tractability (CM-SSE, for short) if for all PPT algorithms A there exists a negli-
gible function ν(·) such that the probability (over the choices of SE1, A, and S2)
that V(σcrs, x, π) = 1 and (x, π) �∈ Q (where Q is the set of queried statements
and their responses) but either (1) w �= ⊥ and (x,w) �∈ R; (2) (x′, T ) �= (⊥,⊥)
and either x′ �∈ Qx (the set of queried instances), x �= Tx(x

′), or T �∈ T ; or (3)
(w, x′, T ) = (⊥,⊥,⊥) is at most ν(k).

This definition is actually closely related to simulation-extractability; in fact, if
we restrict our set of transformations to be T = ∅, we obtain exactly Groth’s
notion of simulation-sound extractability. Note also that this definition does not
require that a proof system actually be malleable, it only requires that, should
it happen to be malleable, this malleability be limited in a controlled way. Thus,
a simulation-sound extractable proof system would also satisfy our definition,
for any set T , even though it is not malleable. We refer to a proof system that
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is both strongly derivation private and controlled-malleable simulation-sound
extractable as a controlled-malleable NIZK (cm-NIZK).

Finally, note that our definition applies only to unary transformations. This
is because our requirement that we can extract the transformation T means we
cannot hope to construct cm-NIZKs for n-ary transformations where n > 1, as
this would seem to necessarily expand the size of the proof (similarly to what
Prabhakaran and Rosulek show for HCCA encryption [36]). We therefore achieve
cm-NIZKs for classes of unary transformations that are closed under composition
(i.e., T ′ ◦ T ∈ T for all T, T ′ ∈ T ). In addition, our simulation strategy depends
on the identity transformation being a member of T , so we can achieve cm-NIZKs
only for classes of transformations that include the identity transformation.

A Generic Construction

Let R be an efficient relation, and suppose T is an allowable set of transfor-
mations for R that contains the identity transformation; suppose further that
membership in T is efficiently testable. Let (KeyGen, Sign,Verify) be a secure
signature scheme. Let (CRSSetupWI,PWI,VWI) be a NIWIPoK for the following
relation RWI: ((x, vk ), (w, x

′, T, σ)) ∈ RWI if (x,w) ∈ R or Verify(vk , σ, x′) = 1,
x = Tx(x

′), and T ∈ T . Consider the proof system (CRSSetup,P ,V) defined as
follows:

– CRSSetup(1k): First generate σWIcrs
$←− CRSSetupWI(1

k) and (vk , sk)
$←−

KeyGen(1k); then output σcrs := (σWIcrs , vk).

– P(σcrs, x, w): Output π
$←− PWI(σWIcrs , xWI, wWI), where xWI = (x, vk ) and

wWI = (w,⊥,⊥,⊥).
– V(σcrs, x, π): Output VWI(σWIcrs , xWI, π) where xWI = (x, vk ).

To obtain strong derivation privacy with respect to R and T we also require the
NIWIPoK to be derivation private with respect to RWI and a set of transforma-
tions TWI such that for every T ′ = (T ′

x, T
′
w) ∈ T there exists a TWI(T

′) ∈ TWI.
For TWI(T

′) = (TWI,x, TWI,w) we require that TWI,x(x, vk ) = (T ′
x(x), vk ), and

TWI,w(w, x
′, T, σ) = (T ′

w(w), x
′, T ′◦T, σ). Assuming our underlying NIWI is mal-

leable, we can define ZKEval in terms of ZKEvalWI:

– ZKEval(σcrs, T, x, π): Output ZKEvalWI(σWIcrs , TWI(T ), xWI, π) where xWI =
(x, vk ).

To see that this construction gives us the desired properties, we have the follow-
ing three theorems; due to space constraints, the proofs can be found in the full
version of our paper [15]:

Theorem 3.1. If the underlying non-interactive proof system is witness indis-
tinguishable, the scheme described above is zero knowledge.

Theorem 3.2. If the underlying signature scheme is EUF-CMA secure and
the underlying NIWIPoK is extractable, the scheme described above satisfies
controlled-malleable simulation-sound extractability.
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Theorem 3.3. If the underlying NIWIPoK is derivation private for TWI (as
defined in Definition 2.3), then the scheme described above is strongly derivation
private for T (as defined in Definition 2.4).

In addition, we would like to ensure that this construction can in fact be instan-
tiated efficiently for many useful sets T with a derivation-private NIWIPoK; it
turns out that this can be done by combining Groth-Sahai proofs [33] with a spe-
cial type of signature called a structure-preserving signature. For more details,
we defer to Section 4.2.

4 Instantiating cm-NIZKs Using Groth-Sahai Proofs

In this section, we explore the malleability of Groth-Sahai (GS) proofs [33]. This
will allow us to efficiently instantiate controlled-malleable proofs for a large class
of transformations.

4.1 Malleability for Groth-Sahai Proofs

We aim to fully characterize the class of transformations with respect to which
GS proofs can be made malleable. First, we recall that GS proofs allow a prover
to prove knowledge of a satisfying assignment to a list of (homogeneous) pairing
product equations eq of the form

∏
i,j∈[1..n] e(xi, xj)

γij = 1 concerning the set of
variables x1, . . . , xn ∈ G. Furthermore, some of the variables in these equations
may be fixed to be specific constant values (for example, the public group gen-
erator g). In what follows we will use a, b, c, . . . to denote fixed constants, and
x,y, z, . . . to denote unconstrained variables. An instance x of such a pairing
product statement consists of the list of equations eq1, . . . , eq
 (fully described

by their exponents {γ(1)ij }, . . . , {γ(
)ij }) and the values of the constrained variables
(fully described by the list a1, . . . , an′ ∈ G for n′ ≤ n).

In the existing literature, there are already various examples [20,7,24] of ways
in which pairing product statements and the accompanying Groth-Sahai proofs
can be mauled. Here, we attempt to generalize these previous works by provid-
ing a characterization of all the ways in which GS proofs of pairing product
statements can be mauled; we then show, in the full version of our paper [15],
how these previous examples can be obtained as special cases of our general
characterization.

To start, we describe transformations on pairing product instances in terms of
a few basic operations. We will say that any transformation that can be described
as a composition of these operations is a valid transformation. For each valid
transformation we show, in the full version, that there is a corresponding ZKEval
procedure that updates the GS proof to prove the new statement. Finally, we
present in the full version some other convenient operations that can be derived
from our minimal set.

To help illustrate the usage of our basic transformations, we consider their ef-
fect on the pairing product instance (eq1, eq2, a, b), where eq1 := e(x, b)e(a, b) = 1
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and eq2 := e(a,y) = 1. Note that here we will describe the transformations in
terms of their effect on the instances, but in all of these operations the corre-
sponding witness transformations Tw are easily derived from the instance trans-
formations Tx.

Definition 4.1. (Informal) A valid transformation is one that can be expressed
as some combination of (a polynomial number of) the following six operations:

1. Merge equations: MergeEq(eqi, eqj) adds the product of eqi and eqj as a new
equation.
Ex. MergeEq(eq1, eq2) adds the equation e(x, b)e(a, b)e(a,y) = 1

2. Merge variables: MergeVar(x, y, z, S) generates a new variable z. If x and y
are both constants, z will have value xy. Otherwise z will be unconstrained.
For every variable w in the set S, we add the equation e(xy, w)−1e(z, w) =
1.5

Ex. MergeVar(x, a, z, {x, b, z}) adds the variable z and the equations
e(xa,x)−1e(z,x) = 1, e(xa, b)−1e(z, b) = 1, and e(xa, z)−1e(z, z) = 1.

3. Exponentiate variable: ExpVar(x, δ, z, S) generates a new variable z. If x is
a constant, z = xδ, otherwise z will be unconstrained. For every variable
w ∈ S, we add the equation e(x,w)−δe(z, w) = 1.
Ex. ExpVar(x, δ, z, {x, b, z}) adds the variable z and the equations
e(x,x)−δe(z,x) = 1, e(x, b)−δe(z, b) = 1, and e(x, z)−δe(z, z) = 1.

4. Add constant equation: Add({ai}, {bj}, {γij}) takes a set of constants ai, bi,
satisfying a pairing product equation

∏
e(ai, bj)

γij = 1 and adds these
variables and the new equation to the statement.
Ex. Add({g}, {1}, {1}) adds the variables g, 1 and equation eq3 := e(g, 1) = 1.
We often write as a shorthand Add(eq3 := e(g, 1) = 1).

5. Remove equation: RemoveEq(eqi) simply removes equation eqi from the list.
Ex. RemoveEq(eq2) removes the equation e(a,y) = 1 from the equation list.

6. Remove variable: RemoveVar(x) removes the variable x from the variable set
iff x does not appear in any of the listed equations.
Ex. We cannot remove any of the variables from the example statement.
However, we could do RemoveEq(eq2) and then RemoveVar(y), which would
remove the equation e(a,y) = 1 from the equation list and the variable y
from the set of variables.

A proof of the following lemma appears in the full version:

Lemma 4.1. There exists an efficient procedure ZKEval such that given any
pairing product instance x, any valid transformation T , and any accepting Groth-
Sahai proof π for x, ZKEval(x, π, T ) produces an accepting proof for T (x).

4.2 An Efficient Instantiation of Controlled Malleable NIZKs

Looking back at Section 3 we see that there are two main components needed
to efficiently instantiate a controlled-malleable NIZK proof system: appropri-
ately malleable proofs and signatures that can be used in conjunction with these
proofs.

5 This is shorthand for e(x,w)−1e(y,w)−1e(z,w) = 1.
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First we consider the set of relations and tranformations for which we can use
Groth-Sahai proofs to construct the necessary malleable NIWIPoKs.

Definition 4.2. For a relation R and a class of transformations T , we say
(R, T ) is CM-friendly if the following six properties hold: (1) representable
statements: any instance and witness of R can be represented as a set of group
elements; (2) representable transformations: any transformation in T can be rep-
resented as a set of group elements; (3) provable statements: we can prove the
statement (x,w) ∈ R using pairing product equations; (4) provable transforma-
tions: we can prove the statement “Tx(x

′) = x for T ∈ T ” using pairing product
equations; (5) transformable statements: for any T ∈ T there is a valid transfor-
mation from the statement “(x,w) ∈ R” to the statement “(Tx(x), Tw(w)) ∈ R”;
and (6) transformable transformations: for any T, T ′ ∈ T there is a valid trans-
formation from the statement “Tx(x

′) = x for T = (Tx, Tw) ∈ T ” to the state-
ment “T ′

x ◦ Tx(x
′) = T ′

x(x) for T ′ ◦ T ∈ T .”

In order for the signatures to be used within our construction, we know that
they need to have pairing-based verifiability (i.e., we can represent the Verify
algorithm in terms of a set of GS equations), and that the values being signed
must be group elements so that they can be efficiently extracted from the proof
(as GS proofs are extractable for group elements only, not exponents). These re-
quirements seem to imply the need for structure-preserving signatures [3], which
we can define for the symmetric setting as follows:

Definition 4.3. A signature scheme (KeyGen, Sign,Verify) over a bilinear group
(p,G,GT , g, e) is said to be structure preserving if the verification key, messages,
and signatures all consist of group elements in G, and the verification algorithm
evaluates membership in G and pairing product equations.

Since their introduction, three structure-preserving signature schemes have
emerged that would be suitable for our purposes; all three have advantages and
disadvantages. The first, due to Abe, Haralambiev, and Ohkubo [5,3] is quite
efficient but uses a slightly strong q-type assumption. The second, due to Abe et
al. [4], is optimally efficient but provably secure only in the generic group model.
The third and most recent, due to Chase and Kohlweiss [14], is significantly
less efficient than the previous two, but relies for its security on Decision Linear
(DLIN) [11], which is already a relatively well-established assumption.

Because we can also instantiate GS proofs using DLIN, we focus on this last
structure-preserving signature, keeping in mind that others may be substituted
in for the sake of efficiency (but at the cost of adding an assumption). Putting
these signatures and GS proofs together, we can show our main result of this
section: given any CM-friendly relation and set of transformations (R, T ), we
can combine structure-preserving signatures and malleable proofs to obtain a
cm-NIZK. This can be stated as the following theorem (a proof of which can be
found in the full version of our paper):
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Theorem 4.1. Given a derivation private NIWIPoK for pairing product state-
ments that is malleable for the set of all valid transformations, and a structure
preserving signature scheme, we can construct a cm-NIZK for any CM-friendly
relation and transformation set (R, T ).

In the full version of our paper, we show that Groth-Sahai proofs are malleable
for the set of all valid transformations (as outlined in Definition 4.1). As Groth-
Sahai proofs and structure-preserving signatures can both be constructed based
on DLIN, we obtain the following theorem:

Theorem 4.2. If DLIN holds, then we can construct a cm-NIZK that satis-
fies strong derivation privacy for any CM-friendly relation and transformation
set (R, T ).

5 Controlled Malleability for Encryption

As we mentioned earlier, malleability can also be an attractive feature for a
cryptosystem: it allows computation on encrypted data. On the other hand, it
seems to be in conflict with security: if a ciphertext can be transformed into
a ciphertext for a related message, then the encryption scheme is clearly not
secure under an adaptive chosen ciphertext attack, which is the standard notion
of security for encryption.

Prabhakaran and Rosulek [35,36] were the first to define and realize a mean-
ingful notion of security in this context. They introduced re-randomizable CCA
security (RCCA) [35] and homomorphic CCA security (HCCA) [36]. In a nut-
shell, their definition of security is given as a game between a challenger and an
adversary; the adversary receives a public key and a challenge ciphertext and
can query the challenger for decryptions of ciphertexts. The challenger’s cipher-
text c∗ is either a valid encryption of some message, or a dummy ciphertext; in
the former case, the challenger answers the decryption queries honestly; in the
latter case, the challenger may decide that a decryption query is a “derivative”
ciphertext computed from c∗ using some transformation T ; if this is an allowed
transformation, the challenger responds with T (m), else it rejects the query.
The adversary wins if it correctly guesses whether its challenge ciphertext was
meaningful.6 Prabhakaran and Rosulek achieve their notion of security under
the decisional Diffie-Hellman assumption using ad-hoc techniques reminiscent of
the Cramer-Shoup [17] cryptosystem.

In this section, we show that controlled-malleable NIZKs can be used as a
general tool for achieving RCCA and HCCA security. Our construction is more
modular than that of Prabhakaran and Rosulek: we construct a controlled-
malleable-CCA-secure encryption scheme generically from a semantically secure
one and a cm-NIZK for an appropriate language; where controlled-malleable-
CCA security is our own notion of security that is, in some sense, a generalization

6 A formal definition and more detailed explanation of their notion of homomorphic-
CCA (HCCA) security can be found in the full version of our paper [15].
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of RCCA security and also captures the security goals of HCCA security. We
then show how our construction can be instantiated using Groth-Sahai proofs,
under the DLIN assumption in groups with bilinear maps.

5.1 Definition of Controlled-Malleable CCA Security

Our definitional goals here are (1) to give a definition of controlled malleability
for encryption that closely mirrors our definition of controlled malleability for
proofs, and (2) to give a definition that can be easily related to previous notions
such as CCA, RCCA, and HCCA. We call this notion of security controlled-
malleable CCA (CM-CCA) security.

Following Prabhakaran and Rosulek [36], CM-CCA requires the existence
of two algorithms, SimEnc and SimExt. SimEnc creates ciphertexts that are
distributed indistinguishably from regular ciphertexts (those generated using
the encryption algorithm Enc), but contain no information about the queried
message; this is modeled by having SimEnc not take any message as input.
SimExt allows the challenger to track “derivative” ciphertexts. That is to say,
on input a ciphertext c, SimExt determines if it was obtained by transforming
some ciphertext c′ previously generated using SimEnc; if so, SimExt outputs the
corresponding transformation T .

The game between the challenger and the adversary in the definition of se-
curity is somewhat different from that in the definition by Prabhakaran and
Rosulek. Specifically, we do not have a single challenge ciphertext c∗; instead,
the adversary has access to encryption and decryption oracles. Intuitively, for
our definition we would like to say that an adversary cannot distinguish between
two worlds: the real world in which it is given access to honest encryption and
decryption oracles, and an ideal world in which it is given access to an ideal
encryption oracle (which outputs ciphertexts containing no information about
the queried message) and a decryption oracle that outputs a special answer for
ciphertexts derived from the ideal ciphertexts (by using SimExt to track such
ciphertexts) and honestly decrypts otherwise.

Let us consider transformations more closely. Recall that, for proofs of lan-
guage membership, a transformation T ∈ T consists of a pair of transformations
(Tx, Tw), where Tx acts on the instances, and Tw on the witnesses. What is the
analogue for ciphertexts? A legal transformation Tx on a ciphertext implies some
legal transformation Tm on an underlying message and a corresponding transfor-
mation Tr on the underlying randomness. Thus, here we view transformations
as tuples T = (Tx, (Tm, Tr)), where Tx acts on the ciphertexts, Tm acts on the
plaintexts, and Tr acts on the randomness.

In the full version of our paper [15], we relate CM-CCA security to CCA,
RCCA and HCCA security. Specifically, we show that (1) when the class of
allowed transformation T is the empty set, CM-CCA implies regular CCA se-
curity; (2) when the class of allowed transformations is as follows: T ∈ T if
T = (Tx, (Tm, Tr)) where Tm is the identity transformation, then CM-CCA se-
curity implies RCCA security; (3) in more general cases we show that it implies
the notion of targeted malleability introduced by Boneh et al. [12]; in addition,
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we show that our notion satisfies the UC definition given by Prabhakaran and
Rosulek, so that it captures the desired HCCA security goals, even if it does not
satisfy their definition of HCCA security (which is in fact a stronger notion).

Finally, because our cm-NIZK is malleable only with respect to unary trans-
formations, we inherit the limitation that our encryption scheme is malleable
only with respect to unary transformations as well; as our security definition is
closely related to HCCA security and Prabharakan and Rosulek in fact prove
HCCA security (combined with unlinkability) is impossible with respect to bi-
nary transformations, this is perhaps not surprising.

Definition 5.1. For an encryption scheme (KeyGen,Enc,Dec), a class of trans-
formations T , an adversary A, and a bit b, let pAb (k) be the probability of the

event b′ = 0 in the following game: first (pk , sk)
$←− K(1k), and next b′

$←−
AEpk (·),Dsk (·)(pk ), where (K,E,D) are defined as (KeyGen,Enc,Dec) if b = 0,
and the following algorithms (defined for a state set Q = Qm ×Qc = {(mi, ci)})
if b = 1:

Procedure K(1k) Procedure E(pk ,m) Procedure D(sk , c)

(pk , sk , τ1, τ2) c
$←− SimEnc(pk , τ1) (c′, T )← SimExt(sk , τ2, c)

$←− SimKeyGen(1k) add (m, c) to Q if ∃i s.t. c′ = ci ∈ Qc and T �= ⊥
return pk return c return Tm(mi)

else
return Dec(sk , c)

We say that the encryption scheme is controlled-malleable-CCA secure (or CM-
CCA secure for short) if there exist PPT algorithms SimKeyGen, SimEnc, and
SimExt as used above such that for all PPT algorithms A there exists a negligible
function ν(·) such that |pA0 (k) − pA1 (k)| < ν(k).

As mentioned earlier, we can obtain an encryption scheme that achieves this
notion of security; we do this by combining a cm-NIZK (CRSSetup,P ,V) for the
relation R such that ((pk , c), (m, r)) ∈ R iff c := Enc′(pk ,m; r) and an IND-
CPA-secure encryption scheme (KeyGen′,Enc′,Dec′). Due to space constraints,
our construction and efficient instantiation of this scheme can be found in the
full version of our paper [15].

6 Compactly Proving Correctness of a Shuffle

As described in the introduction, we achieve a notion of verifiability for shuffles
that does not require each mix server to output its own proof of correctness;
instead, using the malleability of our proofs, each mix server can maul the proof
of the previous one. One point that it is important to keep in mind with this
approach is that the soundness of the scheme does not follow directly from the
soundness of each of the individual proofs anymore; instead, one proof must
somehow suffice to prove the validity of the entire series of shuffles, yet still
remain compact. To capture this requirement, we define a new notion for the
security of a shuffle, that we call compact verifiability.
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To define our notion, we assume that a verifiable shuffle consists of three
algorithms: a Setup algorithm that outputs the parameters for the shuffle and
the identifying public keys for the honest mix servers, a Shuffle algorithm that
takes in a set of ciphertexts and outputs both a shuffle of these ciphertexts and
a proof that the shuffle was done properly, and finally a Verify algorithm that
checks the validity of the proofs.

In our definition, the adversary is given the public keys of all the honest shuf-
fling authorities, as well as an honestly generated public key for the encryption
scheme. It can then provide a list of ciphertexts and ask that they be shuffled by
one of the honest authorities (we call this an initial shuffle), or provide a set of
input ciphertexts, a set of shuffled ciphertexts, and a proof, and ask one of the
honest authorities to shuffle the ciphertexts again and update the proof. Finally,
the adversary produces challenge values consisting of a set of input ciphertexts,
a set of shuffled ciphertexts and a proof that includes the public key of at least
one of the honest authorities. If this proof verifies, it receives either the decryp-
tion of the shuffled ciphertexts, or a random permutation of the decryptions of
the initial ciphertexts. Our definition requires that it should be hard for the
adversary to distinguish which of the two it is given.

We also require that the input ciphertexts are always accompanied by a proof
that they are well-formed; i.e., a proof of knowledge of a valid message and the
randomness used in encryption. This is usually necessary in many applications
(for example in voting when each voter must prove that he has encrypted a valid
vote), and in our construction it means that we can easily handle an adversary
who produces the input ciphertexts in invalid ways; e.g., by mauling ciphertexts
from a previous shuffle, or by submitting malformed ciphertexts.

Definition 6.1. For a verifiable shuffle (Setup, Shuffle,Verify) with respect to an
encryption scheme (KeyGen,Enc,Dec), a given adversary A and a bit b ∈ {0, 1},
let pAb (k) be the probability that b′ = 0 in the following experiment:

– Step 1. (params , sk , S = {pk i}, {sk i}) $←− Setup(1k).
– Step 2. A gets params, S, and access to the following two oracles: an initial

shuffle oracle that, on input ({ci, πi}, pk 
) for pk 
 ∈ S, outputs ({c′i}, π, {pk 
})
(if all the proofs of knowledge πi verify), where π is a proof that the {c′i}
constitute a valid shuffle of the {ci} performed by the user corresponding
to pk 
 (i.e., the user who knows sk 
), and a shuffle oracle that, on input
({ci, πi}, {c′i}, π, {pkj}, pkm) for pkm ∈ S, outputs ({c′′i }, π′, {pk j} ∪ pkm).

– Step 3. Eventually, A outputs a tuple ({ci, πi}, {c′i}, π, S′ = {pk j}).
– Step 4. If Verify(params , ({ci, πi}, {c′i}, π, {pkj})) = 1 and S ∩ S′ �= ∅ then

continue; otherwise simply abort and output ⊥. If b = 0 give A {Dec(sk , c′i)},
and if b = 1 then give A ϕ({Dec(sk , ci)}), where ϕ is a random permutation

ϕ
$←− Sn.

– Step 5. A outputs a guess bit b′.

We say that the shuffle is compactly verifiable if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k) − pA1 (k)| < ν(k).
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Our compactly-verifiable shuffle construction will utilize four building blocks: a
hard relation Rpk (as defined by Damg̊ard [18, Definition 3]), a re-randomizable
IND-CPA-secure encryption scheme (KeyGen,ReRand,Enc,Dec), a proof of knowl-
edge (CRSSetup,P ,V), and a cm-NIZK (CRSSetup′,P ′,V ′). The hard relation
will be used to ensure that the secret key sk j known to the j-th mix server
cannot be derived from its public key pk j ,

7 the proof of knowledge will be
created by the users performing the initial encryptions to prove knowledge
of their votes, and the cm-NIZK will be used to prove that a given collec-
tion {c′i} is a valid shuffle of a collection {ci}, performed by the mix servers
corresponding to a set of public keys {pk j}. This means that the instances
are of the form x = (pk , {ci}, {c′i}, {pkj}), witnesses are of the form w =
(ϕ, {ri}, {skj}) (where ϕ is the permutation used, {ri} is the randomness used
to re-randomize the ciphertexts, and {skj} are the secret keys corresponding

to {pk j}), and the relation R is ((pk , {ci}, {c′i}, {pk j}
′

i=1), (ϕ, {ri}, {skj})) ∈
R iff {c′i} = {ReRand(pk , ϕ(ci); ri)} ∧ (pkj , skj) ∈ Rpk ∀j ∈ [1..�′]. The valid
transformations are then T(ϕ′,{r′

i},{sk
+
j ,pk+

j },{pk−
j }) = (Tx, Tw), where Tx(pk , {ci},

{c′i}, {pkj}) := (pk , {ci}, {ReRand(pk , ϕ′(ci); r
′
i)}, {pkj} ∪ ({pk+j } \ {pk−

j })) and
Tw transforms the witness accordingly. Due to space constraints, a formal out-
line of how these primitives are combined can be found in the full version of our
paper, along with a proof of the following theorem:

Theorem 6.1. If the encryption scheme is re-randomizable and IND-CPA se-
cure, Rpk is a hard relation, the proofs πi are NIZKPoKs, and the proof π is a
cm-NIZK, then the above construction gives a compactly verifiable shuffle.
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Abstract. We investigate commitment schemes whose messages, keys,
commitments, and decommitments are elements of bilinear groups, and
whose openings are verified by pairing product equations. Such commit-
ments facilitate efficient zero-knowledge proofs of knowledge of a correct
opening. We show two lower bounds on such schemes: a commitment
cannot be shorter than the message and verifying the opening in a sym-
metric bilinear group setting requires evaluating at least two independent
pairing product equations. We also present optimal constructions that
match the lower bounds in symmetric and asymmetric bilinear group
settings.

Keywords: Structure-Preserving Commitments, Homomorphic Trap-
door Commitments.

1 Introduction

Efficient cryptographic protocols are often hand-crafted and their underlying
idea is hardly visible. On the other hand, modular design offers conceptual sim-
plicity in exchange of losing efficiency. Structure-preserving cryptography [1] is
a concept that facilitates modular yet reasonably efficient construction of cryp-
tographic protocols. It provides inter-operable cryptographic building blocks
whose input/output data consist only of group elements and their computa-
tions preserve the group structure. Combined with the Groth-Sahai (GS) proof
system [18], such structure-preserving schemes allow proofs of knowledge about
privacy-sensitive data present in their inputs and outputs. Commitments [9,1],
various signatures [1,10,2], and adaptive chosen-ciphertext secure public-key en-
cryption [8] have been presented in the context of structure-preserving cryptog-
raphy. They yield a number of applications including various privacy-protecting
signatures [1], efficient zero-knowledge arguments [17], and efficient leakage-
resilient signatures [13].

We revisit structure preserving commitment schemes. Their keys, messages,
commitments, and decommitments are elements of bilinear groups, and the open-
ing is verified by evaluating pairing product equations. Using a bilinear map
G × G → GT , messages from the base group are either committed to target

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 301–317, 2012.
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group elements and the commitments are shrinking, or committed to group ele-
ments from the same group but commitments are larger than the messages. In
other words, there are two types of commitment functions: either “G → GT and
shrinking” or “G → G and expanding”. The former type, [1,16], takes multiple
elements in the base group G as input and shrinks them into a constant number
of elements in the target group GT by exploiting the one-way nature of the map-
ping from G to GT . Involving elements in GT in a commitment is acceptable as
long as witness-indistinguishability is sufficient for the accompanying GS proofs,
but it is problematic if zero-knowledge is necessary. The latter type, [9,3], which
we call strictly structure-preserving schemes, takes messages in G and also yields
commitments in G. Unfortunately, due to the absence of a one-way structure in
the mapping from G to G, their construction is more involved. Moreover, they
are expanding: commitments are 2-3 times larger than messages in the known
constructions. Nothing is known about the lower bound, and constructing more
efficient commitment schemes of the latter type has been an open problem.

Our Results. This paper presents two lower bounds on strictly structure-
preserving commitment schemes. First, we show that for a message of size k the
commitment must be at least size k; thus, negatively answering to the above-
stated open problem. This lower bound highlights the gap from the known upper
bound of 2k in [3]. The lower bound is obtained by assuming that key generation
and commitment functions are algebraic. By algebraic algorithms we mean any
computation conditioned so that, when outputting a group element, the algo-
rithm ”knows” its representation with respect to given bases. The class covers
a wide range of algorithms including all constructions in the standard model to
the best our knowledge. See Section 2.5 for more detailed discussion.

Next, we show that strictly structure-preserving commitment schemes for
symmetric bilinear groups require at least two pairing product equations in the
verification. The number of equations, as well as the size of commitments, is
an important factor in determining efficiency since the size of a zero-knowledge
proof of a correct opening grows linearly with the number of verification equa-
tions. A scheme described in [3] achieves this bound but verifies k elements
from a commitment in one equation and other k elements in the other equation,
which requires 2k elements for a commitment. Thus it does not match to the first
lower bound. Because the lower bounds of a commitment size and the number
of equations are independent, we see that a scheme that achieves both bounds
is missing.

We close the gap by presenting two optimal constructions (except for small ad-
ditive constants). The first construction works over asymmetric bilinear groups,
yields commitments of size k + 1, and verifies with one equation. The second
construction works over symmetric bilinear groups, yields commitments of k+2,
and verifies with two equations. Both constructions implement trapdoor and
homomorphic properties. The schemes are computationally binding based on
simple standard computational assumptions. Finally, we assess their efficiency
in combination with GS zero-knowledge proofs of correct opening.
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2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator that takes security parameter 1λ and outputs
a description of bilinear groups Λ := (p,G1,G2,GT , e, G, G̃) where G1, G2 and
GT are groups of prime order p, e is an efficient and non-degenerating bilinear
map e : G1 ×G2 → GT , and G and G̃ are generators of G1 and G2, respectively.
By Λ∗, we denote Λ without the generatorsG and G̃, i.e., Λ∗ = (p,G1,G2,GT , e).

By Λsym we denote a special case of Λ where G1 = G2 (and G = G̃), which is
also referred to as a symmetric setting. Λsxdh denotes a case where the decision
Diffie-Hellman (DDH) assumption holds in G1 and G2. This means that no effi-
cient mapping is available for either direction. Λsxdh is usually referred to as the
symmetric external DDH (SXDH) setting [22,6,15,23]. For practical differences
between Λsym and Λsxdh, please refer to [14].

2.2 Notations

By G, we denote a base group, G1 or G2, when the difference is not important.
By G∗ we denote G \ {1G}. We use upper case letters to group elements and
corresponding lower case letters to represent the discrete-log of the group element
with respect to a fixed (but not necessarily explicit) base. For a set or a vector
of group elements, X ∈ Gn, the size of X refers to n and is denoted as |X|. We
consider X as a row vector. For a vector or an ordered set X, the i-th element
is denoted as X[i] or Xi.

We use multiplicative notations for group operations and additive notation
for vector operations. The transpose of X is denoted as Xt. A concatenation of

vectors X ∈ Gn and Y ∈ Gk is denoted as X||Y def
= (X1, . . . , Xn, Y1, . . . , Yk).

For X ∈ Gn and a ∈ Zn
p , we define aX

t def
=

∏n
i=1X

ai

i . For a matrix A ∈ Zk
p×Zn

p

and X ∈ Gn, AXt def
= (

∏n
i=1X

a1,i

i , · · · ,
∏n

i=1X
ak,i

i )t, where ai,j is entry (i, j)

of A. For X,Y ∈ Gn, X+Y
def
= (X1 ·Y1, . . . , Xn ·Yn). For X ∈ Gn

1 and Y ∈ Gn
2 ,

X · Y t is defined as
∏n

i=1 e(Xi, Yi). By 0 ∈ Gn we denote additive unity vector
0 = {1G, . . . , 1G}.

For aij ∈ Zp, T ∈ GT , Xi ∈ G1, and Yj ∈ G2, an equation of the form∏
i

∏
j

e(Xi, Yj)
aij = T

is called a pairing product equation (PPE). With our notation, any pairing
product equation for variables X ∈ Gk

1 and Y ∈ Gn
2 can be represented as

X AY t = T where A is a k × n matrix over Zp and T is a constant in GT . For
convenience, we may abuse these notations for vectors that consist of elements
from both G1 and G2 assuming that relevant entries of a multiplied scaler matrix
are zero so that the computation is well defined in either G1 or G2.

For a sequence of events, E1, . . . , En and a statement S, Pr[E1, . . . , En : S]
denotes the probability that S is satisfied when events E1, . . . , En occur. The
probability is taken over the random coins used in the events.
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2.3 Commitment Schemes

We focus on non-interactive commitment schemes and follow a standard syntac-
tical definition with the following setup.

Definition 1 (Commitment Scheme). A commitment scheme C is a quadru-
ple of efficient algorithms C = (Setup,Key,Com,Vrf) in which;

– gk ← Setup(1λ) is a common parameter generator that takes security param-
eter λ and outputs a set of common parameters, gk.

– ck ← Key(gk ) is a key generator that takes gk as input and outputs
commitment-key ck. It may take extra parameters as input if needed. It is
assumed that ck determines the message space Mck . A messages is valid if
it is in Mck .

– (com , open) ← Com(ck ,msg) is a commitment function that takes ck and
message, msg, and outputs commitment, com, and opening information,
open.

– 1/0 ← Vrf(ck , com ,msg, open) is a verification function that takes ck, com,
msg, and open as input, and outputs 1 or 0 representing acceptance or
rejection, respectively.

It is required that Pr[gk ← Setup(1λ), ck ← Key(gk ), msg ← Mck , (com , open)
← Com(ck ,msg) : 1 ← Vrf(ck , com,msg , open)] = 1.

Definition 2 (Binding and Hiding Properties). A commitment scheme
is binding if, for any polynomial-time adversary A, Pr[gk ← Setup(1λ), ck ←
Key(gk), (com ,msg , open,msg ′, open ′) ← A(ck ) : 1 ← Vrf(ck , com ,msg, open) ∧
1 ← Vrf(ck , com,msg ′, open ′)] is negligible. It is hiding if, for any polynomial-
time adversary A, advantage Pr[1 ← HideTCA (1)]−Pr[1 ← HideTCA (0)] is negligible
in λ where b′ ← HideTCA (b) is the process that gk ← Setup(1λ), ck ← Key(gk ),
(msg0,msg1, ω) ← A(ck ), (com ,−) ← Com(ck ,msgb), b

′ ← A(ω, com).

Definition 3 (Trapdoor Commitment Scheme). A commitment scheme is
called a trapdoor commitment scheme if Key additionally outputs a trapdoor-
key tk, and there is an efficient algorithm Equiv called equivocation algorithm
that takes (ck , tk , com,msg , open,msg ′) as input and outputs open ′ such that,
for legitimately generated ck, tk, and any valid messages msg and msg ′, it holds
that (com , open) ← Com(ck ,msg), open ′ ← Equiv(ck , tk , com,msg , open,msg ′),
1 ← Vrf(ck , com ,msg ′, open ′), and two distributions (ck , com,msg, open) and
(ck , com ,msg ′, open ′) over all choices of msg and msg ′ are indistinguishable.

Definition 3 is usually referred to as chameleon hash [20], and, in fact, is a
stronger requirement than the common definition of a trapdoor commitment
scheme (e.g., see [16]), which allows a different algorithm (taking tk as an input)
to compute equivocalable commitments.

Definition 4 (Homomorphic Commitment Scheme). A commitment
scheme is homomorphic if, for any legitimately generated ck, three binary op-
erations, ·, *, ⊗, are defined, and for any valid messages, msg and msg ′, it
holds that (com , open) ← Com(ck ,msg), (com , open) ← Com(ck ,msg), 1 ←
Vrf(ck , com · com ′,msg * msg ′, open ⊗ open ′) with probability 1.
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2.4 Strictly Structure-Preserving Commitments

Definition 5 (Strictly Structure-Preserving Commitments). A commit-
ment scheme C is strictly structure-preserving with respect to a bilinear group
generator G if

– Setup(1λ) outputs gk that consists of Λ = (p,G1,G2,GT , e, G, G̃) generated
by G(1λ),

– Key outputs ck that consists of Λ∗ and group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– Com outputs com and open that consist of elements in G1 and G2, and
– Vrf evaluates membership in G1 and G2 and evaluating pairing product equa-

tions over Λ∗.

Function Setup may also determine non-group elements, such as constants in Zp,
which are given implicitly to other functions as system parameters. Note that
the size of a message, denoted by k, may be limited by the size of ck . Also note
that, in a previous work [1], com is allowed to include elements in GT while it is
limited to G in the above strict case. This results in limiting the pairing product
equations in Vrf to have T = 1GT since none of ck , com , msg , open could include
elements from GT . Our lower bounds, however, hold even if ck and open include
T �= 1 used for verification.

2.5 Algebraic Algorithms

Roughly, an algorithm A is algebraic over Λ if, whenever A is given elements
(X1, . . . , Xn) of a group and outputs an element Y in the same group, A should
“know” a representation (r1, . . . , rn) of Y that fulfils Y =

∏
Xri

i . We require
the property only with respect to the base groups. A formal definition follows.

Definition 6 (Algebraic Algorithm). Let A be a probabilistic polynomial
time algorithm that takes a bilinear group description Λ, a string aux ∈ {0, 1}∗,
and base group elements X ∈ Gk for some k as input; and outputs a group ele-
ment in G and a string ext ∈ {0, 1}∗. Algorithm A is called algebraic with respect
to G if there exists a probabilistic polynomial-time algorithm, Ext, receiving the
same input as A including the same random coins such that for any Λ ← G(1λ),
all polynomial size X �= (1, . . . , 1), and aux, the following probability, taken over
coin r, is negligible in λ.

Pr

⎡⎣ (Y1, . . . , Yn, ext) ← A(Λ,X, aux ; r),
(y1, . . . ,yn, ext) ← Ext(Λ,X, aux ; r)

: ∃i ∈ {1, . . . , n} s.t. Yi �=
k∏

j=1

X
yi,j

j

⎤⎦
The notion is often used for restricting a class of reduction algorithms for showing
impossibility of security proofs for practical cryptographic schemes by black-box
reduction, e.g., [7,11]. The notion in this case implies the limitation of current
reduction techniques and considered as “not overly restrictive” as it covers all
known efficient reductions.
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The notion is also used for characterising constructions of cryptographic
schemes. In [2], the signing function is assumed computable only with generic
operations, which implies that it is algebraic. A closely related concept is known
as the knowledge of exponent assumption [12,19,5]. It is applied to adversary A
and considered as a “very strong assumption” since it is hardly falsifiable. It is
also generally undesirable to put a limitation on the ability of a malicious party.

Similar to [2], but with slightly more generality, we put a restriction on the
key generation and commitment algorithms so that they are algebraic. Though
this narrows the coverage of our result, it still covers quite a wide range of
approaches. It also suggests a direction to find a new construction that includes
non-algebraic operations yet the relation can be efficiently verified by generic
operations through pairing product equations.

2.6 Assumptions

Assumption 7 (Double Pairing Assumption (DBP)). Given Λ and
(Gz , Gr) ← G∗

1
2, it is hard to find (Z,R) ∈ G∗

2 × G∗
2 that satisfies

1 = e(Gz, Z) e(Gr, R). (1)

Assumption 8 (Simultaneous Double Pairing Assumption (SDP)).
Given Λ and (Gz , Gr, Fz, Fs) ← G∗

1
4, it is hard to find (Z,R, S) ∈ G∗

2
3 that

satisfies

1 = e(Gz, Z) e(Gr, R) and 1 = e(Fz , Z) e(Fs, S). (2)

DBP is implied by DDH in G1. It does not hold for Λsym. SDP is implied by
DLIN [9] for Λsym. When Λsxdh is considered, we can assume the dual version of
these assumptions that swap G1 and G2.

3 Lower Bounds

We show two lower bounds for strictly structure-preserving commitment scheme
C over G. Let Λ ← G(1λ), ck := (Λ∗,V ), msg := M , com := C, open := D,
where V , M , C, D are vectors of elements in G1 and G2 in Λ. Let �v, �m, and
�c denote the size of V , M , and C, respectively.

3.1 Commitment Size

Theorem 9. If the discrete-logarithm problem in the base groups of Λ is hard,
Key and Com are algebraic, and �c < �m, then C is not binding.

Proof. Algorithm Com takes (Λ∗,V ,M) as input and outputs (C,D) under
the constraint that �c < �m. Since Com is algebraic, there exists an associated
algorithm ExtCom that takes the same input as Com does and outputs matrices
B1, B2, B3, B4 over Zp for which

(C)t = B1 (M )t +B2 (V )t and (D)t = B3 (M)t +B4 (V )t (3)
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hold. Note that B1 is an �c × �m rectangular matrix. We first consider the
symmetric bilinear setting where G1 = G2 and represent the group by G. We
later argue that the same argument holds for asymmetric setting with trivial
modifications.

We construct an adversary A that breaks the binding property of C. First
A selects arbitrary M and computes (C,D) ← Com(Λ∗,V ,M ). It then runs
ExtCom(Λ

∗,V ,M) and obtains B1, . . . , B4. If an i-th column of B1 is zero, then
M ′ is formed by replacing Mi in M with a fresh arbitrary M ′

i . If none of the
columns of B1 are zero, A finds a non-zero vector R that satisfies B1 (R)t = 0.
Then it computes M ′ = M + R. In either case, A then computes (D′)t :=
B3 (M

′)t + B4 (V )t, and outputs (C,M ,D,M ′,D′). This completes the de-
scription of A.

We first show that the aboveR can be efficiently found. By applying standard
Gaussian elimination to B1, one can efficiently find S1 that is the largest regular
sub-matrix of B1. Let I and J be the set of indexes of rows and columns of
B1, respectively, that form S1. By Ī and J̄ , we denote the rest of the indexes in
B1. Note that |I| = |J | and |J | + |J̄ | = �m. Consider matrix S2 of size |I| × |J̄ |
formed by selecting entries B1[i][j], i ∈ I, and j ∈ J̄ . Such S2 can be formed
since J̄ is not empty due to �c < �m. Select arbitrary non-zero vector R2 of
size |J̄ | and compute (R1)

t = −S−1
1 S2 (R2)

t. Then R1 is a vector of size |J |.
Then compose R from R1 and R2 in such a way that R[J [i]] := R1[i] and
R[J̄ [i]] := R2[i] . Since R2 is not zero, the resulting R is not zero as well.
Let S be a matrix consisting of rows of B1 that belong to I. It then holds that
S ·(R)t = S1 (R1)

t+S2 (R2)
t = 0. Since other rows of B1 are linearly dependent

on S, we have B1 (R)t = 0 as expected.
We next show that A outputs a valid answer. First, 1 ← Vrf(Λ,V ,C,M ,D)

holds due to the correctness of C. Recall that Vrf consists of evaluating PPEs.
Every PPE in Vrf can be represented by

PPEi : (V ||C||M ||D)Ai (V ||C||M ||D)t = 1 (4)

with some constant matrix Ai over Zp. Suppose that ExtCom is successful and
(3) indeed holds. Then (4) can be rewritten by

(V ||M )Ei (V ||M )t = 1 (5)

with matrix Ei in which

Ei = F Ai F
t where F =

(
1
v Bt

2 0
v B
t
4

0
m Bt
1 1
m Bt

3

)
(6)

where 1n and 0n denote n× n identity and zero matrices over Zp, respectively.
Note that Ei depends on M (through the computation of B1 to B4); hence, (5)
holds for that M . Nevertheless, we claim that any M ′ that is even unrelated to
Ei fulfils (4) as long as (5) is fulfilled and C and D are computed as in (3).

Claim. For valid M ′(�= M ) that fulfils

(V ||M ′)Ei (V ||M ′)t = 1, (7)
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for all i, relation

(V ||C ′||M ′||D′)Ai (V ||C′||M ′||D′)t = 1 (8)

holds for all i with respect to

(C ′)t := B1 (M
′)t +B2 (V )t and (D′)t := B3 (M

′)t +B4 (V )t. (9)

Proof is trivial by converting (7) into (8) by using (6) and (9). As a consequence,
such (C ′,M ′,D′) fulfils 1 ← Vrf(Λ∗,V ,C′,M ′,D′). We next make a strong
claim that any M ′ satisfies (7).

Claim. If the discrete-logarithm problem in G is hard, the relation (7) holds for
any M ′ ∈ G
m .

Intuition is that Com and ExtCom do not know the discrete-log ofM in computing
B1 to B4. Thus the only way to fulfil (5) is to set B1 to B4 so that (5) is trivial
for M . It then holds for any M ′ as in (7). To formally reduce to the hardness
of the discrete-logarithm problem, we also require ExtKey to be algebraic so that
v is available to our reduction algorithm.

Proof. Consider the relation in the exponents of (7) where V is a constant and
M ′ is a variable. The relation is in a quadratic form, say Qi(m

′) = 0, whose
coefficients can be computed efficiently from Ei. To prove the statement, it
suffices to show that Qi is a constant polynomial for all i.

Suppose, on the contrary, that there exists i where Qi is a non-trivial polyno-
mial with probability εQ that is not negligible. The probability is taken over the
choice of V , M . (Recall that Ei depends on V and M . It also depends on the
randomness of the extractor of Com, but the theorem statement is conditional on
the success of the extractor.) We construct algorithm D that solves the discrete
logarithm problem by using Key, Com, and their extractors ExtKey and ExtCom
as follows. Let (Λ, Y ) be an instance of the discrete-logarithm problem where Λ
includes base G. The goal is to compute x := logG Y . Given (Λ, Y ), algorithm
D first generates commitment key (ck , tk) ← Key(Λ, k) where ck = (Λ∗,V ).
By invoking ExtKey, algorithm D obtains discrete-log v of V with respect to
G. (D halts if negligible extraction error occurs.) It then forms M by setting
Mj := Y γj with random γj , and runs (C,D) ← Com(Λ∗,V ,M ). By running
ExtCom, algorithm D obtains B1, B2, B3 and B4. It then computes Ei and fur-
ther obtains quadratic polynomial Qi that is non-trivial by hypothesis. By using
the relation that mj = γj · x, D converts Qi into quadratic polynomial Q′

i in x,
which is also non-trivial except for negligible probability. (The probability is over
the choice of every γi. Rigorously, the bound is given by Schwartz’s lemma [21]
since Qi is a low-degree polynomial in γj .) Finally, D solves Q′

i(x) = 0 and
outputs x. The running time of D is polynomial since Key, Com, and their ex-
tractors run in polynomial-time and other computations are obviously executable
in polynomial-time. The success probability of D is almost the same as εQ except
for the negligible errors. This contradicts the hardness of the discrete-logarithm
problem in G.
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Now recall that M ′ is set to M +R and that B1 R = 0. Thus,

(C ′)
t
= B1 (M

′)
t
+B2 (V )

t
= B1 (M )

t
+B2 (V )

t
= (C)

t
. (10)

Due to the above claims, 1 ← Vrf(Λ,V ,C,M ′,D′) holds. Furthermore, M �=
M ′ since R �= 0. Thus, (C,M ,D,M ′,D′) is a valid solution that breaks the
binding property of C. This completes the proof in the symmetric group setting.

In the asymmetric setting where M and other vectors consist of elements
from both G1 and G2, essentially the same argument holds since elements in
the gruops do not mix each other. In the following, we only describe the points
where the argument has to be adjusted.

– Every vector is split into G1 vector and G2 vector, e.g., M = (M1,M 2) ∈
G
m1

1 × G
m2
2 for �m1 + �m2 = �m.

– By running ExtCom, we obtain Bj in the form of

Bj =

(
Bj1 0
0 Bj2

)
(11)

so that linear computation such as (3) is well defined.
– Without loss of generality, we assume that |C1| < |M1|. (Otherwise, |C2| <

|M2| holds.) Then, we can obtain non-zero vector R1 from B11 in the same
way as we obtain R from B1 in the symmetric case. By setting R = (R1,0),
we have B1R = 0 as desired.

– Pairing product equations (4), (5), (7) and (8) are modified so that their left
and right vectors consist only of G1 and G2, respectively, for computational
consistency. Also, matrix Ei in (6) is modified to Ei = F1 Ai (F2)

t where Fi

is formed by using B1i, B2i, B3i, and B4i in the same manner as in F in (6).
– In the second claim, we require hardness of the discrete-logarithm problem

in both G1 and G2. Depending on which of M1 and M 2 polynomial Qi is
non-trivial, we solve the discrete-logarithm problem inG1 orG2, respectively.

3.2 Number of Verification Equations

Theorem 10. If Λ = Λsym, �m ≥ 2, and Vrf evaluates only one PPE, then C is
not binding.

Proof. By focusing on M1 and M2 in M , the PPE in the verification can be
written as

e(M1,M1)
a1 e(M1,K1)

b1 e(M2,M2)
a2 e(M2,K2)

b2 e(M1,M2)
c P = 1 (12)

where a1, b1, a2, b2, c ∈ Zp are constants determined by the common parameter,
and K1 and K2 are linear combinations of elements in V , C, D and M \
{M1,M2}, and P is a product of pairings that does not involve M1 and M2. Let
f be the polynomial that represents the relation in the exponent of the leftmost
five pairings of (12). Namely,
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f := a1m
2
1 + b1 k1m1 + cm1m2 + b2 k2m2 + a2m

2
2, (13)

where m1, m2, k1, and k2 are the discrete-logs of M1, M2, K1, and K2 with
respect to the generator, say G, in Λ.

Given a commitment-key (Λ∗,V ), we set M = 1 and honestly compute C
and D by running Com. These C and D define K1, K2, and P in (12). Let
f(m1,m2) be f , as defined in (13), with k1 and k2 determined by these K1 and
K2. We have f(0, 0) = 0 and look for another pair (m′

1,m
′
2) �= (0, 0) that fulfils

f(m′
1,m

′
2) = 0. Such (m′

1,m
′
2) yield (M ′

1,M
′
2) = (Gm′

1 , Gm′
2) �= (1, 1).

Next, we show how to obtain such (M ′
1,M

′
2):

– If (a1, a2, c) = (0, 0, 0), we have f(m1,m2) = b1 k1m1 + b2 k2m2. We then
proceed with the following sub-cases.
• If b1 k1 �= 0 and b2 k2 �= 0, then m′

1 := k2 and m′
2 := (−b1/b2) · k1 results

in (m′
1,m

′
2) �= (0, 0) and f(m′

1,m
′
2) = 0. Thus, setting M ′

1 := K2 and

M ′
2 := K

−b1/b2
1 works.

• If biki = 0 for i = 1 or i = 2, or both, f(m1,m2) is independent of mi.
Therefore, any non-zero m′

i suffices. Simply select arbitrary non-zero m′
i

and compute M ′
i = Gm′

i .
– If (a1, a2, c) �= (0, 0, 0), we do as follows.

• If b1 k1 = 0 and b2 k2 = 0, we have f(m1,m2) = a1m
2
1+cm1m2+a2m

2
2.

By selecting non-zero m′
1 and solving m′

2 for f = 0 (if f(m1,m2) =
0 is independent of m2, arbitrary m′

2 suffices), we have (M ′
1,M

′
2) =

(Gm1 , Gm2) �= (1, 1).
• If b1 k1 �= 0 or b2 k2 �= 0, we consider setting m2 = δ m1 for some δ. With
this relation, (13) is written as

f(m1,m2) = m1

{
(a1 + a2 δ

2 + c δ)m1 + (b1 k1 + b2 k2 δ)
}
. (14)

We need (14) to have a non-zero solution for m1. Therefore, we set δ so
that a1 + a2 δ

2 + c δ �= 0 and b1 k1 + b2 k2 δ �= 0 hold. (There are at most
two δ for which these inequalities do not hold. For an arbitrary δ, the
first inequality can be tested directly, whereas the second is through the
relation Kb1

1 K
b2δ
2 �= 1. Thus, by trying at most three non-zero different

δ, we have an appropriate δ.) Then

m′
1 = − b1 k1 + b2 k2δ

a1 + a2 δ2 + c δ
and m′

2 = δ m′
1

fulfil (m′
1,m

′
2) �= (0, 0) and f(m′

1,m
′
2) = 0. This corresponds to setting

M ′
1 := (Kb1

1 K
b2 δ
2 )

1
a1+a2 δ2+c δ and M ′

2 := (M ′
1)

δ.

By replacing M1 and M2 in M with M ′
1 and M ′

2 computed as described
above, we obtain M ′ �= M , which is consistent with C and D; Hence, the
binding property breaks.
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4 Optimal Constructions

4.1 In Asymmetric Setting

Let G be a generator of asymmetric bilinear groups. Scheme 1 in Fig. 1 is for
messages M = (M1, . . . ,Mk) ∈ Gk

2 for some fixed constant k specified at the
time of commitment-key generation. The default generators G and G̃ in Λ can
be used as G0 and H , respectively. One can switch G1 and G2 in the description
to obtain a dual scheme that accepts messages in G1. It also implies a scheme for
messages from both G1 and G2. We show that the scheme is correct, perfectly
hiding, and computationally binding as well as trapdoor and homomorphic.

[Scheme 1]

Setup(1λ): Run G(1λ) and obtain Λ := (p,G1,G2,GT , e,G, G̃). Output Λ.
Key(Λ, k): Select G0 and H uniformly from G

∗
1 and G

∗
2 , respectively. For i =

1, . . . , k, compute Gi := Gγi
0 for random γi ∈ Z

∗
p. Output commitment-key

ck = (Λ∗,H,G0, . . . , Gk) and trapdoor tk = (γ1, . . . , γk).
Com(ck,M): Randomly select τ0, . . . , τk ∈ Zp and compute

Ci := Mi ·Hτi (for i = 1, . . . , k), Ck+1 :=
k∏

j=0

G
τj
j , and (15)

D := Hτ0 . (16)

Then output C := (C1, . . . , Ck+1) and D.
Vrf(ck,C,M , D): Output 1 if

e(Ck+1,H) = e(G0, D)
k∏

i=1

e(Gi, Ci/Mi) (17)

holds. Output 0, otherwise.
Equiv(ck, tk,C,M , D,M ′): Take (γ1, . . . , γk) from tk. Then output D′ such that

D′ := D ·
k∏

i=1

(M ′
i/Mi)

γi . (18)

Fig. 1. Homomorphic trapdoor commitment scheme in asymmetric bilinear group
setting

Theorem 11. Scheme 1 is correct.

Proof. For any C and D correctly computed for ck and M as in (15), the
right-hand of verification equation (17) is

e(G0, D)

k∏
i=1

e(Gi, Ci/Mi) = e(G0, H
τ0)

k∏
i=1

e(Gi, H
τi) = e(Ck+1, H). (19)

Thus (ck ,C,M , D) passes the verification with probability 1.
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Theorem 12. Scheme 1 is perfectly hiding and computationally binding if the
DBP assumption holds for Λ.

Proof. It is perfectly hiding because, for every commitment C = (C1, . . . , Ck+1)
∈ G1 × Gk

2 and every message M = (M1, . . . ,Mk) ∈ Gk
2 , there exists a unique

(τ0, . . . , τk) ∈ Zk+1
p that is consistent with relations (15), (16) and (17).

The binding property is proven by constructing an algorithm B that breaks
DBP using an adversary A that successfully computes two openings for a com-
mitment. Given an instance (Λ,Gz , Gr) of DBP, algorithm B works as follows.

– Randomly select ρ0 from Z∗
p and compute G0 := Gρ0

r .
– For i = 1, . . . , k, randomly select ζi ∈ Z∗

p and ρi ∈ Zp and compute Gi :=

Gζi
z G

ρi
r . If Gi = 1 for any i, B aborts; since the probability for this is negli-

gible, this does not affect the overall success of B.
– Run A with input ck = (Λ∗, H,G0, . . . , Gk).
– Given commitment C and two openings (M ,D) and (M ′,D′) from A,

compute

Z� =

k∏
i=1

(
M ′

i

Mi

)ζi

and R� =

(
D

D′

)ρ0 k∏
i=1

(
M ′

i

Mi

)ρi

. (20)

– Output (Z�, R�).

Since both (M ,D) and (M ′,D′) fulfil (17) for the same commitment C, divid-
ing the two verification equations yields

1 = e

(
G0,

D

D′

) k∏
i=1

e

(
Gi,

M ′
i

Mi

)
= e

(
Gρ0

r ,
D

D′

) k∏
i=1

e

(
Gζi

z G
ρi
r ,

M ′
i

Mi

)
(21)

= e

(
Gz ,

k∏
i=1

(
M ′

i

Mi

)ζi
)
e

(
Gr,

(
D

D′

)ρ0 k∏
i=1

(
M ′

i

Mi

)ρi
)

(22)

= e(Gz, Z
�) e(Gr, R

�). (23)

Since M �= M ′, there exists i such thatM ′
i/Mi �= 1. Also, ζi is independent from

the view of the adversary, i.e., for every choice of ζi, there exist a corresponding
ρi that gives the same Gi. Accordingly, Z

� =
∏

i(M
′
i/Mi)

ζi �= 1 holds with
overwhelming probability, and (Z�, R�) is a valid answer to the instance of DBP.
Therefore, B breaks DBP with the same probability that A breaks the binding
property of Scheme 1 (minus a negligible difference).

Theorem 13. Scheme 1 is trapdoor and homomorphic.

Proof. For the trapdoor property, observe that, for any trapdoor tk generated
by Key, and for any valid M and (C, D) generated by Com, and D′ generated
by Equiv for any valid M ′, it holds that
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e(G0, D
′)

k∏
i=1

e(Gi, Ci/M
′
i) = e(G0, D ·

k∏
i=1

(M ′
i/Mi)

γi)

k∏
i=1

e(Gi, Ci/M
′
i) (24)

= e(G0, D)

k∏
i=1

e(Gγi

0 ,M
′
i/Mi)

k∏
i=1

e(Gi, Ci/M
′
i) (25)

= e(G0, D)

k∏
i=1

e(Gi, Ci/Mi) (26)

= e(Ck+1, H). (27)

Thus (M ′, D′) is a correct opening of C computed from M . Also observe that
(ck ,M ,C) uniquely determines D and so is (ck ,M ′,C) and D′. Therefore,
distributions (ck ,M ,C, D) and (ck ,M ′,C, D′) over all choices of M and M ′

are identical.
To check the homomorphic property, let (ck ,C,M , D) and (ck ,C′,M ′, D′)

satisfy verification equation (17). Also, let M� := M +M ′, C� := C+C′, and
D� := D ·D′. Then it holds that

e(G0, D
�)

k∏
i=1

e(Gi, C
�
i /M

�
i ) (28)

= e(G0, D) e(G0, D
′)

k∏
i=1

e(Gi, Ci/Mi)

k∏
i=1

e(Gi, C
′
i/M

′
i) (29)

= e(Ck+1, H) e(C′
k+1, H) (30)

= e(C�
k+1, H). (31)

4.2 In Symmetric Setting

Let G be a generator of symmetric bilinear groups. Scheme 2 in Fig. 2 is for
messages M = (M1, . . . ,Mk) ∈ Gk

1 for some fixed constant k specified at the
time of commitment-key generation. The default generator G in Λ can be used
as H in the key generation.

Theorem 14. Scheme 2 is correct.

Proof. For correctly generated/computed (ck,C,M ,D), the following holds:

e(G0, D1)

k∏
i=1

e(Gi, Ci/Mi) = e(G0, H
τ0)

k∏
i=1

e(Gi, H
τi) = e(Ck+1, H) (37)

e(F0, D2)
k∏

i=1

e(Fi, Ci/Mi) = e(F0, H
μ0)

k∏
i=1

e(Fi, H
τi) = e(Ck+2, H). (38)

Thus it passes the verification with probability 1.
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[Scheme 2]

Setup(1λ): Run G(1λ) and obtain Λ := (p,G1,GT , e,G). Output Λ.
Key(Λ, k): Select H , G0 and F0 from G1 uniformly. For i = 1, . . . , k, com-

pute Gi := Gγi
0 and Fi := F δi

0 for random γi, δi ∈ Z
∗
p. Output ck :=

(Λ∗,H, (Gi, Fi)
k
i=0) and tk := ((γi, δi)

k
i=1).

Com(ck,M): Choose μ0, τ0, . . . , τk ∈ Zp randomly and compute (for i = 1, . . . k)

Ci := Mi ·Hτi , Ck+1 := Gτ0
0

k∏
j=1

G
τj
j , Ck+2 := Fμ0

0

k∏
j=1

F
τj
j , (32)

D1 := Hτ0 , and D2 := Hμ0 . (33)

Output C := (C1, . . . , Ck+2) and D = (D1, D2).
Vrf(ck,C,M ,D): Output 1 if the following equations hold. Output 0, otherwise.

e(Ck+1,H) = e(G0, D1)
k∏

i=1

e(Gi, Ci/Mi) (34)

e(Ck+2,H) = e(F0, D2)
k∏

i=1

e(Fi, Ci/Mi) (35)

Equiv(ck, tk,C,M ,D,M ′): Parse tk as ((γi, δi)
k
i=1). Output D′ = (D′

1, D
′
2) such

that

D′
1 := D1 ·

k∏
i=1

(M ′
i/Mi)

γi , and D′
2 := D2 ·

k∏
i=1

(M ′
i/Mi)

δi . (36)

Fig. 2. Homomorphic trapdoor commitment scheme in symmetric bilinear group
setting

Theorem 15. Scheme 2 is perfectly hiding and computationally binding if the
SDP assumption holds for Λ.

Proof. It is perfectly hiding due to the uniform choice of (μ0, τ0, τ1, . . . , τk) when
committing, and due to the fact that for every commitmentC = (C1, . . . , Ck+2) ∈
G1

k+2 and for every message M = (M1, . . . ,Mk) ∈ G1
k there exists a unique

pair (D1, D2) that satisfies equations (34)-(35).
The binding property is shown by constructing an algorithm B that breaks

SDP using an adversary A that successfully computes two openings for a com-
mitment. Given an instance (Λ,Gz, Gr, Fz, Fs) of SDP, algorithm B works as
follows.

– Pick random ρ0 and ω0 from Z∗
p and compute G0 := Gρ0

r , and F0 := Fω0
s .

– For i = 1, . . . , k, pick random ζi ∈ Z∗
p and ρi, ωi ∈ Zp and compute

Gi := Gζi
z G

ρi
r , and Fi := F ζi

z F
ωi
s . If Gi = 1 or F1 = 1 for any i, B aborts;

since the probability for this is negligible, we can ignore such cases.
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– Run A with input ck = (Λ∗, H,G0, F0, . . . , Gk, Fk).
– Given commitment C and two openings (M ,D) and (M ′,D′) from A,

compute

Z� =
k∏

i=1

(
M ′

i

Mi

)ζi

, R� =

(
D1

D′
2

)ρ0 k∏
i=1

(
M ′

i

Mi

)ρi

, S� =

(
D2

D′
2

)ω0 k∏
i=1

(
M ′

i

Mi

)ωi

.

– Output (Z�, R�, S�).

Since both (M , D1) and (M ′, D′
1) fulfils (34) with C, dividing the two equations

yields

1 = e

(
G0,

D1

D′
1

) k∏
i=1

e

(
Gi,

M ′
i

Mi

)
= e

(
Gρ0

r ,
D1

D′
1

) k∏
i=1

e

(
Gζi

z G
ρi
r ,

M ′
i

Mi

)

= e

(
Gz ,

k∏
i=1

(
M ′

i

Mi

)ζi
)
e

(
Gr,

(
D1

D′
1

)ρ0 k∏
i=1

(
M ′

i

Mi

)ρi
)

= e(Gz, Z
�) e(Gr, R

�).

Similarly, from (M , D2) and (M ′, D′
2) fulfilling (35) with C, we have

1 = e

(
F0,

D2

D′
2

) k∏
i=1

e

(
Fi,

M ′
i

Mi

)
= e(Fz, Z

�) e(Fs, S
�).

Since M �= M ′, there exists i such that M ′
i/Mi �= 1. Observe that ζi is in-

dependent from the view of the adversary, i.e., for every choice of ζi, there
exist corresponding ρi and ωi that give the same Gi and Fi, respectively. Thus,
Z� =

∏
i(M

′
i/Mi)

ζi �= 1 holds with overwhelming probability, and (Z�, R�, S�)
is a valid answer to the instance of SDP. Accordingly, B breaks SDP if A can
break the binding property with a non-negligible probability.

Theorem 16. Scheme 2 is trapdoor and homomorphic.

The proof is analogous to that that of Theorem 13; thus, it is omitted.

4.3 Efficiency

Table 1 compares storage and computation costs to commit to a message con-
sisting of k group elements. Schemes for symmetric setting are above the line
and those for asymmetric setting are below the line. In [3], another scheme
in an asymmetric setting is discussed without details. The scheme yields a
commitment of at least 2k, which is not optimal.

We also assess the efficiency in combination of GS proofs. A typical proof
statement would be “I can open the commitment.” It uses (M ,D) as witness
and (V ,C) as constants in the theorem statement represented by PPEs in the
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Table 1. Efficiency comparison. The size indicates the number of elements in a
commitment-key V , a commitment C, and a decommitment D for a message M
consisting of k group elements. For Scheme 1, (x, y) means x elements in G1 (or G2)
and y elements in G2 (or G1, resp.). #(pairings) and #(PPE) indicate the number of
pairings and pairing product equations in the verification predicate, respectively.

Scheme Setting |V | |M | |C| |D| #(pairings) #(PPE) assumption

CLY09 [9] Λsym 5 k 3k 3k 9k 3k DLIN
AHO10 [3] Λsym 2k + 2 k 2k + 2 2 2k + 2 2 SDP
Scheme 2 Λsym 2k + 2 k k + 2 2 2k + 4 2 SDP

Scheme 1 Λsxdh (k, 0) (0, k) (1, k) (0, 1) k + 2 1 DBP

verification predicate. Table 2 shows the size of the witness, theorem, and proof
in the example. We also show the total size for a theorem and a proof in bits with
a reasonable parameter setting (which is considered as comparable security to an
RSA modulus of 2000 bits) where elements in G are 380 bits in the symmetric
setting, and elements in G1 and G2 are 224 bits and 448 bits, respectively,
assuming the use of point compression [4]. Scheme 1 is optimized by considering
the dual scheme taking messages from G1.

Table 2. Storage costs for proving correct opening in zero-knowledge by GS proofs.
Figures for |proof| include commitments of the witness and a proof. Size in bits indicates
|theorem|+ |proof| in bits.

Size in Bits
Scheme Setting |witness| |theorem| |proof| k = 1 5 10

CLY09 [9] Λsym 4k 3k + 5 39k 17860 81700 161500
AHO10 [3] Λsym k + 2 4k + 4 15k + 24 17860 46740 82840
Scheme 2 Λsym k + 2 3k + 4 12k + 21 15200 38000 66500

Scheme 1 Λsxdh (0, k + 1) (k + 1, k) (0, 6k + 8) 4256 12320 22400
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of Composite Order Bilinear Groups
in the Prime Order Setting
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Abstract. In this paper, we explore a general methodology for convert-
ing composite order pairing-based cryptosystems into the prime order
setting. We employ the dual pairing vector space approach initiated by
Okamoto and Takashima and formulate versatile tools in this framework
that can be used to translate composite order schemes for which the prior
techniques of Freeman were insufficient. Our techniques are typically ap-
plicable for composite order schemes relying on the canceling property
and proven secure from variants of the subgroup decision assumption,
and will result in prime order schemes that are proven secure from the
decisional linear assumption. As an instructive example, we obtain a
translation of the Lewko-Waters composite order IBE scheme. This pro-
vides a close analog of the Boneh-Boyen IBE scheme that is proven fully
secure from the decisional linear assumption. In the full version of this
paper, we also provide a translation of the Lewko-Waters unbounded
HIBE scheme.

1 Introduction

Recently, several cryptosystems have been constructed in composite order bilin-
ear groups and proven secure from instances (and close variants) of the gen-
eral subgroup decision assumption defined in [3]. For example, the systems
presented in [27,25,29,28,26] provide diverse and advanced functionalities like
identity-based encryption (IBE), hierarchical identity-based encryption (HIBE),
and attribute-based encryption with strong security guarantees (e.g. full secu-
rity, leakage-resilience) proven from static assumptions. These works leverage
convenient features of composite order bilinear groups that are not shared by
prime order bilinear groups, most notably the presence of orthogonal subgroups
of coprime orders. Up to isomorphism, a composite order bilinear group has the
structure of a direct product of prime order subgroups, so every group element
can be decomposed as the product of components in the separate subgroups.
However, when the group order is hard to factor, such a decomposition is hard
to compute. The orthogonality of these subgroups means that they can function
as independent spaces, allowing a system designer to use them in different ways
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without any cross interactions between them destroying correctness. Security re-
lies on the assumption that these subgroups are essentially inseparable: given a
random group element, it should be hard to decide which subgroups contribute
non-trivial components to it.

Though composite order bilinear groups have appealing features, it is desirable
to obtain the same functionalities and strong guarantees achieved in composite
order groups from other assumptions, particularly from the decisional linear as-
sumption (DLIN) in prime order bilinear groups. The ability to work with prime
order bilinear groups instead of composite order ones offers several advantages.
First, we can obtain security under the more standard decisional linear assump-
tion. Second, we can achieve much more efficient systems for the same security
levels. This is because in composite order groups, security typically relies on
the hardness of factoring the group order. This requires the use of large group
orders, which results in considerably slower pairing operations.

There have been many previous examples of cryptosystems that were first
built in composite order groups while later analogs were obtained in prime order
groups. These include Groth-Ostrovsky-Sahai proofs [22,21], the Boneh-Sahai-
Waters traitor tracing scheme [10,15], and the functional encryption schemes
of Lewko-Okamoto-Sahai-Takashima-Waters [25,33]. Waters also notes that the
dual system encryption techniques in [38] used to obtain prime order systems
were first instantiated in composite order groups. These results already suggest
that there are strong parallels between the composite order and prime order
settings, but the translation techniques are developed in system-specific ways.

Beyond improving the assumptions and efficiency for particular schemes, our
goal in this paper is to expand our general understanding of how tools that
are conveniently inherent in the composite order setting can be simulated in
the prime order setting. We begin by asking: what are the basic features of
composite order bilinear groups that are typically exploited by cryptographic
constructions and security proofs? Freeman considers this question in [14] and
identifies two such features, called projecting and canceling (we also refer to
canceling as “orthogonality”). Freeman then provides examples of how to con-
struct either of these properties using pairings of vectors of group elements in
prime order groups. Notably, Freeman does not provide a way of simultaneously
achieving both projecting and canceling. There may be good reason for this, since
Meiklejohn, Shacham, and Freeman [30] have shown that both properties cannot
be simultaneously achieved in prime order groups when one relies on the deci-
sional linear assumption in a “natural way”. By instantiating either projecting
or canceling in prime order groups, Freeman [14] successfully translates several
composite order schemes into prime order schemes: the Boneh-Goh-Nissim en-
cryption scheme [9], the Boneh-Sahai-Waters traitor tracing system [10], and the
Katz-Sahai-Waters predicate encryption scheme [24]. These translations use a
three step process. The first step is to write the scheme in an abstract framework
(replacing subgroups by subspaces of vectors in the exponent), the second step
is to translate the assumptions into prime order analogs, and the third step is
to transfer the security proof.
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There are two aspects of Freeman’s approach that can render the results
unsatisfying in certain cases. First, the step of translating the assumptions often
does not result in standard assumptions like DLIN. A reduction to DLIN is only
provided for the most basic variant of the subgroup decision assumption, and
does not extend (for example) to the general subgroup decision assumption from
[3]. Second, the step of translating the proof fails for many schemes, including
all of the recent composite order schemes employing the dual system encryption
proof methodology [27,25,29,28,26]. These schemes use only canceling and not
projecting, and so this is unrelated to the limitations discussed in [30].

The reason for this failure is instructive to examine. As Freeman points out,
“the recent identity-based encryption scheme of Lewko and Waters [27] uses
explicitly in its security proof the fact that the group G has two subgroups of
relatively prime order”. The major obstacle here is not translating the description
of the scheme or its assumptions - instead the problem lies in translating a trick
in the security proof. The trick works as follows. Suppose we have a group G of
order N = p1p2 . . . pm, where p1, . . . , pm are distinct primes. Then if we take an
element g1 ∈ G of order p1 (i.e. an element of the subgroup of G with order p1)
and a random exponent a ∈ ZN , the group element ga1 reveals no information
about the value of amodulo the other primes. Only amod p1 is revealed. The fact
that amod p2, for instance, is uniformly random even conditioned on amod p1
follows from the Chinese Remainder Theorem. In the security proof of the Lewko-
Waters scheme, there are elements of the form ga1 in the public parameters, and
the fact that amod p2 remains information-theoretically hidden is later used to
argue that all the keys and ciphertext received by the attacker are properly
distributed in the midst of a hybrid argument.

Clearly, in a prime order group, we cannot hope to construct subgroups with
coprime orders. There are a few possible paths for resolving this difficulty. We
could start by reworking proofs in the composite order setting to avoid using this
trick and then hope to apply the techniques of [14] without modification. This
approach is likely to result in more complicated (though still static) assump-
tions in the composite order setting, which will translate into more complicated
assumptions in the prime order setting. Since we prefer to rely only on the deci-
sional linear assumption, we follow an alternate strategy: finding a version of this
trick in prime order groups that does not rely on coprimeness. This is possible
because coprimeness here is used a mechanism for achieving “parameter hiding,”
meaning that some useful information is information-theoretically hidden from
the attacker, even after the public parameters are revealed. We can construct
an alternate mechanism in prime order groups that similarly enables a form of
parameter hiding.

Our Contribution. We present versatile tools that can be used to translate com-
posite order bilinear systems relying on canceling to prime order bilinear systems,
particularly those whose security proofs rely on general subgroup decision as-
sumptions and employ the coprime mechanism discussed above. This includes
schemes like [27], which could not be handled by Freeman’s methods. Our tools
are based in the dual pairing vector space framework initiated by Okamoto and
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Takashima [31,32]. We observe that dual pairing vector spaces provide a mech-
anism for parameter hiding that can be used in place of coprimeness. We then
formulate an assumption in prime order groups that can be used to mimic the
effect of the general subgroup decision assumption in composite order groups.
We prove that this assumption is implied by DLIN. Putting these ingredients
together, we obtain a flexible toolkit for turning a class of composite order con-
structions into prime order constructions that can be proven secure from DLIN.

We demonstrate the use of our toolkit by providing a translation of the com-
posite order Lewko-Waters IBE construction [27]. This yields a prime order IBE
construction that is proven fully secure from DLIN and also inherits the intuitive
structure of the Boneh-Boyen IBE [5]. Compared to the fully secure prime order
IBE construction in [38], our scheme achieves comparable efficiency and security
with a simpler structure. As a second application, we provide a translation of the
Lewko-Waters unbounded HIBE scheme [29] in the full version. This additionally
demonstrates how to handle delegation of secret keys with our tools.

We note that some composite order systems employing dual system encryp-
tion, such as the attribute-based encryption scheme in [25], already have analogs
in prime order groups proven secure from DLIN using dual pairing vector spaces.
In [33], Okamoto and Takashima provide a functional encryption scheme in prime
order bilinear groups that is proven fully secure under DLIN. Their construction
encompasses both attribute-based and inner product encryption, and their proof
relies on dual system encryption techniques, similarly to [25]. While they focus
on providing a particular construction and proof, our goal is to formulate a more
general strategy for translating composite order schemes into prime order schemes
with analogous proofs.

Other Related Work. The concept of identity-based encryption was first proposed
by Shamir [36] and later constructed by Boneh and Franklin [8] and Cocks [13].
In an identity-based encryption scheme, users are associated with identities and
obtain secret keys from a master authority. Encryption to any identity can be
done knowing only the identity and some global public parameters. Both of the
initial constructions of IBE were proven secure in the random oracle model. The
first standard model constructions, by Canetti, Halevi, and Katz [11] and Boneh
and Boyen [5] relied on selective security, which is a more restrictive security
model requiring the attacker to announce the identity to be attacker prior to
viewing the public parameters. Subsequently, Boneh and Boyen [6], Gentry [16],
and Waters [37,38] provided constructions proven fully secure in the standard
model from various assumptions. Except for the scheme of [13], which relied on
the quadratic residuousity assumption, all of the schemes we have cited above
rely on bilinear groups. A lattice-based IBE construction was first provided by
Gentry, Peikert, and Vaikuntanathan in [18].

Hierarchical identity-based encryption was proposed by Horwitz and Lynn [23]
and then constructed by Gentry and Silverberg [19] in the random oracle model.
In a HIBE scheme, users are associated with identity vectors that indicate their
places in a hierarchy (a user Alice is a superior of the user Bob if her identity
vector is a prefix of his). Any user can obtain a secret key for his identity vector
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either from the master authority or from one of his superiors (i.e. a mechanism
for key delegation to subordinates is provided). Selectively secure standard model
constructions of HIBE were provided by Boneh and Boyen [5] and Boneh, Boyen,
and Goh [7] in the bilinear setting and by Cash, Hofheinz, Kiltz, and Peikert
[12] and Agrawal, Boneh, and Boyen [1,2] in the lattice-based setting. Fully
secure constructions allowing polynomial depth were given by Gentry and Halevi
[17], Waters [38], and Lewko and Waters [27]. The first unbounded construction
(meaning that the maximal depth is not bounded by the public parameters) was
given by Lewko and Waters in [29].

Attribute-based encryption (ABE) is a more flexible functionality than
(H)IBE, first introduced by Sahai and Waters in [35]. In an ABE scheme, keys
and ciphertexts are associated with attributes and access policies instead of iden-
tities. In a ciphertext-policy ABE scheme, keys are associated with attributes and
ciphertexts are associated with access policies. In a key-policy ABE scheme, keys
are associated with access policies and ciphertexts are associated with attributes.
In both cases, a key can decrypt a ciphertext if and only if the attributes satisfy
the formula. There are several constructions of both kinds of ABE schemes, e.g.
[35,20,34,4,25,33,39].

The dual system encryption methodology was introduced by Waters in [38]
as a tool for proving full security of advanced functionalities such as (H)IBE and
ABE. It was further developed in several subsequent works [27,25,33,26,29,28].
Most of these works have used composite order groups as a convenient setting
for instantiating the dual system methodology, with the exception of [33]. Here,
we extend and generalize the techniques of [33] to demonstrate that this use of
composite order groups can be viewed as an intermediary step in the development
of prime order systems whose security relies on the DLIN assumption.

2 Background

2.1 Composite Order Bilinear Groups

When G is a bilinear group of composite order N = p1p2 . . . pm (where p1, p2,
. . ., pm are distinct primes), we let e : G×G → GT denote its bilinear map (also
referred to as a pairing). We note that both G and GT are cyclic groups of order
N . For each pi, G has a subgroup of order pi denoted by Gpi . We let g1, . . . , gm
denote generators of Gp1 through Gpm respectively. Each element g ∈ G can
be expressed as g = ga1

1 ga2
2 · · · gam

m for some a1, . . . , am ∈ ZN , where each ai
is unique modulo pi. We will refer to gai

i as the “Gpi component” of g. When
ai is congruent to zero modulo pi, we say that g has no Gpi component. The
subgroups Gp1 , . . . , Gpm are “orthogonal” under the bilinear map e, meaning
that if h ∈ Gpi and u ∈ Gpj for i �= j, then e(h, u) = 1, where 1 denotes the
identity element in GT .

General Subgroup Decision Assumption. The general subgroup decision assump-
tion for composite order bilinear groups (formulated in [3]) is a family of static
complexity assumptions based on the intuition that it should be hard to de-
termine which components are present in a random group element, except for
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what can be trivially determined by testing for orthogonality with other given
group elements. More precisely, for each non-empty subset S ⊆ [m], there is
an associated subgroup of order

∏
i∈S pi in G, which we will denote by GS .

For two distinct, non-empty subsets S0 and S1, we assume it is hard to distin-
guish a random element of GS0 from a random element of GS1 , when one is
only given random elements of GS2 , . . . , GSk

where for each 2 ≤ j ≤ k, either
Sj ∩ S0 = ∅ = Sj ∩ S1 or Sj ∩ S0 �= ∅ �= Sj ∩ S1.

More formally, we let G denote a group generation algorithm, which takes in
m and a security parameter λ and outputs a bilinear group G of order N =
p1 · · · pm, where p1, . . . , pm are distinct primes. The General Subgroup Decision
Assumption with respect to G is defined as follows.

Definition 1. General Subgroup Decision Assumption. Let S0, S1, S2, . . . , Sk be
non-empty subsets of [m] such that for each 2 ≤ j ≤ k, either Sj ∩ S0 = ∅ =
Sj ∩ S1 or Sj ∩ S0 �= ∅ �= Sj ∩ S1. Given a group generator G, we define the
following distribution:

G := (N = p1 · · · pm, G,GT , e)
R←− G,

Z0
R←− GS0 , Z1

R←− GS1 , Z2
R←− GS2 , . . . , Zk

R←− GSk
,

D := (G, Z2, . . . , Zk).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,Z0) = 1] − P [A(D,Z1) = 1]|

is negligible in the security parameter λ.

We note that this assumption holds in the generic group model, assuming it is
hard to find a non-trivial factor of the group order N .

Restricting to Challenge Sets Differing by One Element. We observe that it suf-
fices to consider challenge sets S0 and S1 of the form S1 = S0 ∪ {i} for some
i ∈ [m], i /∈ S0. We refer to this restricted class of subgroup decision assumptions
as the 1-General Subgroup Decision Assumption. To see that the 1-general sub-
group decision assumption implies the general subgroup decision assumption, we
show that any instance of the general subgroup decision assumption is implied by
a sequence of the more restricted instances. More precisely, for general S0, S1, we
let U denote the set S0∪S1−S0. For any i in U , the 1-general subgroup decision
assumption implies that it hard to distinguish a random element of GS0 from
a random element of GS0∪{i}, even given random elements from GS2 , . . . , GSk

.
That is because each of the sets S2, . . . , Sk either does not intersect S1 or S0 and
hence does not intersect S0 or S0 ∪ {i} ⊆ S1, or intersects both S0 and S0 ∪ {i}.
We can now incrementally add the other elements of U using instances of the
1-general subgroup decision assumption, ultimately showing that it is hard to
distinguish a random element of GS0 from a random element of GS0∪S1 . We can
reverse the process and subtract one element at a time from S0 ∪ S1 until we
arrive at S1. Thus, the seemingly more restrictive 1-general subgroup decision
assumption implies the general subgroup decision assumption.
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2.2 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear map e :
G × G → GT . More generally, one may have a bilinear map e : G ×H → GT ,
where G and H are different groups. For simplicity in this paper, we will always
consider groups where G = H .

In addition to referring to individual elements of G, we will also consider
“vectors” of group elements. For v = (v1, . . . , vn) ∈ Zn

p and g ∈ G, we write gv

to denote a n-tuple of elements of G:

gv := (gv1 , gv2 , . . . , gvn).

We can also perform scalar multiplication and vector addition in the exponent.
For any a ∈ Zp and v,w ∈ Zn

p , we have:

gav := (gav1 , . . . , gavn), gv+w = (gv1+w1 , . . . , gvn+wn).

We define en to denote the product of the componentwise pairings:

en(g
v, gw) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v·w.

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces. We will employ the concept of dual pairing vector
spaces from [31,32]. For a fixed (constant) dimension n, we will choose two
random bases B := (b1, . . . , bn) and B∗ := (b∗1, . . . , b

∗
n) of Zn

p , subject to the
constraint that they are “dual orthonormal”, meaning that

bi · b∗j = 0 (mod p),

whenever i �= j, and
bi · b∗i = ψ

for all i, where ψ is a uniformly random element of Zp. (This is a slight abuse
of the terminology “orthonormal”, since ψ is not constrained to be 1.)

For a generator g ∈ G, we note that

en(g
bi , gb

∗
j ) = 1

whenever i �= j, where 1 here denotes the identity element in GT .
We note that choosing random dual orthonormal bases (B,B∗) can equiva-

lently be thought of as choosing a random basis B, choosing a random vector b∗1
subject to the constraint that it is orthogonal to b2, . . . , bn, defining ψ = b1 · b∗1,
and then choosing b∗2 so that it is orthogonal to b1, b3, . . . , bn, and has dot prod-
uct with b2 equal to ψ, and so on. We will later use the notation (D,D∗) and
d1, . . . , etc. to also denote dual orthonormal bases and their vectors (and even
F,F∗ and f1, etc.). This is because we will sometimes be handling more than
one pair of dual orthonormal bases at a time, and we use different notation to
avoid confusing them.
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Decisional Linear Assumption. The complexity assumption we will rely on in
prime order bilinear groups is the Decisional Linear Assumption. To define this
formally, we let G denote a group generation algorithm, which takes in a security
parameter λ and outputs a bilinear group G of order p.

Definition 2. Decisional Linear Assumption. Given a group generator G, we
define the following distribution:

G := (p,G,GT , e)
R←− G,

g, f, v, w
R←− G, c1, c2, w

R←− Zp,

D := (g, f, v, f c1, vc2).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A :=
∣∣P [A(D, gc1+c2) = 1

]
− P

[
A(D, gc1+c2+w) = 1

]∣∣
is negligible in the security parameter λ.

3 Our Main Tools

There is an additional feature of composite order groups that is often exploited
along with canceling/orthogonality in the security proofs for composite order
constructions: we call this parameter hiding. In composite order groups, parame-
ter hiding takes the following form. Consider a composite order group G of order
N = p1p2 and an element g1 ∈ Gp1 (an element of order p1). Then if we sample a
uniformly random exponent a ∈ ZN and produce ga1 , this reveals nothing about
the value of a modulo p2. More precisely, the Chinese Remainder theorem guar-
antees that the value of a modulo p2 conditioned on the value of a modulo p1 is
still uniformly random, and ga1 only depends on the value of a modulo p1. This
allows a party choosing a to publish ga1 and still hide some information about a,
namely its value modulo p2. Note that this party only needs to know N and g1:
it does not need to know the factorization of N .

This is an extremely useful tool in security proofs, enabling a simulator to
choose some secret random exponents, publish the public parameters by raising
known subgroup elements to these exponents, and still information-theoretically
hide the values of these exponents modulo some of the primes. These hidden
values can be leveraged later in the security game to argue that something looks
well-distributed in the attacker’s view, even if this does not hold in the simu-
lator’s view. This sort of trick is crucial in proofs employing the dual system
encryption methodology.

Replicating this trick in prime order groups seems challenging, since if one
is given g and ga in a prime order group, a is completely revealed modulo p in
an information-theoretic sense. To resolve this issue, we use dual pairing vector
spaces. We observe that a form of parameter hiding is achieved by using dual
orthonormal bases: one can generate a random pair of dual orthonormal bases
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(B,B∗) for Zn
p , apply an invertible change of basis matrix A to a subset of these

basis vectors, and produce a new pair of dual orthonormal bases which is also
randomly distributed, independently of A. This allows us to hide a random
matrix A. We formulate this precisely below.

3.1 Parameter Hiding in Dual Orthonormal Bases

We consider taking dual orthonormal bases and applying a linear change of basis
to a subset of their vectors. We do this in such a way that we produce new dual
orthonormal bases. In this subsection, we prove that if we start with randomly
sampled dual orthonormal bases, then the resulting bases will also be random -
in particular, the distribution of the final bases reveals nothing about the change
of basis matrix that was employed. This “hidden” matrix can then be leveraged
in security proofs as a way of separating the simulator’s view from the attacker’s.

To describe this formally, we let m ≤ n be fixed positive integers and A ∈
Zm×m

p be an invertible matrix. We let Sm ⊆ [n] be a subset of size m (|S| = m).
For any dual orthonormal bases B,B∗, we can then define new dual orthonormal
bases BA,B∗

A as follows. We let Bm denote the n × m matrix over Zp whose
columns are the vectors bi ∈ B such that i ∈ Sm. Then BmA is also an n ×m
matrix. We form BA by retaining all of the vectors bi ∈ B for i /∈ Sm and
exchanging the bi for i ∈ Sm with the columns of BmA. To define B∗

A, we
similarly let B∗

m denote the n×m matrix over Zp whose columns are the vectors
b∗i ∈ B∗ such that i ∈ Sm. Then B∗

m(A−1)t is also an n×mmatrix, where (A−1)t

denotes the transpose of A−1. We form B∗
A by retaining all of the vectors b∗i ∈ B∗

for i /∈ Sm and exchanging the bi for i ∈ Sm with the columns of B∗
m(A−1)t.

To see that BA and B∗
A are dual orthonormal bases, note that for i ∈ Sm, the

corresponding basis vector in BA can be expressed as a linear combination of the
basis vectors bj ∈ B with j ∈ Sm, and the coefficients of this linear combination
correspond to a column of A, say the �th column (equivalently, say i is the �th

element of Sm). When � �= �′, the �th column of A is orthogonal to the (�′)th

column of (A−1)t. This means that the ith vector of BA will be orthogonal to
the (i′)th vector of B∗

A whenever i �= i′. Moreover, the �th column of A and the
�th column of (A−1)t have dot product equal to 1, so the dot product of the ith

vector of BA and the ith vector of B∗
A will be equal to the same value ψ as in

the original bases B and B∗.

For a fixed dimension n and prime p, we let (B,B∗)
R←− Dual(Zd

p) denote
choosing random dual orthonormal bases B and B∗ of Zn

p . Here, Dual(Zn
p )

denotes the set of dual orthonormal bases.

Lemma 1. For any fixed positive integers m ≤ n, any fixed invertible A ∈
Zm×m

p and set Sm ⊆ [n] of size m, if (B,B∗)
R←− Dual(Zd

p), then (BA,B∗
A) is also

distributed as a random sample from Dual(Zd
p). In particular, the distribution

of (BA,B∗
A) is independent of A.

Proof. There is a one-to-one correspondence between (B,B∗) and (BA,B∗
A): given

(BA,B∗
A), one can recover (B,B∗) by applying A−1 to the vectors in BA whose
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indices are in Sm, and applyingAt to the corresponding vectors in B∗
A. This shows

that every pair of dual orthonormal bases is equally likely to occur as BA,B∗
A.

3.2 The Subspace Assumption

We now state a complexity assumption in prime order groups that we will use
to simulate the effects of subgroup decision assumptions in composite order
groups. We call this the Subspace Assumption. In the full version, we show that
the subspace assumption is implied by the decisional linear assumption.

In prime order groups, basis vectors in the exponent take the place of subgroups.
Since we are using dual orthonormal bases, our new concept of orthogonality be-
tween “subgroups” becomes asymmetric. If we have dual orthonormal bases B,B∗

and we think of “subgroup 1” in B as corresponding to the span of b1, . . . , b4, then
this is not orthogonal to the other vectors in B, but it is orthogonal to vectors
b∗5, . . . , b

∗
n in B∗. Essentially, the notion of a single subgroup has now been split

into a pair of “subgroups”, one for each side of the pairing, and orthogonality be-
tween different subgroups now only holds for elements on opposite sides.

This sort of asymmetry can be quite useful. For example, consider an in-
stance of the general subgroup decision assumption in composite order groups,
where the task is to distinguish a random element of Gp1 from Gp1p2 . In this
case, we cannot give out an element of Gp2 , since it can trivially be used to
break the assumption by pairing it with the challenge term and seeing if the
result is the identity. If we instead use dual orthonormal bases in a prime order
group, the situation is a bit different. Suppose that given gv, the task is to distin-
guish whether the exponent vector v is in the span of b∗1, b

∗
2 or in the larger span

of b∗1, b
∗
2, b

∗
3. We cannot give out gb3 , since one could then break the assumption

by testing if en(g
v, gb3) = e(g, g)v·b3 is the identity, but we can give out gb

∗
3 .

Our definition of the subspace assumption is motivated by this and our obser-
vation in Section 2.1 that the general subgroup decision assumption in composite
order groups can be restricted to distinguishing between sets that differ by one
element. What this means is that to simulate the uses of the general subgroup
decision in composite order groups, one can focus merely on creating an ana-
log for expansion into one new “subgroup” at a time. At its core, our subspace
assumption says that if one is given gv, then it is hard to tell if v is randomly
chosen from the span of b∗1, b

∗
2 or from the larger span of b∗1, b

∗
2, b

∗
3, even if one is

given scalar multiples of all bases vectors in B and B∗ in the exponent, except for
b3. We augment this by also given out a random linear combination of b1, b2, b3
in the exponent. We then generalize this by replicating the same structure for k
3-tuples of vectors, with the random linear combinations having the same coeffi-
cients. (The fact that these coefficients are the same prevents this from following
immediately from the assumption for a single 3-tuple applied in hybrid fashion.)

We now give the formal description of the subspace assumption. For a fixed

dimension n ≥ 3 and prime p, we recall that (B,B∗)
R←− Dual(Zn

p ) denotes
choosing random dual orthonormal bases B and B∗ of Zn

p , and Dual(Z
n
p ) denotes

the set of dual orthonormal bases. Our assumption is additionally parameterized
by a positive integer k ≤ n

3 .
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Definition 3. (Subspace Assumption) Given a group generator G, we define the
following distribution:

G := (p,G,GT , e)
R←− G, (B,B∗)

R←− Dual(Zn
p ),

g
R←− G, η, β, τ1, τ2, τ3, μ1, μ2, μ3

R←− Zp,

U1 := gμ1b1+μ2bk+1+μ3b2k+1 , U2 := gμ1b2+μ2bk+2+μ3b2k+2 , . . . ,

Uk := gμ1bk+μ2b2k+μ3b3k , V1 := gτ1ηb
∗
1+τ2βb

∗
k+1 , V2 := gτ1ηb

∗
2+τ2βb

∗
k+2 , . . . ,

Vk := gτ1ηb
∗
k+τ2βb

∗
2k , W1 := gτ1ηb

∗
1+τ2βb

∗
k+1+τ3b

∗
2k+1 ,

W2 := gτ1ηb
∗
2+τ2βb

∗
k+2+τ3b

∗
2k+2 , . . . ,Wk := gτ1ηb

∗
k+τ2βb

∗
2k+τ3b

∗
3k

D :=
(
gb1 , gb2 , . . . , gb2k , gb3k+1 , . . . , gbn , gηb

∗
1 , . . . , gηb

∗
k ,

gβb
∗
k+1 , . . . , gβb

∗
2k , gb

∗
2k+1 , . . . , gb

∗
n , U1, U2, . . . , Uk, μ3

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,V1, . . . , Vk) = 1]− P [A(D,W1, . . . ,Wk) = 1]|

is negligible in the security parameter λ.

We have included in D more terms than will be necessary for many applica-
tions of this assumption. We will work exclusively with the k = 1 and k = 2
cases. We present the assumption in the form above to make it more versatile
for use in future applications. We additionally note that the form stated above
can be further generalized to involve multiple, independently generated dual or-
thonormal bases (B1,B∗

1), (B2,B∗
2), . . . , (Bj ,B∗

j ), for any fixed j. The terms in the
assumption would be duplicated for each pair of bases, with the same values of
η, β, τ1, τ2, τ3, μ1, μ2, μ3. We will not need this generalization for the applications
we present. To help the reader see the main structure of this assumption through
the burdensome notation, we include a heuristic illustration of the k = 2 case.

In the diagram, the top rows illustrate the U terms, while the bottom rows
illustrate the V,W terms. The solid ovals and rectangles indicate the presence
of basis vectors. The crossed rectangles indicate basis elements of B which are
present in U1, U2 but are not given out in isolation. The dotted ovals adorned by
question marks indicate the basis vectors whose presence depends on whether
we consider the V ’s or the W ’s.

Fig. 1. Subspace Assumption with k = 2
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4 Analog of the Boneh-Boyen IBE Scheme

In this section, we employ our subspace assumption and our parameter hiding
technique for dual orthonormal bases to prove full security for a close analog of
the Boneh-Boyen IBE scheme from the decisional linear assumption. This is the
same security guarantee achieved for the IBE scheme in [38] and our efficiency is
also similar. The advantage of our scheme is that it is a much closer analog to the
original Boneh-Boyen IBE, and resultingly has a simpler, more intuitive structure.

Our security proof essentially mirrors the structure of the security proof given
in [27], which provides a fully secure variant of the Boneh-Boyen IBE scheme
in composite order groups. This serves as an illustrative example of how our
techniques can be used to simulate dual system encryption proofs in the prime
order setting that were originally presented in composite order groups.

4.1 Our Construction

We will use dual orthonormal bases (D,D∗) of Z6
p, where p is the prime order

of our bilinear group G. Public parameters and ciphertexts will have exponents
described in terms of the basis vectors in D, while secret keys will have exponents
described in terms of D∗. The first four basis vectors of each will constitute the
“normal space” (like Gp1 in the LW scheme), and the last two basis vectors of
each will constitute the “semi-functional space” (like Gp2 in the LW scheme).

By using dual pairing vector spaces, we avoid the need to simulate Gp3 . In the
LW scheme, the purpose of Gp3 is to allow the creation of other semi-functional
keys while a challenge key is changing from normal to semi-functional. More
precisely, it allows the subgroup decision assumption to give out an element
of Gp2p3 that can be used to generate semi-functional keys when the task is to
distinguish a random element of Gp1p3 from a random element of G. We note that
if we did not use Gp3 here and instead tried to create all of the semi-functional
keys from a term in Gp1p2 , then these keys would not be properly randomized
in the Gp2 subgroup because the structure of the scheme is enforced in the Gp1

subgroup. Pairwise independence cannot save us here because there are many
keys. However, the asymmetry of dual pairing vector spaces avoids this issue:
while we are expanding the challenge key into the “semi-functional space” in D∗,
we can still know a basis for the semi-functional space of D∗ in the exponent -
it is only the corresponding terms in the semi-functional space of D that we do
not have access to in isolation. This allows us to make the other semi-functional
keys without needing to create an analog of the Gp3 subgroup.

The core of the Boneh-Boyen scheme is a cancelation between terms in two
pairings, one with the identity appearing on the ciphertext side and the other
with the identity appearing on the key side. This is combined with a mechanism
for preventing multiplication manipulation of the identity. In our scheme, this
core cancelation is duplicated: instead of having one cancelation, we have two,
each with its own random coefficients. The first cancelation will occur for the
d1,d2 and d∗

1,d
∗
2 components, and the second will occur for the d3,d4 and d∗

3,d
∗
4

components.
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This expansion gives us room to use the subspace assumption with parameter
k = 2 to transition from 4-dimensional exponents for normal keys and ciphertexts
to 6-dimensional exponents for semi-functional keys and ciphertexts. Having
a 2-dimensional semi-functional space allows us to implement nominal semi-
functionality. To prevent multiplicative manipulations of the identities in our
scheme is rather easy, since the orthogonality of the dual bases allows us to “tie”
all the components of the keys and ciphertexts together without causing cross
interactions that interfere with decryption.

We assume that messages M are elements of GT (the target group of the
bilinear map) and that identities ID are elements of Zp.

Setup(λ) → MSK,PP. The setup algorithm takes in the security parameter
λ and chooses a bilinear group G of sufficiently large prime order p. We let
e : G×G → GT denote the bilinear map. We set n = 6. The algorithm samples

random dual orthonormal bases, (D,D∗)
R←− Dual(Zn

p ). We let d1, . . . ,d6 denote
the elements of D and d∗

1, . . . ,d
∗
6 denote the elements of D∗. It also chooses

random values α, θ, σ ∈ Zp. The public parameters are computed as:

PP :=
{
G, p, e(g, g)αθd1·d∗

1 , gd1 , . . . , gd4

}
.

(We note that d1 ·d∗
1 = ψ by definition of D,D∗, but we write out the dot product

when we feel it is more instructive.) The master secret key is:

MSK :=
{
gθd

∗
1 , gαθd∗

1 , gθd
∗
2 , gσd

∗
3 , gσd

∗
4

}
.

KeyGen(MSK, ID) → SKID. The key generation algorithm chooses random
values r1, r2 ∈ Zp and forms the secret key as:

SKID := g(α+r1ID)θd∗
1−r1θd

∗
2+r2IDσd∗

3−r2σd
∗
4 .

Encrypt(M, ID,PP) → CT. The encryption algorithm chooses random values
s1, s2 ∈ Zp and forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd1·d∗

1

)s1
, C2 := gs1d1+s1IDd2+s2d3+s2IDd4

}
.

Decrypt(CT, SKID) → M . The decryption algorithm computes the message as:

M := C1/en(SKID, C2).

Recall that n = 6, so this requires six pairings.

4.2 Semi-functional Algorithms

We choose to define our semi-functional objects by providing algorithms that
generate them. We note that these algorithms are only provided for definitional
purposes, and are not part of the IBE system. In particular, they do not need
to be efficiently computable from the public parameters and master secret key
alone.
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KeyGenSF. The semi-functional key generation algorithm chooses random val-
ues r1, r2, t5, t6 ∈ Zp and forms the secret key as

SKID := g(α+r1ID)θd∗
1−r1θd

∗
2+r2IDσd∗

3−r2σd
∗
4+t5d

∗
5+t6d

∗
6 .

This is distributed like a normal key with additional random multiples of d∗
5 and

d∗
6 added in the exponent.

EncryptSF. The semi-functional encryption algorithm chooses random values
s1, s2, z5, z6 ∈ Zp and forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd1·d∗

1

)s1
, C2 :=gs1d1+s1IDd2+s2d3+s2IDd4+z5d5+z6d6

}
.

This is distributed like a normal ciphertext with additional random multiples of
d5 and d6 added in the exponent.

We observe that if one applies the decryption procedure with a semi-functional
key and a normal ciphertext, decryption will succeed because d∗

5,d
∗
6 are orthogo-

nal to all of the vectors in exponent of C2, and hence have no effect on decryption.
Similarly, decryption of a semi-functional ciphertext by a normal key will also
succeed because d5,d6 are orthogonal to all of the vectors in the exponent of
the key. When both the ciphertext and key are semi-functional, the result of
en(SKID, C2) will have an additional term, namely e(g, g)t5z5d5·d∗

5+t6z6d6·d∗
6 =

e(g, g)(t5z5+t6z6)ψ. Decryption will then fail unless t5z5 + t6z6 ≡ 0mod p. If this
modular equation holds, we say that the key and ciphertext pair is nominally
semi-functional. We note that this is possible, even when none of t5, z5, t6, z6 are
congruent to zero modulo p (this is why we have designated a semi-functional
space of dimension two).

In the full version, we prove the following theorem. Here, we sketch the outline
of the proof.

Theorem 1. Under the decisional linear assumption, the IBE scheme presented
in Section 4.1 is fully secure.

We prove this using a hybrid argument over a sequence of games, following the
LW strategy. We start with the real security game, denoted by Gamereal. We let
q denote the number of keys requested by the attacker. We define the following
additional games.

Gamei for i = 0, 1, . . . , q. Gamei is like Gamereal, except the ciphertext given to
the attacker is semi-functional (i.e. generated by a call to EncryptSF instead of
Encrypt) and the first i keys given to the attacker are semi-functional (generated
by KeyGenSF). The remaining keys are normal. We note that in Game0, all of
the keys are normal, and in Gameq, all of the keys are semi-functional.

Gamefinal. Gamefinal is like Gameq, except that the ciphertext is a semi-
functional encryption of a random message in GT , instead of one of the messages
supplied by the attacker.
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We transition from Gamereal to Game0, then to Game1, and so on, until
we arrive at Gameq. We prove that with each transition, the attacker’s advan-
tage cannot change by a non-negligible amount. As a last step, we transition
to Gamefinal, where it is clear that the attacker’s advantage is zero. These
transitions are accomplished in the following lemmas, all using the subspace as-
sumption. We let AdvrealA denote the advantage of an algorithm A in the real

game, AdviA denote its advantage in Gamei, and Adv
final
A denote its advantage

in Gamefinal.
We begin with the transition from Gamereal to Game0. At the analogous step

in the LW proof, a subgroup decision assumption is used to expand the ciphertext
from Gp1 into Gp1p2 . Here, we use the subspace assumption with k = 2 to expand
the ciphertext exponent vector from the span of d1, . . . ,d4 into the larger span
of d1, . . . ,d6. We use a very basic instance of the parameter hiding technique to
argue that the resulting coefficients of d5 and d6 are randomly distributed: this
is done by initially embedding a random 2× 2 change of basis matrix A into our
setting of the basis vectors d5,d6.

We now handle the transition from Gamei−1 to Gamei. At this step in the
LW proof, a subgroup decision assumption is used to expand the ith secret key
from Gp1p3 into G = Gp1p2p3 . Analogously, we will use the subspace assumption
to expand the ith secret key exponent vector from the span of d∗

1, . . . ,d
∗
4 into the

larger span of d∗
1, . . . ,d

∗
6. We will embed a 2 × 2 change of basis matrix A and

set D = BA and D∗ = B∗
A, where A is applied to b5, b6 to form d5,d6. As in the

LW proof, we cannot be given an object that resides solely in the semi-functional
space of the ciphertext (e.g. we cannot be given gd5 , gd6), but we are given objects
that have semi-functional components attached to normal components, and we
can use these to create the semi-functional ciphertext. In the LW proof, a term in
Gp1p2 in used. Here, an exponent vector that is a linear combination of b1, b3, b5
and another exponent vector that is a linear combination of b2, b4, b6 are used. In
our case, making the other normal and semi-functional keys is straightforward,
since we are given scalar multiples of all of the vectors of D∗ in the exponent. We
use the fact that the matrix A is hidden from the attacker in order to argue that
the semi-functional parts of the ciphertext and ith key appear well-distributed.

The final step of the LW proof uses an assumption that it is not technically an
instance of the general subgroup decision assumption, but is of a similar flavor.
In our case, we use a slightly different strategy: we use the subspace assumption
with k = 1 twice to randomize each appearance of s1 in the C2 term of the
ciphertext, thereby severing its link with the blinding factor. The end result is
the same - we obtain a semi-functional encryption of a random message. This
randomization of s1 is accomplished by first expanding an exponent vector from
the span of d5,d6 into the larger span of d5,d6,d2 and then expanding an
exponent vector from the span of d5,d6 into the larger span of d5,d6,d1. We
note that the knowledge of the μ3 value in the subspace assumption is used
here to ensure that while we are doing the first expansion, for example, we can
make the two occurrences of r1 in the keys match consistently (this is necessary
because gd

∗
2 by itself will not be known during this step).
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5 Further Applications

As a second demonstration of our tools, in the full version of this paper we
consider a variant of the Lewko-Waters unbounded HIBE construction [29]. The
composite order construction we present is simpler than the one presented in
[29], at the cost of using more subgroups. Since we will ultimately simulate these
subgroups in a prime order group, such a cost is no longer a significant detriment.
In designing our prime order translation and proof, we will proceed along a path
that is very similar to the path we took to translate the more basic IBE scheme.
However, we now must take care to preserve delegation ability throughout our
proof. As a result, we employ a different strategy for the final step of the proof.
The details of our composite order construction, its prime order translation, and
security proofs in both settings can be found in the full version of this paper.

In applying our tools to the both IBE and unbounded HIBE applications, we
see that there is some flexibility in how we choose the construction, organize
the hybrid games, and embed the subspace assumption in our reductions. All
of these considerations interact, allowing us to make tradeoffs. The amount of
flexibility available in applying our tools make them suitably versatile to handle
a wider variety of applications as well. In particular, they can be applied in the
attribute-based encryption setting. We suspect that applying our techniques to
the composite order ABE constructions in [25] would result in a system and
proof quite similar to the functional encryption schemes presented by Okamoto
and Takashima in [33], who obtain security from the decisional linear assumption
through dual pairing vector spaces.
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Abstract. In this paper we consider the following fundamental problem:
What is the simplest possible construction of a block cipher which is
provably secure in some formal sense? This problem motivated Even and
Mansour to develop their scheme in 1991, but its exact security remained
open for more than 20 years in the sense that the lower bound proof
considered known plaintexts, whereas the best published attack (which
was based on differential cryptanalysis) required chosen plaintexts. In
this paper we solve this open problem by describing the new Slidex attack
which matches the T = Ω(2n/D) lower bound on the time T for any
number of known plaintexts D. Once we obtain this tight bound, we can
show that the original two-key Even-Mansour scheme is not minimal in
the sense that it can be simplified into a single key scheme with half as
many key bits which provides exactly the same security, and which can
be argued to be the simplest conceivable provably secure block cipher.
We then show that there can be no comparable lower bound on the
memory requirements of such attacks, by developing a new memoryless
attack which can be applied with the same time complexity but only in
the special case of D = 2n/2. In the last part of the paper we analyze the
security of several other variants of the Even-Mansour scheme, showing
that some of them provide the same level of security while in others the
lower bound proof fails for very delicate reasons.

Keywords: Even-Mansour block cipher, whitening keys, minimalism,
provable security, tight security bounds, slide attacks, slidex attack.

1 Introduction

A major theme in cryptographic research over the last thirty years was the
analysis of minimal constructions. For example, many papers were published on
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the minimal cryptographic assumptions which are necessary and sufficient in
order to construct various types of secure primitives. Other examples analyzed
the smallest number of rounds required to make Feistel structures with truly
random functions secure, the smallest possible size of shares in various types of
secret sharing schemes, and the simplest way to transform one primitive into
another by using an appropriate mode of operation. Since the vague notion
of conceptual simplicity only partially orders all the possible schemes, in many
cases we have to consider minimal schemes (which are local minima that become
insecure when we eliminate any one of their elements) rather than minimum
schemes (which are global minima among all the possible constructions).

In the case of stream ciphers, one can argue that the simplest possible secure
scheme is the one-time pad, since any encryption algorithm requires a secret key,
and XORing is the simplest conceivable way to mix it with the plaintext bits.
The question we address in this paper is its dual: What is the simplest possible
construction of a block cipher which has a formal proof of security?

This problem was first addressed by Even and Mansour [8,9] in 1991. They
were motivated by the DESX construction proposed by Ron Rivest in 1984 [15],
in which he proposed to protect DES against exhaustive search attacks by XOR-
ing two independent prewhitening and postwhitening keys to the plaintext and
ciphertext (respectively). The resultant scheme increased the key size from 56 to
184 bits without changing the definition of DES and with almost no additional
complexity. The Even-Mansour scheme used such whitening keys but eliminated
the keyed block cipher in the middle, replacing it with a fixed random permu-
tation that everyone can share. The resultant scheme is extremely simple: To
encrypt a plaintext, XOR it with one key, apply to it a publicly known permu-
tation, and XOR the result with a second key.

To argue that the Even-Mansour scheme is minimal, its designers noted in [9]
that eliminating either one of the two XORed keys makes it easy to invert the
known effect of the permutation on the plaintext or ciphertext, and thus to
recover the other key from a single known plaintext/ciphertext pair. Eliminating
the permutation is also disastrous, since it makes the scheme completely linear.
In fact, the two-key EM block cipher is not minimal in the sense that it can be
further simplified into a single-key variant with half as many key bits which has
exactly the same security.

To compare various variants of the Even-Mansour scheme, we need tight
bounds on the exact level of security they provide. Unfortunately, all the bounds
published so far are not tight in the sense that the lower bound allows known
message attacks whereas the best known upper bounds require either chosen
plaintexts or an extremely large number of known plaintexts.

One of the main tools used in previous attacks was the slide attack [3]. Origi-
nally, slide attacks were developed in order to break iterated cryptosystems with
an arbitrarily large number of rounds by exploiting their self similarity under
small shifts. The attack searched the given data for a slid pair of encryptions
which have identical values along their common part (see Section 3.2 for formal
definitions). For each candidate pair, the attack uses the two known plaintexts
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and two known ciphertexts to analyze the two short non-common parts in order
to verify the assumption that the two encryptions are indeed a slid pair, and if so
to derive some key material. A different variant of this attack, called slide with a
twist [4], tries to find a slid pair consisting of one encryption and one decryption,
which have identical values along their common parts (i.e., the attack considers
both shifts and reversals of the encryption rounds). In both cases, the existence
of slid pairs is a random event which is expected to have a sharp threshold: Re-
gardless of whether we use known or chosen messages, we do not expect to find
any slid pairs if we are given fewer than 2n/2 encryptions where n is the size of
the internal state.1 Consequently, we cannot apply the regular or twisted slide
attack unless we are given a sufficiently large number of encryptions, even if we
are willing to trade off the lower amount of data with higher time and space
complexities.

In this paper we propose the slidex attack, which is a new extended version of
the slide attack that can efficiently use any amount of given data, even when it
is well below the 2n/2 threshold for the existence of slid pairs. Its main novelty
is that we no longer require equality between the values along the common part,
but only the existence of some known relationship between these values. By
using this new attack, we can finally close the gap between the upper and lower
bounds on the security of the Even-Mansour scheme.

To demonstrate the usefulness and versatility of the new slidex attack, we
apply it to several additional schemes which are unrelated to Even-Mansour. In
particular, we show how to break 20 rounds of GOST using 233 known plain-
texts in 277 time. In the extended version of this paper [7] we show several
additional attacks, such as how to use the complementation property of DES in
order to attack it with a slide attack even when it is surrounded by Vaudenay’s
decorrelation modules.

The paper is organized as follows. In Section 2 we introduce the Even-Mansour
scheme, describe its formal proof of security, and survey all the previously pub-
lished attacks on the scheme. In Section 3 we describe the known types of slide
attacks, and explain why they cannot efficiently exploit a small number of known
plaintexts. We then introduce our new Slidex attack, and use it to develop a new
upper bound for the security of the Even-Mansour scheme which matches the
proven lower bound for any number of known plaintexts. In Section 4 we describe
the single-key variant of the Even-Mansour scheme, which is strictly simpler but
has the same level of provable security. In Section 5 we analyze the security
of several other variants of the Even-Mansour scheme, demonstrating both the
generality and the fragility of its formal proof of security. Another limitation of
the proof technique is described in Section 6, where we show that no comparable
lower bound on the memory complexity of our attacks can exist. Finally, in the
Appendix we describe the mirror slide attack, which is a generalization of the
slidex attack.

1 We note that for specific block cipher structures, e.g., Feistel networks, a dedicated
slide attack can require fewer than 2n/2 plaintexts. However, there is no such method
that works for general structures.



Minimalism in Cryptography 339

2 The Even-Mansour Scheme

In this section we present the Even-Mansour (EM) scheme, review its security
proof given in [9] and describe previous attacks on it presented in [5] and [4].

2.1 Definition of the EM Scheme and Its Notation

The Even-Mansour scheme is a block cipher which consists of a single pub-
licly known permutation F over n-bit strings, preceded and followed by n-bit
whitening keys K1 and K2, respectively, i.e.,

EMF
K1,K2

(P ) = F(P ⊕K1) ⊕K2.

It is assumed that the adversary is allowed to perform two types of queries:

– Queries to a full encryption/decryption oracle, called an E-oracle, that
computes either E(P ) = EMF

K1,K2
(P ) or D(C) = (EMF

K1,K2
)−1(C).

– Queries to an F -oracle, that computes either F(x) or F−1(y).

The designers of EM considered two types of attacks. In the first type, called
existential forgery attack, the adversary tries to find a new pair (P,C) such that
E(P ) = C. The second type is the more standard security game, where the
adversary tries to decrypt a message C, i.e., to find P for which E(P ) = C.2

The data complexity of an attack on the scheme is determined by the number D
of queries to the E-oracle and their type (i.e., known/chosen/adaptively chosen
etc.), and the time complexity of the attack is lower bounded by the number T of
queries to the F -oracle.3 The success probability of an attack is the probability
that the single guess it produces (either a pair (P,C) for the first type of attack,
or a plaintext P for the second type) is correct.

2.2 The Lower Bound Security Proof

The main rigorously proven result in [9] was an upper bound of O(DT/2n) on
the success probability of any cryptanalytic attack (of either type) on EM that
uses at most D queries to the E-oracle and T queries to the F -oracle. This
result implies that in order to attack EM with a constant probability of success,
we must have DT = Ω(2n). Since this security proof is crucial for some of our
results, we briefly describe its main steps.

2 These security notions are significantly different than the indistinguishability no-
tions of [12] which proved similar lower bounds on the inability of the adversary
to distinguish the given instance of the cipher from a random permutation. Find-
ing the actual keys not only allows distinguishing the construction from a random
permutation, but also allows winning the two security games considered in [9].

3 In concrete implementations, this oracle is usually replaced by some publicly known
program which the attacker can run on its own. In this case the type of query (e.g.,
whether the inputs are adaptively chosen or not) can determine whether the attack
can be parallelized on multiple processors, but we ignore such low level details in
our analysis.
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The proof requires several definitions. Consider a cryptanalytic attack on EM,
and assume that at some stage of the attack, the adversary already performed
s queries to the E-oracle and t queries to the F -oracle, and obtained sets S and
T of E-pairs and F -pairs, respectively, i.e.,

D = {(Pi, Ci)}i=1,...,d, and T = {(Xj, Yj)}j=1,...,t.

We say that the key K1 is bad with respect to the sets of queries D and T ,
if there exist i, j such that Pi ⊕ K1 = Xj . Otherwise, K1 is good with respect
to D, T . Intuitively, a good key is one whose feasibility can not be deduced
from the available data, whereas a bad key is one whose feasibility has to be
analyzed further (but not necessarily discarded). Similarly, K2 is bad w.r.t. D, T
if there exist i, j such that Yj ⊕ K2 = Ci, and K2 is good otherwise. The key
K = (K1,K2) is good with respect to D, T if both K1 and K2 are good. It is easy
to show that the number of good keys w.r.t. D and T is at least 22n − 2st ·2n. A
pair (K = (K1,K2),F) is consistent w.r.t.D and T if for any pair (Pi, Ci) ∈ D we
have Ci = K2⊕F(Pi⊕K1), and for any pair (Xj , Yj) ∈ T , we have F(Xj) = Yj .

The proof consists of two main steps.

1. The first step shows that all good keys are, in some sense, equally likely to
be the correct key. Formally, if the probability over the keys and over the
permutations is uniform, then for all D, T , the probability

Pr
K,F

[
K = k

∣∣∣(K,F) is consistent with D, T
]

is the same for any key k ∈ {0, 1}2n that is good with respect to D, T .
We present the proof of this step, since it will be crucial in the sequel. It
follows from Bayes’ formula that it suffices to prove that the probability

p = Pr
K,F

[
(K,F) is consistent with D, T

∣∣∣K = k
]

(1)

is the same for all good keys. Given a good key k = (k1, k2), it is possible
to transform the set D of E-pairs to an equivalent set D′ of F -pairs by
transforming the E-pair (Pi, Ci) to the F -pair (Pi ⊕ k1, Ci ⊕ k2). Since the
key k is good, the pairs in D′ and T do not overlap, and hence p is simply
the probability of consistency of a random permutation F with d + t given
distinct input/output pairs. This probability clearly does not depend on k,
which proves the assertion.

2. The second step shows that the success probability of any attack is bounded
by the sum of the probability that in some step of the attack, the right key
becomes a bad key, and the probability that the adversary can successfully
generate a “new” consistent E-pair (P,C) if the right key is still amongst
the good keys. The first probability can be bounded by 4DT/(2n − 2DT ),
and the second probability can be bounded by 1/(2n −D − T ). Hence, the
total success probability of the attack is bounded by O(DT/2n). We omit
the proof of this step since it is not used in the sequel.
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We note that obtaining non-trivial information about the key (e.g., that the least
significant bit of the K1 is zero, or the value of K1 ⊕ K2), is also covered by this
proof. Hence, throughout the paper we treat such leakage of information as a
“problem” in the security of the construction (even if the exact keys are not found).

Finally, we note that in [12] a slightly different model is considered. The an-
alyzed construction is a one where besides the pre-/post-whitening keys, the
internal permutation F is keyed with a k-bit key. For such a construction, Kil-
ian and Rogaway prove that given D queries to the construction and time T
evaluations of F , one cannot succeed in distinguishing the construction from a
random permutation with probability higher than DT/2n+k−1. Obviously, when
k = 0, i.e., the internal permutation is fixed, one can view this as a proof that
indeed the Even-Mansour is indistinguishable from a random permutation with
success rate over DT/2n−1. Note that in this paper we consider the stronger
notion of attack (namely, finding the actual keys) and the thus the results are
not identical.

2.3 Previous Attacks on the Even-Mansour Scheme

The first proposed attack on the Even-Mansour scheme was published by Joan
Daemen at Asiacrypt 1991 [5]. Daemen used the framework of differential crypt-
analysis [2] to develop a chosen plaintext attack whichmatched the Even-Mansour
lower bound for any amount of given data. The approach is to pickD pairs of cho-
sen plaintexts whose XOR difference is some nonzero constant Δ. This plaintext
difference is preserved by the XOR with the prewhitening key K1, and simi-
larly, the ciphertext difference is preserved by the XOR with the postwhitening
key K2. For a known permutation F , most combinations of input and output
differences suggest only a small number of possible input and output values,
but it is not easy to find them. To carry out the attack, all we have to do is
to sample 2n/D pairs of inputs to F whose difference is Δ, and with constant
non-negligible probability we can find an output difference which already exists
among the chosen data pairs. This equality suggests actual input and output
values to/from F for that pair, and thus recovers the two keys. We note that a
similar chosen-plaintext attack was suggested in [12] for constructions where F
is keyed (where DT ≥ 2n+k−1 for a k-bit keyed F).

This attack matches the time/data relationship of the lower bound, but it
is not tight since it requires chosen plaintexts, whereas the lower bound allows
known plaintexts. This discrepancy was handled ten years later by a new at-
tack called slide with a twist which was developed by Alex Biryukov and David
Wagner, and presented at Eurocrypt 2000 [4]. By taking two Even-Mansour
encryptions, sliding one of them and reversing the other, they showed how to
attack the scheme with known instead of chosen plaintexts.4 However, in or-
der to find at least one slid pair, their attack requires at least Ω(2n/2) known
plaintext/ciphertext pairs, and thus it could not be applied with a reasonable
probability of success given any smaller number of known pairs.

4 The slide with a twist attack on EM is described in detail in Section 3.1.
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These two cryptanalytic attacks were thus complementary: One of them
matched the full time/data tradeoff curve but required chosen plaintexts, while
the other could use known plaintexts but only if at least Ω(2n/2) of them were
given. In the next section we present the new slidex technique that closes this
gap: it allows to use any number of known plaintexts with the same time/data
tradeoff as in the lower bound proof, thus providing an optimal attack on the
Even-Mansour scheme.

3 The Slidex Attack and a Tight Bound on the Security
of the Even-Mansour Scheme

In this section we present the new Slidex attack and use it to obtain a tight bound
on the security of the Even-Mansour scheme. We start with a description of the
slide with a twist attack on EM [4] which serves as a basis for our attack, and
then we present the slidex technique and apply it to EM. For more information
on slide attacks, we refer the reader to [1,3,4].

3.1 The Slide with a Twist Attack

The main idea of the slide with a twist attack on EM is as follows. Assume that
two plaintexts P, P ∗ satisfy

P ⊕ P ∗ = K1.

In such a case, we have

E(P ) = F(P ⊕K1) ⊕K2 = F(P ∗) ⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1) ⊕K2 = F(P ) ⊕K2

(see Figure 1(a)). Hence,

E(P ) ⊕ E(P ∗) = F(P ) ⊕ F(P ∗),

or equivalently,

E(P ) ⊕ F(P ) = E(P ∗) ⊕ F(P ∗).

This relation allows to mount the following attack:

1. Query both the E-oracle and the F -oracle at the same 2(n+1)/2 known values
P1, P2, . . ..

5 Store in a hash table the pairs (E(Pi)⊕F(Pi)), i), sorted by the
first coordinate.

2. For each collision in the table, i.e., E(Pi) ⊕ F(Pi) = E(Pj) ⊕ F(Pj), check
the guess K1 = Pi ⊕ Pj and K2 = E(Pi)⊕ F(Pj).

5 Formally, the adversary obtains known plaintext/ciphertext pairs (Pi, E(Pi)) and
queries the F-oracle at the value Pi.
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By the birthday paradox, it is expected that the data set contains a slid pair,
i.e., a pair satisfying Pi ⊕ Pj = K1, with a non-negligible constant probability.
For a random pair (Pi, Pj), the probability that E(Pi)⊕F(Pi) = E(Pj)⊕F(Pj)
is 2−n, and thus, only a few collisions are expected in the table. These collisions
include the collision induced by the slid pair, which suggests the correct values of
K1 and K2. The data complexity of the attack is D = 2(n+1)/2 known plaintexts,
and the number of queries to F it requires is T = 2(n+1)/2. Thus, DT = 2n+1,
which matches the lower bound up to a constant factor of 2.

3.2 The New Slidex Attack

The slidex attack is an enhancement of the slide with a twist technique, which
makes it possible to use a smaller number of known plaintexts (i.e., queries to
the E-oracle), in exchange for a higher number of queries to the F -oracle. The
basic idea of the attack is as follows: Assume that a pair of plaintexts P, P ∗

satisfies
P ⊕ P ∗ = K1 ⊕Δ,

for some Δ ∈ {0, 1}n. In such a case,

E(P ) = F(P ⊕K1)⊕K2 = F(P ∗ ⊕Δ) ⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1) ⊕K2 = F(P ⊕Δ) ⊕K2

(see Figure 1(b)). Hence,

E(P ) ⊕ E(P ∗) = F(P ∗ ⊕Δ) ⊕ F(P ⊕Δ),

or equivalently,

E(P ) ⊕ F(P ⊕Δ) = E(P ∗) ⊕ F(P ∗ ⊕Δ).

This allows to mount the following attack, for any d ≤ n:

1. Query the E-oracle at 2(d+1)/2 arbitrary values (i.e., known plaintexts)
P1, P2, . . ..

2. Choose 2n−d arbitrary values Δ1, Δ2, . . . of Δ. For each Δ
, query the
F -oracle at the values {Pi ⊕ Δ
}i=1,2,...,2(d+1)/2 , store in a hash table the
pairs (E(Pi)⊕F(Pi ⊕Δ
)), i), sorted by the first coordinate, and search for
a collision.

3. For each collision in any of the hash tables, i.e., when Pi, Pj for which
E(Pi) ⊕ F(Pi ⊕ Δ
) = E(Pj) ⊕ F(Pj ⊕ Δ
) are detected, check the guess
K1 = Pi ⊕ Pj ⊕Δ
 and K2 = E(Pi)⊕ F(Pj ⊕Δ
).

For each triplet (Pi, Pj , Δ
), the probability that Pi ⊕ Pj ⊕ Δ
 = K1 is 2−n.
Since the data contains 2d · 2n−d = 2n such triplets, it is expected that with a
non-negligible constant probability the data contains at least one slidex triplet
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(b)(a)

F F

K2 K2

⊕ ⊕
C C∗

V V ∗

⊕ ⊕
K1 K1

P P ∗

Δ Δ

F F

K2 K2

⊕ ⊕
C C∗

P ∗ P

⊕ ⊕
K1 K1

P P ∗

Fig. 1. (a) A twisted-slid pair; (b) A slidex pair

Table 1. Comparison of Results on the Even-Mansour scheme

Known Plaintext Attacks

Attack Data Time Memory Tradeoff

Guess and determine [9] 2 2n 2 —

Slide with a twist [4] 2n/2 2n/2 2n/2 —
Slidex (Sect. 3.2) D T D DT = 2n

Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Differential [5] D T D DT = 2n

Adaptive Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Slide (Sect. 6) D T 1 DT = 2n, D ≥ 2n/2

(i.e., a triplet for which Pi ⊕ Pj ⊕ Δ
 = K1). On the other hand, since the
probability of a collision in each hash table is 2d−n and there are 2n−d tables, it
is expected that only a few collisions occur, and one of them suggests the correct
key guess.

The number of queries to the E-oracle in the attack is D = 2(d+1)/2, and the
number of queries to the F -oracle is T = 2n−(d−1)/2. Thus, DT = 2n+1, which
matches the lower bound of [9] up to a constant factor of 2.

A summary of the complexities of all the old and new attacks on the
Even-Mansour scheme appears in Table 1.

4 The Single-Key Even-Mansour Scheme

In this section we analyze the single-key variant of the Even-Mansour scheme
(abbreviated in the sequel as “SEM”), which has the same level of security while
using only n secret key bits (compared to 2n bits in EM).6 First, we define the

6 Kurosawa uses such SEMs in his constructions [13], where in each block the
pre-/post-whitening keys are changed.
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scheme and show that the security proof of [9] can be adapted to yield a similar
lower bound on its security. Then, we present a simple attack on the new scheme
which matches the lower bound, thus proving its optimality.

4.1 Definition of the Scheme and Its Security Proof

Given a publicly known permutation F over n-bit strings and an n-bit secret
key K, the Single-Key Even-Mansour (SEM) scheme is defined as follows:

SEMF
K (P ) = F(P ⊕K)⊕K.

The attack model is the same as in the EM scheme. That is, the adversary can
query an encryption/decryption E-oracle and an F -oracle, and the complexity
of an attack is determined by the number D of queries to the E-oracle and their
type (known/chosen etc.), and the number T of queries to the F -oracle.

Surprisingly, the security proof of the EM scheme [9] holds almost without a
change when we apply it to the single-key SEM variant. The only modification
we have to make is to define a key K as bad with respect to sets of oracle queries
S and T if there exist i, j such that either Pi ⊕ K = Xj or Ci ⊕ K = Yj , and
K as good otherwise. It is easy to see that if |S| = s and |T | = t, then at least
2n−2st keys are still “good” keys. Exactly the same proof as for EM shows that
all the good keys are equally likely to be the right key, and the bounds on the
success probability of an attack apply without change for SEM.7

Therefore, for any successful attack on SEM, we must have DT = Ω(2n),
which means that SEM provides the same security as EM, using only half as
many key bits.

4.2 A Simple Optimal Attack on SEM

The slidex attack presented in Section 3 applies also to SEM, and is optimal
since it uses only known plaintexts and matches everywhere the tradeoff curve
of the security proof.

However, in the case of SEM, there is an even simpler attack (though, with
the same complexity). Consider an encryption of a plaintext P through SEM,
and denote the intermediate values in the encryption process by:

x = P, y = P ⊕K, z = F(P ⊕K), w = E(P ) = F(P ⊕K) ⊕K.

Note that x ⊕ w = y ⊕ z. This allows to mount the following simple attack,
applicable for any D ≤ 2n:

1. Query the E-oracle at D arbitrary values P1, P2, . . . , PD and store in a hash
table the values (Pi ⊕ E(Pi), i), sorted by the first coordinate.

7 We note that the indistinguishability of this construction was also studied in [12],
and it was shown that also the indistinguishability of SEM is the same as regular
EM.
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2. Query the F -oracle at 2n/D arbitrary values X1, X2, . . . , X2n/D, insert the
values Xj ⊕ F(Xj) to the hash table and search for a match.

3. If a match is found, i.e., Pi ⊕ E(Pi) = Xj ⊕ F(Xj), check the guess
K = Pi ⊕Xj.

The analysis of the attack is exactly the same as that of the slide with a twist
attack (see Section 3.1).

5 The Security of Other Variants of the Even-Mansour
Scheme

In this section we consider two natural variants of the Even-Mansour scheme,
and analyze their security.

The first variant replaces the XOR operations with modular additions, which
are not involutions and are thus immune to standard slide-type attacks. However,
we show that a new addition slidex attack can break it with the same complexity
as that of the slidex attack on the original EM scheme.

The second variant considers the case in which the mapping F is chosen as an
involution. This is motivated by the fact that in many “real-life” implementations
of the EM scheme we would like to instantiate F by a keyless variant of a block ci-
pher. Since in Feistel structures andmany other schemes (e.g., KHAZAD, Anubis,
Noekeon) the only difference between the encryption and decryption processes is
the key schedule, such schemes become involutions when wemake them keyless. In
this section we show that this seemingly mild weakness of F can be used to mount
a devastating attack on the EM scheme. In particular, we show that even when
F is chosen uniformly at random among the set of all the possible involutions on
n-bit strings, the adversary can recover the value K1 ⊕K2 with O(2n/2) queries
to the E-oracle and no queries at all (!) to the F -oracle. This clearly violates the
lower bound proof that no significant information about the key can be obtained
unless DT = Ω(2n) (which was proven for random permutations but seems to be
equally applicable to random involutions), and is achieved by a new variant of the
slide attack, which we call the mirror slide attack.

5.1 Even-Mansour with Addition

Consider the following scheme:

AEMF
K1,K2

(P ) = F(P +K1) +K2,

where F is a publicly known permutation over n-bit strings, and ‘+’ denotes
modular addition in the additive group Z2n . In the sequel, we call it “Addition
Even-Mansour” (AEM).

It is clear that the lower bound security proof of EM holds without any change
for AEM. Similarly, it is easy to see that Daemen’s differential attack on EM [5]
can be easily adapted to AEM, by replacing XOR differences with modular
differences.
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It may seem that the new variant has better security with respect to slide-type
attacks. As noted in [4], ordinary slide attacks can be applied only for ciphers
in which the secret key is inserted through a symmetric operation such as XOR,
and not through modular addition. In the specific case of EM, the slide with a
twist attack relies on the observation that if for two plaintexts P, P ∗, we have
P ∗ = P ⊕K1, then surely, P = P ∗⊕K1 as well. This observation fails for AEM:
If P ∗ = P +K1, then P

∗ +K1 = P + 2K1 �= P (unless K1 = 0 or K = 2n−1).
The slidex attack presented in Section 3.2 fails against AEM for the same reason.
Hence, it seems that none of the previously known attacks can break AEM in
the known plaintext model.

We present an extension of the slidex attack, which we call addition slidex,
which can break AEM with data complexity of D known plaintexts and time
complexity of T F -oracle queries, for anyD,T such thatDT = 2n, hence showing
that the security of AEM is identical to that of EM.

The basic idea of the attack is as follows: Assume that a pair of plain-
texts P, P ∗ satisfies P + P ∗ = −K1 + Δ. (Note that somewhat counter intu-
itive, we consider the modular sum of the plaintexts rather than their modular
difference!). In such a case,

E(P ) = F(P +K1) +K2 = F(−P ∗ +Δ) +K2,

and similarly,

E(P ∗) = F(P ∗ +K1) +K2 = F(−P +Δ) +K2.

Hence,
E(P ) − E(P ∗) = F(−P ∗ +Δ) − F(−P +Δ),

or equivalently,

E(P ) + F(−P +Δ) = E(P ∗) + F(−P ∗ +Δ). (2)

Equation (2) allows us to mount an attack similar to the slidex attack, with the
only change that instead of the values (E(Pi) ⊕ F(Pi ⊕ Δ)), i), the adversary
stores in the hash table the values (E(Pi) + F(−Pi +Δ)), i).

We note that actually, the slidex attack can be considered as a special case
of the addition slidex attack, since the addition slidex attack clearly applies to
modular addition in any group, and the XOR operation corresponds to addition
in the group Z2.

5.2 Even-Mansour with a Random Involution as the Permutation

Let Involutional Even-Mansour (IEM) be the following scheme:

IEMI
K1,K2

(P ) = I(P ⊕K1) ⊕K2,
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where I is chosen uniformly at random amongst the set of involutions on n-bit
strings. We present a new technique, which we call mirror slide, that allows to
recover the value K1⊕K2 using 2n/2 queries to the E-oracle, and with no queries
to the I-oracle.

The idea of the technique is as follows. Consider two input/output pairs
(P,C), (P ∗, C∗) for IEM. Assume that we have

P ⊕ C∗ = K1 ⊕K2. (3)

In such case,
P ⊕K1 = C∗ ⊕K2,

and hence, since I is an involution,

I(P ⊕K1) = I−1(C∗ ⊕K2).

However, by the construction we have

C = I(P ⊕K1) ⊕K2, and P ∗ = I−1(C∗ ⊕K2)⊕K1,

and thus,
C ⊕K2 = P ∗ ⊕K1,

or equivalently,
P ∗ ⊕ C = K1 ⊕K2 = P ⊕ C∗,

where the last equality follows from Equation (3). Therefore, assuming that
P ⊕ C∗ = K1 ⊕K2, we must have:

P ⊕ C = P ∗ ⊕ C∗.

This allows to mount a simple attack, similar to the slide with a twist attack.
In the attack, the adversary queries the E-oracle at 2(n+1)/2 arbitrary values
P1, P2, . . ., and stores in a hash table the pairs (E(Pi) ⊕ Pi, i), sorted by the
first coordinate. It is expected that only a few collisions exist, and that with
a non-negligible probability, one of them results from a pair (Pi, Pj), for which
Pi ⊕ E(Pj) = K1 ⊕K2.

Therefore, the attack supplies the adversary with only a few possible values
of K1 ⊕ K2, after performing 2(n+1)/2 queries to the E-oracle and no queries
at all to the I-oracle. As we show later, the adversary cannot obtain K1 or
K2 themselves (without additional effort or data), but at the same time, the
adversary does learn a nontrivial information about the key, which contradicts
the security proof of the original EM scheme.

We note that this is an example for the gap between the indistinguishability
security notion and the cost of finding a key. Obviously, when K1 = K2 is known
(or when K1⊕K2 is known), one can easily distinguish the single-key involution
Even-Mansour (ISEM) from a random permutation using two adaptive queries
with extremely high probability. At the same time, the lower bounds of the
Even-Mansour security proof assure us that it is impossible to decrypt a cipher-
text C encrypted by single-key involution Even-Mansour without first obtaining
DT = O(2n) (similar result holds with respect to the existential forgery attack
of producing another valid plaintext/ciphertext pair).
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Where the Security Proof Fails. One may wonder, which part of the formal
security proof fails when F is an involution. It turns out that the only part that
fails is the argument in the first step of the proof showing that all good keys are
equally likely to be the right key. Recall that in order to show this, one has to
show that the probability

p = Pr
K,F

[(K,F) is consistent with D, T |K = k]

is the same for all good keys. In the case of EM, p is shown to be the probability
of consistence of a random permutation F with d+ t given distinct input/output
pairs, which indeed does not depend on k (since such pairs are independent). In
the case of IEM, the input/output pairs may be dependent, since it may occur
that an encryption query to the E-oracle results in querying I at some value x,
while a decryption query to the E-oracle results in querying I−1 at the same
value x. Since I is an involution, these queries are not independent and thus,
the probability p depends on whether such dependency has occurred, and this
event does depend on k. An examination of the mirror slide attack shows that
this property is exactly the one exploited by the attack.

It is interesting to note that in the single-key case (i.e., for SEM where F
is an involution, which we denote by ISEM), such event cannot occur, as in
order to query I and I−1 at the same value, one must query E and E−1 at the
same value. Since in the single-key case, the entire construction is an involution,
such two queries result in the same answer for any value of the secret key, and
hence, do not create dependence on the key. It can be shown, indeed, that the
security proof does hold for ISEM and yields the same security bound, thus
showing that in the case of involutions, the single-key variant is even stronger
than the original two-key variant! Moreover, it can be noticed that in the case
of EM, after the adversary recovers the value K1 ⊕K2, the encryption scheme
becomes equivalent to a single-key Even-Mansour scheme with the key K1, i.e.,
E′(P ) = I(P ⊕K1) ⊕K1. Thus, using two different keys in this case is totally
obsolete, and also creates a security flaw which can be deployed by an adversary
if the keys K1 and K2 are used also in other systems.

5.3 Addition Even-Mansour with an Involution as the Permutation

In this subsection we consider a combination of the two variants discussed in the
previous subsections, i.e., AEM where F is a random involution. We abbreviate
this variant as AIEM.

It can be easily shown that the mirror slide attack can be adapted to the case
of AIEM, by modifying the assumption to C∗−P = K1+K2, and the conclusion
to P +C = P ∗ +C∗. The attack allows to recover the value K1 +K2, and then
the scheme becomes equivalent to a conjugation EM scheme with a single key:
CISEM(P ) = I(P +K1)−K1, and it can be shown that the security proof of
EM applies also to CISEM. Thus, the security of AEM under the assumption
that F is an involution is identical to that of the original EM.
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An interesting phenomenon is that in the involution case, the security of
single-key AEM (which we denote by AISEM) is much worse than that of AIEM.
Indeed, the mirror slide attack allows to recover K1 +K1 = 2K1, and hence to
find K1 (up to the value of the MSB), which breaks the scheme completely. This
suggests that in the case of addition, the “natural” variant of single-key AEM
is the conjugation variant, i.e., CSEM(P ) = F(P + K1) − K1, for which the
security proof of EM indeed applies even if F is an involution, as mentioned
above.

In the extended version of this paper, available at [7], we consider all 12
variants of Even-Mansour (single key/two keys, random permutation/random
involution, and whether the keys are XORed, added, or conjugated).

6 Memoryless Attacks on the Even-Mansour Scheme

All previous papers on the Even-Mansour scheme, including the lower bounds
proved by the designers [9], Daemen’s attack [5], and Biryukov-Wagner’s slide
attack [4], considered only the data and time complexities of attacks, but not the
memory complexity. Analysis of the previously proposed attacks shows that in all
of them, the memory complexity is min{D,T }, where D is the data complexity
(i.e., the number of E-queries) and T is the time complexity (i.e., the number of
F -queries). Thus, it is natural to ask whether the memory complexity can also be
inserted into the lower bound security proofs, e.g., in the form M ≥ min(D,T ).

In this section we show that such a general lower bound can not exist, by
constructing an attack with the particular data and time complexities ofO(2n/2),
and with only a constant memory complexity. The attack is a memoryless variant
of the slide with a twist attack described in Section 3.1. Recall that the main
step of the slide with a twist attack is to find collisions of the form E(P )⊕F(P )
= E(P ∗) ⊕ F(P ∗).

We observe that such collisions can be found in a memoryless manner. We
treat the function

G : P → E(P ) ⊕ F(P )

as a random function, and apply Floyd’s cycle finding algorithm [10] (or any of
its variants, such as Nivasch’s algorithm [14]) to find a collision in G. The attack
algorithm is as follows:

1. Query the E-oracle at a sequence of O(2n/2) adaptively chosen values
P1, P2, . . ., such that P1 is arbitrary and for k > 1, Pk = E(Pk−1)⊕F(Pk−1).
(Here, after each query to the E-oracle, the adversary queries the F -oracle
at the same value and uses its answer in choosing the next query to the
E-oracle).

2. Use Floyd’s cycle finding algorithm to find Pi, Pj such that E(Pi) ⊕ F(Pi)
= E(Pj) ⊕ F(Pj).

3. For each colliding pair, check the guess K1 = Pi ⊕ Pj and K2 = E(Pi) ⊕
F(Pj).
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The analysis of the attack is identical to the analysis of the slide with a twist
attack. The memory complexity is negligible, and the data and time complexities
remain O(2n/2). As the attack algorithm succeeds once a pair Pi, Pj satisfying
E(Pi) ⊕ F(Pi) = E(Pj) ⊕ F(Pj) is found, the expected number of queries is
determined by the random function G’s graph. The analysis of graphs induced
by random functions such as G shows that the expected number of queries in
the tail (the steps until entering the cycle) is πm/8 and the length of the cycle
itself is πm/8 [14]. We note that these incur a small overhead in terms of query
complexity (up to a factor of 5 in the case of Floyd’s algorithm or 2 in the case
Nivasch’s cycle finding algorithm of [14] is used in exchange for a logarithmic
memory). The only downside of this algorithm is the fact that the queries to the
E-oracle are chosen adaptively, whereas in the slide with a twist attack we could
choose arbitrary queries to the E-oracle.

7 Open Problems

If the amount of available E-oracle queries is smaller than 2n/2, the adversary
can still apply the slidex attack described in Section 3.2, but there seems to be
no way to convert it into a memoryless attack by using the strategy described
above. The main obstacle is that the adversary has to reuse the data many times
in order to construct the hash tables for different values of Δ, which can be done
only if the data is stored somewhere rather than used in an on-line manner which
discards it after computing the next plaintext. This leads to the following open
problem:

Problem 1. Does there exist a memoryless attack on the Even-Mansour scheme
with D E-oracle queries and 2n/D F -oracle queries, where D $ 2n/2?

A similar question can be asked with respect to the Single-Key Even-Mansour
scheme, where in addition to the slidex attack, the simple attack presented in
Section 4.2 can also break the scheme when D $ 2n/2. The attack of Section 4.2
can also be transformed to a memoryless attack, by defining a random function:

H(X) =

{
X ⊕ E(X), LSB(X) = 1
X ⊕ F(X), LSB(X) = 0,

and using Floyd’s cycle finding algorithm to find a collision of H. In the case
when D and T are both close to 2n/2, with a constant probability such collision
yields a pair (X1, X2) such that X1 ⊕ E(X1) = X2 ⊕ F(X2), concluding the
attack. The problem is that if D $ 2n/2, then with overwhelming probability, a
collision in H is of the form X1 ⊕ F(X1) = X2 ⊕ F(X2), which is not useful to
the adversary. Therefore, we state an additional open problem:

Problem 2. Does there exist a memoryless attack on the Single-Key
Even-Mansour scheme with D E-oracle queries and 2n/D F -oracle queries,
where D $ 2n/2?
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If such memoryless attack can be found only for Single-Key EM and not for
the ordinary EM, this will show that at least in some respect, the use of an
additional key in EM does make the scheme stronger.
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A The Mirror Slide Attack

In this section we present the general framework of the mirror slide attack,
that was presented in Section 5.2 in the special case of the Even-Mansour
scheme. We show that the mirror slide attack generalizes the slide with a twist
attack [4]. We apply the new technique to a 20-round variant of the block cipher
GOST [16], other variants of the attack are considered in the extended version of
the paper [7].

http://eprint.iacr.org/
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A.1 The General Framework

The mirror slide attack applies to block ciphers that can be decomposed as a
cascade of three sub-ciphers: E = E2 ◦E1 ◦E0, where the middle layer E1 is an
involution, i.e., E1 = (E1)

−1.8

Let E be such a cipher, and assume that for two plaintext/ciphertext pairs
(P,C), (P ∗, C∗), we have

E0(P ) = E−1
2 (C∗). (4)

In such case, since E1 is an involution,

E1(E0(P )) = E−1
1 (E−1

2 (C∗)).

By the construction, this implies:

E−1
2 (C) = E1(E0(P )) = E−1

1 (E−1
2 (C∗)) = E0(P

∗). (5)

If Equation (4) holds (and thus, Equation (5) also holds, the pair (P, P ∗) is
called a mirror slid pair.

The way to exploit mirror slid pairs in a cryptanalytic attack is similar to stan-
dard slide-type attacks [3,4]: The adversary asks for the encryption of 2(n+1)/2

known plaintexts P1, P2, . . . (where n is the block size of E) and denotes the
corresponding ciphertexts by C1, C2, . . .. For each pair (Pi, Pj), the adversary
assumes that it is a mirror slid pair and tries to solve the system of equations:{

Cj = E2(E0(Pi)),
Ci = E2(E0(Pj))

(which is equivalent to Equations (4) and (5) ). If E0 and E2 are “simple enough”,
the adversary can solve the system efficiently and recover the key material used
in E0 and E2.

If the amount of subkey material used in E0 and E2 is at most n bits (in
total), it is expected that at most a few of the systems of equations generated
by the 2n plaintext pairs are consistent (since the equation system is a 2n-bit
condition). One of them is the system generated by the mirror slid pair, which
is expected to exist in the data with a constant probability since the probability
of a random pair to be a mirror slid pair is 2−n. Hence, the adversary obtains
only a few suggestions for the key, which contain the right key with a constant
probability. If the amount of key material used in E0 and E2 is bigger than n
bits, the adversary can still find the right key, by enlarging the data set by a
small factor and using key ranking techniques (exploiting the fact that the right
key is suggested by all mirror slid pairs, while the other pairs suggest “random”
keys).

The data complexity of the attack is O(2n/2) known plaintexts, and its time
complexity is O(2n) (assuming that the system of equations can be solved within
constant time).

8 We note that the attack can be applied also if E1 has some other symmetry proper-
ties, as shown in the extended version of the paper.
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We note that the attack can be applied even when E0 and E2 are not “simple”
ciphers using a meet-in-the-middle attack. If both E0 and E2 use κ ≤ n key bits
at most, one can try and find the solutions to the above set of equations in time
min{O(2n+κ), O(2n/2+2κ)}.9

A.2 The Slide with a Twist Attack and an Application to 20-Round
GOST

The first special case of the mirror slide framework we consider is where in the
subdivision of E, we have E2 = Identity. In such case, the system of equations
presented above is simplified to:{

Cj = E0(Pi),
Ci = E0(Pj).

(6)

It turns out that in this case, the attack is reduced exactly to the slide with a
twist attack presented in [4]! (Though, in [4] the attack is described in a different
way).

A concrete example of this case is a reduced-round variant of the block cipher
GOST [16], that consists of the last 20 of its 32 rounds. It is well-known that the
last 16 rounds of GOST compose an involution, and hence, this variant can be
represented as E = E1 ◦ E0, where E0 is 4-round GOST, and E1 (which is the
last 16 rounds of GOST) is an involution.10 As shown in [6], a 4-round variant of
GOST can be broken with two plaintext/ciphertext pairs and time complexity
of 212 encryptions. Therefore, the mirror slide attack can break this 20-round
variant of GOST with data complexity of 233 known plaintexts (since the block
size of GOST is 64 bits), and time complexity of 265 · 212 = 277 encryptions.

We note that a similar attack was described in [4] using the slide with a twist
technique, but only on a 20-round version of a modified variant of GOST called
GOST⊕ in which the key addition is replaced by XOR.

9 One can either take all plaintext/ciphertext pairs and partially encrypt the plaintext
under all 2κ keys for E0 and partially decrypt the ciphertext under all 2κ keys for E2

to find the mirror pairs. Another option is to try for each pair of plaintexts (Pi, Pj)
to solve the system {

E−1
2 (Cj) = E0(Pi),

E−1
2 (Ci) = E0(Pj)

which can be easily done in a meet-in-the-middle approach in time 2κ for each
(Pi, Pj).

10 We note that due to the Feistel structure of GOST, we do not have E1 ◦ E1 = Id,
but rather E1 ◦ swap ◦E1 = Id. This can be handled easily by inserting swap to the
left hand side of Equation (6). The same correction can be performed in the other
Feistel constructions discussed in the sequel.
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Abstract. Traditionally, symmetric-key message authentication codes
(MACs) are easily built from pseudorandom functions (PRFs). In this
work we propose a wide variety of other approaches to building efficient
MACs, without going through a PRF first. In particular, unlike deter-
ministic PRF-based MACs, where each message has a unique valid tag,
we give a number of probabilistic MAC constructions from various other
primitives/assumptions. Our main results are summarized as follows:

– We show several new probabilistic MAC constructions from a vari-
ety of general assumptions, including CCA-secure encryption, Hash
Proof Systems and key-homomorphic weak PRFs. By instantiating
these frameworks under concrete number theoretic assumptions, we
get several schemes which are more efficient than just using a state-
of-the-art PRF instantiation under the corresponding assumption.

– For probabilistic MACs, unlike deterministic ones, unforgeability
against a chosen message attack (uf-cma) alone does not imply se-
curity if the adversary can additionally make verification queries
(uf-cmva). We give an efficient generic transformation from any
uf-cma secure MAC which is “message-hiding” into a uf-cmva se-
cure MAC. This resolves the main open problem of Kiltz et al. from
Eurocrypt’11; By using our transformation on their constructions,
we get the first efficient MACs from the LPN assumption.

– While all our new MAC constructions immediately give efficient ac-
tively secure, two-round symmetric-key identification schemes, we
also show a very simple, three-round actively secure identification
protocol from any weak PRF. In particular, the resulting protocol is
much more efficient than the trivial approach of building a regular
PRF from a weak PRF.

1 Introduction

Message Authentication Codes (MACs) are one of the most fundamental prim-
itives in cryptography. Historically, a vast majority of MAC constructions are
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based on pseudorandom functions (PRFs).1 In particular, since a PRF with
large output domain is also a MAC, most research on symmetric-key authen-
tication concentrated on designing and improving various PRF constructions.
This is done either using very fast heuristic constructions, such as block-cipher
based PRFs (e.g., CBC-MAC [6,8] or HMAC [5,4]), or using elegant, but slower
number-theoretic constructions, such as the Naor-Reingold (NR) PRF [33]. The
former have the speed advantage, but cannot be reduced to simple number-
theoretic hardness assumptions (such as the DDH assumption for NR-PRF),
and are not friendly to efficient zero-knowledge proofs about authenticated mes-
sages and/or their tags, which are needed in some important applications, such
as compact e-cash [12]. On the other hand, the latter are comparably inefficient,
due to their reliance on number theory. Somewhat surprisingly, the inefficiency
of existing number-theoretic PRFs goes beyond what one would expect by the
mere fact that “symmetric-key” operations are replaced by the more expensive
“public-key” operations. For example, when building a PRF based on discrete-
log-type of assumptions, such as DDH, one would naturally expect that the
secret key would contain a constant number of group elements/exponents, and
the PRF evaluation should cost at most a constant number of exponentiations. In
contrast, state-of-the art discrete-log-type PRFs either require a key of quadratic
size in the security parameter (e.g. the NR PRF [33]), or a number of exponenti-
ations linear in the security parameter (e.g., tree-type PRFs based on the GGM
transform [20] applied to some discrete-log-type pseudorandom generator), or
are based on exotic and relatively untested assumptions (e.g., Dodis-Yampolskiy
PRF [17] based on the so called “q-DDHI” assumption). In particular, to the
best of our knowledge, prior to this work it was unknown how to build a MAC
(let alone a PRF) based on the classical DDH assumption, where the secret
key consists of a constant number of group elements / exponents and the MAC
evaluation only require a constant number of exponentiations.

Of course, one way to improve such deficiencies of existing “algebraic MACs”
would be to improve the corresponding “algebraic PRF” constructions. However,
as the starting point of our work, we observe that there might exist alternative
approaches to building efficient MACs, without going through a PRF first. For ex-
ample, MACs only need to be unpredictable, so we might be able to build efficient
MACs from computational assumptions (e.g., CDH rather than DDH), with-
out expensive transformations from unpredictability-to-pseudorandomness [34].
Alternatively, even when relying on decisional assumptions (e.g. DDH), MAC
constructions are allowed to be probabilistic. In contrast, building a PRF effec-
tively forces one to design a MAC where there is only one valid tag for each
message, which turns out to be a serious limitation for algebraic constructions.2

1 Or block ciphers, which, for the purposes of analysis, are anyway treated as length-
preserving PRFs.

2 The observation that probabilistic MAC might have advantages over the folklore
“PRF-is-a-MAC” paradigm is not new, and goes back to at least Wegman and
Carter [40], and several other follow-up works (e.g., [30,25,16]). However, most prior
probabilistic MACs were still explicitly based on a PRF or a block cipher.
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For example, it is instructive to look at the corresponding “public-key domain”
of digital signatures, where forcing the scheme to have a unique valid signature
appears to be very hard [32,11] and, yet, not necessary for most applications
of digital signatures. In particular, prominent digital signature schemes in the
standard model3 [11,39] are all probabilistic. In fact, such signature schemes
trivially give MACs. Of course, such MACs are not necessarily as efficient as
they could be, since they “unnecessarily” support public verification.4 However,
the point is that such trivial signature-based constructions already give a way to
build relatively efficient “algebraic MACs” without building an “algebraic PRF”
first.

Yet another motivation to building probabilistic MAC comes from the desire
of building efficient MACs (and, more generally, symmetric-key authentication
protocols) from the Learning Parity with Noise [24,26,28,29] (LPN) assumption.
This very simple assumption states that one cannot recover a random vector
x from any polynomial number of noisy parities (a, 〈a, x〉 + e), where a is a
random vector and e is small random noise, and typically leads to very simple
and efficient schemes [19,2,38,24,26,28,29]. However, the critical dependence on
random errors makes it very hard to design deterministic primitives, such as
PRFs, from the LPN assumption. Interestingly, this ambitious challenge was
very recently overcome for a more complicated Learning With Errors (LWE)
assumption by [3], who build a PRF based on a new (but natural) variant of
the LWE assumption. However, the resulting PRF has the same deficiencies
(e.g., large secret key) as the NR-PRF, and is much less efficient than the direct
probabilistic MAC constructions from LPN/LWE assumptions recently obtained
by [29].

1.1 Our Results

Motivated by the above considerations, in this work we initiate a systematic
study of different methods for building efficient probabilistic MACs from a va-
riety assumptions, both general and specific, without going through the PRF
route. Our results can be summarized as follows:

Dealing with Verification Queries and other Transformations. The desired no-
tion of security for probabilistic MACs is called “unforgeability against chosen
message and verification attack” uf-cmva, where an attacker can arbitrarily in-
terleave tagging queries (also called signing queries) and verification queries. For
deterministic MACs, where every message corresponds to exactly one possible
tag, this notion is equivalent to just considering a weaker notion called uf-cma
(unforgeability under chosen message attack) where the attacker can only make

3 In fact, even in the random oracle model there are noticeable advantages. E.g., full
domain hash (FDH) signatures [9] have worse exact security than probabilistic FDH
signatures, while Fiat-Shamir signatures [18] are inherently probabilistic.

4 Indeed, one of our results, described shortly, will be about “optimizing” such
signature-based constructions.
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tagging queries but no verification queries. This is because, in the deterministic
case, the answers to verification queries are completely predictable to an attacker:
for any message for which a tagging query was already made the attacker knows
the unique tag on which the verification oracle will answer affirmatively, and for
any new message finding such a tag would be equivalent to breaking security
without the help of the verification oracle. Unfortunately, as discussed by [7],
the situation is more complicated for the case of probabilistic MACs where the
attacker might potentially get additional information by modifying a valid tag
of some message and seeing if this modified tag is still valid for the same mes-
sage. In fact, some important MAC constructions, such as the already mentioned
“basic” LPN-based construction of [29], suffer from such attacks and are only
uf-cma, but not uf-cmva secure.

In Section 3 we give several general transformations for probabilistic MACs.
The most important one, illustrated in Figure 1, efficiently turns a uf-cma secure
(i.e. unforgeable without verification queries) MAC which is “message hiding”
(a property we call ind-cma) into a uf-cmva secure (i.e. unforgeable with verifica-
tion queries) MAC. This transformation is very efficient, requiring just a small
amount of extra randomness and one invocation of a pairwise independent hash
function with fairly short output.

This transformation solves the main open problem left in Kiltz et al. [29], who
construct uf-cmva MACs from the learning parity with noise (LPN) problem. We
remark that [29] already implicitly give an uf-cma to uf-cmva transformation, but
it is quite inefficient, requiring the evaluation of a pairwise-independent permu-
tation over the entire tag of a uf-cma secure MAC. We list the two constructions
of uf-cma and suf-cma LPN based MACs from [29] in Section 4.5. Using our
transformations, we get uf-cmva secure MACs with basically the same efficiency
as these constructions.

Our second transformation extends the domain of an ind-cma secure MAC. A
well known technique to extend the domain of PRFs is the “hash then encrypt”
approach where one applies an almost universal hash function to the (long) input
before applying the PRF. This approach fails for MACs, but we show that it
works if the MAC is ind-cma secure. A similar observation has been already made
by Bellare [4] for “privacy preserving” MACs.

The last transformation, which actually does nothing except possibly restrict-
ing the message domain, states that a MAC which is only selectively secure is
also fully secure, albeit with quite a large loss in security. Such a transformation
was already proposed in the context of identity based encryption [10], and used
implicitly in the construction of LPN based MACs in [29].

New Constructions of Probabilistic MACs. In Section 4, we present a wide vari-
ety of new MAC constructions.

First, we show how to build an efficient MAC from any chosen ciphertext at-
tack (CCA) secure (symmetric- or public-key) encryption. At first glance, using
CCA-secure encryption seems like a complete “overkill” for building MACs. In
fact, in the symmetric-key setting most CCA-secure encryption schemes are ac-
tually built from MACs; e.g., via the encrypt-then-MAC paradigm. However, if
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we are interested in obtaining number-theoretic/algebraic MACs using this ap-
proach, we would start with public-key CCA-secure encryption, such as Cramer-
Shoup encryption [15] or many of the subsequent schemes (e.g. [31,22,23,37,21]).
Quite remarkably, CCA-secure encryption has received so much attention lately,
and the state-of-the-art constructions are so optimized by now, that the MACs
resulting from our simple transformation appear to be better, at least in cer-
tain criteria, than the existing PRF constructions from the same assumptions.
For example, by using any state-of-the-art DDH-based scheme, such as those
by [15,31,22], we immediately obtain a probabilistic DDH-based MAC where
both the secret key and the tag are of constant size, and the tagging/verification
each take a constant number of exponentiations. As we mentioned, no such DDH-
based MAC was known prior to our work. In fact, several recent constructions
built efficient CCA-secure encryption schemes from computational assumptions,
such as CDH and factoring [13,23,21]. Although those schemes are less efficient
than the corresponding schemes based on decisional assumptions, they appear
to be more efficient than (or at least comparable with) the best known PRF
constructions from the same assumption. For example, the best factoring-based
PRF of [35] has a quadratic-size secret key, while our construction based on
the Hofheinz-Kiltz [23] CCA-encryption from factoring would have a linear-size
(constant number of group elements) secret key.

Second, we give an efficient MAC construction from any Hash Proof Systems
(HPS) [15]. Hash Proof Systems were originally defined [15] for the purpose
of building CCA-secure public-key encryption schemes, but have found many
other applications since. Here we continue this trend and give a direct MAC
construction from HPS, which is more optimized than building a CCA-secure
encryption from HPS, and then applying our prior transformation above.

Third, we give a simple construction of probabilistic MACs from any key-
homomorphic weak PRF (hwPRF). Recall, a weak PRF [33] is a weakening of a
regular PRF, where the attacker can only see the PRF value at random points.
This weakening might result in much more efficient instantiations for a variety
of number-theoretic assumptions. For example, under the DDH assumption, the
basic modulo exponentiation fk(m) = mk is already a weak PRF, while the
regular NR-PRF from DDH is much less efficient. We say that such a weak
PRF fk(m) is key homomorphic (over appropriate algebraic domain and range)
if fak1+bk2(m) = a · fk1(m) + b · fk2(m). (For example, the DDH-based weak
PRF above clearly has this property.) We actually give two probabilistic MACs
from any hwPRF. Our basic MAC is very simple and efficient, but only achieves
so called selective security, meaning that the attacker has to commit to the
message to be forged before the start of the attack. It is somewhat reminiscent
(in terms of its design and proof technique, but not in any formal way) to the
Boneh-Boyen selectively-secure signature scheme [11]. In contrast, our second
construction borrows the ideas from (fully secure) Waters signature scheme [39],
and builds a less efficient standard MAC from any hwPRF. Interestingly, both
constructions are only uf-cma secure, but do not appear to be uf-cmva-secure.
Luckily, our MACs are easily seen to be “message-hiding” (i.e., ind-cma-secure),
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so we can apply our efficient generic transformation to argue full uf-cmva security
for both resulting constructions.

Our final MAC constructions are from signature schemes. Recall, any signa-
ture scheme trivially gives a MAC which “unnecessarily” supports public ver-
ification. This suggests that such constructions might be subject to significant
optimizations when “downgraded” into a MAC, both in terms of efficiency and
the underlying security assumption. Indeed, we show that this is true for the
(selectively-secure) Boneh-Boyen [11] signature scheme, and the (fully-secure)
Waters [39] signature schemes. For example, as signatures, both schemes re-
quire a bilinear group with a pairing, and are based on the CDH assumption in
such a group. We make a simple observation that when public verification is no
longer required, no pairing computations are needed, and standard (non-bilinear)
groups can be used. However, in doing so we can only prove (selective or full)
security under the gap-Diffie-Hellman assumption, which states that CDH is still
hard even given the DDH oracle. Luckily, we show how to apply the “twinning”
technique of Cash et al. [13] to get efficient MAC variants of both schemes which
can be proven secure under the standard CDH assumption.

Symmetric-Key Authentication Protocols. While all our new MAC constructions
immediately give efficient actively secure, two-round symmetric-key identifica-
tion schemes, in Section 4.6 we also show a very simple, three-round actively
secure identification protocol from any weak PRF (wPRF). In particular, the
resulting protocol is much more efficient than the trivial approach of building
a regular PRF from a weak PRF [33], and then doing the standard PRF-based
authentication. Given that all our prior MAC constructions required some al-
gebraic structure (which was indeed one of our motivations), we find a general
(and very efficient) construction of actively secure authentication protocols from
any wPRF to be very interesting.

Our protocol could be viewed as an abstraction of the LPN-based actively
secure authentication protocol of Katz and Shin [27], which in turn consists
of a parallel repetition of the HB+ protocol of Juels and Weiss [26]. Although
the LPN based setting introduces some complications due to handling of the
errors, the high level of our protocol and the security proof abstracts away the
corresponding proofs from [27,26]. In fact, we could relax the notion of wPRF
slightly to allow for probabilistic computation with approximate correctness, so
that the protocol of [27] will become a special case of our wPRF-based protocol.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. For a positive
integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. For a set X , x ←R X
denotes sampling x from X according to the uniform distribution.
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2.2 Message Authentication Codes

Amessage authentication codeMAC = {KG,TAG,VRFY} is a triple of algorithms
with associated key space K, message space M, and tag space T .
– Key Generation. The probabilistic key-generation algorithm k ← KG(1λ)

takes as input a security parameter λ ∈ N (in unary) and outputs a secret
key k ∈ K.

– Tagging. The probabilistic authentication algorithm σ ← TAGk(m) takes as
input a secret key k ∈ K and a message m ∈ M and outputs an authentica-
tion tag σ ∈ T .

– Verification. The deterministic verification algorithm VRFYk(m,σ) takes as
input a secret key k ∈ K, a message m ∈ M and a tag σ ∈ T and outputs a
decision: {accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFYk(m,σ) = accept iff
TAGk(m) = σ. We say that MAC has completeness error α if for all m ∈ M and
λ ∈ N,

Pr[VRFYk(m,σ) = reject ; k ← KG(1λ) , σ ← TAGk(m)] ≤ α.

Security. The standard security notion for a randomized MAC is unforgeabil-
ity under chosen message and chosen verification queries attack (uf-cmva). We
denote by Advuf-cmva

MAC (A, λ,QT , QV ), the advantage of the adversary A in forging
a message for a random key k ← KG(1λ), where A can make QT queries to
TAGk(·) and QV queries to VRFYk(·, ·). Formally this is the probability that the
following experiment outputs 1.

Experiment Expuf-cmva
MAC (A, λ,QT , QV )

k ← KG(1λ)

Invoke ATAGk(·),VRFYk(·,·) who can make up to QT queries to TAGk(·)
and QV queries to VRFYk(·, ·).

Output 1 if A made a query (m∗, σ∗) to VRFYk(·, ·) where
1. VRFYk(m

∗, σ) = accept
2. A did not already make the query m∗ to TAGk(·)

Output 0 otherwise.

We also define a weaker notion of selective security, captured by the experiment
Expsuf-cmva

MAC , which is defined in the same way as above with the only difference
that A has to specify to the target message m∗ (that causes the experiment to
output 1) ahead of time, before making any queries to its oracles.

Definition 1 ((Selective) unforgeability under chosen message (& veri-
fication) attack.). A MAC is (t, QT , QV , ε)-uf-cmva secure if for any A running
in time t we have Pr[Expuf-cmva

MAC (A, λ,QT , QV ) = 1] ≤ ε. It is (t, QT , ε)-uf-cma
secure if it is (t, QT , 1, ε)-uf-cmva-secure. That is, uf-cma security does not allow
the adversary to make any verification queries except for the one forgery attempt.
We also define the selective security notions suf-cma and suf-cmva security anal-
ogously by considering the experiment Expsuf-cmva(MAC).



362 Y. Dodis et al.

In the next section we show a simple generic transformation which turns any
uf-cma-secure MAC into a uf-cmva-secure MAC. For this transformation to work,
we need one extra non-standard property for MAC to hold, namely that tags
computationally “hide” the message. A similar notion called “privacy preserving
MACs” was considered by Bellare [4]. His notion is for deterministic MACs,
whereas our notion can only be achieved for probabilistic MACs.

Definition 2 (ind-cma: indistinguishability under chosen message at-
tack). A MAC is (t, QT , ε)-ind-cma secure if no adversary A running in time t
can distinguish tags for chosen messages from tags for a fixed message, say 0,
i.e. ∣∣∣∣ Pr

k←KG(1λ)
[ATAGk(·)(1λ) = 1]− Pr

k←KG(1λ)
[ATAGk(0)(1λ) = 1]

∣∣∣∣ ≤ ε .

Here TAGk(0) is an oracle which ignores its input, and outputs a tag for some
fixed message 0 using key K. Note that a MAC that is secure against ind-cma
adversaries must be probabilistic, otherwise A can trivially distinguish by queries
on two different messages m �= m′, and checking if the tags she receives are
identical, which will be the case iff the oracle implements TAGk(0).

3 Transformations for MACs

In this section we give some general transformations for MACs as discussed in
the introduction.

3.1 From One to Multiple Verification Queries: uf-cma + ind-cma ⇒
uf-cmva

Let μ = μ(λ) denote a statistical security parameter and let H be a fam-
ily of pairwise independent hash functions h : T → {0, 1}μ. From MAC =
{KG,TAG,VRFY} with key space K, message space M × {0, 1}μ, and tag space
T we construct MAC = {KG,TAG,VRFY} with key space K ×H, message space
M, and tag space T × {0, 1}μ as follows.
– Key Generation. Algorithm KG(1λ) runs k ← KG(1λ) and samples a pairwise

independent hash function h ← H with h : T → {0, 1}μ. It outputs (k, h) as
the secret key.

m ‖ TAG(K, .) z

h

$ b ⊕ h(z)⊕ b

h m

⊕ ‖ VRFY(K, .)

Fig. 1. TAG and VRFY with key (k, h), message m and randomness b



Message Authentication, Revisited 363

– Tagging. The tagging algorithm TAG(k,h)(m) samples b ←R {0, 1}μ and runs
z ← TAGk(m‖b). It returns (z, h(z)⊕ b) as the tag.

– Verification. The verification algorithm VRFY(k,h)(m, (z, y)) computes b =
y ⊕ h(z) and outputs VRFYk(m‖b, z).

Theorem 1 (uf-cma + ind-cma ⇒ uf-cmva). For any t, QT , QV ∈ N, ε > 0, if
MAC is
– (t, QT , ε)-uf-cma secure (unforgeable with no verification queries)
– (t, QT , ε)-ind-cma secure (indistinguishable)

then MAC is (t′, QT , QV , ε
′)-uf-cmva secure (unforgeable with verification queries)

where
t′ ≈ t ε′ = 2QV ε+ 2QVQT /2

μ.

The proof of Theorem 1 can be found in the full version of this paper.

3.2 Domain Extension for ind-cma MACs

A simple way to extend the domain of a pseudorandom function from n to
m > n bits is the “hash then encrypt” paradigm, where one first hashes the m
bit input down to n bits using an ε-universal function, before applying the PRF.
Unfortunately this simple trick does not work for (deterministic or probabilistic)
MACs. Informally, the reason is that the output of a MAC does not “hide” its
input, and thus an adversary can potentially learn the key of the hash function
used (once she knows the key, she can find collisions for g which allows to break
the MAC.) Below we show that, not surprisingly, for MACs where we explicitly
require that they hide their input, as captured by the ind-cma notion, extending
the domain using a universal hash function is safe.

Proposition 1 (Domain Extension for ind-cma Secure MACs). Consider
MAC = {KG,TAG,VRFY} with (small) message space M = {0, 1}n, and let
MAC′ = {KG′,TAG′,VRFY′} for large message space {0, 1}m be derived from
MAC by first hashing the message using an β-universal hash function g : {0, 1}
×
{0, 1}m → {0, 1}n. (Using existing constructions we can set β = 2−n+1, � =
4(n+ logm), see the full version of the paper for details.) If MAC is

(t, Q, ε)− uf-cma secure and (t, Q, ε)− ind-cma secure

then, for any Q′ ≤ Q, MAC′ is

(1) (t′, Q′, 2ε+Q′β) − uf-cma secure and (2) (t′, Q′, ε) − ind-cma secure

where t′ ≈ t can be derived from the proof.

The proof of Proposition 1 can be found in the full version of this paper.

3.3 From Selective to Full Security: suf-cma ⇒ uf-cma

In this section we make the simple observation, that every selectively chosen-
message secure MAC is also a chosen-message secure MAC, as we can simply
guess the forgery. This guessing will loose a factor 2μ in security if the domain
is {0, 1}μ.
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Proposition 2 (From selective to full security). Consider a MAC MAC =
{KG,TAG,VRFY} with domain {0, 1}μ. If MAC is (t, Q, ε)−suf-cma secure, then
it is (t, Q, ε2μ) − uf-cma secure.

The proof of Proposition 2 can be found in the full version of this paper.

Remark 1 (Security Loss and Domain Extension). The security loss from the
above transformation is 2μ for MACs with message space {0, 1}μ. In order to
keep the security loss small, we are better off if we start with a MAC that has
a small domain, or if we artificially restrict its domain to the first μ bits. Once
we get a fully secure MAC on a small domain, we can always apply the domain-
extension trick from Section 3.2 (using β = 2−μ+1) to expand this domain back
up. Using both transformations together, we can turn any MAC that is (t, Q, ε)-
suf-cma and ind-cma secure into a (t′, Q′, ε′)-uf-cma and (t′, Q′, ε)-ind-cma secure
MAC with the same-size (or arbitrarily larger) domain and where t′ ≈ t, and ε′

depends on our arbitrary choice of μ as ε′ = ε2μ+1+Q′/2μ−1. In particular, if for
some super-polynomial t, Q we assume a known corresponding negligible value
ε such that the original MAC is (t, Q, ε)-suf-cma, we can set μ = log(1/ε)/2
and the resulting MAC will be secure in the standard asymptotic sense - i.e.
(t′, Q′, ε′)-uf-cma for all polynomial t′, Q′, 1/ε′.

4 Constructions of Authentication Protocols

In this section we provide a number of MACs from a variety of underlying prim-
itives such as CCA-secure encryption, hash proof systems [15], homomorphic
weak PRFs, and digital signatures. For concreteness, the constructions obtained
from Diffie-Hellman type assumptions are summarized in Table 1; the construc-
tions we obtain from the LPN assumption are summarized in Table 2. The
constructions which are only uf-cma or suf-cma secure can be boosted to full
cmva-security using the transformations from Section 3.

Table 1. Overview of MAC constructions over prime-order groups. In all protocols,
TAGk(m) first generates U ←R G and derives the rest of σ deterministically from U
and k.

MAC construction Secret Key k Tag σ on m Security Assumption

MACCS (§4.1) (ω, x, x′, y, k2) ∈ Z4
p ×G (U,Uω, UxH(U,V1,m)+x′

, Uz · k2) ∈ G4 uf-cmva DDH

MACHPS (§4.2) (ω, x, x′) ∈ Z3
p (U,Uω, UxH(U,V1,m)+x′

) ∈ G3 uf-cmva DDH

MAChwPRF (§4.3) (x, x′) ∈ Z2
p (U,Uxm+x′

) ∈ G2 suf-cma DDH

MACWhwPRF (§4.3) (x, x′
0, . . . , x

′
λ) ∈ Zλ+2

p (U,Ux+
∑

x′
imi) ∈ G2 uf-cma DDH

MACBB (§4.4) (x, x′, y) ∈ Z3
p (U, gxy · Uxm+x′

) ∈ G2 suf-cmva gap-CDH

MACTBB (§4.4) (x1, x2, x
′
1, x

′
2, y) ∈ Z5

p (U, gx1yUx1m+x′
1 , gx2yUx2m+x′

2) ∈ G3 suf-cmva CDH

MACWaters (§4.4) (x, y, x′
1, . . . , x

′
λ) ∈ Zλ+2

p (U, gxy · Ux+
∑

x′
imi) ∈ G2 uf-cmva gap-CDH
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Table 2. Overview of MAC constructions from the LPN problem from [29]

MAC construction Key size Tag size Security Assumption

MACLPN (§4.5) Z2�
2 Z(�+1)×n

2 suf-cma & ind-cma LPN

MACBilinLPN (§4.5) Z�×λ
2 Z(�+1)×n

2 uf-cma & ind-cma LPN

4.1 Constructions from CCA-Secure Encryption

Let E = (KGE,ENC,DEC) be a (t, QE , QD, ε)-CCA secure labeled encryption
scheme (see the full version of the paper for a formal definition.) Define MAC =
(KGMAC,TAG,VRFY) as follows.
– Key Generation. k = (k1, k2) ← KGMAC(1

λ) samples k1 ← KGE(1
λ) and

k2 ←R {0, 1}λ
.

– Tagging. TAG(k1,k2)(m) samples σ ← ENCk1(k2,m), i.e., it encrypts the
plaintext k2 using m as a label.

– Verification. VRFY(k1,k2)(m,σ) output accept iff DECk1(c,m)
?
= k2.

Theorem 2. Assume that E is a (t, QE , QD, ε)-CCA secure labeled encryption
scheme. Then the construction MAC above is (t′, QT , QV , ε

′)-uf-cmva secure with
t′ ≈ t, QT = QE, QV = QD and ε′ = QT · ε+ 2−λ.

The proof of Theorem 2 can be found in the full version of this paper.

Examples. There exists CCA-secure (public-key) encryption schemes from a
variety of assumptions such as DDH [14,31,22], Paillier [15], lattices [37], and
factoring [23]. In Table 1 we describe MACCS, which is MACENC instantiated
with Cramer-Shoup encryption.

4.2 Constructions from Hash Proof Systems

We now give a more direct construction of a MAC from any hash proof system.
We recall the notion of (labeled) hash proof systems as introduced by Cramer
and Shoup [15]. Let C,K be sets and V ⊂ C a language. In the context of public-
key encryption (and viewing a hash proof system as a labeled key encapsulation
mechanism (KEM) with “special algebraic properties”) one may think of C as
the set of all ciphertexts, V ⊂ C as the set of all valid (consistent) ciphertexts,
and K as the set of all symmetric keys. Let Λ


k : C × L → K be a labeled hash
function indexed with k ∈ SK and label � ∈ L, where SK and L are sets. A hash
function Λk is projective if there exists a projection μ : SK → PK such that
μ(k) ∈ PK defines the action of Λ


k over the subset V . That is, for every C ∈ V ,
the value K = Λ


k (C ) is uniquely determined by μ(k), C . In contrast, nothing
is guaranteed for C ∈ C \ V , and it may not be possible to compute Λk(C ) from
μ(k) and C . A projective hash function is universal2 if for all C ,C ∗ ∈ C \ V ,
�, �∗ ∈ L with � �= �∗,

(pk , Λ
∗

k (C ∗), Λ

k(C )) = (pk ,K, Λ


k (C )) (1)
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(as joint distributions) where in the above pk = μ(k) for k ←R SK andK ←R K.
It is extracting if for all C ∈ C (including valid ones) and � ∈ L,

Λ

k (C ) = K (2)

where in the above k ←R SK and K ←R K.
A labeled hash proof system HPS = (Param,Pub,Priv) consists of three algo-

rithms. The randomized algorithm Param(1k) generates parametrized instances
of params = (group,K, C,V ,PK,SK, Λ(·) : C → K, μ : SK → PK), where group
may contain some additional structural parameters. The deterministic public
evaluation algorithm Pub inputs the projection key pk = μ(k), C ∈ V , a witness
r of the fact that C ∈ V , and a label � ∈ L, and returns K = Λ


k (C ). The de-
terministic private evaluation algorithm Priv inputs k ∈ SK and returns Λ


k (C ),
without knowing a witness. We further assume that μ is efficiently computable
and that there are efficient algorithms given for sampling k ∈ SK, sampling
C ∈ V uniformly (or negligibly close to) together with a witness r, sampling
C ∈ C uniformly, and for checking membership in C.

As computational problem we require that the subset membership problem is
(ε, t)-hard in HPS which means that for all adversaries B that run in time ≤ t,∣∣Pr[B(C,V ,C1) = 1]− Pr[B(C,V ,C0) = 1]

∣∣ ≤ ε

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V .

Construction. We define a MAC MACHPS = {KG,TAG,VRFY} with associated
key space K = SK, message space M = L, and tag space T = C × K as follows.
– Key Generation. The key-generation algorithm KG samples k ←R SK and

outputs k.
– Tagging. The probabilistic authentication algorithm TAGk(m) picks C ←R

V . It computes K = Λm
k (C ) ∈ K and outputs σ = (C ,K).

– Verification. The verification algorithm VRFYk(m,σ) parses σ = (C ,K) and
outputs accept iff K = Λm

k (C ).
Note that the construction does not use the public evaluation algorithm Pub of
HPS. Both tagging and verification only use the private evaluation algorithm
Priv.

Theorem 3. Let HPS be universal2 and extracting. If the subset membership
problem is (t, ε)-hard, then MACHPS is (t′, ε′, QT , QV )-uf-cmva secure with ε′ =
QT ε+O(QTQV )/|K| and t′ ≈ t.

The proof of Theorem 3 can be found in the full version of this paper.

Example. We recall a universal2 HPS by Cramer and Shoup [15], whose hard
subset membership problem is based on the DDH assumption. Let G be a group
of prime-order p and let g1, g2 be two independent generators of G. Define L =
Zp, C = G2 and V = {(gr1, gr2) ⊂ G2 : r ∈ Zp}. The value r ∈ Zp is a witness
of C ∈ V . Let SK = Z4

p, PK = G2, and K = G. For k = (x1, x2, y1, y2) ∈ Z4
p,
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define μ(k) = (gx1
1 gx2

2 , gy1

1 g
y2

2 ). This defines the output of Param(1k). For C =
(c1, c2) ∈ C and � ∈ L, define

Λ

k (C ) := cx1
+y1

1 cx2
+y2

2 . (3)

This defines Priv(k ,C ). Given pk = μ(k) = (X1, X2), C ∈ V and a witness
r ∈ Zp such that C = (gr1 , g

r
2) public evaluation Pub(pk ,C , r) computes K =

Λk (C ) as K = (X

1X2)

r. Correctness follows by (3) and the definition of μ.
This completes the description of HPS. Clearly, under the DDH assumption, the
subset membership problem is hard in HPS. Moreover, this HPS is known to be
universal2 [15] and can be verified to be extracting.

Applying our construction from Theorem 3 we get the following MAC which
we give in its equivalent (but more efficient) “explicit rejection” variant. Let G be
a group of prime order p and g be a random generator ofG. LetH : G2×M → Zp

be a (target) collision resistant hash function. We define a message authentication
code MACHPS = {KG,TAG,VRFY} with associated key space K = Z3

p, message
space M, and tag space T = G3 as follows.
– Key Generation. The key-generation algorithm KG outputs a secret key k =

(ω, x, x′) ←R Z3
p.

– Tagging.The probabilistic authentication algorithmTAGk(m) samples U ←R

G and outputs an authentication tag σ = (U, V1, V2) = (U,Uω, Ux
+x′
) ∈ G3,

where � = H(U, V1,m).
– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2) ∈

G3 and outputs accept iff Aω = V1 and Ux
+x′
= V2, where � = H(U, V1,m).

4.3 Construction from Key-Homomorphic Weak-PRFs

Definition 3. Let K = K(λ),X = X (λ),Y = Y(λ) and {fk : X �→ Y}k∈K be a
weak PRF. We say that {fk} is key-homomorphic weak PRF if K,Y are groups
with an efficient group operation (written additively) of prime order q = q(λ)
and if for any fixed x ∈ X the function fk(x) is a group homomorphism of
K �→ Y. In particular, for any k1, k2 ∈ K and a, b ∈ Zq, we have fa·k1+b·k2(x) =
a · fk1(x) + b · fk2(x).

Construction. Let {fk : X �→ Y}k∈K be a key-homomorphic weak PRF where
K,Y are of prime order q = q(λ). Define MAC = (KG,TAG,VRFY) with key-
space K × K and message-space Zq via:
– Key Generation. KG(1λ) chooses k1, k2 ←R K uniformly at random and out-

puts k = (k1, k2).
– Tagging. TAG(k1,k2)(m) chooses x ← X uniformly at random and sets y =
fm·k1+k2(x). Output σ = (x, y).

– Verification. VRFY(k1,k2)(m,σ) parses σ = (x, y) and outputs accept iff

fm·k1+k2(x)
?
= y.
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Theorem 4. If {fk} is a (t, Q, ε)-weak PRF which is key-homomorphic over
groups K,Y of prime order q = q(λ). Then the above construction is a (t′, Q, ε′)-
suf-cma-MAC (selective unforgeability, no verification queries) with t′ ≈ t and
ε′ = ε+ 1/q. It is also (t′, Q, ε)-ind-cma.

The proof of Theorem 4 can be found in the full version of this paper.

DDH example. To instantiate the above MAC, we can take some DDH group G
of prime order q. Let K = Zq, X = G, Y = G (which we now write multiplica-
tively) and define fk(x) = xk. This is a weak PRF by the DDH assumption.
Furthermore, it is key-homomorphic with fa·k1+b·k2(x) = (fk1(x))

a(fk2(x))
b.

Therefore, the above construction gives us the suf-cma MAC MAChwPRF for mes-
sages m ∈ Zq, defined by TAGk1,k2(m) := (g, h) with g ← G and h := gk1·m+k2 .
See Table 1.

LWE example. To obtain another instantiation from the learning with erros
problem, we use a recent construction of a weak PRF implicitly given in [3]. For
integers p < q and x ∈ Zq, define (xp = ((p/q) · x mod p. For a vector x ∈ Zm

q

we extend this notion component wise to (xp ∈ Zm
p .

We let K = Zm×n
q , X = Zn

q , Y = Zm
p (written additively) and define fK(x) =

�K ·x�p. This is a weak PRF under the Learning with Rounding (LWR) assump-
tion of [3]. If p, q are integers such that q/p and the inverse LWE error rate 1/α are
super-polynomial in n, then the LWEα assumption implies the LWR assumption
[3]. Furthermore, it is key-homomorphic with fa·K1+b·K2(x) = afK1(x)+bfK2(x)
for almost all inputs x ∈ X . (This is sufficient for our generic construction.)
Therefore, the above construction gives us the suf-cma and ind-cma secure MAC
for messages m ∈ Zq, defined by TAGK1,K2(m) = (x,y) with x ← Zn

q and
y = �(mK1 +K2)x�p. (The message space can be extended to Zn

q by encoding
m ∈ Zn

q into a matrix M ∈ Zn×n
q using a full-rank-difference encoding [1,29].)

Full security. As an alternative to the transformation from Section 3.3, we sketch
how to use Waters’ argument [39] to obtain a (full) uf-cma-secure MAC from
a homomorphic weak PRF. Let {fk : X �→ Y}k∈K be a key-homomorphic
weak PRF where K,Y are of prime order q = q(λ). Now define MACWhwPRF =
(KG,TAG,VRFY) with key-space Kλ+1 and message-space {0, 1}λ via:
– KG(1λ): Choose k0 . . . kλ ←R K at random, output k = (k0, . . . , kλ).
– TAGk(m): Choose x ←R X uniformly at random and set y = fk0+

∑
kimi

(x).
Output σ = (x, y).

– VRFYk(m,σ): Parse σ = (x, y) and outpt accept iff fk0+
∑

kimi
(x)

?
= y.

The resulting MACWhwPRF can be proved to be uf-cma and ind-cma-secure. A
DDH-based example instantiation is contained in Table 1.

4.4 Constructions from Signatures

Clearly, an uf-cma-secure digital signature scheme directly implies an uf-cmva-
secure MAC. In certain cases we can obtain improved efficiency, as we demon-
strate with a MAC derived from Boneh-Boyen signatures [11]. Concretely, we
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can instantiate the MAC in any prime-order groups, no bilinear maps are needed.
We define a message authentication code MACBB = {KG,TAG,VRFY} with as-
sociated key space K = G × Z2

p, message space M = Zp, and tag space T = G2

as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key k =

(x, x′, y) ←R Z3
p.

– Tagging.The probabilistic authentication algorithmTAGk(m) samples U ←R

G and outputs an authentication tag σ = (U, gxy · Uxm+x′
) ∈ G2.

– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V ) ∈ G2

and outputs accept iff gxy · Uxm+x′
= V .

Theorem 5. If the gap-CDH assumption is (t, QT +QV , ε)-hard, then MACBB

is (t′, ε′, QT , QV ) suf-cmva secure with ε′ = ε and t′ ≈ t.

The proof of Theorem 5 can be found in the full version of this paper. The
above construction is only secure under the gap-CDH assumption. We now show
how to apply the twinning technique [13] to obtain a MAC secure under the
standard CDH assumption. We define a message authentication code MACTBB =
{KG,TAG,VRFY} with associated key space K = Z5

p, message space M = Zp,
and tag space T = G3 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key k =

(x1, x
′
1, x2, x

′
2, y) ←R Z5

p.
– Tagging. The probabilistic authentication algorithm TAGk(m) picks U ←R

G and outputs an authentication tag σ = (U, V1 = gx1yUx1m+x′
1 , V2 =

gx2yUx2m+x′
2) ∈ G3.

– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2)
and outputs accept iff gx1yUx1m+x′

1 = V1 and gx2yUx2m+x′
2 = V2.

Theorem 6. If the CDH problem is (t, ε)-hard, then MAC is (t′, ε′, QT , QV )
suf-cmva secure with ε′ = ε+O((QT +QV )/p) and t

′ ≈ t.

The proof of Theorem 6 can be found in the full version of this paper. We re-
mark that MACBB and MACTBB are only selectively secure (suf-cmva) MACs.
Even though this is sufficient for obtaining man-in-the-middle secure authenti-
cation protocols, to obtain a fully secure MAC MACWaters, one can update the
constructions using Waters’ hash function [39]. The drawback is that the secret
key then contains λ many elements in Zp and that the security reduction is not
tight anymore. We remark that it is also possible to build slightly more efficient
suf-cmva-secure MACs from the (Gap) q-Diffie-Hellman inversion problems.

4.5 Constructions from the LPN Assumption

In this section we review the suf-cma and uf-cma-secure MACs constructions
implicitly given in [29, Section 4]. To both constructions can apply the transfor-
mations from Section 3 to obtain efficient uf-cmva-secure MACs.
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First construction (suf-cma). Let n denote the number of repetitions, τ
the parameter of the Bernoulli distribution, and τ ′ := 1/4 + τ/2 controls the
correctness error.

We define a message authentication code MACLPN = {KG,TAG,VRFY} with
associated key space K = Z2


2 , message space M = {m ∈ Z2

2 : hw(m) = �}, and

tag space T = Z(
+1)n
2 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key a

vector x ←R Z2

2 .

– Tagging.The probabilistic authentication algorithmTAGx(m) samplesR ←R

Z
×n
2 and outputs an authentication tag σ = (R,RT · x↓m + e), where

e ∈ Zn
2 is sampled according the Bernoulli distribution with parameter τ

and x↓m ∈ Z

2 is the vector obtained from x by deleting all entries where

mi = 0.
– Verification. The verification algorithm VRFYx(m, σ) parses σ = (R, z) ∈

Z
×n
2 × Zn

2 and outputs accept iff |RT · x↓m − z| ≤ τ ′n.

Concretely, [29, Th. 4] shows (implicitly)5 that MACLPN has 2−O(n) complete-
ness error and is suf-cma and ind-cma-secure under the LPN
,τ assumption in
dimension ≈ � and Bernoulli parameter τ .

Second construction (uf-cma). We define a message authentication code
MACBilinLPN = {KG,TAG,VRFY} with associated key space K = Z
×λ

2 , message

space M = Zλ
2 , and tag space T = Z(
+1)n

2 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key a

matrix X ←R Z
×μ
2 .

– Tagging. The probabilistic authentication algorithm TAGX(m) samples

R ←R Z
×n
2 and outputs an authentication tag σ = (R,RT ·X·m+e), where

e ∈ Zn
2 is sampled according the Bernoulli distribution with parameter τ .

– Verification. The verification algorithm VRFYX(m, σ) parses σ = (R, z) ∈
Z
×n
2 × Zn

2 and outputs accept iff |RT ·X · m − z| ≤ τ ′n.

[29, Th. 5] shows thatMACBilinLPN is uf-cma and ind-cma-secure under the LPN
,τ

assumption. We remark that MACBilinLPN can also be viewed as an instantiation
of MACWhwPRF of Section 4.3 when generalizing the construction to randomized
weak PRFs and using fx(R) = RTx+e which is a randomized weak PRF under
LPN.

4.6 Three-Round Authentication from Any Weak PRF

We now state our authentication protocol Π using any wPRF family F =
{fk1 : X1 �→ Y}k1∈K1 and any weak Almost XOR-Universal (wAXU) fam-
ily H = {hk2 : X2 �→ Y}k2∈K2 (see the full version of the paper for more details
on how H can be instantiated.)

5 [29] give a direct construction of a MAC that is suf-cmva secure. MACLPN is the
underlying MAC that can be proved only suf-cma secure.
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The key generation algorithm KG(1λ) selects random k1 ← K1, k2 ← K2 and
outputs k = (k1, k2). Following this, the three round protocol between a Tag
T (k) and a reader R(k) is defined below:
– T → R: choose random r ∈ X1 and send r to R.
– R → T : choose random x ∈ X2 and send x to T .
– T → R: compute z = fk1(r) + hk2(x) and send z to R.

– R: accept if and only if z
?
= fk1(r) + hk2(x).

Theorem 7. Assuming that F = {fk1} is a (t, Q, ε)-wPRF and H = {hk2} is
(t, ρ)-wAXU. Then the above authentication protocol is (t′, Q, ε′)-secure against
active adversaries, with t′ = t/2 and ε′ =

√
ε+ ρ.

In particular, setting F = H and X1 = X2 = X , we get ε′ =
√
2ε+ 1

|X | +
1
|Y| .

The proof of Theroem 7 can be found in the full version of this paper.

Example. To instantiate the above authentication protocol, we can take some
DDH group G of prime order q. Let K = K1 = K2 = Zq, X = X1 = X2 = G,
Y = G (which we now write multiplicatively). For notational convenience, let us
denote k1 = a, k2 = b, r = g, and define fa(g) := ga, hb(x) := xb so that F is
a wPRF by DDH, and H = F is wAXU by DDH as well. We get the following
very simple DDH-based protocol with secret key k = (a, b).
– T → R: choose random g ∈ G and send g to R.
– R → T : choose random x ∈ G and send x to T .
– T → R: compute z = gaxb ∈ G and send z to R.

– R: accept if and only if z
?
= gaxb.

It is interesting to compare the above actively secure authentication protocol
with Okamoto’s public-key authentication protocol based on the discrete log as-
sumption [36]. On the one hand, Okamoto’s scheme is based on a weaker assump-
tion and works in the public-key setting. On the other hand, our DDH-based
protocol is more efficient. Our verifier only has to perform two exponentiations,
while Okamoto’s verifier needs to do three exponentiations. Also, our last flow z
contains one group element, while Okamoto’s protocol contains two exponents,
which is likely going to be longer.
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Abstract. Processing on encrypted data is a subject of rich investiga-
tion. Several new and exotic encryption schemes, supporting a diverse set
of features, have been developed for this purpose. We consider encryp-
tion schemes that are suitable for applications such as data clustering
on encrypted data. In such applications, the processing algorithm needs
to learn certain properties about the encrypted data to make decisions.
Often these decisions depend upon multiple data items, which might
have been encrypted individually and independently. Current encryp-
tion schemes do not capture this setting where computation must be
done on multiple ciphertexts to make a decision.

In this work, we seek encryption schemes which allow public com-
putation of a pre-specified property P about the encrypted messages.
That is, such schemes have an associated property P of fixed arity k,
and a publicly computable algorithm Test, such that Test(ct1, . . . , ctk) =
P (m1, . . . , mk), where cti is an encryption of mi for i = 1, . . . , k. Further,
this requirement holds even if the ciphertexts ct1, . . . , ctk were generated
individually and independently. We call such schemes property preserv-
ing encryption schemes. Property preserving encryption (PPEnc) makes
most sense in the symmetric setting due to the requirement that Test is
publicly computable.

In this work, we present a thorough investigation of property pre-
serving symmetric encryption. We start by formalizing several meaning-
ful notions of security for PPEnc. Somewhat surprisingly, we show that
there exists a hierarchy of security notions for PPEnc, indexed by inte-
gers η ∈ N, which does not collapse. We also present a symmetric PPEnc
scheme for encrypting vectors in ZN of polynomial length. This construc-
tion supports the orthogonality property: for every two vectors (�x, �y) it is
possible to publicly learn whether �x · �y = 0 mod p. Our scheme is based
on bilinear groups of composite order.

1 Introduction

This paper introduces the notion of property preserving encryption schemes. The
idea is that it should be possible to publicly learn the properties of a massive data
set, by only looking at the encrypted data elements. For simplicity, we model
properties as boolean functions P defined over the space Mk for a fixed natural
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number k ∈ N. The simplest way to capture this idea is by requiring a public
algorithm, Test, such that ∀(m1, . . . ,mk) ∈ Mk:

P (m1, . . . ,mk) = Test(ct1, . . . , ctk)

where cti is the encryption of mi for every i ∈ [k]. An important observation is
that the idea makes most sense only for symmetric encryption schemes, which
will be the main focus of this work.1

Property preserving encryption represents great promise, particularly for de-
veloping private algorithms for data classification. Of particular interest are the
applications that deal with streaming data. For example, consider the recipient
of a data stream, who receives data-elements arriving one at a time: m1,m2, . . .
and so on. The recipient would like to encrypt each of these elements, as they
arrive, and store2 the resulting ciphertexts on an untrusted computing facility,
e.g., a public cloud [21,33]. The recipient can then instruct the cloud to classify
and organize this data—e.g., using data clustering techniques [30,28], for the
target application. Current encryption schemes fall short of dealing with this
situation. This holds true even for the exotic class of schemes such as predicate
encryption [31], functional encryption [15], and fully homomorphic encryption
[39,24].

Order Preserving Symmetric Encryption. Property preserving encryption
is directly inspired by the recent work of Boldyreva, Chenette, Lee, and O’Neill
on order preserving (symmetric) encryption [10]. Informally speaking, an en-
cryption scheme is order preserving if the ciphertexts preserve the order of the
plaintexts; that is, if m1,m2 are two plaintexts integers and m1 ≥ m2, then
ct1 ≥ ct2, where ct1, ct2 are encryptions of m1,m2 respectively. Boldyreva et al.
show that order-preserving schemes cannot satisfy the usual “indistinguishabil-
ity” based notions. In fact, as noted in [10,11], formulating a reasonable notion
of security for order preserving encryption is a subtle and involved task. The
starting point of our work was to understand the source of this difficulty, and
how it affects other properties.

For this purpose, we start by generalizing the idea of preserving the order
as follows. First, we do not restrict ourselves only to the ordering relation, and
consider arbitrary properties. Second, we do not necessarily require the same re-
lation on plaintexts and ciphertexts—e.g., the greater than or equal to operation.
Instead, we only require a public algorithm to test this relation: Test(ct1, ct2) = 1
if and only m1 ≥ m2. With these generalizations, it turns out that there exist
nontrivial properties for which we can satisfy indistinguishability-based security
notions. This results in very strong and robust security guarantees.

1 For asymmetric (or public-key) encryption, the encrypted message might be re-
coverable for most properties of interest, simply by using Test and the encryption
algorithm. See also section 1.2 for further discussion.

2 We note that this model is similar to the model considered by Gennaro and Ro-
hatgi [23] for digital signatures. In particular, it is different from the “streaming
algorithms” model where the stream cannot be stored, and the computations must
be done in a single pass over a small sample of the stream[2,29].
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1.1 Our Contribution

It quickly becomes apparent that property preserving encryption is a new notion
that requires a thorough investigation. This is the focus of the current work. We
present a summary of our results here.

Notions of Security. We start by defining three indistinguishability based
notions of security: (1) find-then-guess (FtG), (2) left-or-right (LoR), and (3)
selective real-versus-random (sRvR). These notions are directly based upon the
work of Bellare, Desai, Jokipii, and Rogaway [5] for defining security of symmet-
ric encryption.

In FtG-security the adversary first participates in a “find” stage in which he
receives encryptions of many (adaptively) chosen messages. The adversary then
selects two challenges (m∗

0,m
∗
1), and receives an encryption of one of them. The

adversary is supposed to “guess” which message was encrypted. In LoR-security,
the adversary adaptively chooses many pairs of messages (m0

1,m
1
1), (m

0
2,m

1
2), . . .,

and receives encryptions of messages mb
1,m

b
2, . . ., for a fixed bit b. The adver-

sary is supposed to guess b. In property preserving encryption, the adversary
is allowed to learn the value of the property P on various subsets of messages.
Therefore we enforce the following “equality pattern” condition (assume P to be
binary): in FtG game, we require that for every messagemi that was encrypted,
P (m∗

0,mi) = P (m∗
1,mi); likewise, in LoR game, we require that for every two

indices (i, j): P (m0
i ,m

0
j ) = P (m1

i ,m
1
j).

For standard symmetric encryption, these two notions are proven equivalent
using a simple hybrid experiment [5]. Quite surprisingly, we show that in case
of property preserving encryption, the FtG-security is much weaker than LoR-
security. There exist natural properties for which FtG can leak much more
about the encrypted messages than LoR. This proof also highlights that in
fact FtG is a rather subtle notion: there is a hierarchy of FtG definitions in-
dexed by a natural number η ∈ N, denoted FtG

η, which lie between FtG

and LoR. Roughly speaking, the FtG
η notion is like the FtG notion ex-

cept that the adversary submits at most η pairs of challenges instead of just
one: (m∗

0,1,m
∗
1,1), . . . , (m

∗
0,η,m

∗
1,η). We go on to show that FtGη is weaker than

FtG
η+1.

Our final indistinguishability based notion, is an adaptation of the “real-or-
random” security presented in [5]. Informally, in this game the attacker submits
adaptively chosen messages that form the real sequence of messages to an encryp-
tion oracle. The oracle either only encrypts the real message sequence or a random
message sequence. As usual, we want that the adversary should not know which
is the case. Adopting this notion to the setting of property-preserving encryption
is slightly tricky, due to the equality pattern condition. When returning encryp-
tions of a random sequence, it should be ensured that the random sequence will
have the equality pattern of the real sequence. Since the real sequence is chosen
adaptively based on the ciphertexts seen so far, the equality pattern of the real
sequence “evolves” during the entire experiment. One way to deal with this situ-
ation is to require the adversary to select its equality pattern ξ (a binary vector)
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at the beginning of the game. This choice is motivated by the work on selective
security for identity based encryption [18,19]. We require that the encryptions of
real sequence with equality pattern ξ, look indistinguishable from a random se-
quence with the same pattern ξ. The resulting notion is called the selective real-
versus-random security denoted by sRvR, and is proven equivalent to the selective
version of LoR-security, denoted sLoR. The summary of relationships between
these security notions is presented in figure 1.

FtG

≡

FtG
1

FtG
2 . . .

FtG
η

FtG
η+1 . . .

LoR

sLoR

sRvR

Fig. 1. Relations between all security notions. Solid arrows denote implications for all
properties. Cut arrows denote that there exist some properties for which the implication
is false.

Our Constructions. We seek interesting properties for which provably secure
constructions satisfying our security notions can be obtained. We present con-
structions that preserve, according to our notion, the orthogonality of encrypted
vectors. More formally, let p be a prime number; we construct a property pre-
serving scheme for P : Zn

p × Zn
p → {0, 1} such that: P ($u,$v) = 0 if $u · $v = 0

mod p and 1 otherwise.
First we observe a general approach for constructing property preserving en-

cryption from symmetric predicate-encryption that satisfy two essential proper-
ties: (1) predicate privacy in the multi-challenge model, and (2) security in the
standard model (as opposed to the selective models as defined in [18,19]). Shen,
Shi, and Waters [41] formulated the notion of predicate privacy in symmetric en-
cryption, and presented a construction for orthogonality testing. However, their
construction is secure only in the selective-security model. At present, there are
no known constructions satisfying the two requirements.

We present a new, direct construction, for preserving orthogonality. Our con-
struction is based on composite order groups with bilinear pairings. We prove
that our construction satisfies the LoR-security in the generic group model [44];
a provably secure construction in the standard model is left as an important
open problem.

1.2 Related Work

Other than the works of Boldyreva et al. [10,11], the work of Bellare, Risten-
part, Rogaway, and Stegers [8] on format preserving encryption is also a related
concept which ensures that the ciphertext has the same format as the plaintext.
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Encryption schemes supporting keyword search on encrypted data are very
relevant to our work. They were considered by Song, Wagner, and Perrig in
the symmetric setting [45], and by Boneh, Di Crescenzo, Ostrovsky, and Per-
siano [14] in the public-key setting. We can view these works as testing for the
equality property for a fixed keyword(s). Equality tests in symmetric setting
are related to oblivious RAM techniques [37]; in the public-key setting they are
related to anonymous Identity Based Encryption (IBE) [14,1,17]. Subsequent
works developed schemes for complex queries such as conjunctive and range
queries [25,16,42], and more efficient constructions [22].

Bellare, Boldyreva, and O’Neill [4] investigated the notion of deterministic
encryption to allow search in sub-linear time. These schemes provide meaning-
ful security guarantee only when messages are drawn from high min-entropy
distributions. Subsequent works further refined this notion and provided new
constructions [7,12,36].

Another notion, closely related to our work, is predicate encryption, intro-
duced by Katz, Sahai and Waters [31], and further generalized to functional
encryption [15]. In predicate encryption, messages are encrypted using a set of
attributes S, and secret keys can be derived for predicates f , say Kf . A mes-
sage m encrypted using S can be decrypted using Kf if and only if f(S) = 1.
The principal difference between our notion and predicate encryption is that
the latter only tests unary property, i.e., f works only on a single ciphertext.
In contrast, property-preserving encryption is required to deal with multiple ci-
phertexts each generated individually and independently. Predicate encryption
is a generalization of previous works on attribute-based encryption [40], further
developed in [27,9,20,38,26]. Subsequent works provided improved constructions
under a variety of cryptographic assumptions [31,43,41,34].

Our study of relationships between security notions of encryption schemes is
inspired by initial works of Bellare, Desai, Jokipii, and Rogaway [5], and Bellare,
Desai, Pointcheval, and Rogaway [6]; it has been pursued in many subsequent
works since then such as [3,32], as well as previously mentioned works on deter-
ministic encryption.

Somewhat tangentially related to our work is the notion of fully homomorphic
encryption (FHE) [39], first realized by Gentry [24]. While FHE allows processing
arbitrary computations on any number of ciphertexts, the resulting output is
encrypted, and therefore not useful for evaluating properties.

2 Property Preserving Encryption

Standard Notation. We write s
$← S to mean that s is picked uniformly at

random from the set S. When multiple elements x, y, z, . . . are picked uniformly

at random from S, we write x, y, z, . . .
$← S. Symbols ¬,∧, and ⊕ denote the

standard boolean operations: not, and, and xor, respectively. The set of natu-
ral numbers is denoted by N; for n ∈ N, we write by [n] the set {1, 2, . . . , n}. We
will often refer to a vector directly by writing its components in order as either
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(a1, a2, . . . , an) or {ai}n
i=1. The security parameter is denoted by λ ∈ N, and

a function negligible in λ is denoted by negl(λ). All algorithms are assumed to
have λ as an implicit input, and run in time polynomial in λ.

Property Preserving Encryption. A property-preserving symmetric encryp-
tion scheme, is just like a normal symmetric encryption scheme except that it
has an associated property P and a test algorithm, Test. Algorithm Test is a
publicly computable polynomial time algorithm which operates on ciphertexts.
The goal of Test algorithm is to test if the property P is satisfied on the un-
derlying messages of the input ciphertexts. The formal definition of symmetric
property-preserving encryption is given below; we allow some public-parameters
in the system so that Test algorithm can properly operate on the ciphertexts.

Definition 2.1. A symmetric property-preserving encryption scheme, with
plaintext - space M, consists of four probabilistic polynomial-time algorithms
Π = (Setup,Enc,Dec,Test) and an associated property P : Mk → {0, 1}, such
that:

Setup(1λ) → (pp, sk):
This is a randomized algorithm, which on input a security parameter λ ∈ N,
outputs a secret-key sk, and public-parameters pp.

Enc(pp, sk,m) → ct:
The (possibly randomized) encryption algorithm takes as input pp, sk, and
the plaintext m; it outputs a ciphertext ct.

Dec(pp, sk, ct) → m:
The decryption algorithm takes as input pp, sk, and the ciphertext ct; it
outputs the plaintext message m.

Test(pp, ct1, . . . , ctk) → {0, 1}:
The testing algorithm takes as input the public parameters pp, and k cipher-
texts ct1, . . . , ctk; it outputs a bit.

We require that for all possible outputs (pp, sk) of algorithm Setup, and every
m ∈ M, it holds that Dec(pp, sk,Enc(pp, sk,m)) = m. Further, we also require
that there exist a negligible function negl(·) such that ∀(m1, . . . ,mk) ∈ Mk:

Pr

[
Test(pp, ct1, . . . , ctk)
= P (m1,m2, . . . ,mk)

∣∣∣∣ (pp, sk) ← Setup(1λ)
∀i ∈ [k] : cti ← Enc(pp, sk,mi)

]
≥ 1 − negl(λ)

where the probability is taken over the randomness of all algorithms.

3 Security Notions

We follow the approach of Bellare, Desai, Jokipii, and Rogaway [5], and present
three different definitions. We will start by considering the two simplest variants,
each of which is obtained by modifying definitions in [5] to accommodate the
equality pattern. To do this, we introduce some notation.



Property Preserving Symmetric Encryption 381

Notation. Let Π = (Setup,Enc,Dec,Test) be a symmetric property-preserving
encryption scheme with plaintext space M. Let P be a k-ary property defined
over M for some fixed positive integer k ∈ N: P : Mk → {0, 1}. For a bit b,
let the “Left-Right Oracle” be defined as the following function: LR(m0,m1, b) =
mb. Let X = (x1, . . . , xn) ∈ Mn and Y = (y1, . . . , yn) ∈ Mn be two message
sequences of polynomial length n = n(λ). We say that X and Y have the same
equality pattern for property P , if and only if: ∀(i1, . . . , ik) ∈ [n]k, P (xi1 , . . . , xik)
= P (yi1 , . . . , yik).

It will be convenient to formally define the equality pattern of a sequence X .
For integers n, k, let I1, . . . , Ink be all sequences of indices (i1, . . . , ik) ∈ [n]k

in the lexicographic order.3 The equality pattern of a sequence X ∈ Mn w.r.t.
property P : Mk → {0, 1} is a binary vector of length nk, denoted by Eqp(X) :=
(b1, . . . , bnk), such that bj = P (XIj ). Here XIj denotes the projection of X on
jth-sequence Ij , for j ∈ [nk].

Find-then-Guess Security. The simplest indistinguishability based definition
is the “find-then-guess” security. Informally, adversary A participates in a game,
in which first it is given access to an encryption oracle. A can ask polynomially
many encryption queries by adaptively choosing and sending plaintexts m ∈ M.
This is called the “find” stage; at some point, A produces two equal-length
messages (m∗

0,m
∗
1). At this point, A is given a challenge ciphertext ct, which

is an encryption of mb for a random bit b. A can make more queries to the
encryption oracle after receiving ct. At some point, A outputs a bit b′ (as its
guess of b), and the game ends. The output of the game is b′.

For convenience, we split A, into two algorithms denoted A := (A1,A2). Al-
gorithm A1 participates in the “find” stage and outputs (m∗

0,m
∗
1) and some state

information st (which includes public-parameters). Algorithm A2 represents the
actions of A after the find stage—A2 receives the challenge ciphertext ct, and
the state information st, and outputs the bit b′. Formally, this game is captured
by a random process, denoted GameFtGΠ,A,λ(b), which appears in table 1. For suc-
cinctness, we adopt the convention that sk includes the public-parameters pp,
and we write Encsk(m) to mean Enc(pp, sk,m).

Let the queries of A1 to the encryption oracle be (m1, . . . ,m
), and the queries
ofA2 be (m
+1, . . . ,mn). We say that A is a valid FtG-adversary if sequencesX0

and X1 have the same equality pattern, where X0 = (m1, . . . ,m
, m
∗
0, m
+1, . . . ,

mn) and X1 = (m1, . . . ,m
,m
∗
1,m
+1, . . . ,mn); that is Eqp(X0) = Eqp(X1).

Define the advantage of a valid FtG-adversary A = (A1,A2) as follows:

AdvFtGΠ,A,λ =
∣∣∣Pr [GameFtGΠ,A,λ(1) = 1

]
− Pr

[
GameFtGΠ,A,λ(0) = 1

]∣∣∣
3 Equivalently, every sequence is an ordered multi-set of [n]k. Note that multi-set
is important since the property is defined for sequences of the form P (m, . . . ,m).
Likewise, order is important since changing the message-order may change the value
of P .
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Definition 3.1 (FtG Security). Let Π = (Setup,Enc,Dec,Test) be a sym-
metric property-preserving encryption scheme with plaintext space M and asso-
ciated property P : Mk → {0, 1} for a fixed positive integer k ∈ N. We say that
Π is FtG-secure, if there exists a negligible function negl(·) such that for all
probabilistic polynomial time valid FtG-adversaries A = (A1,A2), and for all
sufficiently large λ ∈ N, the advantage of A in game GameFtGΠ,A,λ(b) is at most

negl(λ). That is, AdvFtGΠ,A,λ ≤ negl(λ).

Table 1. Security games for defining the three notions—FtG, LoR, and sRvR

GameFtGΠ,A,λ(b)

(pp, sk)← Setup(1λ)

(m∗
0,m

∗
1, st)← AEncsk(·)

1 (pp)
ct∗ ← Encsk(m

∗
b)

b′ ← AEncsk(·)
2 (st, ct∗)

return b′

GameLoRΠ,A,λ(b)

(pp, sk)← Setup(1λ)

b′ ← AEncsk(LR(·,·,b))(pp)
return b′

GamesRvRΠ,A,λ(b)

(pp, sk)← Setup(1λ)
(ξ, st)← A1(pp)

Z
$← S(ξ)

b′ ← AEncsk(LR(·,Z,b))
2 (pp)

return b′

Left-or-Right Security. Define left-or-right encryption oracle, denoted by
Enc(pp, sk, LR(·, ·, b)), which behaves as follows. On input a pair of equal-length
messages (m0,m1) ∈ M2, the oracle obtains message LR(m0,m1, b) = mb, and
then outputs a ciphertext by computing Enc(pp, sk,mb). Once again, we drop pp
from the notation for succinctness, and denote this oracle by Encsk(LR(·, ·, b)).

In this security definition, A participates in a game in which he gets access
to Encsk(LR(·, ·, b)) for a random b. Throughout the execution of the game, A
adaptively submits the queries of the form (m0

i ,m
1
i ) to the encryption oracle and

receives cti = Encsk(m
b
i ) for i = 1, . . . , n where n = n(λ) is an arbitrary polyno-

mial. At some point, A outputs a bit b′ (as its guess of b), and the game ends. The
output of the game is b′. Formally, this game is captured by a random process,
denoted GameLoRΠ,A,λ(b), which appears in table 1. Let the queries of A to the or-

acle be
{
(m0

i ,m
1
i )
}n

i=1
, and let X0 = (m0

1, . . . ,m
0
n) and X1 = (m1

1, . . . ,m
1
n).

We say that A is a valid LoR-adversary if sequences X0 and X1 have the
same equality pattern; that is Eqp(X0) = Eqp(X1). The advantage of a valid
LoR-adversary A is defined as before:

AdvLoRΠ,A,λ =
∣∣∣Pr [GameLoRΠ,A,λ(1) = 1

]
− Pr

[
GameLoRΠ,A,λ(0) = 1

]∣∣∣
Definition 3.2 (LoR Security). Let Π = (Setup,Enc,Dec,Test) be a symmet-
ric property-preserving encryption scheme with plaintext space M and associated
property P : Mk → {0, 1} for a fixed positive integer k ∈ N. We say that Π is
LoR-secure, if there exists a negligible function negl(·) such that for all proba-
bilistic polynomial time valid LoR-adversaries A, and for all sufficiently large
λ ∈ N, the advantage of A in game GameLoRΠ,A,λ(b) is at most negl(λ). That is,

AdvLoRΠ,A,λ ≤ negl(λ).
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We note that in their work on symmetric-key predicate encryption, Shen, Shi,
and Waters [41] called the FtG-security as the “single-challenge” security, and
the LoR-security as the “full-security.”

Real-versus-Random Security. Another interesting notion considered in [5]
is that of “real-or-random” security, where the attacker instead of giving two
sequences gives only one, called the real, sequence). In return, it either receives
the encryption of the messages from real sequence, or the encryption of random
messages (which form the random sequence). As discussed earlier, adopting this
notion to the setting of property-preserving encryption is slightly tricky.

Recalling briefly, the real sequence allows the adversary A to learn its equal-
ity pattern; and therefore indistinguishability makes sense only if a random se-
quence with the same equality pattern is selected. However, if the real sequence
is selected adaptively, its equality pattern also evolves adaptively; but since A
must receive encryptions “on-the-fly,” providing encryptions of random messages
that “in-the-end” would have the same equality pattern as the real sequence
may not always be possible. It is for this reason that defining a meaningful
“simulation-based” definition is difficult in this setting.

Nevertheless, a meaningful definition can still be achieved if we do not allow
the adversary to adaptively evolve the security pattern of the real sequence. That
is, we consider a static or selective setting, where the A “announces” the equality
pattern that the real sequence will have at the beginning of the game (on input
the public-parameters). This is much like the the selective-ID model of [18,19].4

The selective real-versus-random security denoted by sRvR, considers a game
that is identical to the game in LoR-security except for the following differ-
ence. The adversary is a pair of algorithms A = (A1,A2) such that A1 on
input the public-parameters, outputs a binary vector ξ of length polynomial
in λ, and a state information st (which includes public-parameters). Vector ξ
represents an equality-pattern and fixes an integer n ∈ N. A random sequence
Z = (z1, . . . , zn) ∈ Mn is chosen such that Eqp(Z) = ξ. A is given access to an
encryption oracle which accepts queries of the form m ∈ M; upon ith-query mi,
the oracle returns the value of Encsk(LR(mi, zi, b)). We slightly abuse the nota-
tion, and denote this special oracle by Encsk(LR(·, Z, b)). This game is formally
captured by a random process, denoted GamesRvRΠ,A,λ(b), which appears in table 1.
Denote by S(ξ) the set of all message-sequences whose equality pattern is ξ.

We say that A is a valid sRvR-adversary if the sequence of messages queried
by A, denotedM ∈ Mn is such that Eqp(M) = ξ. Define the advantage AdvsRvRΠ,A,λ

and the sRvR-security ofΠ for a valid sRvR-adversaryA, analogous to AdvLoRΠ,A,λ

and LoR-security by replacing the word LoR with sRvR.

Remarks on the Hierarchy. As noted earlier, we show that there is a hier-
archy of security notions that does not collapse. The security notion FtG

η is

4 The fact that in our model, the public-parameters pp are given before A decides
the equality pattern does not make our model necessarily better. Indeed, pp are
irrelevant since we are dealing with symmetric encryption; in particular, pp can be
included simply as part of the ciphertext.
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identical to FtG except that the adversary has multiple find stages, and sends
exactly η pairs of challenges. Likewise, the sRvR notion reduces to the selective
variant of the LoR notion, denoted sLoR: the only difference is that in sLoR
definition, A announces the security pattern ξ of the two sequences before seeing
any encryptions. Due to space constraints, the formal definitions of FtGη, sLoR
are given in the full version.

4 Relations among Security Notions

In this section, we will establish relationships between various notions security
for symmetric property-preserving encryption (PPEnc). The main result of this
section is that FtG

η does not imply FtG
η+1. We will start with the simpler

case that FtG-security does not imply LoR-security—not even the selective
variants sLoR and sRvR. All other implications are rather trivial.

Informally, for a symmetric PPEnc Π for a property P , we say that LoR-
security implies FtG-security, denoted LoR → FtG, to mean the following
statement: “If Π satisfies LoR-security (i.e., definition 3.2) then it also satis-
fies FtG-security (i.e., definition 3.1).” In [5], it was shown that, for an ordi-
nary symmetric encryption scheme, FtG-security and LoR-security, are in fact
equivalent (up to a polynomial degradation in security). Which means that FtG
implies LoR, and vice-versa. The same proof shows that FtGη+1 → FtG

η for
every η ∈ N.

4.1 LoR vs. FtG

First off, it is trivial to see that LoR implies FtG. In case of an ordinary5

scheme, to simulate the FtG-game for an attacker, a simulator participates in
an LoR game. To answer encryption queries of A (in “find” stage and after the
challenge ciphertext) which consist of a single message m ∈ M, the simulator
can simply send a query of the form (m,m) ∈ M2 to its left-or-right-encryption
oracle, and give the answer to A. The challenge-query (m∗

0,m
∗
1) can be used

directly. This strategy also applies to our setting of symmetric PPEnc, with
no change. The key observation is that the sequences sent by the simulator to
the outside oracle have the same equality pattern, simply because A is a valid
FtG-adversary. This proof is omitted, and we conclude that LoR → FtG for
all P .

To prove the other direction, i.e., FtG → LoR, a simple hybrid experiment
is used in [5] in which the left sequence is converted into the right sequence by
changing one message at a time. While this works for an ordinary encryption
scheme, this approach breaks down in case of PPEnc. In particular, in the i-th
hybrid, as we change the encryption of i-th “left” message to the corresponding
right message, the equality pattern may change. It might even be true that the
right-sequence is not “reachable” from the left-sequence for every property P
by changing one message at a time. In this case we say that the two sequences
belong in different equivalence classes.

5 That is, it is not necessarily a property-preserving encryption scheme.
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Proving the Separation. To separate FtG from LoR, our goal is to think
of a property P (preferably, a natural property) and an encryption scheme Π
such that: P divides its message space in only a small number of equivalence
classes, and Π leaks the “identity” of the equivalence class at the end of the
security game. This will not break FtG-security, but by choosing two sequences
with same equality pattern but different equivalence classes, LoR-security can
be broken.

We will use quadratic residuosity to construct a property. For a prime number
p, define by QRp and QNRp the set of quadratic residues and quadratic non-
residues respectively in Z∗

p. It will be convenient to define the following “sign”
function J , which outputs whether a message m ∈ Z∗

p is a quadratic residue or
not:6 if m ∈ QRp then J (m) = 0, otherwise (i.e., m ∈ QNRp), J (m) = 1. For
any two messages (x, y) ∈ Z∗

p × Z∗
p, we define the following binary property:

Pqr(x, y) =

{
1 if x · y ∈ QRp

0 if x · y ∈ QNRp

We now prove the following theorem.

Theorem 4.1 (FtG �→ LoR). Suppose there exists a FtG-secure property-
preserving symmetric encryption scheme Π for property Pqr and plaintext-space
M = Z∗

p. Then there exists another property-preserving symmetric encryption
scheme Π∗ for property Pqr and plaintext space M such that Π∗ is FtG-secure,
but it is not LoR-secure.

Proof. The key-idea in our proof is that the property Pqr puts a nice structure
on the equality pattern of adversary’s queries. We will use a one-time pad to
hide crucial information about this structure in the ciphertext, which can be
recovered in the LoR-game but not in the FtG-game.

Let Π = (Setup,Enc,Dec,Test). We construct a new scheme Π∗ = (Setup∗,
Enc∗, Dec∗, Test∗), whose algorithms are defined as follows.

1. The Setup∗ algorithm calls Setup → (pp, sk), it then picks a uniformly ran-

dom bit t
$← {0, 1}. It outputs pp as the public-parameters and the secret-key

is set to the pair sk∗ = (sk, t). The bit t will be used as a one-time pad.
2. Algorithm Enc∗ encrypts an inputm ∈ Z∗

p as follows. It calls Enc(pp, sk,m) →
ct. Then it selects a uniformly random bit b

$← {0, 1}. If b = 0 the out-
put ciphertext is ct∗ = (ct, b, t); otherwise, b = 1 and the ciphertext is
ct∗ = (ct, b, t⊕ J (m)). Namely if b = 0 the ciphertext reveals the one-time
pad, otherwise the XOR of the pad with the residuosity sign. Compactly,
the ciphertext is ct∗ = (Enc(pp, sk,m), b, t⊕ (b ∧ J (m))).

3. The decryption algorithm, on input (ct, b, c) outputs Dec(pp, sk, ct). The test
algorithm on input (ct1, b1, c1) and (ct2, b2, c2) outputs Test(pp, ct1, ct2).

It is easy to see to see that Π∗ satisfies all the correctness properties if Π does.
We have to show that Π∗ is FtG-secure but not LoR-secure. This follows from
lemmas 4.2 and 4.3. This completes the proof.

6 This is essentially the Legendre symbol with -1 replaced by 0.
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Lemma 4.2. For every valid FtG adversary A for Π∗, there exists a valid
FtG adversary B for Π such that for every λ ∈ N, AdvFtGΠ∗,A,λ = AdvFtGΠ,B,λ

Proof. We construct adversary (a.k.a. simulator) B, using A. However, before
doing so, we first analyze the possible attack sequences for A. Remember that
A participates in an FtG-game against Π∗, and is denoted by A = (A1,A2).
Further, it must satisfy the equality-pattern condition.

According to the definition of the FtG game, A1 will query for the messages
m1,m2, . . . ,m
 (in the “find” phase), and output a challenge pair (m∗

0,m
∗
1) along

with some state information. Then A2, on input a ciphertext and the state, will
query for the messages m
+1,m
+2, . . . ,mn (in phase 2) and output a guess.
There are only two possible cases regarding the challenge pair:

Case 1: J (m∗
0) = J (m∗

1). That is, either both messages are quadratic
residues, or both are non-residues.

Case 2: J (m∗
0) �= J (m∗

1). That is, one message is a quadratic residue, and
the other is a non-residue. Notice that in this case it holds that neither A1 nor
A2 makes any queries to the encryption oracle. That is, no queries are made
either in phase-1 or phase-2. Indeed, suppose that either A1 or A2 queries m
and receives ct = Encsk(m). Then, by the properties of quadratic residues, we
have that Pqr(m,m

∗
0) �= Pqr(m,m

∗
1). This violates the equality pattern condition

since Pqr can be learned from ct and ct∗ (which A2 receives).
Now, the adversary B = (B1,B2) when participating in the FtG-game for Π ,

internally simulates the FtG-game for A (with scheme Π∗) as follows. B1 on
input the public parameters of Π , forwards them to A1. A must follow one of
the two cases above. Suppose that A follows Case-1. In this case, if A1 makes a
single-message encryption query, B1 forwards this query to the outside encryp-
tion oracle, and gives A1 whatever the answer is. At some point, A1 outputs
(m∗

0,m
∗
1, st); then B1 also outputs this triplet and halts.

Algorithm B2 picks a uniformly random one-time pad t
$← {0, 1} and stores it.

B2 receives a ciphertext ct′ (and state st) as input. Note that ct′ is a ciphertext
of Π . To construct a ciphertext of Π∗, B2 picks a random bit b, and sets ct∗ =
(ct′, b, t) if b = 0; otherwise it sets ct∗ = (ct′, b, (t⊕ J (m∗

0)). This is a correctly
distributed ciphertext since J (m∗

0) = J (m∗
1). B2 internally provides (ct∗, st) to

A2. Encryption queries of A2 are answered by B1 using its encryption oracle. It
is clear that the simulation is perfect.

If on the other hand A1 gives out at the beginning of the game a challenge pair
that consists of a residue and a non residue, we are in case-2. This means that no
encryption queries aremade byA1, and none will be made byA2. SoB1 also simply
outputs this pair and the state information to outside experiment. Upon receiving
a challenge ciphertext and state, it gives the following ciphertext to A2: (ct, b, c)
where both b and c are uniformly random bits. The state information is also given
to A2. In this case also the simulation is perfect, since irrespective of the value of
b, c is distributed correctly as in a proper ciphertext (every value of c defines an
implicit value for the one-time pad, which is information theoretically hidden since
there are no other encryption queries made). This completes the proof.
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Lemma 4.3. There exists a valid polynomial-time LoR attacker on Π∗ with
advantage 1 − 2−n+1, where n is the number of queries it makes.

Proof. The attacker proceeds as follows in the LoR-game. It sends queries such
that the the left-sequence contains only quadratic-residues, while the right-
sequence contains only quadratic-non-residues. Notice that this a valid pair of
sequences since the equality patterns are the same with respect to property
Pqr: the output of the property is always 1 for any pair of messages in each
sequence. However if the length of each sequence is n, then with probability
q = 1 − 2 ·

(
1
2

)n
= 1 − 2−n+1, there will be two ciphertexts (ct1, b1, c1) and

(ct2, b2, c2) for which b1 �= b2. In this case, the value c1⊕c2 reveals the residuosity-
sign of one of the two streams. Since this sign is known to the attacker and it is
different for the two streams, it compromises LoR-security. In the unlikely case
when b1 = b2 for all ciphertexts, the attacker fails, say by outputting 0, giving
us the required advantage.

Our next goal is to separate FtGη+1 from FtG
η. The following theorem will be

proven in the full version using the same property Pqr.

Theorem 4.4 (FtGη �→ FtGη+1). Let η ∈ N be a fixed positive integer.
Suppose there exists a FtG

η-secure property-preserving symmetric encryption
scheme Π for property Pqr and plaintext-space M = Z∗

p. Then there exists an-
other property-preserving symmetric encryption scheme Π∗ for property Pqr and
plaintext space M such that Π∗ is FtG

η-secure, but it is not FtGη+1-secure.

5 Constructions of Property-Preserving Encryption

In this section, we present constructions of property preserving encryption
(PPEnc) encryption scheme. Instead of constructing the full-fledged scheme,
it suffices to construct a slightly weaker variant, called property-preserving tag
scheme (PPTag). A PPTag scheme allows us to test the property Test, without
having a decryption algorithm. We can get correct decryption by utilizing ap-
propriately any IND− CPA secure symmetric encryption scheme. We refer the
reader to [31,41] for this somewhat standard approach.

To start with, we note that for unary properties P , one can simply include
the value of P (m) in the ciphertext, to get a construction. Therefore, we fo-
cus on properties of higher arity. In the full version of the paper, we present
a generic construction of PPTag for any binary property from adaptively fully
secure predicate encryption[41]. The main idea of this construction is that the
new encryption algorithm calls the encryption algorithm of the original predicate
encryption scheme and the token generation algorithm, both with input the mes-
sage m. The resulting ciphertext consists of a ciphertext part and a token part.
A selectively fully secure scheme is given in [41], which is not sufficient for our
LoR security definition. Therefore, we present an explicit PPEnc construction
in the following section.
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5.1 An Explicit Construction for Testing Orthogonality

This is a construction for testing orthogonality of two vectors. The plaintext
space of our scheme is M = (Z∗

N ∪ {0})n where N = pq for two λ-bit primes p
and q, Z∗

N is the set of invertible elements of ZN , and n :∈ N → N polynomial
in λ. 7 The associated property P : M×M → {0, 1} is such that: P ($u,$v) = 0 if
$u·$v = 0 mod p and 1 otherwise. The algorithms of our scheme are the following:

– Setup(1λ, n) → (pp, sk): Pick two different prime numbers p, q uniformly in
the range [2λ−1, 2λ), where λ ≥ 3. Pick a group G of order N = pq with
a bilinear map e : G × G → GT . Select two random generators g0, g1 for
subgroups of order p and q respectively.

Let Sn
def.
= {(x1, . . . , xn) ∈ Zn

q |
∑n

i=1 x
2
i ∈ QRq} be a set of vectors with

n components. Select a vector γ = (γ1, . . . , γn) uniformly from the set Sn.
Finally, let δ ∈ Zq be such that δ2 =

∑n
i=1 γ

2
i (pick one of the two at

random), and �G be the identity element of G. The parameters output by
the algorithm are:

pp = (λ, n,N,G,GT , e,�G) sk = (g0, g1, {γi}n
i=1 , δ)

– Enc(pp, sk,M) → ct: On input a message M = (m1,m2, . . . ,mn) the algo-

rithm picks two random elements of ZN : φ, ψ
$← ZN . It outputs the following

ciphertext:

ct = (ct0, {cti}n
i=1) =

(
gψδ
1 ,

{
gφmi

0 · gψγi

1

}n

i=1

)
– Test(pp, ct(1), ct(2)) → {0, 1}: On input the two ciphertexts ct(1) =(

ct
(1)
0 ,

{
ct

(1)
i

}n

i=1

)
and ct(2) =

(
ct

(2)
0 ,

{
ct

(2)
i

}n

i=1

)
, the algorithm outputs

0 if and only if
n∏

i=1

e
(
ct

(1)
i , ct

(2)
i

)
= e

(
ct

(1)
0 , ct

(2)
0

)
Correctness. Correctness is satisfied, except with negligible probability, due to
the following:

n∏
i=1

e
(
ct

(1)
i , ct

(2)
i

)
=

n∏
i=1

e

(
g
φ(1)m

(1)
i

0 · gψ
(1)γi

1 , g
φ(2)m

(2)
i

0 · gψ
(2)γi

1

)

=

n∏
i=1

e (g0, g0)
φ(1)φ(2)m

(1)
i m

(2)
i e (g1, g1)

ψ(1)ψ(2)γ2
i

= e (g0, g0)
φ(1)φ(2) �m(1)·�m(2)

e (g1, g1)
ψ(1)ψ(2) ∑

i γ2
i

7 Since the factorization of N is not public, the plaintext space is not public. However
if we assume that factoring is hard, any user that generates messages in ZN will,
except with negligible probability, generate a message in the correct plaintext space
Z

∗
N ∪ {0}.
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e
(
ct

(1)
0 , ct

(2)
0

)
= e

(
gψ

(1)δ
1 , gψ

(2)δ
1

)
= e (g1, g1)

ψ(1)ψ(2)δ2

= e (g1, g1)
ψ(1)ψ(2) ∑

i γ2
i

In the full version, we prove that our construction satisfies LoR-security in the
generic group model. We follow the terminology and proof ideas of [13] and [9].
We assume that the group elements of groups G and GT are encoded by two
random encodings ψ, ψT : FN → {0, 1}m

. These are injective functions that de-
fine the groups G = {ψ(i)|i ∈ FN} and GT = {ψT (i)|i ∈ FN}. We are also given
functions to compute the group operations on G and GT and a function that
computes the non degenerate bilinear mapping e. Then, we prove the following
theorem.

Theorem 5.1. Let ψ, ψT ,G,GT be as above, and let A be a generic algorithm,
representing a valid LoR-adversary against the scheme described above. Further,
suppose that A makes at most Q encryption queries, and at most W group
operations and pairings counted together. Then the advantage of A in the LoR-
game is at most O

(
(nQ+W )2 · 2−λ

)
.
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Abstract. We apply and extend the recently introduced biclique frame-
work to IDEA and for the first time describe an approach to noticeably
speed-up key-recovery for the full 8.5 round IDEA.

We also show that the biclique approach to block cipher cryptanalysis
not only obtains results on more rounds, but also improves time and
data complexities over existing attacks. We consider the first 7.5 rounds
of IDEA and demonstrate a variant of the approach that works with
practical data complexity.

The conceptual contribution is the narrow-bicliques technique: the re-
cently introduced independent-biclique approach extended with ways to
allow for a significantly reduced data complexity with everything else
being equal. For this we use available degrees of freedom as known from
hash cryptanalysis to narrow the relevant differential trails. Our crypt-
analysis is of high computational complexity, and does not threaten the
practical use of IDEA in any way, yet the techniques are practically
verified to a large extent.

Keywords: block ciphers, bicliques, meet-in-the-middle, IDEA, key
recovery.

1 Introduction

Since Rijndael has been chosen as a new cipher standard in 2001, block cipher
cryptanalysis has been less attractive for the cryptologic community. It may
be partly attributed to the eStream and SHA-3 competition, which essentially
diverted the attention of cryptanalysts to the design and analysis of new primi-
tives. The most efficient methods — differential and linear cryptanalysis, square
attacks, boomerang, meet-in-the-middle and impossible differential attacks —
have all been designed in the 90s or earlier, and undergone only a series of evolu-
tionary improvements. Occasional applications of hash function-specific methods
like rebound attacks operate mainly in weaker models of security.

The situation seems to change with the recent introduction of biclique attacks
on AES [6]. Even considered an extension to meet-in-the-middle attacks, the
biclique attack brings new techniques and tools to the world of block ciphers,
which were known mainly in the cryptanalysis of hash functions. In contrast
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to earlier attempts to cryptanalyze AES[5], the new approach does not use any
related keys. To understand the reasons behind the new results and to motivate
our work, we proceed with a more detailed story of meet-in-the-middle attacks
and their evolution.

Meet-in-the-Middle Attacks on Block Ciphers. The basic idea of meet-
in-the-middle attacks is to split an invertible transformation into two parts and
separate parameters that are involved in only one part. Then these parameters
can be searched independently with a match in the middle as a certificate of
a right combination. One of the first applications is the cryptanalysis of Dou-
bleDES EK2(EK1(·)), which demonstrated that the total security level is not
the sum of key lengths [12]. The reason is that given a plaintext/ciphertext pair,
an adversary is able to compute the internal middle state of a cipher trying all
possible values of K1 and K2 independently.

The same principle applies at the round level as well. If there is a sequence
of rounds in a block cipher that does not depend on a particular key bit, the
meet-in-the-middle attack might work. However, its application has been limited
by the design of block ciphers, the majority of which use the full key in the
very first rounds of a cipher. As a result, even as little as a half of a cipher is
rarely attacked, with four attacked rounds in AES [8] and seven in DES [9, 13].
Compared to 7-round attacks on AES [20], and full 16-round attacks on DES [21],
the meet-in-the-middle attacks were clearly inferior to other methods in spite
of their impressively low data complexity. The widespread use of meet-in-the-
middle attacks against the preimage resistance of hash functions follows this
argument, as the message schedule of, e.g., SHA-1, admits as many as 15 rounds
being independent of some message bits. The block ciphers KTANTAN [7] and
GOST [15], recently attacked within the meet-in-the-middle framework, also do
not use the full key for large number of rounds.

In this context the recent meet-in-the-middle attacks on the full AES [6]
might look as a counterexample. Nevertheless, they have not disclosed any new
key schedule properties. However, they are able to cover as many as 6 rounds
with a new construction — a biclique, inherited from hash function cryptanaly-
sis [17]. In addition to the aforementioned length of the biclique, its dimension is
another important property, and significantly contributes to the computational
advantage compared to brute-force approaches. A biclique does not impose con-
straints on the key schedule decomposition and can be long enough to add a
significant number of rounds to a meet-in-the-middle attack. The latter prop-
erty is, however, difficult to achieve when aiming for a significant advantage over
brute-force. When dealing with the full number of rounds, only AES-192 has
faced an improvement in a factor of four or larger. We additionally stress that
the non-ideal diffusion of a single AES round is an important factor for these
results. If AES had a full MDS matrix as the diffusion layer, like SHARK [22],
it would be much more difficult to attack. The data complexity would increase
greatly.
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All these properties are significant issues when one wants to deal with a ci-
pher that achieves full diffusion in a single round. Hence IDEA, which has this
property, is a natural challenge for a biclique attack. As explained further, we
have to leap over three well-diffusion rounds to successfully cryptanalyze the full
version of the cipher.

1.1 Cryptanalytic Attacks on IDEA and Our Contribution

The “International Data Encryption Standard” (IDEA) is one of the longest
standing and most analyzed ciphers known. It was designed by Lai and Massey
in 1991 [18, 19]. Except for negligibly small classes of weak keys only reduced
round variants up to 5 out of its 8.5 rounds have been cryptanalyzed in the most
relevant single-key setting. If the cryptanalyst were to choose arbitrary sequences
of middle-rounds results go up to 6 rounds, and in the less relevant related-key
model up to 7.5 rounds [2].

We consider the starting rounds only as a more difficult and more natural
challenge. Attacks on middle-rounds weaken the cipher considerably as there
would be no equivalent of a whitening key. Moreover, the full key would be used
only after two rounds of the cipher, which is evidently not a property of the
actual design.

Our main technical results are a first method for key recovery of full IDEA
noticeably faster than brute force search, and improved attacks on round-reduced
variants. An overview of our new results as well as a comparison with earlier work
is given in Table 1. We list here the conceptually new approaches that eventually
led to this result:

– The independent-biclique strategy allows for higher dimensions which in turn
can lead to faster key recovery. A straightforward application to IDEA would
lead to the full codebook requirement even for a one-round biclique due to
the diffusion properties. It drastically differs from AES, where 3-round bi-
cliques may still yield reasonable data complexity. In this paper we extend the
independent-biclique framework to allow for lower data complexity require-
ments. We achieve this by using available degrees of freedom for limiting the
diffusion in spite of high dimension. Hence we introduce the prefix “narrow”.

– In earlier work on AES the independent-biclique was always combined with
a key testing phase that loops over all keys. This combination is however not
necessary and many of our attacks do not require testing all keys.

– In previous meet-in-the-middle style attacks the Biryukov-Demirci relation
was used in a differential way to cancel out key dependencies, it was termed
“keyless Biryukov-Demirci relation”. Used in our framework, the BD relation
can be used directly, and hence avoids overhead computations.

To illustrate the flexibility of the narrow-biclique approach to IDEA, we also
consider round-reduced versions. As an example, consider IDEA reduced to the
first 5 rounds, which is the highest number of rounds that allowed results before.
For this we simultaneously improve time and memory complexity over other
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Table 1. New key recovery for IDEA. By brute-force, the computations/success rate
ratio is 2128. For simplicity, only round-reduced variants starting from the actual
beginning of the cipher are considered.

Rounds Data Comp./succ.rate Memory Ref.
Biclique
rounds

Matching

first 5 217 2125.5 n.a. [24] - key-dep. BD
first 5 10 2119 224 [2] - differential BD
first 5 264 2115.3 n.a. [24] - key-dep. BD

first 5 225 2110 216 Sec. 6 1 direct
first 5 225 2101.5 + 2112MA 2110 Sec. 6 1 direct
first 6 241 2118.9 212 Sec. 7 1 direct BD
first 7.5 218 2126.5 23 Sec. 8 1.5 direct BD
first 7.5 252 2123.9 27 Sec. 8 1.5 direct BD

8.5 (full) 252 2126.06 23 Sec. 5 1.5 direct BD
8.5 (full) 259 2125.97 23 Sec. 5 1.5 direct BD

pervious attacks, while at the same time achieving a practical data complexity
of only 225 chosen plaintexts. We also describe the first attack on the 6 initial
rounds of IDEA, with data complexity 241 and time complexity 2119, which is a
significant improvement over brute-force.

Independently and concurrently, Biham et al. [3] use similar techniques and
also arrive at improvements over previous work. However, for the same variant
of IDEA considered, the data complexities we obtain compare favourably to
theirs for the reasons outlined above. Note that in [3] middle rounds are consid-
ered, which we exclude for reasons outlined above. Hence for the same number of
rounds we attack a stronger cipher. For full IDEA, whereas we focus on minimiz-
ing time complexity Biham et al. consider a setting with little available data and
for this have a different approach that is closer to brute force time complexity.

In [4, 10, 14] classes of weak-keys were found for full IDEA. Even though the
class is for all practical purposes negligibly small (only up to a fraction of 2−64 of
all keys are affected), a small change for IDEA was proposed to get rid of these
weak-key properties [10]: a constant addition in the key schedule. Our approach
to key recovery even works for those strengthened variants of IDEA, in exactly
the same way, because it is independent of such constants.

2 Description of IDEA

In here we give a brief description of IDEA and discuss implementation cost
consideration that lead to a cost model in which we evaluate our subsequent
cryptanalytic results.

IDEA is a 8.5-round block cipher with a 64-bit state and a 128-bit key. Inter-
nal state and subkeys are treated as 16-bit words. Each round is an invertible
transformation and follows the key addition (KA) layer (two multiplications,
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Fig. 1. One round of IDEA

two modular additions) with the multiplication-addition (MA) function (again,
two multiplications, two modular additions). Addition is performed modulo 216.
Multiplication is performed modulo 216 + 1, where 0 is replaced with 216.

We denote input variables to round i by X i, the subkeys of round i by Zi.
Additional input variables are depicted in the outline of a single round in Fig-
ure 1. Key bits in subkeys are listed in Table 2, where the leftmost bit is the
most significant bit in the 16-bit word.

Compared to all other operations of IDEA, the multiplication modulo 216+1
is the most expensive. It can either be realized as a 17-bit multiplier, using a
table of size 216, or with the help of two or three lookup tables of size 28. This
naturally motivates the model we use to estimate time complexities in this paper:
counting multiplications and/or table lookups, and relating them to the number
of multiplications needed for IDEA. Each round of IDEA needs four of these
multiplications, and the additional key addition layer at the end (often counted
as 0.5 round) needs another two. Hence in total 34 multiplications are needed for
a single computation. Some of our attacks require the computation of a single
output bit of the multiplication which we model with a cost of 0.5 multiplications
(see references to complexity estimates in various models in [25]).

3 Biclique Attack

Biclique attacks were introduced for hash function cryptanalysis [17] as an exten-
sion to the initial structure technique [23], and later applied to block ciphers [6].
In the biclique attack on block ciphers the full key space is partitioned into
groups of keys, so that keys in a group can be efficiently tested in the meet-in-
the-middle framework.
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The keyspace partition can be described in various ways. For permutation-
based key schedules as in IDEA we simply introduce three sets of key bits: Kb,
Kf , and Kg. In a key group the value Kg is fixed (and hence enumerates the
groups), and Kb and Kf take all possible values.

Biclique. A biclique is a set of internal states, which are constructed either
in the first or in the last rounds of a cipher and mapped to each other by
specifically chosen keys. We consider the former option only in the paper. Let f
be the mapping describing the first cipher rounds, then a biclique for a group
Kg is a set of states {Pi}, {Sj} such that

Pi
Kb=i ||Kf=j−−−−−−−−−→

f
Sj .

Keys in a group are tested as follows. A cryptanalyst asks for the encryption of
plaintexts Pi and gets ciphertexts Ci. Then he checks if

∃ i, j : Sj
Kb=i ||Kf=j−−−−−−−−−→

g
Ci, (1)

where g maps states Sj to ciphertexts. A biclique is said to have dimension d, if
both Kb and Kf have d bits.

Key Testing. Each key group is tested separately. There are two approaches
to test keys within a group. In the first approach a cryptanalyst uses an inter-
mediate variable v that can be computed in both directions:

Sj
Kf=j−−−−→

g1
v

?
= v

Kb=i←−−−
g2

Ci.

The functions g1 and g2 are called chunks. This approach is illustrated in
Figure 2. The computational complexity of testing a single group is

Cbiclique + 2|K
f |Cg1 + 2|K

b|Cg2 + Crecheck,

where Cg1 and Cg2 are the costs of computing v, Cbiclique is the biclique con-
struction cost, and Crecheck is the cost of rechecking key candidates on other
state bits or another plaintext/ciphertext pair. The full complexity is derived by
the multiplication on the total number of groups.

In the second case a cryptanalyst is unable to find a variable with these
properties. Then he tests each key individually

Sj
Kb=i ||Kf=j−−−−−−−−−→

g1
v

?
= v

Kb=i ||Kf=j←−−−−−−−−−
g2

Ci,

but reuses the computations of chunks, which are defined as parts of g1 and g2
that are independent of Kb and Kf , respectively.

This technique was called an independent-biclique approach [6] due to use of
independent differential trails in the biclique construction.
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Fig. 2. Key testing with a biclique of three plaintexts and three internal states

Bicliques Based on Independent Differentials. An easy way to construct
biclique is to use related-key differentials that do not share active nonlinear
components. Let (P, S,K) be a tuple of a plaintext, an internal state, and a key.
Let also Kf and Kb be tuples of key bits.

Proposition 1 ([6]). Suppose that the tuple (P0, S0,K0) conforms to the two
sets of related-key differential trails:

0
ΔKf=ΔK

j�−−−−−−−→
f

Δj ; ∇i
ΔKb=∇K

i�−−−−−−→
f

0,

that share no active non-linear transformations. Then the following states

Pi = P0 ⊕ ∇i, Sj = S0 ⊕Δj .

form a biclique for a group of keys defined by K0.

Narrow-Bicliques. A straightforward application of the independent differen-
tials technique limits the length of a biclique to the number of rounds needed
for the full diffusion. In AES one may use truncated differentials with probabil-
ity 1, and they would still allow for bicliques over the last three rounds. This
is virtually impossible for IDEA, as any one-round truncated differential with
probability 1 covers the full state and necessitate the full codebook. Therefore,
the biclique differentials must be sparse and hence probabilistic.

We propose to amplify the biclique differentials with guess-and-determine and
message modification-like techniques, so that even high-dimensional bicliques
would not require the full codebook. Similar techniques have been used for the
hash function SHA-2 [17], but aimed only for the independency of trails, but
not sparsity. In contrast, for block ciphers the sparsity of a trail is a crucial
parameter for the data complexity, as uncontrolled difference results into an
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uncontrolled plaintexts. It gets much worse in a cipher, whose key is much larger
than a plaintext, since the number of bicliques to be constructed greatly exceed
the codebook size. As a result, with high probability every possible plaintext
becomes involved in a biclique, and this situation we want to avoid.

In our attacks on IDEA we employ various techniques and tools to control the
biclique differentials and reduce the data complexity. As a validity certificate,
we have implemented a large portion of our biclique construction algorithms
on a PC. We experimentally verified the amount of freedom we have in the
algorithms and our ability to spend that freedom on setting specific plaintext
bits to predefined constants.

A Large-Memory Variant. One of the appealing properties of biclique crypt-
analysis is the fact that memory requirements are naturally low, only exponential
in the dimension of the biclique, which is usually a small constant. In here we
show a rather generic way to speed-up biclique key recovery if a very large, but
only sequentially accessible memory is available.

The basic idea is that all those computations that do not depend on replies
of the plaintext or ciphertext oracle can be stored and reused for multiple key
recoveries. When doing this, the computational complexity to recover the first
key remains the same, for subsequent key recoveries however, less computations
are needed. In Section 6, for 5-round IDEA we give an example where this gives
a noticable speed-up.

4 Biryukov-Demirci Relation

The Biryukov-Demirci relation was introduced in [16] as a combination of two
observations by Biryukov (unpublished) and Demirci [11]. Consider two consec-
utive rounds of IDEA and two lines of computations:

X i
2 → X i+1

3 → X i+2
2 and X i

3 → X i+1
2 → X i+2

3

For these lines we have:(
(X i

2 � Zi
2) ⊕ (si � ti)

)
� Zi+1

3 = X i+2
2 ⊕ ti+1; (A)(

(X i
3 � Zi

3) ⊕ ti
)
� Zi+1

2 = X i+2
3 ⊕ (si+1 � ti+1). (B)

For the least significant bit the modular addition resolves into XOR:

LSB(X i
2 ⊕ Zi

2 ⊕ si ⊕ ti ⊕ Zi+1
3 ⊕ ti+1) = LSB(X i+2

2 );

LSB(X i
3 ⊕ Zi

3 ⊕ ti ⊕ Zi+1
2 ⊕ si+1 ⊕ ti+1) = LSB(X i+2

3 ).

Let us sum the equations and redistribute the summands:

LSB(X i
2 ⊕X i

3 ⊕Zi
2 ⊕Zi

3 ⊕ si) = LSB(X i+2
2 ⊕X i+2

3 ⊕ si+1 ⊕Zi+1
2 ⊕Zi+1

3 ). (2)

Therefore, for the matching in the MITM attack it is enough to compute
X i

2, X
i
3, s

i in the forward direction, and X i+2
2 , X i+2

3 , si+1 in the backward di-
rection. To compute si+1 it is enough to compute X i+2

1 , X i+2
2 and know an
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appropriate subkey Zi+1
5 . If some bits of subkeys Zi+1

2 and Zi+1
3 belong to Kb or

Kf , they are distributed to corresponding sides of the equation (this technique
named indirect partial matching [1] was applied to hash functions).

The BD-relation essentially excludes six multiplication operations, or about
1.5 rounds, from the matching part.

Improved Filtering. We can improve the filtering provided by the BD relation
by considering more than one bit in equations (A) and (B). More precisely,
we consider X i

2, X
i
3, s

i, X i+2
2 , X i+2

3 , si+1, Zi
2, Z

i
3, Z

i+1
2 and Zi+1

3 as known
parameters, and we denote the left hand side and the right hand of (A) and (B)
as LA(ti), RA(ti+1), LB(ti) and RB(ti+1), respectively.

If we know k bits of ti, we can compute k bits of LA(ti) and LB(ti), and k+1
bits of LA(ti) ⊕ LB(t

i). Similarly, if we know k bits of ti+1, we can compute k
bits of RA(ti+1) and RB(ti+1), and k + 1 bits of RA(ti+1)⊕RB(ti+1). As seen
in the previous section, some values of the parameters are incompatible with any
choice of ti or ti+1. In order to improve the filtering, we will guess some bits of
ti and ti+1 and exclude more parameter choices.

For instance, if we guess one bit of ti and ti+1, we can compute 1 bit of LA,B
and 2 bits of LA ⊕LB in the forward direction, and 1 bit of RA,B and 2 bits of
RA ⊕RB in the backward direction. We put those values a hash table for every
value of ti and ti+1, and we look for a match between the forward values and
the backward values for some value of ti and ti+1. We can show that there is a
match with probability 3/8 which means that we have a filtering of 1.41 bits.

More precisely, for given value ofX i
2, X

i
3, s

i, Zi
2, Z

i
3, Z

i+1
2 , Zi+1

3 in the forward
direction, and X i+2

2 , X i+2
3 , si+1 in the backward direction, there exists a choice

for the first bit of ti, ti+1 that result in a match iff:

(LA⊕LB)[0] = (RA⊕RB)[0] and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(LA(0)⊕ LB(0))[1] = (RA(α) ⊕RB(α))[1]

or

(LA(1)⊕ LB(1))[1] = (RA(ᾱ) ⊕RB(ᾱ))[1]

where α = (LA ⊕RA)[0]

This shows that the parameters will be compatible with probability 1/2× 3/4 =
3/8, and this has been verified experimentally. We can show in the same way
that we have a filtering of roughly 2 bits when guessing 3 bits of ti and ti+1; in
this case we have to evaluate LA,B and RA,B for 8 values of ti and ti+1, which

still costs less than one evaluation of the block cipher (we can evaluate four 4-bit
values of LA,B or RA,B in parallel using 16-bit operations). We can have 5 bits
of filtering using the full 16 bits of t, but we don’t see how to use that efficiently.

5 Key Recovery for the Full IDEA

Our approach to cryptanalyze the full IDEA is to construct a short biclique of
high dimension, and cover the remaining rounds with the independent-biclique
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approach. To find an optimal configuration of Kf and Kb bits, and also of the
matching position, we have run a short search program. First, we figured out that
the longest biclique that is still efficient covers 1.5 rounds. Then we computed
the maximum chunk length and hence the minimum matching cost. Then we
selected for Kf the bits that form long chunks after round 1, and for Kb the
bits that form long chunks ending with the ciphertext.

According to the search results, we have chosen the following key partitioning,
which results in a biclique of dimension 3:

– Kg (guess): bits K0...40, 42...47, 50...124.
– Kf (forward): bits K125...127.
– Kb (backward): bits K41,48,49.

We have also chosen the partition of the full IDEA into a biclique, chunks,
and the matching part according to Table 2. It is also illustrated in Figure 3.
By the attack algorithm, each chunk is computed 23 times per key group, and
the operations in the matching part are computed for each key. The Biryukov-
Demirci relation (2) serves as internal variable for the matching in rounds 4–6:

LSB(X4
2 ⊕X4

3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4)︸ ︷︷ ︸
computed forwards

?
= LSB(X6

2 ⊕X6
3 ⊕ s5)⊕ LSB(Z5

2 ⊕ Z5
3 )︸ ︷︷ ︸

computed backwards

.

Biclique. A straightforward way to construct a biclique with our key partition
would be as follows. Fix Kg and choose arbitrarily a plaintext P0. For K

b = 0
and each value of Kf compute internal states S0, S1, . . . , S7 that are tuples
of variables (Y 2

1 , Y
2
2 , Y

2
3 , Y

2
4 ). Consider S0 and for Kf = 0 and each value of

Kb compute plaintexts P0, P1, . . . , P7. Since differentials resulting from the key
differences in Kb and Kf do not interleave, these plaintexts and states form a
biclique:

Pi
Kb=i ||Kf=j−−−−−−−−−→

f
Sj .

However, we do not control the plaintexts P1, . . . , P7. Since we construct 2122

bicliques, we are likely to cover the full codebook. To reduce the data complex-
ity, we implement a more complicated biclique construction algorithm, which
enforces particular plaintext bits to zero in every biclique.

The improved algorithm works as follows:

1. Fix Kg, Kf = Kb = 000.
2. Choose arbitrarily Y 2

3 , Y
2
4 , p

1.
– For each Kb (eight options) compute the output of the MA function;
– For eachKb (eight options) compute X1

2 — second word of the plaintext.
– Check if 5 least significant bits of each X1

2 are zero (many other bit sets
would work as well). If not, choose other Y 2

3 , Y
2
4 , p

1.
– Note that this implies that the 5 least significant bits of s1 and t1 are

the same for all Kb. Therefore the 5 least significant bits of X1
3 will also

be the same for all Kb.
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Table 2. Round partition for 8.5-round attack. The cipher is splitted into four parts,
whose subkey bits are listed. The parts are a biclique, two chunks (where either Kb or
Kf ) are not used, and matching (where both Kb and Kf are used). The latter part
dominates the complexity.

Round Z1 Z2 Z3 Z4 Z5 Z6

� � � � � �
Biclique

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127↓ 25–40 41–56↑

Chunk 1 (Kb not used)

2 57–72 73–88
3 89–104 105–120 121-8↓ 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33

Matching

4 34–49↑
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12↓ 13–28

Chunk 2 (Kf not used)

8 29–44 45–60 61–76 77–92 93–108 109–124
9 22–37 38–53↑ 54–69 70–85

3. Choose a value t with the 5 least significant bits set to zero
– Use t as X1

3 with Kb = 000, and compute X2
1 and X2

2 .
– For each Kb (eight options) compute X1

1 — first word of the plaintext,
from X2

1 and X2
2 .

– Check if the least significant bit of each X1
1 — first word of the plaintext

— is zero. If not, choose another t. If all the t’s have been tried, choose
another Y 2

3 , Y
2
4 , p

1.
4. Compute other plaintext words for eachKb. Derive plaintexts P0, P1, . . . , P7.
5. Vary Kf and derive internal states S0, S1, . . . , S7.

Therefore, a single biclique can be constructed in 240 time, and 11 plaintext bits
(15, 27–31 and 43–47) are set to zero. We notice that key bits 16–25, 32–40,
57–63, 96–124 are neutral for the biclique and can be flipped without violating
its plaintext property. Therefore, we can reuse the biclique for 255 key groups
and hence make the amortized cost negligible.

The first part of the construction require that there exist a choice of Y 2
3 , Y

2
4 ,

p1 so that the 5 least significant bits of each X1
2 are zero; this is expected to be

the case for a proportion 1−e−8 > 99.9 of the keys. For the full construction, we
have a 58-bit condition, which will be satisfied by a proportion 1−e−11 ≈ 99.99%
of the keys. We can also control one more bit of X1

1 , but this leads to a 61-bit
conditions, which is satisfied by 95% of the key. Alternatively, we can look for
a six bit match in X1

2 and X1
3 , and a one bit match in X1

1 . This gives control over
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relation

BD

5 7 8 9

Matching

Fig. 3. Attack on the full IDEA (rounds 1–9). Having constructed a biclique, we par-
tially encrypt output states (chunk 1), ask for ciphertexts, partially decrypt them
(chunk 2), and match with the help of the BD-relation. The relation allows to ignore
about 1.5 rounds of computation.

13 bits of the plaintext, but it only works for less than (1 − 1/e) ≈ 63% of the
keys. Finally, we can achieve various tradeoffs by changing the dimension of the
biclique; we can control:

– 23 bits of a dim.-2 biclique with succ. rate (1 − e−4)(1 − e−5) > 97.5%
– 24 bits of a dim.-2 biclique with succ. rate (1 − e−4)(1 − e−2) > 84%
– 11 bits of a dim.-3 biclique with succ. rate (1 − e−8)(1 − e−11) > 99.9%
– 12 bits of a dim.-3 biclique with succ. rate (1 − e−8)(1 − e−3) > 94%
– 5 bits of a dim.-4 biclique with succ. rate (1− e−16)(1− e−14) > 99.9999%

Complexity. Each biclique tests 26 keys. The first chunk employs 9 multipli-
cations, the second chunk — 6 multiplications, the matching part — 13 multi-
plications (and hence 7 when we use the relation, of which two compute only a
single output bit and are hence counted as a half multiplication is discussed in
Section 2). We recheck on Y 5

1 , for which we need 2 multiplications: on Z4
6 and

Z5
1 . A negligible proportion of keys is rechecked on the full state and on another

plaintext/ciphertext pair. Therefore, 26 keys are tested with

9 · 8 + 6 · 8 + (5 +
1

2
+

1

2
) · 64 + 2 · 32 = 632 multiplications = 24.06

calls of IDEA. The total time complexity is hence 2126.06.
We can expand Kb to 4 bits for the cost of increased data complexity. As

we would be able to spend only 4 degrees of freedom per plaintext, the data
complexity becomes 259 and the number of multiplications for 27 keys is 1064
which yields a total complexity of about 2125.97 calls of IDEA, as an easily be
computed:

9 · 8 + 6 · 16 + (5 +
1

2
+

1

2
) · 128 + 2 · 64 = 1064 multiplications.
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6 New 5 Round Attack

The only 5-round attacks that start at the beginning of the cipher are the follow-
ing. Biham et al. mention the possibility of an attack with memory complexity
224 and time complexity of 2119. The fastest attack so far needs 2115.5 time, but
also the full codebook. In here we provide the fastest attack which additionally
requires only 225 chosen plaintexts.

– Kg (guess): bits K0...8, 25...49, 75...127.
– Kf (forward): bits K50...74.
– Kb (backward): bits K9...24.

We can easily construct a biclique of size 225×216 in round 1, since the paths are
clearly independent: the backward key only affects X1

1 and X1
2 , while the forward

key affects Y 1
3 , p

1, q1 and everything after the MA function. The matching point
is p3 (16 bits), which can be computed in both chunks.

We can control 39 bits of the plaintext in the following way:

– We start with X1
3 = 0, X1

4 = 0, some arbitrary value for Y 1
1 , and

Y 1
2 = 29K25...31 + 0x1ff

– We can then compute X1
1 and X1

2 for each choice of Kb. Note that the high
7 bits of X1

2 = Y 1
2 �K16...31 will be zeros because there will be no carry in

the subtraction.
– Finally we compute X2

1 , X
2
2 , X

2
3 , X

2
4 for each choice of Kf .

The biclique construction has negligible cost, as we can use most of the key bits
as neutral.

Alternatively, we can see this attack as a basic MITM if we start with state
Y 1
1 , Y

1
2 , X

1
3 , X

1
4 . In the forward part, we can compute p3 independently of Kb.

For the backward part we compute X1
1 and X1

2 , then we query the oracle on
that state, and continue the computation from the ciphertext X1

1 , X
1
2 , X

1
3 , X

1
4 ,

up to p3.
If we flip key bits 112–127, only 2 multiplications in round 2 are affected.

Therefore, in the first chunk we need only 3 multiplications to recompute in total.
In the second chunk we recompute 7 multiplications. The matching comes for
free, but the 225 key candidates must be rechecked on 1 multiplication. Hence the
total complexity of testing 2128−25−16 = 287 key groups is computed as follows:

C = 287
(

4

20
225 +

7

20
216

)
= 2110.

When trying to recover multiple independent keys, and following the large-
memory variant outlined in Section 3, the results of 225 forward computations
for all 287 bicliques could be precomputed and stored in the form of a table of
225 · 16 bits (for p3) for each keygroup together with the plaintext. Hence at
the cost of a memory of size equivalent to 2110 blocks (of 64 bits each) that
needs to be accessed 225 · 287 = 2112 times in a sequential way for every individ-
ual key recovery, the computational cost would drop to about an equivalent of
287

(
7
202

16
)
= 2101.5 IDEA calls, as only the backwards computations need to be

performed for every keygroup with the respective oracle responses.
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Table 3. Round partition for the 5-round attack

Round Z1 Z2 Z3 Z4 Z5 Z6

Biclique

1 0–15 16–31 32–47 48–63 64–79 80–95

Chunk 1

2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 121-8

Chunk 2

4 82–97 98–113 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42

7 New 6 Round Attack

The best currently known 6-round attack, the very recent and still unpublished
MITM approach of [2] works for 6-rounds only with a single starting position
that does not coincide with the actual start of the cipher. In here we give the
first 6-round attack.

The key partition is as follows:

– Kg (guess): bits K0...65, 75...111.
– Kf (forward): bits K66...74.
– Kb (backward): bits K112...127.

We use a one-round biclique at the end of the cipher, in round 6. Then we
compute s2 in the forward direction and s3 in the backward direction, and use
the BD relation.

For the construction of the biclique, we start with Y 6
1 = 0, X6

2 = −K59...74,
Y 6
3 = 0 and Y 6

4 = 0. For each Kf , we compute the final state at the end of
round 6. We note that we have X7

1 = X7
2 and the 7 most significant digits of X7

3

and X7
4 are also equal. Thus, we control 23 bits of the ciphertext, and the data

complexity is 241.
In order to filter out enough bad guesses, we will use 9 bicliques for each Kg.

The most expensive part of the attack is the backward computation of s3. For
each Kg guess, this costs:

9 ·
(
25 + 216 + 216 +

1

2
· 216

)
= 220.5 multiplications = 215.9 IDEA calls

The total complexity is therefore 2103 · 215.9 = 2118.9.

8 New 7.5 Round Attack

In the 7.5-round attack we construct a biclique in the first 1.5 rounds. The key
partitioning is defined as follows:
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∇
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Fig. 4. Biclique ∇-differential in 7.5-round attack

– Kg (guess): bits K0...24, 25...40, 42...99, 125...127.
– Kf (forward): bits K100...124.
– Kb (backward): bits K25,41.

The differentials based on Kf and Kb do not interleave in the first 1.5 rounds.
Therefore, we can construct a biclique in a straightforward way similar to the full-
round attack. However, the differential generated by Kb affects the full plaintext.
To reduce the data complexity we construct two bicliques for a key group so that
the differential generated by Kb vanishes at the input of the MA-function.

We proceed as follows. For the first biclique we fix K25⊕K41 = 0, and for the
second one K25⊕K41 = 1. As a result, a difference in Kb generates simultaneous
differences in Z2

3 and Z2
4 . Denote the difference in Z2

3 by ∇ (generated by bit
K25), and in Z2

4 by ∇′ (generated by K41). We want the difference in X2
4 to be

equal to ∇ so that the MA-structure have zero input difference (Figure 4). We
fulfill this condition by random trials. Bicliques are hence constructed as follows:

1. Fix X1
1 = X1

2 = X1
3 = 0;

2. Choose arbitrarily values for X1
4 :

– Generate internal states for the biclique;
– Check whether the MA function has zero input difference. If not, try

another value of X1
4 .

Computational and Data Complexity. A single pair of biclique is generated
in less than 216 calls of IDEA. This value is amortized since we can derive 219

more bicliques by changing key bits 96–104, (and recomputing Y 2
1 ), 125–127

(recompute Y 2
2 ) and bits 57–63 of Z1

4 (and recomputing the plaintext). Therefore,
an amortized cost to construct a biclique is negligible.

Since the ∇-differential affects the most significant bit of X1
2 only, the plain-

texts generated in bicliques have 47 bits fixed to zero. Therefore, the data com-
plexity does not exceed 217. The full computational complexity of the attack is
computed as follows:
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C = 2107
(
Cbicl + 213Cchunk1 + 2Cchunk2 + 213Crecheck

)
,

where we test 2106 key groups with two bicliques each. The amortized biclique
construction cost is negligible. We note that the multiplication by Z2

5 in round 2
is also amortized as the change in key bits 57–63 does not affect it. Therefore, the
total number of multiplications in the first chunk is 1+4+2 = 7 multiplications,
in the second chunk — 1 + 3 + 4 + 2 = 10 multiplications, to recheck — 3
multiplications (to compute the full p5 in both directions). The total complexity
is hence 2127 10

30 = 2126.5.
We can decrease the time complexity for the cost of the increase in the data

complexity. Let us assign one more bit to Kb so that there are 8 values of Kb.
We spend 64 bits of freedom in the internal state to fix 13 bits of each biclique
plaintext, as shown for the attack on the full IDEA. Then the complexity is
estimated as follows:

C = 2100
(
225

8

30
+ 23

10

30
+ 228

1

2
· 2

30

)
= 2124.1.

We can further reduce the complexity using the improved BD filtering on two
bits described in Section 4, which filters out 5/8 of the candidates. First we
consider bits 112-113, 105-106, 121-122, 114-115 as part of Kg instead of Kf , so
that all the keys involved in the BD relation are part of Kg. We also use some
precomputations. For each Kb, we compute s5, and we evaluate RA(t5) and
RB(t5) for 2 guesses of t5. Then, we consider the potential candidates from the
forward chunk: for each possible 1-bit value of X4

2 , X
4
3 and s4, plus the second

bit of X4
2 ⊕X4

3 ⊕ s4 we guess 1 bit of t4 in order to compute LA(t4) and LB(t4);
then we can filter the corresponding candidates for Kb (we expect 3 candidates
on average). Then for each Kf , we just use this table to recover the candidates.
For the complexity evaluation, we assume that finding a match in the hash table
costs the same as one multiplication. This yields a complexity of:

C = 2108
(
217

8

30
+ 23

10 + 2 + 25

30
+ 220

3

8
· 2

30

)
= 2123.9.

9 On Practical Verification

Especially for the type of cryptanalysis described in this paper where carrying
out an attack in full is computationally infeasible, practical verification of attack
details and steps is important in order to get confidence in it. To address this,
we explicitly state the following:

– We have implemented the dimension-3 biclique construction of Section 5,
which works as expected, and takes a few hours on a desktop PC. An example
is given in Appendix A.

– We have implemented the improved matching procedure as described in
Section 4. We have verified that we have the expected number of remaining
candidates.
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10 Concluding Discussion

We showed that a number of extensions to the recently introduced biclique frame-
work and specific properties of IDEA eventually lead to the cryptanalysis of the
full version of the cipher. Though IDEA withstood all cryptanalysis attempts in
the last 20 years, it is now vulnerable to key recovery methods that are about 4
times faster than brute force search. We also show attacks on the first 7.5 rounds
where the attack algorithm does not have to consider each key separately, result-
ing in a larger complexity advantage. For smaller number of rounds we surpass
the best attacks so far, hence refuting the view that biclique attacks lead only
to a small advantage over the brute-force.

We emphasize the use of several techniques from hash function cryptanalysis,
which are usually associated with the start-in-the-middle framework. Following
the recent work on AES, we demonstrate that these techniques are important
also in secret-key cryptanalysis. We foresee widespread application of tools aimed
for data complexity reduction, which could be based on our concept of narrow-
bicliques.

As a natural application of a new concept we would again name AES. Be-
ing able to construct high-dimensional bicliques rather deep in the cipher with
reasonable data complexity, an adversary might be able to get a significant ad-
vantage over brute-force for the full number of rounds, and possibly even present
the best attacks on already broken number of rounds. As meet-in-the-middle at-
tacks might potentially work in 2n/2 time, it would be extremely interesting to
figure out the number of AES rounds that could be broken with this almost
practical complexity.

This line of work opens up more questions that we feel are important:

1. Bounds for biclique attacks. With a biclique attack in this paper that is
218 times faster than brute force (or 226.5 times faster if large sequentially
accessable memory is available) an earlier intuition that this class of attacks
only allows for rather small speed-ups over brute force search is dismissed.
Nevertheless it may be possible to give meaningful bounds on classes of
biclique attacks.

2. How to best defend against biclique cryptanalysis? In this paper we see
that even a more conservative key schedule design for IDEA is almost as
vulnerable. It seems as if only very expensive key schedule designs, i.e. those
where the key can not easily be deduced from subkey material, would provide
resistance. This remains a topic of future work, though.
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A Biclique Example

We give an example of a dimension-3 biclique for the first 1.5 round of IDEA. It is
built with the bits ofKg set to the key 0x0102030405060708090a0b0c0d0e0f10,
and the bits used for Kf and Kb are 41, 48, 49 and 116, 117, 118, respectively.
Each plaintext has 11 bits set to zero as explained in Section 5.

P0 1754 5580 00c0 d05b S0 7092 7352 f5b1 7272

P1 0f10 ca00 a440 aa79 S1 7092 7152 f5b1 7272

P2 bda8 f580 a0a0 c6b7 S2 7092 6f52 f5b1 7272

P3 17c4 86a0 6f00 6c69 S3 7092 6d52 f5b1 7272

P4 e9fe 6500 5100 143a S4 7092 6b52 f5b1 7272

P5 9252 0200 ec00 230c S5 7092 6952 f5b1 7272

P6 aa8e b5a0 5fc0 16ef S6 7092 6752 f5b1 7272

P7 4a9e c520 b040 ecc0 S7 7092 6552 f5b1 7272
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Abstract. This paper presents two types of cryptanalysis on a Merkle-
Damg̊ard hash based MAC, which computes a MAC value of a message
M by Hash(K‖
‖M) with a shared key K and the message length 
. This
construction is often called LPMAC. Firstly, we present a distinguishing-
H attack against LPMAC instantiating any narrow-pipe Merkle-Damg̊ard
hash function with O(2n/2) queries, which indicates the incorrectness of
the widely believed assumption that LPMAC instantiating a secure hash
function should resist the distinguishing-H attack up to 2n queries. In
fact, all of the previous distinguishing-H attacks considered dedicated at-
tacks depending on the underlying hash algorithm, and most of the cases,
reduced rounds were attacked with a complexity between 2n/2 and 2n.
Because it works in generic, our attack updates these results, namely full
rounds are attacked with O(2n/2) complexity. Secondly, we show that an
even stronger attack, which is a powerful form of an almost universal
forgery attack, can be performed on LPMAC. In this setting, attackers
can modify the first several message-blocks of a given message and aim
to recover an internal state and forge the MAC value. For any narrow-
pipe Merkle-Damg̊ard hash function, our attack can be performed with
O(2n/2) queries. These results show that the length prepending scheme
is not enough to achieve a secure MAC.

Keywords: LPMAC, distinguishing-H attack, almost universal forgery
attack, multi-collision, diamond structure, prefix freeness.

1 Introduction

Message Authentication Code (MAC) is a cryptographic technique which pro-
duces the integrity of the data and the authenticity of the communication player.
MACs take a message and a key as input and compute a MAC value which is
often called tag. Suppose that a sender and a receiver share a secret key K in
advance. When the sender sends a messageM to the receiver, he computes a tag
σ and sends a pair of (M,σ). The receiver computes a tag by using the shared
key K and the received M . If the result matches with the received σ, he knows
that he received the correct message and it was surely sent by the sender.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 411–427, 2012.
c© International Association for Cryptologic Research 2012



412 Y. Sasaki

MACs are often constructed by using block-ciphers or hash functions. There
are three basic MAC constructions based on hash functions which were analyzed
by Tsudik [1]. Let H be a hash function. A secret-prefix method computes a
tag of a message M by H(K‖M). A secret-suffix method computes a tag by
H(M‖K). A hybrid method computes a tag by H(K‖M‖K). Among the above
three, the secret-prefix method is known to be vulnerable when H processes M
block by block by iteratively applying a compression function h. This attack
is called padding attack in [1] and length-extension attack in the recent SHA-3
competition [2]. Assume that the attacker obtains the tag σ for a message M .
He then, without knowing the value of K and M , can compute a tag σ′ for a
message M‖z for any z by computing σ′ ← h(σ, z).

LPMAC was suggested to avoid the vulnerability of the secret-prefix method
[1]1. In LPMAC, the length of the message to be hashed is prepended before the
message is hashed, that is to say, σ ← H(K‖�‖M), where � is the length ofM .K‖�
is often padded to be a multiple of the block-length so that the computation ofM
can start from a new block. The length prepending scheme can be regarded as a
concrete construction of the prefix freeness introduced by Bellare et al. [4]. There-
fore, by [4], LPMACwas proven to be a secure pseudo-random function (PRF) up
to O(2n/2) queries.

The security of MAC is usually discussed with respect to the resistance against
the following forgery attacks. An existential forgery attack creates a pair of valid
(M,σ) for a message M which is not queried yet. A selective forgery attack
creates a pair of valid (M,σ) where M is chosen by the attacker prior to the
attack. A universal forgery attack creates a pair of valid (M,σ) where M can
be any message chosen prior to the attack. Variants of these forgery attacks can
also be considered. For example, Dunkelman et al. introduced an almost univer-
sal forgery attack [5] against the ALRED construction, which the attacker can
modify one message block in M . In addition, the security against distinguishing
attacks are also evaluated on MAC constructions. Kim et al. introduced two
distinguishing attacks called distinguishing-R and distinguishing-H [6]. Let R
and r be random functions which have the same domain as H and h, respec-
tively. Moreover, we denote the hash function H instantiating a compression
function f by Hf . In the distinguishing-R attack, the attacker distinguishes a
MAC H(K,M) from R(K,M). On the other hand, in the distinguishing-H at-
tack, the attacker distinguishes Hh(K,M) from Hr(K,M).

Regarding the distinguishing-R attack, Preneel and van Oorschot [7] presented
a generic attack against MACs with a Merkle-Damg̊ard like iterative structure,
which requires O(2n/2) queries. In [7], it was explicitly mentioned that the same
attack could be applied to LPMAC. Chang and Nandi later discussed its precise
complexity when a long message is used [8]. The distinguishing-R attack is im-
mediately converted to the existential forgery attack with the same complexity.
On the other hand, no generic attack is known for the distinguishing-H attack,
and it is widely believed that the complexity of the distinguishing-H attack

1 The name “LPMAC” was given by Wang et al. [3].
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Table 1. Comparison of distinguishing-H attacks against LPMAC

Attack Target Size(n) #Rounds #Queries Reference

SHA-1 160 43/80 2124.5 [3]
SHA-1 160 61/80 2154.5 [3]
SHA-1 160 65/80 280.9 [18]

SHA-256 256 39/64 2184.5 [20]
RIPEMD 128 48/48 (full) 266 [19]

RIPEMD-256 256 58/64 2163.5 [19]
RIPEMD-320 320 48/80 2208.5 [19]

Generic narrow-pipe MD n full 3 · 2n
2 Ours

Our attack also requires 2n/2 offline computations and a memory to store 2n/2 tags.
The attack can be memoryless with 6 · 2n/2 queries and 2(n/2)+1 offline computations.

against a MAC instantiating a securely designed hash algorithm Hh should cost
2n complexity.

There are several cryptanalytic results on MAC constructions. Although sev-
eral results are known for block-cipher based MACs e.g. [5, 9, 10], in this paper,
we focus our attention on hash function based MACs. A notable work in this
field is the one proposed by Contini and Yin, which presented distinguishing and
key recovery attacks on HMAC/NMAC with several underlying hash functions
[11]. After that, several improved results were published [12–16]. Another im-
portant work is the one proposed by Wang et al. [17], which presented the first
distinguishing-H attack on HMAC-MD5 in the single-key setting. In this attack
framework, the number of queries principally cannot be below 2n/2 because the
birthday attack is used. With the techniques of [17], a series of distinguishing-H
attacks on LPMAC were presented against SHA-1, SHA-256, and the RIPEMD-
family [18, 19, 3, 20]. The attack results are summarized in Table 1. Note that
the notion of the almost universal forgery attack was firstly mentioned by [5],
while some of previous attacks e.g. [10] can directly be applied for this scenario.

Our Contributions

In this paper, we propose generic attacks on LPMAC instantiating any narrow-
pipe Merkle-Damg̊ard hash function. We firstly propose a distinguishing-H at-
tack with 3 ·2n/2 queries, 2n/2 offline computations, and a memory to store 2n/2

tags. Our attack updates the previous results, namely full rounds are attacked
with O(2n/2) complexity. Moreover, the attack can be memoryless by using the
technique in [21, Remark9.93]. The complexity of our attack is listed in Table 1.

Our attack is based on a new technique which makes an internal collision
starting from two different length-prepend values, and recovers an internal state
value with queries of different lengths. This approach is completely different from
previous attacks on LPMAC, which utilize the existence of a high-probability
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differential path of an underlying compression function. The idea of our technique
is depicted in Fig. 1. The outline is as follows. We start from two length-prepend
values; one is for 2-block messages and the other is for 3-block messages. With
a very high probability, the internal states H1 and H ′

1 will be different values.
Assume that we can easily obtain paired messages (M1,M

′
1) such that h(H1,M1)

and h(H ′
1,M

′
1) form an internal collision. Then, we can obtain the value of

H4(= σ′), which is the output of the last compression function, by querying
M ′

1‖M ′
2‖M ′

3. In addition, we can obtain the value of H3(= σ), which is the
input of the last compression function by querying M1‖M2. Because we obtain
all input and output information for the last compression function, we can judge
whether h is the target algorithm or not by comparing h(σ,M ′

3) and σ
′.

As mentioned before, the length prepending scheme is known to be prefix-
free. However, an internal collision with different length-prepend values have the
same effect as the prefix. In fact, in Fig. 1, M1‖M2 can be regarded as a prefix
ofM ′

1‖M ′
2‖M ′

3. This shows that the core of the security of LPMAC, which is the
pre-fix freeness, can be totally broken with O(2n/2) queries.

We then further extend the technique to mount an even stronger attack
against LPMAC, which is called an almost universal forgery attack. In this
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attack, for a given t-block message M1‖M2‖ · · · ‖Mt, we assume the attacker’s
ability to modify the first d message blocks where d = (log t� into the value of his
choiceM ′

1‖M ′
2‖ · · · ‖M ′

d. Then, the attacker forges the tag forM
′
1‖ · · ·M ′

d‖Md+1‖
· · · ‖Mt. Moreover, in our attack, the attacker can reveal the internal state value.
The main idea is constructing a multi-collision starting from various different
length-prepend values, which is depicted in Fig. 2. This enables the attacker to
deal with various undetermined length-prepend values (1, . . . , t) in advance. To
construct the multi-collision, we use the diamond structure proposed by Kelsey
and Kohno for the herding attack [22].

Paper Outline

In Sect. 2, we introduce LPMAC and briefly summarize related work. In Sect. 3,
we explain our generic distinguishing-H attack. In Sect. 4, we explain our generic
almost universal forgery attack. In Sect. 5, we conclude this paper.

2 Related Work

2.1 LPMAC with Narrow-Pipe Merkle-Damg̊ard Hash Functions

LPMAC is a hash function based MAC construction observed by Tsudik [1]
to prevent the so called length-extension attack on the secret-prefix MAC. In
LPMAC, the length of the message to be hashed is prepended before the mes-
sage is hashed, that is to say, σ ← H(K‖�‖M), where � is the length of M .

Most of widely used hash functions adopt the Merkle-Damg̊ard domain exten-
sion with the narrow-pipe structure and the MD-strengthening. In this scheme,
the input message M is first padded to be a multiple of the block-length by the
padding procedure. Roughly speaking, a single bit ‘1’ is appended to M , and
then a necessary number of ‘0’s are appended. Finally, the length of M is ap-
pended. Note that this padding scheme is not only the one, and replacing it with
another padding scheme e.g. split padding [23] is possible. However, we only use
it in this paper because it is the most common. The padded message is divided
into message blocks M0,M1, . . . ,Mt−1 with the block size of b bits. Then, the
hash value of size n is computed by iteratively updating the chaining variable of
size n bits with the compression function h defined as {0, 1}n×{0, 1}b → {0, 1}n;

H0 ← IV, Hi+1 ← h(Hi,Mi) for i = 0, 1, . . . , t− 1, (1)

where IV is an n-bit pre-specified value. Finally, Ht is the hash value of M .
In this paper, for simplicity, we assume that K‖� is always padded to be 1-

block long. Note that all of our attacks can work without this assumption by
fixing remaining message bits in the first block to some constant value, say 0.

2.2 Summary of Previous Analyses on MAC Algorithms

To distinguish the target compression function h from a random function r, pre-
vious distinguishing-H attacks exploited a high probability differential path on h.
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Assume that a good near-collision path exists, namely there exists (Δ,Δ′) such
that h(c,m) ⊕ h(c,m ⊕ Δ) = Δ′ holds with probability p where p > 2−n for
a randomly chosen c and m. Then, h is distinguished by querying 1/p paired
messages with difference Δ and checking whether the output difference is Δ′. To
construct a high probability differential path, we usually need the difference of
the input chaining variable (pseudo-near collision). However, because the MAC
computation starts from the secret information, it is hard to generate a spe-
cific difference on intermediate chaining variables, and is also hard to detect it
only from the tag values. Wang et al. [17] solved these problems by using the
birthday attack to generate a specific difference of an intermediate chaining vari-
ables and efficiently detect it only by changing the next message block. Previous
distinguishing-H attacks on LPMAC [18, 19, 3, 20] used the similar idea as [17].
As long as the birthday attack is used to generate an intermediate difference,
the attack complexity is between 2n/2 and 2n.

2.3 Multi-collision Attack

The naive method to construct a multi-collision is too expensive. For narrow-pipe
Merkle-Damg̊ard hash functions, several generic attacks to construct a multi-
collision are known; collisions of sequential blocks [24], collisions with a fixed
point [25], an expandable message [26], a diamond structure [22], and multi-pipe
diamonds [27]. These are the methods to attack hash functions, which no secret
exists in the computation. Because our attack is targeting MAC with secret
information, we should choose the most suitable construction carefully.

3 Generic Distinguishing-H Attack on LPMAC

In this section, we present a generic distinguishing-H attack on a narrow-pipe
Merkle-Damg̊ard hash function. The attack complexity is 3·2n

2 queries, 2
n
2 offline

computations, and a memory to store 2
n
2 (n+ b)-bit information. Moreover, the

attack becomes memoryless with 6 · 2n
2 queries and 2

n
2 +1 offline computations.

The results indicate that the hardness of the distinguishing-H attack on LPMAC
is almost the same level as the distinguishing-R attack when a narrow-pipe
Merkle-Damg̊ard hash function is used.

3.1 Main Idea

Our attack is based on a new technique which makes an internal collision starting
from two different length-prepend values t1 and t2 where t1 < t2. The idea is
illustrated in Fig. 3. First the attacker generates 2n/2 t2-block messages which
start from the length-prepend value t2 and the last t2 − t1 blocks are fixed to
some value. Then he generates 2n/2 t1-block messages starting from the length-
prepend value t1 and further computes t2 − t1 blocks at offline with the fixed
value. By checking their match, the inner collision at Ht1+1 can be detected
with a good probability. The attacker can know the values of Ht1+1 and Ht2+1
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IV h h
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Fig. 3. Internal Collision with Different Length-Prepend Values
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Fig. 4. Procedure of Distinguishing-H Attack

by querying the colliding t1-block message and t2-block message, respectively.
Therefore, by simulating the last t2 − t1 blocks at offline, which of h or r is
instantiated can be detected.

3.2 Attack Procedure

We assume that the MD-strengthening is used as the padding procedure of the
underlying hash function, because it is adopted by most of widely used hash
functions. The attack procedure is described in Alg. 1, which is also depicted in
Fig. 4. Note that the length-prepend value can be chosen by the distinguisher.
The attack procedure returns a bit 1 if the underlying compression function is
h and a bit 0 if the underlying compression function is r.

Attack Evaluation. Alg. 1 correctly returns a bit 1 only if the compression
function is h.

Let us evaluate the probability that Alg. 1 returns a bit 1 when the compres-
sion function is h. In the above procedure, we generate 2n/2 values for H2(= σ)
and 2n/2 values for H ′

2, and thus we have 2n pairs of (H2, H
′
2). Hence, we have

a collision (H2 = H ′
2) with probability 1 − e−1. If H2 = H ′

2, the simulated
value temp and σ′ always become a collision due to the identical message in the
last block. Note that we happen to have a collision at Step 9 even if H2 �= H ′

2
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Algorithm 1. Distinguishing-H Attack

Input: a compression function algorithm h to be distinguished
Output: a determining bit 0 or 1
1: Randomly choose the value of M ′

2 so that the padding string P2 is included in the
same block.

2: for 2n/2 different values of M ′
1 do

3: Query M ′
1‖M ′

2 to obtain the corresponding tag σ′

4: Store the pair of (M ′
1, σ

′) in a table T .
5: end for
6: for 2n/2 different values but the same length of M1 whose padding string P1 is

included in the same block do
7: Query M1 and obtain the corresponding tag σ.
8: Compute temp← h(σ,M ′

2‖P2) at offline.
9: Check if the same value as temp exists in T .
10: if the same value exists then
11: Replace M ′

2 with M ′
2 such that M ′

2 �= M ′
2 and |M ′

2| = |M ′
2|.

12: Query M ′
1‖M ′

2 to obtain the corresponding tag σ′.
13: Compute temp← h(σ,M ′

2‖P2) at offline.
14: if σ′ = temp then
15: Return a bit 1.
16: end if
17: end if
18: end for
19: Return a bit 0.

with probability 1 − e−1. This collision is noise in order to detect the internal
collision. However, with the additional check at Step 14, the internal collision
pair (H2 = H ′

2) also generates a collision for M ′
2 with probability 1, whereas

the noise collision only produces another collision with probability 2−n. Overall,
Alg. 1 returns a bit 1 with a probability of 1−e−1 and this is a right pair making
an internal collision with probability 1− 2−n ≈ 1.

Let us evaluate the probability that Alg. 1 returns a bit 1 when the com-
pression function is r. An internal collision H2 = H ′

2 occurs with probability
1 − e−1. However, the collision between H2 and H ′

2 is not preserved between
temp and σ′ at Step 9. This is because σ′ is obtained by a query and thus
σ′ = r(H2,M

′
2‖P2), whereas, temp is computed based on the algorithm of h

at offline and thus temp = h(H2,M
′
2‖P2). The probability that r(H2,M

′
2‖P2)

collides with h(H2,M
′
2‖P2) is 2−n. As a result, we expect to obtain only one

collision at Step 9, and the probability that this pair generates another collision
at Step 14 is 2−n. Overall, Alg. 1 returns 1 only with probability 2−n. This is
significantly smaller than the probability for the case of h.

Complexity Evaluation. The iteration at Step 2 requires to query 2n/2 2-
block messages and to store 2n/2 tag values and corresponding messages. Hence,
the query complexity is 2(n/2)+1 message blocks and the memory complexity is
2n/2(n + b) bits, where b is the block size. The iteration at Step 6 requires to
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query 2n/2 1-block messages and to compute h for each of them. Hence, the query
complexity is 2n/2 message blocks and the time complexity is 2n/2 compression
function computations. Overall, the total attack cost is 3 · 2n/2 message blocks
in query, 2n/2 h computations in time, and 2n/2(n+ b) bits in memory.

Memoryless Attack. The core of the attack is a collision finding problem
on an internal state, thus it can be memoryless with the well-known technique
using the cycle structure. Because it needs a collision starting from two different
length-prepend values, the problem is a memoryless meet-in-the-middle attack
[21, Remark9.93] rather than a memoryless collision attack. To make the cycle,
we define the computation from an internal state value si to si+1 as follows.

- If the LSB of si is 0, apply procedure F . If the LSB of si is 1, apply G.
F : Convert an n-bit string si into a b-bit string sFi e.g. by appending 0s. Query

sFi ‖M ′
2 to obtain σ′ and set si+1 ← σ′.

G : Convert an n-bit string si into a string sGi by some appropriate method so
that the padding string P1 is included in the same block. Query sGi to obtain
σ and compute si+1 ← h(σ,M ′

2‖P2) at offline.

Finally, the attack can be memoryless with double of the query and time com-
plexities, which are queries of 6 · 2n/2 message blocks and 2(n/2)+1 computations
of h.

Impact of the Attack. The goal of the attack presented in this section is the
distinguishing-H attack. However, the attack not only distinguishes h from r,
but also achieves a much stronger result, which is the recovery of the internal
state. The knowledge of the internal state leads to much stronger attacks.

The first application is the length-extension attack. We use Fig. 3 to explain
the attack. As explained in Sect. 3.1, our attack first recovers the internal state
value ht1+1. That is, we know that any t2-block message whose first t1 blocks
are fixed to M ′

1‖M ′
2‖ · · · ‖M ′

t1 will result in the known collision value at ht1+1.

Therefore, for any (t2 − t1)-block message Mt1+1‖ · · · ‖Mt2 , the attacker can
compute the tag for M ′

1‖ · · · ‖M ′
t1‖Mt1+1‖ · · · ‖Mt2 only with one offline compu-

tation (of t2 − t1 blocks) without knowing the value of K. In other words, the
length-extension attack can be performed once an internal collision with different
length-prepend values is detected.

One may suspect that this length extension attack is the same as the existen-
tial forgery because it requires O(2n/2) queries. However, obtaining the knowl-
edge of the internal state is actually stronger than the distinguish-R attack [7]
because it forges the tag of a message of t2 blocks long without any more query.

It may be interesting to see our attack from a different viewpoint. The security
proof of LPMAC by Bellare et al. assumed the prefix-freeness of the construction,
where the prefix-freeness means that any message is not the prefix of other
messages. Due to the length-prepend values, LPMAC satisfies the prefix-freeness.
However, an internal collision starting from different length-prepend values has
the same effect as the prefix. In fact in the above explanation, M1‖ · · · ‖Mt1 can
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be regarded as a prefix of M ′
1‖ · · · ‖M ′

t1‖Mt1+1‖ · · · ‖Mt2 , and thus the length-

extension attack is applied. Note that our attack requires 3 · 2n/2 queries and
thus does not contradict with the security proof by Bellare et al. where LPMAC
is a secure PRF up to 2n/2 queries.

One limitation of this length extension attack is that it only can forge the tag
for messages of t2 blocks long. We remove this limitation in the next section.

4 Generic almost Universal Forgery Attack on LPMAC

The almost universal forgery attack was mentioned by Dunkelman et al. [5]. The
original explanation by [5] is as follows.

we can find in linear time and space the tag of essentially any desired
message m chosen in advance, after performing a onetime precomputa-
tion in which we query the MAC on 2n/2 messages which are completely
unrelated to m. The only sense in which this is not a universal forgery
attack is that we need the ability to modify one message block in an easy
to compute way.

In the attack by [5], the first message block of the given message is modified by
applying the XOR with two precomputed values.

In our attack, the attacker first determines parameter t, which is the limitation
of the block-length of a message to be forged. For parameter t, the block length
of the target message must be longer than d blocks and shorter than or equal to
d+ t blocks, where d = (log2 t�. We perform a onetime precomputation; query
tags for (t− 1) · 2n/2 messages of at most d+ t blocks long (in total O(2t2 · 2n/2)
message blocks) which are completely unrelated to a target message M , and
perform t ·2n/2 offline computations of h. At the online stage, we replace the first
d blocks ofM(M1‖M2‖ · · · ‖Md) with the precomputed values M ′

1‖M ′
2‖ · · · ‖M ′

d.
Then, the attacker generates the tag for the modified message only with one
offline computation (without any query).

4.1 Easiness and Hardness of almost Universal Forgery Attack

Easiness of almost Universal Forgery Attack on Various MACs. First
of all, we point out that the almost universal forgery attack is trivial for var-
ious MACs with an iterated structure such as HMAC if the precomputation
that queries O(2n/2) messages is allowed. To achieve this, we can simply run
the distinguishing-R attack by [7]. In details, we generate a pair of one-block
messages (X1, X

′
1) which forms an internal collision. Then, for any given target

message M1‖M2‖ · · · ‖Mt, we replace M1 with X1 and query X1‖M2‖ · · · ‖Mt.
The corresponding tag is also the valid tag for X ′

1‖M2‖ · · · ‖Mt.

Hardness of almost Universal Forgery Attack on Prefix-Free MACs.
The above attack cannot be applied for prefix-free MACs such as LPMAC in an
easy manner. Regarding LPMAC, if the length (not value) of the target message
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is given to the attacker, the almost universal forgery attack can be performed
with the attack presented in Sect. 3.2. However, if the length is not given, per-
forming the precomputation on LPMAC is hard. This is because, in LPMAC,
the length-prepend value changes depending on the length of the message to be
processed. Hence, without the knowledge of the length of the target message,
performing the precomputation seems hard.

A simple method to deal with various length-prepend values in advance is
performing the internal state recovery attack in Sect. 3.2 many times. Suppose
that you apply the almost universal forgery attack for a message of � blocks
where 1 ≤ � ≤ t, but the exact value of � is unknown during the precomputation
stage. You first assume � = 1 and apply the internal state recovery attack with
the O(2n/2) complexity. Then, the value of � is changed into 2, 3, . . . , t and the
internal state recovery attack is performed for each of �. Finally, the almost
universal forgery attack can be performed for any �-block message where 1 ≤
� ≤ t with t times O(2n/2) queries where each query consists of at most t-blocks.

In the following part, we show another approach with the same complexity as
the simple method at the order level, but seems to have more applications.

4.2 Overall Strategy

Our idea is constructing an internal multi-collision starting from various length-
prepend values as shown in Fig. 5. Assume that a one-block message X makes a
multi-collision for � = 2, 3, . . . , 9, that is, h(h(IV,K‖2), X) = h(h(IV,K‖3), X) =
· · · = h(h(IV,K‖9), X). Also assume that the attacker knows the collision value
denoted by Y . Then, for any message with the block length 2 to 9, we know that
replacing the first block with X results in the chaining variable Y , and thus the
computation for the remaining message blocks can be simulated at offline.

Finding a multi-collision within one block is very inefficient. For the Merkle-
Damg̊ard structure, several constructions of the multi-collision are known as
explained in Sect. 2.3. Considering that our multi-collision needs to start from
different values due to different length-prepend values, the diamond structure
[22] and multi-pipe diamonds [27] are suitable. The diamond structure was pro-
posed for the herding attack and the multi-pipe diamonds were proposed for the
herding attack on more complicated structures such as the cascaded construction
or zipper hash. So far, we have not discovered the way to utilize the multi-pipe
diamonds. We thus construct the multi-collision based on the diamond structure.
The construction is described in Fig. 6.

4.3 Multi-collision with Diamond Structure

We explain how to construct a multi-collision with the diamond structure. Be-
cause our attack target is a MAC with secret information and the length prepend-
ing scheme, we need to detect an internal collision only with queries and tag
values. In Alg. 2, we show the procedure to generate a collision starting from
� = t and � = t + 1, which is also described in Fig. 7. It is easy to see that if a
collision can be generated, the entire diamond can be constructed by iteratively
generating collisions.
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In this attack we fix all message words but M1 and M ′
1 to identical value.

Therefore, the collision generated by M1 and M ′
1 can be observed as a collision

of the tag. Because we try 2n/2 different M1 at Step 8 and 2n/2 different M ′
1 at

Step 4, we will obtain a collision H2 = H ′
2 with probability 1 − e−1. Note that

even if H2 �= H ′
2, we have other opportunities of obtaining collisions H3 = H ′

3,
H4 = H ′

4, and so on. These are noise to obtain a collision at H2, and thus need
to be filtered out. For this purpose, for all tag collisions, we replace M2 and M ′

2

with another fixed value and check if another collision is generated (Step 17).
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Fig. 7. Construction of an Internal Collision for 
 = t and t+ 1

The complexity of the attack is as follows. At Step 4, it queries (t+ 1) · 2n/2

message blocks and requires a memory to store 2n/2 tags. At Step 8, it queries
t ·2n/2 message blocks and computes h at offline 2n/2 times. We expect to obtain



Cryptanalyses on a Merkle-Damg̊ard Based MAC 423

Algorithm 2. Construction of an Internal Collision for � = t and t+ 1

Input: 
 = t (and t+ 1)
Output: a pair of message M t

1 and M t+1
1 such that h(h(IV,K‖t),M t

1) =
h(h(IV,K‖t + 1),M t+1

1 )
1: Fix the values of M2,M3, . . . ,Mt so that the padding string P is included in the

same block as Mt.
2: Set M ′

i ←Mi for i = 2, 3, . . . , t− 1. Set M ′
t ←Mt‖P .

3: Fix the value of M ′
t+1 so that the padding string P ′ is included in the same block

as M ′
t+1.

4: for 2n/2 different values of M ′
1 do

5: Query M ′
1‖M ′

2‖ · · · ‖M ′
t+1 to obtain the corresponding tag σ′.

6: Store the pair of (M ′
1, σ

′) in a table T .
7: end for
8: for 2n/2 different values of M1 do
9: Query each M1‖M2‖ · · · ‖Mt and obtain the corresponding tag σ.
10: Compute temp← h(σ,M ′

t+1‖P ′) at offline.
11: Check if the same value as temp exists in T .
12: if the same value exists then
13: Choose a value of M2 such that M2 �= M2.
14: Set M ′

2 ←M2.
15: Query M ′

1‖M ′
2‖M ′

3‖ · · · ‖M ′
t+1 to obtain the corresponding tag σ′.

16: Query M1‖M2‖M3‖ · · · ‖Mt to obtain the corresponding tag σ, and compute
temp← h(σ,M ′

t+1‖P ′).
17: if σ′ = temp then
18: Return M1 and M ′

1.
19: end if
20: end if
21: end for

one desired internal collision and t noise collisions. Therefore Steps 15 and 16
are computed t + 1 times and it requires to query 2(t + 1)2 message blocks
and 2(t+ 1)2 offline computations. Overall, the cost of Alg. 2 is approximately
(2t+1) · 2n/2 queries and 2n/2 offline computations and a memory for 2n/2 tags.
Note that the attack can be memoryless as discussed in Sect. 3.

Hereafter we denote the value of the multi-collision at Hd+1 by H∗. We also
denote the d-block message starting from � = i and reaching H∗ by M (i). For
example, in Fig. 6, M (1) :=M1

1 ‖M1
2‖M1

3 and M (6) :=M6
1 ‖M3

2 ‖M2
3 .

Complexity for Entire Diamond Structure. By using Alg. 2, we evaluate
the complexity for constructing the entire structure. Assume that we generate
a diamond structure which can be used to forge the message whose length is
longer than d blocks and shorter than or equal to d+ t blocks where d = log2 t.

The complexity of generating one collision starting from two different � is
determined by the bigger value of �. In this example, the biggest value of � is
d + t and thus the complexity for generating collisions with other � is smaller
than this case. According to Alg. 2, the complexity for the case � = d + t is
(2(d + t) + 1) · 2n/2 queries and 2n/2 offline computations. The number of the
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Algorithm 3. Forging Procedure

Output: a pair of message in which the first d blocks are modified and valid tag

Offline phase
1: Construct the diamond structure which can be used to forge the message whose

length is longer than d blocks and shorter than or equal to d+t blocks with 2t2 ·2n/2

queries and t · 2n/2 offline computations.

Online phase
2: Receive a target message M∗ whose length is 
 blocks where d < 
 ≤ d+ t, that is,

M∗ = M∗
1 ‖M∗

2 ‖ · · · ‖M∗
� .

3: Replace the first d blocks of M∗ with M (�).
4: Compute the tag value by using Hd+1(= H∗) and M∗

d+1‖M∗
d+2‖ · · · ‖M∗

� , which is
denoted by σ∗.

5: return a pair of message and valid tag (M (�)‖M∗
d+1‖M∗

d+2‖ · · · ‖M∗
� , σ

∗).

leaf in the diamond structure is t, and thus we need to generate a collision t− 1
times. Hence, the total complexity is less than (t− 1)(2t+ 2d+ 1) · 2n/2 queries
and (t − 1) · 2n/2 offline computations. If only the head term is considered, the
complexity is 2t2 · 2n/2 queries and t · 2n/2 offline computations.

4.4 Forging Procedure

Finally, we show how to produce a forged tag in Alg. 3. The construction of
the diamond structure is completely independent of the online phase. As long as
the block length � of the given messageM∗ is in the valid range, by replacing the
first d(= log2 t) blocks of M

∗ with M (
), the tag for M (
)‖M∗
d+1‖M∗

d+2‖ · · · ‖M∗



is computed only with one t-block offline computation.

4.5 Comparison between Simple Method and Diamond Structure

We compare the simple method in Sect. 4.1 (applying the internal state recovery
attack t times) and the diamond structure. As long as only the almost universal
forgery attack is considered, the simple method is better than the diamond
structure. The simple method does not require the offline computation in the
precomputation phase, and the number of message blocks we need to replace is
only 1 which is shorter than d = log2 t.

On the other hand, the diamond structure has a unique property; it achieves
a common internal state value for various length-prepend values. So far, good
applications of this property have not been discovered. However, we show an
example that gives some intuition to use the property. Let us consider the con-
nection problem; the goal is finding a message block for the compression function
h, which the input chaining variable is fixed to a given value and there are several
target output values with different message lengths. The long-message second
preimage attack and herding attack in Fig. 8 are such problems, though these
problems are for the key-less situations. Finding suitable applications is an open
problem.
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h

Md+1

h

Md+2

h

A Multi-collision with 
the diamond structure

Mt-1

H*

Ht

Long message attack

H*
Ht

Herding attack

Fig. 8. Examples of potential applications of the diamond structure. The application
is finding a message which connects the multi-collision H∗ to one of chaining variables.
The length information cannot be adjusted in advance.

5 Concluding Remarks

In this paper, we presented two cryptanalyses on LPMAC. Our first result was a
generic distinguishing-H attack on LPMAC instantiating a narrow-pipe Merkle-
Damg̊ard hash function with a complexity ofO(2n/2). This showed that the widely
believed assumption that a secure hash function should have the n-bit security
against the distinguishing-H attack was not correct. Note that although previ-
ous results were updated by our generic attack with respect to the distinguish-H
attack, the approach was very different. Finding a new problem which the pre-
vious differential distinguishers can work faster than a generic attack is an open
problem. Our attacks are based on the new technique which generates an internal
collision starting from different length-prepend values. One of such colliding mes-
sages can be regarded as the prefix of the other colliding message, and thus the
core of the security of LPMAC, which is the prefix-freeness, is completely broken.

Our second result was an almost universal forgery attack on LPMAC. With
the precomputation of 2t2 · 2n/2 queries and t · 2n/2 offline computations, we
constructed the diamond structure which could realize an identical intermediate
value from t different length-prepend values. Hence, by modifying the first log2 t
message blocks into the value of the attacker’s choice, the internal state was
recovered and the valid tag of the modified message was forged with only 1
offline computation. Our results show that the security of the length-prepending
structure can be totally broken with O(2n/2) queries, and thus it is not enough
to achieve a secure MAC.
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39-Step SHA-256. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS,
vol. 5594, pp. 185–201. Springer, Heidelberg (2009)

21. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press (1997)

22. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

23. Yasuda, K.: How to Fill Up Merkle-Damg̊ard Hash Functions. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer, Heidelberg (2008)

24. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

25. Dean, R.D.: Formal aspects of mobile code security. Ph.D Dissertation, Princeton
University (1999)

26. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005)

27. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, Second Preim-
age and Trojan Message Attacks beyond Merkle-Damg̊ard. In: Jacobson Jr., M.J.,
Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414.
Springer, Heidelberg (2009)



Statistical Tools Flavor Side-Channel
Collision Attacks

Amir Moradi

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
moradi@crypto.rub.de

Abstract. By examining the similarity of side-channel leakages, col-
lision attacks evade the indispensable hypothetical leakage models of
multi-query based side-channel distinguishers like correlation power anal-
ysis and mutual information analysis attacks. Most of the side-channel
collision attacks compare two selective observations, what makes them
similar to simple power analysis attacks. A multi-query collision attack
detecting several collisions at the same time by means of comparing the
leakage averages was presented at CHES 2010. To be successful this at-
tack requires the means of the side-channel leakages to be related to the
processed intermediate values. It therefore fails in case the mean values
and processed data are independent, even though the leakages and the
processed values follow a clear relationship. The contribution of this arti-
cle is to extend the scope of this attack by employing additional statistics
to detect the colliding situations. Instead of restricting the analyses to
evaluation of means, we propose to employ higher-order statistical mo-
ments and probability density functions as the figure of merit to detect
collisions. Thus, our new techniques remove the shortcomings of the ex-
isting correlation collision attacks using first-order moments. In addition
to the theoretical discussion of our approach, practical evidence of its
suitability for side-channel evaluation is provided. We provide four case
studies, including three FPGA-based masked hardware implementations
and a software implementation using boolean masking on a microcon-
troller, to support our theoretical groundwork.

1 Introduction

Integration of embedded computers into our daily life, e.g., in automotive appli-
cations and smartcard applications for financial purposes, led to a widespread
deployment of security-sensitive devices. On the downside also adversaries ben-
efit from the resulting easy physical accessibility, as it provides control over the
devices and thus simplifies analyses. Consequently, today most sensitive embed-
ded systems need to be considered as operating in a hostile environment. For this
reason physical attacks, most notably side-channel analyses, are considered ma-
jor threats. For instance, power analysis and the closely related electro-magnetic
(EM) analysis can easily overcome the security features of unprotected designs
by monitoring the power consumption of the executing device. In order to distin-
guish the correct key hypothesis amongst the others differential power analysis

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 428–445, 2012.
c© International Association for Cryptologic Research 2012
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(DPA) [13] and its successor form, the correlation power analysis (CPA) [7], use
statistical tools: the difference of means and the Pearson correlation coefficient,
respectively. The distinguisher is applied to side-channel observations classified
into subsets defined by a boolean partitioning function in the case of a DPA or
by means of a hypothetical power model in case of a CPA. The later introduced
mutual information analysis (MIA) [11] provides a generic distinguisher that
lifts the need of sophisticated power models at the cost of an increased number
of required side-channel observations. Generally speaking, MIA is able to recover
secret information when the CPA fails due to the lack of a suitable power model.
However, the efficiency of MIA also relies on the availability of a good hypothet-
ical model that reflects the dependencies of the actual data-dependent leakage
provided by the side-channel observations. The loss of efficiency becomes most
visible and even critical when the underlying function of the target device is not
a many-to-one mapping (see the detailed discussion provided in [26]).

In order to develop an attack method that does not require a device dependent
model, a new type of side-channel attacks has been introduced: the side-channel
based collision attacks [2, 3, 5, 24, 25]. These methods adopt collision attacks to
side-channel analyses and allow efficiently extracting secrets from side-channel
measurements using only a small number of observations, especially when the
design architecture of the target implementation is known to the adversary (see
e.g., [4] where collision attacks are combined with DPA). Collision attacks, how-
ever, get infeasible when facing very noisy observations or in presence of both,
time-domain and data-domain randomizing countermeasures. Recent works pro-
pose a couple of techniques, e.g., in [3] to deal with false-positive collision de-
tections and [10] which reports a successful attack on a mask-protected software
implementation which exploits reused masks. Another recent attack method [16]
named correlation collision attack exploits conditions that lead to a multitude of
collisions whenever a key-dependent relation between the processed input values
is fulfilled. More precisely, it compares the sets of leakages (averaged with re-
spect to a fixed relevant input) of one e.g., S-box instance when it processes two
distinct input sets, each of which associated with a different part of the secret
key. The relation between the inputs of the two sets, that causes all averages to
collide, exposes information on the secret key. During the last years the indepen-
dence of side-channel collision attacks from hypothetical models and the effects
of process variations which harden side-channel attacks in nanoscale devices [23]
increasingly attracts the attention of the community to the new attack methods
leading to new applications and variations as in [17] and [10].

A correlation collision attack [16] applies a statistical tool, i.e., the Pearson
correlation coefficient, on the means of side-channel observations that were clas-
sified with respect to known input data. This method is successful when the
means of the classified side-channel observations are different when they are
estimated using a large (but feasible) amount of observations. If the mean val-
ues do not show the required dependency to processed data, the attack will
fail, even in case there is a clear relation between the processed values and
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the observed side-channel leakages. To give an example, we refer to threshold im-
plementations [19, 20], which claim that the averages of the side-channel leakages
are independent of the processed values. In this case a MIA might still be able
to exploit the leakage to recover a secret key [21]. Similarly a correlation colli-
sion attack is not able to recover the desired secret in this case (as also stated
in [18]), as it relies on mean values. Indeed, this was one of the motivations for
this work to apply other statistics in side-channel collision attacks in order to
enable detection of colliding situations also in cases where the mean values do
not provide any exploitable information.

In this article we discuss how to extend the scope of correlation collision at-
tacks to exploit dependencies in different central moments from probability the-
ory and statistics. Furthermore, we elaborate on preprocessing schemes which
can be performed to improve correlation collision attacks. We show that in cer-
tain situations applying a preprocessing step prior to a correlation collision attack
on mean values is equivalent to the same attack targeting a high-order statisti-
cal moment. In order to generalize the scheme we moreover propose to compare
probability density functions (pdf) instead of any specific moments. Although
accurately estimating the pdfs is an expensive task that requires a high num-
ber of observations, this generalized approach does not require any assumptions
about the type and shape of the leakage distributions and may thus be worth
the additional efforts.

In order to practically investigate our proposed schemes on different imple-
mentations we have considered both, an FPGA-based platform as well as a mi-
crocontroller. Three different masked hardware implementations were mapped
to our target FPGA device. These include i) an AES encryption engine using
the masked S-box presented in [8], ii) an implementation of PRESENT [6] us-
ing the threshold implementation countermeasure as presented in [22], and iii)
a threshold implementation of the AES as reported in [18]. Since the masked
values and the masks are processed simultaneously in all the aforementioned im-
plementations, a univariate attack method is an applicable choice. We show how
to use different statistical moments in a collision attack to recover the desired
secret and we discuss their efficiencies. As a fourth case study a software imple-
mentation of first-order boolean masking on a microcontroller is analyzed. Here,
since the masks and the masked values are processed sequentially, a multivariate
attack needs to be applied. We use this case study to illustrate possible solu-
tions including multivariate collision attacks and univariate ones which employ
a combining function.

2 Preliminaries

In the following we introduce the notation used in this paper and explain the
adopted side-channel model. Afterwards, Section 2.2 provides a short review of
linear collision attacks followed by a formal specification of correlation collision
attacks.
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Fig. 1. Side-channel model

2.1 Notations and Side-Channel Model

We consider a cryptographic device that performs the cryptographic operation
E on the given input x. E depends on the secret key k and outputs the value
y = Ek(x) (see Fig. 1). The algorithmic computations depending on x and k cause
internal state transitions (e.g., bit flips). The internal state transitions affect the
side-channel observations o, which are noisy measurements of the leakages.

In Fig. 1 we suppose that the considered cryptographic operation is an iterated
symmetric block cipher that starts with a key whitening step represented by
the general conjunction �. To denote the small parts of input data and the
key used in a divide-and-conquer key recovery scheme on the cryptographic
operation E, we use the subscripts i, i.e., xi and ki, where i ∈ {1, . . . , p} and p is
the number of different parts used. Furthermore, we introduce the functions Fi

(usually nonlinear), that independently process the key-whitened inputs xi � ki.
Although for simplicity we have supposed that each function Fi is performed at
a different time ti

1, sequential or parallel execution of the functions Fi depends
on the actual implementations platform and architecture.

Performing q queries to the target device an adversary acquires the side-
channel measurements o1, . . . , oq corresponding to the device’s processing of
the supplied inputs x1, . . . , xq. The j-th measurement oj consists of p parts
oj

1, . . . , o
j
p corresponding to the computations of the functions Fi at times ti.

Note that each side-channel measurement itself still consists of multiple samples.
That is, the i-th part of the j-th measurement, i.e., the vector oj

i , denotes s

subsequently measured samples oj
i,1, . . . , o

j
i,s.

2

For example in a CPA attack, for a specific portion i the adversary determines
wi as a vector of estimated internal state transitions wj

i , ∀ 1 ≤ j ≤ q using the
input portion xj

i and a hypothesis for the key portion ki. Then, he evaluates his
guess by comparing the leakage modeled by L̂(wi) to the actual measurements oj

i,s.

1 Times are measured relative to the the start of each processing of E.
2 Note that in each measurement j the measurement parts oj

i=1,...,p may overlap in
some sample points. This is helpful when the exact time instances ti are uncertain
but their distances, e.g., the number of clock cycles between the consecutive ti, are
known.
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Hereby the leakages of the sample points s ∈ {1, . . . , s} are considered indepen-
dently. The most appealing advantage of the collision attacks, which are restated
in the following, is to avoid requiring the hypothetical leakage model L̂(·).

2.2 Correlation Collision Attack

In the case that two functions Fi1 and Fi2 (i1 �= i2 ∈ {1, . . . , p}) are identical
(see Fig. 1), a collision attack might be possible. Analyzing the measurements
oi1 and oi2 a collision attack aims at detecting situations where both functions
process the same value. In this case injective functions Fi1 = Fi2 (e.g., the AES
S-box) allow concluding

Fi1(xi1 � ki1) = Fi2(xi2 � ki2)
⇔ xi1 � ki1 = xi2 � ki2

⇔ (xi1)
−1 � xi1 � ki1 � (ki2)

−1 = (xi1)
−1 � xi2 � ki2 � (ki2)

−1

⇔ Δki1,i2 = ki1 � (ki2)
−1 = (xi1)

−1 � xi2 ,

where (ki2)
−1 and (xi1)

−1 are respectively a right inverse of ki2 and a left in-
verse of xi1 , i.e., ki2 � (ki2)

−1 = er and (xi1)
−1 � xi1 = el, where er and el are

respectively a right and a left identity element of operation �. Since xi1 and xi2

are supposed to be known to the adversary, Δki1,i2 gets revealed detecting such
a collision. If additional instances of the function Fi are processed within the
analyzed algorithm E, all available instances can be pairwise evaluated to reveal
terms Δk·,· as described above. Depending on the target algorithm this allows
an adversary to either determine all parts of the key or to significantly shrink
the key space, what allows for feasible exhaustive key searches.

When the target device implements the AES, the functions Fi are AES S-
boxes and the conjunction � is the first call to the AddRoundKey operation (i.e.,
xi⊕ki, ⊕ denoting bitwise XOR) prior to the first round of the encryption. Then,
detecting a collision (called linear collision on AES [3]) Δki1,i2 = ki1⊕ki2 = xi1⊕xi2

is recovered. In this case, the adversary can recover a maximum of 15 linearly
independent relations between the key portions allowing the key search space to
be restricted to 28.

In the first generation of side-channel collision attacks, e.g., [2–5, 24, 25], the
collision detection process is implemented by pairwise comparing measurement
parts (oj1

i1
, oj2

i2
) where j1, j2 ∈ {1, . . . , q}. Also, different methods were used to

perform the comparison (e.g., the Euclidean distance in [25]). Although one
needs to deal with false-positive comparison results, this attack is feasible when
the target device and architecture sequentially processes the algorithm, e.g., a
microcontroller. Also, the more clock cycles the observations (oj1

i1
, oj2

i2
) include,

the more robust the detection gets, leading to a more feasible attack.
However, when attacking a hardware implementation which simultaneously

performs multiple operations or when randomizing countermeasures or noise
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addition schemes are embedded into the target device, examining the similarity
of a pair of measurement parts will probably fail to detect the collisions. Also,
in these cases each measurement part oi usually covers only a single clock cycle.
The attack introduced in [16] (the so-called correlation collision attack) uses a
different scheme to overcome such problems. As the instances of the functions
Fi1 and Fi2 always collide whenever the condition xi2 = xi1 �Δki1,i2 holds, Δki1,i2

can be recovered by means of a hypothesis test. In order to do so, two sets of
mean vectors, denoted by �i1 and �i2 , are computed. Each set �i consists of 2n

mean vectors
{
m0

i , . . . , m
2n−1
i

}
, where n is the bit-length of a plaintext (or

key) portion. Each mean vector mx
i , x ∈ �2n again consists of s mean samples

(mx
i,1, . . . , m

x
i,s) which are defined as

mx
i,s =

1
qx
i

q∑
j=1,xj

i =x

oj
i,s, s ∈ {1, . . . , s}, x ∈ �2n ,

where qx
i denotes the cardinality of the set

{
j : 1 ≤ j ≤ q |xj

i = x
}
. Now based

on Δk̂, i.e., a hypothesis for Δki1,i2 , two vectors m′
i1,s and Δk̂

m′
i2,s are extracted

from the two sets �i1 and �i2 defined above:

m′
i1,s = (m ′0

i1,s, . . . , m ′2n−1

i1,s ), m ′x
i1,s = mx

i1,s, x ∈ �2n

Δk̂
m′

i2,s = ( Δk̂m ′0
i2,s, . . . ,

Δk̂m ′2n−1

i2,s ), Δk̂m ′x
i2,s = mx�Δk̂

i2,s
, x ∈ �2n .

Now Pearson’s correlation coefficient can be used to measure the similarity of
the pair of vectors m′

i1,s and Δk̂
m′

i2,s. The most similar vectors at the analyzed
sample point s indicate the most probable Δk̂. This procedure – similar to most
of the non-profiled attacks – is repeated for each sample point s independently.
The time instances ti1 and ti2 (see Fig. 1) are initially not known to an adver-
sary without detailed information on the implemented architecture of the target
device, but [16] proposes a method to reveal this information. The suggested
method is to analyze the variance of {mx

i,s : ∀ x ∈ �2n}: If the means of the
measurements at sample point s depend on the inputs xi, the variance at sample
point s is significantly increased compared to other sample points.

3 Shortcomings and Our Solutions

Since only the mean values contribute to the comparison metric of the original
correlation collision attack, it cannot detect collisions whenever the means of the
leakages do not depend on processed data, even if the distributions of the leakages
show a strong data dependence. As an example consider the distributions in
Fig. 2. Since the shown distributions have the same mean, the attack will fail,
although the distributions can clearly be distinguished by their shape.
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Fig. 2. Examples of probability distributions with the same mean

3.1 Higher-Order Moments

While the mean of all the probability distributions shown in Fig. 2 is the same,
their higher-order moments are different. For instance, Figures 2(b), (c), and (d)
can be discriminated by their skewnesses. Also, Fig. 2(a) can be distinguished
from Figures 2(b), (c), and (d) by the variance, and from Fig. 2(e) by the kurtosis.
Therefore, in order to extend the scheme, one can exploit the differences in the
higher statistical moments similarly to the analysis of the mean values performed
before. In other words, extending the notations given in Section 2.2 we can
calculate the sets of the d-th central moments (d > 1) d�i1 and d�i2 of the i1-
th and i2-th measurement parts. As before, each set d�i consists of 2n vectors{

dμ
0
i , . . . , dμ

2n−1
i

}
, and each vector dμ

x
i includes s elements ( dμ

x
i,1, . . . , dμ

x
i,s)

which are the d-th central moment values for the different sample points. The
d-th central moment for a sample point is calculated by

dμ
x
i,s =

1
qx
i

q∑
j=1,xj

i =x

(
oj
i,s − mx

i,s

)d

, s ∈ {1, . . . , s}, x ∈ �2n .

Note that 2�i indicates the variances, and for d > 2 it is recommended to use

the standardized central moments defined as dμ
x
i,s(√

2μ
x
i,s

)d . The remaining task is

to create vectors of the sets defined again in order to compare them. Using the
same rules as before, a hypothesis Δk̂ is used to construct the two vectors

dμ
′
i1,s = ( dμ

′0
i1,s, . . . , dμ

′2n−1

i1,s ), dμ
′x
i1,s = dμ

x
i1,s, x ∈ �2n

Δk̂
d μ′

i2,s = ( Δk̂
d μ′0

i2,s, . . . ,
Δk̂

d μ′2n−1

i2,s ), Δk̂
d μ′x

i2,s = dμ
x�Δk̂
i2,s

, x ∈ �2n .

Using the same comparison technique as in the original correlation collision at-
tack, one can compare the aforementioned vectors using the Pearson correlation
coefficient at each sample point and for each Δk̂ independently.

In fact, the use of high-order central statistical moments is equivalent to
perform a preprocessing step on the side-channel observations before running
the original correlation collision attack. For instance, for d = 2 the use of 2�i

(variance) is identical to squaring the mean-free traces and then computing the
mean sets (�i). d = 3 and d = 4 (skewness and kurtosis if standardized) are the
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same as cubing and getting the fourth power of the mean-free traces. As shown
later in Section 4 the use of high-order moments leads to efficient attack methods
to analyze masked implementations that process the masks and the masked data
simultaneously. We should highlight that the higher the moment, the harder it
is to estimate. That is, a large number of observations q are required to obtain
a reasonably precise estimation. Thus, the use of higher-oder moments (d > 4)
is very limited in practice. Nevertheless, there might be architectures where the
attacks can still benefit from going to these higher-order moments.

3.2 Collision Detection Using Probability Density Functions

In order to generalize the scheme we also evaluated collision detection by com-
paring pdfs instead of focusing on a particular moment. To do so, we define Pi

as a family of 2n sets
{
�0

i , . . . , �
2n−1
i

}
. Each set �x

i consists of s probability

density functions
{

f x
i,1 (O) , . . . , f x

i,s (O)
}

defined as follows.

f x
i,s (O = o) = Pr [H(Oi,s) = o|Xi = x] , s ∈ {1, . . . , s}, x ∈ �2n

Here we introduced the random variables Oi,s and Xi describing the distribution
of the observed values oi,s and the input portions xi respectively. Furthermore,
we introduced a new random variable O, which is used to estimate the pdf of Oi,s.
We denote the sample space of O as O and samples as o. We further introduced
a function H(Oi,s) (e.g., bins of a histogram), which maps samples of Oi,s to
elements of O, i.e., the sample space O used to estimate the pdf may differ from
the sample space of the observed values.

We continue as before and extract the sets �′
i1,s and Δk̂

�′
i2,s from the families

Pi1 and Pi2 , each of which includes 2n pdfs

�i1,s =
{

f ′0
i1,s (O) , . . . , f ′2n−1

i1,s (O)
}

, f ′x
i1,s (O) = f x

i1,s (O) , x ∈ �2n

Δk̂
�
′
i2,s =

{
Δk̂

f ′0
i2,s (O) , . . . ,

Δk̂
f ′2n−1

i2,s (O)
}

,
Δk̂

f ′x
i2,s (O) = f x�Δk̂

i2,s (O) , x ∈ �2n .

In contrast to the central moments discussed before, we now need to compare
vectors of distributions instead of scalar vectors in order to find a similarity
metric that allows distinguishing collisions. Fortunately, comparing pdfs is a well-
studied task used in many different research fields, e.g., pattern recognition. The
well-known methods include the Squared Euclidean, Kullback-Leibler, Jeffreys,
f-divergence, and several others (for a comprehensive list see [9]). In the following
we summarize the Kullback-Leibler (KL) divergence [14], which is the basis of
several other schemes and including the metric we used in our experiments.

Kullback-Leibler Divergence is a non-negative measure of the difference
between two probability distributions p(O) and q(O). For the discrete case it is
defined as

DKL(p(O)||q(O)) =
∑
o∈O

p(o) log
p(o)
q(o)

.
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In fact, KL divergence is not a true distance metric as it is not symmetric,
i.e., DKL(p(O)||q(O)) �= DKL(q(O)||p(O)). Therefore, other schemes have been
introduced to develop a symmetric metric with similar properties. For instance,

DJ(p(O)||q(O)) = DKL(p(O)||q(O)) + DKL(q(O)||p(O)) =
∑
o∈O

(p(o)− q(o)) log
p(o)

q(o)
,

the symmetric form of the KL divergence is constructed using the addition
method. This metric is also known as the Jeffreys divergence [12] and is used
to perform our experiments. While we use a discrete sample space O for the
remainder of this paper, there is an extension of our approach to continuous
distributions, which replaces the discrete KL divergence with its continuous
equivalent.

Practical Considerations: In this section we want to highlight a few aspects
to help practitioners to adopt our approach:

– Methods like this, that rely on estimating pdfs (e.g., MIA) allow for a va-
riety of estimation methods to be used, such as histograms or parameter
estimation. In Section 4 we show results derived from histograms.

– As the Jeffrys divergence measures a distance, the smallest value indicates
the most similar distributions.

– Any scheme similar to the Jeffreys divergence compares only two pdfs, while
our method requires to compare two sets of pdfs. To compensate this, we
employ the metric of a weighted mean of the Jeffreys divergence values:

DΔk̂
i1,i2,s =

2n−1∑
x=0

(
DJ

(
f ′xi1,s (O) ||Δk̂f ′xi2,s (O)

)
· Pr

[
Xi1 = x

∣∣∣Xi2 = Xi1 � Δk̂
])

.

While we introduced our approaches for univariate moments and distributions,
an extension to multivariate analyses is straightforward. We provide an example
of a multivariate analysis in Section 4.4, where we demonstrate an attack on an
all-or-nothing secret sharing scheme.

4 Practical Experiments

We used two different platforms to perform our practical analyses: the Xilinx
Virtex-II Pro FPGA embedded in a SASEBO [1] board and a multi-purpose
smartcard based on an Atmel ATMega163 microcontroller. Four implementa-
tions, all employing different masking schemes, were used to evaluate our new ap-
proach. Three of these implementations ran on the hardware platform (FPGA),
the remaining one was a software solution executed on the smartcard. A LeCroy
WP715Zi 1.5GHz oscilloscope equipped with a differential probe was used to
collect power consumption traces in the VDD path of both platforms. In the fol-
lowing, we first present our results analyzing the hardware implementations. The
case study of the protected software implementation is detailed in Section 4.4,
which provides a glance at multivariate collision attacks.
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(a) (b)

Fig. 3. Result of the collision attack using pdfs on the masked AES implementation
based on [8] (a) using 200 000 traces and (b) at point 2.19µs over the number of traces

4.1 Canright-Batina’s Masked AES S-Box

In [16] a serialized masked AES encryption is analyzed, where a single masked
S-box instance using the design from [8] is used to subsequently process all Sub-
Bytes transformations. The interested reader can find an abstract schematic of
this architecture in Fig. 7 in the Appendix (architecture is detailed in [16]). The
existence of first-order leakage of masked S-boxes implemented in hardware is
well-known to the side-channel community [15]. Therefore, a correlation collision
attack employing first-order moments (means) can exploit this first-order leak-
age caused by glitches using around 20 000 measurements. At this, all random
masks followed a uniform distribution, and no masks were reused (see [16]).

Since the first-order moments have already shown a dependency on processed
data, an analysis of the higher-order moments is not required to perform an
attack. Nevertheless, in order to evaluate the feasibility and efficiency of our
attack, we implemented the most general form of the attack, the one using pdfs
to detect the collisions, on a set of 200 000 measurements. Using histograms with
8 bins we estimated the families of pdfs Pi1 and Pi2 for two processed portions
(here bytes) i1 and i2. The result of computing DΔk̂

i1,i2,s
∀ Δk̂ ∈ {0, . . . , 255} for each

sample point s, is shown in Fig. 3(a).3 In addition to the increased complexity of
the computations, we find that the attack using the pdfs also requires a slightly
higher amount of measurements (cf. Fig. 3(b)). One reason, amongst others, of
this is the low accuracy of the pdf estimation by means of histograms.

4.2 Threshold Implementation of PRESENT

Threshold implementations were proposed in [19] and later extended in [20]
and [21] to overcome the first-order leakage caused by glitches when masks and
masked data are processed by combinational hardware circuits. This scheme is
a countermeasure at the algorithm level, and a couple of implementations of the
PRESENT cipher based on that have been presented in [22]. We selected profile
2 of [22], where only the data state is shared using 3 shares and only one instance
3 For reasons of visualization we actually show the difference of the Jeffreys divergence

to the largest observed value, i.e., DΔk̂
i1,i2,s −max(DΔK

i1,i2,s).
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of the shared S-box is used by the design. Fig. 8 in the Appendix sketches the
architecture and shows exemplary measurements. So far only CPA attacks using
the straight forward power models, i.e., HW and HD, have been presented [22].
Our analysis provides the first collision attack on this architecture.

We collected 100 million traces of this implementation using uniformly dis-
tributed plaintexts and masks. Two plaintext/key portions (here nibbles), that
are consecutively processed, are selected. In addition to the general approach
using pdfs, the collision attacks using the first three moments (mean, variance,
and skewness) have been performed. The corresponding results are shown in
Fig. 4. According to Fig. 4(a) the first-order moments do not show any depen-
dency to the processed values, what confirms the claim given in [21]. However,
higher-order moments (see Fig. 4(b) and Fig. 4(d)) are strongly dependent on
the unmasked values. As expected, also the attack using pdfs (Fig. 4(f)) al-
lows recovering the secret. Since all attacks need roughly the same number of
measurements to succeed, i.e., around 5 million (see Fig. 4(c), Fig. 4(e)), and
Fig. 4(g)), analyzing statistical moments is to be preferred over the slower pdf
approach. Note that using e.g., second-order moments is equivalent to having a
preprocessing step squaring the mean-free traces. Successful attacks using high-
order moments thus do not contradict the statement given in [21] that threshold
implementations prevent first-order leakage.

4.3 Threshold Implementation of AES

The same countermeasure, i.e., threshold implementation, has been applied to
AES in [18]. Although this design does not fulfill all the requirements of a thresh-
old implementation, re-masked registers were employed to provide the missing
property of uniformity (see [21] for the requirements and their meaning). It has
been shown that the final design of [18], which applies several internal PRNGs
to provide the required fresh masks, is resistant to correlation collision attacks
based on means, even when as much as 400 million measurements are used.
However, the authors reported that a MIA attack can exploit the leakage using
80 million measurements. Therefore this is a suitable target to evaluate our new
methods using higher-order moments and/or pdfs. Similar to the design targeted
in Section 4.2 again only one instance of the shared S-box is used in the analyzed
architecture. Moreover, the S-box design is based on a four-stage pipeline, thus
leakage may appear in several clock cycles. Again, a schematic illustrating the
architecture can be found in the Appendix (Fig. 9).

We have collected 100 million measurements of this design implemented on our
FPGA platform. We have selected two portions (here bytes) whose corresponding
key-whitened plaintext bytes are processed consecutively. Collision attacks using
the pdfs and the second- and third-order moments targeting the linear difference
between the two selected key bytes have been performed.4 The results, which are
shown in Fig. 5, reveal a dependency on chosen processed data in the second-
order moment, but not in the third-order moment. This might be due to the
4 We ignored the first-order moment due to the results reported by in [18].
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(a) using means

(b) using variances (c) using variances at point 4µs

(d) using skewnesses (e) using skewnesses at point 4µs

(f) using pdfs (g) using pdfs at point 4µs

Fig. 4. Result of the collision attacks on a threshold implementation of PRESENT
(left) using 100 million traces, (right) over the number of measurements

re-masked registers not present in the design investigated in Section 4.2. The
number of required measurements is also interesting. Compared to that shown
in [18] our attack needs around 20 million using variances and 50 million using
pdfs (see Fig. 5(b) and Fig. 5(e)). This provides another example that employing
statistical moments instead of pdfs is not only faster but also is more efficient
with respect to the number of required measurements.
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(a) using variances (b) using variances at point 4.1µs

(c) using skewnesses

(d) using pdfs (e) using pdfs at point 4.1µs

Fig. 5. Results the collision attacks on a threshold implementation of AES (left) using
100 million traces and (right) over the number of traces

4.4 Boolean Masking in Software

The last case study is a software implementation of the AES based on boolean
masking. Two random mask bytes (input mask and output mask) are considered
for each plaintext byte (in sum 256 mask bits) at the start of each encryption
run. After masking the plaintext bytes using the input masks, the AddRoundkey
operation is performed. Afterwards, for each state byte a masked S-box table is
constructed in memory, which satisfies the state byte’s input and output masks.
See Fig. 10 in the appendix for a schematic of the design.

Since every intermediate result is masked by a random value, no univariate
attacks can recover a secret. In order to perform a bivariate collision attack
using pdfs, we (at the moment) suppose that the two interesting sample points
(s1, s2) in the measurement parts, that denote the time of processing the masked
value and the corresponding mask, are known. Then, a set �i consists of joint
probability density functions f x

i,s1,s2
(O1, O2). The attack then works analogue to

the univariate one, except for the comparison step. Here Jeffreys divergence is
extended to measure the distance between two joint pdfs as
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DJ(p(O1, O2)||q(O1, O2)) =
∑

o1∈O1

∑
o2∈O2

(p(o1, o2) − q(o1, o2)) log
p(o1, o2)
q(o1, o2)

.

To use the joint statistical moments, the analysis employs the (d1 > 0, d2 > 0)

d1,d2
μx

i,s1,s2
=

1
qx
i

q∑
j=1,xj

i =x

(
oj
i,s1

− mx
i,s1

)d1 (
oj
i,s2

− mx
i,s2

)d2

.

In fact, the attack analyzing 1,1μ
x
i,s1,s2

is equivalent to combining the correspond-
ing sample points by means of a “multiplication” prior to the averaging step in
a univariate collision attack. The dependencies on higher-moments are famil-
iar from traditional higher-order attacks, which exploit them when applying
combining functions.

Since finding the interesting sample points (s1, s2) in multivariate attacks is
always a challenging task, we tried to make use of the moments to mitigate this
problem. We collected 250 000 traces from our target implementation using uni-
formly selected plaintext and mask bytes. Since the construction of the masked
S-box tables is time consuming, the measured traces are much longer than the
ones of the previously shown case studies. Each trace covers 10 000 clock cycles
and was compressed to a vector of 10 000 peaks corresponding to the peaks of
the clock cycles. Since the masked value and the mask are processed with a time
distance of – most likely – a small number of clock cycles, we defined a win-
dow of around 30 clock cycles to sum up adjacent peaks (sliding average). First,
we assumed that each measurement part oj

i covers all summed peak points.
Computing the second-order central moments 2�i for two portions i1 and i2 and
getting the variance of each set at each summed peak point separately led to
the two variance curves shown in Fig. 6(a). The graphics clearly exposes the
(time) distance between the same process performed on each portion. With this
knowledge the measurement parts can be accordingly selected and thus it allows
executing a collision attack. The result from a collision attack on second-order
moments depicted in Fig. 6(b) confirms our theoretical reasoning and provides
evidence of the strength of the attack.
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(a) two variances of the 2nd-order mo-
ments

(b) attack results using 2nd-order moments

Fig. 6. Result of the attacks on a software implementation of the AES (boolean masking)
after two preprocessing steps: 1) peak extraction, 2) sum over a 30 peak point window
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5 Conclusions

The attack presented in this work is fundamentally similar to the correlation col-
lision attack presented in [16]. We extended the scheme to employ higher-order
moments and introduced a general form of the attack, which makes use of the
distribution of side-channel leakages. As supported by the experimental results,
the presented methods allow improving univariate collision attacks. We showed
that by slightly increasing the computation complexity (e.g., variance vs. mean)
the collision attacks can defeat the security provided by one of the most promi-
nent proposed masking schemes for hardware, i.e., threshold implementations.
Additionally, we discussed the possible options to perform multivariate collision
attacks using either high-order moments or joint probability distributions. We
concluded our case studies analyzing a masked software implementation, and
presented a scheme to localize the interesting points for a collision attack em-
ploying high-order moments.

The majority of the – usually unprotected – devices have a straightforward and
known leakage behavior. Thus, in most cases traditional approaches, e.g., CPA
using HW model, can be applied. However, in case that masking countermeasures
are applied and the leakage points must be combined the leakage model may not
be appropriately guessed and the issue addressed in [26] may become critical. In
summary, the collision attacks are an essential tool for security evaluations in
situations where the leakage model of the target device is not known and cannot
be obtained by profiling.
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Fig. 7. Schematic of the first case study (a masked AES encryption module using [8])
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Fig. 8. Schematic of the second case study (a threshold implementation of PRESENT
taken from [22])
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Abstract. We describe a compression technique that reduces the public
key size of van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) fully
homomorphic scheme over the integers from Õ(λ7) to Õ(λ5). Our variant
remains semantically secure, but in the random oracle model. We obtain
an implementation of the full scheme with a 10.1 MB public key instead
of 802 MB using similar parameters as in [7]. Additionally we show how
to extend the quadratic encryption technique of [7] to higher degrees, to
obtain a shorter public-key for the basic scheme.

This paper also describes a new modulus switching technique for the
DGHV scheme that enables to use the new FHE framework without boot-
strapping from Brakerski, Gentry and Vaikuntanathan with the DGHV
scheme. Finally we describe an improved attack against the Approximate
GCD Problem on which the DGHV scheme is based, with complexity
Õ(2ρ) instead of Õ(23ρ/2).

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is said to be fully
homomorphic when it is possible to perform implicit plaintext additions and
multiplications while manipulating only ciphertexts.

The first construction of a fully homomorphic scheme was described by Gentry
in [9]. Gentry first obtained a “somewhat homomorphic” scheme, supporting only
a limited number of ciphertext multiplications due to the fact that ciphertext
contain a certain amount of “noise” which increases with every multiplication,
and that decryption fails when noise size passes a certain bound. As a result, in
the somewhat homomorphic scheme, the functions that can be homomorphically
evaluated on ciphertexts are polynomials of small, bounded degree. The second
step in Gentry’s framework consists in “squashing” the decryption procedure so
that it can be expressed as a low degree polynomial in the bits of the ciphertext
and the secret key. Then, Gentry’s key idea, called “bootstrapping”, is to eval-
uate this decryption polynomial not on the ciphertext bits and the secret-key
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Public Key Compression and Modulus Switching for FHE over the Integers 447

bits (which would yield the plaintext), but homomorphically on the encryption
of those bits, which gives another ciphertext of the same plaintext. If the degree
of the decryption polynomial is small enough, the noise in the new ciphertext
can become smaller than it was the original ciphertext, so that this new cipher-
text can be used again in a subsequent homomorphic operation (either addition
or multiplication). Using this “ciphertext refresh” procedure the number of per-
missible homomorphic operations becomes unlimited and one obtains a fully
homomorphic encryption scheme. To date, three different fully homomorphic
schemes are known:

1. Gentry’s original scheme [9], based on ideal lattices. Gentry and Halevi de-
scribed in [10] the first implementation of Gentry’s scheme, using many clever
optimizations, including some suggested in a previous work by Smart and
Vercauteren [14]. For their most secure setting (claiming 72 bit security) the
authors report a public key size of 2.3 GB and a ciphertext refresh procedure
taking 30 minutes on a high-end workstation.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [8]. This scheme is conceptually simpler than Gentry’s scheme, be-
cause it operates on integers instead of ideal lattices. Recently it was shown
[7] how to reduce the public key size by storing only a small subset of the
original public key and generating the full public key on the fly by com-
bining the elements in the small subset multiplicatively. Using some of the
optimizations from [10], the authors of [7] report similar performances: a 802
MB public key and a ciphertext refresh in 14 minutes.

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors
(LWE) and Ring Learning with Errors (RLWE) problems [2,3]. The authors
introduce a new dimension reduction technique and a new modulus switching
technique to shorten the ciphertext and reduce the decryption complexity. A
partial implementation is described in [11], without the fully homomorphic
capability.

Recently Brakerski, Gentry and Vaikuntanathan introduced a remarkable new
FHE framework, in which the noise ceiling increases only linearly with the multi-
plicative level instead of exponentially [4]; this implies that bootstrapping is no
longer necessary to achieve fully homomorphic encryption. This new framework
has the potential to significantly improve the practical FHE performance. The
new framework is based on Brakerski and Vaikuntanathan’s scheme [2,3], and
more specifically on their new modulus switching technique, which efficiently
transforms a ciphertext encrypted under a certain modulus p into a ciphertext
under a different modulus p′ but with reduced noise.

Public Key Compression. The first of our contributions is a technique to re-
duce the public key size of DGHV-like schemes [8] by several orders of magnitude.
In the DGHV scheme the public key is a set of integers of the form:

xi = qi · p+ ri
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where p is the secret-key of η bits, qi is a large random integer of γ− η bits, and
ri is a small random integer of ρ bits. The scheme’s semantic security is based
on the Approximate GCD Problem: given a polynomial number of xi’s, recover
the secret p. To avoid lattice attacks, the bit-size γ of the xi’s must be very large:
[7] takes γ � 2 · 107 for η = 2652 and ρ = 39, and the full public key claims a
802 MB storage.

Our technique proceeds as follows. First generate the secret-key p. Then, use
a pseudo-random number generator f with public random seed se to generate a
set of γ-bit integers χi (i.e. the χi’s are of the same bit-size as the xi’s). Finally,
compute small corrections δi to the χi’s such that xi = χi − δi is small modulo
p, and store only the small corrections δi in the public key, instead of the full
xi’s. Knowing the PRNG seed se and the δi’s is sufficient to recover the xi’s.

Therefore instead of storing a set of large γ-bit integers we only have to store a
set of much smaller η-bit integers, where η is the bit size of p. The new technique
is fully compatible with the DGHV variant described in [7]; with the previous set
of parameters from [7] one obtains a public key size of 4.6 MB for the full imple-
mentation, instead of the 802 MB required in [7]! The technique can be seen as
generating the γ − η most significant bits of the xi’s with a pseudo-random num-
ber generator, and then using the secret key p to fix the η remaining bits so that
xi mod p is small. While different, this is somewhat reminiscent of Lenstra’s tech-
nique [12] for generating an RSA modulus with a predetermined portion.

Under our variant, the encryption scheme can still be proved semantically se-
cure under the Approximate GCD assumption, albeit in the random oracle model.
This holds for both the original DGHV scheme form [8] and the variant described
in [7] in which the public key elements are first combined multiplicatively to gen-
erate the full public key. Unlike [7,8], we need the random oracle model in order
to apply the leftover hash lemma in our variant, because the seed of the PRNG is
known to the attacker (as part of the public key).

We report the result of an implementation of the new variant with the fully
homomorphic capability. As in [7] we use the variant with noise-free x0 = q0 ·p. We
also update the parameters from [7] to take into the account the improved attack
from Chen and Nguyen against the Approximate GCD problem [5]. We obtain a
level of efficiency very similar to [7] but with a 10.1 MB public key instead of a
802 MB one. The source code of this implementation is publicly available [17].

Extension to Higher Degrees. Various techniques have been proposed in [7]
to reduce the public key size and increase the efficiency of the DGHV scheme,
the most important of which is to use a quadratic form instead of a linear form
for masking the message when computing a ciphertext. The authors show that
the scheme remains semantically secure; the key ingredient is to prove that a
certain family of quadratic hash functions is close enough to being pairwise
independent, so that the leftover hash lemma can still be applied. The main
benefit is a significant reduction in public key size, from τ = Õ(λ3) elements
xi down to 2β = Õ(λ1.5) elements xi,b. In this paper we prove that the natural
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extension of this quadratic encryption technique to to cubic forms, and more
generally forms of arbitrary fixed degree d, remains secure, making it possible
to further reduce the public key size.

Modulus Switching and Leveled DGHV Scheme. As a third contribution,
we show how to adapt Brakerski, Gentry and Vaikuntanathan’s (BGV) new
FHE framework [4] to the DGHV scheme over the integers. Under the BGV
framework the noise ceiling increases only linearly with multiplicative depth,
instead of exponentially. This enables to get a FHE scheme without the costly
bootstrapping procedure.

More precisely the new BGV framework is described in [4] with Brakerski and
Vaikuntanathan’s scheme [2], and the key technical tool is the modulus-switching
technique of [2] that transforms a ciphertext c modulo p into a ciphertext c′

modulo p′ simply by scaling by p′/p and rounding appropriately. This allows
to reduce the ciphertext noise by a factor close to p′/p without knowing the
secret-key and without bootstrapping. However the modulus switching technique
cannot directly apply to DGHV since in DGHV the moduli p and p′ are secret.
In this paper we explain how this modulus-switching technique can be adapted
to DGHV, so as to apply the new BGV framework. We show that the resulting
FHE scheme remains semantically secure, albeit under a stronger assumption.
We also describe an implementation, showing that the new BGV framework can
be applied in practice.

Improved Attack against the Approximate-GCD problem. Finally we
consider the security of the Approximate GCD Problem without noise-free x0 =
q0 · p. In our leveled DGHV variant under the BGV framework the size of the se-
cret p can become much smaller than in the original Gentry framework (η � 180
bits for the lowest p in the ladder, instead of η = 2652 bits in [7]). This im-
plies that the noise-free variant x0 = q0 · p cannot be used, since otherwise the
prime factor p could easily be extracted using the Elliptic Curve Method for
integer factorization [13]. Therefore one must consider the security of the Ap-
proximate GCD Problem without noise-free x0. The recent attack by Chen and
Nguyen [5] against the Approximate GCD Problem with noise-free x0 has com-
plexity Õ(2ρ/2), instead of the Õ(2ρ) naive attack; as noted by the authors, this
immediately yields an Õ(23ρ/2) attack against the Approximate GCD Problem
without noise-free x0, instead of Õ(22ρ) for the naive attack. In this paper we
exhibit an improved attack with complexity Õ(2ρ). We also describe an imple-
mentation showing that this new attack is indeed an improvement in practice.

2 The DGHV Scheme over the Integers

We first recall the somewhat homomorphic encryption scheme described by van
Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [8]. For a real number x,
we denote by (x�, �x and (x the rounding of x up, down, or to the nearest
integer. For integers z, p we denote the reduction of z modulo p by [z]p with
−p/2 < [z]p ≤ p/2, and by 〈z〉p with 0 ≤ 〈z〉p < p. Given the security parameter
λ, the following parameters are used:
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• γ is the bit-length of the xi’s,
• η is the bit-length of the secret key p,
• ρ is the bit-length of the noise ri,
• τ is the number of xi’s in the public key,
• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =
{
Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q ·p+r

}
DGHV.KeyGen(1λ). Generate a random prime integer p of size η bits. For 0 ≤
i ≤ τ sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart
unless x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r in (−2ρ′

, 2ρ′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

(1)

DGHV.Evaluate(pk, C, c1, . . . , ct): given the circuit C with t input bits, and t
ciphertexts ci, apply the addition and multiplication gates ofC to the ciphertexts,
performing all the additions and multiplications over the integers, and return the
resulting integer.

DGHV.Decrypt(sk, c). Output m ← [c]p mod 2.

This completes the description of the scheme. As shown in [8] this scheme is
somewhat homomorphic, i.e. a limited number of homomorphic operations can
be performed on ciphertexts. More precisely given two ciphertexts c = q · p +
2r+m and c′ = q′ ·p+2r′+m′ where r and r′ are ρ′-bit integers, the ciphertext
c+ c′ is an encryption of m+m′ mod 2 with (ρ′+1)-bit noise and the ciphertext
c · c′ is an encryption of m ·m′ with noise � 2ρ′. Since the ciphertext noise must
remain smaller than p for correct decryption, the scheme allows roughly η/ρ′

multiplications on ciphertexts. As shown in [8] the scheme is semantically secure
under the Approximate GCD assumption.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate GCD Prob-
lem is: For a random η-bit odd integer p, given polynomially many samples from
Dγ,ρ(p), output p.

3 The New DGHV Public Key Compression Technique

We describe our technique using the variant with noise free x0 = q0 · p, as
suggested in [8] and implemented in [7]. We only describe the basic scheme; we
refer to the full version of this paper [6] for a complete description of the fully
homomorphic scheme.
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3.1 Description

KeyGen(1λ). Generate a random prime integer p of size η bits. Pick a random
odd integer q0 ∈ [0, 2γ/p) and let x0 = q0 · p. Initialize a pseudo-random number
generator f with a random seed se. Use f(se) to generate a set of integers χi ∈
[0, 2γ) for 1 ≤ i ≤ τ . For all 1 ≤ i ≤ τ compute:

δi = 〈χi〉p + ξi · p− ri

where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p). For all 1 ≤ i ≤ τ compute:

xi = χi − δi (2)

Let pk = (se, x0, δ1, . . . , δτ ) and sk = p.

Encrypt(pk,m ∈ {0, 1}): use f(se) to recover the integers χi and let xi = χi − δi
for all 1 ≤ i ≤ τ . Choose a random integer vector b = (bi)1≤i≤τ ∈ [0, 2α)τ and a

random integer r in (−2ρ′
, 2ρ′

). Output the ciphertext:

c = m+ 2r + 2

τ∑
i=1

bi · xi mod x0

Evaluate(pk, C, c1, . . . , ct) and Decrypt(sk, c): same as in the original DGHV
scheme, except that ciphertexts are reduced modulo x0.

This completes the description of our variant. We have the following constraints
on the scheme parameters:

• ρ = ω(logλ) to avoid brute force attack on the noise,

• η ≥ ρ·Θ(λ log2 λ) in order to support homomorphic operations for evaluating
the “squashed decryption circuit” (see [8]),

• γ = ω(η2 · logλ) in order to thwart lattice-based attacks against the Approx-
imate GCD problem (see [7,8]),

• α · τ ≥ γ + ω(logλ) in order to apply the left-over hash lemma (see [7,8]).

• η ≥ ρ+ α+ 2 + log2 τ for correct decryption of a ciphertext,

• ρ′ = α+ ρ+ ω(logλ) for the secondary noise parameter.

To satisfy the above constraints one can take ρ = λ, η = Õ(λ2), γ = Õ(λ5),
α = Õ(λ2), τ = Õ(λ3) and ρ′ = Õ(λ2). The main difference with the original
DGHV scheme is that instead of storing the large xi’s in the public key we only
store the much smaller δi’s. The new public key for the somewhat homomorphic
scheme has size γ + τ · (η + λ) = Õ(λ5) instead of (τ + 1) · γ = Õ(λ8).

Remark 1. We can also compress x0 by letting x0 = χ0 − δ0 and storing only
δ0 = 〈χ0〉p + ξ0 · p in the public-key.
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Remark 2. In the description above we add a random multiple of p to 〈χi〉p
in the δi’s. This is done to obtain a proof of semantic security in the random
oracle model (see below). However the scheme seems heuristically secure without
adding the random multiple.

Remark 3. For encryption the integers xi need not be stored in memory as they
can be generated on the fly when computing the subset sum.

3.2 Semantic Security

Theorem 1. The previous encryption scheme is semantically secure under the
Approximate GCD assumption with noise-free x0 = q0 · p, in the random oracle
model.

The proof is almost the same as in [8]. Given a random oracle H : {0, 1}∗ →
Z ∩ [0, 2γ), we assume that the pseudo-random number generation of the χi’s is
defined as χi = H(se ‖i) for all 1 ≤ i ≤ τ and we show that the integers xi’s
generated in (2) have a distribution statistically close to their distribution in the
original DGHV scheme. We refer to the full version of the paper [6] for the proof.

4 Extension of DGHV Encryption to Higher Degrees

Various techniques have recently been proposed in [7] to reduce the public key
size and increase the efficiency of the DGHV scheme, the most important of
which is to use a quadratic form instead of a linear form for masking the message
when computing a ciphertext. More precisely, one computes:

c∗ = m+ 2r + 2
∑

1≤i,j≤β

bij · xi,0 · xj,1 mod x0

which is quadratic in the public key elements xi,b instead of linear as in equation
(1); here the variant with noise-free x0 = q0 · p is used. The main benefit is a
significant decrease in the public key size, from τ = Õ(λ3) elements xi down to
2β = Õ(λ1.5) elements xi,b. Namely the constraint to apply the left-over hash

lemma becomes α · β2 ≥ γ + ω(logλ), so by taking α = Õ(λ2) one can take
β = Õ(λ1.5). Combined with our compression technique the public-key size of
the somewhat homomorphic scheme becomes (2β + 1) · (η + λ) = Õ(λ3.5).

To prove that the scheme remains secure under this modified encryption pro-
cedure, the key point in [7] was to prove that the following family of functions

h : {0, . . . , 2α−1}β2 → Zq0 :

h(b) =
∑

1≤i1,i2≤β

bi1i2q
(1)
i1
q
(2)
i2

mod q0
(
q
(j)
i ∈ Zq0

)
is close enough to being a pairwise independent (i.e. universal) hash function
family (under suitable parameter choices), which in turn makes it possible to
apply a variant of the leftover hash lemma.
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In this section we show that it is possible to obtain further efficiency gains
by using cubic forms instead, or more generally forms of higher degree d, if we
can prove an analogue of the previous result for the family Hd of hash functions

h : {0, . . . , 2α−1}βd → Zq of the form:

h(b) =
∑

1≤i1,...,id≤β

bi1,...,idq
(1)
i1

· · · q(d)id
mod q

(
q
(j)
i ∈ Zq

)
Such a result also leads to the construction of extractors with relatively short
seeds, which is an interesting fact in its own right.

We show that this hash function family is indeed close to being pairwise
independent for suitable parameters. As in [7], we can prove this in the simpler
case when q = q0 is prime; the result then follows for all q0 without small prime
factors. The main result is as follows (we refer to [7] for the definition of ε-
pairwise independence). We provide the proof in the full version of this paper
[6].

Theorem 2. For an odd prime q, the hash function family Hd is ε-pairwise
independent, with:

ε =
(d− 1)(d− 2)

√
q

+
5d13/3

q
+

(d− 1) · (2β)d
2αβd−1(β−2−2/α))

Using the variant of the leftover hash lemma from [7], this proves the semantic
security of the scheme for any encryption degree d ≥ 2, with the condition
α · βd ≥ γ + ω(logλ). The constraint for correct decryption becomes η ≥ ρ ·
d + α + 2 + d · log2 β, and ρ′ = ρ · d + α + ω(logλ) for the secondary noise
parameter. The public-key size for the somewhat homomorphic scheme becomes
(d · β + 1) · (η + λ). In particular by taking β = 3 and d = O(log λ), we get a
public-key size in Õ(λ2) for the somewhat homomorphic scheme.

5 Adaptation of the BGV Framework to the DGHV
Scheme

5.1 The BGV Framework for Leveled FHE

In this section we first recall the new framework from Brakerski, Gentry and
Vaikuntanathan (BGV) [4] for leveled fully homomorphic encryption. Under the
BGV framework the noise ceiling increases only linearly with the multiplicative
depth, instead of increasing exponentially. This implies that bootstrapping is no
longer necessary to achieve fully homomorphic encryption. The new framework
is based on the Brakerski and Vaikuntanathan RLWE scheme [2,3]. The key
technical tool is the modulus-switching technique from [2] that transforms a
ciphertext c modulo p into a ciphertext c′ modulo p′ simply by scaling by p′/p
and rounding appropriately; the noise is also reduced by a factor p′/p.

In the original Gentry framework [9], the multiplication of two mod-p cipher-
texts with noise size ρ gives a ciphertext with noise size � 2ρ; after a second
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multiplication level the noise becomes � 4ρ, then � 8ρ and so on; the noise size
grows exponentially with the number of multiplication levels. The modulus p is
a ceiling for correct decryption; therefore if the bit-size of p is k · ρ, the noise
ceiling is reached after only log2 k levels of multiplication. Fully homomorphic
encryption is achieved via bootstrapping, i.e. homomorphically evaluating the
decryption polynomial to obtain a refreshed ciphertext.

The breakthrough idea in the BGV framework [4] is to apply the modulus-
switching technique after every multiplication level, using a ladder of gradually
decreasing moduli pi. Start with two mod-p1 ciphertexts with noise ρ; as pre-
viously after multiplication one gets a mod-p1 ciphertext with noise 2ρ. Now
switch to a new modulus p2 such that p2/p1 � 2−ρ; after the switching one gets
a mod-p2 ciphertext with noise back to 2ρ − ρ = ρ again; one can continue by
multiplying two mod-p2 ciphertexts, obtain a 2ρ-noise mod-p2 ciphertext and
switch back to a ρ-noise mod-p3 ciphertext, and so on. With a ladder of k mod-
uli pi of decreasing size (k + 1) · ρ, . . . , 3ρ, 2ρ one can therefore perform k levels
of multiplication instead of just log2 k. In other words the (largest) modulus size
(k+1) ·ρ grows only linearly with the multiplicative depth; this is an exponential
improvement.

As explained in [4], bootstrapping is no longer strictly necessary to achieve
fully homomorphic encryption: namely one can always assume a polynomial
upper-bound on the number L of multiplicative levels of the circuit to be evalu-
ated homomorphically. However, bootstrapping is still an interesting operation
as a bootstrapped scheme can perform homomorphic evaluations indefinitely
without needing to specify at setup time a bound on the multiplicative depth.
As shown in [4] bootstrapping becomes also more efficient asymptotically in the
BGV framework.

5.2 Modulus-Switching for DGHV

The modulus-switching technique recalled in the previous section is a very
lightweight procedure to reduce the ciphertext noise by a factor roughly p/p′

without knowing the secret-key and without bootstrapping. However we cannot
apply this technique directly to DGHV since in DGHV the moduli p and p′ must
remain secret.

We now describe a technique for switching moduli in DGHV. We proceed in
two steps. Given as input a DGHV ciphertext c = q · p + r, we first show in
Lemma 1 how to obtain a “virtual” ciphertext of the form c′ = 2k · q′ + r′ with
[q′] = [q]2, given the bits si in the following subset-sum sharing of 2k/p:

2k

p
=

Θ∑
i=1

si · yi + ε mod 2k+1

where the yi’s have κ bits of precision after the binary point, with |ε| ≤ 2−κ.
This is done by first “expanding” the initial ciphertext c using the yi’s, as in
the “squashed decryption” procedure in [9], and then “collapsing” the expanded
ciphertext into c′, using the secret-key vector s = (si). However we cannot reveal
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s in clear, so instead we provide a DGHV encryption under p′ of the secret-key
bits si, as in the bootstrapped procedure. Then as showed in Lemma 2 the
expanded ciphertext can be collapsed into a new ciphertext c′′ under p′ instead
of p, for the same underlying plaintext; moreover as in the RLWE scheme the
noise is reduced by a factor � p′/p.

Lemma 1. Let p be an odd integer. Let c = q · p+ r be a ciphertext. Let k be an
integer. Let κ ∈ Z be such that |c| < 2κ. Let y be a vector of Θ numbers with κ
bits of precision after the binary point, and let s be a vector of Θ bits such that
2k/p = 〈s,y〉 + ε mod 2k+1, where |ε| ≤ 2−κ. Let c = (�c · yi� mod 2k+1)1≤i≤Θ.
Let c′ = 〈s, c〉. Then c′ = q′ · 2k + r′ with [q′]2 = [q]2 and r′ = �r · 2k/p + δ
where δ ∈ Z with |δ| ≤ Θ/2 + 2.

Proof. We have:

c′ =
Θ∑

i=1

si �c · yi�+Δ · 2k+1 =

Θ∑
i=1

si · c · yi + δ1 +Δ · 2k+1

for some Δ ∈ Z and |δ1| ≤ Θ/2. Using 〈s,y〉 = 2k/p − ε − μ · 2k+1 for some
μ ∈ Z this gives:

c′ − δ1 −Δ2k+1 = c ·
(
2k

p
− ε− μ · 2k+1

)
= q · 2k + r · 2

k

p
− c · ε− c · μ · 2k+1

Therefore we can write:
c′ = q′ · 2k + r′

where [q′]2 = [q]2 and r′ = �r · 2k/p+ δ for some δ ∈ Z with |δ| ≤ Θ/2 + 2. ��

As in [4], given a vector x ∈ [0, 2k+1[Θ we write x =
∑k

i=0 2
j · uj where all the

elements in vectors uj are bits, and we define BitDecomp(x, k) := (u0, . . . ,uk).
Similarly given a vector z ∈ RΘ we define Powersof2(z, k) := (z, 2 · z, . . . , 2k · z).
We have for any vectors x and z:〈

BitDecomp(x, k),Powersof2(z, k)
〉
= 〈x, z〉

The following lemma shows that given a ciphertext c encrypted under p and with
noise r we can compute a new ciphertext c′′ under p′ with noise r′′ � r · p′/p, by
using an encryption σ under p′ of the secret-key s corresponding to p.

Lemma 2. Let p and p′ be two odd integers. Let k be an integer such that
p′ < 2k. Let c = q · p + r be a ciphertext. Let κ ∈ Z be such that |c| < 2κ.
Let y be a vector of Θ numbers with κ bits of precision after the binary point,
and let s be a vector of Θ bits such that 2k/p = 〈s,y〉 + ε mod 2k+1, where
|ε| ≤ 2−κ. Let σ = p′ ·q+r+�s′ ·p′/2k+1� be an encryption of the secret-key s′ =
Powersof2(s, k), where q ← (Z∩[0, 2γ/p′))(k+1)·Θ and r ← (Z∩(−2ρ, 2ρ))(k+1)·Θ.
Let c = (�c · yi� mod 2k+1)1≤i≤Θ and let c′ = BitDecomp(c, k) be the expanded
ciphertext. Let c′′ = 2〈σ, c′〉+[c]2. Then c

′′ = q′′ ·p′+r′′ where r′′ = �r ·p′/p+δ′
for some δ′ ∈ Z with |δ′| ≤ 2ρ+2 ·Θ · (k + 1), and [r]2 = [r′′]2.
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Proof. We have, from σ = p′ · q + r + �s′ · p′/2k+1�:

c′′ = 2〈σ, c′〉+ [c]2 = 2p′ · 〈q, c′〉 + 2〈r, c′〉+ 2

〈⌊
s′ · p′

2k+1

⌉
, c′

〉
+ [c]2 (3)

Since the components of c′ are bits, we have using 2�x/2� = x+ ν with |ν| ≤ 1:

2

〈⌊
p′

2k+1
· s′

⌉
, c′

〉
=

〈
p′

2k
· s′, c′

〉
+ ν2 =

p′

2k
· 〈s′, c′〉 + ν2

where |ν2| ≤ Θ · (k+1). Using 〈s′, c′〉 = 〈s, c〉 and since from Lemma 1 we have
〈s, c〉 = q′ · 2k + r′ with [q′]2 = [q]2 and r′ = �r · 2k/p + δ where δ ∈ Z with
|δ| ≤ Θ/2 + 2, we get:

2

〈⌊
p′

2k+1
· s′

⌉
, c′

〉
=
p′

2k
·(q′ ·2k+r′)+ν2 = q′ ·p′+ p′

2k
·r′+ν2 = q′ ·p′+r · p

′

p
+ν3

where |ν3| ≤ |ν2| + Θ/2 + 3 ≤ 2Θ · (k + 1). Therefore we obtain from equation
(3):

c′′ = 2p′ · 〈q, c′〉 + 2〈r, c′〉+ q′ · p′ + r · p
′

p
+ ν3 + [c]2 = q′′ · p′ + r′′

where q′′ := q′ + 2〈q, c′〉 and r′′ = �r · p′/p+ δ′ for some δ′ ∈ Z with:

|δ′| ≤ |2〈r, c′〉|+1+ |ν3|+1 ≤ 2ρ+1 ·Θ ·(k+1)+2Θ ·(k+1)+2 ≤ 2ρ+2 ·Θ ·(k+1)

Eventually from [c′′]2 = [c]2, [c]2 = [q]2 ⊕ [r]2, [c
′′]2 = [q′′]2 ⊕ [r′′]2 and [q′′]2 =

[q′]2 = [q]2, we obtain [r]2 = [r′′]2 as required. ��

5.3 The Modulus-Switching Algorithm for DGHV

From Lemma 2 we can now specify the modulus-switching algorithm for DGHV.

SwitchKeyGen(pk, sk, pk′, sk′):

1. Take as input two DGHV secret-keys p and p′ of size η and η′. Let κ = 2γ+η
where γ is the size of the public key integers xi under p.

2. Generate a vector y of Θ random numbers modulo 2η′+1 with κ bits of
precision after the binary point, and a random vector s of Θ bits such
that 2η′

/p = 〈s,y〉 + ε mod 2η′+1 where |ε| ≤ 2−κ. Generate the expanded
secret-key s′ = Powersof2(s, η′)

3. Compute a vector encryption σ of s′ under sk′, defined as follows:

σ = p′ · q + r +

⌊
s′ · p′

2η′+1

⌉
(4)

where q ← (Z∩ [0, q′0))
(η′+1)·Θ and r ← (Z∩ (−2ρ′

, 2ρ′
))(η

′+1)·Θ, where q′0 is
from x′0 = q′0 · p′ + r′ in pk′.

4. Output τpk→pk′ = (y,σ).
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SwitchKey(τpk→pk′ , c):

1. Let y,σ ← τpk→pk′

2. Compute the expanded ciphertext c = (�c · yi� mod 2η′+1)1≤i≤Θ and let
c′ = BitDecomp(c, η′).

3. Output c′′ = 2〈σ, c′〉 + [c]2.

5.4 The DGHV Scheme without Bootstrapping

We are now ready to describe our DGHV variant in the BGV framework, that
is without bootstrapping. As in [4] we construct a leveled fully homomorphic
scheme, i.e. an encryption scheme whose parameters depend polynomially on
the depth of the circuits that the scheme can evaluate.

FHE.KeyGen(1λ, 1L). Take as input the security parameter λ and the number of
levels L. Let μ be a parameter specified later. Generate a ladder of L decreasing
moduli of size ηi = (i + 1)μ from ηL = (L + 1)μ down to η1 = 2μ. For each
ηi run DGHV.KeyGen(1λ) from Section 2 to generate a random odd integer pi
of size ηi; we take the same parameter γ for all i. Let pki be the corresponding
public key and ski = pi be the corresponding secret-key. For j = L down to
2 run τpkj→pkj−1 ← SwitchKeyGen(pkj , skj , pkj−1, skj−1). The full public key is
pk = (pkL, τpkL→pkL−1 , . . . , τpk2→pk1 ) and the secret-key is sk = (p1, . . . , pL).

FHE.Encrypt(pk,m ∈ {0, 1}). Run DGHV.Encrypt(pkL,m).

FHE.Decrypt(sk, c). Suppose that the ciphertext is under modulus pj . Output
m ← [c]pj mod 2.

FHE.Add(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted
under the same pkj ; if they are not, use FHE.Refresh below to make it so. First
compute c3 ← c1 + c2. Then output c4 ← FHE.Refresh(τpkj→pkj−1 , c3), unless
both ciphertexts are encrypted under pk1; in this case, simply output c3.

FHE.Mult(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted
under the same pkj ; if they are not, use FHE.Refresh below to make it so. First
compute c3 ← c1 ·c2. Then output c4 ← FHE.Refresh(τpkj→pkj−1 , c3), unless both
ciphertexts are encrypted under pk1; in this case, simply output c3.

FHE.Refresh(τpkj+1→pkj , c). Output c′ ← SwitchKey(τpkj+1→pkj , c).

5.5 Correctness and Security

We show in the full version of this paper [6] how to fix the parameter μ so that
the ciphertext noise for every modulus in the ladder remains roughly the same,
and we prove that FHE is a correct leveled FHE scheme.

Theorem 3. For some μ = O(λ + logL), FHE is a correct L-leveled FHE
scheme; specifically it correctly evaluates circuits of depth L with Add and Mult
gates over GF (2).
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We show in the full version of this paper [6] that the resulting FHE is semantically
secure under the following new assumption.

Definition 2 (Decisional Approximate GCD). The (ρ, η, γ)-Decisional Ap-
proximate GCD Problem is: For a random η-bit odd integer p, given polynomially
many samples from Dγ,ρ(p), and given an integer z = x+ b · �2j · p/2η+1� for a
given random integer j ∈ [0, η], where x ← Dγ,ρ(p) and b ← {0, 1}, find b.

The Decisional Approximate GCD assumption is defined in the usual way. It
is clearly stronger than the standard Approximate GCD assumption. We were
not able to base the security of the leveled DGHV scheme on the standard
Approximate GCD assumption; this is due to equation (4) which requires a
non-standard encryption of the secret-key bits.

Theorem 4. FHE is semantically secure under the Decisional Approximate GCD
assumption and under the hardness of subset sum assumption.

6 Improved Attack against the Approximate GCD
Algorithm

Recently, Chen and Nguyen [5] described an improved exponential algorithm for
solving the approximate common divisor problem: they obtain a complexity of
Õ(2ρ/2) for the partial version (with an exact multiple x0 = q0 · p) and Õ(23ρ/2)
for the general version (with near-multiples only).1

In this section, we show that the latter complexity can be heuristically im-
proved to Õ(2ρ) provided that sufficiently many near-multiples are available,
which is the case in the DGHV scheme. Our algorithm has memory complexity
Õ(2ρ), instead of only Õ(2ρ/2) for the Chen and Nguyen attack.

Indeed, assume that we have s large near-multiples x1, . . . , xs of a given prime
p0, of the hidden form xj = p0qj + rj , where qj ∈ [0, 2γ/p0) (for γ polynomial in
ρ) and rj ∈ [0, 2ρ) are chosen uniformly and independently at random. We claim

that p0 can then be recovered with overwhelming probability in time Õ(2
s+1
s−1ρ)

(and with significant probability in time Õ(2
s

s−1ρ)).
The algorithm is as follows. For j = 1, . . . , s, let:

yj =

2ρ−1∏
i=0

(xj − i)

Clearly, p0 divides the GCD g = gcd(y1, . . . , ys). Each yi can be computed in
time quasilinear in 2ρ using a product tree, and the GCD can be evaluated as
gcd(· · · gcd(gcd(y1, y2), y3), . . . , ys) using s − 1 quasilinear GCD computations
on numbers of size O(2ρ · γ) = Õ(2ρ). Hence, the whole computation of g takes
time Õ(s · 2ρ).

1 Namely to solve the general version using the partial version algorithm it suffices to
do exhaustive search on the ρ bits of noise in x0 = q0 · p+ r0.
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Now, we argue that with high probability on the choice of the (qj , rj), all the
prime factors of g except p0 are smaller than a bound B that is not much larger
than 2ρ. Then, p0 can be recovered as g/g′, where g′ is the B-smooth part of
g, which can in turn be computed in time quasilinear in max(B, |g|), e.g. using
Bernstein’s algorithm [1]. Overall, the full time complexity of the attack is thus
Õ(max(B, s · 2ρ)), or simply Õ(B) assuming that s = O(ρ), and without loss
of generality that B > 2ρ. All we need to find is how to choose B to obtain a
sufficient success probability.

The probability that all the prime factors of g except p0 are smaller than B
is the probability that, for every prime p ≥ B other than p0, not all the xj ’s are
congruent to one of 0, 1, . . . , 2ρ − 1 mod p. This happens with probability very
close to 1− (2ρ/p)s. Hence, the probability that all the prime factors of g except
p0 are smaller than B is essentially given by the following Euler product:

Ps,ρ(B) =
∏
p≥B
p=p0

(
1 − 2sρ

ps

)

(which clearly converges to some positive value smaller than 1 since s ≥ 2 and
B > 2ρ). We prove in the full version of this paper [6] the following estimate on
this Euler product.

Lemma 3. For any B > 2ρ+1/s, we have:

1 − Ps,ρ(B) <
2s

s− 1
· 2sρ

Bs−1 logB

In particular, if we pick B = 2
s

s−1ρ, we obtain Ps,ρ(B) > 1 − 2/(ρ log 2): thus,

the problem can be solved in time Õ(2
s

s−1ρ) with significant success probability.

And if we pick B = 2
s+1
s−1ρ, we get Ps,ρ(B) > 1− 2−ρ: hence, the problem can be

solved in time Õ(2
s+1
s−1ρ) with an overwhelming success probability.

We see in both cases that for any given ε > 0, the complexity becomes
O(2(1+ε)ρ) if s is large enough. Better yet, if s = ω(1) (for example Θ(ρ)) near-
multiples are available, the problem can be solved in time Õ(2ρ) with overwhelm-
ing probability.

As in [5] we can perform a time-memory trade-off. First split the product y1
into d sub-products zk’s, and guess which of these sub-products z = zk contains
p0. Let g = gcd(z, y2, . . . , ys). The first GCD computation gcd(z, y2) can be
performed in time Õ(2ρ) and memory Õ(2ρ/d) by first computing y2 mod z using
a product tree; the remaining gcd’s can be computed with the same complexity;
the same holds for recovering the B-smooth part of g. Hence p0 can be recovered
in time Õ(d · 2ρ) and memory Õ(2ρ/d).

6.1 Experimental Results

We have implemented the previous attack; see the full version of this paper [6]
for the source code. Table 1 shows that our attack performs well in practice; it
is roughly 200 times faster than the corresponding attack of Chen and Nguyen
for the smallest set of parameters considered in [5].
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Table 1. Running time of the attack, on a single core of an Amazon EC2 Cluster
Compute Eight Extra Large Instance instance (featuring an Intel Xeon E5 processor
at 2.5 GHz and 60.5 GB of memory), with parameter s = ρ. For the third instance, the
running time of the Chen-Nguyen attack [5] was estimated by multiplying the running
time from [5] (1.6 min) by 2ρ.

Instance ρ γ log2 mem. running time running time [5]

Micro 12 104 26.3 40 s

Toy (Section 8) 13 61 · 103 29.9 13 min 22 s

Toy’ ([5] without x0) 17 1.6 · 105 35.3 17 h 50 min 3495 hours

7 Implementation of DGHV with Compressed Public
Key

In this section we describe an implementation of the DGHV scheme with the
compression technique of Section 3; we use the variant with x0 = q0 · p. We refer
to the full version of this paper [6] for a full description of the resulting scheme,
and we provide the source code of our implementation in [17].

Asymptotic Key Size. To prevent lattice attacks against the sparse subset-
sum problem, one must have Θ2 = γ · ω(logλ); see [7,16] for more details. One
can then take ρ = λ, η = Õ(λ2), γ = Õ(λ5), α = Õ(λ2), τ = Õ(λ3) and
Θ = Õ(λ3). Using our compression technique the public key size is roughly
2γ + (τ +Θ) · (η + λ) = Õ(λ5) bits.

Concrete Key Size and Execution Speed. We have updated the parameters
from [7] to take into account the improved approximate-GCD attack from [5]; see
Table 2. The attack from [5] is memory bounded; however we took a conservative
approach and considered a memory unbounded adversary. As in [7] we take
n = 4 and θ = 15 for all security levels. We can see in Table 2 that compression
reduces the public key size considerably. Table 3 shows no significant performance
degradation with respect to [7].

Table 2. The concrete parameters of various test instances and their respective public
key sizes, for DGHV with compressed public-key

Instance λ ρ η γ × 10−6 α τ Θ pk size

Toy 42 27 1026 0.15 936 158 144 77 KB

Small 52 41 1558 0.83 1476 572 533 437 KB

Medium 62 56 2128 4.20 2016 2110 1972 2207 KB

Large 72 71 2698 19.35 2556 7659 7897 10.3 MB



Public Key Compression and Modulus Switching for FHE over the Integers 461

Table 3. Timings of our Sage 4.7.2 [15] code (single core of a desktop computer with
an Intel Core2 Duo E8400 at 3 GHz), for DGHV with compressed public-key.

Instance KeyGen Encrypt Decrypt Expand Recrypt

Toy 0.06 s 0.05 s 0.00 s 0.01 s 0.41 s

Small 1.3 s 1.0 s 0.00 s 0.15 s 4.5 s

Medium 28 s 21 s 0.01 s 2.7 s 51 s

Large 10 min 7 min 15 s 0.05 s 51 s 11 min 34 s

8 Implementation of Leveled DGHV

In this section we describe an implementation of the leveled DGHV scheme
described in Section 5 in the BGV framework. We implement the modulus-
switching procedure as described in Section 5.3, with an optimization of the
ciphertext expansion procedure (see below). We also implement the bootstrap-
ping operation; although not strictly necessary, this enables to get a FHE that
can perform homomorphic evaluations indefinitely without needing to specify at
setup time a bound on the multiplicative level.

8.1 Faster Ciphertext Expansion

We consider the modulus-switching procedure of Section 5.3. The initial modulus
p has size η and the new modulus p′ has size η′ < η. The first modulus p is shared
among the yi elements as

2η′

p
=

Θ∑
i=1

si · yi + ε mod 2η′+1 (5)

where the si’s are bits, the yi’s have κ bits of precision after the binary point,
and |ε| ≤ 2−κ. In practice one can generate the yi’s pseudo-randomly (except y1),
as suggested in [7]. However the ciphertext expansion from Step 2 of SwitchKey
algorithm (Section 5.3) is a time-consuming procedure.

Therefore instead of using pseudo-random yi’s we use the following (admit-
tedly aggressive) optimization. Let δ be a parameter specified later. We generate
a random y with κ + δ · Θ · η bits of precision after the binary point, and we
define the yi’s for 2 ≤ i ≤ Θ as:

yi =
[
y · 2i·δ·η]

2η′+1

keeping only κ bits of precision after the binary point for each yi as previously.We
fix y1 so that equality (5) holds, assuming s1 = 1. Then the ciphertext expansion
from Step 2 of the SwitchKey algorithm (Section 5.3) can be computed as follows,
for all 2 ≤ i ≤ Θ:

zi = �c · yi� mod 2η′+1 = �c · y · 2i·δ·η� mod 2η′+1
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Therefore computing all the zi’s (except z1) is now essentially a single multiplica-
tion c · y. In the full version of this paper [6] we describe a lattice attack against
this optimization; we show that the attack is thwarted by selecting δ such that
δ · Θ · η ≥ 3γ.

Finally we use the following straightforward optimization: instead of using
BitDecomp and Powersof2 with bits, we use words of size ω bits instead. This
decreases the running time of SwitchKey by a factor of about ω, at the cost
of increasing the resulting noise by roughly ω bits. We took ω = 32 in our
implementation.

8.2 Bootstrapping: The Decryption Circuit

Recall that the decryption function in the DGHV scheme is:

m ←
[
c−

⌊
Θ∑

i=1

si · zi

⌉]
2

(6)

where zi = [c · yi]2 for 1 ≤ i ≤ Θ is the expanded ciphertext, keeping only
n = (log2(θ + 1)� bits of precision after the binary point for each zi. The si’s
form a sparse Θ-dimensional vector of Hamming weight θ, such that 1/p =∑Θ

i=1 si · yi + ε where the yi’s have κ bits of precision after the binary point,
and |ε| ≤ 2−κ. Note that for bootstrapping the decryption circuit is only used
for the smallest modulus p in the ladder. The following lemma shows that the
message m can be computed using a circuit of multiplicative depth exactly n.

Lemma 4. Let a = [a0, . . . , an] and b = [b0, . . . , bn] be two integers of size n+1
bits, where every bit ai and bi has multiplicative depth at most i. Then every
bit ci of the sum c = (a+ b) mod 2n+1 = [c0, . . . , cn] has multiplicative depth at
most i.

Proof. Let δi be the i-th carry bit, with δ0 = 0. We have ci = ai ⊕ bi ⊕ δi for
0 ≤ i ≤ n, where δi = ai−1 · bi−1 + ai−1 · δi−1 + bi−1 · δi−1 for 1 ≤ i ≤ n.
Therefore by recursion δi has multiplicative depth at most i; this implies that ci
has multiplicative depth at most i. ��

Therefore using a simple loop the sum of the Θ numbers si · zi in equation (6)
can be computed with a circuit of multiplicative depth n. Since a subsequent
homomorphic operation (either addition or multiplication) must be possible be-
tween refreshed ciphertexts, the full bootstrapping procedure requires a leveled
FHE scheme with multiplicative depth L = n+ 1. Note that for bootstrapping
an encryption of the secret-key bits si (corresponding to the last modulus p1 in
the ladder) must be provided under pL, the first modulus in the ladder, so that
the homomorphic evaluation of m in equation (6) can start under the public
key pkL.
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8.3 Implementation Results

In this section we describe an implementation of the leveled DGHV scheme,
including the bootstrapping operation. As mentioned previously we cannot use
the variant with noise-free x0 = q0 · p since otherwise p could be recovered using
the ECM; namely the smallest modulus in the ladder has size only 2μ = 164 bits
for the “Large” instance.

We summarize in Tables 4 and 5 the performance of our implementation of
the leveled DGHV scheme. We denote by η the size of the largest modulus in the
ladder. The running time of the Recrypt operation is disappointing compared to
the non-leveled implementation from Section 7; however we think that there is
room for improvement.

Table 4. The concrete parameters of various test instances and their respective public-
key sizes for leveled DGHV

Instance λ ρ η μ γ × 10−6 Θ pk size

Toy 42 14 336 56 0.061 195 354 KB

Small 52 20 390 65 0.27 735 1690 KB

Medium 62 26 438 73 1.02 2925 7.9 MB

Large 72 34 492 82 2.20 5700 18 MB

Table 5. Timings of our Sage 4.7.2 [15] code (single core of a desktop computer with
an Intel Core2 Duo E8400 at 3 GHz)

Instance KeyGen Encrypt Decrypt Mult & Scale Recrypt

Toy 0.36 s 0.01 s 0.00 s 0.04 s 8.8 s

Small 5.4 s 0.07 s 0.00 s 0.59 s 101 s

Medium 1 min 12 s 0.85 s 0.00 s 9.1 s 32 min 38 s

Large 6 min 18 s 3.4 s 0.00 s 41 s 2 h 27 min
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Abstract. We show that homomorphic evaluation of (wide enough)
arithmetic circuits can be accomplished with only polylogarithmic over-
head. Namely, we present a construction of fully homomorphic encryp-
tion (FHE) schemes that for security parameter λ can evaluate any
width-Ω(λ) circuit with t gates in time t · polylog(λ).

To get low overhead, we use the recent batch homomorphic evaluation
techniques of Smart-Vercauteren and Brakerski-Gentry-Vaikuntanathan,
who showed that homomorphic operations can be applied to “packed” ci-
phertexts that encrypt vectors of plaintext elements. In this work, we in-
troduce permuting/routing techniques to move plaintext elements across
these vectors efficiently. Hence, we are able to implement general arith-
metic circuit in a batched fashion without ever needing to “unpack” the
plaintext vectors.

We also introduce some other optimizations that can speed up homo-
morphic evaluation in certain cases. For example, we show how to use the
Frobenius map to raise plaintext elements to powers of p at the “cost”
of a linear operation.

1 Introduction

Fully homomorphic encryption (FHE) [1–3] allows a worker to perform
arbitrarily-complex dynamically-chosen computations on encrypted data, de-
spite not having the secret decryption key. Processing encrypted data homo-
morphically requires more computation than processing the data unencrypted.
But how much more? What is the overhead, the ratio of encrypted computation
complexity to unencrypted computation complexity (using a circuit model of
computation)? Here, under the ring-LWE assumption, we show that the over-
head can be made as low as polylogarithmic in the security parameter.

We accomplish this by packing many plaintexts into each ciphertext; each
ciphertext has Ω̃(λ) “plaintext slots”. Then, we describe a complete set of op-
erations – Add,Mult and Permute – that allows us to evaluate arbitrary circuits
while keeping the ciphertexts packed. Batch Add and Mult have been done before
[4], and follow easily from the Chinese Remainder Theorem within our underly-
ing polynomial ring. Here we introduce the operation Permute, that allows us to

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 465–482, 2012.
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homomorphically move data between the plaintext slots, show how to realize it
from our underlying algebra, and how to use it to evaluate arbitrary circuits.

Our approach begins with the observation [4, 5] that we can use an automor-
phism group H associated to our underlying ring to “rotate” or “re-align” the
contents of the plaintext slots. (These automorphisms were used in a somewhat
similar manner by Lyubashevsky et al. [6] in their proof of the pseudorandomness
of RLWE.) While H alone enables only a few permutations (e.g., “rotations”),
we show that any permutation can be constructed as a log-depth permutation
network, where each level consists of a constant number of “rotations”, batch-
additions and batch-multiplications. Our method works when the underlying
ring has an associated automorphism group H which is abelian and sharply
transitive, a condition that we prove always holds for our scheme’s parameters.

Ultimately, the Add,Mult and Permute operations can all be accom-
plished with Õ(λ) computation by building on the recent Brakerski-Gentry-
Vaikuntanathan (BGV) “FHE without bootstrapping” scheme [5], which builds
on prior work by Brakerski and Vaikuntanathan and others [7–9]. Thus, we ob-
tain an FHE scheme that can evaluate any circuit that has Ω(λ) average width
with only polylog(λ) overhead. For comparison, the smallest overhead for FHE
was Õ(λ3.5) [10] until BGV recently reduced it to Õ(λ) [5].1

In addition to their essential role in letting us move data across plaintext slots,
ring automorphisms turn out to have interesting secondary consequences: they
also enable more nimble manipulation of data within plaintext slots. Specifically,
in some cases we can use them to raise the packed plaintext elements to a high
power with hardly any increase in the noise magnitude of the ciphertext! In
practice, this could permit evaluation of high-degree circuits without resorting
to bootstrapping, in applications such as computing AES. See the full version of
this paper [12].

1.1 Packing Plaintexts and Batched Homomorphic Computation

Smart and Vercauteren [4, 13] were the first to observe that, by an application
the Chinese Remainder Theorem to number fields, the plaintext space of some
previous FHE schemes can be partitioned into a vector of “plaintext slots”, and
that a single homomorphic Add or Mult of a pair of ciphertexts implicitly adds
or multiplies (component-wise) the entire plaintext vectors. Each plaintext slot
is defined to hold an element in some finite field Kn = Fpn , and, abstractly, if
one has two ciphertexts that hold (encrypt) messages m0, . . . ,m
−1 ∈ K



n and

m′
0, . . . ,m

′

−1 ∈ K



n respectively in plaintext slots 0, . . . , � − 1, applying �-Add

to the two ciphertexts gives a new ciphertext that holds m0 +m′
0, . . . ,m
−1 +

m′

−1 and applying �-Mult gives a new ciphertext that holds m0 ·m′

0, . . . ,m
−1 ·
m′


−1. Smart and Vercauteren used this observation for batch (or SIMD [14])
homomorphic operations. That is, they show how to evaluate a function f

1 However, the polylog factors in our new scheme are rather large. It remains to be
seen how much of an improvement this approach yields in practice, as compared to
the Õ(λ3.5) approach implemented in [10, 11].
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homomorphically � times in parallel on � different inputs, with approximately
the same cost that it takes to evaluate the function once without batching.

Here is a taste of how these separate plaintext slots are constructed alge-
braically. As an example, for the ring-LWE-based scheme, suppose we use the
polynomial ring A = Z[x]/(x
 + 1) where � is a power of 2. Ciphertexts are
elements of A2

q where (as in in [5]) q has only polylog(λ) bits. The “aggregate”
plaintext space is Ap (that is, ring elements taken modulo p) for some small
prime p = 1 mod 2�. Any prime p = 1 mod 2� splits over the field associated to
this ring – that is, in A, the ideal generated by p is the product of � ideals {pi}
each of norm p – and therefore Ap ≡ Ap0 × · · · × Ap�−1

. Consequently, using
the Chinese remainder theorem, we can encode � independent mod-p plaintexts
m0, . . . ,m
−1 ∈ {0, . . . , p − 1} as the unique element in Ap that is in all of the
cosets mi+pi. Thus, in a single ciphertext, we may have � independent plaintext
“slots”.

In this work, we often use �-Add and �-Mult to efficiently implement a Select
operation: Given an index set I we can construct a vector vI of “select bits”
(v0, . . . , v
−1), such that vi = 1 if i ∈ I and vi = 0 otherwise. Then element-wise
multiplication of a packed ciphertext c with the select vector v results in a new
ciphertext that contains only the plaintext element in the slots corresponding
to I, and zero elsewhere. Moreover, by generating two complementing select
vectors vI and vĪ we can mix-and-match the slots from two packed ciphertexts
c1 and c2: Setting c = (vI × c1) + (vĪ × c2), we pack into c the slots from c1 at
indexes from I and the slots from c2 elsewhere.

While batching is useful in many setting, it does not, by itself, yield low-
overhead homomorphic computation in general, as it does not help us to reduce
the overhead of computing a complicated function just once. Just as in normal
program execution of SIMD instructions (e.g., the SSE instructions on x86), one
needs a method of moving data between slots in each SIMD word.

1.2 Permuting Plaintexts within the Plaintext Slots

To reduce the overhead of homomorphic computation in general, we need a
complete set of operations over packed vectors of plaintexts. The approach above
allows us to add or multiply messages that are in the same plaintext slot, but
what if we want to add the content of the i-th slot in one ciphertext to the
content of the j-th slot of another ciphertext, for i �= j? We can “unpack” the
slots into separate ciphertexts (say, using homomorphic decryption2 [2, 3]), but
there is little hope that this approach could yield very efficient FHE. Instead,
we complement �-Add and �-Mult with an operation �-Permute to move data
efficiently across slots within a a given ciphertext, and efficient procedures to
clone slots from a packed ciphertext and move them around to other packed
ciphertexts.

Brakerski, Gentry, and Vaikuntanathan [5] observed that for certain param-
eter settings, one can use automorphisms associated with the algebraic ring A

2 This is the approach suggested in [4] for Gentry’s original FHE scheme.
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to “rotate” all of plaintext spaces simultaneously, sort of like turning a dial on
a safe. That is, one can transform a ciphertext that holds m0,m1, . . . ,m
−1 in
its � slots into another ciphertext that holds mi,mi+1, . . . ,mi+
−1 (for an arbi-
trary given i, index arithmetic mod �), and this rotation operation takes time
quasi-linear in the ciphertext size, which is quasi-linear in the security param-
eter. They used this tool to construct Pack and Unpack algorithms whereby
separate ciphertexts could be aggregated (packed) into a single ciphertext with
packed plaintexts before applying bootstrapping (and then the refreshed cipher-
text would be unpacked), thereby lowering the amortized cost of bootstrapping.

We exploit these automorphisms more fully, using the basic rotations that the
automorphisms give us to construct permutation networks that can permute data
in the plaintext slots arbitrarily. We also extend the application of the automor-
phisms to more general underlying rings, beyond the specific parameter settings
considered in prior work [5, 7, 8]. This lets us devise low-overhead homomorphic
schemes for arithmetic circuits over essentially any small finite field Fpn .

Our efficient implementation of Permute, described in Section 3, uses the
Beneš/Waksman permutation network [15, 16]. This network consists of two
back-to-back butterfly network of width 2k, where each level in the network has
2k−1 “switch gates” and each switch gate swaps (or not) its two inputs, depend-
ing on a control bit. It is possible to realize any permutation of � = 2k items
by appropriately setting the control bits of all the switch gates. Viewing this
network as acting on k-bit addresses, the i-th level of the network partitions
the 2k addresses into 2k−1 pairs, where each pair of addresses differs only in the
|i − k|-th bit, and then it swaps (or not) those pairs. The fact that the pairs
in the i-th level always consist of addresses that differ by exactly 2|i−k|, makes
it easy to implement each level using rotations: All we need is one rotation by
2|i−k| and another by −2|i−k|, followed by two batched Select operations.

For general rings A, the automorphisms do not always exactly “rotate” the
plaintext slots. Instead, they act on the slots in a way that depends on a quo-
tient group H of the appropriate Galois group. Nonetheless, we use basic the-
orems from Galois theory, in conjunction with appropriate generalizations of
the Beneš/Waksman procedure, to construct a permutation network of depth
O(log �) that can realize any permutation over the � plaintext slots, where each
level of the network consists of a constant number of permutations from H and
Select operations. As with the rotations considered in [5], applying permutations
from H can be done in time quasi-linear in ciphertext size, which is only quasi-
linear in the security parameter. Overall, we find that permutation networks and
Galois theory are a surprisingly fruitful combination.

We note that Damg̊ard, Ishai and Krøigaard [17] used permutation networks
in a somewhat analogous fashion to perform secure multiparty computation with
packed secret shares. In their setting, which permits interaction between the
parties, the permutations can be evaluated using much simpler mathematical
machinery.
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1.3 FHE with Polylog Overhead

In our discussion above, we glossed over the fact that ciphertext sizes in a BGV-
like cryptosystem [5] depend polynomially on the depth of the circuit being
evaluated, because the modulus size must grow with the depth of the circuit
(unless bootstrapping [2, 3] is used). So, without bootstrapping, the “polylog
overhead” result only applies to circuits of polylog depth. However, decryption
itself can be accomplished in log-depth [5], and moreover the parameters can be
set so that a ciphertext with Ω̃(λ) slots can be decrypted using a circuit of size
Õ(λ). Therefore, “recryption” can be accomplished with polylog overhead, and
we obtain FHE with polylog overhead for arbitrary (wide enough) circuits.

2 Computing on (Encrypted) Arrays

As we explained above, our main tool for low-overhead homomorphic computa-
tion is to compute on “packed ciphertexts”, namely make each ciphertext hold a
vector of plaintext values rather than a single value. Throughout this section we
let � be a parameter specifying the number of plaintext values that are packed
inside each ciphertext, namely we always work with �-vectors of plaintext values.
Let Kn = Fpn denote the plaintext space (e.g., Kn = F2 if we are dealing with
binary circuits directly). It was shown in [4, 5] how to homomorphically evaluate
batch addition and multiplication operations on �-vectors:

�-Add
(
〈u0, . . . , u
−1〉 , 〈v0, . . . , v
−1〉

) def
= 〈u0 + v0, . . . , u
−1 + v
−1〉

�-Mult
(
〈u0, . . . , u
−1〉 , 〈v0, . . . , v
−1〉

) def
= 〈u0 × v0, . . . , u
−1 × v
−1〉

on packed ciphertexts in time Õ((� + λ)(log |Kn|) where λ is the security pa-
rameter (with addition and multiplication in Kn).

3 Specifically, if the size of
our plaintext space is polynomially bounded and we set � = Θ(λ), then we can
evaluate the above operations homomorphically in time Õ(λ).

Unfortunately, component-wise �-Add and �-Mult are not sufficient to per-
form arbitrary computations on encrypted arrays, since data at different indexes
within the arrays can never interact. To get a complete set of operations for
arrays, we introduce the �-Permute operation that can arbitrarily permute the
data within the �-element arrays. Namely, for any permutation π over the indexes
I
 = {0, 1, . . . , �− 1}, we want to homomorphically evaluate the function

�-Permuteπ
(
〈u0, . . . , u
−1〉

)
=
〈
uπ(0), . . . , uπ(
−1)

〉
.

on a packed ciphertext, with complexity similar to the above. We will show how
to implement �-Permute homomorphically in Sections 3 and 4 below. For now,
we just assume that such an implementation is available and show how to use it
to obtain low-overhead implementation of general circuits.

3 To compute L levels of such operations, the complexity expression becomes
Õ((
+ λ)(L+ log |Kn|)).
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2.1 Computing with �-Fold Gates

We are interested in computing arbitrary functions using “�-fold gates” that
operate on �-element arrays as above. We assume that the function f(·) to be
computed is specified using a fan-in-2 arithmetic circuit with t “normal” arith-
metic gates (that operate on singletons). Our goal is to implement f using as
few �-fold gates as possible, hopefully not much more than t/� of them.

We assume that the input to f is presented in a packed form, namely when
computing an r-variate function f(x1, . . . , xr) we get as input (r/�� arrays (in-
dexed A0, . . . , A�r/
�) with the j’th array containing the input elements xj


through xj
+
−1. The last array may contain less than � elements, and the un-
used entries contain “don’t care” elements. In fact, throughout the computation
we allow all of the arrays to contain “don’t care” entries. We say that an array is
sparse if it contains �/2 or more “don’t care” entries. We maintain the invariant
that our collection of arrays is always at least half full, i.e., we hold r values
using at most (2r/�� �-element arrays.

The gates that we use in the computation are the �-Add, �-Mult, and �-Permute
gates from above. The rest of this section is devoted to establishing the following
theorem:

Theorem 1. Let �, t, w and W be parameters. Then any t-gate fan-in-2 arith-
metic circuit C with average width w and maximum width W , can be evaluated
using a network of O

(
(t/�� · (�/w� · logW · polylog(�)

)
�-fold gates of types

�-Add, �-Mult, and �-Permute. The depth of this network of �-fold gates is at
most O(logW ) times that of the original circuit C, and the description of the
network can be computed in time Õ(t) given the description of C.

Before turning to proving Theorem 1, we point out that Theorem 1 implies
that if the original circuit C has size t = poly(λ), depth L, and average width
w = Ω(λ), and if we set the packing parameter as � = Θ(λ), then we get an
O(L · logλ)-depth implementation of C using O(t/λ · polylog(λ)) �-fold gates. If
implementing each �-fold gate takes Õ(Lλ) time, then the total time to evaluate
C is no more than

O
( t
λ
polylog(λ) · L · λ · polylog(λ)

)
= O(t · L · polylog(λ)).

Therefore, with this choice of parameter (and for “wide enough” circuits of
average width Ω(λ)), our overhead for evaluating depth-L circuits is only O(L ·
polylog(λ)). And if L is also polylogarithmic, as in BGV with bootstrapping [5],
then the total overhead is polylogarithmic in the security parameter.

The high-level idea of the proof of Theorem 1 is what one would expect.
Consider an arbitrary fan-in two arithmetic circuit C. Suppose that we have ≈ w
output wire values of level i−1 packed into roughly w/� arrays. We need to route
these output values to their correct input positions at level i. It should be obvious
that the �-Permute gates facilitate this routing, except for two complications:

1. The mapping from outputs of level i− 1 to inputs of level i is not a permu-
tation. Specifically, level-(i − 1) gates may have high fan-out, and so some
of the output values may need to be cloned.
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2. Once the output values are cloned sufficiently (for a total of, say, w′ values),
routing to level i apparently calls for a big permutation over w′ elements, not
just a small permutation within arrays of � elements.

Below we show that these complications can be handled efficiently.

2.2 Permutations over Hyper-rectangles

First, consider the second complication from above – namely, that we need to
perform a permutation over some w elements (possibly w , �) using �-Add,
�-Mult, and �-Permute operations that only work on �-element arrays. We use
the following basic fact (cf. [18]).

Lemma 1. Let S = {0, . . . , a− 1} × {0, . . . , b− 1} be a set of ab positions, ar-
ranged as a matrix of a rows and b columns. For any permutation π over S, there
are permutations π1, π2, π3 such that π = π3◦π2◦π1 (that is, π is the composition
of the three permutations) and such that π1 and π3 only permute positions within
each column (these permutations only change the row, not the column, of each
element) and π2 only permutes positions within each row. Moreover, there is a
polynomial-time algorithm that given π outputs the decomposition permutations
π1, π2, π3.

In our context, Lemma 1 says that if we have w elements packed into k =
(w/�� �-element arrays, we can express any permutation π of these elements as
π = π3 ◦ π2 ◦ π1 where π2 invokes �-Permute (k times in parallel) to permute
data within the respective arrays, and π1, π3 only permute (� times in parallel)
elements that share the same index within their respective arrays. In Section 2.3,
we describe how to implement π1, π3 using �-Add and �-Mult, and analyze the
overall efficiency of implementing π. The following generalization of Lemma 1
to higher dimensions will be used later in this work. It is proved by invoking
Lemma 1 recursively.

Lemma 2. Let S = In1 × · · · × Ink
where Ini = {0, . . . , ni − 1}. (Each element

in S has k coordinates.) For any permutation π over S, there are permutations
π1, . . . , π2k−1 such that π = π2k−1 ◦ · · · ◦ π1 and such that πi affects only the i-th
coordinate for i ≤ k and only the (2k − i)-th coordinate for i ≥ k.

2.3 Batch Selections, Swaps, and Permutation Networks

We now describe how to use �-Add and �-Mult to realize the outer permutations
π1, π3, which permute (� times in parallel) elements that share the same index
within their respective arrays. To perform these permutations, we can apply a
permutation network à la Beneš/Waksman [15, 16]. Recall that a r-dimensional
Beneš network consists of two back-to-back butterfly networks. Namely it is a
(2r− 1)-level network with 2r nodes in each level, where for i = 1, 2, . . . , 2r− 1,
we have an edge connecting node j in level i−1 to node j′ in level i if the indexes
j, j′ are either equal (a “straight edge”) or they differ in only in the |r− i|’th bit
(a “cross edge”). The following lemma is an easy corollary of Lemma 2.
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Lemma 3. [19, Thm 3.11] Given any one-to-one mapping π of 2r inputs to
2r outputs in an r-dimensional Beneš network (one input per level-0 node and
one output per level-(2r− 1) node), there is a set of node-disjoint paths from the
inputs to the outputs connecting input i to output π(i) for all i.

In our setting, to implement our π1 and π3 from Lemma 1 we need to evaluate �
of these permutation networks in parallel, one for each index in our �-fold arrays.
Assume for simplicity that the number of �-fold arrays is a power of two, say
2r, and denote these arrays by A0, . . . , A2r−1, we would have a (2r − 1)-level
network, where the i’th level in the network consists of operating on pairs of
arrays (Aj , Aj′ ), such that the indexes j, j′ differ only in the |r − i|’th bit.

The operation applied to two such arrays Aj , Aj′ works separately on the
different indexes of these arrays. For each k = 0, 1, . . . , � − 1 the operation will
either swap Aj [k] ↔ Aj′ [k] or will leave these two entries unchanged, depending
on whether the paths in the k’th permutation network uses the cross edges or
the straight edges between nodes j and j′ in levels i − 1, i of the permutation
network.

Thus, evaluating � such permutation networks in parallel reduces to the fol-
lowing Select function: Given two arrays A = [m0, . . . ,m
−1] and A

′ = [m′
0, . . .,

m′

−1] and a string S = s0 · · · s
−1 ∈ {0, 1}
, the operation SelectS(A,A

′) out-
puts an array A′′ = [m′′

0 , . . . ,m
′′

−1] where, for each k, m′′

k = mk if sk = 1 and
m′′

k = m′
k otherwise. It is easy to implement SelectS(A,A

′) using just the �-Add
and �-Mult operations – in particular

SelectS(A,A
′) = �-Add

(
�-Mult(A,S), �-Mult(A′, S̄)

)
where S̄ is the bitwise complement of S. Note that SelectS̄(A,A

′) outputs pre-
cisely the elements that are discarded by SelectS(A,A

′). So, SelectS(A,A
′) and

SelectS̄(A,A
′) are exactly like the arrays A′ and A′, except that some pairs of

elements with identical indexes have been swapped – namely, those pairs at index
k where Sk = 0. Hence we obtain the following lemma, whose proof is in the full
version [12].

Lemma 4. Evaluating � permutation networks in parallel, each permuting k
items, can be accomplished using O(k · log k) gates of �-Add and �-Mult, and
depth O(log k). Also, evaluating a permutation π over k · � elements that are
packed into k �-element arrays, can be accomplished using k �-Permute gates and
O(k log k) gates of �-Add and �-Mult, in depth O(log k). Moreover, there is an
efficient algorithm that given π computes the circuit of �-Permute, �-Add, and
�-Mult gates that evaluates it, specifically we can do it in time O(k · � · log(k · �)).

2.4 Cloning: Handling High Fan-Out in the Circuit

We have described how to efficiently realize a permutation over w > � items
using �-Add, �-Mult and �-Permute gates that operate on �-element arrays. How-
ever, the wiring between adjacent levels of a fan-in-two circuit are typically not
permutations, since we typically have gates with high fan-out. We therefore need
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to clone the output values of these high-fan-out gates before performing a per-
mutation that maps them to their input positions at the next level. We describe
an efficient procedure for this “cloning” step.

A Cloning Procedure. The input to the cloning procedure consists of a
collection of k arrays, each with � slots, where each slot is either “full” (i.e.,
contains a value that we want to use) or “empty” (i.e., contains a don’t-care
value). We assume that initially more than k · �/2 of the available slots are
full, and will maintain a similar invariant throughout the procedure. Denote the
number of full slots in the input arrays by w (with k · �/2 < w ≤ k · �), and
denote the i’th input value by vi. The ordering of input values is arbitrary –
e.g., we concatenate all the arrays and order input values by their index in the
concatenated multi-array.

We are also given a set of positive integers m1, . . . ,mw ≥ 1, such that v1
should be duplicated m1 times, v2 should be duplicated m2 times, etc. We say
that mi is the intended multiplicity of vi. The total number of full slots in the

output arrays will therefore be w′ def
= m1+m2+· · ·+mw ≥ w. In more detail, the

output of the cloning procedure must consist of some number k′ of �-slot arrays,
where k′�/2 < w′ ≤ k′�, such that v1 appears in at least m1 of the output slots,
v2 appears in at least m2 of the output slots, etc.

Denote the largest intended multiplicity of any value by M = maxi{mi}. The
cloning procedure works in (logM� phases, such that after the j’th phase each
value vi is duplicated min(mi, 2

j) times. Each phase consists of making a copy
of all the arrays, then for values that occur too many times marking the excess
slots as empty (i.e., marking the extra occurrences as don’t-care values), and
finally merging arrays that are “sparse” until the remaining arrays are at least
half full. A simple way to merge two sparse arrays is to permute them so that
the full slots appear in the left half in one array and the right half in the other,
and then apply Select in the obvious way. A pseudo-code description of this pro-
cedure is given in Figure 1, whilst the proof of the following lemma is in the full
version [12].

Lemma 5. (i) The cloning procedure from Figure 1 is correct.

(ii) Assuming that at least half the slots in the input arrays are full, this proce-
dure can be implemented by a network of O(w′/� · log(w′)) �-fold gates of type
�-Add, �-Mult and �-Permute, where w′ is the total number of full slots in the
output, w′ =

∑
mi. The depth of the network is bounded by O(logw′).

(iii) This network can be constructed in time Õ(w′), given the input arrays and
the mi’s.

We also describe some more optimizations in the full version, including a different
cloning procedure that improves on the complexity bound in Lemma 5. Putting
all the above together we can efficiently evaluate a circuit using �-Permute, �-Add
and �-Mult, yielding a proof of Theorem 1, see the full version for details [12].
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Input: k 
-slot arrays, A1, . . . , Ak, each of the k · 
 slots containing either a value
or the special symbol ‘⊥’, w positive integers m1, . . . ,mw ≥ 1, where w is
the number of full slots in the input arrays.

Output: k′ 
-slot arrays, A′
1, . . . , A

′
k′ , with each slot containing either a value or

the special symbol ‘⊥’, where k′/2 ≤ (
∑

i mi)/
 ≤ k′ and each input value
vi is replicated mi times in the output arrays

0. Set M ← maxi{mi}
1. For j = 1 to �logM� // The j’th phase
2. Make another copy of all the arrays // Duplicate everything
3. While there are values vi with multiplicity more than mi:
4. Replace the excess occurrences of vi by ⊥ // Remove redundant entries
5. While there exist pairs of arrays that have between them 
 or more slots with ⊥:
6. Pick one such pair and merge the two arrays //Merge sparse arrays
7.Output the remaining arrays

Fig. 1. The cloning procedure

3 Permutation Networks from Abelian Group Actions

As we will show in Section 4, the algebra underlying our FHE scheme makes it
possible to perform inexpensive operations on packed ciphertexts, that have the
effect of permuting the � plaintext slots inside this packed ciphertext. However,
not every permutation can be realized this way; the algebra only gives us a small
set of “simple” permutations. For example, in some cases, the given automor-
phisms “rotate” the plaintext slots, transforming a ciphertext that encrypts the
vector 〈v0, . . . , v
−1〉 into one that encrypts 〈vk, . . . , v
−1, v0, . . . , vk−1〉, for any
value of k of our choosing. (See Section 3.2 for the general case.)

Our goal in this section is therefore to efficiently implement an �-Permuteπ
operation for an arbitrary permutation π using only the simple permutations
that the algebra gives us (and also the �-Add and �-Mult operations that we
have available). We begin in Section 3.1 by showing how to efficiently realize
arbitrary permutations when the small set of “simple permutations” is the set
of rotations. In Section 3.2 we generalize this construction to a more general set
of simple permutations.

3.1 Permutation Networks from Cyclic Rotations and Swaps

Consider the Beneš permutation network discussed in Lemma 3. It has the in-
teresting property that when the 2r items being permuted are labeled with r-bit
strings, then the i-th level only swaps (or not) pairs whose index differs in the
|r − i|-th bit. In other words, the i-th level swaps only disjoint pairs that have
offset 2|r−i| from each other. We call this operation an “offset-swap”, since all
pairs of elements that might be swapped have the same mutual offset.

Definition 1 (Offset Swap). Let I
 = {0, . . . , �− 1}. We say that a permuta-
tion π over I
 is an i-offset swap if it consists only of 1-cycles and 2-cycles (i.e.,
π = π−1), and moreover all the 2-cycles in π are of the form (k, k+ i mod �) for
different values k ∈ I
.
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Offset swaps modulo � are easy to implement by combining two rotations with
the Select operation defined in Section 2.3. Specifically, for an i-offset swap, we
need rotations by i and −i mod � and two Select operations. By Lemma 3, a
Beneš network can realize any permutation over 2r elements using 2r − 1 levels
where the i-th level is a 2|k−i|-offset swap modulo 2r. An i-offset modulo 2r,
� < 2r < 2� can be cobbled together using a constant number of offset swaps
modulo � and Select operations, with offsets i and 2�−i. Therefore, given a cyclic
group of “simple” permutations H and Select operations, we can implement any
permutation using a Beneš network with low overhead. Specifically, we prove the
following lemma in the full version of this paper.

Lemma 6. Fix an integer � and let k = (log ��. Any permutation π over I
 =
{0, . . . , � − 1} can be implemented by a (2k − 1)-level network, with each level
consisting of a constant number of rotations and Select operations on �-arrays.

Moreover, regardless of the permutation π, the rotations that are used in level i
(i = 1, . . . , 2k − 1) are always exactly 2|k−i| and � − 2|k−i| positions, and the
network depends on π only via the bits that control the Select operations. Finally,
this network can be constructed in time Õ(�) given the description of π.

3.2 Generalizing to Sharply-Transitive Abelian Groups

Below, we extend our techniques above to deal with a more general set of “simple
permutations” that we get from our ring automorphisms. (See Section 4)

Definition 2 (Sharply Transitive Permutation Groups). Denote the �-
element symmetric group by S
 (i.e., the group of all permutations over I
 =
{0, . . . , �− 1}), and let H be a subgroup of S
. The subgroup H is sharply tran-
sitive if for every two indexes i, j ∈ I
 there exists a unique permutation h ∈ H
such that h(i) = j.

Of course, the group of rotations is an example of an abelian and sharply tran-
sitive permutation group. It is abelian: rotating by k1 positions and then by k2
positions is the same as rotating by k2 positions and then by k1 positions. It is
also sharply transitive: for all i, j there is a single rotation amount that maps
index i to index j, namely rotation by j− i. However, it is certainly not the only
example. We now explain how to efficiently realize arbitrary permutations using
as building blocks the permutations from any sharply-transitive abelian group.

Recall that any abelian group is isomorphic to a direct product of cyclic
groups, hence H ∼= C
1 × · · · ×C
k (where C
i is a cyclic group with �i elements
for some integers �i ≥ 2 where �i divides �i+1 for all i). As any cyclic group
with �i elements is isomorphic to I
i = {0, 1, . . . , �i − 1} with the operation of
addition mod �i, we will identify elements in H with vectors in the box B =
I
1 ×· · ·× I
k , where composing two group elements corresponds to adding their
associated vectors (modulo the box). The group H is generated by the k unit
vectors {er}k

r=1 (where er = 〈0, . . . , 0, 1, 0, . . . , 0〉 with 1 in the r-th position).
We stress that our group H has polynomial size, so we can efficiently compute
the representation of elements in H as vectors in B.
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Since H is a sharply transitive group of permutations over the indexes I
 =
{0, . . . , � − 1}, we can similarly label the indexes in I
 by vectors in B: Pick
an arbitrary index i0 ∈ I
, then for all h ∈ H label the index h(i0) ∈ I
 with
the vector associated with h. This procedure labels every element in I
 with
exactly one vector from B, since for every i ∈ I
 there is a unique h ∈ H such
that h(i0) = i. Also, since H ∼= B, we use all the vectors in B for this labeling
(|H| = |B| = �). Note that with this labeling, applying the generator er to an
index labeled with vector v ∈ B, yields an index labeled with v′ = v+er mod B.
Namely we increment by one the r’th entry in v (mod �r), leaving the other
entries unchanged.

In other words, rather than a one-dimensional array, we view I
 as a k-
dimensional matrix (by identifying it with B). The action of the generator er on
this matrix is to rotate it by one along the r-th dimension, and similarly apply-
ing the permutation ek

r ∈ H to this matrix rotates it by k positions along the
r-th dimension. For example, when k = 2, we view I
 as an �1 × �2 matrix, and
the group H includes permutations of the form ek

1 that rotate all the columns
of this matrix by k positions and also permutations of the form ek

2 that rotate
all the rows of this matrix by k positions.

Using Lemma 6, we can now implement arbitrary permutations along the r’th
dimension using a permutation network built from offset-swaps along the r’th
dimension. Moreover, since the offset amounts used in the network do not de-
pend on the specific permutation that we want to implement, we can use just one
such network to implement in parallel different arbitrary permutations on dif-
ferent r’th-dimension sub-matrices. For example, in the 2-dimensional case, we
can effect a different permutation on every column, yet realize all these different
permutations using just one network of rotations and Selects, by using the same
offset amounts but different Select bits for the different columns. More gener-
ally we can realize arbitrary (different) �/�r permutations along all the different
“generalized columns” in dimension-r, using a network of depth O(log �r) con-
sisting of permutations h ∈ H and �-fold Select operations (and we can construct
that network in time �/�r · Õ(�r) = Õ(�)).

Once we are able to realize different arbitrary permutations along the differ-
ent “generalized columns” in all the dimensions, we can apply Lemma 2. That
lemma allows us to decompose any permutation π on I
 into 2k−1 permutations
π = πi ◦ · · · ◦ π2k−1 where each πi consists only of permuting the generalized
columns in dimension r = |k − i|. Hence we can realize an arbitrary permuta-
tion on I
 as a network of permutations h ∈ H and �-fold Select operations,
of total depth bounded by 2

∑k−1
i=0 O(log �i) = O(log �) (the last bound follows

since � =
∏k−1

i=0 �i). Also we can construct that network in time bounded by

2
∑k−1

i=0 Õ(�i) = Õ(�) (the bound follows since k ≤ log �). Concluding this dis-
cussion, we have:

Lemma 7. Fix any integer � and any abelian sharply-transitive group of permuta-
tions over I
, H ⊂ S
. Then for every permutation π ∈ S
, there is a permutation
network of depth O(log �) that realizes π, where each level of the network consists
of a constant number of permutations from H and Select operations on �-arrays.
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Moreover, the permutations used in each level do not depend on the particular
permutation π, the network depends on π only via the bits that control the Select
operations. Finally, this network can be constructed in time Õ(�) given the de-
scription of π and the labeling of elements in H, I
 as vectors in B. ��

Lemma 7 tells us that we can implement an arbitrary �-Permute operation using
a log-depth network of permutations h ∈ H (in conjunction with �-Add and
�-Mult). Plugging this into Theorem 1 we therefore obtain:

Theorem 2. Let �, t, w and W be parameters, and let H be an abelian, sharply-
transitive group of permutations over I
.

Then any t-gate fan-in-2 arithmetic circuit C with average width w and max-
imum width W , can be evaluated using a network of O

(
(t/�� · (�/w� · logW ·

polylog(�)
)
�-fold gates of types �-Add, �-Mult, and h ∈ H. The depth of this

network of �-fold gates is at most O(logW · log �) times that of the original cir-
cuit C, and the description of the network can be computed in time Õ(t · log �)
given the description of C. ��

4 FHE with Polylog Overhead

Theorem 2 implies that if we could efficiently realize �-Add, �-Mult, and H-
actions on packed ciphertexts (where H is a sharply transitive abelian group of
permutations on �-slot arrays), then we can evaluate arbitrary (wide enough)
circuits with low overhead. Specifically, if we could set � = Θ(λ) and realize
�-Add, �-Mult, and H-actions in time Õ(λ), then we can realize any circuit of
average width Ω(λ) with just polylog(λ) overhead. It remains only to describe
an FHE system that has the required complexity for these basic homomorphic
operations.

4.1 The Basic Setting of FHE Schemes Based on Ideal Lattices and
Ring LWE

Many of the known FHE schemes work over a polynomial ring A = Z[X ]/F (X),
where F (X) is irreducible monic polynomial, typically a cyclotomic polynomial.
Ciphertexts are typically vectors (consisting of one or two elements) over Aq =
A/qA where q is an integer modulus, and the plaintext space of the scheme is
Ap = A/pA for some integer modulus p $ q with gcd(p, q) = 1, for example
p = 2. (Namely, the plaintext is represented as an integer polynomial with
coefficients mod p.) Secret keys are also vectors over Aq, and decryption works
by taking the inner product b ← 〈c, s〉 in Aq (so b is an integer polynomial with
coefficients in (−q/2, q/2]) then recovering the message as b mod p. Namely, the
decryption formula is [[〈c, s〉 mod F (X)]q]p where [·]q denotes modular reduction
into the range (−q/2, q/2]. Below we consider ciphertext vectors and secret-key
vectors with two entries, since this is indeed the case for the variant of the BGV
scheme [5] that we use.
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Smart and Vercauteren [4] observed that the underlying ring structure of these
schemes makes it possible to realize homomorphic (batch) Add and Mult opera-
tions, i.e. our �-Add and �-Mult. Specifically, though F (X) is typically irreducible

over Q, it may nonetheless factor modulo p; F (X) =
∏
−1

i=0 Fi(X) mod p. In this

case, the plaintext space of the scheme also factors: Ap = ⊗
−1
j=0Apj where pi is

the ideal in A generated by p and Fi(X). In particular, the Chinese Remain-
der Theorem applies, and the plaintext space is partitioned into � independent
non-interacting “plaintext slots”, which is precisely what we need for component-
wise �-Add and �-Mult. The decryption formula recovers the “aggregate plain-
text” a ← [[〈c, s〉 mod F (X)]q]p, and this aggregate plaintext is decoded to get
the individual plaintext elements, roughly via zj ← a mod (Fi(x), p) ∈ Apj .

4.2 Implementing Group Actions on FHE Plaintext Slots

While component-wise Add and Mult are straightforward, getting different plain-
text slots to interact is more challenging. For ease of exposition, suppose at
first that F (X) is the degree-(m− 1) polynomial Φm(X) = (Xm − 1)/(X − 1)
for m prime, and that p ≡ 1 (mod m). Thus our ring A above is the mth
cyclotomic number field. In this case F (X) factors to linear terms modulo p,

F (X) =
∏
−1

i=0 (X − ρi) (mod p) with ρi ∈ Fp. Hence we obtain � = m− 1 plain-
text slots, each slot holding an element of the finite field Fp (i.e. in this case Api

above is equal to Fp).
To get Φm to factor modulo p into linear terms we must have p ≡ 1 (mod m),

so p > m. Also we need m = Ω(λ) to get security (since m is roughly the
dimension of the underlying lattice). This means that to get Φm to factor into
linear terms we must use plaintext spaces that are somewhat large (in particular
we cannot directly use F2). Later in this section we sketch the more elaborate
algebra needed to handle the general (and practical) case of non-prime m and
p $ m, where Φm may not factor into linear terms. This is covered in more
detail in the full version of this paper. For now, however, we concentrate on the
simple case where Φm factors into linear terms modulo p.

Recall that ciphertexts are vectors over Zq[X ]/Φm(X), so each entry in these
vectors corresponds to an integer polynomial. Consider now what happens if
we simply replace X with X i inside all these polynomials, for some exponent
i ∈ Z∗

m, i > 1. Namely, for each polynomial f(X), we consider f (i)(X) =
f(X i) mod Φm(X). Notice that if we were using polynomial arithmetic mod-
ulo Xm − 1 (rather then modulo Φm(X)) then this transformation would just
permutes the coefficients of the polynomials. Namely f (i) has the same coeffi-
cients as f but in a different order, which means that if the coefficient vector
of f has small norm then the same holds for the coefficient vector of f (i). In
the full version we show that using a different notion of “size” of a polynomial
(namely, the norm of the canonical embedding of a polynomial rather than the
norm of its coefficient vector), we can conclude the same also for mod-Φm poly-
nomial arithmetic. Namely, the mapping f(X) �→ f(X i) mod Φm(X) does not
change the “size” of the polynomial. To simplify presentation, below we describe
everything in terms of coefficient vectors and arithmetic modulo Xm − 1. The
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actual mod-Φm implementation that we use is described in the full version of
this paper [12].

Let us now consider the effect of the transformation X �→ X i on decryption.
Let c = (c0(X), c1(X)) and s = (s0(X), s1(X)) be ciphertext and secret-key
vectors, and let b = 〈c, s〉 mod (Xm − 1, q) and a = b mod p. Denote c(i) =
(c0(X

i), c1(X
i)) mod (Xm − 1), and define s(i), b(i) and a(i) similarly. Since

〈c, s〉 = b (mod Xm − 1, q), we have that

c0(X)s0(X) + c1(X)s1(X) = b(X) + q · r(X) + (Xm − 1)s(X) (over Z[X ])

for some integer polynomials r(X), s(X), and therefore also

c0(X
i)s0(X

i)+c1(X
i)s1(X

i) = b(X i)+q ·r(X i)+(Xmi−1)s(X i) (over Z[X ]).

Since Xm − 1 divides Xmi − 1, then we also have〈
c(i), s(i)

〉
= b(i) + q · r(X i) + (Xm − 1)S(X) (over Z[X ])

for some r(X), S(X). That is, b(i) =
〈
c(i), s(i)

〉
mod (Xm − 1, q). Clearly, we

also have a(i) = b(i) (mod p). This means that if c decrypts to the aggregate
plaintext a under s, then c(i) decrypts to a(i) under s(i)! Then using key-switching
we can get an encryption of a(i) back under s (or any other key). See the full
version for more details [12].

But how does this new aggregate plaintext a(i) relate to the original a? Here
we apply to Galois theory, which tells us that decoding the aggregate a(i) (which
we do roughly by setting zj ← a(i) mod (Fj , p)), the set of zj ’s that we get is
exactly the same as when decoding the original aggregate a, albeit in different
order. Roughly, this is because each of our plaintext slots corresponds to a root
of the polynomial F (X), and the transformations X �→ X i, which are precisely
the elements of the Galois group, permute these roots. In other words by trans-
forming c → c(i) (followed by key switching), we can permute the plaintext slots
inside the packed ciphertext. Moreover, in our simplified case, the permutations
have a single cycle – i.e., they are rotations of the slots. Arranging the slots
appropriately we can get that the transformation c → c(i) rotates the slots by
exactly i positions, thus we get the group of rotations that we were using in
Section 3.1. In general the situation is a little more complicated, but the above
intuition still can be made to hold; for more details see the full version [12].

The General Case. In the general case, whenm is not a prime, the polynomial
Φm(X) has degree φ(m) (where φ(·) is Euler’s totient function), and it factors
mod p into a number of same-degree irreducible factors. Specifically, the degree of
the factors is the smallest integer d such that pd = 1 (mod m), and the number

of factors is � = φ(m)/d (which is of course an integer), Φm(X) =
∏
−1

j=0 Fj(X).
For us, it means that we have � plaintext slots, each isomorphic to the finite field
Fpd , and an aggregate plaintext is a degree-(φ(m) − 1) polynomial over Fp.

Suppose that we want to evaluate homomorphically a circuit over some un-
derlying field Kn = Fpn , then we need to find an integer m such that Φm(X)
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factors mod p into degree-d factors, where d is divisible by n. This way we could
directly embed elements of the underlying plaintext space Kn inside our plain-
text slots that hold elements of Fpd , and addition and multiplication of plaintext
slots will directly correspond to additions and multiplications of elements in Kn.
(This follows since Kn = Fpn is a subfield of Fpd when n divides d.)

Note that each plaintext slot will only have n log p bits of relevant information,
i.e., the underlying element of Fpn , but it takes d log p bits to specify. We thus
get an “embedding overhead” factor of d/n even before we encrypt anything.
We therefore need to choose our parameter m so as to keep this overhead to a
minimum.

Even for a non-prime m, the Galois group Gal(Q[X ]/Φm(X)) consists of all
the transformations X �→ X i for i ∈ Z∗

m, hence there are exactly φ(m) of
them. As in the simplified case above, if we have a ciphertext c that decrypts
to an aggregate plaintext a under s, then c(i) decrypts to a(i) under s(i). Dif-
ferently from the simple case, however, not all members of the Galois group
induce permutations on the plaintext slots, i.e., decoding the aggregate plain-
text a(i) does not necessarily give us the same set of (permuted) plaintext ele-
ments as decoding the original a. Instead Gal(Q[X ]/Φm(X)) contains a subgroup

G = {(X �→ Xpj

) : j = 0, 1, . . . , d− 1} corresponding to the Frobenius automor-
phisms4 modulo p. This subgroup does not permute the slots at all, but the quo-
tient group H = Gal/G does. Clearly, G has order d and H has order φ(m)/d = �.
In the full version we show that the quotient group H acts as a transitive per-
mutation group on our � plaintext slots, and since it has order � then it must
be sharply transitive. In the general case we therefore use this group H as our
permutation group for the purpose of Lemma 7. Another complication is that
the automorphism that we can compute are elements of Gal and not elements
in the quotient group H. In the full version we also show how to emulate the
permutations in H, via use of coset representatives in Gal.

4.3 Low-Overhead FHE

Given the background from above (and the modification of the BGV cryptosys-
tem [7] described in the full version), we explain in the full version how to set
the parameters for our variant of the BGV scheme so as to get low-overhead
FHE scheme. This gives us:

Theorem 3. For security parameter λ, any t-gate, depth-L arithmetic circuit
of average width Ω(λ) over underlying plaintext space Fpn (with pn ≤poly(λ))

can be evaluated homomorphically in time t · Õ(L)·polylog(λ).

Theorem 3 implies that we can implement shallow arithmetic circuit with low
overhead, but when the circuit gets deeper the dependence of the overhead on L
causes the overhead to increase. Recall that the reason for this dependence on
the depth is that in the BGV cryptosystem [5], the moduli get smaller as we go

4 The group G is called the decomposition group at p in the literature.
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up the circuit, which means that for the first layers of the circuit we must choose
moduli of bitsize Ω(L).

As explained in [5], the dependence on the depth can be circumvented by
using bootstrapping. Namely, we can start with a modulus which is not too
large, then reduce it as we go up the circuit, and once the modulus become too
small to do further computation we can bootstrap back into the larger-modulus
ciphertexts, then continue with the computation.

For our purposes, we need to ensure that we bootstrap often enough to keep
the moduli small, and yet that the time we spend on bootstrapping does not
significantly impact the overhead. Here we apply to the analysis from [5], that
shows that a packed ciphertext with Ω̃(λ) slots can be decrypted using a circuit
of size Õ(λ) and depth polylog(λ). Hence we can even bootstrap after every layer
of the circuit and still keep the overhead polylogarithmic, and the moduli never
grow beyond polylogarithmic bitsize. We thus get:

Theorem 4. For security parameter λ, any t-gate arithmetic circuit of aver-
age width Ω(λ) over underlying plaintext space Fpn (with pn ≤poly(λ)) can be
evaluated homomorphically in time t·polylog(λ).
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10. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

11. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryp-
tion Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

12. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead (2011), Full version at http://eprint.iacr.org/2011/566

13. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small
Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

14. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 4th edn. Morgan Kaufmann (2006)
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1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows multiple
participants to evaluate a common function over their inputs privately, without
revealing the inputs to each other. This problem was initially studied by Yao
[33,34] who gave a protocol for the case of two semi-honest that follow the pro-
tocol specification honestly but wish to learn as much information as possible,
and Goldreich, Micali and Wigderson [19] extended this to many fully malicious
parties that may arbitrarily deviate from the protocol specification. Since then,
the problem of MPC has become a fundamental question in cryptography. In-
terestingly, on a very high level, most prior results for general MPC can be seen
as relying in some way on the original techniques of [34,19].

Fully Homomorphic Encryption. A very different approach to secure compu-
tation relies on fully homomorphic encryption (FHE). An FHE scheme allows
us to perform arbitrary computations on encrypted data without decrypting
it. Although the idea of FHE goes back to Rivest et al. [31], the first imple-
mentation is due to the recent breakthrough of Gentry [17], and has now been
followed with much exciting activity, most recently with quite simple and effi-
cient schemes [10,9,8]. Using FHE, we immediately get an alternative approach
to MPC in the case of two semi-honest parties (Alice and Bob): Alice encrypts
her input under her own key and sends the ciphertext to Bob, who then eval-
uates the desired function homomorphically on Alice’s ciphertext and his own
input, sending (only) the final encrypted result back to Alice for decryption.
This approach has several benefits over prior ones. Perhaps most importantly,
the communication complexity of the protocol and Alice’s computation are small
and only proportional to Alice’s input/output sizes, independent of the complex-
ity of the function being evaluated. Moreover, the protocol consists of only two
rounds of interaction, which is optimal (matching [34]).1

MPC via Threshold FHE. Since FHE solves the secure computation problem for
two semi-honest parties, it is natural to ask whether we can extend the above
template to the general case of many fully malicious parties. Indeed, there is
a simple positive answer to this question (as pointed out in e.g. [17]) by us-
ing a threshold fully homomorphic encryption (TFHE). This consists of a key
generation protocol where the parties collaboratively agree on a common pub-
lic key of an FHE scheme and each party also receives a share of the secret
key. The parties can then encrypt their individual inputs under the common
public key, evaluate the desired function homomorphically on the ciphertexts,
and collaboratively execute a decryption protocol on the result to learn the out-
put of the computation. Moreover, it is possible to convert any FHE scheme

1 Indeed, Yao’s garbled circuits can be thought of as instantiating an FHE with long
ciphertexts (see e.g. [18]).
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into TFHE by implementing the above key-generation and decryption protocols
using general MPC compilers (e.g. [19]). Although this approach already gives
the communication/computation savings of FHE, it suffers from two main prob-
lems: (1) It does not preserve round complexity since generic implementations
of the key-generation and decryption protocols will each require many rounds
of interaction. (2) It uses the “heavy machinery” of generic MPC compilers and
zero-knowledge proofs on top of FHE and is unlikely to yield practical solutions.

1.1 Our Results

In this work, we present an efficient threshold FHE (TFHE) scheme under the
learning with errors (LWE) assumption, based on the FHE constructions of Brak-
erski, Gentry and Vaikuntanathan [9,8]. Our starting observation is that basic
LWE-based encryption ([30]) is key homomorphic, where summing up several
public/secret key pairs (pki, ski) results in a new valid public/secret key pair
(pk∗, sk∗) =

∑
i(pki, ski).Therefore, if each party broadcasts its own public-key

pki, and we define the common public key as the sum pk∗ =
∑

i pki, then each
party already holds a share ski of the common secret key sk∗. Moreover, if each
party decrypts a ciphertext c under pk∗ with its individual share ski, then these
partial decryptions can be summed up to recover the message. This gives us sim-
ple key-generation and decryption protocols, consisting of one round each. Un-
fortunately, the above discussion is oversimplified and its implementation raises
several challenges, which we are forced to overcome.

Main Challenges of TFHE. The first challenge in instantiating the above idea
is that summing-up key pairs as above does not result in a correctly distributed
fresh key pair, and summing up decryption shares may reveal more than just
the plaintext. Nevertheless, we show the security of this basic approach when
augmented with a technique we call smudging, in which parties add large noise
during important operations so as to “smudge out” small differences in distri-
butions. Perhaps our main challenge is that, in LWE-based FHE schemes, the
public key must also contain additional information in the form of an evalua-
tion key, which is needed to perform homomorphic operations on ciphertexts.
Although the above key-homomorphic properties hold for the public encryption
keys of the FHE, the evaluation keys have a more complex structure making it
harder to combine them. Nevertheless, we show that it is possible to generate
the evaluation keys in a threshold manner by having each party carefully re-
lease some extra information about its individual secret-key and then cleverly
combining this information. Although this forces us to add an extra round to
the key-generation protocol in order to generate the evaluation key, the parties
can already encrypt their inputs after the first round. Therefore, we get MPC
protocol consisting of only 3 broadcast rounds: (Round I) generate encryption
key, (Round II) generate evaluation key & encrypt inputs, (Round III) perform
homomorphic evaluation locally and decrypt the resulting ciphertext.
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Using TFHE for MPC. Our basic TFHE protocol allows us to achieve MPC in
the semi-honest model. To transform it to the fully malicious setting, we could
use generic techniques consisting of: (1) coin-flipping for the random coins of
each party, and (2) having each party prove at each step that it is following
the protocol honestly (using the random coins determined by the coin-flip) by a
zero-knowledge (ZK) proof of knowledge. Unfortunately, even if we were to use
non-interactive zero knowledge (NIZK) in the common-random string (CRS)
model for the proofs, the use of coin-flipping would add two extra rounds. In-
terestingly, we show that coin-flipping is not necessary. We do so by showing
that our basic MPC protocol is already secure against a stronger class of attack-
ers that we call semi-malicious : such attackers follow the protocol honestly but
with adaptively and adversarially chosen random coins in each round. We can
now generically convert our MPC in the semi-malicious setting to a fully secure
one using (UC) NIZKs [32] while preserving the round complexity. This gives
the first 3 round protocol for general MPC in the CRS model (while achiev-
ing UC security for free). Instantiating the above approach with general UC
NIZKs proofs might already achieve asymptotic efficiency, but it has little hope
of yielding practical protocols. Therefore, we also build efficient Σ-protocols for
the necessary relations, which we can then compile into efficient UC NIZKs in
the random-oracle (RO) model. Therefore, we can get a reasonably efficient and
very simple 3-round protocol for general MPC in the RO model.

Cloud-Assisted MPC. We notice that our protocol can also be easily adapted
to the setting of “cloud-assisted computation”, where an (untrusted) external
entity (e.g. “the cloud”) is tasked with performing the homomorphic evalua-
tion over the publicly broadcast ciphertexts. This results in a protocol where
the computation of all other parties is small and independent of the size of the
evaluated function! This approach only incurs one additional round in which the
server broadcasts the ciphertext. To get security against a fully malicious server,
we also require the existence of succinct non-interactive argument systems.

Public-Key Infrastructure. Our approach also yields 2-round MPC in the public-
key infrastructure (PKI) setting, by thinking of each party’s original (Round I)
message as its public key and the randomness used to generate it as the secret
key. This gives the first two-round MPC construction in the PKI setting. We note
that the PKI can be reused for many MPC executions of arbitrary functions and
arbitrary inputs.

We summarize the above discussion with the following informal theorem:

Main Theorem. (informal) Under the LWE assumption and the existence of
UC NIZKs, for any function f there exists a protocol realizing f that is UC-
secure in the presence of a (static) malicious adversary corrupting any number
of parties. The protocol consists of 3 rounds of broadcast in the CRS model, or 2
rounds in a PKI model. Under an additional “circular security” assumption, its
communication complexity is independent of the size of the evaluated circuit.
In the “cloud-assisted setting” the total computation of each party (other than
the cloud) is independent of the complexity of f .
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1.2 Related Work

In the context of general MPC, starting from the original proposal of Yao [34],
there has been a rich line of work studying the round-complexity of secure multi-
party computation protocols. In the semi-honest case, Beaver, Micali and Rog-
away [4] gave the first constant-round protocol, which is asymptotically optimal.
An alternative approach using randomized polynomials was also given by [22,2].
Although the concrete constants were not explicitly stated, they seem to require
at least 4 rounds.In the fully malicious case there is a lower bound of 5 rounds
in the plain model (dishonest majority) [24], but it does not seem to extend to
the CRS model or other setup models. In the CRS model, we can generically
compile semi-honest secure protocols into the fully malicious model using coin-
tossing and (UC) NIZKs [32], at the cost of adding two extra rounds for the
coin-toss. Therefore, the best prior works seem to require at least 6 rounds in
the CRS model, although the exact constants were never carefully analyzed.

Recently, Choi et al [11] obtained a UC secure protocol in a “pre-processing”
model with a 2-round online stage. However, the pre-processing requires “expen-
sive” computation of garbled circuits and can later be only used once for a single
online computation (it is not reusable). In contrast, our results give a 2-round
UC-protocol in the PKI model, which we can think of as “pre-processing” that
is only performed once and may be reused for arbitrarily many computations.

The works of [12,15,6,13] use additively and somewhat homomorphic encryp-
tion to get some of the most practically efficient MPC implementations. However,
since the schemes are not fully homomorphic, the round and communication
complexity in these works is large and linear in the depth of the circuit.

The work of Bendlin and Damg̊ard [5] builds a threshold version of [30] en-
cryption based on LWE and ZK protocols for plaintext knowledge. Indeed, the
main ideas behind our decryption protocol, such as the idea of using extra noise
for “smudging”, come from that work. We seem to avoid some of the main dif-
ficulties of [5] by analyzing the security of our threshold scheme directly within
the application of MPC rather than attempting to realize ideal key-generation
and decryption functionalities. However, we face a very different set of challenges
in setting up the complicated evaluation key needed for FHE.

In a concurrent and independent work, Myers, Sergi and shelat [28] instanti-
ate a threshold FHE scheme based on the “approximate-integer GCD” problem,
and use it to build an explicit MPC protocol whose communication complexity is
independent of the circuit size. Perhaps due to the amazing versatility and sim-
plicity of LWE, our scheme enjoys several benefits over that of [28], which only
works in the setting of an honest majority and suffers from a large (constant)
round-complexity. Most importantly, we believe that our protocol is significantly
simpler to describe and understand.

The idea of using a cloud to alleviate the computational efforts of parties was
recently explored in the work on “server-aided MPC” by Kamara, Mohassel and
Raykova [23]. Their protocols, however, require some of the parties to do a large
amount of computation, essentially proportional to the size of the function f
being computed. Halevi, Lindell and Pinkas [21] recently considered the model
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of “secure computation on the web” which gets rid of all interaction between
the actual parties, and instead only allows each party to “log in” once to inter-
act with the server. Unfortunately, this necessitates a weaker notion of security
which is only meaningful for a small class of functions. In contrast, we focus
here on standard MPC security for arbitrary functions, at the cost of additional
interaction. In particular, we achieve full security in the model where the com-
putation occurs in 2 stages (optimal) and each party “logs in” once per stage to
post a message to the server. As an additional benefit, the server does not do
any processing on messages until the end of each stage. Thus, the parties may,
in fact, “log in” concurrently in each stage, unlike [21] where the parties must
“log in” sequentially.

1.3 Organization

In the proceedings version of this work, we follow the exposition of [3], and all
omitted proofs can be found there. See [25] for an alternative exposition, using
somewhat different abstractions and a variant of the scheme presented here under
the ring LWE assumption.

In Section 3 we start with a basic LWE-based encryption scheme, highlight
its homomorphic properties, and describe how to use it to get the FHE schemes
of [9,8]. In Section 4 we then describe our threshold FHE scheme, and in Section
5 we use it to build an MPC protocol. We then discuss several variants of this
protocol in Section 6.

2 Preliminaries

Throughout, we let κ denote the security parameter and negl(κ) denote a neg-
ligible function. For integers n, q, we define [n]q to be the unique integer v ∈
(−q/2, q/2] s.t. n ≡ v (mod q). Let x = (x1, . . . , xn) ∈ Zn be a vector. We

use the notation x[i]
def
= xi to denote the ith component scalar. To simplify the

descriptions of our schemes, we also abuse notation and define x[0]
def
= 1. The �1-

norm of x is defined as �1(x)
def
=

∑n
i=1 |xi|. For a distribution ensemble χ = χ(κ)

over the integers, and integers bounds B = B(κ), we say that χ is B-bounded
if Prx←χ(κ)[|x| > B(κ)] ≤ negl(κ). We rely on the following lemma, which says
that adding large noise “smudges out” any small values.

Lemma 1 (Smudging). Let B1 = B1(κ), and B2 = B2(κ) be positive integers

and let e1 ∈ [−B1, B1] be a fixed integer. Let e2
$← [−B2, B2] be chosen uniformly

at random. Then the distribution of e2 is statistically indistinguishable from that
of e2 + e1 as long as B1/B2 = negl(κ).

Learning With Errors. The decisional learning with errors (LWE) problem,
introduced by Regev [30], is defined as follows.

Definition 2 (LWE [30]). Let κ be the security parameter, n = n(κ), q = q(κ)
be integers and let χ = χ(κ), ϕ = ϕ(κ) be distributions over Z. The LWEn,q,ϕ,χ
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assumption says that no poly-time distinguisher can distinguish between the fol-
lowing two distributions on tuples (ai, bi), given polynomially many samples:

Distribution I. Each (ai, bi)
$← Zn+1

q is chosen independently, uniformly at
random. Distribution II. Choose s ← ϕn. Each sample (ai, bi) is chosen as:

ai
$← Zn

q , ei ← χ, bi := 〈ai, s〉+ ei.

The works of [30,29] show that the LWE problem is as hard as approximating
short vector problems in lattices (for appropriate parameters) when χ is a Gaus-
sian with “small” standard deviation and ϕ = U(Zq) is the uniform distribution
over Zq. The work of [1] shows that, when q is a prime power, then LWEn,q,χ,χ

is as hard as LWEn,q,U(Zq),χ. Therefore, we can assume that the secret s of the
LWE problem also comes from a “small” Gaussian distribution. It is also easy
to see that, if q is odd, then LWEn,q,ϕ,(2χ) is as hard as LWEn,q,ϕ,χ, where the
distribution 2χ samples e ← χ and outputs 2e.

3 Homomorphic Encryption from LWE

In this section, we give a brief description of the FHE schemes of [9,8].

Basic LWE-based Encryption. We start by describing a basic symmet-
ric/public encryption scheme E, which is a variant of [30] encryption scheme
based on the LWE problem. This scheme serves as a building block for the more
complex FHE schemes of [9,8] and of our threshold FHE scheme.

– params = (1κ, q,m, n, ϕ, χ) : The parameters of the scheme are an im-
plicit input to all other algorithms, with: 1κ is the security parameter,
q = q(k) is an odd modulus, m = m(κ), n = n(κ) are the dimensions,
and ϕ = ϕ(κ), χ = χ(κ) are distributions over Zq.

– E.SymKeygen(params): Choose a secret key s ← ϕn.
– E.PubKeygen(s): Choose A ← Zm×n

q , e ← χm and set p := A · s + 2 · e.
Output the public key pk := (A,p) for the secret key s.

– E.SymEncs(μ): To encrypt a message μ ∈ {0, 1}, choose a ← Zn
q , e ← χ,

and set b
def
= 〈a, s〉 + 2 · e+ μ. Output the ciphertext c = (a, b).

– E.PubEncpk(μ): To encrypt a message μ ∈ {0, 1} under pk = (A,p), choose

r ← {0, 1}m
and set a

def
= rT · A, b

def
= 〈r,p〉 + μ. Output c = (a, b).

– E.Decs(c) – (decryption): Parse c = (a, b), output [b − 〈a, s〉]q mod 2.

Under appropriate parameters and LWE assumption, the above scheme is se-
mantically secure with pseudorandom ciphertexts, meaning that, given pk, a
ciphertext of a chosen message is indistinguishable from a uniformly random
ciphertext over the appropriate domain Zm+1

q .

Theorem 3 ([30]). Assuming n, q, m ≥ (n+ 1) log(q) + ω(log(κ)) are integers
with q odd, and that the LWEn,q,ϕ,χ assumption holds, the above public key
encryption scheme (E.PubKeygen,E.PubEnc,E.Dec) is semantically secure with
pseudorandom ciphertexts.
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Approximate encryption. Although we defined symmetric/public key encryption
for the message space μ ∈ {0, 1}, we can (syntactically) extend the same algo-
rithms to any μ ∈ Zq. Unfortunately, if μ is larger than a single bit, it will not
be possible to decrypt μ correctly from the corresponding ciphertext. However,
we can still think of this as an approximate encryption of μ, from which it is
possible to recover the value b− 〈a, s〉 which is “close” to μ over Zq.

Fixing the coefficients. We use E.PubKeygen(s;A), E.PubKeygen(s;A; e) to de-
note the execution of the key generation algorithm with fixed coefficients A
and (respectively) with fixed A, e. We use E.SymEncs(μ; a), E.SymEncs(μ; a; e)
analogously.

Key-Homomorphic Properties of Basic Scheme. It is easy to see that
the scheme E is additively homomorphic so that the sum of ciphertexts encrypts
the sum of the plaintexts (at least as long as the noise is small enough and does
not overflow). We now notice it also satisfies several useful key-homomorphic
properties, which make it particularly easy to convert into a threshold scheme.
In particular, let s1, s2 be two secrets keys, a be some coefficient vector (a, b1) =
E.SymEncs1(μ1; a), (a, b2) = E.SymEncs2(μ2; a) be two ciphertexts encrypting
the bits μ1, μ2 under the keys s1, s2 respectively but using the same randomness
a. Then we can write b1 = 〈a, s1〉+ 2 · e1 + μ1 , b2 = 〈a, s2〉 + 2 · e2 + μ2 and

b∗ := b1 + b2 = 〈a, (s1 + s2)〉 + 2(e1 + e2) + (μ1 + μ2).

So (a, b∗) = E.SymEncs1+s2(μ1 + μ2; a) is an encryption of μ1 + μ2 under the
sum of the keys (s1 + s2) with a noise level which is just the sum of the noises.
Also, if we keep the matrix A fixed, then the sum of two key pairs gives a new
valid key pair. That is, if p1 = As1 + 2e1 , p2 = As2 + 2e2 are public key
with corresponding secret keys s1, s2, then

p∗ := p1 + p2 = A(s2 + s2) + 2(e1 + e2)

is a public key for the corresponding secret key s∗ = s1 + s2.

Security of Joint Keys. We show a useful security property of combining public
keys. Assume that a public key p = As + 2e is chosen honestly and an attacker
can then adaptively choose some value p′ = As′+2e′ for which it must know the
corresponding s′ and a “short” e′. Then the attacker cannot distinguish public-
key encryptions under the combined key p∗ = p + p′ from uniformly random
ones.2 Note that the combined key p∗ may not be at all distributed like a correct
public key, and the attacker has a large degree of control over it. Indeed, we can
only show that the above holds if the ciphertext under the combined key is
“smudged” with additional large noise. We define the above property formally
via the following experiment JoinKeysA(params, B1, B2):
(-) Challenger chooses s ← E.SymKeygen(params), (A,p) ← E.PubKeygen(s).
(-) A gets (A,p) and adaptively chooses p′, s′, e′ satisfying p′ = As′ + 2e′ and

2 A similar idea was used in [16] in the context of threshold ElGamal encryption.
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�1(e
′) ≤ B1. It also chooses μ ∈ {0, 1}.

(-) Challenger sets pk∗ := (A,p∗ = p+p′). It chooses a random bit β
$← {0, 1}.

If β = 0, it chooses a∗
$← Zn

q , b
∗ $← Zq uniformly at random. Else it chooses

(a∗, b) ← E.PubEncpk∗(μ), e∗
$← [−B2, B2] and sets b∗ = b+ 2e∗.

(-) A gets (a∗, b∗) and outputs a bit β̃.
The output of the experiment is 1 if β̃ = β, and 0 otherwise.

Lemma 4. Let q,m, n, ϕ, χ be set as in Theorem 3 and assume that LWEn,q,ϕ,χ

assumption holds. Let B1 = B1(κ), B2 = B2(κ) be integers s.t. B1/B2 = negl(κ).
Then, for any ppt A: |Pr[JoinKeysA(params, B1, B2) = 1]− 1

2 | = negl(κ).

3.1 Fully Homomorphic Encryption from LWE

In this section we present the construction of [9,8]. We start with the syntax of
fully homomorphic encryption.

Definition. A fully homomorphic (public–key) encryption (FHE) scheme is a
quadruple of ppt algorithms FHE = (FHE.Keygen,FHE.Enc,FHE.Dec,FHE.Eval)
defined as follows.

– FHE.Keygen(1κ) → (pk, evk, sk): Outputs a public encryption key pk, a
public evaluation key evk and a secret decryption key sk.

– FHE.Encpk(μ),FHE.Decsk(c): Have the usual syntax of public-key encryp-
tion/decryption.

– FHE.Evalevk(f, c1, . . . , c�) = cf : The homomorphic evaluation algorithm
is a deterministic poly-time algorithm that takes the evaluation key evk, a
boolean circuit f : {0, 1}
 → {0, 1}, and a set of � ciphertexts c1, . . . , c
. It
outputs the result ciphertext cf .

We say that an FHE scheme is secure if it satisfies the standard notion of se-
mantic security for public-key encryption, where we consider the evaluation key
evk as a part of the public key. We say that it is fully homomorphic if for any
boolean circuit f : {0, 1}
 → {0, 1} and respective inputs μ1, . . . , μ
 ∈ {0, 1},
keys (pk, evk, sk) ← FHE.Keygen(1κ) and ciphertexts ci ← FHE.Encpk(μi) it
holds that: FHE.Dec (FHE.Evalevk (f, c1, . . . , c
)) = f(μ1, . . . , μ
). We say that
the scheme is a leveled fully homomorphic if the FHE.Keygen algorithm gets an
additional (arbitrary) input 1D and the above only holds for circuits f consisting
of at most D multiplicative levels.

Construction. We give an overview of the FHE construction of [9,8]. The con-
struction begins with the basic encryption scheme E which is already additively
homomorphic. We associate ciphertexts c = (a, b) under E with symbolic poly-

nomials φc(x)
def
= b − 〈a,x〉 : an n-variable degree-1 polynomial over x. so

that Decs(c) = [φc(s)]q mod 2. If c1, c2 encrypt bits μ1, μ2 under a secret

key s, we can define the polynomial φmult(x)
def
= φc1(x) · φc2(x). This already

“encrypts” μ1 ·μ2 in the sense that [φmult(s)]q = μ1 ·μ2+2e∗ where e∗ is “small”.
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Unfortunately, φmult is a degree-2 polynomial and hence its description is much
larger than that of the original ciphertexts c1, c2.

The main challenge is to re-linearize the polynomial φmult to convert it into
a degree-1 polynomial φ′mult which still encrypts μ1 · μ2. Such re-linearization is
possible with two caveats: (1) The polynomial φ′mult encrypts μ1 ·μ2 under a new
key t. (2) We need to know additional ciphertexts ψi,j,τ that (approximately)
encrypt information about the key s under a new key t as follows (recall, we

define s[0]
def
= 1):

{ψi,j,τ ← E.SymEnct( 2
τ · s[i] · s[j] ) : i, j ∈ [n] ∪ {0}, τ ∈ �{0, . . . , log(q)}} .

See [9] for the details of this re-linearization procedure. The above ideas give
us leveled homomorphic encryption scheme for circuits with D multiplicative
levels simply by choosing D + 1 secret keys s0, . . . , sD and publishing the ci-
phertexts {ψd,i,j,τ} which encrypt the required information about the level-
d secret sd under level-(d + 1) secret sd+1. The public key of the scheme is
pk ← E.PubKeygen(s0), corresponding to the level-0 secret key s0. The cipher-
texts will have an associated level number, which is initially 0. Each time we mul-
tiply two ciphertexts with a common level d, we need to perform re-linearization
which increases the level to d+ 1. Using the secret key sD, we can then decrypt
at the top level.

In the above discussion, we left out the crucial question of noise, which grows
exponentially with the number of multiplications. Indeed, the above template
only allows us to evaluate some logarithmic number of levels before the noise gets
too large. The work of [8] gives a beautifully simple noise-reduction technique
called “modulus reduction”. This technique uses progressively smaller moduli qd
for each level d and simply “rescales” the ciphertext to the smaller modulus to
reduce its noise level. As an end result, we get a leveled FHE scheme, allowing
us to evaluate circuits containing at most D multiplicative levels, where D is
an arbitrary polynomial, used as a parameter for FHE.Keygen. To get an FHE
scheme where key generation does not depend on the number of levels, we can
apply the bootstrapping technique of [17], at the expense of having to make an
additional “circular security assumption”.

4 Threshold Fully Homomorphic Encryption

Syntax. A threshold fully homomorphic encryption scheme (TFHE) is basically a
homomorphic encryption scheme, with the difference that the Keygen and Dec
are now N -party protocols instead of algorithms. We will consider protocols
defined in terms of some common setup.

– TFHE.Keygen(setup) – (key generation protocol): Initially each party
holds setup. At the conclusion of the protocol, each party Pk, for k ∈ [N ]
outputs a common public-key pk, a common public evaluation key evk, and
a private share skk of the implicitly defined secret key sk.
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– TFHE.Decsk1,...,skn(c) – (decryption protocol): Initially, each party Pk

holds a common ciphertext c and an individual private share skk of the secret
key. At the end of the protocol each party receives the decrypted plaintext
μ.

– TFHE.Encpk(μ),TFHE.Evalpk(f, c1, . . . , c�): Encryption and evaluation
are non-interactive algorithms with the same syntax as in FHE.

We do not define the security of TFHE on its own. Indeed, requiring that the
above protocols securely realize some ideal key-generation and decryption func-
tionalities is unnecessarily restrictive. Instead, we will show that our TFHE
scheme is secure in the context of our general MPC protocol in section 5.

4.1 Construction of TFHE

We now give our construction of TFHE, which can be thought of as a threshold
version of the [8] FHE scheme. The main difficulty is to generate the evalu-
ation key in a threshold manner, by having each party carefully release some
extra information about its key-shares. Another important component of our
construction is to require parties to add some additional smudging noise during
sensitive operations, which will be crucial when analyzing security.

Common Setup. All parties share a common setup consisting of:

1. params =
(
{paramsd}0≤d≤D , Bϕ, Bχ, B

eval
smdg, B

enc
smdg, B

dec
smdg

)
, where

– paramsd = (1κ, qd,m, n, ϕ, χ) are parameters for the encryption scheme E
with differing moduli qd.

– Bϕ, Bχ ∈ Z are bounds s.t. ϕ is Bϕ-bounded and χ is Bχ-bounded.
– Beval

smdg, B
enc
smdg, B

dec
smdg ∈ Z are bounds for extra “smudging” noise.

2. Randomly chosen common values (i.e. a common random string or CRS):

{Ad
$← Zm×n

qd
}d∈{0,...,D} ,

{
ak
d,i,τ

$← Zn
qd

: k ∈ [N ], i ∈ [n]
d ∈ [D], τ ∈ {0, . . . , �log(qd)�}

}
.

Convention. Whenever the protocol specifies that a party is to sample x ← ϕ
(resp. x ← χ), we assume that it checks that |x| ≤ Bϕ (resp. |x| ≤ Bχ) and
re-samples if this is not the case (which happens with negligible probability).

TFHE.Keygen(setup). This is a two-round protocol between N parties.
Round 1:

1. Each party Pk invokes the key generation algorithm of the basic scheme E
for each level d ∈ {0, . . . , D} to get skd ← E.SymKeygen(paramsd) and

(Ad,p
k
d) ← E.PubKeygen(skd ; Ad)

so that pk
d = Ad · skd +2 · ek

d for some noise ek
d. We can think of the values skd

as individual secret keys and pk
d as individual encryption keys of party Pk.
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2. For every d ∈ [D], i ∈ [n], τ ∈ {0, . . . , �log q}, the party Pk computes:(
ak
d,i,τ , b

k,k
d,i,τ

)
← E.SymEncskd

(
2τ · skd−1[i] ; ak

d,i,τ

)
so that bk,kd,i,τ = 〈ak

d,i,τ , s
k
d〉+2ek,kd,i,τ +2τ ·skd−1[i] for some small noise ek,kd,i,τ . In

addition, for every d, i, τ as above and � ∈ [N ] \ {k}, the party Pk computes
“encryptions of 0”:(

a

d,i,τ , b


,k
d,i,τ

)
← E.SymEncskd(0 ; a


d,i,τ )

so that b
,kd,i,τ = 〈a

d,i,τ , s

k
d〉 + 2e
,kd,i,τ for some noise e
,kd,i,τ . The values {b
,kd,i,τ}

will be used to create the evaluation key.

3. Each party Pk broadcasts the values
{
pk

d

}
d
,
{
b
,kd,i,τ

}

,d,i,τ

.

End of Round 1: At the end of round 1, we can define the following values.

1. For every d ∈ {0, . . . , D}, define: p∗
d :=

∑N

=1 p



d. Let pk := (A0,p

∗
0) be the

common public encryption key of the TFHE scheme.

Notice that, if all parties act honestly then (Ad,p
∗
d) = E.PubKeygen(s∗d;Ad;

e∗d). where s∗d :=
∑N


=1 s


d, e

∗
d :=

∑N

=1 e



d. We can think of these values as

the “combined public keys” for each level d.
2. For every � ∈ [N ], d ∈ [D], and all i, τ define β


d,i,τ :=
∑N

k=1 b

,k
d,i,τ .

Notice that, if all parties follow the protocol then:

(a�
d,i,τ , β

�
d,i,τ ) = E.SymEncs∗

d
( 2τ · s�d−1[i] ; a�

d,i,τ ; e ) where e =
N∑

k=1

e�,kd,i,τ

These “approximate encryptions” are already encrypted under the correct
combined secret key s∗d of level d. However, the “plaintexts” still only corre-
spond to the individual secret keys s
d−1 at level d− 1, instead of the desired
combined key s∗d−1. We fix this in the next round.

Round 2:

1. Each party Pk does the following. For all � ∈ [N ], d ∈ [D], i, j ∈ [n],

τ ∈ {0, . . . , �log q}: sample (v
,k
d,i,j,τ , w


,k
d,i,j,τ ) ← E.PubEncp∗

d
(0) and e

$←
[−Beval

smdg, B
eval
smdg]. Set:

(α
,k
d,i,j,τ , β


,k
d,i,j,τ ) := skd−1[j] · (a


d,i,τ , β


d,i,τ ) + (v
,k

d,i,j,τ , w

,k
d,i,j,τ + 2e)

Note that, if all parties follow the protocol, then the original tuple
(a


d,i,τ , β


d,i,τ ) approximately encrypts the value 2τs
d−1[i]. The above opera-

tion has party Pk “multiply in” its component skd−1[j] (and re-randomizing

via a public encryption of 0) so that the final tuple (α
,k
d,i,j,τ , β


,k
d,i,j,τ)

approximately encrypts 2τ · s
d−1[i] · skd−1[j].
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2. Each party Pk broadcasts the ciphertexts
{
(α
,k

d,i,j,τ , β

,k
d,i,j,τ)

}
d,i,j,τ,


.

End of Round 2: At the end of round 2, we can define the following values.

1. We define the combined evaluation key components for all d ∈ [D] and all
i ∈ [n], j ∈ [n] ∪ {0}, τ as:

ψd,i,j,τ :=

{∑N
�=1

∑N
k=1(α

�,k
d,i,j,τ , β

�,k
d,i,j,τ ) j �= 0∑N

�=1(a
�
d,i,τ , β

�
d,i,τ ) j = 0

Note that, if all parties follow the protocol, then

ψd,i,j,τ = E.SymEncs∗d(2
τ · s∗d−1[i] · s∗d−1[j])

where s∗d :=
∑N


=1 s


d is the combined secret key and all “errors” are

“sufficiently small”.

Outputs:

1. Public Evaluation key: Output evk = {ψd,i,j,τ}d,i,j,τ .
2. Public Encryption key: Output pk = (A0,p

∗
0) as the public key.

3. Share of secret key: Each party Pk has a secret-key share skD.

TFHE.Encpk(μ): Once the first round of the key-generation protocol is con-
cluded, the public key pk = (A,p∗

0) is well defined. At this point anybody
can encrypt as follows. Choose (v, w) ← E.Encpk(μ) using the basic scheme
E with the parameters params0 = (1κ, q0,m, n, ϕ, χ). Choose additional “smudg-

ing noise” e
$← [−Benc

smdg, B
enc
smdg] and output the ciphertext c = ((v, w + 2e), 0)

with associated “level” 0.

TFHE.Evalevk(f, c1, . . . , ct): Once the second round of the key-generation pro-
tocol is concluded, the evaluation key evk is defined. The evaluation algorithm
is exactly the same as that of the underlying scheme FHE of [8].

The Decryption Protocol: TFHE.Dec(c). This is a one-round protocol between
N parties. Initially all parties hold a common ciphertext c = (v, w,D) with
associated “level” D. Moreover, each party Pk holds its share skD for the joint

secret key s∗D =
∑N

k=1 s
k
D. At the end all parties get the decrypted bit μ.

– Each party Pk broadcasts wk = 〈v, skD〉+2·ek, where ek
$← [−Bdec

smdg, B
dec
smdg].

– Given w1, . . . , wN , compute the output bit: μ = [w −
∑N

i=1 w
i]qD mod 2.

5 Secure MPC via TFHE

We now present a protocol for general MPC, using the threshold fully homomor-
phic scheme TFHE from the previous section. Let f : ({0, 1}
in)N → {0, 1}
out

be a deterministic function computed by a circuit of multiplicative depth D. Let
(TFHE.Keygen,TFHE.Enc,TFHE.Eval,TFHE.Dec) be our TFHE scheme from the
previous section, initiated for D levels, and with parameters setup. Our basic
MPC protocol πf for evaluating the function f proceeds as follows.
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Initialization: Each party Pk has input xk ∈ {0, 1}
in . The parties share the
common parameters setup for our D-level TFHE scheme.

Round I. The parties execute the first round of the TFHE.Keygen protocol. At
the end of this round, each party Pk holds the common public key pk and a
secret-key share skk.

Round II. The parties execute the second round of the TFHE.Keygen protocol.
Concurrently, each party Pk also encrypts its input xk bit-by-bit under the
common public key pk and broadcasts the corresponding ciphertexts { ck,i ←
TFHE.Encpk(xk[i]) }i∈{1,...,
in}. At the end of this round, each party locally
computes the evaluation key evk, and homomorphically evaluate the function
f to get the output ciphertexts { c∗j := Evalevk(fj ; {ck,i}) }j∈{1,...,
out} where
fj is the boolean function for the jth bit of f .

Round III. The parties execute the decryption protocol TFHE.Dec on each of
the output ciphertexts {c∗j} concurrently. At the end of this invocation, each
party learns each of the bits of the underlying plaintext y = f(x1, . . . , xN ),
which it sets as its output.

Security for Semi-Malicious Attackers. We show that the above protocol is
secure against a semi-honest attacker corrupting any number of parties. Ac-
tually, we show security against a stronger class of attackers which we call semi-
malicious. A semi-malicious attacker follows the honest protocol specification
but with some adversarially chosen random coins (of which it has knowledge). It
can choose its malicious random coins adaptively in each round after seeing the
protocol messages of all honest parties during that round. We state our main
theorem without concrete parameters. We defer the proof to the full version,
where we also discuss the settings of the parameters for our protocol and the
corresponding LWE assumption required for security.

Theorem 5. Let f be any deterministic poly-time function with N inputs and
single output (same output for all parties). Then there is a setting of parame-
ters params such that, under the corresponding LWE assumption, the protocol
πf securely UC-realizes f in the presence of a static semi-malicious adversary
corrupting any t ≤ N parties.

Proof Intuition. We now give a high-level description of how the proof of security
works, and relegate the proof to the full version. The simulator essentially runs
rounds I and II honestly on behalf of the honest parties, but encrypts 0s instead
of their real inputs. Then, in round III, it tries to force the real-world protocol
output to match the idea-world output μ∗, by giving an incorrect decryption share
on behalf of some honest party Ph. That is, assume that the combined ciphertext
at the end of round II is c = (v, w,D). The simulator can get the secret keys skD
of all semi-malicious parties Pk at the end of round I (recall that semi-malicious
parties follow the protocol honestly up to choosing bad random coins which are
available to the simulator). It can therefore approximately compute the decryption
shareswk ≈ 〈v, skD〉 of the semi-malicious parties before (round III) starts. It then
chooses the decryption share wh of the honest party Ph by solving the equation
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w −
∑


〈v, w
〉 = 2e + μ∗ where e
$← Bdec

smdg is added noise. The decrypted value
is therefore μ∗. We claim that the simulation is “good” since:

– The way that the simulator computes the decryption share of party Ph is
actually statistically close to the way that the decryption share is given in
the real world, when the noise Bdec

smdg is large enough. This follows by the
“smudging” lemma.

– The attacker cannot distinguish encryptions of 0 from the real inputs by
the “security of joint keys” (Lemma 4). In particular, the combined public
encryption-key pk is derived as the sum of an honestly generated public-key
ph
0 (for party Ph) and several other honestly and semi-maliciously generated

keys for which the attacker must “know” a corresponding secret key. More-
over, the secret key sh0 of party Ph is now never used during the simulated
decryption protocol. Therefore, by the “security of joint keys”, encryptions
under pk maintain semantic security. There is an added complication here
that extra information about the secret key sh0 is released during rounds
I and II of the protocol to create the evaluation key. However, this extra
information essentially consists of ciphertexts under the higher level secret
keys shd for d = 1, . . . , D. Therefore, the full proof consists of several hybrid
games where we replace this extra information with random values starting
with the top level and going down.

Security for Fully Malicious Attackers. Our basic MPC protocol is only secure in
the semi-malicious setting. In the full version, we give a general round-preserving
compiler from semi-malicious to fully malicious security using UC NIZKs [32] in
the CRS model. In particular, in each round, the attacker must prove (in zero-
knowledge) that it is following the protocol consistently with some setting of the
random coins. Combining this with Theorem 5, we get a 3 round MPC protocol in
the CRS model for a fully malicious attacker corrupting any number of parties.

In the full version (see [3]), we also address the question of instantiating such
NIZKs efficiently. We first present simple, efficient, and statistical Σ-protocols
for basic LWE-languages. TheseΣ-protocols crucially rely on the idea of “smudg-
ing” and have an interesting caveat that there is a gap between the noise-levels
for which zero-knowledge is shown to hold and the ones for which soundness
holds. We then use the Σ-protocols for these basic LWE-languages along with
a series of AND and OR proofs to convert them into Σ-protocols for the more
complicated language showing that a party is behaving “honestly”. We can then
compile them into UC-NIZKs and obtain general 3-round MPC protocols, in the
random oracle model.

6 Variants and Optimizations

We consider several variants and optimizations of our basic MPC protocol.

Two Round MPC under a PKI. An alternative way to present our protocol is
as a 2-round protocol with a public-key infrastructure (PKI). In particular, we



498 G. Asharov et al.

can think of the (round I) message ( {pk
d} , {b
,kd,i,τ} ) sent by party Pk as its

public key and the value {skD} as its secret key (in the fully malicious setting,
the public key would also contain the corresponding NIZKs). The entire MPC
execution then only consists of the remaining two rounds. Note that this PKI
is very simple and does not need a trusted party to set up everything; we just
need a trusted party to choose a CRS and then each party can choose its own
public key individually (possibly maliciously). Moreover, the PKI can be reused
for many MPC executions of arbitrary functions f with arbitrary inputs. The
main drawback is that the size of each party’s public key is proportional to
the total number of parties, and it would be interesting to remove this. The
security analysis is exactly the same as that of our original three round protocol
in the CRS model, just by noting that the first round there consists of broadcast
message, which does not depend on the inputs of the parties (and hence we can
think of it as a public key).

Cloud-Assisted Computation. Our protocol can be made extremely efficient by
outsourcing large public computations. In particular, the only intensive compu-
tation in our protocol, that depends on the circuit size of the evaluated function,
is the homomorphic evaluation at the end of round II. In our basic description
of the protocol, we assumed that each party performs this computation individ-
ually, but we notice that this computation is the same for all parties and does
not require any secret inputs. Therefore, it is possible to designate one special
party P ∗ (or even an external entity e.g. a powerful server, or the “cloud”) that
does this computation on everyone’s behalf and broadcasts the resulting output
ciphertexts to everyone else. Moreover, if P ∗ is one of the parties, it does not
need to broadcast its input ciphertexts to everyone else in round II, since it
alone needs to know them when performing the evaluation. That is, the commu-
nication complexity is only proportional to the output size and the inputs of all
parties other than P ∗. This may be useful if the MPC computation involves one
powerful party with a huge input and many weaker parties with small inputs.
Broadcasting the output ciphertexts requires an extra round, raising the round
complexity of this variant to 4 rounds in the CRS model, 3 rounds in PKI model.

The above simple idea already achieves security in the semi-honest model,
where we can trust P ∗ to perform the computation honestly and return the
correct result. However, in the fully malicious setting, we would also require P ∗

to prove that the resulting ciphertext is the correct one, using a computationally-
sound proof system with a fixed polynomial (in the security parameter)
verification complexity. Such non-interactive proofs are known to exist in the
random-oracle model or under strong assumptions [27,7,20,14].

Ring LWE. In the full version (see [25]), we show a variant of the protocol using
ring LWE [26]. This variant provides significant practical efficiency savings over
just using standard LWE and the resulting scheme may be even conceptually
simpler than using standard LWE.

Bootstrapping. In our basic MPC protocol, the communication complexity is
proportional to the maximal number of multiplicative-levels in the circuit of
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the evaluated function. This is because we start with a leveled TFHE scheme.
To make the communication complexity completely independent of circuit size,
we can rely on the bootstrapping technique of [17]. To apply the bootstrapping
technique, each party Pk only needs to encrypt its secret-key share skk = skD
(bit-by-bit) under the combined public-key pk in round II of the protocol, and we
add these values to the evaluation key. With this modification, we can instantiate
our TFHE scheme with some fixed polynomial D depending on the decryption
circuit and maintain the ability to homomorphically evaluate arbitrarily large
function f . Therefore, the communication/computation complexity of the key-
generation and decryption protocols is completely independent of the circuit size
of the function f . For security, however, we must now rely on a non-standard
circular-security assumption for the basic LWE-based encryption scheme E.

Randomized Functionalities and Individual Outputs. Our basic MPC protocol
only considers deterministic functionalities where all the parties receive the same
output. However, we can use standard efficient and round-preserving transfor-
mations to get a protocol for probabilistic functionalities and where different
parties can receive different outputs.

Fairness. Our basic MPC protocol achieves security with abort for any number
of corrupted parties. We can also achieve fairness for t < N/2 corruptions.
The main idea is that, in Round I, each party also (threshold) secret-shares its
individual secret skk

d so that any �N/2+1 parties can recover it, but any fewer
will not get any extra information. If a party Pk aborts in Rounds II or III, the
rest of the parties will reconstruct skk

d (at the cost of one extra round) and use it
to continue the protocol execution on Pk’s behalf. Although an honest execution
of our fair MPC protocol still uses 3 rounds of interaction, the protocol may now
take up to 5 rounds in the worst case when some parties abort, where the extra
rounds are needed to reconstruct the keys of the aborted parties.
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Abstract. At EUROCRYPT ’10, van Dijk et al. presented simple fully-
homomorphic encryption (FHE) schemes based on the hardness of approximate
integer common divisors problems, which were introduced in 2001 by Howgrave-
Graham. There are two versions for these problems: the partial version (PACD)
and the general version (GACD). The seemingly easier problem PACD was re-
cently used by Coron et al. at CRYPTO ’11 to build a more efficient variant of
the FHE scheme by van Dijk et al.. We present a new PACD algorithm whose
running time is essentially the “square root” of that of exhaustive search, which
was the best attack in practice. This allows us to experimentally break the FHE
challenges proposed by Coron et al. Our PACD algorithm directly gives rise to
a new GACD algorithm, which is exponentially faster than exhaustive search.
Interestingly, our main technique can also be applied to other settings, such as
noisy factoring and attacking low-exponent RSA.

1 Introduction

Following Gentry’s breakthrough work [11], there is currently great interest on fully-
homomorphic encryption (FHE), which allows to compute arbitrary functions on en-
crypted data. Among the few FHE schemes known [11,29,9,3,13], the simplest one
is arguably the one of van Dijk, Gentry, Halevi and Vaikuntanathan [29] (vDGHV),
published at EUROCRYPT ’10. The security of the vDGHV scheme is based on the
hardness of approximate integer common divisors problems introduced in 2001 by
Howgrave-Graham [17]. In the general version of this problem (GACD), the goal is
to recover a secret number p (typically a large prime number), given polynomially
many near-multiples x0, . . . , xm of p, that is, each integer xi is of the hidden form
xi = pqi+ ri where each qi is a very large integer and each ri is a very small integer. In
the partial version of this problem (PACD), the setting is exactly the same, except that
x0 is chosen as an exact multiple of p, namely x0 = pq0 where q0 is a very large inte-
ger chosen such that no non-trivial factor of x0 can be found efficiently: for instance,
[9] selects q0 as a rough number, i.e. without any small prime factor.

By definition, PACD cannot be harder than GACD, and intuitively, it seems that
it should be easier than GACD. However, van Dijk et al. [29] mention that there is

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 502–519, 2012.
c© International Association for Cryptologic Research 2012
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currently no PACD algorithm that does not work for GACD. And the usefulness of
PACD is demonstrated by the recent construction [9], where Coron, Mandal, Naccache
and Tibouchi built a much more efficient variant of the FHE scheme by van Dijk et
al. [29], whose security relies on PACD rather than GACD. Thus, it is very important
to know if PACD is actually easier than GACD.

The hardness of PACD and GACD depends on how the qi’s and the ri’s are exactly
generated. For the generation of [29] and [9], the noise ri is extremely small, and the
best attack known is simply gcd exhaustive search: for GACD, this means trying every
noise (r0, r1) and check whether gcd(x0 − r0, x1 − r1) is sufficiently large and allows
to recover the secret key; for PACD, this means trying every noise r1 and check whether
gcd(x0, x1−r1) is sufficiently large and allows to recover the secret key. In other words,
if ρ is the bit-size of the noise ri, then breaking GACD (resp. PACD) requires 22ρ

(resp. 2ρ) polynomial-time operations, for the parameters of [29,9].

OUR RESULTS. We present new algorithms to solve PACD and GACD, which are ex-
ponentially faster in theory and practice than the best algorithms considered in [29,9].
More precisely, the running time of our new PACD algorithm is 2ρ/2 polynomial-time
operations, which is essentially the “square root” of that of gcd exhaustive search.
This directly leads to a new GACD algorithm running in 23ρ/2 polynomial-time op-
erations, which is essentially the 3/4-th root of that of gcd exhaustive search. Our
PACD algorithm relies on classical algorithms to evaluate univariate polynomials at
many points, whose space requirements are not negligible. We therefore present addi-
tional tricks, some of which reduce the space requirements, while still providing sub-
stantial speedups. This allows us to experimentally break the FHE challenges proposed
by Coron et al. in [9], which were assumed to have comparable security to the FHE
challenges proposed by Gentry and Halevi in [12]: the latter GH-FHE-challenges are
based on hard problems with ideal lattices; according to Chen and Nguyen [4], their se-
curity level are respectively 52-bit (Toy), 61-bit (Small), 72-bit (Medium) and 100-bit
(Large). Table 1 gives benchmarks for our attack on the FHE challenges, and deduces
speedups compared to gcd exhaustive search. We can conclude that the FHE challenges
of [9] have a much lower security level than those of Gentry and Halevi [14].

Table 1. Time required to break the FHE challenges by Coron et al. [9]. Size in bits, running time
in seconds for a single 2.27GHz-core with 72 Gb. Timings are extrapolated for RAM > 72 Gb.

Name Toy Small Medium Large
Size(public key) 0.95Mb 9.6Mb 89Mb 802Mb
Size(modulus) 1.6 ∗ 105 0.86 ∗ 106 4.2 ∗ 106 19 ∗ 106

Size(noise) 17 25 33 40
Expected security level ≥ 42 ≥ 52 ≥ 62 ≥ 72

Running time of gcd-search
2420 8.3 ∗ 106 1.96 ∗ 1010 1.8 ∗ 1013

40 mins 96 days 623 years 569193 years
Concrete security level ≈ 42 ≈ 54 ≈ 65 ≈ 75

Running time of the new attack
99 25665 1.64 ∗ 107 6.6 ∗ 106 6.79 ∗ 1010 2.9 ∗ 108

1.6 min 7.1 hours 190 days 76 days 2153 years 9 years
Parameters d = 28 d = 212 d = 213 d = 215 d = 210 d = 219

Memory ≤ 130 Mb ≤ 15 Gb ≤ 72 Gb ≈ 240 Gb ≤ 72 Gb ≈ 25 Tb
Speedup 24 324 1202 2977 264 62543

New security level ≤ 37.7 ≤ 45.7 ≤ 55 ≤ 54 ≤ 67 ≤ 59
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Interestingly, we can also apply our technique to different settings, such as noisy
factoring, fault attacks on RSA-CRT, and attacking low-exponent RSA encryption. A
typical example of noisy factoring is the following: assume that p is a divisor of a
public modulus N , and that one is given a noisy version p′ of p differing from p by
at most k bits at unknown positions, can one recover p from (p′, N) faster than ex-
haustive search? This may have applications in side-channel attacks. Like in the PACD
setting, we obtain a square-root attack: for a 1024-bit modulus, the speedup can be as
high as 1200 in practice. Similarly, we speed up several exhaustive search attacks on
low-exponent RSA encryption.

RELATED WORK. Multipoint evaluation of univariate polynomials has been used in
public-key cryptanalysis before. For instance, it is used in factoring (e.g. the Pollard-
Strassen factorization algorithm [23,28] or in ECM speedup [20]), in the folklore square-
root attack on RSA with small CRT exponents (mentioned by [1] and described in
[24,21]), as well as in the recent square-root attack [8] by Coron, Joux, Mandal, Nac-
cache and Tibouchi on Groth’s RSA Subgroup Assumption [15]. But this does not imply
that our attack is trivial, especially since the authors of [9] form a subset of the authors
of [8]. In fact, in most cryptanalytic applications (including [8]) of multipoint evalu-
ation, one is interested in the following problem: given two lists {ai}i and {bj}j of
numbers modulo N, find a pair (ai, bj) such that gcd(ai − bj , N) is non-trivial. Instead,
we use multipoint evaluation differently, as a way to compute certain products of m el-
ements moduloN in Õ(

√
m) polynomial-time operations, where Õ() is the usual nota-

tion hiding poly-logarithmic terms. More precisely, it applies to products
∏m

i=1 xi mod
N which can be rewritten under the form

∏m1

j=1

∏m2

k=1(yj + zk) mod N where both
m1 and m2 are O(

√
m). The Pollard-Strassen factorization algorithm [23,28] can be

viewed as a special case of this technique: it computes m! mod N to factor N .
Very recently, Cohn and Heninger [6] announced a new attack on PACD and GACD,

based on Coppersmith’s small root technique. This attack is interesting from a theo-
retical point of view, but from a practical point of view, we provide evidence in the
full version [5] that for the FHE challenges of [9], it is expected to be slower than gcd
exhaustive search, and therefore much slower than our attack.

ROADMAP. In Sect. 2, we describe our square-root algorithm for PACD, and apply it
to GACD. In Sect. 3, we discuss implementation issues, present several tricks to speed
up the PACD algorithm in practice, and we discuss the impact of our algorithm on the
fully-homomorphic challenges of Coron et al. [9]. Finally, we apply our main technique
to different settings: noisy factoring (Sect. 4) and attacking low-exponent RSA (Sect. 5).
More information can be found in the full version [5].

2 A Square-Root Algorithm for Partial Approximate Common
Divisors

In this section, we describe our new square-root algorithm for the PACD problem, which
is based on evaluating univariate polynomials at many points. In the last subsection, we
apply it to GACD.
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2.1 Overview

Consider an instance of PACD: x0 = pq0 and xi = pqi + ri where 0 ≤ ri < 2ρ, 1 ≤
i ≤ m. We start with the following basic observation due to Nguyen (as reported in [9,
Sect 6.1]):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) (mod x0)

)
(1)

which holds with overwhelming probability for the parameters of [9]. At first sight,
this observation only allows to replace 2ρ gcd computations (with numbers of size ≈ γ
bits) with essentially 2ρ modular multiplications (where the modulus has ≈ γ bits): the
benchmarks of [9] report a speedup of ≈ 5 for the FHE challenges, which is insufficient
to impact security estimates.

However, we observe that (1) can be exploited in a much more powerful way as
follows. We define the polynomial fj(x) of degree j, with coefficients modulo x0:

fj(x) =

j−1∏
i=0

(x1 − (x+ i)) (mod x0) (2)

Letting ρ′ = �ρ/2, we notice that:

2ρ−1∏
i=0

(x1 − i) ≡
2ρ

′+(ρ mod 2)−1∏
k=0

f2ρ′ (2
ρ′
k) (mod x0).

We can thus rewrite (1) as:

p = gcd

⎛⎝x0, 2ρ
′+(ρ mod 2)−1∏

k=0

f2ρ′ (2
ρ′
k) (mod x0)

⎞⎠ (3)

Clearly, (3) allows to solve PACD using one gcd, 2ρ′+(ρ mod 2) − 1 modular multiplica-
tions, and the multi-evaluation of a polynomial (with coefficients modulo x0) of degree
2ρ′

at 2ρ′+(ρ mod 2) points, where ρ′ + (ρ mod 2) = ρ− ρ′. We claim that this costs at
most Õ(2ρ′

) = Õ(
√
2ρ) operations modulo x0, which is essentially the square root of

gcd exhaustive search. This is obvious for the single gcd and the modular multiplica-
tions. For the multi-evaluation part, it suffices to use classical algorithms (see [30,18])
which evaluate a polynomial of degree d at d points, using at most Õ(d) operations in
the coefficient ring. Here, we also need to compute the polynomial f2ρ′ (x) explicitly,
which can fortunately also be done using Õ(

√
2ρ) operations modulo x0. We give a

detailed description of the algorithms in the next subsection.

2.2 Description

We first recall our algorithm to solve PACD, given as Alg. 1, and which was implicitly
presented in the overview.
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Algorithm 1. Solving PACD by multipoint evaluation of univariate polynomials
Input: An instance (x0, x1) of the PACD problem with noise size ρ.
Output: The secret number p such that x0 = pq0 and x1 = pq1 + r1 with appropriate sizes.
1: Set ρ′ ← �ρ/2�.
2: Compute the polynomial f2ρ′ (x) defined by (2), using Alg. 2.

3: Compute the evaluation of f2ρ′ (x) at the 2ρ
′+(ρ mod 2) points

0, 2ρ
′
, . . . , 2ρ

′
(2ρ

′+(ρ mod 2) − 1), using 2ρ mod 2 times Alg. 3 with 2ρ
′

points. Each
application of Alg. 3 requires the computation of a product tree, using Alg. 2.

Alg. 1 relies on two classical subroutines (see [30,18]):

– a subroutine to (efficiently) compute a polynomial given as a product of n terms,
where n is a power of two: Alg. 2 does this in Õ(n) ring operations, provided
that quasi-linear multiplication of polynomials is available, which can be achieved
in our case using Fast Fourier techniques. This subroutine is used in Step 2. The
efficiency of Alg. 2 comes from the fact that when the algorithm requires a multi-
plication, it only multiplies polynomials of similar degree.

– a subroutine to (efficiently) evaluate a univariate degree-n polynomial at n points,
where n is a power of two: Alg. 3 does this in Õ(n) ring operations, provided that
quasi-linear polynomial remainder is available, which can be achieved in our case
using Fast Fourier techniques. This subroutine is used in Step 3, and requires the
computation of a tree product, which is achieved by Alg. 2. Alg. 3 is based on
the well-known fact that the evaluation of a univariate polynomial at a point α is
the same as its remainder moduloX−α, which allows to factor computations using
a tree.
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Fig. 1. Polynomial product tree T = {t1, . . . , t2n} for {a1, . . . , an}
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Algorithm 2. [T,D] ←TreeProduct(A)

Input: A set of n = 2l numbers {a1, . . . , an}.
Output: The polynomial product tree T = {t1, . . . , t2n−1}, corresponding to the evaluation of

points A = {a1, . . . , an} as shown in Figure 1.
D = [d1, . . . , d2n−1] descendant indices for non-leaf nodes or 0 for leaf node.

1: for i = 1 . . . n do
2: ti ← X − ai; dj ← 0 {Initializing leaf nodes}
3: end for
4: i← 1; j ← n+ 1 {Index of lower and upper levels}
5: while j � 2n− 1 do
6: tj ← ti · ti+1; dj ← i; i← i+ 2; j ← j + 1
7: end while
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Fig. 2. Evaluation on the polynomial tree T = {t1, . . . , t2n−1} for {a1, . . . , an}

Algorithm 3. V ← RecursiveEvaluation(f, ti, D)

Input: A polynomial f of degree n.
A polynomial product tree rooted at ti, and whose leaves are {X − ak, . . . , X − am}
An array D = [d1, . . . , d2n−1] descendant indices for non-leaf nodes or 0 for leaf node.

Output: V = {f(ak), . . . , f(am)}
1: if di = 0 then
2: return {f(ai)} {When ti is a leaf, we apply an evaluation directly.}
3: else
4: g1 ← f mod tdi {left subtree}
5: V1 ← RecursiveEvaluation(g1, tdi , D)
6: g2 ← f mod tdi+1 {right subtree}
7: V2 ← RecursiveEvaluation(g2, tdi+1, D)
8: return V1 ∪ V2

9: end if
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It follows that the running time of Alg. 1 is Õ(2ρ′
) = Õ(

√
2ρ) operations modulo x0,

which is essentially the “square root” of gcd exhaustive search. But the space require-
ment is Õ(2ρ′

) = Õ(
√
2ρ) polynomially many bits: thus, Alg. 1 can be viewed as a

time/memory trade-off, compared to gcd exhaustive search.

2.3 Logarithmic Speedup

In the previous analysis, the time complexity Õ(n) actually stands for O(n log2(n))
ring multiplications. Interestingly, Bostan, Gaudry and Schost showed in [2] that when
the structure of the factors are very regular, there is an algorithm which speeds up the
theoretical complexity by a logarithmic term log(n). This BGS algorithm is tailored for
the case where we want to estimate a function f on a set of points with what we call a
hypercubic structure. An important subprocedure is ShiftPolywhich, given as input
a polynomial f of degree at most 2d, and the evaluations of f on a set of 2d points with
hypercubic structure, outputs the evaluation of f on a shifted set of 2d points, using
O(2d) ring operations. More precisely:

Theorem 1. (see Th. 5 of [2]) Let α, β be in ring P and d be in N such that d(α, β, d)
is invertible, with d(α, β, d) = β ·2 . . . d · (α−dβ) . . . (α+dβ). And suppose also that
the inverse of d(α, β, d) is known. Let F (·) ∈ P[X ] of degree at most d and x0 ∈ P.
There exists an algorithm ShiftPoly which, given as input F (x0), F (x0 + β), . . . ,
F (x0+dβ), outputs F (x0+α), F (x0+α+β), . . . , F (x0+α+dβ) in time 2M(d)+
O(d) time and space O(d). Here, M(d) is the time of multiplying two polynomial of
degree at most d.

We note E(k1, . . . , kj) for
{∑j

i=1 pki2
ki

}
with each pki ranging over {0, 1}. This is

the set enumerating all possibilities of bits {k1, . . . , kj}. Given a set A and an element
and p, A+ p is defined as{a+ p, a ∈ A}. Then we have

E(k1, . . . , kj+1) = E(k1, . . . , kj) ∪
(
E(k1, . . . , kj) + 2kj+1

)
.

This is what we call a set with hypercubic structure.
Given a linear polynomial f(x) and a set with hypercubic structure of 2ρ points, the

proposed algorithm iteratively calls Alg.4 which uses ShiftPoly, and calculates the
evaluation of Fi(X) =

∏
Y ∈E(k1,...,ki)

f(X+Y ) on E(bk−i, . . . , kρ) until i = �n/2.

The i-th iteration costs O(2i) ring operations, thus the total complexity amounts to
O(2ρ/2) ring operations.

Algorithm 4. i-th iteration of the evaluation of Fi(X)

Input: For i = 1, . . . , �ρ/2�, the evaluation of Fi(X) on points X ∈ E(kρ−i+1, . . . , kρ)
Output: the evaluation of Fi+1(X) on points X ∈ E(kρ−i, . . . , kρ)
1: Fi(X) for X ∈ E(kρ−i+1, . . . , kρ) + 2kρ−i ← ShiftPoly(Fi(X), X ∈

E(kρ−i+1, . . . , kρ))
2: Fi(X) for X ∈ E(kρ−i, . . . , kρ)+2ki+1 ← ShiftPoly(Fi(X), X ∈ E(kρ−i, . . . , kρ))

3: Fi+1(X) = Fi(X) · Fi(X + 2ki+1), for all X ∈ E(kρ−i, . . . , kρ)
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2.4 Application to GACD

Any PACD algorithm can be used to solve GACD, using the trivial reduction from
GACD to PACD based on exhaustive search over the noise r0. More precisely, for an
arbitrary instance of GACD:

xi = pqi + ri where 0 ≤ ri < 2ρ, 0 ≤ i ≤ m

we apply our PACD algorithm to all (x0−r0, x1) where r0 ranges over {0, . . . , 2ρ−1}.
It follows that GACD can be solved in Õ(23ρ/2) operations modulo x0, using Õ(2ρ/2)

polynomially many bits. This is exponentially faster than the best attack of [29], namely
gcd exhaustive search, which required 22ρ gcd operations. Note that in [29], another hy-
brid attack was described, where one performs exhaustive search over r0 and factors the
resulting number using ECM, but because of the large size of the prime factors (namely,
a bit-length ≥ ρ2), this attack is not faster: it also requires at least 22ρ operations.

Following our work, it was noted with [10] that one can heuristically beat the GACD
bound Õ(23ρ/2) using more samples xi, by removing the “smooth part” of
gcd(y1, . . . , ys) where yi =

∏2ρ−1
j=0 (xi − j) and s is large enough. The choice of s

actually gives different time/memory trade-offs. For instance, if s = Θ(ρ), the running
time is heuristically Õ(2ρ) poly-time operations and similar memory. From a practi-
cal point of view however, our attack is arguably more useful, due to lower memory
requirements and better Õ() constants.

3 Implementation of the Square-Root PACD Algorithm

We implemented both Alg. 1 and the logarithmic speedup using the NTL library [26].
In this section, we describe various tricks that we used to implement efficiently Alg 1.
The implementation was not straightforward due to the size of the FHE challenges.

3.1 Obstructions

The main obstruction when implementing Alg. 1 is memory. Consider the Large FHE-
challenge from [9]: there, ρ = 40, so the optimal parameter is ρ′ = 20, which implies
that f2ρ′ is a polynomial of degree 220 with coefficients of size 19 × 106 bits. In other
words, simply storing f2ρ′ already requires 220×19×106 bits, which is more than 2Tb.
This means that in practice, we will have to settle for suboptimal parameters.

More precisely, assume that we select an additional parameter d, which is a power
of two less than 2ρ′

. We rewrite (3) as:

p = gcd

⎛⎝x0, 2ρ/d−1∏
k=0

fd(dk) (mod x0)

⎞⎠ (4)

This gives rise to a constrained version of Alg. 1, called Alg. 5.
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Algorithm 5. Solving PACD by multipoint evaluation of univariate polynomials, using
fixed memory
Input: An instance (x0, x1) of the PACD problem with noise size ρ, and a polynomial degree d

(which must be a power of two).
Output: The secret number p such that x0 = pq0 and x1 = pq1 + r1 with appropriate sizes.
1: Compute the polynomial fd(x) defined by (2), using Alg. 2.
2: Compute the evaluation of fd(x) at the 2ρ/d points 0, d, 2d, . . . , d(2ρ/d− 1), using 2ρ/d2

times Alg. 3 with d points. Each application of Alg. 3 requires the computation of a product
tree, using Alg. 2.

The running time of Alg. 5 is 2ρÕ(d)
d2 elementary operations modulo x0, and the

space requirement is Õ(d) polynomially many bits. Note that each of the 2ρ/d2 times
applications of Alg. 3 can be done in parallel.

3.2 Tricks

The use of Alg. 5 allows several tricks, which we now present.

Minimizing the Product Tree. Each application of Alg. 3 requires the computation of
a product tree, using Alg. 2. But this product tree requires to store 2n− 1 polynomials.
Fortunately, these polynomials have coefficients which are in some sense much smaller
than the modulus x0: this is because we evaluate the polynomial fd(x) at points in
{0, . . . , 2ρ − 1}, which is very small compared to the modulus x0. However, a naive
implementation would not exploit this. For instance, consider the polynomial (X −
a1)(X−a2) = X2−(a1+a2)X+a1a2, which belongs to the product tree. In a typical
library for polynomial computations, the polynomial coefficients would be represented
as positive residues modulo x0. But if a1+a2 is small, then −(a1+a2)+x0 is actually
big. This means that many coefficients of the product tree polynomials will actually be
as big as x0, if they are represented as positive residues modulo x0, which drastically
reduces the choice of the degree d.

To avoid this problem, we instead slightly modify the polynomial fd(X), in order to
evaluate at small negative numbers inside {0, . . . , 1 − 2ρ}, so that each polynomial of
the product tree has “small” positive coefficients. This drastically reduces the storage
of the product tree. More precisely, we rewrite (4) as:

p = gcd

⎛⎝x0, 2ρ/d2−1∏
k=0

d−1∏

=0

f ′
d,k(−�d) (mod x0)

⎞⎠ (5)

where

f ′
d,k(x) =

d−1∏
i=0

(x1 − 2ρ − x+ dk − i) (mod x0) (6)

Each product
∏d−1


=0 f
′
d,k(−�) (modx0) is computed by applying Alg. 3 once, using the

d points 0,−d,−2d, . . . ,−d(d− 1).
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Powers of Two. We need to compute the polynomial f ′
d,k(x) defined by (6) before each

application of Alg. 3, using a simplified version of Alg. 2, which only computes the root
rather than the whole product tree. However, notice that the degree of each polynomial
of the product tree is exactly a power of two, which is the worst case for the polynomial
multiplication implemented in the NTL library [26]. For instance, in NTL, multiplying
two 512-degree polynomials with Medium-FHE coefficients takes 50% more time than
multiplying two 511-degree polynomials with Medium-FHE coefficients.

To circumvent threshold phenomenons, we notice that each polynomial of the prod-
uct tree is a monic polynomial, except the leaves (for which the leading coefficient is
-1). But the product of two monic polynomials whose degree is a power of two can be
derived efficiently from the product of two polynomials with degree strictly less than
the power of two, using:

(Xn + P (X)) × (Xn +Q(X)) = X2n +Xn(P (X) +Q(X)) + P (X)Q(X).

We apply this trick to speed up the computation of the polynomial f ′
d,k(x).

Precomputations. Now that we use (5), we change several times the polynomial
f ′
d,k(x), but we keep the same evaluation points 0,−d,−2d, . . . ,−d(d−1), and there-

fore the same product tree. This allows to perform precomputations to speed up Alg. 3.
Indeed, the main operation of Alg. 3 is computing the remainder of a polynomial with
one of the product tree polynomials, and it is well-known that this can be sped up using
precomputations depending on the modulus polynomial. One classical way to do this is
to use Newton’s method for remainder (Alg. 6). This algorithm requires the following
notation: for any polynomial f of degree n and for any integer m � n, we define the
m-degree polynomial rev(f,m) as rev(f,m) = f(1/X) · Xm. In Alg. 6, Line 1 is

Algorithm 6. Remainder using Newton’s method (see [18, Sect 7.2])
Input: Polynomials f ∈ R[X] of degree 2n− 1, g ∈ R[X] of degree n.
Output: The polynomial h = f mod g
1: ḡ ← Inverse(rev(g, n)) mod Xn

2: s← rev(f, 2n− 1) · ḡ mod Xn

3: h← f − rev(s, n− 1) · g

independent of f . Therefore, whenever one needs to compute many remainders with
respect to the same modulus g, it is more efficient to precompute and store h, so that
Line 1 does not need to be reexecuted. Hence, in an offline phase, we precompute and
store (on a hard disk) the polynomial ḡ of Line 1 for each product tree polynomial. And
for each remainder required by Alg. 3, we execute the last two lines of Alg. 6.

It follows that each remainder operation of Alg. 3 is reduced to two polynomial
multiplications.

The NTL library also contains routines for doing remainders with precomputations,
but Alg. 6 turns out to be more efficient for our setting. This is because many factors
impact the performance of polynomial arithmetic, such as the size of the modulus and
the degree.
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3.3 Logarithmic Speedup and Further Tricks

We also implemented the BGS algorithm described in Sect. 2.3, which offers an asymp-
totical logarithmic speedup, but our implementation was not optimized: a better imple-
mentation would require the so-called middle product [2], which we instantiated by a
normal product. On the FHE challenges, our implementation turned out to be twice as
slow as Alg. 1 for Medium and Large, and marginally slower (resp. faster) for Toy (resp.
Small).

Since memory is the main obstruction for choosing d, it is very important to mini-
mize RAM requirements. Since Alg. 3 can be reduced to multiplications using precom-
putations, one may consider the use of special multiplication algorithms which require
less memory than standard algorithms, such as in-place algorithms. We note that there
has been recent work [25,16] in this direction, but we did not implement these algo-
rithms. This suggests that our implementation is unlikely to be optimal, and that there
is room for improvement.

3.4 New Security Estimates for the FHE Challenges

Table 1 reports benchmarks for our implementation on the fully-homomorphic-
encryption challenges of Coron et al. [9], which come in four flavours: Toy, Small,
Medium and Large. The security level � is defined in [9] is defined as follows: the
best attack should require at least 2
 clock cycles on a standard single core. The row
“Expected security level” is extracted from [9].

Our timings refer to a single 2.27GHz-core with 72Gb of RAM. First, we assessed
the cost of gcd exhaustive search, by measuring the running time of the (quasi-linear)
gcd routine of the widespread gmp library, which is used in NTL [26]: timings were
measured for each modulus size of the four FHE-challenges. This gives the “concrete
security level” row, which is slightly higher than the expected security level of [9].

We also report timings for our implementation of our square-root PACD algo-
rithm: these timings are below the expected security level, which breaks all four FHE-
challenges of [9]. For the Toy and Small challenges, the parameter d was optimal, and
we did not require much memory: the speedup is respectively 24 and 324, compared
to gcd exhaustive search. For the Medium and Large challenges, we used a suboptimal
parameter d, due to RAM constraints: we used d = 213 (resp. d = 210) for Medium
(resp. Large), instead of the optimal d = 216 (resp. d = 220). But the speedups are
already significant: 1202 for Medium, and 264 for Large. The timings are obtained by
suitably multiplying the running time of a single execution of Alg. 3 and Alg. 2: for
instance, in the Large case, this online phase took between 64727s to 65139.4s, for 5
executions, and the precomputation storage was 21Gb.

Table 1 also provides extrapolated figures if the RAM was ≥ 72 Gb, which allows
larger values of d: today, one can already buy servers with 4-Tb RAM. For the Large
challenge, the potential speedup is over 60,000. Using a more optimized implementa-
tion, we believe it is possible to obtain larger speedups, so the “New security level”
row should only be interpreted as an upper bound. But our implementation is already
sufficient to show that the FHE-challenges of [9] fall short of the expected security
level.
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Hence, one needs to increase the parameters of the FHE scheme of [9], which makes
it less competitive with the FHE implementation of [14]. It can be noted that the new se-
curity levels of the challenges of [9] are much lower than those given by [4] on the chal-
lenges of Gentry and Halevi [14], namely 52-bit (Toy), 61-bit (Small), 72-bit (Medium)
and 100-bit (Large).

4 Applications to Noisy Factoring

Consider a typical “balanced” RSA modulusN = pq where p, q ≤ 2
√
N . A celebrated

lattice-based cryptanalysis result of Coppersmith [7] states that if one is given half of
the bits of p, either in the most significant positions, or the least significant positions,
then one can recover p and q in polynomial time. Although this attack has been extended
in several works (see [19] for a survey), all these lattice-based results require that the
unknown bits are consecutive, or spread across extremely few blocks. This decreases
its potential applications to side-channel attacks where errors are likely to be spread
unevenly.

This suggests the following setting, which we call noisy factoring. Assume that one
is given a noisy version p′ of the prime factor p, which differs from p by at most k bits,
not necessarily consecutive, under either of the following two cases:

– If the k positions of the noisy bits are known, we can recover p (and therefore q)
by exhaustive search using at most 2k polynomial-time operations: we stress that
in this case, we assume that we do not know if each of the k bits has been flipped,
otherwise no search would be necessary.

– If instead, none of the positions is known, but we know that exactly k bits have been

modified, we can recover p by exhaustive search using at most

(
n
k

)
polynomial-

time operations, where n is the bit-length of p. If we only know an upper bound
on the number of modified bits, we can simply repeat the attack with decreasing
values of k.

These running times do not require that p and q are balanced.
In this section, we show that our previous technique for PACD can be adapted to

noisy factoring, yielding new attacks whose running time is essentially the “square

root” of exhaustive search, that is, Õ(2k/2) or Õ(

√(
n
k

)
) polynomial-time operations,

depending on the case.

4.1 Known Positions

We assume that the prime number p has n bits, so that: p =
∑n−1

i=0 pi2
i, where pi ∈

{0, 1} for 0 � i � n− 1.
In this subsection, we assume that all the bits pi are known, except possibly at k

positions b1, . . . , bk, which we sort, so that: 0 ≤ b1 � · · · � bk < n. Denote by
p(1), . . . , p(2

k) the 2k possibilities for p, when (pb1 , . . . , pbk) ranges over {0, 1}k. With
high probability, all the p(i)’s are coprime with N , except one, which would imply that:
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p = gcd

⎛⎝N, 2k∏
i=1

p(i)(mod N)

⎞⎠ (7)

A naive evaluation of (7) costs 2k modular multiplications, and one single gcd. We now
show that this evaluation can be performed more efficiently using Õ(2k/2) arithmetic
operations with numbers with the same size as N .

The unknown bits pb1 , . . . , pbk can be regrouped into two sets {pb1 , . . . , pb�}, and
{pb�+1

, . . . , pk} of roughly the same size � = �k/2:

– For 1 � i ≤ 2�, let y(i) =
∑n−1

j=0 y
(i)
j 2j , where y

(i)
j =

⎧⎪⎨
⎪⎩

0 if j > b�
t-th bit of i if ∃t � 
, j = bt

pj otherwise
,

– For 1 � i ≤ 2k−�, let x(i) =
∑n−1

j=0 xj2
j , where x

(i)
j =

⎧⎪⎨
⎪⎩

0 if j � bl
t-th bit of i if ∃t > l, j = bt

pj otherwise
,

Hence, by definition of x(i) and y(i), we have:

2k∏
i=1

p(i) ≡
2�∏
i=1

2k−�∏
j=1

(x(j) + y(i)) (modN) (8)

which gives rise to a square-root algorithm (Alg. 7) to solve the noisy factorization
problem with known positions.

Algorithm 7. Noisy Factorization With Known Positions
Input: An RSA modulus N = pq and the bits p0, . . . , pn−1 of p, except the k bits pb1 , . . . , pbk ,

where the bit positions b1 ≤ b2 ≤ · · · ≤ bk are known.
Output: The secret factor p =

∑n−1
i=0 pi2

i of N .

1: Compute the polynomial f(X) =
∏2�

i=1

(
X + y(i)

)
mod N of degree 2�, with coefficients

modulo N , using Alg. 2.

2: Compute the evaluation of f(X) at the points {x(1), . . . , x(2k−�)}, using 1 + (k mod 2)
times Alg. 3 with 2� points.

3: return p← gcd
(
N,

∏2k−�

i=1

(
f(x(i))

)
mod N

)

Similary to Section 2, the cost of Alg. 7 is Õ(2k/2) polynomial-time operations.
This is an exponential improvement over naive exhaustive search, but Alg. 7 requires
exponential space. In practice, the improvement is substantial. Using our previous im-
plementation, Alg. 7 gives a speedup of about 1200 over exhaustive division to fac-
tor a 1024-bit modulus, given a 512-bit noisy factor with 46 unknown bits at known
positions.

Furthermore, in this setting, the points to be enumerated happen to satisfy the
hypercubic property, thus we may apply the logarithmic speedup described in Sect. 2.3.
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Remember that the factor p can be calculated with formula (8). Now we can restate
it as

2k∏
i=1

p(i) ≡
∏

y∈E(b�+1,...,bk)

∏
x∈E(b1,...,b�)

(x+ y +Mp) (modN), (9)

here Mp =
∑

i∈{b1,...,bk}
pi2

i is the known bits of p . We define Fi(X) =
∏

y∈E(b1,...,bi)

(X + y +Mp).

Algorithm 8. Improved Noisy Factorization With Known Positions
Input: An RSA modulus N = pq and a number p′ differing from p by exactly k bits of unknown

position.
Output: The secret factor p.
1: F0(0)←Mp

2: for i = 1, . . . , �k/2� do
3: Call Alg. 4 to calculate the evaluation of Fi(X) on E(bk−i, bk) given the evaluation of

Fi−1(X) on E(bk−i+1, bk)
4: end for
5: if k is odd then
6: The evaluation F�k/2�(X) for X ∈ E(b�k/2�+2, . . . , bk) + 2b�k/2	+1

←ShiftPoly(F�k/2�(X), X ∈ E(b�k/2�+2, . . . , bk), 2
b�k/2	+1)

7: end if
8: p′′ = gcd

(
N,

∏
X∈E(b�k/2	+1,...,bk)

(
F�k/2�(X)

))
9: return p′′

As discussed in Section 2, the cost of Alg. 8 is faster than Alg. 7 by a factor of O(k)
on a theoretical basis.

4.2 Unknown Positions

In this subsection, we assume that p′ differs from p by exactly k bits at unknown posi-
tions, and that p′ has bit-length n. Our attack is somewhat reminiscent of Coppersmith’s
baby-step/giant-step attack on low-Hamming-weight discrete logarithm [27], but that
attack uses sorting, not multipoint evaluation. To simplify the description, we assume
that both k and n are even, but the attack can easily be adapted to the general case.

Pick a random subset S of {0, . . . , n − 1} containing exactly n/2 elements. The

probability that S contains the indices of exactly k/2 flipped bits is:

(
n/2
k/2

)2

/

(
n
k

)
≈

1√
k
.We now assume that this event holds, and let � =

(
n/2
k/2

)
. Similarly to the previous

subsection, we define:

– Let x(i) for 1 � i ≤ � be the numbers obtained by copying the bits of p′ at all the
positions inside S, and flipping exactly k/2 bits: all the other bits are set to zero.
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– Let y(i) for 1 � i ≤ � be the numbers obtained by copying the bits of p′ at all the
positions outside S, and flipping exactly k/2 bits: all the other bits are set to zero.

Now, with high probability over the choice of (p, q), we may write:

p = gcd(N,


∏
i=1


∏
j=1

(x(j) + y(i)) (modN)) (10)

which gives rise to a square-root algorithm (Alg. 9) to solve the noisy factorization
problem with unknown positions.

Algorithm 9. Noisy Factorization With Unknown Positions
Input: An RSA modulus N = pq and a number p′ differing from p by exactly k bits of unknown

position.
Output: The secret factor p.
1: repeat
2: Pick a random subset S of {0, . . . , n− 1} containing exactly n/2 elements.

3: Compute the integers x(i) and y(i) for 1 � i ≤ 
 =

(
n/2
k/2

)
.

4: Compute the polynomial f(X) =
∏�

j=1(X + y(j)) mod N .

5: Compute the evaluation of f(X) at the 
 points {x(1), . . . , x(�)}.
6: p′′ ← gcd

(
N,

∏�
i=1

(
f(x(i))

)
mod N

)
7: until p′′ > 1
8: return p′′

Similary to Section 2, the expected cost of Alg. 9 is Õ(�
√
k) polynomial-time op-

erations, where � =

(
n/2
k/2

)
is roughly

√(
n
k

)
. This is an exponential improvement

over naive exhaustive search, but Alg. 9 requires exponential space.
Alg. 9 is randomized, but like Coppersmith’s baby-step/giant-step attack on low-

Hamming-weight discrete logarithm [27], it can easily be derandomized using splitting
systems. Deterministic versions are slightly less efficient, by a small polynomial factor:
see [27].

5 Applications to Low-Exponent RSA

Our previous algorithms for noisy factoring easily apply to fault attacks on RSA-CRT
signatures where few bits of the message are unknown. There, one retrieves the factor-
ization by computing gcd(se −m (modN), N) where s is a faulty RSA signature of a
message m, This requires the full knowledge of the message m, but our attack applies
when not all bits are known, just like in noisy factoring. In this section, we show that
our algorithms can also be adapted to attacks on low-exponent RSA encryption. Con-
sider an RSA ciphertext c = me mod N , where the public exponent e is very small.
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Assume that one knows a noisy version m′ of the plaintext m, which differs from m
by at most k bits, not necessarily consecutive, under exactly the same two cases as for
noisy factoring. This setting is usually called stereotyped RSA encryption [7]: there
are well-known lattice attacks [7,19] against stereotyped RSA, but they require that the
unknown bits are consecutive, or split across extremely few blocks.

Known Positions. Assume that m is a plaintext of n bits, among which only k bits
are unknown, whose (arbitrary) positions are b1, . . . , bk. Let c = me mod N be the
raw RSA ciphertext of m. If e is small (say, constant), we can “square root” the time of
exhaustive search, using multipoint polynomial evaluation.

Let � = ((k − log2 e)/2�, and assume that k > 0. Let m0 be derived from m
by keeping all the known n − k bits, and setting all the k unknown bits to 0. For
1 � i � 2k−
, let the xi’s enumerate all the integers when (b
+1, . . . , bk) ranges over
{0, 1}k−
. Similarly, for 1 � j � 2
, let the yj’s enumerate all the integers when
(b1, . . . , b
) ranges over {0, 1}
.

Thus, there is a unique pair (i, j) such that: c = (m0 + xi + yj)
e mod N. Now, we

define the polynomial f(X) =

2�∏
i=1

((m0 + yi +X)e − c) mod N , which is of degree

e2
. If xt corresponds to the correct guess for the bits b
+1, . . . , bk, then f(xt) = 0.
Hence, if we evaluate f(X) at x1, . . . , x2k−� , we would be able to derive the k − �
higher bits b
+1, . . . bk, which gives rise to Alg. 10.

Algorithm 10. Decrypting Low-Exponent RSA With Known Positions
Input: An RSA modulus N = pq and a ciphertext c = me mod N , where all the bits of m are

known, except at k positions b1, . . . , bk.
Output: The plaintext m.

1: Compute the polynomial f(X) =
2�∏
i=1

((m0 + yi +X)e − c) mod N of degree e2�, with

coefficients modulo N , using Alg. 2.

2: Compute the evaluation of f(X) at the points x(1), . . . , x(2k−�), using sufficiently many
times Alg. 3.

3: Find the unique i such that f(x(i)) = 0.
4: Deduce from x(i) the bits b�+1, . . . , bk.
5: Find the remaining bits b1, . . . , b� by exhaustive search.

By definition of �, we have:
√
2k/e ≤ 2
 ≤ 2 ×

√
2k/e and

√
e2k/2 ≤ 2k−
 ≤

2 ×
√
e2k. It follows that the overall complexity of Alg. 10. is Õ(

√
e2k) polynomial-

time operations, which is the “square root” of exhaustive search if e is constant.

Unknown Positions. In the previous section, we showed how to adapt our noisy fac-
toring algorithm with known positions (Alg. 7) to the RSA case. Similarly, our noisy
factoring algorithm with unknown positions (Alg. 9) can also be adapted. If the plaintext
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m is known except for exactly k unknown bit positions, then one can recover m using

on the average Õ(�
√
ke) polynomial-time operations, where � =

(
n/2
k/2

)
is roughly√(

n
k

)
.

Variants. Our technique was presented to decrypt stereotyped low-exponent RSA ci-
phertexts, but the same technique clearly applies to a slightly more general setting,
where the RSA equation is replaced by an arbitrary univariate low-degree polynomial
equation. More precisely, instead of c = me mod N , we may assume that P (m) ≡
0 (modN) where P is a univariate integer polynomial of degree e. This allows to adapt
various attacks [7] on low-exponent RSA, such as randomized padding across several
blocks.
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Abstract. Decoding random linear codes is a well studied problem with many
applications in complexity theory and cryptography. The security of almost all
coding and LPN/LWE-based schemes relies on the assumption that it is hard
to decode random linear codes. Recently, there has been progress in improving
the running time of the best decoding algorithms for binary random codes. The
ball collision technique of Bernstein, Lange and Peters lowered the complexity
of Stern’s information set decoding algorithm to 20.0556n . Using representations
this bound was improved to 20.0537n by May, Meurer and Thomae. We show how
to further increase the number of representations and propose a new information
set decoding algorithm with running time 20.0494n .

Keywords: Information Set Decoding, Representation Technique.

1 Introduction

The NP-hard problem of decoding a random linear code is one of the most promising
problems for the design of cryptosystems that are secure even in the presence of quan-
tum computers. Almost all code-based cryptosystems, e.g. McEliece, rely on the fact
that random linear codes are hard to decode. In order to embed a trapdoor in coding-
based cryptography one usually starts with a well-structured secret code C and linearly
transforms it into a code C′ that is supposed to be indistinguishable from a random
code.

An attacker has two options. Either he tries to distinguish the scrambled version C′

of C from a random code by revealing the underlying structure, see [11,28]. Or he
directly tries to run a generic decoding algorithm on the scrambled code C′.

Also closely related to random linear codes is the learning parity with noise (LPN)
problem that is frequently used in cryptography [1,14,17]. In LPN, one directly starts
with a random linear code C and the LPN search problem is a decoding problem in
C. It was shown in [27] that the popular LPN decision variant, a very useful tool for
many cryptographic constructions, is equivalent to the LPN search problem, and thus

� Supported by DFG project MA 2536/7-1 and by ICT-2007-216676 ECRYPT II.
�� Ruhr-University Research School, Germany Excellence Initiative [DFG GSC 98/1].
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equivalent to decoding a random linear code. The LWE problem of Regev [27] is a
generalization of LPN to codes over a larger field. Our decoding algorithm could be
adjusted to work for these larger fields (similar to what was done in [9,26]). Since the
decoding problem lies at the the heart of coding-based and LPN/LWE-based cryptogra-
phy it is necessary to study its complexity in order to define proper security parameters
for cryptographic constructions.

Let us start by providing some useful notation. A binary linear code C is a
k-dimensional subspace of Fn

2 where n is called the length of the code and R := k
n is

called its rate. A random k-dimensional linear code C of length n can be defined as the
kernel of a random full-rank matrix H ∈R F(n−k)×n

2 , i.e. C = {c ∈ Fn
2 | Hct = 0t}.

The matrix H is called a parity check matrix of C. For ease of presentation, we use the
convention that all vectors are column vectors which allows as to omit all transpositions
of vectors.

The distance d of a linear code is defined by the minimal Hamming distance between
two codewords. Hence every vector x whose distance to the closest codeword c ∈ C is
at most the error correction capacity ω = �d−1

2  can be uniquely decoded to c.
For any point x = c + e ∈ Fn

2 that differs from a codeword c ∈ C by an error
vector e, we define its syndrome as s(x) := Hx = H(c + e) = He. Hence, the
syndrome only depends on the error vector e and not on the codeword c. The syndrome
decoding problem is to recover e from s(x). This is equivalent to decoding in C, since
the knowledge of e suffices to recover c from x.

Usually in cryptographic settings the Hamming weight of e is smaller than the error
correction capability, i.e. wt(e) ≤ ω = �d−1

2 , which ensures unique decoding. This
setting is also known as half/bounded distance decoding. All known half distance de-
coding algorithms achieve their worst case behavior for the choice wt(e) = ω. As a
consequence we assume wt(e) = ω throughout this work. In complexity theory, one
also studies the so-called full decoding where one has to compute a closest codeword to
a given arbitrary vector x ∈ Fn

2 . We also give the complexity of our algorithm for full
decoding, but in the following we will focus on half-distance decoding.

The running time of decoding algorithms for linear codes is a function of the three
code parameters [n, k, d]. However, with overwhelming probability random binary lin-
ear codes attain a rate R := k

n which is close to the Gilbert Varshamov bound 1 −
H( d

n ) [10]. Therefore, we can express the running time T (n,R) as a function in n,R
only. One usually measures the complexity of decoding algorithms asymptotically in
the code length n. Since all generic decoding algorithms run in exponential time, a
reasonable metric is the complexity coefficient F (R) as defined in [9], i.e. F (R) =
limn→∞

1
n logT (n,R) which suppresses polynomial factors since lim 1

n log p(n) = 0

for any polynomial p(n). Thus, we have T (n,R) = 2nF (R)+o(n) ≤ 2n�F (R)�ρ for large
enough n. We obtain the worst-case complexity by taking max0<R<1(F (R)�ρ. Here,
(x�ρ := (x · 10ρ� · 10−ρ denotes rounding up x ∈ R to a certain number of ρ ∈ N

decimal places.

Related Work. In syndrome decoding one has to compute e from s(x), which means
that one has to find a weight-ω linear combination of the columns of H that sums to
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the syndrome s(x) over Fn−k
2 . Thus, a brute-force algorithm would require to compute(

n
ω

)
column sums. Inspired by the work of Prange [25], it was already mentioned in the

original work of McEliece [22] and later more carefully studied by Lee and Brickell [19]
that the following approach, called information set decoding, yields better complexity.

Information set decoding basically proceeds in two steps, an initial transformation
step and a search step. Both steps are iterated in a loop until the algorithm succeeds. The
initial transformation step starts by randomly permuting the columns of H. In particular,
this permutes the ω columns of H that sum to s(x), and thus permutes the coordinates of
e. Then we apply Gaussian elimination on the rows of H in order to obtain a systematic
form (Q | In−k), where Q ∈ F(n−k)×k

2 and In−k is the (n − k)-dimensional identity
matrix. The Gaussian elimination operations are also applied to s(x) which results in
s̃(x).

Let us fix an integer p < ω. In the search step, we compute for every linear combina-
tion of p columns from Q its Hamming distance to s̃(x). If the distance is exactly ω−p
then can we add to our p columns those ω− p unit vectors from In−k that exactly yield
s̃(x). Undoing the Gauss elimination recovers the desired error vector e. Obviously,
information set decoding can only succeed if the initial column permutation results in
a permuted e that has exactly p ones in its first k coordinates and ω − p ones in its last
n− k coordinates. Optimization of p leads to a running time of 20.05752n.

Leon[20] and Stern[30] observed in 1989 that one can improve on the running time
when replacing in the search step the brute-force search for weight-p linear combina-
tions by a Meet-in-the-middle approach. Let us fix an integer � < n − k and let us
project (Q | In−k) to its first � rows. We split the projection of Q into two matrices Q1,
Q2 each having k

2 columns. Then we create two lists L1,L2 that contain all weight- p
2

linear combinations of columns from Q1 and Q2, respectively. Moreover, we add the
projection of s̃(x) to every element in L2 and sort the resulting list.

Then we search for matching elements from L1 and L2. These elements define
weight-p sums of vectors from Q that exactly match s̃(x) in its first � coordinates.
As before, if the remaining coordinates differ from s̃(x) by a weight-(ω − p) vector,
then we can correct these positions by suitable unit vectors from In−k. The running
time of this algorithm is 20.05564n.

The ball collision technique of Bernstein, Lange and Peters [5] lowers this complex-
ity to 20.05559n by allowing a non-exact matching of the elements of L1 and L2. The
same asymptotic complexity can be achieved by transforming H into (Q | 0

In−k−�
)

with Q ∈ F(n−k)×(k+
)
2 , as proposed by Finiasz and Sendrier [12]. The lists L1,L2

then each contain all weight- p
2 sums out of k+


2 columns. The asymptotic analysis of
this variant can be found in [23].

Notice that finding a weight-p sum of columns of Q that exactly matches s̃(x) in �
coordinates is a vectorial version of the subset sum problem in F


2. This vectorial version
was called the column match problem by May, Meurer and Thomae (MMT) [23], who
adapted the subset sum representation technique from Howgrave-Graham and Joux [15]
to the column match problem.
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Let Q ∈ F(n−k)×(k+
)
2 be as before, where q1, . . . ,qk+
 denote the columns of Q.

A Meet-in-the-Middle approach matches the first � coordinates via the identity∑
i∈I1

qi =
∑
i∈I2

qi + s̃(x) , (1)

where I1 ⊂
[
1, k+


2

]
, I2 ⊂

[
k+

2 + 1, k + �

]
and |I1| = |I2| = p

2 .
Using the representation technique, one chooses I1 and I2 no longer from half-sized

intervals but they both are chosen from the whole interval [1, k+�] such that I1∩I2 = ∅.
Thus, every solution I admits

(
p

p/2

)
representations I = I1 ∪ I2. Notice that increasing

the range of I1, I2 also increases the size of the lists L1 and L2 from
((k+
)/2

p/2

)
to
(
k+

p/2

)
.

But constructing only a
(

p
p/2

)−1
-fraction of each list suffices to let a single representa-

tion of the solution survive on expectation. This approach leads to an algorithm which
runs in time 20.05364n.

Our Contribution. We propose to choose |I1| = |I2| = p
2 +ε for some ε > 0 such that

|I1 ∩ I2| = ε. So we allow for ε columns qi that appear on both sides of identity (1).
Thus every solution I is written as the symmetric difference I = I1ΔI2 := I1 ∪ I2 \
(I1 ∩ I2), where we cancel out all ε elements in the intersection of I1 and I2.

Let us compare our approach with the realization of the search step in the algorithms
of Stern [30] and MMT [23]. In Stern’s algorithm both index sets I1, I2 are chosen in a
disjoint fashion. Thus every solution I only has a unique representation as the union of
I1 and I2. MMT choose fully intersecting sets I1, I2, but they only consider a union of
disjoint sets I1, I2. Basically, this allows that every of the p elements in I = I1 ∪ I2 can
appear either as an element of I1 or as an element of I2, so it can appear on both sides
of identity (1).

In contrast, we choose fully intersecting sets I1, I2 and additionally allow for a union
of intersecting sets. Thus, we additionally allow that even those k+ �− p elements that
are outside of I = I1 ∪ I2 may appear in I1, I2 as long as they appear in both sets,
and thus cancel out. This drastically increases the number of representations, since for
random code instances the number of zeros in an error vector e is much larger than
the number of ones. Whereas MMT only allow to split each 1-entry of e into two parts,
either 1 = 0+1 or 1 = 1+0, we also allow to split each 0-entry of e into two parts, either
0 = 0 + 0 or 0 = 1 + 1. Hence our benefit comes from using the equation 1 + 1 = 0
in F2. Notice that our approach therefore increases the number of representation per
solution I to

(
p

p/2

)
·
(
k+
−p

ε

)
.

Our main algorithmic task that we describe in this work is the construction of two
lists L1,L2 such that a single representation of each solution survives. This is realized
by a three-level divide-and-conquer algorithm that is similar to Wagner’s generalized
birthday algorithm [31].

Our enhanced representation technique allows us to significantly lower the asymp-
totic running time to 20.04934n. The following figure shows the curve of the complexity
coefficient for the two most recent algorithms [5,23] compared to our new algorithm.
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Fig. 1. Comparison of F (R) for code rates 0 < R < 1 for bounded distance decoding. Our
algorithm is represented by the thick curve, MMT is the thin curve and Ball-collision is the
dashed curve.

2 Generalized Information Set Decoding

We now give a detailed description of a generalized information set decoding (ISD)
framework as described by Finiasz and Sendrier [12] in 2009. Recall that the input to
an ISD algorithm is a tuple (H, s) where H ∈ F(n−k)×n

2 is a parity check matrix of a
random linear [n, k, d]-code and s = He is the syndrome of the unknown error vector
e of weight ω := wt(e) = �d−1

2 .
ISD is a randomized Las Vegas type algorithm that iterates two steps until the so-

lution e is found. The first step is an initial linear transformation of the parity check
matrix H, followed by a search phase as the second step.

In the initial transformation, we permute the columns of H by multiplying with a
random permutation matrix P ∈ Fn×n

2 . Then we perform Gaussian elimination on the

rows of HP by multiplying with an invertible matrix T ∈ F(n−k)×(n−k)
2 . This yields

a parity check matrix H̃ = THP in quasi-systematic form containing a 0-submatrix
in the right upper corner as illustrated in Fig. 2. Here we denote by QI the projection
of Q to the rows defined by the index set I ⊂ {1, . . . , n− k}. Analogously, we denote
by QI the projection of Q to its columns. In particular we define [�] := {1, . . . , �}
and [�, n − k] = {�, . . . , n − k}. We denote the initial transformation Init(H) :=
THP.

We set s̃ := Ts and look for an ISD-solution ẽ of (H̃, s̃), i.e. we look for an ẽ
satisfying H̃ẽ = s̃ and wt(ẽ) = ω. This yields a solution e = Pẽ for the original prob-
lem. Notice that applying the permutation matrix to ẽ leaves the weight unchanged,
i.e. wt(e) = ω, and THe = H̃ẽ = s̃ = Ts implies He = s as desired. In the
search phase, we try to find all error vectors ẽ that have a specific weight distribution,
i.e. we search for vectors that can be decomposed into ẽ = (ẽ1, ẽ2) ∈ Fk+


2 × Fn−k−

2
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H̃ =

0

︷ ︸︸ ︷k + 
 ︷ ︸︸ ︷n− k − 


︷︸︸︷ 


︷
︸︸

︷
n− k − 


︸ ︷︷ ︸
p

︸ ︷︷ ︸
ω − p

Q[�]

In−k−�Q[�+1,n−k]

Fig. 2. Parity check matrix H̃ in quasi-systematic form

where wt(ẽ1) = p and wt(ẽ2) = ω − p. Since P shuffles e’s coordinates into random
positions, ẽ has the above weight distribution with probability

P =

(
k+l
p

)(
n−k−l
ω−p

)(
n
ω

) . (2)

The inverse probability P−1 is the expected number of repetitions until ẽ has the desired
distribution. Then it suffices to find the truncated vector ẽ1 ∈ Fk+


2 that represents the
position of the first p ones. To recover the full error vector ẽ = (ẽ1, ẽ2), the missing
coordinates ẽ2 are obtained as the last n − k − � coordinates of Qẽ1 + s̃. Hence, the
goal in the ISD search phase is to compute the truncated error vector ẽ1 efficiently.
For the computation of ẽ1 we focus on the submatrix Q[
] ∈ F
×(k+
)

2 . Since we fixed
the 0-submatrix in the right-hand part of H̃, we ensure that Qẽ1 exactly matches the
syndrome s̃ on its first � coordinates. Finding an ẽ1 with such a property was called the
submatrix matching problem in [23].

Definition 1 (Submatrix Matching Problem). Given a random matrix Q ∈R F
×(k+
)
2

and a target vector s ∈ F

2, the submatrix matching problem (SMP) consists in finding

a set I of size p such that the corresponding columns of Q sum up to s, i.e. to find
I ⊆ [1, k + �], |I| = p such that

σ(QI) :=
∑
i∈I

qi = s, where qi is the i-th column of Q.

Note that the SMP itself can be seen as just another syndrome decoding instance with
parity check matrix Q, syndrome s ∈ F


2 and parameters [k + �, �, p].
Our improvement stems from a new algorithm COLUMNMATCH allowing to solve

the SMP more efficiently by using more representations of a solution I . In Alg. 1 we
describe the resulting ISD algorithm. Here we denote for a vector x ∈ Fn

2 and an index

set I ⊂ [n] by xI ∈ F|I|
2 the restriction of x to the coordinates of I .

Let T := T (n,R; p, �) denote the running time of COLUMNMATCH. Then the running
time of GENERALIZEDISD is P−1 · T .
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Algorithm 1. GENERALIZEDISD

Input: Parity check matrix H ∈ F
(n−k)×n
2 , syndrome s = He with wt(e) = ω.

Output: Error e ∈ F
n
2

Parameters: p, 


Repeat
Compute H̃← Init(H) and s̃← Ts where H̃ = THP, P random permutation.
Compute L =COLUMNMATCH(Q[�], s̃[�], p).
For all solutions ẽ1 ∈ L do

If wt(Qẽ1 + s̃) = ω − p then
Compute ẽ← (ẽ1, ẽ2) ∈ F

n
2 where ẽ2 ← (Qẽ1 + s̃)[�+1,n−k]

Output e = ẽP.

3 The Merge-Join Building Block

In order to realize our improved SMP algorithm, we first introduce an essential building
block that realizes the following task. Given a matrix Q ∈ F
×(k+
)

2 and two lists L1

and L2 containing binary vectorsx1, . . . ,x|L1| and y1, . . . ,y|L2| of length k+�, we aim
to join those elements xi and yj into a new list L = L1 %& L2 whose sum has weight
p, i.e. wt(xi + yj) = p. Furthermore, we require that the corresponding column-sum
of Q already matches a given target t ∈ Fr

2 on its right-most r ≤ � coordinates, i.e.
(Q(xi + yj))[r] = t.

L1

010100i0 →
110100

i1 →
100100

L2

011100 ← j0

← j1
110100

r

��

L

� � 000
� � 000

� � 000
� � 000

Fig. 3. Illustration of the MERGE-JOIN algorithm to obtain L = L1 �� L2

Searching for matching vectors (Qyj)[r] + t and (Qxi)[r] accomplishes this task.
We call all matching vectors with weight different from p inconsistent solutions. Notice
that we might also obtain the same vector sum from two different pairs of vectors from
L1,L2. In this case we obtain a matched vector that we already have, which we call
a duplicate. During our matching process we filter out all inconsistent solutions and
duplicates.

The matching process is illustrated in Fig. 3. The complete algorithm is given as
Alg. 2 and is based on a classical algorithm from Knuth [18] which realizes the colli-
sion search as follows. Sort the first list lexicographically according to the r-bit labels
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L1(xi) := (Qxi)[r] and the second list according to the labels L2(yj) := (Qyj)[r]+t.
We add t to the labels of the second list to guarantee (Q(xi + yj))[r] = t.

Algorithm 2. MERGE-JOIN

Input: L1,L2, r, p and t ∈ F
r
2

Output: L = L1 �� L2

Lexicographically sort L1 and L2 according to the labels L1(xi) := (Qxi)[r] and
L2(yj) := (Qyj)[r] + t.
Set collision counter C ← 0. Let i← 0 and j ← (|L2| − 1)
While i < |L1| and j < |L2| do

If L1(xi) <lex L2(yj) then i++
If L1(xi) >lex L2(yj) then j ++
If L1(xi) = L2(yj) then

Let i0, i1 ← i and j0, j1 ← j
While i1 < |L1| and L1(xi1) = L1(xi0) do i1 ++
While j1 < |L2| and L2(yj1) = L2(yj0) do j1 ++
For i← i0 to i1 − 1 do

For j ← j0 to j1 − 1 do
C = C + 1
Insert collision xi + yj into list L (unless filtered out)

Let i← i1 , j ← j1
Output L, C.

To detect all collisions, one now initializes two counters i and j starting at the beginning
of the lists L1 and L2 and pointing at elements xi and yj . As long as those elements
do not yield a collision, either i or j is increased depending on the relative order of the
labels L1(xi) and L2(yj). Once a collision L1(xi) = L2(yj) occurs, four auxiliary
counters i0, i1 and j0, j1 are initialized with i and j, respectively. Then i1 and j1 can
further be incremented as long as the list elements retain the same labels, while i0 and
j0 mark the first collision (i, j) between labels L1(xi) and L2(yj). Obviously, this
procedure defines two sets C1 = {xi0 , . . . ,xi1} and C2 = {yj0 , . . . ,yj1} such that all
possible combinations yield a collision, i.e. the set C1 × C2 can be added to the output
list L.

This procedure is then continued with i ← i1 and j ← j1 until one of the counters
i, j arrives at the end of a list. As mentioned before, we remove on the fly inconsistent
solutions with incorrect weight wt(xi + yj) �= p and duplicate elements xi + yj =
xk + y
.

Note that we introduced a collision counter C which allows us to take into account
the time that is spent for removing inconsistent solutions and duplicates. The total run-
ning time of MERGE-JOIN is given by

T = Õ (max {|L1|, |L2|, C}) .

Assuming uniformly distributed labels L1(xj) and L2(yj) it holds that E [C] = |L1| ·
|L2| · 2−r.
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4 Our New Algorithm for Solving the Submatrix Matching
Problem

As explained in Section 2, improving the submatrix matching problem (SMP) automat-
ically improves information set decoding (ISD).

Our new SMP algorithm is inspired by using extended representations similar to
Becker, Coron and Joux [2] for the subset sum problem.

In the MMT algorithm [23] a weight-p error vector e ∈ Fk+

2 is written as the sum

e1+e2. However, MMT only allow that every 1-entry splits to either a 1-entry in x1 and
a 0-entry in x2, or vice versa. If wt(e1) = wt(e2) =

p
2 this allows for

(
p

p/2

)
different

representations as a sum of two vectors.
Our key observation is that we can also split the 0-entries of e into either (0, 0) or

(1, 1). Hence if we choose wt(e1) = wt(e2) =
p
2 + ε then we gain a factor of

(
k+
−p

ε

)
,

namely the number of positions where we split as (1, 1). Notice that in all coding-based
scenarios wt(e) is relatively small compared to k and n. Thus e contains many more
zeros than ones, from which our new representation heavily profits.

To solve the SMP, we proceed as follows. Let I ⊂ [k + �] be the index set of cardi-
nality p with σ(QI) = s that we want to find.

We represent I by two index sets I1 and I2 of cardinality p
2+ε contained in the whole

interval [k + l] and require I1 and I2 to intersect in a fixed number of ε coordinates as
illustrated in Fig. 4.

|I | = p

e

|I1| = p/2 + ε

e1

|I2| = p/2 + ε

e2

Fig. 4. Decomposition of an index set I into two overlapping index sets

The resulting index set I is then represented as the symmetric difference
I1ΔI2 := (I1 ∪ I2) \ (I1 ∩ I2) which yields an index set I of cardinality p as long
as I1 and I2 intersect in exactly ε positions.

It turns out that the optimal running time can be obtained by applying the represen-
tation technique twice, i.e. we introduce further representations of the index sets I1 and
I2 on a second computation layer.

4.1 Our COLUMNMATCH Algorithm

Our algorithm can be described as a computation tree of depth three, see Fig. 5 for an
illustration. We enumerate the layers from bottom to top, i.e. the third layer identifies
the initial computation of disjoint base lists B1 and B2 and the zero layer identifies the
final output list L.
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. . .

Disjoint base lists Bi,1 and Bi,2 for i = 1, . . . , 4Layer 3

Layer 2

Layer 1

Layer 0

weight
p2
2

weight
p2 = p1

2
+ ε2

weight
p1 = p

2
+ ε1

weight
p

�� ��

��

r2 r2

r1L

L(1)
1 L(1)

2

L(2)
1 L(2)

2 L(2)
3 L(2)

4

Fig. 5. Illustration of the COLUMNMATCH algorithm

Recall that we aim to find an index set I of size p with
∑

i∈I qi = s. We introduce
parameters ε1 and ε2 representing the number of additional 1’s we allow on the first
and second layer, respectively. In the following description, we equip every object with
an upper index that indicates its computation layer, e.g. a list L(2)

j is contained in the
second layer.

On the first layer, we search for index sets I(1)1 and I(1)2 in [k+�] of size p1 := p
2 +ε1

which intersect in exactly ε1 coordinates such that I = I
(1)
1 ΔI

(1)
2 . In other words, we

create lists of binary vectors e(1)1 and e
(1)
2 of weight p1 and search for tuples (e(1)1 , e

(1)
2 )

such that wt(e(1)1 + e
(1)
2 ) = p and Q(e

(1)
1 + e

(1)
2 ) = s.

Note that the number of tuples (e(1)1 , e
(1)
2 ) that represent a single solution vector e is

R1(p, �; ε1) :=

(
p
p
2

)(
k + l − p

ε1

)
. (3)

To optimize the running time, we impose a constraint on r1 ≈ log2R1 coordinates of
the corresponding vectors Qe

(1)
i such that we can still expect to find one representation

of the desired solution e.
More precisely, the algorithm proceeds as follows. We first fix a random vector

t
(1)
1 ∈R Fr1

2 , set t(1)2 := s[r1] + t
(1)
2 and compute two lists

L(1)
i = {ei(1) ∈ Fk+


2 | wt(ei) = p1 and (Qe
(1)
i )[r1] = t

(1)
i } for i = 1, 2.
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Observe that any two elements e
(1)
i ∈ L(1)

i , i = 1, 2, already fulfill by construction

the equation (Q(e
(1)
1 + e

(1)
2 ))[r1] = s[r1], i.e. they already match the syndrome s on r1

coordinates. In order to solve the SMP, we are interested in a solution e = e
(1)
1 + e

(1)
2

that matches the syndrome s on all � positions and has weight exactly p. Once L(1)
1 and

L(1)
2 have been created, this can be accomplished by calling the MERGE-JOIN algorithm

from Sect. 3 on input L(1)
1 ,L(1)

2 with target s, weight p and parameter �.

It remains to show how to construct L(1)
1 ,L(1)

2 .

We represent e(1)i as a sum of two overlapping vectors e
(2)
2i−1, e

(2)
2i both of weight

p2 := p1

2 + ε2, i.e. we require the two vectors to intersect in exactly ε2 coordinates.
Altogether, the solution e is now decomposed as

e = e
(1)
1 + e

(1)
2 = e

(2)
1 + e

(2)
2 + e

(2)
3 + e

(2)
4 .

Clearly, there are

R2(p, �; ε1, ε2) =

(
p1
p1/2

)
·
(
k + �− p1

ε2

)
many representations for e(1)j where p1 = p

2 +ε1. Similarly to the first layer, this allows

us to fix r2 ≈ logR2 coordinates of the partial sums Qe
(2)
i to some target values t(2)i .

More precisely, we draw two target vectors t(2)1 , t
(2)
3 ∈ Fr2

2 , set t(2)2j = (t
(1)
j )[r2]+t

(2)
2j−1

for j = 1, 2, and compute four lists

L(2)
i = {e(2)i ∈ Fk+l

2 | wt(e
(2)
i ) = p2 and (Qe

(2)
i )[r2] = t

(2)
i } for i = 1, . . . , 4.

Notice that by construction all combinations of two elements from either L(2)
1 ,L(2)

2 or

L(2)
3 ,L(2)

4 match their respective target vector t(1)j on r2 coordinates.

Creating the Lists L(2)
1 , . . . ,L(2)

4 . We exemplary explain how to create L(2)
1 . The re-

maining lists can be constructed analogously. We apply a classical Meet-in-the-middle
collision search, i.e. we decompose e(2)1 as e(2)1 = y+z by two non-overlapping vectors
y and z of length k+�. To be more precise, we first choose a random partition of [k+�]
into two equal sized sets P1 and P2, i.e. [k + �] = P1 ∪ P2 with |P1| = |P2| = k+


2 ,
and force y to have its p2

2 1-entries in P1 and z to have its p2

2 1-entries in P2. That is
we construct two base lists

B1 := {y ∈ Fk+

2 | wt(y) = p2

2
and yi = 0∀i ∈ P2}

and
B2 := {z ∈ Fk+


2 | wt(z) = p2
2

and zi = 0∀i ∈ P1}.

We invoke MERGE-JOIN to compute L(2)
1 = MERGE-JOIN(B1,B2, r2, p2, t

(2)
1 ). Let

S3 = |B1| = |B2| denote the size of the base lists and let C3 be the total number
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of matched vectors that occur in MERGEJOIN (since the splitting is disjoint, neither
duplicates nor inconsistencies can arise). Then MERGEJOIN needs time

T3(p, �; ε1, ε2) = O (max {S3, C3}) .

Clearly, we have

S3 := S3(p, �; ε1, ε2) =

(
(k + �)/2

p2/2

)
.

Assuming uniformly distributed partial sums we obtain

E [C3] =
S2
3

2r2
.

We would like to stress that decomposing e
(2)
1 into x and y from disjoint sets P1 and

P2 introduces a probability of loosing the vector e(2)1 and hence the solution e = e
(2)
1 +

e
(2)
2 + e

(2)
3 + e

(2)
4 . For a randomly chosen partition P1, P2, the probability that e(2)1

equally distributes its 1-entries over P1 and P2 is given by

Psplit =

((k+
)/2
p2/2

)2(
k+

p2

)
which is asymptotically inverse-polynomial in n. Choosing independent partitions
Pi,1, Pi,2 and appropriate base lists Bi,1,Bi,2 for all four lists L(2)

i , we can guaran-

tee independent splitting conditions for all the e
(2)
i yielding a total splitting probability

of PSplit = (Psplit)
4 which is still inverse-polynomial in n.

After having created the lists L(2)
i , i = 1, . . . , 4 on the second layer, two more appli-

cations of the MERGEJOIN algorithm suffice to compute the lists L(1)
j on the first layer.

Eventually, a last application of MERGEJOIN yields L, whose entries are solutions to
the SMP. See Alg. 3 for a complete pseudocode description.

Algorithm 3. COLUMNMATCH

Input: Q ∈ F
�×k+�
2 , s ∈ F

�
2, p ≤ k + 


Output: List L of vectors in e ∈ F
k+�
2 with wt(e) = p and Qe = s

Parameters: Choose optimal ε1, ε2 and set p1 = p/2 + ε1 and p2 = p1/2 + ε2.

Choose random partitions Pi,1, Pi,2 of [k + 
] and create the base lists Bi,1 and Bi,2.
Choose t

(1)
1 ∈R F

r1
2 and set t(1)2 = s[r1] + t

(1)
1 .

Choose t
(2)
1 , t

(2)
3 ∈R F

r2
2 . Set t(2)2 = (t

(1)
1 )[r2] + t

(2)
1 and t

(2)
4 = (t

(1)
2 )[r2] + t

(2)
3 .

Compute L(2)
i = MERGE-JOIN(Bi,1,Bi,2, r2, p2, t

(2)
i ) for i = 1, . . . , 4.

Compute L(1)
i = MERGE-JOIN(L(2)

2i−1,L
(2)
2i , r1, p1, t

(1)
i ) for i = 1, 2.

Compute L = MERGE-JOIN(L(1)
1 ,L(1)

2 , 
, p, s).
Output L.
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It remains to estimate the complexity of COLUMNMATCH as a function of the param-
eters (p, �; ε1, ε2), where (ε1, ε2) are optimization parameters. Notice that the values
ri and pi are fully determined by (p, �; ε1, ε2). The base lists B1 and B2 are of size
S3(p, �; ε1, ε2) as defined above.

The three consecutive calls to the MERGE-JOIN routine create lists L(2)
j of size

S2(p, �; ε1, ε2), lists L(1)
i of size S1(p, �; ε1, ε2) and the final list L (which has not

to be stored). More precisely, we obtain

Si(p, �; ε1, ε2) = E
[
|L(i)

j |
]
=

(
k + �

pi

)
· 2−ri for i = 1, 2.

Here we assume uniformly distributed partial sums Qe
(j)
i .

Let Ci for i = 1, 2, 3 denote the number of all matching vectors (including possible
inconsistencies or duplicates) that occur in the three MERGE-JOIN steps. If we set r3 =
0 and r0 = �, then

E [Ci] = S2
i · 2ri−ri−1 .

Following the analysis of MERGE-JOIN in Sect. 3, the time complexities Ti of the three
MERGE-JOIN steps is given by

Ti(p, �; ε1, ε2) = max {Si, Ci} .

The overall time and space complexity is thus given by

T (p, �; ε1, ε2) = max {T3, T2, T1} (4)

and
S(p, �; ε1, ε2) = max {S3, S2, S1} .

For optimizing T (p, �; ε1, ε2) one has to compute the Ci. Heuristically, we can assume
that the Ci achieve their expected values up to a constant factor. Since our heuristic
analysis also relies on the fact that projected partial sums of the form (Qe)[r] yield
uniformly distributed vectors in Fr

2, a proper theoretical analysis needs to take care of
a certain class of malformed input parity check matrices H. We show how to obtain
a provable variant of our algorithm that works for all but a negligible amount of input
matrices H in the full version of the paper [3]. The provable variant simply aborts
computation if the Ci differ too much from their expectation.

5 Comparison of Asymptotic Complexity

We now show that we improve information set decoding by an exponential factor in
comparison to the latest results [5,23]. To compute the complexity coefficient F (R) for
our algorithm for a fixed code rate R, we need to optimize the parameters p, �, ε1 and
ε2 such that the expression

T (p, �; ε1, ε2) · P(p, �)−1 (5)

is minimized under the natural constraints
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0 <� < min{n− k, n− k − ω − p}
0 <p < min{ω, k + �}
0 <ε1 < k + �− p

0 <ε2 < k + �− p1

0 <R2(p, �; ε1, ε2) < R1(p, �; ε1, ε2) < � .

The time per iteration T is given by Eq. (4) and the number of iterations P−1 equals((
k+

p

)(
n−k−

ω−p

)
/
(
n
ω

))−1

as given in Eq. (2).

For random linear codes, we can relate R = k/n and D = d/n via the Gilbert-
Varshamov bound. Thus asymptotically we obtainD = H−1(1−R)+o(1), whereH is
the binary entropy function. For bounded distance decoding, we setW := ω/n = D/2.
We numerically determined the optimal parameters for several equidistant rates R and
interpolated F (R). To calculate F (R) we make use of the well known approximation(
αn
βn

)
= 2αH(β/α)n+o(n). The results are shown in Fig. 1.

For full decoding, in the worst-case we need to decode a highest weight coset leader
of the code C, its weight ω corresponds to the covering radius of C which is defined
as the smallest radius r such that C can be covered by discrete balls of radius r. The
Goblick bound [13] ensures that r ≥ nH−1(1 − R) + o(n) for all linear codes. In-
dependently, Blinovskii [7] and Levitin [21] further proved that this bound is tight
for almost all linear codes, i.e. r = nH−1(1 − R) + o(n). This justifies our choice
W = H−1(1 −R) for the full decoding scenario.

0.2 0.4 0.6 0.8 1.0
R�k�n

0.02

0.04

0.06

0.08

0.10

F�R�

Fig. 6. F (R) for full decoding. Our algorithm is represented by the thick curve, MMT is the thin
curve and Ball-collision is the dashed curve.

We conclude by taking a closer look at the worst-case complexities of decoding
algorithms for random linear codes and a typical McEliece setting with relative distance
D = 0.04 and rate R = 0.7577. Notice that three out of the four parameter sets for
security levels between 80 and 256 bit from [4] closely match these code parameters.
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Table 1. Comparison of worst-case complexity coefficients, e.g. the time columns represent the
maximal complexity coefficient F (R) for 0 < R < 1

half-dist. full dec. McEliece
time space time space time space

Lee-Brickell 0.05752 - 0.1208 - 0.0857 -
Stern 0.05564 0.0135 0.1167 0.0318 0.0809 0.0327
Ball-collision 0.05559 0.0148 0.1164 0.0374 0.0807 0.0348
MMT 0.05364 0.0216 0.1116 0.0541 0.0760 0.0482
Our algorithm 0.04934 0.0286 0.1019 0.0769 0.0672 0.0586

All algorithms were optimized for speed, not for memory. For a comparison of full
decoding with fixed memory, we can easily restrict Ball-collision, MMT and our new
algorithm to the space complexity coefficient 0.0317 of Stern’s algorithm which holds
for k ≈ 0.446784. In this case, we obtain time complexities Fball(R) = 0.1163,
FMMT(R) = 0.1129 and Four(R) = 0.1110, which shows that our improvement is
not a pure time memory tradeoff.

For a better verifiability of our optimization and the resulting complexi-
ties, we make all data including the Mathematica code publicly available at
http://cits.rub.de/personen/meurer.html. If needed, this code may
also be used to compute optimal parameters for arbitrary code parameters.

Acknowledgment. We would like to thank Dan Bernstein for several excellent com-
ments, in particular he proposed to use random partitions for generating the base lists
in the COLUMNMATCH algorithm.
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Abstract. RSA Full Domain Hash (RSA-FDH) is a digital signature
scheme, secure again chosen message attacks in the random oracle model.
The best known security reduction from the RSA assumption is non-
tight, i.e., it loses a factor of qs, where qs is the number of signature
queries made by the adversary. It was furthermore proved by Coron
(EUROCRYPT 2002) that a security loss of qs is optimal and cannot
possibly be improved. In this work we uncover a subtle flaw in Coron’s
impossibility result. Concretely, we show that it only holds if the under-
lying trapdoor permutation is certified. Since it is well known that the
RSA trapdoor permutation is (for all practical parameters) not certified,
this renders Coron’s impossibility result moot for RSA-FDH. Motivated
by this, we revisit the question whether there is a tight security proof
for RSA-FDH. Concretely, we give a new tight security reduction from a
stronger assumption, the Phi-Hiding assumption introduced by Cachin
et al (EUROCRYPT 1999). This justifies the choice of smaller parame-
ters in RSA-FDH, as it is commonly used in practice. All of our results
(positive and negative) extend to the probabilistic signature scheme PSS.

1 Introduction

Among all digital signatures schemes based on the RSA problem, arguably
among the most important ones is RSA Full Domain Hash (RSA-FDH) by Bel-
lare and Rogaway [3]. It is extensively used in a wide variety of applications,
and serves as the basis of several existing standards such as PKCS #1 [26]. It
has been demonstrated by means of a security reduction that, in the random
oracle model [2], breaking the security of RSA-FDH (in the sense of existential
unforgeability against chosen message attacks) is asymptotically at least as hard
as inverting the RSA function.

The seminal work by Bellare and Rogaway introduced the concept of con-
crete security [3] and highlights the importance of considering the tightness of
a security reduction. A security reduction is tight if an adversary breaking the
scheme yields another adversary breaking the underlying hardness assumption
with roughly the same success probability and running time. The current state
of RSA-FDH is as follows. Coron’s reduction [11] (which improves on earlier
results by Bellare and Rogaway [3]) bounds the probability ε of breaking RSA-
FDH in time t by ε′ · qs, where ε′ is the probability of inverting RSA in time

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 537–553, 2012.
c© International Association for Cryptologic Research 2012
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t′ ≈ t and qs is the number of signature queries by the forger. In other words,
the security reduction for RSA-FDH is loose (it loses a factor of qs), which can
have great negative impact on the practical parameter choices of the scheme.
As a numerical example, for 80 bits of security and assuming that an adversary
can make up to qs = 230 signature queries [3], one should use a large enough
RSA modulus N such that inverting the RSA function cannot be done in fewer
than 2110 = 230 · 280 operations. Concretely, using the recommended key sizes
from [28], this leads to a modulus N of about 2432 bits, compared to 1248 bits
if RSA-FDH had a tight reduction. We further refer to [9] for a recent discussion
on the practical impact of non-tight security reductions in cryptography.

It is an interesting question of great practical impact whether or not there is
a tight security reduction for general FDH signatures (based on any trapdoor
permutation TDP) and, in particular, for RSA-FDH. Unfortunately, this ques-
tion was already answered to the negative exactly 10 years ago by Coron [12,13]
who showed that the above non-tight security reduction is essentially optimal.
That is, every security reduction from inverting the TDP (i.e., RSA in the case
of RSA-FDH) to breaking FDH signatures will inevitably lose a qs factor. Con-
sequently, for RSA-FDH a large RSA modulus seems unavoidable to obtain a
meaningful security proof.

1.1 An Overview of Our Results

Revisiting Coron’s Impossibility Result. We uncover a gap in Coron’s re-
sult about the impossibility of a tight security reduction for FDH signatures [13].
As acknowledged by the author of [13], his impossibility result only holds if the
underlying trapdoor permutation (i.e., RSA in the case of RSA-FDH) is a cer-
tified trapdoor permutation. A trapdoor permutation is certified [5,22] if one can
publicly verify that it actually defines a permutation. Unfortunately, the RSA
trapdoor permutation is not known to be certified (unless the public exponent e
is prime and larger than the modulus N) and therefore the impossibility result
does not apply any longer to the case of RSA-FDH.

A tight Security Reduction for FDH signatures. In light of the above,
we revisit the question whether there exists a tight security reduction for FDH
signatures. Unfortunately, we are not able to give such a tight security reduc-
tion from the assumption that the TDP is one-way, but from a stronger (yet
still non-interactive) assumption, namely that the TDP is lossy (in the sense of
Peikert and Waters [25]). Our main result (Theorem 8) shows that there is a
tight security reduction from the lossiness of the TDP to breaking security of
FDH, in the random oracle model.

Applications to RSA-FDH. Recently, Kiltz et al. [20] showed that the RSA
trapdoor permutation is lossy under the under the Φ-Hiding Assumption. The
Φ-Hiding Assumption was introduced by Cachin, Micali, and Stadler in 1999
[8] and it states that, roughly, (N, e) with gcd(ϕ(N), e) = 1 and e < N1/4

is computationally indistinguishable from (N ′, e′) with e′ | ϕ(N ′). (Here ϕ(N)
is Euler’s totient function.) This give a tight security reduction for RSA-FDH
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from the Φ-Hiding Assumption. We remark that the Φ-Hiding Assumption (or,
more generally, the assumption that RSA is lossy) is a stronger assumption
than the assumption that RSA is one-way. However, it dates back to 1999 [8]
and has ever since been used in a number of cryptographic applications (e.g.,
[20,7,14,16,23,18]). It has been cryptalanyzed (e.g. [8,7,27]) and for the parame-
ters of interest there is no known algorithm that breaks it without first factoring
the modulus N = pq. The common interpretation is that the Φ-Hiding As-
sumption can in practice be viewed as as hard as factoring and hence gives a
theoretical justification as to why RSA-FDH with a small modulus N is secure
in practice.

1.2 Full Domain Hash and Coron’s Impossibility Result

Recall that FDH signatures on a message m is σ = f−1(H(m)), where f is the
public description of the TDP and H is a hash function modelled as a random
oracle. A reduction R that reduces inverting the TDP to breaking FDH inputs a
challenge instance (f, y = f(x)) of the TDP and generates a public-key for FDH
that is passed to a forger F attacking FDH signatures. Next, F makes a number
of signature queries (which are answered by R) and finally outputs a forgery.
Finally, R uses the gathered information to invert the TDP, i.e., to compute
x = f−1(y). Reduction R is tight if the success probability of R is roughly the
same as the one of F .

Coron’s impossibility result shows that any reduction R from inverting the
TDP f to breaking FDH which is tight (i.e., does not lose more than a factor qs)
can be turned into an efficient inverting algorithm I for the TDP f (that works
without forger F). In a nutshell, the argument is as follows. Given an instance
of the TDP, the inverter I runs reduction R providing it with a simulated forger
F by making a number of hash queries and then signature queries to R. Next, I
rewinds reduction R to an earlier state (after the hash queries) and uses one of
the signed messages/signature pairs (say (m∗, σ∗)) obtained before the rewind
as its forgery. To R, this counts as a valid forgery since after the rewind, I did
not make a signing query on m∗. The central argument is as follows: consider a
real forger that is provided with the view as the simulated forger who outputs a
forgery σ′ on the same message m∗. FDH has unique signatures1 and hence we
can argue that σ∗ (provided by R before the rewind) equals σ′ (provided by a
real forger). Hence R is convinced it interacts with a real forger and outputs a
solution to the TDP instance. Consequently, from R we were able to construct
an algorithm I that inverts the TDP without using any forger. It is shown by
a combinatorial argument that the success probability of I is non-negative as
long as the reduction R does not loose more than a factor of qs, the number of
signature queries.

The Gap in the Proof. During the proof of [12, Th. 5] it is silently assumed
that the public-key pk generated by reduction R is a real public-key, honestly

1 A signature scheme has unique signatures if for each message there exists exactly
one signature that verifies w.r.t. a given (honestly generated) public-key.
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generated by the key-generation algorithm of FDH, i.e., it contains f which
described a permutation.2 However, that does not necessarily hold, the public-
key generated by R could be anything. In fact, it is possible that the public-key
generated by the reduction R is fake in the sense that the FDH signatures are
no longer unique relative to this fake pk . Once signatures are no longer unique
(with respect to the fake pk), it is possible that a real forger outputs a forgery
σ′ on m∗ which is different from σ∗, the one provided by reduction R before
the rewind. In fact, it could be possible that σ∗ �= σ′ is no longer useful for R
in order to solve the RSA instance after the rewind and hence the impossibility
result breaks down. In Section 3 we restate (and prove) a corrected version of
Coron’s impossibility result. Fortunately, it turns out that Coron’s argument can
be salvaged by requiring the trapdoor permutation in FDH to be certified. Note
that in case of a certified trapdoor permutation it is not longer possible for the
reduction R to generate a fake public-key and hence signatures are guaranteed
to be unique.

1.3 A Tight Security Reduction for FDH Signatures

It is precisely the non-uniqueness of FDH signatures with respect to a fake
public-key that will allow us to prove a tight security from the lossiness from the
lossiness of the TDP (i.e., the Φ-Hiding Assumption in the case of RSA-FDH).
Our proof is surprisingly simple and is sketched as follows. In a first step we
substitute the trapdoor permutation in public key with a lossy one. We use the
programmability of the random oracle to show that this remains unnoticed by
the adversary assuming lossiness of the TDP. Note that once the TDP is lossy,
FDH signatures (i.e., σ with f(σ) = H(m)) are not longer unique since, by the
definition of lossiness, each H(m) has many pre-images under a lossy f . In the
second step we show that any successful forger will be able to find a collision in
the TDP, i.e., two values x �= x̂ with f(x) = f(x̂), which is again hard assuming
lossiness. The full proof is given in Section 3.

For the important case of RSA-FDH this gives a tight security reduction from
the Φ-Hiding Assumption, in the random oracle model. The Φ-Hiding Assump-
tion is believed to be true for sufficiently small public RSA exponents e < N1/4−ε

[8]. This in particular includes the important low-exponent cases of e = 3 and
e = 216 + 1 since they allow efficient verification of RSA-FDH signatures.3

It is interesting to remark, that, at a conceptual level FDH is the first sig-
nature scheme with unique signatures and a tight security reduction (from a
non-interactive assumption).4 Previously, only tight security reductions for ran-
domized signatures were known (e.g., [3,17,6,15]).

2 Such restricted reductions were called key-preserving reductions in [24].
3 We stress that our tight proof technically does not give a counter-example to Coron’s
impossibility result since our reduction is from the Φ-Hiding Assumption, not the
RSA Assumption. However, as corollary the impossibility result would exclude any
(even non-tight) equivalence between the Φ-Hiding and the RSA assumption.

4 Here we do not count tight security proofs from “tautological assumptions” which
are essentially assuming that the signature scheme is secure.
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1.4 Extensions

Our observations can also be applied to the probabilistic signature scheme (PSS)
[3] which is contained in IEEE P1363a [19], ISO/IEC 9796-2, and PKCS#1 v2.1
[26]. Coron proved that, if log2(qs) bits of random salt is used in PSS, then there is
a tight security reduction from the one-wayness of the TDP [12,13]. Furthermore,
Coron also proved that log2(qs) bits of random salt are essentially optimal for a
tight security reduction. Our results for PSS are similar to the ones for FDH. We
note that Coron’s impossibility proof for PSS contains the same gap as the one
in FDH, i.e., it is only correct if the underlying trapdoor permutation is certified.
However, since PSS (with random salt of arbitrary length) is at least as secure as
FDH, we obtain as a corollary from Section 3 a tight security proof from lossiness
to the security of PSS, with random salt of arbitrary (possibly zero) length.

1.5 Related Work

There is a lot of work on FDH and tightly secure signature schemes, we try to
summarize part of it relevant to this work.

Tight security reduction for RSA-FDH from an Interactive As-

sumption. Kobiltz and Menezes [21, Sec. 3] show a tight reduction from an
interactive assumption they call the RSA1 assumption (which is related to the
one-more-RSA assumption RSA-CTI [1]): Given N , e, and a set of qs+qh values
yi chosen uniformly from ZN , the adversary is permitted adaptively to select up
to qs of those yi for which he is given solutions xi to x

e
i = yi mod N . The adver-

sary wins if he produces a solution xe
i = yi mod N for one of the remaining yi.

Even though the RSA1 assumption looks plausible, it is an interactive assump-
tion and almost a tautology for expressing that RSA-FDH signatures are secure
in the random oracle model. In fact, our tight security proof for RSA-FDH also
serves to show a tight reduction from Φ-Hiding to RSA1.

Non-unique Signatures with Tight Reductions. There exists several pre-
vious works that build digital signature schemes with a tight security reduction.
We stress that all of them have, in contrast to FDH, a randomized signing algo-
rithm, i.e., signatures are not unique. Goh et al. [17] show that adding one single
bit of random salt to the hash function of FDH allows to prove a tight security
reduction from the RSA assumption. Bernstein [6] shows a tight security reduc-
tion for (a certain randomized variant of) Rabin-Williams signature scheme from
the factoring assumption. More generally, Gentry et al. [15] introduce the con-
cept of preimage samplable trapdoor functions which are non-injective trapdoor
functions with an efficient pre-image sampling algorithm. They further propose
a probabilistic variant of FDH and prove it tightly secure. In fact, their proof
technique is reminiscent to the second step in our proof of FDH from the lossiness
but FDH can not be viewed as an instance of their probabilistic FDH variant.

RSA-OAEP. Recently, [20] used the Φ-Hiding Assumption to show that the
RSA function is lossy and used this fact to prove positive instantiability results
of RSA-OAEP in the standard model.
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1.6 Open Problems

On the one hand the Φ-Hiding Assumption is believed to be true for public
exponents e ≤ N1/4−ε and hence for these values we get a tight security reduction
for RSA-FDH. On the other hand, Coron’s impossibility results holds for prime
e with e > N . This leaves the interesting open problem whether for public
exponents N1/4 ≤ e ≤ N there exists a tight security reduction for RSA-FDH
(under a reasonable assumption).

2 Definitions

2.1 Notations and Conventions

We denote our security parameter as k. For all n ∈ N, we denote by 1n the
n-bit string of all ones. For any element x in a set S, we use x ∈R S to indicate
that we choose x uniformly random in S. All algorithms may be randomized.
For any algorithm A, we define x ←$ A(a1, . . . , an) as the execution of A with
inputs a1, . . . , an and fresh randomness and then assigning the output to x. We
denote the set of prime numbers by P and we denote the subset of k-bit primes
as Pk. Similarly, we have the integers denoted by Z and Zk. We denote by Z∗

N

the multiplicative group modulo N ∈ Z.

2.2 Games

A game (such as in Figure 2) is defined as a collection of procedures, as per the
model of [4]. There is an Initialize procedure and a Finalize procedure, as well
a procedure for each separate oracle. Executing a game G with and adversary
A means running the adversary and using the procedures to answer any oracle
queries. The adversary must first make one query to Initialize. Then it may
query the oracles as many times as allowed by the definition of the game. Af-
ter this, the adversary must then make 1 query to Finalize, which is the final
procedure call of the game. The output of Finalize is denoted by GA. Where
the Finalize procedure simply returns the output of the adversary, we omit the
Finalize procedure. We use a strongly typed pseudo-code with implicit initial-
ization. Which means all variables maintain their type throughout the execution
of the games and they are all implicitly declared and initialized. Boolean flags
are initialized to false, numerical types are initialized to 0, sets are initialized to
∅. We use the notation y ←$ A(a1, . . . , an) to denote invoking the probabilis-
tic algorithm A with inputs a1, . . . , an and fresh randomness and assigning the
output to y.

2.3 Signature Schemes

A digital signature is a message-dependant bit string σ, which can only be gen-
erated by the signer, using a secret signing key sk and is transmitted with the
message. The signature can then be verified by the receiver using a public veri-
fication key pk . A digital signature scheme is defined as a triple of probabilistic
algorithms SIG = (KeyGen, Sign,Verify), which we describe below:
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1. KeyGen takes as an input the unary representation of our security parameter
(1k) and outputs a signing key sk and verification key pk.

2. Sign takes as input a signing key sk, message m and outputs a signature σ.
3. Verify is a deterministic algorithm, which on input of a public key and a

message-signature pair (m,σ) outputs 1 (accept) or 0 (reject).

We say that SIG is correct if for all public key and secret key pairs generated by
KeyGen, we have:

Pr[Verify(pk,m, Sign(sk,m)) = 1] = 1.

We now define UF-CMA (unforgeability under chosen message attacks) assuming
the signature scheme SIG contains a hash function h : {0, 1}∗ → Dom which is
modeled as a random oracle.

procedure Initialize
(pk, sk)←$ KeyGen(1k)
return pk

procedure Hash(m)
if (m, ·) ∈ H then fetch (m,y) ∈ H; return y
else y ∈R Dom; H ← H∪ (m,y); return y

procedure Sign(m) Game UF-CMA
M←M∪ (m)
return σ ←$ Sign(sk, y)

procedure Finalize(m∗, σ∗)
if Verify(pk ,m∗, σ∗) = 1 ∧m∗ �∈ M
then return 1
else return 0

Fig. 1. Game defining UF-CMA security in the random oracle model

We say a signature scheme SIG is (t, ε, qh, qs)-UF-CMA secure in the random
oracle model, if for all adversaries A running in time upto t, making at most
qh hashing and qs signing oracle queries, they have an advantage of at most ε,
where the advantage of A is defined as:

AdvUF-CMA
SIG (A) = Pr

[
UF-CMAA ⇒ 1

]
.

2.4 Trapdoor Permutations

We recall the definition of trapdoor permutation families.

Definition 1. A family of trapdoor permutations TDP = (Gen,Eval, Invert) con-
sists of following three polynomial-time algorithms.

1. The probabilistic algorithm Gen, which on input 1k outputs a public de-
scription pub (which includes an efficiently sampleable domain Dompub) and
a trapdoor td .

2. The deterministic algorithm Eval, which on input pub and x ∈ Dompub ,
outputs y ∈ Dompub . We write f(x) = Eval(pub, x).

3. The deterministic algorithm Invert, which on input td and y ∈ Dompub ,
outputs x ∈ Dompub . We write f−1(y) = Invert(pub, y).
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We require that for all k ∈ N and all (pub, td) output by Gen(1k), f(·) =
Eval(pub, ·) defines a permutation over Dompub and that for all x ∈ Dompub ,
Invert(td ,Eval(pub, x)) = x.

We want to point out that fpub(·) = Eval(pub, ·) is only required to be a permu-
tation for correctly generated pub but not every bit-string pub necessarily yields
a permutation. A family of trapdoor permutations TDP is said to be certified [5]
if the fact that it is a permutation can be verified in polynomial time given pub.

Definition 2. A family of trapdoor permutations TDP is called certified if there
exists a deterministic polynomial-time algorithm Certify that, on input of 1k and
an arbitrary (polynomially bounded) bit-string pub (potentially not generated
by Gen), returns 1 iff f(·) = Eval(pub, ·) defines a permutation over Dompub .

We now recall security notion for trapdoor permutations. A trapdoor permu-
tation TDP is hard to invert (one-way) if given pub and fpub(x) for uniform
x ∈ Dompub , it is hard to compute x. More formally, it is (t, ε)-hard to invert
if for all adversaries running in time t, Pr[A(pub,Eval(pub, x)) = x] ≤ ε, where
the probability is taken over (pub, td) ← Gen(1k), x ∈R Dompub and the ran-
dom coin tosses of A. The following security notion, lossiness [25], is a stronger
requirement than one-wayness.

Definition 3. Let l ≥ 2. A trapdoor permutation TDP is a (l, t, ε) lossy trap-
door permutation if the following two conditions hold.5

1. There exists a probabilistic polynomial-time algorithm LossyGen, which on
input 1k outputs pub′ such that the range of fpub′(·) := Eval(pub′, ·) un-
der Dompub′ is at least a factor of l smaller than the domain Dompub′ :
|Dompub′ |/|fpub′(Dompub′)| ≥ l. (Note that we measure the lossiness in its
absolute value l, i.e., the function has (log2 l� bits of lossiness.)

2. All distinguishersD running in time at most t have an advantageAdvL
TDP(D)

of at most ε, where

AdvL
TDP(D) = Pr[LD1 ⇒ 1]− Pr[LD0 ⇒ 1].

procedure Initialize Game L0 procedure Initialize Game L1

(pub, td)←$ Gen(1k) (pub′,⊥)←$ LossyGen(1k)
return pub return pub′

Fig. 2. The Lossy Trapdoor Permutation Games

We say TDP is regular (l, t, ε) lossy if TDP is (l, t, ε) lossy and all functions
fpub′(·) = Eval(pub ′, ·) generated by LossyGen are l-to-1 on Dompub′ .

5 We deviate in two ways from the original definition of lossy trapdoor functions
Peikert and Waters [25]. First, we define the permutation over arbitrary domains
Dom, rather than {0, 1}k; second, we measure the absolute lossiness l, rather than
the bits of lossiness 
 = log2(l).



Optimal Security Proofs for Full Domain Hash, Revisited 545

2.5 The RSA Trapdoor Permutation

We define the RSA trapdoor permutation RSA = (RSAGen,RSAEval,RSAInv)
as follows. The RSA instance generator RSAGen(1k) outputs pub = (N, e) and
td = d, where N = pq is the product of two k/2-bit primes, gcd(e, ϕ(N)) = 1,
and d = e−1 mod ϕ(N). The domain is Dompub = Z∗

N . The evaluation algo-
rithm RSAEval(pub, x) returns fpub(x) = xe mod N , the inversion algorithm
RSAInv(td , y) returns f−1

pub(y) = yd mod N . The standard assumption is that
RSA is hard to invert. We will review the (regular) lossiness of RSA in Section 4.

3 Full Domain Hash Signatures

3.1 The Scheme

For a familiy of trapdoor permutations TDP = (Gen,Eval, Invert) we define the
Full Domain Hash (TDP-FDH) signature scheme [3] in Figure 3.

procedure KeyGen TDP-FDH
(pub, td)←$ Gen(1k)
Pick a hash function h : {0, 1}∗ → Dompub

return (pk = (h, pub), sk = td)

procedure Sign(sk,m)
return σ = Invert(td , h(m)) // σ = f−1

pub(h(m))

procedure Verify(pk,m, σ)

if Eval(pub, σ) = h(m) then return 1 // fpub(σ)
?
= h(m)

else return 0

Fig. 3. The Full Domain Hash Signature Scheme TDP-FDH

3.2 Classical Security Results of TDP-FDH

The original reduction by Bellare and Rogaway from one-wayness of TDP loses
a factor of (qh + qs) [3], which was later improved by Coron to a factor of qs [11]
for the case of the RSA trapdoor permutation.

Theorem 4. Assume the trapdoor permutation RSA is (t′, ε′)-hard to invert.
Then for any (qh, qs), RSA-FDH is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε′ =
ε

qs
·
(
1 − 1

qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t′ = t+ (qh + qs + 1) · O(k3).



546 S.A. Kakvi and E. Kiltz

3.3 A Corrected Version of Coron’s Optimality Result

Coron showed that a security loss of a factor qs (times some constant) is es-
sentially optimal for TDP-FDH [12,13]. To state a corrected version of Coron’s
impossibility result, we first recall the following definitions [12].

Definition 5. We say a reduction R (tF , tR, qh, qs, εF , εR)-reduces solving a
hard problem to breaking SIG = (KeyGen, Sign,Verify) if after running a forger F
that (tF , qh, qs, εF)-breaks SIG, the reduction outputs a solution of the problem
with probability at least εR, with running time at most tR.

Definition 6. A signature scheme SIG = (KeyGen, Sign,Verify) is said to be a
unique signature scheme if for every public key pk output by KeyGen, for every
message m there exists exactly one bit-string σ ∈ {0, 1}∗ such that Verify(pk ,m,
σ) = 1.

We now state the corrected version of Coron’s impossibility result which we
prove in the full version of this paper.

Theorem 7. Suppose TDP is a certified trapdoor permutation. Let R be a reduc-
tion that (tF , tR, qh, qs, εF , εR)-reduces breaking one-wayness of TDP to breaking
UF-CMA security of TDP-FDH. If R runs the forger only once, then we can build
an inverter I which (tI , εI)-breaks one-wayness of TDP with:

tI ≤ 2 · tR

εI ≥ εR − εF · exp(−1)

qs
·
(
1 − qs

qh

)−1

.

Hence, from a security reduction from one-wayness to the security of TDP-FDH
which loses less than a factor of qs, one obtains an efficient inverter I for TDP.

3.4 A Tight Security Proof for TDP-FDH

The impossibility result of Theorem 7 only holds for TDP-FDH if TDP is certified
trapdoor permutation. However if TDP is not certified, this leaves room for a
tight proof for TDP-FDH. We now state our main result, namely that TDP-FDH
is tightly secure assuming TDP is regular lossy.

Theorem 8. Assume TDP = (Gen,Eval, Invert) is a regular (l, t′, ε′)-lossy trap-
door permutation for l ≥ 2. Then, for any (qh, qs), TDP-FDH is (t, ε, qh, qs)-
UF-CMA secure in the Random Oracle Model, where

ε =

(
2l − 1

l − 1

)
· ε′

t = t′ − qh · TTDP

and TTDP is the time to evaluate TDP.
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Table 1. Games for the proof of Theorem 8

procedure Initialize Game G0

(pub, td)←$ Gen(1k) = (UF-CMA)
Return pk = pub

procedure Hash(m)
if (m, ·) ∈ H then fetch (m, ym); return ym
else

ym ∈R Dompub

H ← H∪ (m,ym); return ym

procedure Sign(m)
M←M∪ (m)
return σm = Invert(td , h(m))

Procedure Finalize(m∗, σ∗)
if (Verify(pub,m∗, σ∗) = 1) ∧ (m∗ �∈ M)
return 1
else return 0

procedure Initialize Games G1-G4

(pub, td)←$ Gen(1k) //G1,G4

(pub,⊥)←$ LossyGen(1k) //G2,G3

Return pk = pub

procedure Hash(m)
if m ∈ H lookup (m, ym, σm) ∈ H

return ym
else

σm ∈R Dompub

ym = Eval(pub, σm)
H ← H ∪ (m, ym, σm); return ym

procedure Sign(m)
M←M∪ (m)
lookup (m, ym, σm) ∈ H, return σm

Procedure Finalize(m∗, σ∗)
lookup (m∗, ym∗ , σm∗) ∈ H //G3,G4

if σm∗ = σ∗ then BAD = true
return 0 //G3,G4

if Verify(pub,m∗, σ∗) = 1 ∧ (m∗ �∈ M)
return 1
else return 0

Proof. Let A be an adversary that runs in time t against TDP-FDH executed
in the UF-CMA experiment described in G0 in Figure 1 with ε = Pr[GA

0 ⇒ 1].
Here we assume wlog that A always makes a query to Hash(m) before calling
Sign(m) or Finalize(m, ·).
Lemma 9. Pr[GA

0 ⇒ 1] = Pr[GA
1 ⇒ 1].

Proof. In G0, we modelled the hash function as a random oracle. In G1 we modify
the random oracle and the signing queries. On any m the random oracle now
works by evaluating the permutation on a random element σm ∈ Dompub . We
then modify the signing oracle to return this element σm. Note that signing
no longer requires the trapdoor td . It can be seen that all our signatures will
verify due to the fact that Eval(pub, σm) = ym for all m. Thus our simulation
of the signatures is correct. Since TDP is a permutation, the distribution of
our hash queries in G1 is identical to the distribution in G0. Thus we have
Pr[GA

0 ⇒ 1] = Pr[GA
1 ⇒ 1].

Lemma 10. There exists a distinguisher D1 against the lossines of TDP, which
runs in time t = tA+qh·TTDP and that Pr[GA

1 ⇒ 1]−Pr[GA
2 ⇒ 1] = AdvLTDP(D1).

Proof. From G1 to G2, we change the key generation from a normal permutation
to a lossy permutation, however the oracles are identical in both games. We now
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build a distinguisher D1 against the lossiness of TDP, using these games. The
distinguisher will run A and simulates the oracles Sign(·),Hash(·) as described in
games G1&G2, for which it requires time qh ·TTDP. Note that D1 does not require
the trapdoor td to simulate the oracles. After A calls Finalize, D1 returns the
inverse of Finalize. Thus we can see that Pr[LD1

0 ⇒ 1] = 1−Pr[GA
1 ⇒ 1]. Similarly,

we have Pr[LD1
1 ⇒ 1] = 1−Pr[GA

2 ⇒ 1]. Hence we have Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒
1] = (1 − Pr[LD1

0 ⇒ 1]) − (1 − Pr[LD1
1 ⇒ 1]) = Pr[LD1

1 ⇒ 1] − Pr[LD1
0 ⇒ 1] =

AdvL
TDP(D1).

Lemma 11. Pr[GA
3 ⇒ 1] =

(
l−1
l

)
Pr[GA

2 ⇒ 1].

Proof. In G3, we introduce a new rule, which sets BAD to true if the forgery σ∗

provided by A is the same as the simulated signature σm∗ for the target message
m∗. If this is the case, the adversary loses the game, i.e., G3 outputs 0. σm∗

is independent of A’s view and is uniformly distributed in set of pre-images of
ym∗ . Due to the l regular lossiness of TDP, the probability of a collision is equal
to exactly 1/l. Thus we see that the BAD rule reduces the probability of the
adversary winning the game by 1/l, hence Pr[GA

3 ⇒ 1] = (1 − 1
l ) Pr[G

A
2 ⇒ 1] =(

l−1
l

)
Pr[GA

2 ⇒ 1].

Lemma 12. There exists a distinguisher D2 against the lossiness of TDP, which
runs in time t = tA+qh·TTDP and that Pr[GA

3 ⇒ 1]−Pr[GA
4 ⇒ 1] = AdvLTDP(D2).

Proof. From G3 to G4, we change the key generation from a lossy permutation
to a normal permutation, however the oracles are identical in both games. We
now build a distinguisher D2 against the lossiness of TDP, using these games.
The distinguisher will act as the challenger to A. It will simulate the oracles
as described in games G3&G4, for which it requires time qh · TTDP. After A
calls Finalize, D2 returns the output of Finalize. We can see that Pr[GA

4 ⇒ 1] =
Pr[LD2

0 ⇒ 1]. Similarly, we have Pr[GA
3 ⇒ 1] = Pr[LD2

1 ⇒ 1]. Hence we have
Pr[GA

3 ⇒ 1]− Pr[GA
4 ⇒ 1] = Pr[LD2

1 ⇒ 1]− Pr[LD2
0 ⇒ 1] = AdvL

TDP(D2).

Lemma 13. Pr[GA
4 ⇒ 1] = 0.

Proof. In G4 we again use the original KeyGen such that Eval(pub, ·) defines a
permutation. This means that our signing function is now a permutation, thus
any forgery implies a collision. Therefore whenever the adversary is able to make
a forgery, the game outputs 0 due to the BAD rule. Whenever they are unable
to make a forgery, the game outputs 0. Thus we can see that in all cases, the
game will output 0, hence Pr[GA

4 ⇒ 1] = 0.

We combine Lemmas 9 to 13 to get:

Pr[GA
0 ⇒ 1] = AdvL

TDP(D1) + ( l
l−1 )AdvL

TDP(D2).
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where l is the lossiness of TDP. Because the distinguishers run in the same time,
we know that both distinguishers can have at most an advantage of ε′, giving
us:

ε ≤ 2l− 1

l − 1
· ε′.

This completes the proof.

4 Lossiness of RSA from the Φ-Hiding Assumption

4.1 Lossiness of RSA

The lossiness of RSA for a number of specific instance generators RSAGen was
first considered in [20]. We now recall (and extend) some of the results from [20].

First, we recall some definitions from [20]. We denote by RSAk := {(N, p, q) |
N = pq, p, q ∈ Pk/2} the set of all the tuples (N, p, q) such that N = pq is the
product of two distinct k/2-bit primes. Such an N is called an RSA modulus. By
(N, p, q) ∈

R
RSAk we mean the (N, p, q) is sampled according to the uniform

distribution on RSAk. Let R be some relation on p and q. By RSAk[R], we
denote the subset of RSAk such that the relation R holds on p and q. For
example, let e be a prime. Then RSAk[p = 1 mod e] is the set of all (N, p, q),
where where N = pq is the product of two distinct k/2-bit primes p, q and
p = 1 mod e. That is, the relationR(p, q) is true if p = 1 mod e and q is arbitrary.
By (N, p, q) ∈

R
RSAk[R] we mean that (N, p, q) is sampled according to the

uniform distribution on RSAk[R].

α-Φ-Hiding Assumption. We recall a variant of the Φ-Hiding Assumption in-
troduced by Cachin, Micali and Stadler [8], where we build on a formalization by
Kiltz, O’Neil and Smith [20]. The main statement of the assumption is that given
an k-bit RSA modulus N = pq and a random α ·k-bit prime e (where 0 < α < 1

4
is a public constant), it is difficult to decide if e | ϕ(N) or if gcd(e, ϕ(N)) = 1.
We note that if e | ϕ(N) with e ≥ N1/4, then N can be factored using Copper-
smith’s attacks [10], see [8] for details. Hence for the Φ-Hiding Assumption to
hold, the bit-length of e must not exceed one-fourth of the bit length of N .

Consider a distinguisher D which plays one of the games P0 or P1 defined in
Table 2, The advantage of D is defined as:

AdvΦH(D) = Pr[PD
1 ⇒ 1]− Pr[PD

0 ⇒ 1].

We say that the α-Φ-Hiding Problem is (t, ε)-hard if for all distinguishers D
running in time at most t have and advantage of at most ε.

Define an RSA instance generator RSAGen as an algorithm that returns
(N, e, p, q) sampled as e ∈

R
Pαk and (N, p, q) ∈

R
RSAk[gcd(e, ϕ(N) = 1]. (See

[20] for details on the sampling algorithm.)

Lemma 14. If the α-Φ-Hiding Problem is (t, ε)-hard, then the RSA = (RSAGen,
RSAEval,RSAInv) defines a regular (2α, t, ε)-lossy trapdoor permutation.
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Table 2. The α-Φ-Hiding Assumption Games

procedure Initialize Game P0 procedure Initialize Game P1

e ∈R Pαk e ∈R Pαk

(N, p, q) ∈R RSAk[gcd(e,ϕ(N) = 1] (N, p, q) ∈R RSAk[p = 1 mod e]
return (N, e) return (N, e)

Proof. If (N, e) is sampled using RSAGen, then gcd(e, ϕ(N) = 1) and (N, e)
defines a permutation RSA(x) = xe mod N over Z∗

N . We define LossyGen to be an
algorithm that returns (N, e) sampled as e ∈

R
Pαk and (N, p, q) ∈

R
RSAk[p = 1

mod e]. If (N, e) is sampled using LossyGen then e | ϕ(N) and hence the RSA
function is e-to-1 on the domain Dompub = Z∗

N . By definition, the outputs of
RSAGen and LossyGen are indistinguishable if the α-Φ-Hiding Problem is hard.

Fixed-Prime Φ-Hiding Assumption. In practice, e is chosen to be small and
is generally fixed to some specific numbers, such as e = 3 or e = 216 + 1, which
allows for fast exponentiation. We now show a minor variant of the α-Φ-Hiding
Assumption for fixed primes e, where our formalization relies on discussions from
[8] and [20, Footnote 9].

First, we discuss the special case of e = 3. We define our RSA instance
RSAGen3 generator as an algorithm that samples (N, p, q) uniformly from RSAk

[p = 2 mod 3, q = 2 mod 3], which is equivalent to RSAk[gcd(3, ϕ(N)) = 1].
We note that N mod 3 is always 1. This means that for the lossy case, we must
also ensure the N mod 3 = 1, otherwise there would be a simple distinguisher.
To ensure this is to have 3 divide both p− 1 and q− 1. Thus, our lossy keys are
sampled from the RSAk[p = 1 mod 3, q = 1 mod 3].

Table 3. The Fixed-Prime Φ-Hiding Assumption Games

procedure Initialize Game 3F0 procedure Initialize Game 3F1

(N, p, q) ∈R RSAk[gcd(3, ϕ(N)) = 1] (N, p, q) ∈R RSAk[p = 1 mod 3, q = 1 mod 3]
return (N, e = 3) return (N, e = 3)

Consider a distinguisher D which plays one of the games in Table 3. The
advantage of D is defined as

AdvFΦH(D) = Pr[3FD
1 ⇒ 1]− Pr[3FD

0 ⇒ 1].

We say that the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard if all
distinguishers running in time at most t have an advantage of at most ε.

Lemma 15. If the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard,
then the RSA3 = (RSAGen3,RSAEval,RSAInv) defines a regular (9, t, ε)-lossy
trapdoor permutation.
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Proof. If (N, p, q) ∈ RSAk[gcd(3, ϕ(N)) = 1] then (N, 3) clearly makes the RSA
function a permutation. If (N, p, q) ∈ RSAk[p = 1 mod 3, q = 1 mod 3] then
3 | ϕ(N) and hence the RSA function is 9-to-1 on the domain Dompub = Z∗

N .

We now consider the general case of fixed e > 3. For this case, we define our
RSA instance generator RSAGene as an algorithm that samples (N, p, q) from
RSAk[gcd(e, ϕ(N)) = 1]. We note that N mod e will be some value between 1
and e − 1. This means that for the lossy case, we require e to divide p − 1 and
not q − 1, otherwise we would have a simple distinguisher. Our lossy keys are
sampled from RSAk[p = 1 mod e, q �= 1 mod e]. Consider a distinguisher D

Table 4. The Fixed-Prime Φ-Hiding Assumption Games

procedure Initialize Game F0 procedure Initialize Game F1

(N, p, q) ∈R RSAk[gcd(e, ϕ(N)) = 1] (N,p, q) ∈R RSAk[p = 1 mod e, q �= 1 mod e]
return (N, e) return (N, e)

which plays one of the games in Table 4. The advantage of D is defined as

AdvFΦH(D) = Pr[FD
1 ⇒ 1]− Pr[FD

0 ⇒ 1].

We say that the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard if for
all distinguishers running in time at most t have an advantage of at most ε.

Lemma 16. If the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard,
then RSAe = (RSAGene,RSAEval,RSAInv) defines a regular (e, t, ε)-lossy trap-
door permutation.

Proof. If (N, p, q) ∈ RSAk[gcd(e, ϕ(N)) = 1] then (N, e) clearly defines a per-
mutation. If (N, p, q) ∈ RSAk[p = 1 mod e, q �= 1 mod e] then e | ϕ(N) and
hence the RSA function is e-to-1 on the domain Dompub = Z∗

N .
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Abstract. The Schnorr signature scheme has been known to be prov-
ably secure in the Random Oracle Model under the Discrete Logarithm
(DL) assumption since the work of Pointcheval and Stern (EUROCRYPT
’96), at the price of a very loose reduction though: if there is a forger mak-
ing at most qh random oracle queries, and forging signatures with prob-
ability εF , then the Forking Lemma tells that one can compute discrete
logarithms with constant probability by rewinding the forger O(qh/εF )
times. In other words, the security reduction loses a factor O(qh) in its
time-to-success ratio. This is rather unsatisfactory since qh may be quite
large. Yet Paillier and Vergnaud (ASIACRYPT 2005) later showed that
under the One More Discrete Logarithm (OMDL) assumption, any alge-
braic reduction must lose a factor at least q

1/2
h in its time-to-success ratio.

This was later improved by Garg et al. (CRYPTO 2008) to a factor q
2/3
h .

Up to now, the gap between q
2/3
h and qh remained open. In this paper,

we show that the security proof using the Forking Lemma is essentially
the best possible. Namely, under the OMDL assumption, any algebraic
reduction must lose a factor f(εF )qh in its time-to-success ratio, where
f ≤ 1 is a function that remains close to 1 as long as εF is noticeably
smaller than 1. Using a formulation in terms of expected-time and queries
algorithms, we obtain an optimal loss factor Ω(qh), independently of εF .
These results apply to other signature schemes based on one-way group
homomorphisms, such as the Guillou-Quisquater signature scheme.

Keywords: Schnorr signatures, discrete logarithm, Forking Lemma,
Random Oracle Model, meta-reduction, one-way group homomorphism.

1 Introduction

Schnorr Signatures. The Schnorr signature scheme [25,26], derived from the
Schnorr identification scheme (an honest-verifier zero-knowledge proof of knowl-
edge of a discrete logarithm) through the Fiat-Shamir transform [12], is one
of the earliest discrete log-based signature schemes proposed in the literature.
Its simplicity and efficiency (short signature length and the possibility of pre-
computing exponentiations for very quick on-line signature generation) has at-
tracted considerable attention. Its security has been analyzed in the Random
Oracle Model (ROM) [2] under the Discrete Logarithm (DL) assumption by

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 554–571, 2012.
c© International Association for Cryptologic Research 2012
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Pointcheval and Stern [23,24]. The main idea of the proof is to have the forger
output two distinct forgeries corresponding to the same random oracle query,
but for two distinct answers of the random oracle. The so-called Forking Lemma
shows that by rewinding the forger O(qh/εF ) times, where qh is the maximal
number of random oracle queries of the forger and εF its success probability, then
one finds two such forgeries with constant probability, which enables to compute
the discrete logarithm of the public key. Said otherwise, the reduction loses a
factor O(qh) in its time-to-success ratio. This results in a very loose security
assurance since qh may be quite large (e.g. 260), which implies to increase the
problem parameters length in order to achieve an appropriate provable security
level.

Previous Negative Results. Whether the loss of this factor qh is unavoid-
able remained obscure until Paillier and Vergnaud [22] showed that under the
One More Discrete Logarithm (OMDL) assumption1, any algebraic2 reduction
from the DL problem to forging Schnorr signatures in the ROM must lose a fac-
tor Ω(q1/2

h ) in its time-to-success ratio. Starting from a reduction from the DL
problem to forging Schnorr signatures in the ROM, [22] builds a meta-reduction
that solves the OMDL problem without using any forger (it simulates the forger
using the discrete log oracle it can access to solve the OMDL problem). This
result was later improved by Garg et al. [14] to a factor Ω(q2/3

h ), using the same
meta-reduction (only the analysis of its success probability was improved). Inter-
estingly, [14] also showed that under a simple assumption on the forger (namely
that the distribution of the random oracle query index � corresponding to the
forged signature is uniformly random in [1..qh]), the factor lost in the time-to-
success ratio of the reduction of [24] can be reduced from O(qh) to O(q2/3

h ). Since
the meta-reduction used in [22,14] simulates a forger that obeys this assump-
tion, one cannot hope to improve the analysis of this particular meta-reduction
to show that a factor Ω(qh) must be lost by any algebraic reduction.

Contributions of this Work. Up to now, the gap between the security reduc-
tion of [24] loosing a factor O(qh) and the lower bound Ω(q2/3

h ) of [14] remained
open. Basically two possible directions were conceivable in order to narrow it:
either improve the security reduction of [24] for a general forger, or find a bet-
ter meta-reduction enabling to overcome the q

2/3
h bound. We essentially close

this gap in the second direction by showing that under the OMDL assumption,
any algebraic reduction from the DL problem to forging Schnorr signatures in
the ROM must lose a factor f(εF )qh in its time-to-success ratio, where f is a
function that remains close to 1 as long as the success probability εF of the
forger is noticeably smaller than 1. Our meta-reduction is different from the one
used in [22,14] (this is unavoidable by the previous considerations). In partic-
ular, the random oracle query index � corresponding to the forged signature is
1 The OMDL problem consists in solving n + 1 discrete logarithms by making at most

n calls to a discrete log oracle (cf. Section 2).
2 An algebraic reduction is limited to perform group operations when it manipulates

group elements (cf. Section 4).
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not uniformly distributed in [1..qh] (it has a truncated geometric distribution),
nor is it independent for two distinct executions of the forger (as we argue later,
a uniformly distributed forgery index � is in fact quite unnatural). Though the
description of our new meta-reduction is slightly more complicated, its analysis
is arguably simpler (the analysis of [14] uses advanced results on the statistics
of random permutations). Curiously, our bound vanishes when εF is negligibly
close to 1. We argue however that this shortcoming is due to the formulation in
terms of strictly bounded adversaries. By considering definitions using expected-
time (and queries) algorithms, we are able to show that any algebraic reduction
must lose a factor Ω(qh), independently of εF , in its expected-time-to-success
ratio.

Interpretation of Our Results. Interpreting our results is quite delicate (as
is often the case for results in the ROM). The conservative point of view would
be to consider that breaking Schnorr signatures in the ROM is strictly easier
than solving the DL problem (which our results do not prove), and to increase
security parameters adequately. Yet taking into account that no one has been
able to find a better forgery attack than by solving the DL problem, another
possible interpretation is that they point out the limitations of black-box reduc-
tion techniques. For example, consider the (t, qh, ε)-forger F obtained as follows:
starting from any algorithm that (t, ε)-solves the DL problem, F first recovers
the secret key, and then forges a signature corresponding to one of its qh > 1
random oracle queries (e.g. uniformly chosen at random). This adversary is ar-
guably artificial since it could forge a signature for any message with a single
random oracle query. Yet any black-box reduction will lose a huge factor when
using such a forger, whereas a non-black-box one, accessing the DL-subroutine
of the forger, would yield back an algorithm solving the DL problem with the
same time-to-success ratio as the forger.

Related Work. Techniques similar to the ones of [22,14] and this paper were
used to separate one-more computational problems independently by Brown [7]
(who termed such results irreductions) and Bresson et al. [6].

Coron [10] gave a result close in spirit to ours for the RSA with Full Domain
Hash (FDH) signature scheme [3]: he showed that the security of RSA-FDH
in the ROM cannot be proved tightly equivalent to the hardness of inverting
RSA. This was generalized by Dodis and Reyzin [11] to FDH used with any
trapdoor one-way permutation induced by a family of claw-free permutations.
There are however two main differences between these results and ours. First,
the result of [10,11] is specific to chosen-message attacks (FDH is tightly se-
cure for no-message attacks), whereas in our case the result holds even for no-
message attacks. Second, the factor necessarily lost by any reduction for FDH
is Ω(qs), where qs is the maximal number of signature queries asked by the
forger. A security proof matching this Ω(qs) bound had been previously given
by Coron [9].

The security of the Schnorr signature scheme in the standard model remains
elusive (beyond the obvious fact that key-recovery is as hard as the DL problem
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under no-message attacks).3 Paillier and Vergnaud [22] showed that under the
OMDL assumption, it is immune to key-recovery under chosen-message attacks
(whatever the hash function used), but that it cannot be proved universally un-
forgeable under no-message attacks with respect to an algebraic reduction (again
under the OMDL assumption). Neven et al. [21] gave necessary conditions on
the hash function for the Schnorr signature scheme to be existentially unforge-
able under chosen-message attacks, and also showed that these conditions are
sufficient in the generic group model. To the best of our knowledge, these are
the only results up to now. All practical4 discrete log-based signature schemes
provably secure in the standard model rely on bilinear groups [4,28].

Faced with the apparent impossibility to obtain tight security reductions in
the ROM for discrete log-based schemes, two main research options emerged.
The first was to rely on weaker assumptions, with proposals such as the EDL
scheme [15] and subsequent improvements [8] relying on the Computational
Diffie-Hellman assumption, and the proposal by Katz and Wang [18] relying
on the Decisional Diffie-Hellman assumption (see also [16]). The second option
was to find alternatives to the Fiat-Shamir transform with tighter security reduc-
tions, as explored by Micali and Reyzin [20] (but their technique is inapplicable
to discrete log-based schemes) and Fischlin [13] (but the resulting scheme is
relatively inefficient).

Open Problems. We leave the problem of eliminating the dependency in εF for
strictly bounded adversaries as an intriguing (though minor) open question. This
paper more or less settles the case of algebraic reductions; a natural question is
what can be said for arbitrary reductions. More generally, an interesting research
subject is to build an efficient signature scheme with a tight reduction in the
ROM under the DL assumption (and not under weaker related ones), or to prove
a general impossibility result. Another important challenge is to say anything
meaningful about the security of Schnorr signatures in the standard model, or
to propose a practical scheme based on DL-like assumptions provably secure in
the standard model and not relying on bilinear groups.

Organization. In Section 2, we give the necessary background on Schnorr signa-
tures and the DL and OMDL problems. In Section 3, we recall the security proof
of [24] for Schnorr signatures through the Forking Lemma. In Section 4, we de-
scribe our new meta-reduction and show in Section 5 that it implies a necessary
loss of a factor f(εF )qh for any algebraic reduction. In the full version of the pa-
per [27], we put our results in a more general framework based on one-way group
homomorphisms, and extend them to other related signature schemes (such as
Modified ElGamal). We also treat the expected-time and queries scenario in the
full version.

3 We note that the Fiat-Shamir transform is known to be intrinsically problematic in
the standard model [17].

4 General constructions of signature schemes from any one-way function are known,
but are quite impractical.
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2 Preliminaries

[i..j] will denote the set of integers k such that i ≤ k ≤ j. When X is a non-
empty finite set, we write x ←$ X to mean that a value is sampled uniformly at
random from X and assigned to x. We denote Berμ the Bernoulli distribution of
parameter μ ∈ [0, 1] (i.e. δ ← Berμ is such that Pr[δ = 1] = μ and Pr[δ = 0] =
1 − μ), and for μ ∈ [0, 1] and a non-zero positive integer q, we denote Binμ,q

the binomial distribution of parameters μ and q (i.e. X ← Binμ,q is such that
Pr[X = k] =

(
q
k

)
μk(1−μ)q−k). The security parameter will be denoted κ. We will

write f = poly(·) to denote a polynomially bounded function and f = negl(·)
to denote a negligible function. We assume the existence of an adequate group
generation algorithm, which on input 1κ returns a cyclic group G of prime order
q ∈ [2κ−1, 2κ[ and a generator g of G. We will assume that all algorithms are
given (G, q, g) as input and will sometimes not mention it explicitly.

The Schnorr signature scheme is obtained by applying the Fiat-Shamir trans-
form [12] to the Schnorr identification scheme [25,26].
Definition 1 (Schnorr Signature Scheme). Let G be a cyclic group of prime
order q and g be a generator of G. Let H : {0, 1}∗ ×G → Zq be a hash function.
The Schnorr signature scheme is defined as follows:

– Key generation: Let x ←$ Zq \ {0}, and y = gx. The private key is x and
the public key is y.

– Signature: To sign a message m ∈ {0, 1}∗, draw a ←$ Zq, compute r = ga,
c = H(m, r), and s = a + cx mod q. The signature is (s, c).

– Verification: Given a message m ∈ {0, 1}∗, and a claimed signature (s, c),
compute r = gsy−c and check that c = H(m, r).

From a practical point of view, the Schnorr signature scheme is more usually
defined with a hash function mapping its inputs to {0, 1}k (interpreted as integers
in [0..(2k − 1)]) rather than Zq. There is no difficulty in extending our results to
this case (q must simply be replaced by 2k in Theorem 2). When we talk of the
Schnorr signature scheme in the Random Oracle Model (ROM), we mean the
scheme obtained when H is replaced by a random oracle.

In this work we focus on security against universal forgery under no-message at-
tacks (UF-NM-security) in the ROM. This a weak security notion, but this makes
our negative result of Section 4 stronger than considering a more constraining no-
tion such as security against existential forgery under chosen-message attacks.
Definition 2 (UF-NM Forger). A forger F is said to (tF , qh, εF )-UF-NM-
break Schnorr signatures in the ROM if on input any message m ∈ {0, 1}∗ and a
public key y ←$ G, F runs in time at most tF , makes at most qh queries to the
random oracle, and returns a valid forgery (s, c) for m with probability at least
εF (where the probability is taken over the random choice of y, the random tape
of F , and the answers of the random oracle).
Moreover, we will say that the forgery (s, c) corresponds to the random oracle
query index � ∈ [1..qh] if the �-th query/answer of F to the random oracle was
H(m, gsy−c) = c.
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In all the following, we will assume wlog the following: when F returns a
forgery (s, c), and made the query (m, gsy−c) to the random oracle, the corre-
sponding answer was c (in other words, the forger never returns a forgery that
it knows to be invalid: we assume it returns ⊥ in this case). For clarity, when
the forger returns a forgery corresponding to the random oracle query index �,
we will assume it outputs the triplet (�, s, c). Note that the forger may return a
random forgery that does not correspond to any of its random oracle queries, in
which case it is valid with probability 1/q. We will denote (∅, s, c) the output of
the forger in that case. In all the following, when we say that the forger returns
a forgery (�, s, c), we mean � �= ∅ unless otherwise stated.

As we will see in Section 3, the security of Schnorr signatures in the ROM
can be proved under the assumption that the Discrete Logarithm (DL) problem,
that we formalize below, is hard.

Definition 3 (DL Problem). Let G be a cyclic group of order q and g be a
generator of G. An algorithm A is said to (t, ε)-solve the DL problem if on input
(G, q, g) and r ←$ G, it runs in time at most t and returns the discrete logarithm
of r in base g with probability at least ε (where the probability is taken over the
random choice of r and the random tape of A).

The One-More Discrete Logarithm (OMDL) problem, introduced under the
name Known-Target DL problem in [1], is defined as follows. Note that Koblitz
and Menezes [19] argue that the ODML problem might be easier than the DL
problem for some groups.

Definition 4 (OMDL Problem). Let G be a cyclic group of order q and g be
a generator of G. Let Θ be an oracle taking no input and returning a random
element of G (named the challenge oracle). Let DLogg(·) be the oracle returning
the discrete logarithm in base g of its input. An algorithm A is said to (t, n, ε)-
solve the OMDL problem if on input (G, q, g), it runs in time at most t, makes
m ≤ n + 1 queries r1, . . . , rm ← Θ, and returns the discrete logarithm of all ri’s
in base g while making strictly less than m queries to DLogg(·), with probability
at least ε (where the probability is taken over the random challenges of Θ and
the random tape of A).

3 Security Proof with the Forking Lemma

In this section, we recall the analysis of the security of the Schnorr signature
scheme using the Forking Lemma [23,24]. We focus on UF-NM-security, but
there is no difficulty in extending the result to existential forgery and to chosen-
message attacks using the honest-verifier zero-knowledge property of the Schnorr
identification scheme [24].

The main idea is to obtain from the forger two valid forgeries (�, s, c) and
(�, s′, c′) corresponding to the same random oracle query (m, r), but for distinct
answers of the random oracle c �= c′. Indeed this implies r = gsy−c = gs′

y−c′ ,
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which yields the discrete logarithm of the public key DLogg(y) = (s − s′)/(c − c′)
mod q. For this, the reduction runs the forger with input some message m,
public key y (the target element of the reduction), and some uniformly chosen
random tape ω, answering the random oracle queries of the forger uniformly at
random, until it returns a forgery corresponding to some random oracle query
index � ∈ [1..qh]. Then, it replays the forger, using the same input (m, y), the
same random tape ω and the same answers to random oracle queries up to the
(� − 1)-th one as for the successful execution. Consequently, the �-th random
oracle query of the forger is the same as in the successful execution. Starting
from the �-th random oracle query, the reduction draws the answers uniformly
at random again (using the terminology of Section 4, we will say that such an
execution forks from the successful one at point �). It repeats this until the forger
returns another forgery corresponding to the same random oracle query index
� ∈ [1..qh]. The Forking Lemma gives a lower bound on the probability that this
strategy succeeds.

The security result for Schnorr signatures can be concretely stated as the
following theorem, from which it can easily be seen that the security reduction
loses a factor O(qh) in its time-to-success ratio tR/εR compared with the one of
the forger tF /εF .

Theorem 1 ([24]). Assume there is a forger which (tF , qh, εF )-UF-NM-breaks
Schnorr signatures in the ROM for some group parameters (G, q, g). Assume
moreover that εF ≥ max(2/(q + 1), 16qh/q). Then there is a reduction R which
(tR, εR)-solves the DL problem (for the same group parameters), where tR 

(16qh + 2)tF /εF and εR > 0.099.

Proof. We give a slightly adapted proof in the full version of the paper [27]. ��

4 Description of the New Meta-reduction

In the next section we will prove the following result, that we state informally
for now.

Theorem (Informal). Under the OMDL assumption, any algebraic reduction
from the DL problem to UF-NM-breaking Schnorr signatures in the ROM must
lose a factor f(εF )qh in its time-to-success ratio, where qh is the maximal number
of random oracle queries of the forger, εF its success probability, and f(εF ) =
εF / ln

(
(1 − εF )−1)

.

In order to prove this result, we will start from an algebraic reduction R (the
meaning of algebraic will be explained shortly) that turns a UF-NM-forger for
Schnorr signatures in the ROM into a solver for the DL problem, and describe
a meta-reduction M that uses the reduction R to solve the OMDL problem
without using any forger (the meta-reduction will actually simulate the forger
to the reduction thanks to its discrete log oracle). In order to formalize this, we
need a precise definition of a reduction.
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Definition 5. A reduction R is said to (tR, n, εR, qh, εF )-reduce the DL problem
to UF-NM-breaking Schnorr signatures in the ROM if upon input r0 ←$ G
and after running at most n times any forger which (tF , qh, εF )-UF-NM-breaks
Schnorr signatures, R outputs DLogg(r0) with probability greater than εR, within
an additional running time tR (meaning that the total running time of R is at
most tR + ntF ).

The probability εR is taken as in Definition 3 over the random choice of r0
and the random tape of R (the random tape of F is assumed under control
of R). The reduction described in the proof of Theorem 1 is a (O(1), (16qh +
2)/εF , 0.099, qh, εF )-reduction.

Similarly to previous work [22,14], we will only consider algebraic reductions
(originally introduced in [5]). An algorithm R is algebraic with respect to some
group G if the only operations it can perform on group elements are group
operations (see [22] for details). We characterize such reductions by the existence
of a procedure Extract which, given the group elements (g1, . . . , gk) input to
R, other inputs σ to R, R’s code, and any group element y produced by R
during its computation in at most t steps, outputs α1, . . . , αk ∈ Zq such that
y = gα1

1 . . . gαk

k . We require that Extract runs in time poly(t, |R|, log2 q�),
where |R| is the code size of R. As will appear clearly later, the need to restrict
the reduction to be algebraic arises from the fact that R can run the forger on
arbitrary public keys, and the meta-reduction will need to extract the discrete
logarithm of these public keys (assuming R returns the discrete logarithm of
its input r0). This can also be interpreted as saying that R runs F on public
keys that are derived from its input r0 through group operations, which does
not seem an overly restrictive assumption. Note in particular that the reduction
of [24] using the Forking Lemma is algebraic: it repeatedly runs the forger on
the same public key y = r0 (or, in the variant described in the full version of
the paper [27], on public keys y = (r0)α for α’s randomly chosen during the first
phase of the reduction).

We now describe the new meta-reduction M. It has access to an OMDL
challenge oracle Θ returning random elements from G, and to an oracle DLogg(·)
returning the discrete logarithm in base g of its input. It also has access5 to
a (tR, n, εR, qh, εF )-algebraic reduction R, which expects access to a forger F ,
and offers a random oracle interface that we denote R.H . We assume tR, n, qh =
poly(κ) and εR, εF = 1/poly(κ). Recall that the goal of M is to return the
discrete logarithm of all challenge elements it queries to Θ, by making strictly
less queries to DLogg(·). In all the following we assume 0 < εF < 1, we fix
α ∈]0, (1−εF )1/qh [ and we define the quantities μ0 and μ ∈]0, 1[ (whose meaning
will appear clearer in view of Lemmata 2 and 3) as:

μ0 = 1 − (1 − εF )1/qh and μ = μ0

1 − α
= 1

1 − α

(
1 − (1 − εF )1/qh

)
.

5 By access we essentially mean black-box access, but M also needs the code of R to
run procedure Extract.
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M first queries the OMDL challenge oracle Θ, receiving a random element
r0 ∈ G, and runs R on input r0 and some uniformly chosen random tape.
Then it simulates (at most) n sequential executions of the forger that we denote
Fi(mi, yi, ωi), 1 ≤ i ≤ n, where mi is the input message, yi the input public key,
and ωi the random tape of the forger received from the reduction.6 Depending
on how R chooses (mi, yi, ωi) and the answers to queries of M to R.H , these
successive executions may be identical up to some point, that we will call a
forking point.
Definition 6 (Forking Point). Consider two distinct simulated executions of
the forger Fi(mi, yi, ωi) and Fj(mj , yj , ωj), 1 ≤ j < i ≤ n. We say that execution
Fi forks from execution Fj at point ti/j = 0 if (mi, yi, ωi) �= (mj , yj , ωj), or at
point ti/j ∈ [1..qh] if all the following holds:

– (mi, yi, ωi) = (mj , yj , ωj);
– for k ∈ [1..(ti/j − 1)], the k-th query and answer to R.H are the same in

both executions;
– the ti/j-th query to R.H is the same in both executions, but the answers are

distinct.
We also define the point where execution Fi forks from all previous executions
as ti = max{ti/j , 1 ≤ j < i}.
We assume wlog that all simulated executions are distinct, i.e. they fork at some
point.

The simulation of the forger works as follows. The meta-reduction will dynam-
ically construct two (initially empty) disjoint sets Γgood, Γbad ⊂ G. Γgood will be
the set of elements z ∈ G whose discrete logarithm is known from M because
it has made the corresponding query to its discrete log oracle (we assume the
discrete logarithm of elements in Γgood are adequately stored by M), while Γbad
will be the set of elements z ∈ G such that M will never make the corresponding
query to its discrete log oracle. The main idea of the simulation of the forger on
input (m, y, ω) is that M will return a forgery corresponding to the first query
R.H(m, r) such that the answer c satisfies ryc ∈ Γgood. Whether an element
z ∈ G will be in Γgood or Γbad will be determined by drawing a random coin
δz ← Berμ during the simulation. If δz = 1 (resp. δz = 0), z will be added to
Γgood (resp. Γbad).

We now describe in details the i-th execution of the forger Fi(mi, yi, ωi) (see
also Figure 1). Before the simulation begins, M queries a challenge ri from Θ and
initializes a flag forge = false. Let ti denote the point where execution Fi forks
from all previous executions. Assume first that ti = 0, meaning that (mi, yi, ωi)
is distinct from the input to all previous executions. Then M proceeds as follows.
For k = 1, . . . , qh, and while forge = false, it makes queries (mi, rβik

i ) to R.H
using arbitrary7 randomization exponents βik ∈ Zq\{0}. Denoting cik the answer
received from R.H , M computes zik = rβik

i ycik
i . Three distinct cases may occur:

6 We stress that Fi, i = 1, . . . , n, denote distinct executions of the same forger F .
7 The only constraint is that the βik’s be distinct in order to avoid making twice the

same query.
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i) If zik ∈ Γbad, then M simply continues with the next query to R.H .
ii) If zik ∈ Γgood, then by definition M already requested DLogg(zik) to its

discrete log oracle. In that case, it sets �i = k, si = DLogg(zik), ci = cik,
and sets the flag forge to true.

iii) If zik /∈ Γgood ∪Γbad, then M draws a random coin δzik
← Berμ. If δzik

= 0,
zik is added to Γbad and M continues with the next query to R.H . If
δzik

= 1, then M queries DLogg(zik) and adds zik to Γgood. It then proceeds
exactly as in case ii), and moreover stores the value of βik as βi.

Once the flag forge has been set to true, M completes the sequence of queries
to R.H arbitrarily.8 When the qh queries to R.H have been issued, if forge =
false, then M returns ⊥ to R, meaning that execution Fi fails to forge. Else,
forge = true and M returns (�i, si, ci) as set at step ii) as forgery for mi to
R. Moreover, if M did not query its discrete log oracle during the simulation
(either because no forgery was returned or because zik was already in Γgood),
then M directly queries DLogg(ri) (a more economic strategy could be used, but
this simplifies notations).

The simulation for the case ti ≥ 1 is quite similar to the case ti = 0, with
one important difference though. By definition of the forking point, the ti first
queries to R.H are determined by previous executions, and M must simulate the
forger accordingly. In particular, it cannot embed the current challenge ri before
the (ti + 1)-th query. If there is some query R.H(mi, r) of index k ∈ [1..(ti − 1)]
such that the answer c satisfies z = ryc

i ∈ Γgood, then M sets the flag forge
to true and will return a forgery corresponding to the first such query (without
having to query its discrete log oracle since z is already in Γgood). Note that this
same forgery was necessarily already returned in at least one previous execution.
At the end of the simulation, M directly queries DLogg(ri).

Assume now that the flag forge is still set to false when arrived at the
ti-th query. By definition of the forking point, this query was first issued during
a previous execution j < i, so that M cannot choose it freshly. The answer of
R.H , however, differs from the one received in all previous executions from which
Fi forks exactly at point ti. Denote (mi, r̂) this ti-th query to R.H (r̂ = r

βjti

j ,
where rj was the challenge used during the j-th execution), ĉ the corresponding
new answer, and ẑ = r̂yĉ

i . If ẑ ∈ Γbad, then M can resume the simulation as
described for ti = 0, starting from the (ti + 1)-th query to R.H . If ẑ ∈ Γgood,
then M can forge a signature for this query without calling its discrete log oracle
(and hence will be able to query directly DLogg(ri) at the end of the simulation).
If ẑ /∈ Γgood ∪ Γbad, then M draws a fresh coin δẑ ← Berμ. If δẑ = 0, then
M can also resume the simulation as described for ti = 0, starting from the
(ti + 1)-th query to R.H . The problematic case arises if δẑ = 1, since M must
return a forgery for the ti-th query but does not know the discrete logarithm of
ẑ yet. Hence, M queries ŝ = DLogg(ẑ), completes the sequence of queries to R.H
arbitrarily for k = ti + 1 to qh, and outputs (�i = ti, ŝ, ĉ) as forgery for message
mi. After the simulation of Fi, M makes the additional query DLogg(ri). For
8 Alternatively, we could let M stop its queries here since queries after the forgery

point are irrelevant.
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the sake of the discussion in Section 5, we will say that event Bad happens if this
last case occurs during one of the n simulations. As we will see shortly, event
Bad makes M fail since in total M makes two calls to DLogg(·) related to the
same challenge rj .9

Once the n calls to the forger have been simulated, the reduction R returns
either ⊥ (in which case M returns ⊥ as well), or the discrete logarithm a0 of r0.
In the latter case, M uses the procedure Extract to retrieve10 xi = DLogg(yi)
for i = 1 to n. For each challenge ri received from Θ, either M queried directly
ai = DLogg(ri), or during the simulation of Fi, M returned (�i, si, ci) as forgery,
with si = DLogg(rβi

i yci

i ). Hence M can compute the discrete logarithm of ri as
ai = (si − cixi)/βi mod q. Finally, M returns a0 and (ai)i=1..n. This concludes
the description of the meta-reduction.

Differences with the Previous Meta-reduction. In [22,14], the distribution
of the indexes �i returned by the meta-reduction was uniform in [1..qh] and
independent for each execution. On the contrary, for our meta-reduction, it is
not difficult to see that for an execution such that all zik = rβik

i ycik
i are fresh, �i

is distributed according to a truncated geometric distribution:

Pr[�i = k] = μ(1 − μ)k−1 for k ∈ [1..qh] and Pr[�i = ⊥] = 1 −
qh∑

k=1

μ(1 − μ)1−k .

Moreover, when an execution forks from previous ones at ti > 0, the distribution
of �i is obviously not independent from the previous forgery indexes �j . In fact,
returning a forgery for independently and uniformly chosen �i’s leads to counter-
intuitive behaviors. Consider two distinct executions of a forger F . Assume that
some execution F1 returns a forgery corresponding to some random oracle query
index �1. Then, if another execution F2 forks from the first one at t2/1 > �1, it
seems more natural for F2 to return the same forgery as F1 rather than a new
one since the forger “knows” the corresponding signature. Such events cannot
happen with our meta-reduction because it simulates a forger that has a natural
interpretation: when run on input (m, y), it returns a forgery for the first query
H(m, r) such that the answer c satisfies ryc ∈ Γgood, where Γgood is a set of size
∼ μq such that the forger can compute the discrete logarithm of elements of
Γgood efficiently.

5 Proof of the Main Theorem

We will now prove a sequence of lemmata from which our main result will easily
follow. The following lemma will be useful. It results from a simple function
analysis and is stated without proof.
9 We could simply let M abort in that case, but for simplicity of the analysis we prefer

to let it make an additional call to DLogg(·).
10 More precisely, for each i ∈ [1..n], Extract returns γi and γ′

i such that yi = gγir
γ′

i
0 =

gγi+a0γ′
i .
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1 2 3 4 5 6 7 8 9

r1 r1 r1 r1 r1 r1 r1 r1 r1
�1 =⊥

r2 r2 r2 ∗ ∗ ∗ ∗ ∗ ∗
�2 = 3

∗ ∗ ∗ ∗ ∗
�3 = 3

r4 r4 r4 r4 r4 r4
�4 =⊥

r5 r5 ∗ ∗ ∗ ∗
�5 = 5

r6 r6 r6 r6
�6 = 9

r7 r7 ∗ ∗
�7 = 7

∗ ∗
�8 = 7

Fig. 1. A possible execution tree of the simulated forger for qh = 9 and n = 8.
Execution paths go from the root to the leaves. The root symbolizes the beginning of
each simulation of the forger. Vertices originating from the root symbolizes the input
(m, y, ω) received from R: execution paths sharing the same vertex correspond to the
same input. Then, each internal node symbolizes a query to the random oracle R.H ,
and the vertex originating from this node symbolizes the corresponding answer. Again,
execution paths sharing a node, resp. a vertex, share the same query, resp. answer. The
label above each query node represents the challenge ri from Θ used by M to construct
the query (we do not indicate the randomization exponent βik). Stars indicate that the
query is arbitrary since it comes after the forgery point for the execution. Finally,
leaves symbolize the output of the forger (a forgery or ⊥). Here, we simply label leaves
with the index �i of the random oracle query corresponding to the forgery (with the
convention that �i = ⊥ in case the simulated forger returns ⊥) and we circle the
corresponding random oracle query in the execution path. The first execution is run on
some input (m1, y1, ω1) and returns no forgery. All subsequent executions are run on
the same input (m2, y2, ω2) �= (m1, y1, ω1). The second execution returns some forgery
for �2 = 3. The third execution forks from the second one at t3 = 4 > �2 so that it
returns the same forgery as the second execution. The fourth and fifth executions both
fork from previous ones at t4 = t5 = 3. The fourth one returns no forgery while the
fifth one returns a forgery for l5 = 5. The sixth and seventh executions both fork from
previous ones at t6 = t7 = 5, both returning a forgery for resp. l6 = 9 and l7 = 7.
Finally, execution 8 forks from previous ones at t8 = 7, and returns a forgery for l8 = 7:
since two forgeries related to the same challenge r7 are returned, event Bad happens
(assuming M has to make two queries to its discrete log oracle to forge the signatures).
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Lemma 1. Let εF ∈]0, 1[, and μ0 = 1 − (1 − εF )1/qh . Then for any qh ≥ 1, one
has:

εF ≤ qhμ0 ≤ ln
(
(1 − εF )−1)

.

5.1 Successful Simulation of the Forger

The first thing to do is to lower bound the probability that R succeeds in re-
turning DLogg(r0). For this, we will show that with sufficiently high probability,
M simulates a “good” forger, i.e. a forger that would succeed with probability
greater than εF when interacting with a real random oracle (rather than R.H).

Definition 7 (Good Forger). We say that a forger F making qh random or-
acle queries is μ0-good if for any input (m, y, ω), the distribution over uniform
sequences of random oracle answers (c1, . . . , cqh

) of the forgery index � follows a
truncated geometric law of parameter μ̃ ≥ μ0, i.e. Pr[� = k] = μ̃(1 − μ̃)k−1 for
k ∈ [1..qh].

Lemma 2. Let μ0 = 1− (1−εF )1/qh . Then a μ0-good forger making qh random
oracle queries (tF , qh, εF )-UF-NM-breaks Schnorr signatures in the ROM (for
some tF ).

Proof. Fix any message m. Then for any (y, ω), the probability over the answers
(c1, . . . , cqh

) of the random oracle that F returns a valid forgery is
qh∑

k=1

μ̃(1 − μ̃)k−1 = 1 − (1 − μ̃)qh ≥ 1 − (1 − μ0)qh = εF .

This remains true for the probability over (y, ω) and the answers of the random
oracle. ��
The success probability of the forger simulated by M when interacting with a
real random oracle depends on the random tape of M through the draws of the
coins δz. We will now show that with overwhelming probability, M simulates a
μ0-good forger. Note that the oracle answers c of R.H may be determined by
the random tape of R, which is set uniformly at random by M. Hence elements
z = ryc may range over all G, and M must be able to draw δz independently
for any z ∈ G. In order to avoid using an exponential amount of randomness,
M should derive the coins δz from a secure pseudorandom number generator.
In all the following, we will assume that the coins δz are truly random. By a
standard hybrid argument, this assumption cannot affect the success probability
of M by more than a negligible quantity (since otherwise M would constitute
a distinguisher for the pseudorandom number generator).

Lemma 3. Set α = q−1/4. Then there is a negligible function ν such that for
any challenges (r1, . . . , rn) received from Θ and any randomization exponents
βik, M simulates a μ0-good forger with probability greater that (1 − ν) over its
random tape.
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Proof. Assume that all coins δz for z ∈ G are drawn before the simulation starts
rather than by lazy sampling (this does not change the success probability of
the simulated forger). By definition, Γgood = {z ∈ G : δz = 1}. Clearly, the size
of Γgood is distributed according to the binomial distribution Binμ,q. A Chernoff
bound hence gives:

ν
def= Pr

δz

[|Γgood| ≤ (1 − α)μq] ≤ e−μqα2/2 .

Fix an arbitrary input (m, y, ω). For any r ∈ G, the probability over c ←$ Zq that
ryc ∈ Γgood is equal to μ̃ = |Γgood|/q. Recall that the simulated forger returns
a forgery corresponding to the first random oracle query H(m, r) such that the
answer c satisfies ryc ∈ Γgood. Hence, independently of the sequence of queries of
the simulated forger, the distribution over uniform sequences of random oracle
answers (c1, . . . , cqh

) of the forgery index � follows a truncated geometric law of
parameter μ̃. When |Γgood| > (1 − α)μq = μ0q, then μ̃ > μ0. This holds for any
input (m, y, ω) and any sequence of queries of the simulated forger, so that for
any challenges (r1, . . . , rn) received from Θ and any randomization exponents
βik, with probability greater than (1 − ν) over the draws of the coins δz, M
simulates a μ0-good forger. Moreover, we have:

e−μqα2/2 = e
− qhμ0qα2

2qh(1−α) ≤ e
− qhμ0qα2

2qh ≤ e
− εF

√
q

2qh ,

where for the last inequality we used Lemma 1 and α = q−1/4. Since by assump-
tion qh = poly(κ) and εF = 1/poly(κ), we see that ν is negligible, hence the
result. ��

5.2 Success of the Meta-reduction

The next step is to analyze the probability that M succeeds given that R does.
It is straightforward to verify that the computation of the discrete logarithm of
all challenges (r1, . . . , rn) received from Θ by M is correct. Consequently, given
that R returns the discrete logarithm of r0, M may only fail because it did not
make strictly less queries to DLogg(·) than to Θ. However, it is not hard to see
from the description of M that if event Bad does not happen, then M makes
exactly one query to its discrete log oracle per simulation of the forger, and
hence returns the discrete logarithm of n + 1 challenges while making n queries
to DLogg(·). Hence, given that R returns a0 = DLogg(r0), and that event Bad
does not happen, then M is successful.

The last step towards proving our main theorem is to bound the probability
of event Bad.

Lemma 4. Event Bad happens with probability less than

nμ ≤ n ln
(
(1 − εF )−1)

(1 − α)qh
.
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Proof. Consider the i-th simulation of the forger by M. Let ti be the point
where this execution forks from all previous executions. By construction of M,
Bad can only happen if ti ≥ 1, and the output of the fresh coin δẑ (we refer to
notations of Section 4) drawn to decide whether a signature must be forged for
the ti-th query is 1, which happens with probability μ. An union bound on the
n simulated executions and Lemma 1 give the result. ��

5.3 Main Theorem and Discussion

We are now ready to state and prove the main theorem of this paper.

Theorem 2. Assume there is an algebraic reduction R that (tR, n, εR, qh, εF )-
reduces the DL problem to UF-NM-breaking Schnorr signatures in the ROM,
with εF < 1. Set α = q−1/4. Then there is a negligible function ν such that the
meta-reduction M (tM , n, εM )-solves the OMDL problem, where:

εM ≥ εR

(

1 − ν − n ln
(
(1 − εF )−1)

(1 − α)qh

)

tM ≤ poly(tR, |R|, n, qh, log2(q)�) .

Proof. Denote Sim the event that M simulates a μ0-good forger. By Lemma 2
and by definition of a (tR, n, εR, qh, εF )-reduction, when Sim happens, R re-
turns DLogg(r0) with probability greater than εR (over r0 and its own ran-
dom tape). Provided that R returns the discrete logarithm of r0 and that
Bad does not happen, the meta-reduction is successful. Hence, one has εM ≥
εR(1 − Pr[Sim] − Pr[Bad]). Combining Lemmata 3 and 4 yields the lower bound
on εM . Taking into account the fact that M uses a secure pseudorandom num-
ber generator rather than truly random coins cannot modify εM by more than a
negligible amount (otherwise M would constitute a distinguisher), that we can
incorporate in ν. The running time of M is upper bounded by the sum of the time
needed to simulate the n executions of the forger which is poly(n, qh, log2 q�),
the additional running time tR of R, and the time to run Extract which is
poly(tR, |R|, log2 q�), hence the result. ��
Remark 1. As already noted by [22] for their meta-reduction, the above proof
can be straightforwardly extended to reductions of the OMDL problem to forging
Schnorr signatures in the ROM. Hence the security of Schnorr signatures cannot
be proved tightly equivalent to the OMDL problem either (under the OMDL
assumption).

Interpretation. Recall that the total running time of the reduction is at most
tR + ntF . Denote ρF = tF /εF and ρR = (tR + ntF )/εR ≥ ntF /εR the time-
to-success ratio of resp. the forger and the reduction. Then some computation
gives:

n ln
(
(1 − εF )−1)

(1 − α)qh
≤ εRρR

(1 − α)f(εF )qhρF
≤ ρR

(1 − α)f(εF )qhρF
,
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where f(εF ) = εF / ln
(
(1 − εF )−1)

. Hence one has:

εM ≥ εR

(
1 − ν − ρR

(1 − α)f(εF )qhρF

)
.

Since tR, |R|, n, qh, log2(q)� = poly(κ), tM = poly(κ), so that under the OMDL
assumption, one must have εM negligible. Then the inequality above yields (using
εR = 1/poly(κ) and ν, α = negl(κ)):

ρR ≥ f(εF )qhρF − negl(κ) .

Hence one must have that ρR is negligibly close to f(εF )qhρF : the reduction
essentially loses a factor f(εF )qh in its time-to-success ratio.

The function f(εF ) is depicted below. For small εF , one has f(εF ) 
 1−εF /2
(which is a good approximation up to εF 
 0.5). For εF close to 1, writing
εF = 1 − u, one has f(εF ) 
 −1/ ln(u). In particular, for εF = 1 − 1/poly(κ),
f(εF ) 
 C/ ln(κ) for some constant C, which shows that f approaches 0 very
slowly. For f(εF ) ≤ q

−1/3
h , our bound becomes worse than the one by Garg et

al. [14]. However, for large qh (which is the case of interest), this implies that εF

is very close to 1 (e.g. for qh = 260, a rough estimation shows that our bound is
not worse than q

2/3
h before εF > 1 − e−219 ).

εF

f(εF )

0 .5 1

.5

1

It is interesting to consider what happens when εF = 1 since our bound van-
ishes in that case, while both the security reduction of [24] and the necessary
loss Ω(q2/3

h ) of [14] hold. In that case one has by definition μ = 1, which means
that the meta-reduction simulates an adversary which always returns a forgery
corresponding to its first random oracle query (in which case there is a reduc-
tion which succeeds by running the forger only twice). However, this singularity
seems to be an artifact due to definitions in terms of strictly bounded-time and
queries algorithms and we can escape it by considering expected-time and queries
algorithms. This is developed in the full version of the paper [27]. The main idea
is that when simulating a forger making an expected number of random oracle
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queries qh, one can choose the distribution of the forgery index � to be a geomet-
ric distribution of parameter μ 
 1/qh. This is not possible when the number of
oracle queries must be strictly less than qh, in which case we had to appeal to
a truncated geometric distribution. It remains nevertheless that in the special
case of a forger making strictly less than qh random oracle queries and forging
with probability εF = 1, we do not know of any better simulation strategy than
choosing the forgery index uniformly at random in [1..qh] as was done in the
meta-reduction of [22,14], in which case one gets a loss factor Ω(q2/3

h ) at best.
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Abstract. In this paper we present three digital signature schemes with
tight security reductions. Our first signature scheme is a particularly ef-
ficient version of the short exponent discrete log based scheme of Girault
et al. (J. of Cryptology 2006). Our scheme has a tight reduction to the
decisional Short Discrete Logarithm problem, while still maintaining the
non-tight reduction to the computational version of the problem upon
which the original scheme of Girault et al. is based. The second signa-
ture scheme we construct is a modification of the scheme of Lyubashevsky
(Asiacrypt 2009) that is based on the worst-case hardness of the shortest
vector problem in ideal lattices. And the third scheme is a very simple
signature scheme that is based directly on the hardness of the Subset
Sum problem. We also present a general transformation that converts,
what we term lossy identification schemes, into signature schemes with
tight security reductions. We believe that this greatly simplifies the task
of constructing and proving the security of such signature schemes.

Keywords: Signature schemes, tight reductions, Fiat-Shamir.

1 Introduction

Due to the widespread use of digital signature schemes in practical applications,
their construction and security analysis comprises an important area of mod-
ern cryptography. While there exist many digital signatures that are secure in
the standard model (e.g. [16,9,25,6,5]), they are usually less efficient than those
that are proved secure in the random oracle model, and so are not as suitable
for practical applications. Signature schemes secure in the random oracle model
generally fall into one of two categories. In the first category are schemes con-
structed using the Full Domain Hash (FDH) approach [4], and in the second are
schemes based on the Fiat-Shamir technique [12]. Our current work focuses on
the latter type.

Proving the security of schemes that are designed using the Fiat-Shamir
heuristic (e.g. [24,48,20]) generally involves an invocation of the forking lemma
[43]. Reductions with this feature entail getting one forgery from the adversary,
then rewinding him back to a particular point, and then re-running the adversary

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 572–590, 2012.
c© International Association for Cryptologic Research 2012
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from that point with the hope of getting another forgery. Using these two related
forgeries, the reduction can extract an answer to some underlying hard problem
such as discrete log or factorization. Due to the fact that two related forgeries
are required and one also needs to guess on which of the qh of his random oracle
query the adversary will forge on, a reduction using an adversary that succeeds
with probability ε in forging a signature will have probability ε2/qh of breaking
the hardness assumption. Asymptotically, this does not cause a problem, since
the reduction only incurs a polynomial loss in the success probability. The re-
duction does not, however, provide us with useful guidance for setting concrete
parameters because it is unclear whether the efficiency loss is just an artifact
of the proof or whether it represents an actual weakness of the scheme. It is
therefore preferable to construct protocols that have a tight proof of security by
avoiding the use of the forking lemma.

1.1 Related Work and Contributions

Constructing number-theoretic signature schemes with tight security reductions
has received some attention in the past. The first work in this direction is due to
Bellare and Rogaway [4], who proposed an RSA-based signature scheme known
as PSS whose security is tightly related to the security of the RSA function.
Later, in the context of signature schemes based on the Fiat-Shamir heuristic,
Micali and Reyzin [36] showed that it is sometimes possible to modify the Fiat-
Shamir transform in order to achieve tighter reductions. In more recent work,
Goh and Jarecki [21] and Katz and Wang [27,22] constructed digital signatures
with tight security reductions based on the Computational and Decisional Diffie-
Hellman problems. These latter two schemes are versions of the Schnorr signature
scheme, and thus inherit most of its characteristics. In particular, the scheme
based on the DDH problem has a very simple construction and a rather short
signature size. There are other signature schemes, though, that possess other
desirable features, but do not yet have a tight security reduction. A notable
example of such a scheme is the one of Girault, Poupard, and Stern [20] which is
extremely efficient when the signer is allowed to perform pre-processing before
receiving the signature. One of the contributions of this paper is a construction
of a scheme that possesses all the advantages of the scheme in [20] in addition
to having a tight security reduction.

As far as we are aware, there has not been any previous work that specifi-
cally considered tight reductions for lattice-based signatures. Similar to number-
theoretic constructions, lattice-based signatures secure in the random oracle
model are built using either the Full Domain Hash [18,50,39] or the Fiat-Shamir
[40,31,28,32,33] methodologies. While FDH-based lattice signatures have tight
reductions, the currently most efficient lattice-based schemes (in terms of both
the signature size and the running time) are those based on the Fiat-Shamir
framework [32,33]. And so it is an interesting problem whether it’s possible to
construct an efficient Fiat-Shamir based scheme that has tight reductions. The
construction of such a scheme is another contribution of this work, though it is
unfortunately a little less efficient than the ones in [32,33].
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The third scheme that we construct in our work is based on the hardness of the
low-density subset sum problem. Due to a known reduction from subset sum to
lattice problems [30,13], all signature schemes based on lattices are already based
on subset sum. The aforementioned reduction, however, incurs a loss, and so the
lattice-based schemes are not based on as hard a version of subset sum as we
achieve in this paper by building a scheme directly on subset sum. Additionally,
our scheme is surprisingly simple (to describe and to prove) and we believe that
it could be of theoretical interest.

Proving schemes secure using the Fiat-Shamir heuristic is usually done by
first building a 3-move identification scheme secure against passive adversaries,
and then applying the Fiat-Shamir transformation, which was proven in [1] to
yield provably secure signatures. The advantage of building schemes using this
modular approach is that one does not have to deal with any (usually messy)
issues pertaining to random oracles when building the identification scheme – all
mention of random oracles is delegated to the black-box transformation. For sig-
nature schemes with tight security reductions, however, this construction method
does not work. The reason is that the transformation of [1] inherently loses a
factor of qh in the success probability of the impersonator to the ID scheme
in relation to the forger of the signature scheme, which results in a non-tight
security reduction.

In this paper, we give a black-box transformation analogous to that of [1]
that converts what we call, lossy identification schemes into signature schemes
with tight security reductions. Roughly speaking, a lossy identification scheme is
a three move commit-challenge-response identification scheme that satisfies the
following four simple properties:

1. Completeness: the verification algorithm must accept a valid interaction with
non-negligible probability.

2. Simulatability: there is a simulator, who does not have access to the secret
key, who is able to produce valid interaction transcripts that are statistically
indistinguishable from real ones.

3. Key indistinguishability: there is an algorithm that produces lossy keys that
are computationally indistinguishable from the real keys.

4. Lossiness: when the keys are lossy, it is statistically impossible to provide a
valid response to a random challenge after making a commitment.

Properties 1 and 2 are generally true of all identification schemes, whereas prop-
erties 3 and 4 are particular to the lossy case and are crucially required for
obtaining a tight black-box transformation. Our transformation converts a lossy
identification scheme into a signature scheme and proves that a successful forger
can be converted into a successful impersonator to the identification scheme.
Since the only non-statistical property in the definition above is property 3, it
means that the successful impersonator breaks this property, which is where
we will plant the instance of the hard problem that we are trying to solve. We
demonstrate the usefulness and generality of this approach by building our sig-
nature schemes in this way.



Tightly-Secure Signatures from Lossy Identification Schemes 575

1.2 Overview of Our Signature Schemes

ConstructionBased on the (decisional) ShortDiscrete LogarithmProb-
lem. The (computational) c-Discrete Logarithm with Short Exponent (c-DLSE)
problem in a cyclic groupG with generator g is the well-studied problem of recov-
ering the discrete logarithm x of a given group element gx when x is a c-bit long
integer, c being typically much smaller than the bit-size of G. Pollard’s lambda
algorithm [44] solves this problem in time O(2c/2), but when G is a subgroup
of prime order in Z∗

p and c is at least twice the security parameter (c = 160 for
the 80-bit security level, say), the c-DLSE problem is believed to be as hard as
the full-length discrete logarithm problem [51,41]. A number of cryptographic
schemes are based on the hardness of the c-DLSE problem, including pseudo-
random bit generators [41,14,15], key agreement protocols [17] and signature
schemes including Girault-Poupard-Stern (GPS) signatures [45,20].

Like other discrete log-based schemes [48,27,7], GPS is an online/offline scheme
in the sense of Even, Goldreich andMicali [10,11]: when preprocessing can be done
prior to receiving themessage to be signed, signature generation becomes very effi-
cient. Themain advantage ofGPS signatures, however, is that this online signature
generation step doesn’t even require a modular reduction, which according to the
work of [47], can save as much as 60% of the signing time, which makes the scheme
extremely well-suited for situations where processing time is at a premium.

Our scheme, described in Section 4, is very similar to the scheme of [20], but
with some tweaks making it possible to choose smaller parameters. Moreover,
while the security proof for GPS is a very loose reduction to the computational
c-DLSE problem, our security proof provides a tight reduction, which is however
to the decisional short discrete log problem (c-DSDL). Informally, the c-DSDL
problem asks to distinguish between a pair (g, gx) where x is c-bit long and a pair
(g, h) where h is uniformly random. No better algorithm is known for solving this
problem than actually computing the discrete logarithm and checking whether
it is small—in fact, a search-to-decision reduction was established by Koshiba
and Kurosawa [29].

Given the pair (g, gx), we set it as the public key, which by our assumption
is computationally indistinguishable from (g, gx) where x is random (i.e. not
small). We then build an identification scheme that satisfies our simulatability
requirement, and furthermore show that it is information-theoretically impossi-
ble to respond to a random challenge if x is not small. Using our transformation
to signatures, this implies that if a forger can produce a valid forgery, then he
can respond to a random challenge, which would mean that x is small.

In the end, we obtain a tightly-secure scheme which is quite efficient in terms of
size (signatures are around 320-bits long at the 80-bit security level) and speed,
especially when used with coupons (in which case signature generation only
requires a single multiplication between integers of 80 and 160 bits respectively).

Construction Based on the Shortest Vector Problem in Ideal Lattices.
In Section 5, we give a construction of a signature scheme based on the hardness
of the approximate worst-case shortest vector problem in ideal lattices. Our
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scheme is a modification of the scheme in [32] that eliminates the need to use
the forking lemma. The scheme in [32] was shown to be secure based on the
hardness of the Ring-SIS problem, which was previously shown to be as hard
as worst-case ideal lattice problems [34,42]. In this work, we construct a similar
scheme, but instead have it based on the hardness of the Ring-LWE problem,
which was recently shown to also be as hard as the worst-case shortest vector
problem under quantum reductions [35].

The secret key in our scheme consists of two vectors s1, s2 with small coeffi-
cients in the ring R = Zq[x]/(x

n + 1), and the public key consists of a random
element a ∈ R and t = as1 + s2. The Ring-LWE reduction states that dis-
tinguishing (a, t) from a uniformly random pair in R × R is as hard as solving
worst-case lattice problems. In our identification scheme, the commitment is the
polynomial ay1 + y2 where y1,y2 are elements in R chosen with a particular
distribution. The challenge is an element c ∈ R with small coefficients, and the
response is (z1, z2) where z1 = y1 + s1c and z2 = y2 + s2c. As in [32], the pro-
cedure sometimes aborts in order to make sure that the distribution of (z1, z2)
is independent of the secret keys. The verification procedure checks that z1, z2
have “small” coefficients, and that az1 + z2 − ct = ay1 + y2.

The crux of the security proof lies in showing that whenever (a, t) is truly
random, it is information-theoretically impossible to produce a valid response
to a random challenge. Proving this part in our security reduction requires an-
alyzing the ideal structure of the ring R using techniques similar to the ones in
[37]. This analysis is somewhat loose, however, so that the resulting signature
scheme is not as efficient as the one in [32]. We believe that improving the analy-
sis (possibly using some recent techniques in [49]) and obtaining a more efficient
signature scheme is an interesting research direction.

Construction Based on Subset Sum. In Section 6, we present a very simple
scheme based on the hardness of the subset sum problem. The secret key consists
of an n×k 0/1 matrix X, and the public key consists of a random vector a ∈ Zn

M ,
as well as a k-dimensional vector of subset sums t = aTX modM that use a
as weights. The main idea for constructing the lossy identification scheme is
to achieve the property that if the vector t is uniformly random, rather than
being a vector of valid subset sums, then it should be impossible (except with
a small probability) to produce a valid response to a random challenge. And so
an adversary who is able to break the resulting signature scheme can be used to
distinguish vectors t that are valid subset sums of the elements in a from those
that are just uniformly random. We defer further details to Section 6.

2 Preliminaries

2.1 The Decisional Short Discrete Logarithm Problem

Let G be a finite, cyclic group of prime order q whose group operation is noted
multiplicatively, and g a fixed generator of G. Let further c be a size parameter.
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The c-decisional discrete logarithm (c-DSDL) problem may be informally de-
scribed as the problem of distinguishing between tuples of the form (g, h) for a
uniformly random h ∈ G and tuples of the form (g, gx) with x uniformly random
in {0, . . . , 2c − 1}. More precisely:

Definition 1. A distinguishing algorithm D is said to (t, ε)-solve the c-DSDL
problem in group G if D runs in time at most t and satisfies:∣∣Pr[x $← Zq : D(g, gx) = 1]− Pr[x

$← {0, . . . , 2c − 1} : D(g, gx) = 1]
∣∣ ≥ ε

We say that G is a (t, ε)-c-DSDL group if no algorithm (t, ε)-solves the c-DSDL
problem in G.

This problem is related to the well-known (computational) c-discrete logarithm
with short exponent (c-DLSE) problem. In fact, for the groups where that prob-
lem is usually considered, namely prime order subgroups of Z∗

p where p is a safe
prime, a search-to-decision reduction is known for all c [29]: if the c-DLSE prob-
lem is hard, then so is the c-DSDL problem. The reduction is not tight, however,
so while the signature scheme presented in the next section admits a tight re-
duction to the decisional problem, there is a polynomial loss in the reduction to
the search problem.

2.2 The Ring-LWE Problem and Lattices

For any positive integer n and any positive real σ, the distribution DZn,σ assigns

the probability proportional to e−π‖y‖2/σ2

to every y ∈ Zn and 0 everywhere else.
For any odd prime p, the ring R = Zp[x]/(x

n+1) is represented by polynomials of
degree at most n− 1 with coefficients in the range

[
− p−1

2 , p−1
2

]
. As an additive

group, R is isomorphic to Zn
p , and we use the notation y

$← DR,σ to mean
that a vector y is chosen from the distribution DZn,σ and then mapped to a
polynomial in R in the natural way (i.e. position i of the vector corresponds to
the coefficient of the xi term of the polynomial). The (decisional) Ring Learning
With Errors Problem (Ring-LWE) over the ring R with standard deviation σ
is to distinguish between the following two oracles: O0 outputs random elements

in R×R, while the oracle O1 has a secret s ∈ R where s
$← DR,σ, and on every

query it chooses a uniformly random element a
$← R, e

$← DR,σ, and outputs
(a, as + e). The Ring-LWE problem is a natural generalization of the LWE

problem [46] to rings and it was recently shown in [35] that if p = poly(n) is
a prime congruent to 1 mod 2n, then solving the Ring-LWE problem over the
ring R with standard deviation1 σ is as hard as finding an approximate shortest
vector in all ideal lattices in the ring Z[x]/(xn + 1). Intuitively, the smaller the
ratio between p and σ is, the smaller the vector the reduction is able to find,
and thus it is preferable to keep this ratio low.

1 In the actual reduction of [35], the standard deviation is itself chosen from a some-
what complicated probability distribution, but if the number of times theRing-LWE

oracle is queried is bounded (in this paper it only needs to provide one output), then
the standard deviation can be fixed.
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2.3 The Subset Sum Problem

In the search version of the random subset sum problem, SS(n,M), one is given
n elements ai generated uniformly at random in ZM (in this paper, we will
only deal with low-density instances of the problem, where M > 2n) and an
element t =

∑
aisi modM , where the si are randomly chosen from {0, 1}, and

is asked to find the si (with high probability, there is only one possible set
of si). The decision version of the problem, which was shown to be as hard
as the search version [26,38], is to distinguish an instance (a1, . . . , an, t) where
t = a1x1+. . .+ansn modM from the instance (a1, . . . , an, t) where t is uniformly
random in ZM . The low-density SS(n,M) problem is hardest when M ≈ 2n, in
which case the best algorithm runs in time 2Ω(n) (see for example [3]), but the
best known algorithms for the problem when M = nO(n), still require time
2Ω(n). As M increases, however, the problem becomes easier, until it is solvable
in polynomial-time when M = 2Ω(n2) [30,13].

2.4 Signature Schemes

Definition 2. A signature scheme Sig is composed of three algorithms (GenKey,
Sign,Verify) such that:

– The key generation algorithm GenKey takes as input the security parameter
in unary notation and outputs a pair (pk, sk) containing the public verifica-
tion key and the secret signing key.

– The signing algorithm Sign takes as input a message m and the signing key
sk and outputs a signature σ. This algorithm can be probabilistic so that
many signatures can be computed for the same message.

– The verification algorithm Verify takes as input a message m, a signature σ
and the public key pk and outputs 1 if the signature is correct and 0 otherwise.

The standard security notion for signature scheme is strong existential unforge-
ability against adaptive chosen-message attacks [23] which informally means
that, after obtaining signatures on polynomially many arbitrary messages of his
choice, an adversary cannot produce a new valid signature, even for a message
m for which he already knows a correct signature.

Definition 3. Let Sig = (GenKey, Sign,Verify) be a signature scheme and let
H be a random oracle. We say that Sig is (t, qh, qs, ε)-strongly existentially un-
forgeable against adaptive chosen-message attacks, if there is no algorithm D
that runs in time at most t, while making at most qh hash queries and at most
qs signing queries, such that

Pr[(pk, sk) ← GenKey(1k);(m,σ) ← DSign(sk,·),H(·)(pk) :

(m,σ) /∈ S ∧ Verify(m,σ, pk) = 1] ≥ ε,

where S is the set of message-signature pairs returned by the signing oracle.



Tightly-Secure Signatures from Lossy Identification Schemes 579

3 Lossy Identification Schemes

In order to unify the security proofs of our signature schemes without sacrific-
ing the tightness of the reduction, we introduce in this section a new class of
identification schemes, called lossy identification schemes. In these schemes, the
public key associated with the prover can take one of two indistinguishable forms,
called normal and lossy. When the public key is normal, the scheme behaves as
a standard identification scheme with similar security guarantees against im-
personation attacks. However, in the lossy case, the public key may not have a
corresponding secret key and no prover (even computationally unbounded ones)
should be able to make the verifier accept with non-negligible probability.

As with other identification schemes used to build signature schemes via the
Fiat-Shamir transform, the identification schemes that we consider in this paper
consist of a canonical three-move protocol, as defined in [1]. In these protocols,
the verifier’s move consists in choosing a random string from the challenge space
and sending it to the prover. Moreover, its final decision is a deterministic func-
tion of the conversation transcript and the public key. Since our results can be
seen as a generalization of the results of Abdalla et al. [1] to the lossy setting,
we use their definitions as the basis for ours below.

Definition 4. A lossy identification scheme ID is defined by a tuple (KeyGen,
LosKeyGen,Prove, c,Verify) such that:

– KeyGen is the normal key generation algorithm which takes as input the
security parameter in unary notation and outputs a pair (pk , sk) containing
the publicly available verification key and the prover’s secret key.

– LosKeyGen is the lossy key generation algorithm which takes as input the
security parameter in unary notation and outputs a lossy verification key
pk .

– Prove is the prover algorithm which takes as input the current conversation
transcript and outputs the next message to be sent to the verifier.

– c(k) is a function of the security parameter which determines the length of
the challenge sent by the verifier.

– Verify is a deterministic algorithm which takes the conversation transcript
as input and outputs 1 to indicate acceptance or 0 otherwise.

Following [1], we associate to ID, k, and (pk , sk) a randomized transcript gener-
ation oracle TrIDpk ,sk,k which takes no inputs and returns a random transcript of
an “honest” execution. However, to adapt it to specific setting of our schemes,
we modify to the original definition to take into account the possibility that the
prover may fail and output ⊥ as response during the execution of the identifica-
tion protocol. Moreover, when this happens, instead of outputting (cmt , ch,⊥),
our transcript generation oracle will simply return a triplet (⊥,⊥,⊥) to simulate
the scenario in which the verifier simply forgets failed identification attempts.
Interestingly, as we show later in this section, this weaker requirement is suf-
ficient for building secure signature schemes as failed impersonation attempts
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will be kept hidden from the adversary since the tasks of generating the commit-
ment and challenge are performed by the signer. More precisely, the transcript
generation oracle TrIDpk ,sk ,k is defined as follows:

TrIDpk ,sk ,k():

1: cmt
$← Prove(sk)

2: ch
$← {0, 1}c(k)

3: rsp
$← Prove(sk , cmt , ch)

4: if rsp = ⊥ then (cmt , ch) ← (⊥,⊥)

5: return (cmt , ch, rsp)

Definition 5. An identification scheme is said to be lossy if it has the following
properties:

1. Completeness of Normal Keys. We say that ID is ρ-complete, where ρ
is a non-negligible function of k, if for every security parameter k and all

honestly generated keys (pk , sk)
$← KeyGen(1k), Verify(pk , cmt , ch, rsp) = 1

holds with probability ρ when (cmt , ch, rsp)
$← TrIDpk ,sk ,k().

2. Simulatability of Transcripts. Let (pk , sk) be the output of KeyGen(1k)
for a security parameter k. Then, we say that ID is ε-simulatable if there

exists a PPT algorithm T̃r
ID

pk,k with no access to the secret key sk which can
generate transcripts {(cmt , ch, rsp)} whose distribution is statistically in-
distinguishable from the transcripts output by TrIDpk ,sk,k, where ε is an upper-
bound for the statistical distance. When ε = 0, then ID is said to simulatable.

3. Indistinguishability of Keys. Consider the experimentsExpind-keys-real
ID,D (k)

and Expind-keys-lossy
ID,D (k) in which we generate pk via KeyGen(1k), respectively

LosKeyGen(1k), and provide it as input to the distinguishing algorithm D .
We say that D can (t, ε)-solve the key-indistinguishability problem if D runs
in time t and∣∣Pr[Expind-keys-real

ID,D (k) = 1 ]− Pr[Expind-keys-lossy
ID,D (k) = 1 ]

∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-key-indistinguishable if no algorithm
(t, ε)-solves the key-indistinguishability problem.

4. Lossiness. Let I be an impersonator, st be its state, and k be a security
parameter. Let Explos-imp-pa

ID,I (k) be the following experiment played between
I and a hypothetical challenger:

Explos-imp-pa
ID,I (k):

1: pk
$← LosKeyGen(1k)

2: (st , cmt)
$← I T̃r

ID

pk,k(pk ) ; ch
$← {0, 1}c(k) ; rsp

$← I (st , ch)
3: return Verify(pk , cmt , ch, rsp)
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Sign(sk ,m):

1: ctr ← 0
2: while ctr ≤ 
 and rsp = ⊥ do
3: ctr ← ctr + 1
4: cmt ← Prove(sk)
5: ch ← H(cmt ,m)
6: rsp ← Prove(sk , cmt , ch)
7: end while
8: if rsp = ⊥ then cmt ← ⊥
9: σ ← (cmt , rsp)
10: return σ

Verify(pk , m, σ):

1: parse σ as (cmt , rsp)
2: ch ← H(cmt ,m)
3: d ← Verify(pk , cmt , ch , rsp)
4: return d

Fig. 1. Description of our signature scheme Sig[ID, 
] = (GenKey,Sign,Verify), where ID
= (KeyGen, LosKeyGen,Prove, c,Verify) is a lossy identification scheme, H is a random
oracle, and 
 is a bound on the number of signing attempts

We say I ε-solves the impersonation problem with respect to lossy keys if

Pr[Explos-imp-pa
ID,I (k) = 1 ] ≥ ε.

Furthermore, we say that ID is ε-lossy if no (computationally unrestricted)
algorithm ε-solves the impersonation problem with respect to lossy keys.

As in [1], we need to use the concept of min-entropy [8] to measure the maximum
likelihood that a commitment generated by the prover collides with a fixed value.
The precise definition of min-entropy can be found in Definition 3.2 in [1].

Transform. The signature schemes that we consider in this paper are built
from lossy identification schemes via the Fiat-Shamir transform [12], in which
the challenge becomes the hash of the message together with the commitment.
However, since we do not assume perfect completeness of normal keys for the
underlying lossy identification scheme, the signing algorithm will differ slightly
from those considered in [1] in order to decrease the probability of abort during
signing. More precisely, let ID = (KeyGen, LosKeyGen,Prove, c,Verify) be a lossy
identification scheme and letH be a random oracle. Let � be a parameter defining
the maximum number of signing attempts. We can construct a signature scheme
Sig[ID, �] = (GenKey, Sign,Verify), where GenKey simply calls KeyGen from the
ID scheme, and Sign,Verify are depicted in Figure 1.

We remark that the signature length of the scheme in Figure 1 can sometimes
be optimized by setting σ = (ch, rsp). However, this is only possible when the
commitment value cmt is uniquely defined by (ch, rsp), which is the case for all
the schemes considered in this paper.

Theorem 1. Let ID = (KeyGen, LosKeyGen,Prove, c,Verify) be a lossy identifi-
cation scheme whose commitment space has min-entropy β(k), let H be a random
oracle, and let Sig[ID] = (GenKey, Sign,Verify) be the signature scheme obtained
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via the transform in Figure 1. If ID is εs-simulatable, ρ-complete, (t′, εk)-key-
indistinguishable, and ε
-lossy, then Sig[ID] is (t, qh, qs, ε)-strongly existentially
unforgeable against adaptive chosen-message attacks in the random oracle model
for:

ε = εk + qsεs + (qh + 1)ε
 + �(qs + qh + 1)qs/2
β

t ≈ t′ −O(qs · tSign)

where tSign denotes the average signing time. Furthermore, the probability that
Sig[ID] outputs a valid signature is 1 − (1 − ρ)
.

Proof Overview. In order to prove the security of the signature scheme based
on the security properties of the underlying lossy identification scheme, the
main idea is to use honest transcripts generated by the identification scheme
to answer signature queries made the adversary by appropriately programming
the random oracle. More precisely, let (cmt , ch, rsp) be a valid transcript (i.e.,
Verify(pk , cmt , ch, rsp) = 1). To answer a query m to the signing oracle, we need
to program the random oracle to set H(cmt ,m) = ch so that (cmt , rsp) is a
valid signature for m. Unfortunately, this programming may conflict with previ-
ous values outputted by the hash oracle. To address this problem, the first step
of the proof is to show that such collisions happen with with probability at most
�(qs + qh + 1)qs/2

β.
Next, we make a sequence of small changes to the security experiment to be

able to bound the success probability of the forger. The first significant modifi-
cation is to change the simulation of the signing oracle so that it no longer uses
the secret key. This is done by replacing the transcript generation oracle TrIDpk ,sk ,k

with its simulated version T̃r
ID

pk ,k. Since we make at most qs calls to T̃r
ID

pk ,k, the
difference in the success probability of the forger changes by at most qsεs due
to the simulatability of ID.

The second important modification is to replace the key generation algorithm
with its lossy version. Since the secret key is no longer needed in the simulation of
the signing oracle, the difference in the success probability of the forger changes
by at most εk due to the key-indistinguishability of ID.

Finally, we can bound the success probability of the forger in this final experi-
ment by relating this probability with that of solving the impersonation problem
with respect to lossy keys. Since we need to guess the hash query which will be
used in the forgery to be able to break the underlying impersonation problem,
we lose a factor qh + 1 in the reduction, resulting in the term (qh + 1)ε
 in the
theorem. For more details, please refer to the full version of this paper [2].

4 A Signature Scheme Based on the DSDL Problem

In this section we describe our short discrete log based signature scheme. While
it looks similar to the prime-order version of the Girault-Poupard-Stern iden-
tification scheme [19,45,20], the proof strategy is in fact closer to the one used by
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Katz and Wang for their DDH-based signature scheme [27,22]. We first present
a lossy identification scheme and then use the generic transformation from the
previous section to obtain the signature scheme.

The public parameters of the identification scheme are a cyclic group G of
prime order q (typically chosen as the subgroup of order q in Z∗

p where p is prime),
a generator g of G, and size parameters c, k, k′. The secret key is a small (relative
to q) integer x and the public key consists of a single group element h = gx mod p.
The prover’s first move is to generate a small (but larger than x) random integer
y and send u = gy as a commitment to the verifier. Next, the (honest) verifier
picks a value e uniformly in {0, . . . , 2k − 1} and sends it to the prover. After
receiving e from the verifier, the prover computes z = ex + y (without any
modular reduction), and checks whether z is in the range {2k+c, . . . , 2k+k′+c−1}.
If z is in the “correct” range, then the prover sends z to the verifier, who can
check the verifying equation u = gz/he to authenticate the prover. If z is outside
the correct range, the prover sends ⊥ to indicate failure—as in [31,32], this check
is important to ensure that the distribution of the value z is independent of the
secret key x. In the full version of this paper [2], we prove:

Theorem 2. If G is a (t, ε)-c-DSDL group, then the identification scheme de-
scribed above is perfectly simulatable, ρ-complete, (t, ε)-key-indistinguishable, and
ε
-lossy, for ρ = 1 − 2−k′

and ε
 ≤ 22k+k′+c+2/q + 1/2k.

In order to obtain our signature scheme based on the DSDL problem, we ap-
ply the transform provided in the previous section to the identification scheme
described above. The full description of the resulting scheme is provided in Fig-
ure 2. In addition to those of the underlying identification scheme, the public
parameters of the signature scheme also include the maximum number of signing
attempts � and a random oracle H : {0, 1}∗ → {0, . . . , 2k − 1}. The key pair is
as before. To sign a message m, we generate a small (but larger than x) random
integer y and compute e ← H(gy mod p,m). Finally, we set z = ex+y and check
whether z is in the correct range. If it’s not, we restart the signature process. In
case of � failures, the signing algorithm simply outputs (⊥,⊥) to indicate failure.
Otherwise, the signature will consist of the pair σ = (z, e). Since the probability
that z is not in the correct range is smaller than 1/2k′

, the signing algorithm
will fail with probability at most (1− 1/2k′

)
. Moreover, the average number of
iterations is 1/(1− 1/2k′

). As a direct consequence of Theorems 1 and 2, we get:

Theorem 3. If G is a (t′, ε′)-c-DSDL group, then this signature scheme is
(t, qh, qs, ε)-strongly existentially unforgeable against adaptive chosen-message
attacks in the random oracle model for:

ε = ε′ + (qh + 1) · 2
2k+k′+c+2

q
+ �(qs + qh + 1) · qs

2k

t ≈ t′ −O(qs · t1)

(where t1 is the cost of an exponentiation in G), and it outputs a valid signature
with probability 1 − 2k′
.
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KeyGen(): Pick x
$← {0, . . . , 2c−1} as the private key, and X ← gx mod p as the public

key.

Sign(m,x):

1: ctr ← 0
2: y

$← {0, . . . , 2k+k′+c − 1}
3: e← H(gy mod p,m)
4: z ← ex+ y
5: if z /∈ {2k+c, . . . , 2k+k′+c − 1} and ctr < 
 then
6: ctr ← ctr + 1
7: goto Step 2

8: if z /∈ {2k+c, . . . , 2k+k′+c − 1} then (z, e)← (⊥,⊥)
9: return σ = (z, e)

Verify(m,X, σ = (z, e)): accept if and only if z ∈ {2k+c, . . . , 2k+k′+c − 1} and e =
H(gz ·X−e mod p).

Fig. 2. DSDL-Based Signature Scheme

Remarks

1. The scheme in Figure 2 uses (z, e) instead of (z, gy) as the signature since
(z, e) can be used to recover gy, but the length of e is shorter than that of
gy.

2. This is an online/offline signature scheme: it can be used with coupons by
pre-computing (y, gy mod p) independently of the message. In the rare case
when z is not in the right interval (which can be checked without even
computing a multiplication), it suffices to use another coupon.

3. The reduction is not completely tight: there is a small loss of � · qs. As in
[22], this loss can be avoided by ensuring that the masking parameter y is
always the same for a given message, either by making the scheme stateful
(keeping track of the randomness on signed messages) or by generating y
as a deterministic, pseudorandom function of the signed message and the
private key(but the resulting scheme is no longer online/offline).

Suggested Parameters. We propose the following parameters for an instanti-
ation of our scheme with an 80-bit security level. The group G is a subgroup of
order q in Z∗

p, where p is a 1024-bit prime and q a prime factor of p− 1 of length
≥ 490 bits. Moreover, we set (c, k, k′) = (160, 80, 8). The size of the public key
gx mod p is then 1024 bits and the size of the signature (z, e) is k+k′+c+k = 328
bits.

A full signature requires a single exponentiation of 248 bits in Z∗
p with fixed

base, which is about as efficient as comparable schemes (faster than the two
160-bit exponentiations in the Katz-Wang DDH scheme, for example). In our
scheme, there is a 1/2k′

= 1/256 chance that the signing algorithm will have to
be repeated, but this has little effect on the expected running time.
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Parameter Definition

n integer that is a power of 2

σ standard deviation of the secret key coefficients

p “small” prime equal to 1 mod 2n

R ring Zp[x]/〈xn + 1〉
C {g ∈ R : ‖g‖∞ ≤ log n}
M {g ∈ R : ‖g‖∞ ≤ n3/2σ log3 n}
G {g ∈ R : ‖g‖∞ ≤ (n− 1)

√
nσ log3 n}

Fig. 3. Parameter Definitions

When used with coupons, the scheme is possibly the fastest option available,
with an online cost of one single integer multiplication between a 80-bit number
and a 160-bit number, and no modular reduction.

5 A Signature Scheme Based on Lattices

In this section, we present a signature scheme whose security is based on the
hardness of the Ring-LWE problem. Towards this goal, we first describe a lossy
identification scheme based on the Ring-LWE problem and then use our generic
transformation in Section 3 to obtain the signature scheme.

Our identification scheme depends on some public parameters defined in Fig-
ure 3. The secret key consists of two polynomials s1, s2 with “small” coefficients
chosen from the distribution DR,σ, and the public key consists of a randomly-
chosen element a ∈ R and of the value t = as1 + s2. Under the Ring-LWE

assumption in the ring R, the public key is thus indistinguishable from a uni-
formly random element of R2.

In our protocol, the prover’s first move is to create two “small” polynomials
y1,y2 (larger than s1, s2 by a factor ≈ n) from the set M, and then send the
value u = ay1+y2 to the verifier. Upon receipt of u, the (honest) verifier chooses
a value c uniformly at random in the set C and sends it to the prover. After
receiving c from the verifier, the prover sets z1 ← s1c + y1 and z2 ← s2c + y2

and checks whether the zi’s are both in G. If they are, the prover then sends the
response (z1, z2) to the verifier. If one (or both) of the zi are outside of G (which
happens with probability approximately 1− 1/e2), then the prover simply sends
(⊥,⊥). Finally, the verifier simply checks whether the zi’s are in G and that
az1 + z2 = tc+ u.

At this point, we would like to point out that using the recent techniques in
[33], it is possible to lower the bitsize of the response (z1, z2) by choosing the
polynomials y1,y2 from a normal distribution and then doing a somewhat more
involved rejection sampling when deciding whether to send (z1, z2) or (⊥,⊥) to
the verifier.

In the full version of this paper [2], we prove:

Theorem 4. If p , σ2/α ·n3/α+η for some η > 0, and the Ring-LWE problem
over R with standard deviation σ is (ε, t)-hard, then the identification scheme
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KeyGen(): Pick s1, s2
$← DR,σ and set (s1, s2) as the private key. Select a

$← R and let
the public key be (a, t), where t ← as1 + s2. Let H be a random oracle mapping to
the range C.

Sign(m,a, s1, s2):

1: ctr ← 0
2: y1,y2

$←M
3: c← H(ay1 + y2, m)
4: z1 ← s1c+ y1, z2 ← s2c+ y2

5: if z1 or z2 /∈ G and ctr < 
 then
6: ctr ← ctr + 1
7: goto Step 2

8: if z1 or z2 /∈ G then (z1, z1, c)← (⊥,⊥,⊥)
9: return (z1, z2, c)

Verify(m,z1, z2, c, a, t): accept if and only if z1, z2 ∈ G and c = H(az1 + z2 − tc, m).

Fig. 4. Lattice-Based Signature Scheme

described above is εs-simulatable, ρ-complete, (t, ε)-key-indistinguishable and ε
-
lossy, for ρ ≥ 1/e2 − 2/(en) and εs, ε
 ≤ negl(n).

In order to obtain our signature scheme based on lattices, we apply our generic
transform to the identification scheme described above. The full description of
the resulting scheme is provided in Figure 4.

6 A Signature Scheme Based on Subset Sum

In this section, we construct a lossy identification scheme based on the hardness
of the random SS(n,M) problem for M > (2kn+1)n · 32k, where k is a security

parameter. The secret key is a random matrix X
$← {0, 1}n×k, and the public

key consists of a vector a
$← Zn

M , and a vector t = aTX modM . In the first

step of the protocol, the prover selects a vector y
$← {−kn, . . . , kn}n and sends

an integer commitment u = 〈a,y〉 modM to the verifier. The verifier selects a

random challenge vector c
$← {0, 1}k, and sends it to the prover, who checks

that c is indeed a valid challenge vector. The prover then computes a possible
response z = Xc+y (note that there is no modular reduction here), and sends it
to the verifier if it is in the range {−kn+k, . . . , kn−k}n. If z is not in this range,
then the prover sends ⊥. Upon receiving a z, the verifier accepts the interaction
if z ∈ {−kn+ k, . . . , kn− k}n and 〈a, z〉 − 〈t, c〉 modM = u.

It is easy to see that in the case that the prover does not send ⊥, he will be
accepted by the verifier since

〈a, z〉 − 〈t, c〉 modM = aTXc+ 〈a,y〉 − aTXc modM = u.
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Then, we observe that the probability that for any element z̄ ∈ {−kn+ k, . . . ,
kn− k}n, the probability that the response will be z = z̄ is

Pr[z = z̄] = Pr[y = z̄ − Xc] = 1/ |{−kn, . . . , kn}n| ,

since all the coefficients of the vectorXc have absolute value at most k. Therefore
every element z in the set {−kn + k, . . . , kn − k}n has an equal probability of
being outputted and the probability that z �= ⊥ is

ρ = |{−kn+ k, . . . , kn− k}n| / |{−kn, . . . , kn}n| ≈ (1 − 1/n)n ≈ 1/e.

And thus the simulatability property of the scheme is satisfied since one can
create a valid transcript by generating (⊥,⊥,⊥) with probability 1 − ρ, and
otherwise pick a random z ∈ {−kn+ k, . . . , kn− k}n, a random c ∈ {0, 1}k, and
output (〈a, z〉 − 〈t, c〉 modM, c, z).

The lossy public keys are just two uniformly random vectors a and t, and so
the indistinguishability of these keys from the real keys is directly based on the
hardness of the SS(n,M) problem using a standard hybrid argument.

To show lossiness, we observe that if t is uniformly random in Zk
M , then it

can be shown that with high probability, for any choice of u ∈ ZM , there is at
most one value c such that u can be written as 〈a, z〉 − 〈t, c〉 modM . Indeed, if
there exist two pairs (z, c), (z′, c′), such that

〈a, z〉 − 〈t, c〉 = 〈a, z′〉 − 〈t, c′〉 modM,

then we have
〈a, z − z′〉 − 〈t, c − c′〉 mod M = 0. (1)

The set of valid pairs (z−z′, c−c′) consists of (2kn+1)n ·3k elements. If (a, t) is
chosen completely at random, then for each of those valid pairs, the probability
that Equation (1) is satisfied is 1/M (this assumes that either a or t has at
least one element that is invertible modulo M , which is the case with extremely
high probability), and so the probability over the randomness of a and t that
Equation (1) is satisfied for any of the valid pairs is at most (2kn+ 1)n · 3k/M ,
which by our choice of M , is at most 3−k.

To convert this lossy identification scheme to a signature scheme, one would
simply perform the transformation described in Figure 1, as we did for the other
schemes in this paper. And as for the lattice-based scheme in Section 5, we
point out that the technique in [33] can be used to reduce the coefficients of the
signature by about a factor of

√
n to make them fall in the range {−O(k

√
n), . . . ,

O(k
√
n)}n by sampling the vector y from a normal distribution and performing

a somewhat more involved rejection sampling procedure when deciding whether
or not to send the response z. This would also allow us to reduce the modulus
M to approximately M = O(k

√
n)n · 32k, which makes the SS(n,M) problem

more difficult. Another possible optimization could include making k larger, but
making the vector c sparser (while still making sure that it comes from a large
enough set), which would result in a shorter vector Xc.
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Abstract. This paper proposes the first inner product encryption (IPE)
scheme that is adaptively secure and fully attribute-hiding (attribute-
hiding in the sense of the definition by Katz, Sahai and Waters), while
the existing IPE schemes are either fully attribute-hiding but selectively
secure or adaptively secure but weakly attribute-hiding. The proposed
IPE scheme is proven to be adaptively secure and fully attribute-hiding
under the decisional linear assumption in the standard model. The IPE
scheme is comparably as efficient as the existing attribute-hiding IPE
schemes. We also present a variant of the proposed IPE scheme with the
same security that achieves shorter public and secret keys. A hierarchical
IPE scheme can be constructed that is also adaptively secure and fully
attribute-hiding under the same assumption. In this paper, we extend
the dual system encryption technique by Waters into a more general
manner, in which new forms of ciphertext and secret keys are employed
and new types of information theoretical tricks are introduced along with
several forms of computational reduction.

1 Introduction

1.1 Background

Functional encryption (FE) is an advanced class of encryption and it covers
identity-based encryption (IBE)[3,4,7,11], hidden-vector encryption (HVE) [8],
inner-product encryption (IPE) [15], predicate encryption (PE) and attribute-
based encryption (ABE) [2,13,23,16,22,24,19]. In FE, there is a relation R(v, x)
which determines what a secret key with parameter v can decrypt a cipher-
text encrypted under parameter x. The enhanced functionality and flexibility
provided by FE systems are very appealing for many practical applications.

For some applications, the parameters for encryption are required to be hidden
from ciphertexts. One of such applications is an advanced notion of PKE with
keyword search (PEKS) [6], which we call PKE with functional search (PEFS)
in this paper. In PEFS, a parameter x (not just a keyword) embedded in a
ciphertext is searched (checked) whether R(v, x) holds or not by using a secret
key with parameter v. Here, keyword search is a special case of functional search
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c© International Association for Cryptologic Research 2012
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R(v, x) when R(v, x) ⇔ [x = v]. Parameter x of a ciphertext is often private
information and should be hidden from ciphertexts in such applications.

To capture the security requirement, Katz, Sahai and Waters [15] introduced
attribute-hiding (based on the same notion for HVE by Boneh and Waters [8]),
a security notion for FE that is stronger than the basic security requirement,
payload-hiding. Roughly speaking, attribute-hiding requires that a ciphertext
conceal the associated parameter as well as the plaintext, while payload-hiding
only requires that a ciphertext conceal the plaintext. Attribute-hiding FE is
often called predicate encryption (PE).

The widest class of relations of a FE system in the literature is general non-
monotone (span program) relations, which can be expressed using AND, OR,
Threshold and NOT gates [19]. FE systems supporting such a wide class of
relations, however, have one limitation in that the parameter x of the ciphertext
should be revealed to users to decrypt. That is, such FE systems do not satisfy
the attribute-hiding security.

To the best of our knowledge, the widest class of relations supported by
attribute-hiding FE systems are inner-product predicates in [15,16,19], which
we call the KSW08, LOS+10 and OT10 schemes. Parameters of inner-product
predicates are expressed as vectors $x (for a ciphertext) and $v (for a secret key),
where R($v, $x) holds iff $v ·$x = 0. (Here, $v ·$x denotes the standard inner-product.)
In this paper we call FE for inner-product predicates inner product encryption
(IPE).

Inner-product predicates represent a fairly wide class of relations including
equality tests as the simplest case (i.e., anonymous IBE and HVE are very spe-
cial classes of attribute-hiding IPE), disjunctions or conjunctions of equality
tests, and, more generally, CNF or DNF formulas. We note, however, that in-
ner product predicates are less expressive than general (even monotone span
program) relations of FE. To use inner product predicates for such general re-
lations, formulas must be written in CNF or DNF form, which can cause a
super-polynomial blowup in size for arbitrary formulas.

Among the existing attribute-hiding IPEs, the KSW08 IPE scheme [15] is
proven to be only selectively secure. Although the LOS+10 and OT10 IPE
schemes [16,19] are proven to be adaptively secure, the achieved attribute-hiding
security is limited or weaker than that defined in [15]. Here, we call the attribute-
hiding security defined in [15] fully attribute-hiding and that achieved in [16,19]
weakly attribute-hiding. In the fully attribute-hiding security definition [15], ad-
versary A is allowed to ask a key-query for $v such that $v · $x(0) = $v · $x(1) = 0
provided that m(0) = m(1) ($x(b) and m(b) (b = 0, 1) are for the challenge ci-
phertext in the security definition), while in the weakly attribute-hiding security
definition [16,19], A is only allowed to ask a key-query for $v such that $v ·$x(b) �= 0
for all b ∈ {0, 1}.

Let us explain the difference between the fully and weakly attribute-hiding
definitions in a PEFS system. User Alice provides her secret key, sk�v, to proxy
server Bob, who checks whether $v · $x = 0 or not for an incoming ciphertext, ct�x,
encrypted with parameter $x. In the weakly attribute-hiding security, privacy of
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$x from ct�x is ensured only if $v ·$x �= 0, but cannot be ensured or some privacy on
$x may be revealed if $v ·$x = 0. Here note that there still exists (n−1)-dimensional
freedom (or room of privacy) of n-dimensional vector $x, even if $v and the fact
that $v ·$x = 0 is revealed. For example, let $v express formula on an email message
attributes, [[Subject = X ] ∨ [Subject = Y ]] ∧ [[Receiver = Alice] ∨ [Receiver =
Alice’s secretary]], and $x express ciphertext attribute (Subject = X,Receiver =
Alice). In this case, $v·$x = 0, since the ciphertext attribute expressed by $x satisfies
the formula expressed by $v. Although Bob knows sk�v and $v, Bob has no idea
which attribute $x is embedded in ct�x except that the ciphertext attribute satisfies
the formula, i.e., $v·$x = 0, if the fully attribute-hiding security is achieved. On the
other hand, Bob may obtain some additional information on the attribute (e.g.,
Bob may know that the subject is X , not Y ), if only the weakly attribute-hiding
security is guaranteed.

The KSW08 IPE scheme is fully attribute-hiding but selectively secure, and
the LOS+10 and OT10 IPE schemes are adaptively secure but weakly attribute-
hiding. Therefore, there is no IPE scheme that is adaptively secure and fully
attribute-hiding simultaneously. As for a more limited class of schemes, HVE
(as mentioned above, HVE is a very special class of attribute-hiding IPE), an
adaptively secure and fully attribute-hiding HVE scheme has been proposed [10].
For hierarchical IPE (HIPE), the LOS+10 and OT10 HIPE schemes [16,19] are
adaptively secure but weakly attribute-hiding, i.e., there is no HIPE scheme that
is adaptively secure and fully attribute-hiding simultaneously.

It is a technically challenging task to achieve an adaptively secure and fully
attribute-hiding (H)IPE scheme. Even if we use the powerful dual system encryp-
tion technique by Waters, the main difficulty resides in how to change a (normal)
secret key queried with $v to a semi-functional secret key, without knowing $x(b)

(b = 0, 1) for the challenge ciphertext, i.e., without knowing whether $v · $x(b) = 0
or not, since an adversary may issue key queries with $v before issuing the chal-
lenge ciphertext query with $x(b) (b = 0, 1) and two possible cases, $v ·$x(b) = 0 (for
all b ∈ {0, 1}) and $v · $x(b) �= 0 (for all b ∈ {0, 1}), are allowed in fully attribute-
hiding IPE. Note that in weakly attribute-hiding IPE, it is always required that
$v · $x(b) �= 0. At a first glance, it looks hard to achieve it, since the form of semi-
functional secret key may be different (e.g., canceled or randomized) depending
on whether $v · $x(b) = 0 or not. Another technically challenging target in this
paper is to prove the security under the decisional linear (DLIN) assumption
(on prime order pairing groups) in the standard model.

1.2 Our Results

This paper proposes the first IPE scheme that is adaptively secure and fully
attribute-hiding simultaneously. The proposed IPE scheme is proven to be adap-
tively secure and fully attribute-hiding under the DLIN assumption in the stan-
dard model (Section 4). We also present a variant of the proposed IPE scheme
with the same security that achieves shorter master public keys and shorter se-
cret keys (Section 5). A hierarchical IPE (HIPE) scheme can be realized that
is also adaptively secure and fully attribute-hiding under the same assumption
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(see the full version of this paper [21] for the HIPE scheme). Table 2 in Section 6
compares the proposed IPE schemes with several existing attribute-hiding IPE
schemes.

1.3 Key Techniques

To overcome the above-mentioned difficulty, we extend the dual system encryp-
tion technique into a more general manner, in which various forms of ciphertext
and secret keys are introduced (‘normal’, ‘temporal 0’, ‘temporal 1’, ‘temporal 2’
and ‘unbiased’ forms for a ciphertext, and ‘normal’, ‘temporal 1’ and ‘temporal
2’ forms for a secret key), and new types (Types 1, 2, 3) of information theo-
retical tricks are employed with several forms of computational reduction (the
security of Problems 1, 2 and 3 to DLIN). See Table 1 and Figure 1 in Section
4.2 for the outline.

In our approach, all forms (‘normal’, ‘temporal 1’ and ‘temporal 2’) of a
secret key do not depend on whether $v · $x(b) = 0 or not. Although the aim of
a ‘semi-functional’ secret key in the original dual system encryption method is
to randomize the semi-functional part, the aim of these forms of a secret-key in
our approach is just to encode $v in a (hidden) subspace for a secret-key.

Another key point in our approach is that we transform a challenge ciphertext
to an ‘unbiased’ ciphertext whose advantage is 0 in the final game, and $x(b) is
randomized to a random vector in a two-dimensional subspace, span〈$x(0), $x(1)〉.
In contrast, $x(b) is randomized to a random vector in the n-dimensional whole
space, Fn

q , in [16,19] for weakly attribute-hiding IPE based on the original dual
system encryption technique.

Therefore, in our approach, only $v is encoded in a (hidden) subspace of the
temporal forms of a secret-key, and a random vector in span〈$x(0), $x(1)〉 is encoded
in the corresponding (hidden) subspace for the temporal and unbiased forms of
a ciphertext.

To realize this approach, our construction is based on the dual pairing vector
spaces (DPVS) (Section 2) [16,19]. A nice property of DPVS is that we can set
a hidden linear subspace by concealing the basis of a subspace from the public
key. Typically, a pair of dual (or orthonormal) bases, B and B∗, are randomly

generated using random linear transformation, and a part of B (say B̂) is used

as a public key and the corresponding part of B∗ (say B̂∗) is used as a secret key

or trapdoor. Therefore, the basis, B − B̂, is information theoretically concealed
against an adversary, i.e., even an infinite power adversary has no idea on which
basis is selected as B − B̂ when B̂ is published. It provides a framework for
information theoretical tricks in the public-key setting.

In the proposed (basic) IPE scheme, span〈B〉 and span〈B∗〉, are (4n + 2)-
dimensional (where the dimension of inner-product vectors is n), and, as for

public parameter B̂, span〈B̂〉 is (2n + 2)-dimensional, i.e., the basis for the re-
maining 2n-dimensional space is information theoretically concealed (ambigu-
ous). We use the 2n-dimensional hidden subspace to realize the various forms of
ciphertext and secret keys and make elaborate game transformations over these
forms towards the final goal, the ‘unbiased’ ciphertext.
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The game transformations are alternating over computational and conceptual
(information theoretical), and the combinations of three types of information
theoretical tricks and three computational tricks (Problems 1, 2 and 3) play a
central role in our approach, as shown in Figure 1. Type 1 is a (conceptual)
linear transformation inside a (hidden) subspace for a ciphertext, Type 2 is a
(conceptual) linear transformation inside a (hidden) subspace for a ciphertext
with preserving the corresponding secret key value, and Type 3 is a (concep-
tual) linear transformation across (hidden and partially public) subspaces. The
security of Problems 1, 2 and 3 is reduced to the DLIN assumption.

See Section 4.2 for the details of our techniques, in which the game transfor-
mations as well as the form changes of ciphertext and secret keys are summarized
in Table 1 and Figure 1.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N → R
is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq\{0} by F×
q . A vector symbol

denotes a vector representation over Fq, e.g., $x denotes (x1, . . . , xn) ∈ Fn
q . For

two vectors $v = (v1, . . . , vn) and $x = (x1, . . . , xn), $v ·$x denotes the inner-product∑n
i=1 xivi. The vector $0 is abused as the zero vector in Fn

q for any n. XT denotes
the transpose of matrix X . I
 denotes the �×� identity matrix. A bold face letter
denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈$x1, . . . , $xn〉) denotes the subspace generated by
b1, . . . , bn (resp. $x1, . . . , $xn). For bases B := (b1, . . . , bN ) and B∗ := (b∗1, . . . , b

∗
N ),

(x1, . . . , xN )B :=
∑N

i=1 xibi and (v1, . . . , vN )B∗ :=
∑N

i=1 vib
∗
i . GL(n,Fq) denotes

the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS) and the Decisional
Linear (DLIN) Assumption

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [17,18]. constructed by using symmetric bilinear pairing groups given in
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Definition 1. For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A∗, e), see
the full version of this paper. The following symmetric version is obtained by
identifying V = V∗ and A = A∗ in the asymmetric version.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V → GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi, Hi) ∈ GT

where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN) ∈ V. This is nondegen-
erate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0
otherwise, and e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0)

where x := (G1, . . . , GN ). We call φi,j “canonical maps”. DPVS generation
algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a description
of param′

V
:= (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It

can be constructed by using Gbpg.

We describe random dual orthonormal basis generator Gob below, which is used
as a subroutine in the proposed (H)IPE scheme.

Gob(1
λ, N) : param′

V := (q,V,GT ,A, e)
R← Gdpvs(1

λ, N), ψ
U← F×

q , gT := e(G,G)ψ ,

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT ),

bi :=
∑N

j=1 χi,jaj,B := (b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B∗ := (b∗1, . . . , b
∗
N ),

return (paramV,B,B
∗).

Definition 3 (DLIN: Decisional Linear Assumption [5]). TheDLINprob-

lem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ),

where GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1
λ), κ, δ, ξ, σ

U← Fq, Y0 :=

(δ + σ)G, Y1
U← G, return (paramG, G, ξG, κG, δξG, σκG, Yβ), for β

U← {0, 1}. For
a probabilistic machine E, we define the advantage of E for the DLIN problem as:

AdvDLIN
E (λ):=

∣∣∣Pr [E(1λ, ()→1
∣∣∣( R←GDLIN

0 (1λ)
]
−Pr

[
E(1λ, ()→1

∣∣∣( R←GDLIN
1 (1λ)

]∣∣∣ .
TheDLINassumption is:Foranyprobabilistic polynomial-timeadversaryE, the ad-
vantage AdvDLIN

E (λ) is negligible in λ.

3 Definition of Inner Product Encryption (IPE)

This section defines predicate encryption (PE) for the class of inner-product
predicates, i.e., inner product encryption (IPE) and its security.
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An attribute of inner-product predicates is expressed as a vector $x ∈ Fn
q \ {$0}

and a predicate f�v is associated with a vector $v, where f�v($x) = 1 iff $v · $x = 0.
Let Σ := Fn

q \ {$0}, i.e., the set of the attributes, and F := {f�v|$v ∈ Fn
q \ {$0}}

i.e., the set of the predicates.

Definition 4. An inner product encryption scheme (for predicates F and at-
tributes Σ) consists of probabilistic polynomial-time algorithms Setup,KeyGen,
Enc and Dec. They are given as follows:

– Setup takes as input security parameter 1λ outputs (master) public key pk
and (master) secret key sk.

– KeyGen takes as input the master public key pk, secret key sk, and predicate
vector $v. It outputs a corresponding secret key sk�v.

– Enc takes as input the master public key pk, plaintext m in some associated
plaintext space, msg, and attribute vector $x. It returns ciphertext ct�x.

– Dec takes as input the master public key pk, secret key sk�v and ciphertext
ct�x. It outputs either plaintext m or the distinguished symbol ⊥.

An IPE scheme should have the following correctness property: for all (pk, sk)
R← Setup(1λ, n), all f�v ∈ F and $x ∈ Σ, all sk�v

R← KeyGen(pk, sk, $v), all messages

m, all ciphertext ct�x
R← Enc(pk,m, $x), it holds that m = Dec(pk, sk�v, ct�x) if

f�v($x) = 1. Otherwise, it holds with negligible probability.
We then define the security notion of IPE, that was called “adaptively secure

and fully attribute-hiding” in Abstract and Section 1. Since we will deal with only
this security notion hereafter, we shortly call it “adaptively attribute-hiding.”

Definition 5. The model for defining the adaptively attribute-hiding security of
IPE against adversary A (under chosen plaintext attacks) is given as follows:

1. Setup is run to generate keys pk and sk, and pk is given to A.
2. A may adaptively make a polynomial number of key queries for predicate vec-

tors, $v. In response, A is given the corresponding key sk�v
R← KeyGen(pk, sk, $v).

3. A outputs challenge attribute vector ($x(0), $x(1)) and challenge plaintexts (m(0),
m(1)), subject to the following restrictions:
– $v · $x(0) �= 0 and $v · $x(1) �= 0 for all the key queried predicate vectors, $v.
– Two challenge plaintexts are equal, i.e., m(0) = m(1), and any key query
$v satisfies f�v($x

(0)) = f�v($x
(1)), i.e., one of the following conditions.

• $v · $x(0) = 0 and $v · $x(1) = 0,
• $v · $x(0) �= 0 and $v · $x(1) �= 0,

4. A random bit b is chosen. A is given ct�x(b)
R← Enc(pk,m(b), $x(b)).

5. The adversary may continue to issue key queries for additional predicate vec-
tors, $v, subject to the restriction given in step 3. A is given the corresponding

key sk�v
R← KeyGen(pk, sk, $v).

6. A outputs a bit b′, and wins if b′ = b.

The advantage of A in the above game is defined as AdvIPE,AHA (λ) := Pr[A wins ]−
1/2 for any security parameter λ. An IPE scheme is adaptively attribute-hiding
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(AH) against chosen plaintext attacks if all probabilistic polynomial-time adver-
saries A have at most negligible advantage in the above game.

For each run of the game, the variable s is defined as s := 0 if m(0) �= m(1)

for challenge plaintexts m(0) and m(1), and s := 1 otherwise.

4 Proposed (Basic) IPE Scheme

4.1 Construction

In the description of the scheme, we assume that the first coordinate, x1, of input
vector, $x := (x1, . . . , xn), is nonzero. Random dual basis generator Gob(1

λ, N) is
defined at the end of Section 2. We refer to Section 1.4 for notations on DPVS.

Setup(1λ, n) :

(paramV,B := (b0, . . . , b4n+1),B
∗ := (b∗0, . . . , b

∗
4n+1))

R← Gob(1
λ, 4n+ 2),

B̂ := (b0, . . . , bn, b4n+1), B̂∗ := (b∗0, . . . , b
∗
n, b

∗
3n+1, . . . , b

∗
4n),

return pk := (1λ, paramV, B̂), sk := B̂∗.

KeyGen(pk, sk, $v ∈ Fn
q \ {$0}) : σ

U← Fq, $η
U← Fn

q ,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
k∗ := ( 1, σ$v, 02n, $η, 0 )B∗ ,

return sk�v := k∗.

Enc(pk, m, $x ∈ Fn
q \ {$0}) : ω, ϕ, ζ

U← Fq,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
c1 := ( ζ, ω$x, 02n, 0n, ϕ )B, c2 := gζTm,

return ct�x := (c1, c2).

Dec(pk, sk�v := k∗, ct�x := (c1, c2)) : m′ := c2/e(c1,k
∗), return m′.

[Correctness] If $v · $x = 0, then e(c1,k
∗) = gζ+ωσ�v·�x

T = gζT .

4.2 Security

Main Theorem (Theorem 1) and Main Lemma (Lemma 1)

Theorem 1. The proposed IPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1
and E1-2-2, whose running times are essentially the same as that of A, such that
for any security parameter λ,

AdvIPE,AHA (λ) ≤ AdvDLIN
E0-1

(λ) + AdvDLIN
E1-1

(λ)

+
∑ν

h=1

(
AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)

)
+ ε,
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where E0-2-h(·) := E0-2(h, ·), E1-2-h-1(·) := E1-2-1(h, ·), E1-2-h-2(·) := E1-2-2(h, ·), ν
is the maximum number of A’s key queries and ε := (18ν + 17)/q.

Proof. First, we execute a preliminary game transformation from Game 0 (orig-
inal security game in Definition 5) to Game 0’, which is the same as Game 0

except that flip a coin t
U← {0, 1} before setup, and the game is aborted in step

3 if t �= s. We define that A wins with probability 1/2 when the game is aborted
(and the advantage in Game 0’ is Pr[A wins ]− 1/2 as well). Since t is indepen-
dent from s, the game is aborted with probability 1/2. Hence, the advantage in

Game 0’ is a half of that in Game 0, i.e., AdvIPE,AH,0′

A (λ) = 1/2 · AdvIPE,AHA (λ).
Moreover, Pr[A wins] = 1/2 · (Pr[A wins | t = 0] + Pr[A wins | t = 1]) in Game
0’ since t is uniformly and independently generated.

As for the conditional probability with t = 0, it holds that, for any adversary
A, there exist probabilistic machines E1 and E2, whose running times are essen-
tially the same as that of A, such that for any security parameter λ, in Game
0’,

Pr[A wins | t = 0]− 1/2 ≤ AdvDLIN
E1

(λ) +
∑ν

h=1 Adv
DLIN
E2-h

(λ) + ε,

where E2-h(·) := E2(h, ·) and ν is the maximum number of A’s key queries and
ε := (6ν + 5)/q. This is obtained in the same manner as the weakly attribute-
hiding security of the OT10 IPE in the full version of [19]: Since the difference
between our IPE and the OT10 IPE is only the dimension of the hidden sub-
spaces, i.e., the former has 2n and the latter has n, the weakly attribute-hiding
security of the OT10 IPE implies the security with t = 0 of our IPE.

As for the conditional probability with t = 1, i.e., Pr[A wins | t = 1], Lemma
1 (Eq. (1)) holds. Therefore,

AdvIPE,AHA (λ) = 2 · AdvIPE,AH,0′

A (λ) = Pr[A wins | t = 0] + Pr[A wins | t = 1]− 1

= (Pr[A wins | t = 0]− 1/2) + (Pr[A wins | t = 1]− 1/2)

≤ AdvDLIN
E0-1

(λ) +
∑ν

h=1 Adv
DLIN
E0-2-h

(λ) + AdvDLIN
E1-1

(λ)

+
∑ν

h=1

(
AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)

)
+ ε, where ε := (18ν + 17)/q. ��

Lemma 1 (Main Lemma). For any adversary A, there exist probabilistic ma-
chines E1, E2-1 and E2-2, whose running times are essentially the same as that of
A, such that for any security parameter λ, in Game 0’ (described in the proof of
Theorem 1),

Pr[A wins | t = 1]− 1/2

≤ AdvDLIN
E1

(λ) +
∑ν

h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)

)
+ ε, (1)

where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is the maximum number of
A’s key queries and ε := (12ν + 12)/q.
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Proof Outline of Lemma 1 At the top level strategy of the security proof, an
extended form of the dual system encryption by Waters [25] is employed, where
ciphertexts and secret keys have three forms, normal, temporal 1 and temporal
2. The real system uses only normal ciphertexts and normal secret keys, and
temporal 1 and 2 ciphertexts and keys are used only in a sequence of security
games for the security proof. (Additionally, ciphertexts have temporal 0 and
unbiased forms. See below.)

To prove this lemma, we only consider the t = 1 case. We employ Game 0’
(described in the proof of Theorem 1) through Game 3. In Game 1, the challenge
ciphertext is changed to temporal 0 form. When at most ν secret key queries are
issued by an adversary, there are 4ν game changes from Game 1 (Game 2-0-4),
Game 2-1-1, Game 2-1-2, Game 2-1-3, Game 2-1-4 through Game 2-ν-1, Game
2-ν-2, Game 2-ν-3, Game 2-ν-4.

In Game 2-h-1, the challenge ciphertext is changed to temporal 1 form, and
the first h − 1 keys are temporal 2 form, while the remaining keys are normal.
In Game 2-h-2, the h-th key is changed to temporal 1 form while the remaining
keys and the challenge ciphertext is the same as in Game 2-h-1. In Game 2-h-3,
the challenge ciphertext is changed to temporal 2 form while all the queried
keys are the same as in Game 2-h-2. In Game 2-h-4, the h-th key is changed to
temporal 2 form while the remaining keys and the challenge ciphertext is the
same as in Game 2-h-3. At the end of the Game 2 sequence, in Game 2-ν-4, all
the queried keys are temporal 2 forms (and the challenge ciphertext is temporal
2 form), which allows the next conceptual change to Game 3. In Game 3, the
challenge ciphertext is changed to unbiased form (while all the queried keys are
temporal 2 form). In the final game, advantage of the adversary is zero.

We summarize these changes in Table 1, where shaded parts indicate the
challenge ciphertext or queried key(s) which were changed in a game from the
previous game

As usual, we prove that the advantage gaps between neighboring games are
negligible.

For ct�x := (c1, c2), we focus on c1, and ignore the other part of ct�x, i.e., c2,
(and call c1 ciphertext) in this proof outline. In addition, we ignore a negligible
factor in the (informal) descriptions of this proof outline. For example, we say
“A is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible in security
parameter λ.

A normal secret key, k∗ norm (with vector $v), is the correct form of the secret
key of the proposed IPE scheme, and is expressed by Eq. (2). Similarly, a normal
ciphertext (with vector $x), c norm

1 , is expressed by Eq. (3). A temporal 0 ciphertext
is expressed by Eq. (4). A temporal 1 ciphertext, c temp1

1 , is expressed by Eq. (5)
and a temporal 1 secret key, k∗ temp1, is expressed by Eq. (6). A temporal 2
ciphertext, c temp2

1 , is expressed by Eq. (7) and a temporal 2 secret key, k∗ temp2,
is expressed by Eq. (8). An unbiased ciphertext, c unbias

1 , is expressed by Eq. (9).
To prove that the advantage gap between Games 0’ and 1 is bounded by the

advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the
challenger of Game 0’ (or 1) (against an adversary A) by using an instance with
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Table 1. Outline of Game Descriptions

Game Challenge Queried keys

ciphertext 1 · · · h− 1 h h+ 1 · · · ν

0’ normal normal

1 temporal 0 normal

2-1-1 temporal 1 normal

2-1-2 temporal 1 temporal 1 normal

2-1-3 temporal 2 temporal 1 normal

2-1-4 temporal 2 temporal 2 normal

...

2-h-1 temporal 1 temporal 2 normal

2-h-2 temporal 1 temporal 2 temporal 1 normal

2-h-3 temporal 2 temporal 2 temporal 1 normal

2-h-4 temporal 2 temporal 2 temporal 2 normal

...

2-ν-4 temporal 2 temporal 2 temporal 2

3 unbiased temporal 2

β
U← {0, 1} of Problem 1. We then show that the distribution of the secret keys

and challenge ciphertext replied by the simulator is equivalent to those of Game
0’ when β = 0 and those of Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0’ and 1 (Lemma
6). The advantage of Problem 1 is proven to be equivalent to that of the DLIN
assumption (Lemma 2).

We then show that Game 2-(h− 1)-4 can be conceptually changed to Game
2-h-1 (Lemma 7), by using the fact that parts of bases, (bn+1, . . . , b2n) and
(b∗n+1, . . . , b

∗
2n), are unknown to the adversary. In particular, when h = 1,

it means that Game 1 can be conceptually changed to Game 2-1-1. When
h ≥ 2, we notice that temporal 2 key and temporal 1 challenge ciphertext,
(k∗ temp2, ctemp1

1 ), are equivalent to temporal 2 key and temporal 2 challenge ci-

phertext, (k∗ temp2, ctemp2
1 ), except that $x(b) is used in ctemp1

1 instead of ω′
0$x

(0) +

ω′
1$x

(1) (with ω′
0, ω

′
1

U← Fq) for some coefficient vector in ctemp2
1 . This change of

coefficient vectors can be done conceptually since zero vector 0n is used for the
corresponding part in k∗ temp2.

The advantage gap between Games 2-h-1 and 2-h-2 is shown to be bounded
by the advantage of Problem 2, i.e., advantage of the DLIN assumption (Lemmas
8 and 3).
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Fig. 1. Structure of Reductions

We then show that Game 2-h-2 can be conceptually changed to Game 2-h-
3 (Lemma 9), again by using the fact that parts of bases, (bn+1, . . . , b2n) and
(b∗n+1, . . . , b

∗
2n), are unknown to the adversary. In this conceptual change, we

use the fact that all key queries $v satisfy $v · $x(0) = $v · $x(1) = 0 or $v · $x(0) �= 0
and $v · $x(1) �= 0. Here, we notice that temporal 1 key and temporal 1 challenge
ciphertext, (k∗ temp1, ctemp1

1 ), are equivalent to temporal 1 key and temporal 2

challenge ciphertext, (k∗ temp1, ctemp2
1 ), except that random linear combination

ω′
0$x

(0) + ω′
1$x

(1) (with ω′
0, ω

′
1

U← Fq) is used in ctemp2
1 instead of $x(b) for some

coefficient vector in ctemp1
1 . This conceptual change is proved by using Lemma 5.

The advantage gap between Games 2-h-3 and 2-h-4 is similarly shown to be
bounded by the advantage of Problem 3, i.e., advantage of the DLIN assumption
(Lemmas 10 and 4).

We then show that Game 2-ν-4 can be conceptually changed to Game 3
(Lemma 11) by using the fact that parts of bases, (bn+1, . . . , b3n) and (b∗1, . . . ,
b∗2n), are unknown to the adversary.

Figure 1 shows the structure of the security reduction, where the security of
the scheme is hierarchically reduced to the intractability of the DLIN problem.
The reduction steps indicated by dotted arrows can be shown in the same manner
as that in (the full version of) [19].

Proof of Lemma 1. To prove Lemma 1, we consider the following 4ν + 3
games when t = 1. In Game 0’, a part framed by a box indicates coefficients to
be changed in a subsequent game. In the other games, a part framed by a box
indicates coefficients which were changed in a game from the previous game.

Game 0’ : Same as Game 0 except that flip a coin t
U← {0, 1} before setup,

and the game is aborted in step 3 if t �= s. In order to prove Lemma 1, we
consider the case with t = 1. The reply to a key query for $v is:
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k∗ := ( 1, σ$v, 0n , 0n , $η, 0 )B∗ , (2)

where σ
U← Fq and $η

U← Fn
q . The challenge ciphertext for challenge plaintext

m := m(0) = m(1) and vectors ($x(0), $x(1)) is:

c1 := ( ζ, ω$x(b) , 0n , 0n , 0n, ϕ )B, c2 := gζTm, (3)

where b
U← {0, 1} and ζ, ω, ϕ

U← Fq. Here, we note that c2 is independent
from bit b.

Game 1 : Game 1 is the same as Game 0’ except that c1 of the challenge
ciphertext for (challenge plaintext m := m(0) = m(1) and) vectors ($x(0), $x(1))
is:

c1 := ( ζ, ω$x(b), zx
(b)
1 , 0n−1 , 0n, 0n, ϕ )B, (4)

where x
(b)
1 �= 0 is the first coordinate of $x(b), z

U← Fq and all the other
variables are generated as in Game 0’.

Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-4 is Game 1. Game 2-h-1 is the same
as Game 2-(h− 1)-4 except that c1 of the challenge ciphertext for (challenge
plaintext m := m(0) = m(1) and) vectors ($x(0), $x(1)) is:

c1 := ( ζ, ω$x(b), ω′$x(b) , ω′′
0$x

(0) + ω′′
1$x

(1) , 0n, ϕ )B, (5)

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game
2-(h− 1)-4.

Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except
that the reply to the h-th key query for $v is:

k∗ := ( 1, σ$v, σ′$v , 0n, $η, 0 )B∗ , (6)

where σ′ U← Fq and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except

that c1 of the challenge ciphertext for (challenge plaintextsm := m(0) = m(1)

and) vectors ($x(0), $x(1)) is:

c1 := ( ζ, ω$x(b), ω′
0$x

(0) + ω′
1$x

(1) , ω′′
0$x

(0) + ω′′
1$x

(1), 0n, ϕ )B, (7)

where ω′
0, ω

′
1

U← Fq and all the other variables are generated as in Game
2-h-2.

Game 2-h-4 (h = 1, . . . , ν) : Game 2-h-4 is the same as Game 2-h-3 except
that the reply to the h-th key query for $v is:

k∗ := ( 1, σ$v, 0n , σ′′$v , $η, 0 )B∗ , (8)

where σ′′ U← Fq and all the other variables are generated as in Game 2-h-3.
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Game 3 : Game 3 is the same as Game 2-ν-4 except that c1 of the challenge ci-
phertext for (challenge plaintexts m := m(0) = m(1) and) vectors ($x(0), $x(1))
is:

c1 :=( ζ, ω0$x
(0) + ω1$x

(1) , ω′
0$x

(0) + ω′
1$x

(1), ω′′
0$x

(0) + ω′′
1$x

(1), 0n, ϕ )B, (9)

where ω0, ω1
U← Fq and all the other variables are generated as in Game

2-ν-4. Here, we note that c1 is independent from bit b
U← {0, 1}.

Let Adv
(0′)
A (λ),Adv

(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ) and Adv

(3)
A (λ) be the

advantage of A in Game 0′, 1, 2-h-1, . . . , 2-h-4 and 3 when t = 1, respectively.

Adv
(0′)
A (λ) is equivalent to the left-hand side of Eq. (1). We will show six lemmas

(Lemmas 6–11) that evaluate the gaps between pairs of neighboring games. From

these lemmas and Lemmas 2–4, we obtain Adv
(0′)
A (λ) ≤

∣∣∣Adv(0′)A (λ) − Adv
(1)
A (λ)

∣∣∣+∑ν
h=1

∑4
ι=1

∣∣∣Adv(2-h-(ι−1))
A (λ) −Adv

(2-h-ι)
A (λ)

∣∣∣ + ∣∣∣Adv(2-ν-4)A (λ) − Adv
(3)
A (λ)

∣∣∣+
Adv

(3)
A (λ) ≤ AdvP1B1

(λ) +
∑ν

h=1

(
AdvP2B2-h-1

(λ) + AdvP3B2-h-2
(λ)

)
+ (2ν + 1)/q ≤

AdvDLIN
E1

(λ) +
∑ν

h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)

)
+ (12ν + 12)/q. ��

The definitions of Problems 1–3 and the advantages (AdvP1B (λ), AdvP2B (λ), AdvP3B (λ)),
and the proofs of Lemmas 2–12 are given in the full version [21].

Lemma 2 (resp. 3, 4). For any adversary B, there is a probabilistic machine
E, whose running time is essentially the same as that of B, such that for any secu-
rity parameter λ, AdvP1B (λ) ≤ AdvDLIN

E (λ) + 6/q, (resp.AdvP2B (λ) ≤ AdvDLIN
E (λ) +

5/q, AdvP3B (λ) ≤ AdvDLIN
E (λ) + 5/q).

Lemma 5 is the same as Lemma 3 in [19].

Lemma 6. For any adversary A, there exists a probabilistic machine B1, whose
running time is essentially the same as that of A, such that for any security

parameter λ, |Adv(0
′)

A (λ) − Adv
(1)
A (λ)| ≤ AdvP1B1

(λ).

Lemma 7. For any adversary A, |Adv(2-(h−1)-4)
A (λ) − Adv

(2-h-1)
A (λ)| ≤ 2/q.

Lemma 8. For any adversary A, there exists a probabilistic machine B2-1, whose
running time is essentially the same as that of A, such that for any security

parameter λ, |Adv(2-h-1)A (λ) − Adv
(2-h-2)
A (λ)| ≤ AdvP2B2-h-1

(λ), where B2-h-1(·) :=
B2-1(h, ·).

Lemma 9. For any adversary A, Adv
(2-h-2)
A (λ) = Adv

(2-h-3)
A (λ).

Lemma 10. For any adversary A, there exists a probabilistic machine B2-2,
whose running time is essentially the same as that of A, such that for any secu-

rity parameter λ, |Adv(2-h-3)A (λ)−Adv
(2-h-4)
A (λ)| ≤ AdvP3B2-h-2

(λ), where B2-h-2(·) :=
B2-2(h, ·).

Lemma 11. For any adversary A, |Adv(2-ν-4)A (λ) − Adv
(3)
A (λ)| ≤ 1/q.

Lemma 12. For any adversary A, Adv
(3)
A (λ) = 0.



Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption 605

5 A Variant for Achieving Shorter Public and SecretKeys

A variant of the proposed (basic) IPE scheme with the same security, that
achieves a shorter (O(n)-size) master public key and shorter (O(1)-size) secret
keys (excluding the description of $v), can be constructed by combining with the
techniques in [20], where n is the dimension of vectors of the IPE scheme. This
variant also enjoys more efficient decryption. Here, we show this variant. See the
key idea, performance and the security proof of this scheme in the full versions
of this paper [21] and [20]. Let N := 5n+ 1 and

H(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
μ μ′

1

. . .
...

μ μ′
n−1

μ′
n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
μ, μ′

l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (10)

L+(5, n,Fq) :=⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎜⎜⎝
χ0,0 χ0,1$en · · · χ0,5$en
$χT
1,0 X1,1 · · · X1,5

...
...

...
$χT
5,0 X5,1 · · · X5,5

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
Xi,j ∈ H(n,Fq),
$χi,0 := (χi,0,l)l=1,...,n ∈ Fn

q ,
χ0,0, χ0,j ∈ Fq

for i, j = 1, . . . , 5

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(N,Fq). (11)

We note that L+(5, n,Fq) is a subgroup of GL(N,Fq). Random dual orthonormal

basis generator GZIPE,SK
ob below is used as a subroutine in the proposed IPE.

GZIPE,SK
ob (1λ, 5, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1
λ), N := 5n+ 1,

ψ
U← F×

q , gT := e(G,G)ψ , paramV := (q,V,GT ,A, e) := Gdpvs(1
λ, N, paramG),

paramn := (paramV, gT ), X
U← L+(5, n,Fq), (ϑi,j)i,j=0,...,5n := ψ · (XT)−1,

hereafter, {χ0,0, χ0,j, χi,0,l, μi,j , μ
′
i,j,l}i,j=1,...5;l=1,...,n denotes non-zero

entries of X, where {μi,j, μ
′
i,j,l} are non-zero entries of submatrices Xi,j of

X as given in Eqs. (11) and (10),

bi := (ϑi,0, . . . , ϑi,5n)A =
∑5n

j=0 ϑi,jaj for i = 0, . . . , 5n, B := (b0, . . . , b5n),

B∗
0,0 := χ0,0G,B

∗
0,j := χ0,jG,B

∗
i,0,l := χi,0,lG,B

∗
i,j := μi,jG,B

′∗
i,j,l := μ′

i,j,lG

for i, j = 1, . . . , 5; l = 1, . . . , n,

return (paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′∗
i,j,l}i,j=1,...,5;l=1,...,n).

Remark 1. Let b∗0 := ( B∗
0,0, 0

n−1, B∗
0,1, . . . , 0

n−1, B∗
0,5 ),

⎛⎜⎜⎝
b∗(i−1)n+1

...

b∗in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
B∗

i,0,1 B∗
i,1 B′∗

i,1,1

...
. . .

...

B∗
i,0,n−1 B∗

i,1 B
′∗
i,1,n−1

B∗
i,0,n B′∗

i,1,n

· · ·

B∗
i,5 B′∗

i,5,1

. . .
...

B∗
i,5 B

′∗
i,5,n−1

B′∗
i,5,n

⎞⎟⎟⎟⎟⎟⎠
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for i = 1, . . . , 5, and B∗ := (b∗0, . . . , b
∗
5n), where a blank element in the matrix

denotes 0 ∈ G. B∗ is the dual orthonormal basis of B, i.e., e(bi, b
∗
i ) = gT and

e(bi, b
∗
j ) = 1 for 0 ≤ i �= j ≤ 5n.

Here, we assume that input vector, $v := (v1, . . . , vn), has an index l (1 ≤ l ≤
n− 1) with vl �= 0, and that input vector, $x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) :

(paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,5;l=1,...,n)

R← GZIPE,SK
ob (1λ, 5, n),

B̂ := (b0, . . . , bn, b4n+1, . . . , b5n),

return pk :=(1λ, paramn, B̂), sk :={B∗
0,0, B

∗
0,j, B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,..,5;l=1,..,n.

KeyGen(pk, sk, $v) : σ, η
U← Fq, K∗

0 := B∗
0,0 +

∑n
l=1 vl(σB

∗
1,0,l + ηB∗

4,0,l),

K∗
1,j := σB∗

1,j + ηB∗
4,j , K

∗
2,j := B∗

0,j +
∑n

l=1 vl(σB
′ ∗
1,j,l + ηB′ ∗

4,j,l) for j = 1, .., 5,

return sk�v := ($v,K∗
0 , {K∗

1,j,K
∗
2,j}j=1,...,5).

Enc(pk, m, $x) : ω, ζ
U← Fq, $ϕ

U← Fn
q , c1 := ( ζ,

n︷︸︸︷
ω$x ,

2n︷ ︸︸ ︷
02n ,

n︷︸︸︷
0n ,

n︷︸︸︷
$ϕ )B,

c2 := gζTm, return ct�x := (c1, c2).

Dec(pk, sk�v := ($v,K∗
0 , {K∗

1,j,K
∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

Parse c1 as a (5n+ 1)-tuple (C0, . . . , C5n) ∈ G5n+1,

Dj :=
∑n−1

l=1 vlC(j−1)n+l for j = 1, . . . , 5,

F := e(C0,K
∗
0 ) ·

∏5
j=1

(
e(Dj,K

∗
1,j) · e(Cjn,K

∗
2,j)

)
, return m′ := c2/F.

Remark 2. A part of output of Setup(1λ, n),

{B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,...,5;l=1,...,n, can be identified with B̂∗ :=

(b∗0, . . . , b
∗
n, b

∗
3n+1, . . . , b

∗
4n), while B∗ := (b∗0, . . . , b

∗
5n) is identified with

{B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,...,5;j=1,...,5;l=1,...,n in Remark 1. Decryption Dec

can be alternatively described as:

Dec′(pk, sk�v := ($v,K∗
0 , {K∗

1,j,K
∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

k∗ := (

n︷ ︸︸ ︷
K∗

0 , v1K
∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . ,

n︷ ︸︸ ︷
v1K

∗
1,5, .., vn−1K

∗
1,5,K

∗
2,5 ),

that is, k∗ = (1,

n︷ ︸︸ ︷
σ$v,

2n︷ ︸︸ ︷
02n,

n︷︸︸︷
η$v

n︷︸︸︷
0n )B∗ , F := e(c1,k

∗),

return m′ := c2/F.

Theorem 2. The proposed IPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the DLIN assumption.

6 Comparison

Table 2 compares the proposed IPE schemes in Sections 4 and 5 with existing
attribute-hiding IPE schemes in [15,18,16,19].
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Table 2. Comparison with IPE schemes in [15,18,16,19], where |G| and |GT | represent
size of an element of G and that of GT , respectively. AH, PK, SK, CT, GSD, DSP
and eDDH stand for attribute-hiding, master public key, secret key, ciphertext, general
subgroup decision [1], decisional subspace problem [18], and extended decisional Diffie-
Hellman [16], respectively.

KSW08 [15] OT09 [18] LOS+10 [16] OT10 [19]
Proposed
(basic)

Proposed
(variant)

Security
selective &
fully-AH

selective &
weakly-AH

adaptive &
weakly-AH

adaptive &
weakly-AH

adaptive &
fully-AH

adaptive &
fully-AH

Order
of G

composite prime prime prime prime prime

Assump.
2 variants
of GSD

2 variants
of DSP

n-eDDH DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G|
SK size (2n+ 1)|G| (n+ 3)|G| (2n+ 3)|G| (3n+ 2)|G| (4n+ 2)|G| 11|G|

CT size
(2n+ 1)|G|
+ |GT |

(n+ 3)|G|
+ |GT |

(2n+ 3)|G|
+ |GT |

(3n+ 2)|G|
+ |GT |

(4n+ 2)|G|
+ |GT |

(5n+ 1)|G|
+ |GT |
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Abstract. Group signatures are a central cryptographic primitive, si-
multaneously supporting accountability and anonymity. They allow users
to anonymously sign messages on behalf of a group they are members of.
The recent years saw the appearance of several constructions with secu-
rity proofs in the standard model (i.e., without appealing to the random
oracle heuristic). For a digital signature scheme to be adopted, an efficient
revocation scheme (as in regular PKI) is absolutely necessary. Despite
over a decade of extensive research, membership revocation remains a
non-trivial problem in group signatures: all existing solutions are not
truly scalable due to either high overhead (e.g., large group public key
size), or limiting operational requirement (the need for all users to follow
the system’s entire history). In the standard model, the situation is even
worse as many existing solutions are not readily adaptable. To fill this gap
and tackle this challenge, we describe a new revocation approach based,
perhaps somewhat unexpectedly, on the Naor-Naor-Lotspiech framework
which was introduced for a different problem (namely, that of broadcast
encryption). Our mechanism yields efficient and scalable revocable group
signatures in the standard model. In particular, the size of signatures and
the verification cost are independent of the number of revocations and the
maximal cardinality N of the group while other complexities are at most
polylogarithmic in N . Moreover, the schemes are history-independent:
unrevoked group members do not have to update their keys when a re-
vocation occurs.

Keywords: Group signatures, revocation, standard model, efficiency.

1 Introduction

As suggested by Chaum and van Heyst in 1991 [31], group signatures allow
members of a group to anonymously sign messages on behalf of a population
groupmembers managed by a group authority. Using some trapdoor information,
a tracing authority must be able to “open” signatures and identify the signer.
A complex problem in group signatures is the revocation of members whose
signing capability should be disabled (either because they misbehaved or they
intentionally leave the group).
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1.1 Related Work

Group signatures without revocation. The first efficient and provably
coalition-resistant group signature was described by Ateniese, Camenisch, Joye
and Tsudik in 2000 [7]. At that time, the security of group signatures was not
totally understood and proper security definitions were given later on by Bellare,
Micciancio and Warinschi [9] (BMW) whose model captures all the requirements
of group signatures in three properties. In (a relaxation of) this model, Boneh,
Boyen and Shacham [16] obtained a construction in the random oracle model
[10] with signatures shorter than 200 bytes [13].

In the BMW model, the population of users is frozen after the setup phase
beyond which no new member can be added. Dynamic group signatures were
independently formalized by Kiayias and Yung [42] and Bellare-Shi-Zhang [11].
In these models, pairing-based schemes with relatively short signatures were put
forth in [50,32]. Ateniese et al. [6] also gave a construction without random or-
acles using interactive assumptions. In the BMW model [9], Boyen and Waters
independently came up with a different standard model proposal [19] using more
classical assumptions and they subsequently refined their scheme [20] to obtain
constant-size signatures. In the dynamic model [11], Groth [37] described a sys-
tem with constant-size signatures without random oracles but this scheme was
rather a feasibility result than an efficient construction. Later on, Groth gave
[38] a fairly efficient realization – with signatures consisting of about 50 group
elements – in the standard model with the strongest anonymity level.

Revocation. In group signatures, membership revocation has received much
attention in the last decade [21,8,28,18] since revocation is central to digital sig-
nature schemes. One simple solution is to generate a new group public key and
deliver a new signing key to each unrevoked member. However, in large groups,
it may be inconvenient to change the public key and send a new secret to signers
after they joined the group. An alternative approach taken by Bresson and Stern
[21] is to have the signer prove that his membership certificate does not appear
in a public list or revoked certificates. Unfortunately, the signer’s workload and
the size of signatures grow with the number of expelled users.

Song [51] presented an approach handling revocation in forward-secure group
signatures. However, verification takes linear time in the number of revocations.

Using accumulators1 [12], Camenisch and Lysyanskaya [28] proposed a method
(followed by [55,26]) to revoke users in the ACJT group signature [7] while keep-
ing O(1) costs for signing and verifying. While elegant, this approach is history-
dependent and requires users to keep track of all changes in the population of
the group: at each modification of the accumulator value, unrevoked users need
to update their membership certificates before signing new messages, which may
require up to O(r) exponentiations if r is the number of revoked users.

Brickell [22] suggested the notion of verifier-local revocation group signa-
tures, which was formalized by Boneh and Shacham [18] and further studied

1 An accumulator allows hashing a set of values into a short string of constant size
while allowing to efficiently prove that a specific value was accumulated.
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in [47,56,45]. In their systems, revocation messages are only sent to verifiers
(making the signing algorithm independent of the number of revocations). The
group manager maintains a revocation list (RL) which is used by verifiers to
make sure that signatures were not generated by a revoked member. The RL
contains a token for each revoked user and the verification algorithm has to ver-
ify signatures w.r.t. each token (a similar revocation mechanism is used in [23]).
As a result, the verification cost is inevitably linear in the number of expelled
users.

More recently, Nakanishi, Fuji, Hira and Funabiki [46] described a construc-
tion with constant complexities for signing/verifying and where group members
never have to update their credentials. On the other hand, their proposal has
the disadvantage of linear-size group public keys (in the maximal number N of
users), although a tweak allows reducing the size to O(N1/2).

In the context of anonymous credentials, Tsang et al. [53,54] showed how
to blacklist users without compromising their anonymity or involving a trusted
third party. Their protocols either have linear proving complexity in the num-
ber of revocations or rely on accumulators (which may be problematic for our
purposes). Camenisch, Kohlweiss and Soriente [27] handle revocations by period-
ically updating users credentials in which a specific attribute indicates a validity
period. While useful in certain applications of anonymous credentials, in group
signatures, their technique would place quite a burden on the group manager
who would have to generate updates for each unrevoked individual credential.

1.2 Our Contribution

For the time being and despite years of research efforts, group signatures in
the standard model have no revocation mechanism allowing for scalable (i.e.,
constant or polylogarithmic) verification time without dramatically degrading
the efficiency in other metrics and without being history-dependent. In pairing-
based group signatures, accumulator-based approaches are unlikely to result in
solutions supporting very large groups. The reason is that, in known pairing-
based accumulators [49,26], public keys have linear size in the maximal number
of accumulated values (unless one sacrifices the constant size of proofs of non-
membership as in [5]), which would result in linear-size group public keys in
straightforward implementations. Recently [34], Fan et al. suggested a different
way to use the accumulator of [26] and announced constant-size group public
keys but their scheme still requires the group manager to publicize O(N) values
at each revocation. In a revocation mechanism along the lines of [28], Boneh,
Boyen and Shacham [16] managed to avoid linear dependencies. However, their
technique seems hard to combine2 with Groth-Sahai proofs [39] so as to work

2 In [16], signing keys consist of pairs (g1/(ω+s), s) ∈ G×Zp, where ω ∈ Zp is the private
key of the group manager, and the revocation mechanism relies on the availability
of the exponent s ∈ Zp. In the standard model, the Groth-Sahai techniques would
require to turn the membership certificates into triples (g1/(ω+s), gs, us), for some
u ∈ G (as in [20]), which is no longer compatible with the revocation technique.
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in the standard model. In addition, we would like to save unrevoked users from
having to update their keys after each revocation. To this end, it seems possible
to adapt the approach of [46] in the standard model. However, merely replac-
ing sigma-protocols by Groth-Sahai proofs in the scheme of [46] would result in
group public keys of size O(N1/2) in the best case.

In this paper, we describe a novel and scalable revocation technique that in-
teracts nicely with Groth-Sahai proofs and gives constructions in the standard
model with O(1) verification cost and at most polylogarithmic complexity in
other metrics. Our approach bears similarities with the one of Nakanishi et al.
[46] in that it does not require users to update their membership certificates at
any time but, unlike [46], our group public key size is either O(logN) or con-
stant. Like the scheme of [46], our main system uses revocation lists (RLs) of size
O(r) – which is in line with RLs of standard PKIs – and we emphasize that these
are not part of the group public key: verifiers only need to know the number of
the latest revocation epoch and they do not have to read RLs entirely.

To obtain our constructions, we turn to the area of broadcast encryption and
build on the Subset Cover framework of Naor, Naor and Lotspiech [48] (NNL).
In a nutshell, the idea is to use the NNL ciphertext as a revocation list and
have non-revoked signers prove their ability to decrypt in order to convince veri-
fiers that they are not revoked. In its public-key variant, due to Dodis and Fazio
[33], the Subset Cover framework relies on hierarchical identity-based encryption
(HIBE) [41,36] and each NNL ciphertext consists of several HIBE encryptions.
To anonymously sign a message, we let group members commit to the specific
HIBE ciphertext that they can decrypt (which gives constant-size signatures
since only one ciphertext is committed to), and provide a non-interactive proof
that: (i) they hold a private key which decrypts the committed HIBE ciphertext.
(ii) The latter belongs to the revocation list.

By applying this approach to the Subset Difference (SD) method [48], we
obtain a scheme with O(1)-size signatures, O(logN)-size group public keys,
membership certificates of size O(log3N) and revocation lists of size O(r). The
Layered Subset Difference method [40] can be used in the same way to obtain
membership certificates of sizeO(log2.5N). Using the Complete Subtree method,
we obtain a tradeoff with O(r · logN) revocation lists, log-size membership cer-
tificates and constant-size group public keys.

A natural question is whether our SD-based revocable group signatures can
generically use any HIBE scheme. The answer is negative as the Boneh-Boyen-
Goh (BBG) construction [15] is currently the only suitable candidate. Indeed, for
anonymity reasons, ciphertexts should be of constant size and our security proof
requires the HIBE system to satisfy a new and non-standard security property
which is met by [15]. As we will see, the proof can hardly rely on the standard
security notion for HIBE schemes [36].

We note that the new revocation mechanism can find applications in con-
texts other than group signatures. For example, it seems that it can be used in
the oblivious transfer with access control protocol of [25], which also uses the
technique of Nakanishi et al. [46] to revoke credentials.
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2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G × G → GT over groups of prime order p where
e(g, h) �= 1GT whenever g, h �= 1G. We assume the hardness of several problems.

Definition 1 ([16]). The Decision Linear Problem (DLIN) in G, is to
distinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with
a, b, c, d R← Z∗

p, z
R← Z∗

p.

Definition 2 ([13]). The q-Strong Diffie-Hellman Problem (q-SDH) in
G is, given (g, ga, . . . , g(a

q)), for some g R← G and a R← Zp, to find a pair
(g1/(a+s), s) ∈ G × Zp.

We appeal to yet another “q-type” assumption introduced by Abe et al. [2].

Definition 3 ([2]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃ ∈ G

)
and q ∈ poly(λ)

tuples (zj , rj , sj , tj, uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),

to find a new tuple (z�, r�, s�, t�, u�, v�, w�) ∈ G7 satisfying the above relation
and such that z� �= 1G and z� �= zj for j ∈ {1, . . . , q}.

2.2 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors or matrices A and B con-
taining group elements, A*B stands for their entry-wise product.

In their instantiations based on the DLIN assumption, the Groth-Sahai (GS)
techniques [39] make use of prime order groups and a common reference string

comprising vectors $f1, $f2, $f3 ∈ G3, where $f1 = (f1, 1, g), $f2 = (1, f2, g) for some

f1, f2 ∈ G. To commit to an elementX ∈ G, one sets $C = (1, 1, X)* $f1
r
* $f2

s
* $f3

t

with r, s, t R← Z∗
p. When the CRS is configured to give perfectly sound proofs,

we have $f3 = $f1
ξ1 * $f2

ξ2
where ξ1, ξ2 ∈ Z∗

p. Commitments to group elements
$C = (f r+ξ1t

1 , f s+ξ2t
2 , X · gr+s+t(ξ1+ξ2)) are then Boneh-Boyen-Shacham (BBS)

ciphertexts [16] that can be decrypted using β1 = logg(f1), β2 = logg(f2). In the

witness indistinguishability (WI) setting, vectors $f1, $f2, $f3 are linearly indepen-

dent and $C is a perfectly hiding commitment. Under the DLIN assumption, the
two kinds of CRS are computationally indistinguishable.

To commit to a scalar x ∈ Zp, one computes $C = $ϕx * $f1
r
* $f2

s
, where r, s R←

Z∗
p, using a CRS comprising vectors $ϕ, $f1, $f2. In the soundness setting, $ϕ, $f1, $f2

are linearly independent (typically $ϕ = $f3 * (1, 1, g) where $f3 = $f1
ξ1 * $f2

ξ2
)

whereas, in the WI setting, choosing $ϕ = $f1
ξ1 * $f2

ξ2
gives a perfectly hiding
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commitment since $C is always a BBS encryption of 1G, no matter which expo-
nent x is committed to.

To prove that committed variables satisfy a set of relations, the prover com-
putes one commitment per variable and one proof element (made of a constant
number of group elements) per relation.

Such proofs are available for pairing-product equations, which are of the type
n∏

i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)
aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayi

i ·
n∏

j=1

X bj
j ·

m∏
i=1

·
n∏

j=1

X yiγij

j = T, (2)

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (1))
only take 3 group elements each. Linear multi-exponentiation equations of the
type

∏m
i=1 Ayi

i = T demand 2 group elements.
Multi-exponentiation equations admit zero-knowledge (NIZK) proofs at no

additional cost. On a simulated CRS (prepared for the WI setting), a trapdoor
makes it is possible to simulate proofs without knowing witnesses and simulated
proofs have the same distribution as real proofs.

2.3 Structure-Preserving Signatures

Several applications (see [2,3,35,30,4] for examples) require to sign groups el-
ements while preserving the feasibility of efficiently proving that a committed
signature is valid for a committed group element.

In [2,3], Abe, Haralambiev and Ohkubo showed how to conveniently sign n
group elements at once using signatures consisting of O(1) group elements. Their
scheme (which is referred to as the AHO signature in the paper) makes use of
bilinear groups of prime order. In the context of symmetric pairings, the descrip-
tion below assumes public parameters pp =

(
(G,GT ), g

)
consisting of groups

(G,GT ) of order p > 2λ, where λ ∈ N is a security parameter, with a bilinear
map e : G × G → GT and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
that can be signed altogether, choose generators Gr, Hr

R← G. Pick γz , δz
R←

Zp and γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγz

r , Hz = Hδz
r and

Gi = Gγi
r , Hi = Hδi

r for each i ∈ {1, . . . , n}. Finally, choose αa, αb
R← Zp and

define A = e(Gr, g
αa) and B = e(Hr, g

αb). The public key is

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}n

i=1, A, B
)
∈ G2n+4 × G2

T

while the private key consists of sk =
(
αa, αb, γz , δz, {γi, δi}n

i=1

)
.
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Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using the private
key sk = (αa, αb, γz, δz, {γi, δi}n

i=1), choose ζ, ρ, τ, ν, ω
R← Zp and compute

θ1 = gζ as well as

θ2 = gρ−γzζ ·
n∏

i=1

M−γi

i , θ3 = Gτ
r , θ4 = g(αa−ρ)/τ ,

θ5 = gν−δzζ ·
n∏

i=1

M−δi
i , θ6 = Hω

r , θ7 = g(αb−ν)/ω ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7).

Verify(pk, σ, (M1, . . . ,Mn)): parse σ as (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7 and return
1 iff these equalities hold:

A = e(Gz , θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏

i=1

e(Gi,Mi), (3)

B = e(Hz , θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏

i=1

e(Hi,Mi). (4)

The scheme was proved [2,3] existentially unforgeable under chosen-message at-
tacks under the q-SFP assumption, where q is the number of signing queries.

Abe et al. [2,3] also showed that signatures can be publicly randomized to
obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on (M1, . . . ,Mn). After
randomization, we have θ′1 = θ1 while {θ′i}7i=2 are uniformly distributed among
the values satisfying the equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) · e(θ3, θ4) and

e(Hr, θ
′
5) · e(θ′6, θ′7) = e(Hr, θ5) · e(θ6, θ7). Moreover, {θ′i}i∈{3,4,6,7} are statisti-

cally independent of (M1, . . . ,Mn) and the rest of the signature. This implies
that, in anonymity-related protocols, re-randomized {θ′i}i∈{3,4,6,7} can be safely
revealed as long as (M1, . . . ,Mn) and {θ′i}i∈{1,2,5} are given in committed form.

In [4], Abe, Groth, Haralambiev and Ohkubo described a more efficient
structure-preserving signature based on interactive assumptions. Here, we use
the scheme of [2,3] so as to rely on non-interactive assumptions.

2.4 The NNL Framework for Broadcast Encryption

The Subset Cover framework [48] considers secret-key broadcast encryption
schemes with N = 2
 registered receivers. Each one of them is associated with
a leaf of a complete binary tree T of height � and each tree node is assigned a
secret key. If N denotes the universe of users and R ⊂ N is the set of revoked
receivers, the idea of the framework is to partition the set of non-revoked users
into m disjoint subsets S1, . . . , Sm such that N\R = S1 ∪ . . . ∪ Sm. Depending
on the way to partition N\R and the distribution of keys to users, different
instantiations and tradeoffs are possible.
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The Complete Subtree Method. In this technique, each subset Si consists of
the leaves of a complete subtree rooted at some node xi of T. Upon registration,
each user obtains secret keys for all nodes on the path connecting his leaf to
the root of T (and thus O(�) keys overall). By doing so, users in N\R can
decrypt the content if the latter is enciphered using symmetric keys K1, . . . ,Km

corresponding to the roots of subtrees S1, . . . , Sm. As showed in [48], the CS
partitioning method entails at most m ≤ r · log(N/r) subsets, where r = |R|.
Each transmission requires to send O(r · logN) symmetric encryptions while, at
each user, the storage complexity is O(logN).

As noted in [48,33], a single-level identity-based encryption scheme allows
implementing a public-key variant of the CS method. The master public key
of the IBE scheme forms the public key of the broadcast encryption system,
which allows for public keys of size O(1) (instead of O(N) in instantiations using
ordinary public-key encryption). When users join the system, they obtain O(�)
IBE private keys (in place of symmetric keys) associated with the “identities”
of nodes on the path between their leaf and the root.

The Subset Difference Method. The SD method reduces the transmission
cost to O(r) at the expense of increased storage requirements. For each node
xj ∈ T, we call Txj the subtree rooted at xj . The set N\R is now divided into
disjoint subsets Sk1,u1 , . . . , Skm,um . For each i ∈ {1, . . . ,m}, the subset Ski,ui is
determined by a node xki and one of its descendants xui – which are called pri-
mary and secondary roots of Ski,ui , respectively – and it consists of the leaves of
Txki

that are not in Txui
. Each user thus belongs to much more generic subsets

than in the CS method and this allows reducing the maximal number of subsets
to m = 2r − 1 (see [48] for a proof of this bound).

A more complex key distribution is necessary here. Each subset Ski,ui is as-
signed a “proto-key” Pxki

,xui
that allows deriving the actual symmetric encryp-

tion key Kki,ui for Ski,ui and as well as proto-keys Pxki
,xul

for any descendant
xul

of xui . At the same time, Pxki
,xul

should be hard to compute without a
proto-key Pxki

,xui
for an ancestor xui of xul

. The key distribution phase then
proceeds as follows. Let user i be assigned a leaf vi and let ε = x0, x1, . . . , x
 = vi
denote the path from the root ε to vi. For each subtree Txj (with j ∈ {1, . . . , �}),
if copathxj

denotes the set of all siblings of nodes on the path from xj to vi, user
i must obtain proto-keys Pxj ,w for each node w ∈ copathxj

because he belongs
to the generic subset whose primary root is xj and whose secondary root is w.
By storing O(�2) proto-keys (i.e., O(�) for each subtree Txj ), users will be able
to derive keys for all generic subsets they belong to.

In [33], Dodis and Fazio extended the SD method to the public-key setting
using hierarchical identity-based encryption. In the tree, each node w at depth
≤ � has a label 〈w〉 which is defined by assigning the label ε to the root (at depth
0). The left and right children of w are then labeled with 〈w〉||0 and 〈w〉||1, re-
spectively. For each subset Ski,ui of N\R, the sender considers the primary and
secondary roots xki , xui and parses the label 〈xui〉 as 〈xki〉||ui,
i,1 . . . ui,
i,2 , with
ui,j ∈ {0, 1} for each j ∈ {�i,1, . . . , �i,2}. Then, he computes a HIBE ciphertext
for the hierarchical identity (〈xki〉, ui,
i,1 , . . . , ui,
i,2) at level �i,2 − �i,1+2. Upon
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registration, if ε = x0, . . . , x
 = vi denotes the path from the root to his leaf
vi, for each subtree Txj , user i receives exactly one HIBE private key for each
w ∈ copathxj

: namely, for each w ∈ copathxj
, there exist �1, �2 ∈ {1, . . . , �} such

that 〈w〉 = 〈xj〉||w
1 . . . w
2 with wj ∈ {0, 1} for all j ∈ {�1, . . . , �2} and user i
obtains a HIBE private key for the hierarchical identity (〈xj〉, w
1 , . . . , w
2). By
construction, this key will allow user i to decrypt any HIBE ciphertext encrypted
for a subset whose primary root is xj and whose secondary root is a descendant
of w. Overall, each user thus has to store O(log2N) HIBE private keys.

2.5 Revocable Group Signatures

We consider schemes that have their lifetime divided into revocation epochs at
the beginning of which group managers update their revocation lists.

The syntax and the security model are similar to [46] but they build on those
defined by Kiayias and Yung [42]. Like the Bellare-Shi-Zhang model [11], the
latter assumes an interactive join protocol between the group manager and the
user. This protocol provides the user with a membership certificate and a mem-
bership secret. Such protocols may consist of several rounds of interaction.

Syntax. We denote by N ∈ poly(λ) the maximal number of group members. At
the beginning of each revocation epoch t, the group manager publicizes an up-to-
date revocation list RLt and we denote by Rt ⊂ {1, . . . , N} the corresponding
set of revoked users (we assume that Rt is part of RLt). A revocable group
signature (R-GS) scheme consists of the following algorithms or protocols.

Setup(λ,N): given a security parameter λ ∈ N and a maximal number of mem-
bers N ∈ N, this algorithm (which is run by a trusted party) generates a
group public key Y, the group manager’s private key SGM and the open-
ing authority’s private key SOA. SGM and SOA are given to the appropriate
authority while Y is publicized. The algorithm initializes a public state St
containing a set data structure Stusers = ∅ and a string structure Sttrans = ε.

Join: is an interactive protocol between the group manager GM and a user Ui

where the latter becomes a group member. The protocol involves two in-
teractive Turing machines Juser and JGM that both take as input Y. The
execution, denoted as [Juser(λ,Y), JGM(λ, St,Y,SGM)], terminates with user
Ui obtaining a membership secret seci, that no one else knows, and a mem-
bership certificate certi. If the protocol successfully terminates, the group
manager updates the public state St by setting Stusers := Stusers ∪ {i} as
well as Sttrans := Sttrans||〈i, transcripti〉.

Revoke: is a (possibly randomized) algorithm allowing the GM to generate an
updated revocation list RLt for the new revocation epoch t. It takes as input
a public key Y and a set Rt ⊂ Stusers that identifies the users to be revoked.
It outputs an updated revocation list RLt for epoch t.

Sign: given a revocation epoch t with its revocation list RLt, a membership
certificate certi, a membership secret seci and a message M , this algorithm
outputs ⊥ if i ∈ Rt and a signature σ otherwise.
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Verify: given a signature σ, a revocation epoch t, the corresponding revocation
list RLt, a messageM and a group public key Y, this deterministic algorithm
returns either 0 or 1.

Open: takes as input a messageM , a valid signature σ w.r.t. Y for the indicated
revocation epoch t, the opening authority’s private key SOA and the public
state St. It outputs i ∈ Stusers ∪ {⊥}, which is the identity of a group
member or a symbol indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.
A R-GS scheme must satisfy three security notions, that are formally defined

in the full version of the paper. The first one is called security against misidenti-
fication attacks. It requires that, even if the adversary can introduce and revoke
users at will, it cannot produce a signature that traces outside the set of unre-
voked adversarially-controlled users.

As in ordinary (i.e., non-revocable) group signatures, the notion of security
against framing attacks mandates that, even if the whole system colludes against
a user, that user will not bear responsibility for messages that he did not sign.
Finally, the notion of anonymity is also defined (in the presence of a signature
opening oracle) as in the models of [11,42].

3 A Revocable Group Signature Based on the Subset
Difference Method

The idea is to turn the NNL global ciphertext into a revocation list in the group
signature. Each member is assigned to a leaf of a binary tree of height � and the
outcome of the join protocol is the user obtaining a membership certificate that
contains the same key material as in the public-key variant of the SD method
(i.e., O(�2) HIBE private keys). To ensure traceability and non-frameability,
these NNL private keys are linked to a group element X , that only the user
knows the discrete logarithm of, by means of structure-preserving signatures.

At each revocation epoch t, the group manager generates an up-to-date re-
vocation list RLt consisting of O(r) HIBE ciphertexts, each of which is signed
using a structure-preserving signature. When it comes to sign a message, the
user Ui proves that he is not revoked by providing evidence that he is capable
of decrypting one of the HIBE ciphertexts in RLt. To this end, Ui commits to
that HIBE ciphertext Cl and proves that he holds a key that decrypts Cl. To
convince the verifier that Cl belongs to RLt, he proves knowledge of a signature
on the committed HIBE ciphertext Cl (this technique is borrowed from the set
membership proofs of [52,24]). Of course, to preserve the anonymity of signers,
we need a HIBE scheme with constant-size ciphertexts (otherwise, the length of
the committed ciphertext could betray the signer’s location in the tree), which
is why the Boneh-Boyen-Goh construction [15] is the ideal candidate.

The scheme is made anonymous and non-frameable using the same techniques
as Groth [38] in steps 4-6 of the signing algorithm. As for the security against
misidentification attacks, we cannot prove it by relying on the standard collusion-
resistance (captured by the definition of [36]) of the HIBE scheme. In the proof of
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security against misidentification attacks, the problem appears in the treatment
of forgeries that open to a revoked user: while this user cannot have obtained
a private key that decrypts the committed HIBE ciphertext of the forgery (be-
cause he is revoked), unrevoked adversarially-controlled users can. To solve this
problem, we need to rest on a non-standard security property (formally defined
in the full version of the paper) called “key-robustness”. This notion asks that,
given a private key generated for some hierarchical identity using specific ran-
dom coins, it be infeasible to compute the private key of a different identity for
the same random coins and even knowing the master secret key of the HIBE
scheme. While unusual, this property can be proved (as shown in the full version
of the paper) under the Diffie-Hellman assumption for the BBG construction.

Perhaps surprisingly, even though we rely on the BBG HIBE, we do not need
its underlying q-type assumption [15]. The reason is that the master secret key
of the scheme is unnecessary here as its role is taken over by the private key
of a structure-preserving signature. In the ordinary BBG system, private keys
contain components of the form (gα2 · F (ID)r, gr), for some r ∈ Zp, where g

α
2 is

the master secret key and F (ID) is a function of the hierarchical identity. In the
join protocol, the master key gα2 disappears: the user obtains a private key of
the form (F (ID)r, gr) and an AHO signature is used to bind the user’s mem-
bership public key X to gr. The latter can be thought of as a public key for
a one-time variant of the Boneh-Lynn-Shacham signature [17]. The underlying
one-time private key r ∈ Zp is used to compute F (ID)r as well as a number of
delegation components allowing to derive signatures for messages that ID is a
prefix of (somewhat in the fashion of wildcard signatures [1][Section 6]).

3.1 Construction

As in Section 2.4, 〈x〉 denotes the label of node x ∈ T and, for any sub-tree Txj

rooted at xj and any leaf vi of Txj , copathxj
denotes the set of all siblings of

nodes on the path from xj to vi, not counting xj itself.
As is standard in group signatures, the description below assumes that, be-

fore joining the group, user Ui chooses a long term key pair (usk[i], upk[i]) and
registers it in some PKI.

Setup(λ,N): given λ ∈ N and the permitted number of users N = 2
,

1. Choose bilinear groups (G,GT ) of prime order p > 2λ, with g R← G.

2. Generate two key pairs (sk
(0)
AHO, pk

(0)
AHO) and (sk

(1)
AHO, pk

(1)
AHO) for the AHO

signature to sign messages of two group elements. These pairs consist of

pk
(d)
AHO =

(
G(d)

r , H(d)
r , G(d)

z = G
γ(d)
z

r , H(d)
z = H

δ(d)z
r ,

{G(d)
i = G

γ
(d)
i

r , H
(d)
i = H

δ
(d)
i

r }2i=1, A
(d), B(d)

)
and sk

(d)
AHO =

(
α
(d)
a , α

(d)
b , γ

(d)
z , δ

(d)
z , {γ(d)i , δ

(d)
i }2i=1

)
, where d ∈ {0, 1}.
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3. As a CRS for the NIWI proof system, select vectors f = ($f1, $f2, $f3) s.t.

$f1 = (f1, 1, g) ∈ G3, $f2 = (1, f2, g) ∈ G3, and $f3 = $f1
ξ1 · $f2

ξ2
, with

f1 = gβ1 , f2 = gβ2 R← G and β1, β2, ξ1, ξ2
R← Z∗

p.

4. Choose (U, V ) R← G2 that, together with f1, f2, g, will form a public
encryption key.

5. Generate a master public key mpkBBG for the Boneh-Boyen-Goh HIBE.
Such a public key consists3 of mpkBBG =

(
{hi}


i=0

)
, where � = log2(N),

and no master secret key is needed.
6. Select an injective encoding4 function H : {0, 1}≤
 → Z∗

p and a strongly
unforgeable one-time signature Σ = (G,S,V).

7. Set SGM :=
(
sk

(0)
AHO, sk

(1)
AHO

)
, SOA :=

(
β1, β2

)
as authorities’ private keys

and the group public key is

Y :=
(
g, pk

(0)
AHO, pk

(1)
AHO, mpkBBG, f , (U, V ), H, Σ

)
.

Join(GM,Ui): the GM and the prospective user Ui run the following protocol
[Juser(λ,Y), JGM(λ, St,Y,SGM)]:

1. Juser(λ,Y) computes X = gx, for a randomly chosen x R← Zp, and sends
it to JGM(λ, St,Y,SGM). If the value X already appears in some entry
transcriptj of the database Sttrans, JGM aborts and returns ⊥ to Juser.

2. JGM assigns to Ui an available leaf vi of label 〈vi〉 = vi,1 . . . vi,
 ∈ {0, 1}


in the tree T. Let x0 = ε, x1, . . . , x
−1, x
 = vi be the path from vi to
the root ε of T. For j = 0 to �, JGM does the following.

a. Consider the sub-tree Txj rooted at node xj . Let copathxj
be the

co-path from xj to vi.
b. For each node w ∈ copathxj

, since xj is an ancestor of w, 〈xj〉 is a

prefix of 〈w〉 and we denote by w
1 . . . w
2 ∈ {0, 1}
2−
1+1, for some
�1 ≤ �2 ≤ �, the suffix of 〈w〉 coming right after 〈xj〉.
b.1 Choose a random r R← Zp and compute a HIBE private key

dw=(Dw,1, Dw,2,Kw,
2−
1+3, . . . ,Kw,
)

=
((
h0 · hH(〈xj〉)

1 · hH(w�1
)

2 · · ·hH(w�2
)


2−
1+2

)r
, gr, hr


2−
1+3, . . . , h
r



)
for the identity (H(〈xj〉),H(w
1 ), . . . ,H(w
2)) ∈ (Z∗

p)

2−
1+2.

b.2 Using sk
(0)
AHO, generate an AHO signature σw = (θw,1, . . . , θw,7)

on (X,Dw,2) ∈ G2 so as to bind the HIBE private key dw to the
value X that identifies Ui.

3 In comparison with the original HIBE scheme where mpkBBG includes (g1 = gα, g2)
and mskBBG = gα2 , the public elements g1 and g2 have disappeared.

4 This encoding allows making sure that “identities” will be non-zero at each level.
Since the set {0, 1}≤� is of cardinality

∑�
i=0 2

i = 2�+1 − 1 < p− 1, such a function
can be efficiently constructed without any intractability assumption.
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3. JGM sends 〈vi〉 ∈ {0, 1}
, and the HIBE private keys {{dw}w∈copathxj
}

j=0

to Juser that verifies their validity. If these keys are all well-formed, Juser
acknowledges them by generating an ordinary digital signature sigi =
Signusk[i]

(
X ||{{dw}w∈copathxj

}

j=0

)
and sends it back to JGM.

4. JGM checks that Verifyupk[i]
(
X ||{{dw}w∈copathxj

}

j=0, sigi

)
= 1. If not,

then JGM aborts. Otherwise, JGM returns the set of AHO signatures
{{σw}w∈copathxj

}

j=0 to Juser and stores the entire conversation transcript

transcripti = (X, {{dw, σw}w∈copathxj
}

j=0, sigi) in the database Sttrans.

5. Juser defines user Ui’s membership certificate certi to be the tuple certi =(
〈vi〉, {{dw, σw}w∈copathxj

}

j=0, X

)
, where X will serve as the tag that

identifies Ui. The membership secret seci is defined to be seci = x.

Revoke(Y,SGM, t,Rt): Parse SGM as SGM :=
(
sk

(0)
AHO, sk

(1)
AHO

)
. Using the SD cov-

ering algorithm, find a cover of the unrevoked user set {1, . . . , N}\Rt as the
union of disjoint subsets Sk1,u1 , . . . , Skm,um , with m ≤ 2 · |Rt| − 1. Then, for
i = 1 to m, do the following.

a. Consider Ski,ui as the difference between sub-trees rooted at an internal
node xki and one of its descendants xui . The label of xui can be written
〈xui 〉 = 〈xki〉||ui,
i,1 . . . ui,
i,2 for some �i,1 < �i,2 ≤ � and where ui,κ ∈
{0, 1} for each κ ∈ {�i,1, . . . , �i,2}. Then, compute an encoding of Ski,ui

as a group element

Ci = h0 · hH(〈xki
〉)

1 · hH(ui,�i,1
)

2 · · ·hH(ui,�i,2
)


i,2−
i,1+2,

which can be seen as a de-randomized HIBE ciphertext for the hierar-
chical identity

(
H(〈xki 〉),H(ui,
i,1), . . . ,H(ui,
i,2)

)
∈ (Z∗

p)

i,2−
i,1+2.

b. To authenticate the HIBE ciphertext Ci and bind it to the revocation

epoch t, use sk
(1)
AHO to generate an AHO signature Θi = (Θi,1, . . . , Θi,7) ∈

G7 on the pair (Ci, g
t) ∈ G2, where the epoch number t is interpreted

as an element of Zp.

Return the revocation data RLt which is defined to be

RLt =
(
t, Rt, {〈xki〉, 〈xui〉,

(
Ci, Θi = (Θi,1, . . . , Θi,7)

)
}m
i=1

)
(5)

Sign(Y, t, RLt, certi, seci,M): return⊥ if i ∈ Rt. Otherwise, to signM ∈ {0, 1}∗,
generate a one-time signature key pair (SK,VK) ← G(λ). Parse certi as(
〈vi〉, {{(dw, σw)}w∈copathxj

}

j=0, X

)
and seci as x ∈ Zp.

1. Using RLt, determine the set Skl,ul
, with l ∈ {1, . . . ,m}, that contains

the leaf vi (this subset must exist since i �∈ Rt) and let xkl
and xul

denote
the primary and secondary roots of Skl,ul

. Since xkl
is an ancestor of xul

,
we can write 〈xul

〉 = 〈xkl
〉||ul,
1 . . . ul,
2 , for some �1 < �2 ≤ � and with

ul,κ ∈ {0, 1} for each κ ∈ {�1, . . . , �2}. The signer Ui computes a HIBE
decryption key of the form

(Dl,1, Dl,2) =
((
h0 · hH(〈xkl

〉)
1 · hH(ul,�1

)
2 · · ·hH(ul,�2

)


2−
1+2

)r
, gr

)
. (6)
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This is possible since, if we denote by 〈xk,l〉||ul,
1 . . . ul,
′1
the shortest

prefix of 〈xul
〉 that is not a prefix of 〈vi〉, the key material {dw}w∈copathxkl

corresponding to the sub-tree rooted at xkl
contains a HIBE private key

dw = (Dw,1, Dw,2,Kw,
′1−
1+3, . . . ,Kw,
) such that

dw =
((
h0 · hH(〈xkl

〉)
1 · hH(ul,�1

)
2 · · ·h

H(ul,�′1
)


′1−
1+2

)r
, gr, hr


′1−
1+3, . . . , h
r



)
,

which allows deriving a key of the form (6) such that Dl,2 = Dw,2.

2. To prove his ability to “decrypt” Cl, user Ui first re-randomizes Θl

as {Θ′
l,i}7i=1 ← ReRand(pk

(1)
AHO, Θl). Then, he computes a Groth-Sahai

commitment comCl
to Cl as well as commitments {comΘ′

l,i
}i∈{1,2,5} to

{Θ′
l,i}i∈{1,2,5}. He generates a proof πCl

that Cl is a certified HIBE ci-
phertext for epoch t: i.e., πCl

provides evidence that

A(1) · e(Θ′
l,3, Θ

′
l,4)

−1 · e(G(1)
2 , gt)−1 (7)

= e(G(1)
z , Θ′

l,1) · e(G(1)
r , Θ′

l,2) · e(G(1)
1 , Cl),

B(1) · e(Θ′
l,6, Θ

′
l,7)

−1 · e(H(1)
2 , gt)−1

= e(H(1)
z , Θ′

l,1) · e(H(1)
r , Θ′

l,5) · e(H
(1)
1 , Cl). (8)

Then, Ui generates commitments {comDl,i
}2i=1 to the HIBE key com-

ponents {Dl,i}2i=1 derived at step 1 and computes a proof πDl
that

e(Dl,1, g) = e(Cl, Dl,2). The latter is quadratic and requires 9 group ele-
ments. Since {Θ′

l,i}i∈{3,4,6,7} are constants, equations (7) are linear and
require 3 elements each. So, πCl

and πDl
take 15 elements altogether.

3. Let σl = (θl,1, . . . , θl,7) be the AHO signature on (X,Dl,2). Compute

{θ′l,i}7i=1 ← ReRand(pk
(0)
AHO, σl) as well as commitments {comθ′

l,i
}i∈{1,2,5}

to {θ′l,i}i∈{1,2,5} and a commitment comX to X . Then, generate a proof
πσl

that committed variables satisfy the verification equations

A(0) · e(θ′l,3, θ′l,4)−1 = e(G(0)
z , θ′l,1) · e(G(0)

r , θ′l,2) · e(G(0)
1 , X) · e(G(0)

2 , Dl,2),

B(0) · e(θ′l,6, θ′l,7)−1 = e(H(0)
z , θl,1) · e(H(0)

r , θ′l,5) · e(H(0)
1 , X) · e(H(0)

2 , Dl,2)

Since these equations are linear, πσl
requires 6 group elements.

4. Using VK as a tag (we assume that it is first hashed onto Zp in such a
way that it can be interpreted as a Zp element), compute a tag-based

encryption [44] of X by drawing z1, z2
R← Zp and setting

(Ψ1, Ψ2, Ψ3, Ψ4, Ψ5) =
(
fz1
1 , fz2

2 , X · gz1+z2 , (gVK · U)z1 , (gVK · V )z2
)
.

5. Generate a NIZK proof that comX = (1, 1, X) · $f1
φX,1 · $f2

φX,2 · $f3
φX,3

and (Ψ1, Ψ2, Ψ3) are BBS encryptions of the same value X . If we write
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$f3 = (f3,1, f3,2, f3,3), the Groth-Sahai commitment comX can be written

as (f
φX,1

1 · fφX,3

3,1 , f
φX,2

2 · fφX,3

3,2 , X · gφX,1+φX,2 · fφX,3

3,3 ), so that we have

comX * (Ψ1, Ψ2, Ψ3)
−1 =

(
f τ1
1 · f τ3

3,1, f
τ2
2 · f τ3

3,2, g
τ1+τ2 · f τ3

3,3

)
(9)

with τ1 = φX,1 − z1, τ2 = φX,2 − z2, τ3 = φX,3. The signer Ui commits

to τ1, τ2, τ3 ∈ Zp (by computing comτj = $ϕτj · $f1
φτj,1 · $f2

φτj,2 , for j ∈
{1, 2, 3}, using the vector $ϕ = $f3 · (1, 1, g) and random {φτj ,1, φτj ,2}3j=1),

and generates proofs {πeq-com,j}3j=1 that τ1, τ2, τ3 satisfy the three rela-

tions (9). Since these are linear equations, proofs {πeq-com,j}3j=1 cost 2
elements each.

6. Compute σVK = g1/(x+VK) and generate a commitment comσVK
to σVK.

Then, generate a NIWI proof that committed variables σVK andX satisfy
e(σVK, X · gVK) = e(g, g). This relation is quadratic and costs 9 group
elements to prove. We denote this proof by πσVK

= ($πσVK ,1, $πσVK,2, $πσVK,3).

7. Compute σots = S(SK, (M,RLt, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π)), where
we define Ω = {Θ′

l,i, θ
′
l,i}i∈{3,4,6,7}, and

com =
(
comCl

, {comDl,i
}2i=1, comX , {comΘ′

l,i
}i∈{1,2,5},

{comθ′
l,i

}i∈{1,2,5}, {comτi}3i=1, comσVK

)
Π = (πCl

, πDl
, πσl

, πeq-com,1, πeq-com,2, πeq-com,3, πσVK
)

Return the signature σ =
(
VK, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π, σots

)
.

Verify(σ,M, t, RLt,Y): parse σ as above and do the following.

1. If V(VK, (Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π), σots) = 0, return 0.
2. Return 0 if e(Ψ1, g

VK · U) �= e(f1, Ψ4) or e(Ψ2, g
VK · V ) �= e(f2, Ψ5).

3. Return 1 if all proofs properly verify. Otherwise, return 0.

Open(M, t,RLt, σ,SOA,Y, St): given SOA = (β1, β2), parse the signature σ as
above and return ⊥ if Verify(σ,M, t, RLt,Y) = 0. Otherwise, compute the

value X̃ = Ψ3 · Ψ−1/β1

1 · Ψ−1/β2

2 . In the database of transcripts Sttrans, find a
record 〈i, transcripti = (X, {{dw, σw}w∈copathxj

}

j=0, sigi)〉 such that X = X̃ .

If no such record exists in Sttrans, return ⊥. Otherwise, return i.

From an efficiency point of view, for each i ∈ {1 . . . ,m}, RLt comprises 8 group
elements plus the labels of nodes that identify Ski,ui . If λG denotes the bitlength
of a group element, the number of bits of RLt is thus bounded by 2 · |Rt| · (8 ·
λG + 2 logN) < 2 · |Rt| · (9λG) bits (as logN < λG/2 since λ ≤ λG and N is
polynomial). The size of revocation lists thus amounts to that of at most 18 · |Rt|
group elements.

Users need O(log3N) group elements to store their membership certificate. As
far as the size of signatures goes, com and Π require 42 and 36 group elements,
respectively. If the one-time signature of [37] is used, σ consists of 96 group
elements, which is less than twice the size of Groth’s signatures [38]. At the
128-bit security level, a signature takes 6 kB.
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Verifying signatures takes constant time. The cost of each signature genera-
tion is dominated by at most � = logN exponentiations to derive a HIBE private
key at step 1. However, this step only has to be executed once per revocation
epoch, at the first signature of that epoch.

The scheme is proved secure against misidentification attacks assuming the
hardness of the q-SFP problem, where q is a polynomial function of � = log2N ,
the number of adversarially-controlled users and the number of revocations. The
security against framing attacks is proved under the SDH assumption and as-
suming that the one-time signature is strongly unforgeable. As for the anonymity
property, we prove it under the DLIN assumption and assuming the strong un-
forgeability of the one-time signature. Due to space limitation, all security proofs
are deferred to the full version of the paper.
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Abstract. Motivated by applications in large storage systems, we ini-
tiate the study of incremental deterministic public-key encryption. De-
terministic public-key encryption, introduced by Bellare, Boldyreva, and
O’Neill (CRYPTO ’07), provides a realistic alternative to randomized
public-key encryption in various scenarios where the latter exhibits in-
herent drawbacks. A deterministic encryption algorithm, however, can-
not satisfy any meaningful notion of security for low-entropy plaintexts
distributions, and Bellare et al. demonstrated that a strong notion of
security can in fact be realized for relatively high-entropy plaintext dis-
tributions.

In order to achieve a meaningful level of security, a deterministic en-
cryption algorithm should be typically used for encrypting rather long
plaintexts for ensuring a sufficient amount of entropy. This requirement
may be at odds with efficiency constraints, such as communication com-
plexity and computation complexity in the presence of small updates.
Thus, a highly desirable property of deterministic encryption algorithms
is incrementality: small changes in the plaintext translate into small
changes in the corresponding ciphertext.

We present a framework for modeling the incrementality of deter-
ministic public-key encryption. Within our framework we propose two
schemes, which we prove to enjoy an optimal tradeoff between their se-
curity and incrementality up to small polylogarithmic factors. Our first
scheme is a generic method which can be based on any deterministic
public-key encryption scheme, and in particular, can be instantiated with
any semantically-secure (randomized) public-key encryption scheme in
the random oracle model. Our second scheme is based on the Decisional
Diffie-Hellman assumption in the standard model.

The approach underpinning our schemes is inspired by the fundamen-
tal “sample-then-extract” technique due to Nisan and Zuckerman (JCSS
’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related
notion of “locally-computable extractors” due to Vadhan. Most notably,
whereas Vadhan used such extractors to construct private-key encryp-
tion schemes in the bounded-storage model, we show that techniques
along these lines can also be used to construct incremental public-key
encryption schemes.
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1 Introduction

The fundamental notion of semantic security for public-key encryption schemes
was introduced by Goldwasser and Micali [19]. While semantic security provides
strong privacy guarantees, it inherently requires a randomized encryption algo-
rithm. Unfortunately, randomized encryption breaks several assumptions of large
storage systems that are crucial in efficient implementation of search (and, more
generally, of indexing) and de-duplication [9,23]. Further, randomized encryp-
tion necessarily expands the length of the plaintext, which may be undesirable
in some applications, such as legacy code or in-place encryption.

Deterministic Encryption. To deal with these and other drawbacks, Bellare,
Boldyreva, and O’Neill [2] initiated the study of deterministic public-key encryp-
tion schemes. These are public-key encryption schemes where the encryption
algorithm is deterministic. Bellare et al. formulate meaningful, and essentially
“best possible”, security requirements for such schemes which are inspired by
and very close to semantic security. Clearly, in this setting, no meaningful no-
tion of security can be achieved if the space of plaintexts is small. Therefore,
Bellare et al. [2] required security to hold only when the plaintexts are drawn
from a high min-entropy distribution.

Deterministic encryption already alleviates many of the above mentioned
problems when dealing with large data volumes. For example, since the encryp-
tion algorithm is deterministic, we can now do indexing and perform fast search
on encrypted data. Further, schemes that have length-preserving ciphertexts are
possible as well [2]. Also, unlike randomized encryption, there is no fundamen-
tal reason that precludes noticeable savings in storage by using de-duplication
techniques (which can be as large as 97% [27]); although one may not get the
same amount of savings as with usual plaintext.

We emphasize that security of deterministic encryption is contingent on a
very strong assumption about the underlying data distribution, namely that
the plaintext has high min-entropy from the adversary’s point of view. One
possibility for improving security margin is to encrypt longer plaintexts whenever
possible, for example, by not cutting files into smaller pieces or using larger
blocks for in-place encryption. If, however, changing the plaintext requires re-
computation of the ciphertext, doing that for any update may quickly negate all
efficiency gains from using deterministic encryption. For a remedy we turn to
incremental cryptography, explained below.

Incremental Cryptography. Given that we are dealing with large plaintexts,
computing the ciphertext from scratch for the modified plaintext can be quite an
expensive operation. One such example is maintaining an (encrypted) daily back-
up of your hard-disk on an untrusted server. The disk may contain gigabytes of
data, most of which is likely to remain unchanged between two successive back-
ups. The problem is further intensified in various client-server settings where
all of previous plaintext might not be available when the modification request
is made. In such settings where plaintext is really large, downloading old data
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can be a serious problem. This issue is clearly not specific to (deterministic)
encryption, and is of very general interest.

To address this issue, Bellare, Goldreich and Goldwasser [5] introduced and
developed the notion of incremental cryptography, first in application to digital
signatures. The idea is that, once we have signed a document M , signing new
versions of M should be rather quick. For example, if we only flip a single bit
of M , we should be able to update the signature in time polynomial in log |M |
(instead of |M |) and the security parameter λ. Clearly, incrementality is an
attractive feature to have for any cryptographic primitive such as encryption,
signatures, hash functions, and so on [6,20,15,7,11].

It is clear from our discussion that when dealing with deterministic encryption
over large databases, where we are forced to encrypt rather long plaintexts for
ensuring their min-entropy, what we really need is an incremental encryption
scheme. That is, the scheme should allow quickly updating the ciphertexts to
reflect small changes. In light of the observation that deterministic encryption
is most desirable when dealing with large data volumes, perhaps it is not exag-
gerating to suggest that incrementality should be an important design goal for
deterministic encryption rather than merely a “nice to have” feature.

1.1 Our Contributions

In this work we formalize the notion of incremental deterministic public-key en-
cryption.We view incrementality and security as two orthogonal objectives, which
together have a great potential in improving the deployment of deterministic en-
cryption schemes with provable security properties in real-world applications.

Modeling Incremental Updates. Intuitively, a deterministic public-key en-
cryption scheme is incremental if any small modification of a plaintext m result-
ing in a plaintext m′ can be efficiently carried over for updating the encryption
c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of m′. For capturing the
efficiency of such an update operation we consider two natural complexity mea-
sures: (1) input locality (i.e., the number of ciphertexts bits that are affected
when flipping a single plaintext bit), and (2) query complexity (i.e., the number
of public-key, plaintext, and ciphertext bits that have to be read in order to
update the ciphertext).

We note that modeling updates for deterministic public-key encryption is
slightly different than for other primitives. For example, suppose that we allow
“replacements” as considered by [5]. These are queries of the form (j, b) that
replace the j-th bit of a given plaintext m by b ∈ {0, 1}. Then, if there exists
a public algorithm Update for updating the ciphertext, then one can recover
the entire plaintext from the ciphertext1. Therefore, we focus on the bit flipping
operation instead. This operation is specified by an index j, and sets the current
value of m[j] to ¬m[j].

1 The encryption algorithm is deterministic, and hence the ciphertext for every mes-
sage is unique. The operation Update(j, 0) changes the ciphertext if and only if the
jth bit of m is 1.
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For capturing the above measures of efficiency we model the update operation
as a probabilistic polynomial-time algorithm Update that receives as input the
index i∗ of a plaintext bit to be flipped, and has oracle access to the individual
bits of the public key pk, the plaintextm to be modified, and to its encryption c =
Encpk(m). That is, the algorithm Update can submit queries of the form (pk, i),
(m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively.
We refer the reader to Section 3 for the formal description of our model, which
considers also update in a “private” fashion in which the update algorithm can
access the secret key but not the plaintext.

Locality Lower Bound. An important insight is that deterministic encryption
cannot have very small incrementality. Deterministic encryption schemes require
high min-entropy messages to provide any meaningful guarantee, and we show
that any scheme with low incrementality can be secure only for messages with
much higher entropy. Specifically, we show that for every deterministic public-
key encryption scheme that satisfies the minimal notion of PRIV1-IND security
for plaintext distributions of min-entropy k, plaintext length n, and ciphertext
length t, the incrementality Δ of the scheme must satisfy: Δ ≥ n−3

k log t .
Ignoring the lower-order log t factor, our proof shows in particular that the

input locality of the encryption algorithm must be roughly n/k. This should
be compared with the case of randomized encryption, where flipping a single
plaintext bit may require to flip only a single ciphertext bit. Indeed, consider
encrypting a plaintext m as the pair (Encpk(r), r ⊕ m) for a randomly chosen
mask r. Flipping a single bit of m requires flipping only a single bit of the
ciphertext.

Constructions with Optimal Incrementality. We construct two determinis-
tic public-key encryption schemes with optimal incrementality (up to lower-order
polylogarithmic factors). Our first construction is a general transformation from
any deterministic encryption scheme to an incremental one. Following the termi-
nology developed in [2,4,8], the resulting scheme from this approach is PRIV1-
IND secure if the underlying scheme is PRIV-IND secure. As a result, using the
construction of Bellare et al. [2] in the random oracle model, we can instanti-
ate our approach in the random oracle model based on any semantically-secure
(randomized) public-key encryption scheme, and obtain a deterministic scheme
with optimal incrementality.

Our second, more direct construction, avoids the random oracle model. It
is based on the Decisional Diffie-Hellman assumption in the standard model,
and enjoys optimal incrementality. The scheme relies on the notion of smooth
trapdoor functions that we introduce (and was implicitly used by Boldyreva et
al. [8]), and realize it in an incremental manner based on the Decisional Diffie-
Hellman assumption. Both of our constructions guarantee PRIV1-IND security
when encrypting n-bit plaintexts with min-entropy k ≥ nε, where ε > 0 is any
pre-specified constant.
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1.2 Related Work

The problem of composing public-key encryption and de-duplication was ad-
dressed by Doucer et al. [14] via the concept of convergent encryption, in which
files are encrypted using their own hash values as keys. Security of the scheme is
argued in the random-oracle model and under implicit assumption of the plain-
text’s high min-entropy. The formal goal of leveraging entropy of the source to
achieve information-theoretic security with a short symmetric key was articu-
lated by Russell and Wang [24], followed by Dodis and Smith [13].

The notion of public-key deterministic encryption was introduced by Bellare,
Boldyreva, and O’Neill [2], and then further studied by Bellare, Fischlin, O’Neill,
and Ristenpart [4], Boldyreva, Fehr, and O’Neill [8], Brakerski and Segev [10],
Wee [26], and Fuller, O’Neill and Reyzin [18]. Bellare et al. [2] proved their con-
structions in the random oracle model; subsequent papers demonstrated schemes
secure in the standard model based on trapdoor permutations [4] and lossy trap-
door functions [8]. Brakerski and Segev [10] and Wee [26] address the question
of security of public-key deterministic encryption in the presence of auxiliary
input. Fuller et al. [18] presented a construction based on any trapdoor function
that admits a large number of simultaneous hardcore bits, and a construction
that is secure for a bounded number of possibly related plaintexts.

Constructions of deterministic public-key encryption found an intriguing ap-
plication in “hedged” public-key encryptions [3]. These schemes remain secure
even if the randomness used during the encryption process is not perfect (con-
trolled by or leaked to the adversary) as long as the joint distribution of plaintext-
randomness has sufficient min-entropy.

The concept of incremental cryptography started with the work of Bellare,
Goldreich, and Goldwasser [5], who considered the case of hashing and sign-
ing. They also provided discrete-logarithm based constructions for incremental
collision-resistant hash and signatures, that support block replacement opera-
tion. Constructions supporting block insertion and deletion were first developed
in [6], with further refinements and new issues concerning incrementality such
as tamper-proof updates, privacy of updates, and incrementality in symmet-
ric encryption. In subsequent work, Fischlin presented an incremental signature
schemes supporting insertion/deletion of blocks, and tamper-proof updates [15],
and proved a Ω(

√
n) lower bound on the signature size of schemes that sup-

port substitution and replacement operations (the bound can be improved to
Ω(n) in certain special cases) [16]. Bellare and Micciancio [7] revisited the case
of hashing, and provided new constructions for the same based on discrete log-
arithms and lattices. Buonanno, Katz, and Yung [11] considered the issue of
incrementality in symmetric unforgeable encryption and suggested three modes
of operations for AES achieving this notion.

The goal of incremental cryptography, i.e., input locality, can be contrasted
with the dual question of placing cryptography in the NC0 complexity class, i.e.,
identifying cryptographic primitives with constant output locality. This problem
has essentially been resolved for public-key encryption in the positive by Ap-
plebaum, Ishai, and Kushilevitz [1], who construct schemes based on standard
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number-theoretic assumptions and lattice problems where each bit of the en-
cryption operation depends on at most four bits of the input. Applebaum et
al. also argue impossibility of semantically-secure public-key encryption scheme
with constant input locality [1, Section C.1].

1.3 Overview of Our Approach

In this section we present a high-level overview of our two constructions. First, we
describe the well-known “sample-then-extract” approach [21,25] that serves as
our inspiration for constructing incremental schemes. Then, we describe the main
ideas underlying our schemes, each of which is based on a different realization
of the “sample-then-extract” approach.

“Sample-then-Extract”. A fundamental fact in the theory of pseudorandom-
ness is that a random sample of bits from a string of high min-entropy essentially
preserves the min-entropy rate. This was initially proved by Nisan and Zucker-
man [21] and then refined by Vadhan [25] that captured the optimal parameters.
Intuitively, the “sample-then-extract” lemma states that if X ∈ {0, 1}n has min-
entropy rate δ, andXS ∈ {0, 1}t is the projection ofX onto a randomsetS ⊆ [n] of t
positions, thenXS is statistically-close to a sourcewithmin-entropy rate δ′ = Ω(δ).

This lemma serves as a fundamental tool in the design of randomness ex-
tractors. Moreover, in the cryptographic setting, it was used by Vadhan [25] to
construct locally-computable extractors, which allow to compute their output by
examining a small number of input bits. Such extractors were used by Vadhan
to design private-key encryption schemes in the bounded-storage model. In this
work we demonstrate for the first time that the “sample-then-extract” approach
can be leveraged to design not only private-key encryption schemes, but also
public-key encryption schemes.

A Generic Construction via Random Partitioning. In the setting of ran-
domized encryption, a promising approach for ensuring incrementality is to di-
vide each plaintext m into consecutive and rather small blocksm = m1|| · · · ||m
,
and to separately encrypt each block mi. Thus, changing a single bit ofm affects
only a single block of the ciphertext. Moreover, the notion of semantic security
is sufficiently powerful to even allow each block mi to be as small as a single
bit. In the setting of deterministic encryption, however, security can hold only
when each encrypted block has a sufficient amount of min-entropy. At this point
we note that even if a plaintext m = m1|| · · · ||m
 has high min-entropy, it may
clearly be the case that some of its small blocks have very low min-entropy (or
even fixed). Thus, this approach seems to fail for deterministic encryption.

As an alternative, however, we propose the following approach: instead of di-
viding the plaintext m into fixed blocks, we project it onto a uniformly chosen
partition S1, . . . , S
 of the plaintext positions to sets of equal sizes, and then
separately encrypt each of the projections mS1 , . . . ,mS�

using an underlying
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(possibly non-incremental) deterministic encryption scheme2. By the fact that
we use a partition of the plaintext positions we ensure on the one hand that the
plaintext m can be fully recovered, and on the other that each plaintext posi-
tion appears in only one set (and thus the scheme is incremental). In terms of
security, since we use a uniformly chosen partition, the distribution of each indi-
vidual set Si is uniform, and therefore by carefully choosing the size of the sets
the “sample-and-extract” lemma guarantees that with overwhelming probability
each projection mSi preserves the min-entropy rate of m. Therefore, the scheme
is secure as long as the underlying scheme guarantees PRIV-IND security (see
Section 2.2 for the notions of security for deterministic encryption).

By instantiating this approach with the constructions of Bellare et al. [2] in the
random oracle model, we obtain as a corollary a deterministic public-key encryp-
tion scheme with optimal incrementality based either on any semantically-secure
(randomized) public-key encryption scheme, or on RSA-OAEP which yields a
length-preserving incremental scheme.

A Construction Based on Smooth Trapdoor Functions. Although our
first construction is a rather generic one, constructions of PRIV-IND-secure
schemes are known only in the random oracle model. In the standard model,
Boldyreva et al. [8] introduced the slightly weaker notion of PRIV1-IND security,
which considers plaintexts that have high min-entropy even when conditioned on
other plaintexts, and showed that it can be realized by composing any lossy trap-
door function with a pairwise independent permutation. This approach, however,
does not seem useful for constructing incremental schemes, since pairwise inde-
pendence is inherently non-incremental. A simple observation, however, shows
that the approach of Boldyreva et al. [8] requires in fact trapdoor functions with
weaker properties, that we refer to as smooth trapdoor functions (this is implicit
in [8]).

Informally, a collection of smooth trapdoor functions consists of two families
of functions. Functions in one family are injective and can be efficiently inverted
using a trapdoor. Functions in the other family are “smooth” in the sense that
their output distribution on any source of input with high min-entropy is statis-
tically close to their output distribution on a uniformly sampled input. The only
security requirement is that a description of a randomly chosen function from
the family of injective functions is computationally indistinguishable from a de-
scription of a randomly chosen function from the family of smooth functions. We
show that any collection of smooth trapdoor functions is a PRIV1-IND-secure
deterministic encryption scheme (again, this is implicit in [8]).

Next, we construct a collection of incremental smooth trapdoor functions
based on the Decisional Diffie-Hellman (DDH) assumption, by significantly re-
fining the DDH-based lossy trapdoor functions of Freeman et al. [17] (which in
turned generalized those of Peikert and Waters [22]). Our collection is parame-
terized by a group G of prime order p that is generated by an element g ∈ G. A

2 A minor technical detail is that we would also like to ensure that we always encrypt
distinct values, and therefore we concatenate the block number i to each projection
mSi .
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public key is of the form gA, where A ∈ Zn×n is sampled from one distribution
for injective keys, and from a different distribution for smooth keys3. Evaluating
a function on an input x ∈ {0, 1}n is done by computing gAx ∈ Gn and inversion
for injective keys is done using the secret key A−1.

The key point in our scheme is the distribution of the matrix A for injective
and smooth keys. For smooth keys the matrix A is generated to satisfy two
properties. The first is that each of its first � rows has t randomly chosen entries
with values that are chosen uniformly from Zp, and all other n−t entries are zeros
(where � and t are carefully chosen depending on the min-entropy rate). Looking
ahead, when computing the inner product of such a sparse row with a source
of min-entropy larger than log p, the “sample-then-extract” lemma guarantees
that the output is statistically close to uniform. In a sense, this is a realization
of a locally-computable extractor that is embedded in our functions. The second
property, is that each of its last n − � rows are linear combinations of the first
� rows, and therefore the image of its corresponding linear map is determined
by the first � rows. This way, we can argue that smooth keys hide essentially all
information on the underlying input distribution.

For injective keys, we sample a matrix A from the distribution of smooth keys,
and then re-sample all its non-zero entries with independently and uniformly
distributed elements of Zp. A subtle complication arises since such a matrix is
not necessarily invertible, as required for injective keys, but this is easily resolved
(without hurting the smooth keys – see Section 5 for more details). Observing
that for injective keys each column of A contains roughly t non-zero entries, this
yields a PRIV1-IND-secure scheme with optimal incrementality.

Paper Organization. In Section 2 we introduce the notation and tools that
are used in this paper. In Section 3 we present a framework for modeling the
incrementality of deterministic public-key encryption schemes. In Section 4 we
present our generic construction, and in Section 5 we present our DDH-based
construction. Due to space limitations we refer the reader to the full version for
the proof of the lower bound.

2 Preliminaries

2.1 Probability Distributions

For a distribution X we denote by x ← X the process of sampling a value x
according to X . Similarly, for a set Ω we denote by ω ← Ω the process of
sampling a value ω from the uniform distribution over Ω. If X is a distribution
and f is a function defined over its support, then f(X ) denotes the outcome of
the experiment where f(x) is evaluated on x sampled from X . For any n ∈ N

we denote by Un the uniform distribution over the set {0, 1}n.
The min-entropy of a distribution X that is defined over a set Ω is de-

fined as H∞(X ) = minω∈Ω log (1/Pr[X = ω]). A k-source is distribution X with

3 For any matrix A = {aij}i∈[n],j∈[n] ∈ Z
n×n
p we denote by gA ∈ Gn×n the matrix

{gaij}i∈[n],j∈[n].
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H∞(X ) ≥ k, and the min-entropy rate of a k-source over the set {0, 1}n is k/n.
The statistical distance between two distributions X and Y over a setΩ is defined
as SD(X ,Y) = maxS⊆Ω |Pr[X ∈ S]− Pr[Y ∈ S]|. A distribution X is ε-close to
a k-source if there exists a k-source Y such that SD(X ,Y) ≤ ε. The following
standard lemma (see, for example, [12]) essentially states that revealing r bits
of information on a random variable may reduce its min-entropy by roughly r.

Lemma 2.1. Let Z be a distribution over at most 2r values, then for any dis-
tribution X and for any ε > 0 it holds that

Prz←Z [H∞(X|Z = z) ≥ H∞(X ) − r − log(1/ε)] ≥ 1 − ε .

We say that two families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
statistically close, denoted by X ≈ Y, if there exists a negligible function ν(λ)
such that SD(X ,Y) ≤ ν(λ) for all sufficiently large λ ∈ N. Two families of distri-
butions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable,

denoted by X c≈ Y, if for any probabilistic polynomial-time algorithm A there
exists a negligible function ν(λ) such that∣∣Prx←Xλ

[
A(1λ, x) = 1

]
− Pry←Yλ

[
A(1λ, y) = 1

]∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N.

The “Sample-then-Extract” Lemma. The following lemma due to Vadhan
[25] plays a major role in our constructions. This is a refinement of the funda-
mental “sample-then-extract” lemma that was originally proved by Nisan and
Zuckerman [21], stating that a random of sample of bits from a string essentially
preserves its min-entropy rate. Vadhan’s refinement shows that the min-entropy
rate is in fact preserved up to an arbitrarily small additive loss, whereas the
original lemma loses a logarithmic factor. Intuitively, the lemma states that if
X ∈ {0, 1}n is a δn-source, and XS ∈ {0, 1}t is the projection of X onto a random
set S ⊆ [n] of t positions, then, with high probability, XS is statistically-close to
a δ′t-source, where δ′ = Ω(δ). Whereas Nisan and Zuckerman [21] and Vadhan
[25] were concerned with the amount of randomness that is required for sampling
the t positions, in our case we can allow ourselves to sample the set S uniformly
at random, and this leads to the following simplified form of the lemma:

Lemma 2.2 ([25] – simplified). Let X be a δn-source over {0, 1}n, let t ∈ [n],
and let S denote the uniform distribution over sets S ⊆ [n] of size t. Then, there
exists a distribution W over {0, 1}t, jointly distributed with S, such that the
following hold:

1. (S,XS) is 2−Ω(δt/ log(1/δ))-close to (S,W).
2. For any set S ⊆ [n] of size t it holds that W|S=S is a δ′t-source for δ′ = δ/4.

2.2 Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is almost identical to a (random-
ized) public-key encryption scheme, where the only difference is that the en-
cryption algorithm is deterministic. More specifically, a deterministic public-key
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encryption scheme is a triple of polynomial-time algorithms Π = (KG,Enc,Dec).
The key-generation algorithm KG is a randomized algorithm which takes as in-
put the security parameter 1λ, where λ ∈ N, and outputs a pair (pk, sk) of a
public key pk and a secret key sk. The encryption algorithm Enc takes as in-
put the security parameter 1λ, a public key pk, and a plaintext m ∈ {0, 1}n(λ),
and outputs a ciphertext c ∈ {0, 1}t(λ). The (possibly deterministic) decryption
algorithm Dec takes as input the security parameter 1λ, a secret key sk, and a
ciphertext c ∈ {0, 1}t(λ), and outputs either a plaintext m ∈ {0, 1}n(λ) or the
special symbol ⊥. For succinctness, we will always assume 1λ as an implicit input
to all algorithms and refrain from explicitly specifying it.

In terms of security, in this paper we follow the standard approach for for-
malizing the security of deterministic public-key encryption schemes introduced
by Bellare, Boldyreva and O’Neill [2] and further studied by Bellare, Fischlin,
O’Neill and Ristenpart [4] and by Boldyreva, Fehr and O’Neill [8]. Specifically,
we consider the PRIV-IND notion of security asking that any efficient algo-
rithm has only a negligible advantage in distinguishing between encryptions of
different sequences of plaintexts as long as each plaintext is sampled from high-
entropy sources. We also consider the PRIV1-IND notion of security that focuses
on a single plaintext, and asks that any efficient algorithm has only a negligi-
ble advantage in distinguishing between encryptions of different plaintexts that
are sampled from high-entropy sources. This notion of security was shown by
Boldyreva, Fehr and O’Neill [8] to guarantee security for block-sources of mes-
sages (that is, for sequences of messages where each message has high-entropy
even when conditioned on the previous messages).

For defining these notions of security we rely on the following notation. We
denote by m = (m1, . . . ,m
) a sequence of plaintexts, and by c = Encpk(m) the
sequence of their encryptions (Encpk(m1), . . . ,Encpk(m
)) under a public key pk.

Definition 2.3 (k-source �-message adversary). Let A = (A1, A2) be a
probabilistic polynomial-time algorithm, and let k = k(λ) and � = �(λ) be func-

tions of the security parameter λ ∈ N. For any λ ∈ N denote by (M(0)
λ ,M(1)

λ ,
ST AT Eλ) the distribution corresponding to the output of A1(1

λ). Then, A is a
k-source �-message adversary if the following properties hold:

1. M(b)
λ =

(
M(b)

1,λ, . . . ,M
(b)

,λ

)
is a distribution over sequences of � plaintexts

for each b ∈ {0, 1}.
2. For any λ ∈ N, i, j ∈ [�], and

((
m

(0)
1 , . . . ,m

(0)



)
,
(
m

(1)
1 , . . . ,m

(1)



)
, state

)
that is produced by A1(1

λ) it holds that m
(0)
i = m

(0)
j if and only if m

(1)
i =

m
(1)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [�], and state ∈ {0, 1}∗ it holds that

M(b)
i,λ|ST AT Eλ=state is a k(λ)-source.

Definition 2.4 (PRIV-IND). A deterministic public-key encryption scheme
Π = (KG,Enc,Dec) is PRIV-IND-secure for k(λ)-source �(λ)-message
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adversaries if for any probabilistic polynomial-time k(λ)-source �(λ)-message ad-
versary A = (A1, A2) there exists a negligible function ν(λ) such that

AdvPRIV−IND
Π,A,λ

def
=
∣∣∣Pr [ExptPRIV−IND

Π,A,λ (0) = 1
]
− Pr

[
ExptPRIV−IND

Π,A,λ (1) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV−IND
Π,A,λ (b) is defined as follows:

1. (pk, sk) ← KG(1λ).
2. (m0,m1, state) ← A1(1

λ).
3. c ← Encpk(mb).
4. Output A2(1

λ, pk, c, state).

Definition 2.5 (PRIV1-IND). A deterministic public-key encryption scheme
Π = (KG,Enc,Dec) is PRIV1-IND-secure for k(λ)-source adversaries if for any
probabilistic polynomial-time k(λ)-source 1-message adversary A = (A1, A2)
there exists a negligible function ν(λ) such that

AdvPRIV1−IND
Π,A,λ

def
=
∣∣∣Pr [ExptPRIV1−IND

Π,A,λ (0) = 1
]
− Pr

[
ExptPRIV1−IND

Π,A,λ (1) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV1−IND
Π,A,λ (b) is defined as follows:

1. (pk, sk) ← KG(1λ).
2. (m0,m1, state) ← A1(1

λ).
3. c ← Encpk(mb).
4. Output A2(1

λ, pk, c, state).

3 Modeling Incremental Deterministic Public-Key
Encryption

In this section we present a framework for modeling the incrementality of deter-
ministic public-key encryption schemes. Intuitively, a deterministic public-key
encryption scheme is incremental if any small modification of a plaintext m re-
sulting in a plaintext m′ can be efficiently carried over for updating the encryp-
tion c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of m′. For capturing
the efficiency of such an update operation we consider two natural complexity
measures4:

– Input locality: The number of ciphertexts bits that are affected when flipping
a single plaintext bit.

– Query complexity: The number of public-key, plaintext, and ciphertext bits
that have to be read in order to update the ciphertext when flipping a single
plaintext bit.

4 For simplicity we focus on the case where both plaintexts and ciphertexts are rep-
resented as bit strings. We note, however, that our approach easily generalizes to
arbitrary message and ciphertext spaces.
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For capturing the above measures of efficiency we model the update operation
as a probabilistic polynomial-time algorithm Update that receives as input the
index i∗ of a plaintext bit to be flipped, and has oracle access to the individual
bits of the public key pk, the plaintextm to be modified, and to its encryption c =
Encpk(m). That is, the algorithm Update can submit queries of the form (pk, i),
(m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively.

More formally, let Π = (KG,Enc,Dec) be a deterministic public-key encryp-
tion scheme with message space {0, 1}n and ciphertext space {0, 1}t (where n =
n(λ) and t = t(λ) are functions of the security parameter λ ∈ N), and let Update
be its corresponding update algorithm. We denote by S ← Updatepk,m,c(1λ, i∗)
the process in which the update algorithm with input i∗ ∈ [n] and oracle access
to the individual bits of the public key pk, the plaintext m to be modified, and
to its encryption c = Encpk(m), outputs a set S ⊆ [t] of positions indicating
which bits of the ciphertext c have to be flipped.

Definition 3.1 (Incremental deterministic PKE). Let Π = (KG,Enc,Dec)
be a deterministic public-key encryption scheme with message space {0, 1}n and
ciphertext space {0, 1}t, where n = n(λ) and t = t(λ) are functions of the se-
curity parameter λ ∈ N. The scheme Π is Δ(λ)-incremental is there exists a
probabilistic polynomial-time algorithm Update satisfying the following require-
ments:

1. Correctness: There exists a negligible function ν(λ) such that for all suffi-
ciently large λ ∈ N, for any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n]
it holds that

Pr

⎡⎢⎢⎢⎢⎣c′ = Encpk(m
′)

∣∣∣∣∣∣∣∣∣∣
c = Encpk(m), S ← Updatepk,m,c(1λ, i∗)

m′[i∗] = ¬m[i∗]
m′[i] = m[i] for all i ∈ [n] \ {i∗}

c′[j] = ¬c[j] for all j ∈ S
c′[j] = c[j] for all j ∈ [t] \ S

⎤⎥⎥⎥⎥⎦ ≥ 1 − ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.
2. Efficiency: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·) is-

sues at most Δ(λ) oracle queries and outputs sets of size at most Δ(λ).

Access to the Plaintext. When providing the update algorithm with oracle
access to the bits of the plaintext m ∈ {0, 1}n we can assume without loss of
generality that the only update operations are to flip the ith bit of m for i ∈ [n].
That is, one can also consider the operation of setting the ith bit of m to 0 or 1,
but this can be handled by first querying the ith bit ofm and then flipping it if it
is different than the required value. We note, however, that for supporting only
flipping operations it is not clear that access to the plaintext must be provided.

An important observation is that when access to the plaintext is not pro-
vided (i.e., when the update algorithm can query only the public key and the
ciphertext), it is impossible to support the operation of setting a bit to 0 and 1
while providing PRIV1-IND security. That is, any such update algorithm can be
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used to attack the PRIV1-IND security of the scheme by distinguishing between
encryptions of high-entropy messages (and this holds for any level of incremen-
tality)5.

Privately-Incremental Schemes. In various scenarios it may be natural to
provide the update algorithm with access not to the plaintext m but rather
to the secret key sk (and thus indirect access to the plaintext which may be
less efficient in terms of query complexity). Consider for example, a scenario
in which a client stores an encrypted version F̄ of a file F on a remote and
untrusted server. In this the client does not have direct access to the file F , but
only indirect access by using its secret key to recover parts of the file. In such
a scenario it is required to capture the efficiency of the client by considering its
query complexity to the secret key (and ciphertext) and not to the plaintext.
This leads to a natural variant of Definition 3.1 in which the update algorithm
is given oracle access to the public key pk, the secret key sk, and the ciphertext
c (but no direct access to the plaintext).

4 A Generic Construction via Random Partitioning

In this section we present a generic construction of an incremental PRIV1-IND-
secure deterministic public-key encryption scheme from any PRIV-IND-secure
deterministic public-key encryption scheme. As discussed in Section 1.3 our ap-
proach is a “randomized” alternative to the commonly-used approach of dividing
the plaintext into small blocks and encrypting each block. Instead of dividing
an n-bit plaintext m into fixed blocks, we project it onto a uniformly chosen
partition S1, . . . , Sn/t of the plaintext positions {1, . . . , n} to sets of size t each,
and then separately encrypt each of the projections mS1 , . . . ,mSn/t

using the
underlying encryption scheme. Thus, when flipping a single bit of m we only
need to update the encryption of the projection mSi for which the correspond-
ing position belongs to the set Si. Therefore, the resulting scheme enjoys the
same incrementality that the underlying scheme has for small blocks. A more
formal description follows.

The Scheme. Let Π ′ = (KG′,Enc′,Dec′) be a deterministic public-key en-
cryption scheme for n′-bit plaintexts that is IND-PRIV-secure for k′-source �′-
message adversaries, where n′ = n′(λ), k′ = k′(λ) and �′ = �′(λ) are functions of
the security parameter λ ∈ N. We construct a deterministic public-key encryp-
tion scheme Π = (KG,Enc,Dec) for n-bit plaintexts that is PRIV1-IND-secure

5 Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1

outputs (m0,m1, state) where m0 ← Uk||0n−k and m1 ← Un are sampled indepen-
dently at random, and state = ⊥. That is, m0 is a distributed uniformly conditioned
on ending with 0n−k, and m1 is distributed uniformly. The algorithm A2 on input
c = Encpk(mb) invokes the update algorithm to set the leftmost k bits of the plaintext
corresponding to c to 0, and then compares the resulting ciphertext to Encpk(0

n).
Note that if b = 0 then the two ciphertexts are always equal, and if b = 1 then they
are equal only with probability 2−(n−k).
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for k-source adversaries, where n = n(λ) and k = k(λ) are functions of the
security parameter λ ∈ N as follows:

– The algorithm KG on input the security parameter 1λ samples (pk′, sk′) ←
KG′(1λ) together with a uniformly chosen partition S1, . . . , Sn/t of [n], where
each set in the partition is of size t = Θ(n

k · k′). It then outputs pk =
(pk′, S1, . . . , Sn/t) and sk = sk′.6

– The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n outputs the cipher-
text (Enc′pk′(1||mS1), . . . ,Enc

′
pk′ (n/t||mSn/t

)).
– The algorithm Decsk(·) on input a ciphertext (c1, . . . , cn/t) computes mSi =

Dec′sk′(ci) for every i ∈ [n/t], and outputs the plaintext m defined by the
projections mS1 , . . . ,mSn/t

.

We establish the security and incrementality of this scheme by proving the fol-
lowing theorem (due to space limitations the proof appears in the full version):

Theorem 4.1. Assuming that Π ′ encrypts n′-bit plaintexts, for n′ = t+log(n/t),
and is IND-PRIV-secure for k′-source �′-message adversaries, for some k′ =
ω(log2 n) and for �′ = n/t, the scheme Π is PRIV1-IND-secure for k-sources.

5 A Construction Based on the Decisional Diffie-Hellman
Assumption

In this section we construct a deterministic public-key encryption scheme that
enjoys essentially optimal incrementality, and guarantees PRIV1-IND security
based on the Decisional Diffie-Hellman (DDH) assumption. We begin by intro-
ducing rather standard notation and then describe the scheme.

Notation. Let G be a group of prime order p that is generated by g ∈ G. For
any matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n

p we denote by gA ∈ Gn×n the matrix

{gaij}i∈[n],j∈[n]. In addition, for a column vector m = (m1, . . . ,mn)
T ∈ Zn

p and
a matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n

p we define

A* gm
def
= gA *m

def
= gAm = (g

∑
i a1,imi , . . . , g

∑
i an,imi)T ∈ Gn .

The Scheme. Let GroupGen be a probabilistic polynomial-time algorithm that
takes as input the security parameter 1λ, and outputs a triplet (G, p, g) where
G is a group of prime order p that is generated by g ∈ G, and p is a λ-bit prime
number. The scheme is parameterized by the security parameter λ, the message
length n = n(λ), and the min-entropy k = k(λ) for which the scheme is secure.
Both n and k are polynomials in the security parameter. The scheme Π = (KG,
Enc,Dec) is defined as follows:

6 Without loss of generality we can assume that t divides n, as otherwise we can pad
plaintexts with at most t zeros, and for our choice of parameters this would only
have a minor effect on the min-entropy rate.



642 I. Mironov et al.

– Key generation. The algorithm KG on input the security parameter 1λ

samples (G, p, g) ← GroupGen(1λ), and a matrix A ← An,k,p, where An,k,p

is a distribution over Zn×n
p which is defined below. It then outputs pk =

(G, p, g, gA) and sk = A−1.
– Encryption. The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n out-

puts the ciphertext gA *m = gAm ∈ Gn.
– Decryption. The algorithmDecsk(·) on input a ciphertext gc = (gc1 , . . . , gcn)

∈ Gn first computes w = A−1*gc = gA
−1c ∈ Gn, and lets w = (gm1 , . . . , gmn).

If m = (m1, . . . ,mn) ∈ {0, 1}n (note that this test can be computed effi-
ciently) then it outputs m, and otherwise it outputs ⊥.

The Distribution An,k,p. For completing the description of our scheme it
remains to specify the distribution An,k,p that is defined over Zn×n

p . Looking
ahead this distribution will be used to define the distribution of injective keys
in our collection of smooth trapdoor functions. In fact, we find it convenient to
first specify the distribution Ãn,k,p that will be used to define the distribution
of smooth keys. These two distributions rely on the following distributions as
building block:

– Rn,k,p: sparse random �× n matrices. The distribution Rn,k,p is defined
as a random sample from Z
×n

p matrices that have exactly t = Θ(n
k · log3 n)

non-zero entries in each row, where � = Θ(k/ log p).
– Dn,k,p: diagonally-striped �× n matrices. The distribution Dn,k,p is

defined as a random sample from Z
×n
p matrices whose elements dij are non-

zero if and only if i ≡ j (mod �) (for simplicity we assume that n is divisible
by �).

The distribution Ãn,k,p over Zn×n
p is defined as matrices Ã obtained by inde-

pendently sampling R ← Rn,k,p, D1 ← Dn,k,p, and D2 ← Dn,k,p, and letting

Ã
def
= DT

2 × (R + D1). Then, the distribution An,k,p is defined as matrices A

obtained by sampling a matrix Ã ← Ãn,k,p and then re-sampling all its non-zero
entries from Zp independently and uniformly at random. In other words, the

resulting matrix A preserves zeroes of the matrix Ã, while randomizing all other
elements (and thus linear dependencies between rows) of the original matrix. See

Figure 1 for an illustration of the distributions Rn,k,p, Dn,k,p and Ãn,k,p.
Intuitively, the matrix D1 is only meant to ensure that such the resulting ma-

trix A is invertible. Indeed, the matrix D1 guarantees that with an overwhelming
probability all the elements on the main diagonal of A are non-zeros. Now, ignor-
ing the matrix D1, the matrix Ã is generated to satisfy two properties. The first
is that each of its first � rows has t randomly chosen entries with values that are
chosen uniformly from Zp, and all other n− t entries are zeros. Looking ahead,
when computing the inner product of such a row with a source of min-entropy
larger than log p, the “sample-then-extract” lemma (see Lemma 2.2) guarantees
that the output is statistically close to uniform. The second property, is that each
of its last n − � rows are linear combinations of the first � rows, and therefore
the image of its corresponding linear map is determined by the first � rows.
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Fig. 1. The distributions Rn,k,p, Dn,k,p and Ãn,k,p

The following theorem establishes the security of the scheme (due to space
limitations the proof appears in the full version):

Theorem 5.1. Under the Decisional Diffie-Hellman assumption the scheme Π
is PRIV1-IND-secure for k-sources.

Acknowledgements. We thank Salil Vadhan for useful discussions regarding
Lemma 2.2.
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Abstract. We show that no commitment scheme that is hiding and
binding according to the standard definition is semantically-secure un-
der selective opening attack (SOA), resolving a long-standing and fun-
damental open question about the power of SOAs. We also obtain the
first examples of IND-CPA encryption schemes that are not secure un-
der SOA, both for sender corruptions where encryption coins are revealed
and receiver corruptions where decryption keys are revealed. These re-
sults assume only the existence of collision-resistant hash functions.

1 Introduction

A commitment scheme E can be applied to a message m and coins r to (de-
terministically) produce a commitment c ← E(m; r) that is sent to a receiver.
The sender can later “open” the commitment by providing m, r and the receiver
checks that E(m; r) = c. The first security requirement, often called hiding, is
formalized as IND-CPA, namely an adversary knowing m0, m1 and E(mb; r) for
random b, r has negligible advantage in computing challenge bit b. The second
requirement, binding, asks that it be hard for an adversary to produce r0, r1

and distinct m0, m1 such that E(m0; r0) = E(m1; r1) �= ⊥. Let us refer to a
commitment scheme as HB-secure (Hiding and Binding) if it satisfies both these
properties. HB-security is the standard requirement and HB-secure commitment
schemes are a fundamental tool in cryptography in general and in protocol de-
sign in particular. HB-secure commitment implies PRGs [31], PRFs [21] and ZK
proofs for NP [24].

Suppose there are n committers, the i-th computing its commitment c[i] ←
E(m[i]; r[i]) to its message m[i] using coins r[i], the coins of different commit-
ters being of course not only random but also independent of each other. An
adversary computes, as a function of the vector c of commitments, a subset
I ⊆ {1, . . . , n} of the senders, and obtains the corresponding openings, namely
〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉. This is called a selective opening attack (SOA).
We say that E is SOA-secure if privacy of the un-opened messages is preserved,
meaning the adversary, after its SOA, cannot learn anything about 〈m[i] : i �∈ I〉
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other than it would from possession of 〈m[i] : i ∈ I〉. (That is, the coins are
unhelpful.) SOAs arise quite naturally in multi-party cryptographic protocols
and SOA-security is desirable in many such settings.

A fundamental question that was posed in this area is whether (standard)
HB-security implies SOA-security, meaning, is a HB-secure commitment scheme
also SOA-secure? So far, the question has received neither a positive nor a neg-
ative answer. Intuitively, the answer would appear to be “yes,” for how could
the coins accompanying the opened messages help, beyond the opened mes-
sages themselves, in revealing something about the un-opened messages? Yet
attempts to prove SOA-security of a commitment scheme based on its HB-
security have failed. But attempts to find a counter-example have also failed.
We do not have a single example, even artificial, of a HB-secure commitment
scheme that is demonstrably not SOA-secure. This situation has vexed and in-
trigued cryptographers for many years and been the subject or inspiration for
much work [12,19,13,35,3,20,29,7,28].

This paper answers this long-standing open question. We show that the answer
is negative. We give an example of a HB-secure commitment scheme which we
prove is not SOA-secure. In fact our result is much stronger. It shows that no HB-
secure commitment scheme is SOA-secure. Given any HB-secure commitment
scheme, we present an attack showing it is not SOA-secure. Before going on to
our results on encryption let us expand on this result on commitment including
its implications and its relation to previous work.

SOA-secure commitment. Dwork, Naor, Reingold and Stockmeyer (DNRS)
[19] gave a definition of SOA-secure commitments, henceforth referred to as SS-
SOA, that captures semantic security for relations via a simulation-based for-
malization. Suitable for applications and widely accepted as the right definition,
SS-SOA is what we use in our results. We show that no HB-secure commitment
scheme is SS-SOA-secure by presenting, for any given HB-secure commitment
scheme E , an adversary for which we prove that there is no successful simulator.
We do not assume the simulation is blackbox. The only assumption made is the
existence of a collision-resistant (CR) hash function.

This general result rules out SS-SOA security for particular schemes. For
example, a widely employed way to commit to m ∈ Zp is by picking r ∈ Zp at
random and returning E(m; r) = gmhr ∈ G where g, h are generators of a group
G of prime order p [36]. This scheme is binding if the DL problem is hard in G

and it is unconditionally hiding. Our results imply that it is not SS-SOA secure.
They yield a specific attack, in the form of an adversary for which there is no
simulator. Since CR hash functions exist if DL is hard, one does not even need
extra assumptions. We stress that this is just an example; our result rules out
SS-SOA security for all HB-secure schemes.

Implications for IND-SOA-CRS. An indistinguishability-based definition of
SOA-secure commitment is given in [3,29]. It only applies when the message vec-
tor m is drawn from what’s called a “conditionally re-samplable (CRS) distribu-
tion,” and accordingly we denote it IND-SOA-CRS. This definition is of limited



Standard Security Does Not Imply Security against Selective-Opening 647

use in applications because message distributions there are often not CRS, but
for CRS distributions the definition is intuitively compelling and sound.

Letting SS-SOA-CRS denote the restriction of SS-SOA to CRS distributions,
[3,29] had noted that SS-SOA-CRS implies IND-SOA-CRS and asked whether
the converse was true. We settle this question in the negative, showing that
SS-SOA-CRS is strictly stronger. We arrive at this separation by combining
two facts. First, the message distribution underlying our negative result is CRS,
meaning we say that there does not exist a HB-secure commitment scheme that
is SS-SOA-CRS, not just SS-SOA. Second, it is known that there does exist a
HB-secure commitment scheme that is IND-SOA-CRS [3,29].

Hofheinz [3,29] shows that any commitment scheme that is statistically hiding
and binding is IND-SOA-CRS. This positive result does not contradict our result,
because, as we have just seen (indeed, invoking this positive result to do so),
IND-SOA-CRS is a strictly weaker requirement than SS-SOA or SS-SOA-CRS.
A question that still remains open is whether HB-security implies IND-SOA-CRS
security.

Message distribution. It has been suggested that the difficulty in showing
that HB-security implies SS-SOA is that the messages in the vector m may be
related to each other. Our results imply that although showing HB-security im-
plies SS-SOA-security is not just hard but impossible, it is not for this reason.
We have already noted that our negative result holds for a message distribution
that is CRS. In fact, the message distribution is uniform, meaning the messages
in the vector are uniformly and independently distributed strings. Even for this
uniform distribution, no HB-secure commitment scheme is SS-SOA secure. This
may at first glance appear to contradict known results, for DNRS [19] showed
that HB-security implied SOA-security for independently distributed messages.
The difference is that they only showed this for what they called semantic se-
curity for functions, a notion implied by, but not known to imply their main
notion of semantic security for relations that we call SS-SOA. Thus, not only is
there no contradiction, but our results settle an open question from [19]. Namely
we show that their result does not extend to SS-SOA and also that SS-SOA is
strictly stronger than semantic security for functions.

Random oracles. Our result holds in the standard model and in the non-
programmable random oracle (RO) model [32]. (In the latter the simulator
is given oracle access to the RO and cannot define it.) In the standard (pro-
grammable) RO model [5], where the simulator can define the RO, our result
is not true: there do exist HB-secure schemes that are SS-SOA secure. As an
example, commitment scheme EH(m; r) = H(m; r), where H is the RO, is HB-
secure in the non-programmable RO. Our results show it is not SS-SOA in this
model. However, it can be easily shown SS-SOA in the programmable RO model.
Consequently, our results yield another separation between the programmable
and non-programmable RO models complementing that of [32].

Previous negative results. Hofheinz [3,29] shows that no HB-secure scheme
can be proven SS-SOA secure via blackbox reduction to “standard” assumptions.
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(A “standard” assumption as defined in [17,3,29] is one specified by a certain
type of game.) However, it might still be possible to prove that a particular HB-
secure scheme was SS-SOA in some ad hoc and non-blackbox way. The blackbox
separation does not yield a single example of an HB-secure scheme that is not
SS-SOA secure, let alone show, as we do, that all HB-secure schemes fail to be
SS-SOA secure.

Interaction. Our result applies to non-interactive commitment schemes. When
commitment involves an interactive protocol between sender and receiver the
corresponding claim is not true. There does exist an interactive HB and SS-SOA
secure commitment scheme. Specifically, Hofheinz [3,29] presents a particular
construction of such a scheme based on one-way permutations. Further results
on interactive SOA-secure commitment are [39,34].

SOA-secure encryption for sender corruptions. Turning now to en-
cryption, consider a setting with n senders and one receiver, the latter having
public encryption key ek. Sender i picks random coins r[i], encrypts its message
m[i] via c[i] ← E(ek,m[i]; r[i]), and sends ciphertext c[i] to the receiver. The
adversary selects, as a function of c, a set I ⊆ {1, . . . , n} of the senders and
corrupts them, obtaining their messages 〈m[i] : i ∈ I〉 and coins 〈r[i] : i ∈ I〉.
As before, we say that E is SOA-secure if privacy of the un-opened messages
is preserved. An SS-SOA definition analogous to the one for commitment was
given in [3,8].

The standard and accepted security condition for encryption since [26] is of
course IND-CPA. SOA-security was identified upon realizing that it is necessary
to implement the assumed-secure channels in multi-party secure computation
protocols like those of [9,14]. The central open question was whether or not
IND-CPA implies SS-SOA. Neither a proof showing the implication is true, nor a
counter-example showing it is false, had been given. We show that IND-CPA does
not imply SS-SOA by exhibiting a large class of IND-CPA encryption schemes
that we prove are not SS-SOA. The class includes many natural and existing
schemes.

DNRS [19] had pointed out that the obstacle to proving that IND-CPA implies
SS-SOA is that most encryption schemes are “committing.” Our results provide
formal support for this intuition. We formalize a notion of binding-security for
encryption. Our result is that no binding encryption scheme is SS-SOA secure.
As with commitment, it holds when the distribution on messages is uniform.

The existence of a decryption algorithm corresponding to the encryption al-
gorithm means that for any ek created by honest key-generation, there do not
exist r0, r1 and distinct m0, m1 such that E(ek, m0; r0) = E(ek, m1; r1). Binding
strengthens this condition to also hold when ek is adversarially chosen, while
also relaxing it from unconditional to computational. It is thus a quite natural
condition and is met by many schemes.

Inability to show that IND-CPA implies SS-SOA led to the search for spe-
cific SS-SOA secure encryption schemes. Non-commiting encryption [12] yields
a solution when the number of bits encrypted is bounded by the length of the
public key. The first full solution was based on lossy encryption [3,8]. Deniable
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encryption [11] was used to obtain further solutions [20,7]. More lossy-encryption
based solutions appear in [28]. In all these solutions, the encryption scheme is
not binding. Our results show that this is necessary to achieve SS-SOA security.

SOA-security has so far been viewed as a theoretical rather than practical
issue because even if there was no proof that IND-CPA implies SS-SOA, there
were no attacks on standard, practical schemes such as ElGamal. Our results
change this situation for they show that ElGamal and other practical schemes
are not SS-SOA secure. Thus, the above-mentioned schemes that achieve SS-SOA
in more involved ways are necessary if we want SS-SOA security.

IND-CCA doesn’t help: The Cramer-Shoup scheme [15] meets our definition
of binding and is thus not SS-SOA secure. As with commitment, our results
imply that IND-SOA-CRS security is strictly weaker than SS-SOA-CRS security,
answering an open question from [3,8]. Subsequent to our work, the relations
between different notions of SOA-security under sender corruptions were further
clarified in [10] but whether there exist schemes that are IND-CPA but not
IND-SOA-CRS secure remains open.

SOA-secure encryption for receiver corruptions. In a dual of the above
setting, there are n receivers and one sender, receiver i having public encryp-
tion key ek[i] and secret decryption key dk[i]. For each i the sender picks ran-
dom coins r[i], encrypts message m[i] via c[i] ← E(ek[i],m[i]; r[i]), and sends
ciphertext c[i] to receiver i. The adversary selects, as a function of c, a set
I ⊆ {1, . . . , n} of the receivers and corrupts them, obtaining not only the mes-
sages 〈m[i] : i ∈ I〉 but also the decryption keys 〈dk[i] : i ∈ I〉. As usual, we
say that E is SOA-secure if privacy of the un-opened messages is preserved. An
SS-SOA definition analogous to the ones for commitment and sender-corruptions
in encryption is given in Section 5.

The status and issues are analogous to what we have seen above, namely that
it has been open whether IND-CPA security implies SS-SOA for receiver cor-
ruptions, neither a proof nor a counter-example ever being given. We settle this
with the first counter-examples. We define a notion of decryption verifiability for
encryption that can be seen as a weak form of robustness [1]. It asks that there
is an algorithm W such that it is hard to find ek, dk0, dk1 and distinct m0, m1

such that W(ek, dk0, m0) and W(ek, dk1, m1) both accept. We show that no
IND-CPA and decryption-verifiable encryption scheme is SS-SOA secure. Stan-
dard encryption schemes like ElGamal are decryption verifiable (even though
they are not robust) so our result continues to rule out SS-SOA security for
many natural schemes.

Non-committing encryption [12] yields an SS-SOA scheme secure for receiver
corruptions when the number of bits encrypted is bounded by the length of
the secret key. Nielsen [32] showed that any non-committing encryption scheme
has keys larger than the total number of message bits it can securely encrypt.
This result is not known to extend to SS-SOA, meaning the existence of an SS-
SOA scheme for receiver corruptions without this restriction is open. Our results
do not rule out such a full solution but indicate that the scheme must not be
decryption-verifiable.
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2 Technical Approach

We provide a high-level description of our approach, focusing for simplicity on
commitment schemes and the claim that no HB-secure commitment scheme is
SS-SOA secure. We then discuss extensions and variants of our results.

The definition. Let E be a commitment scheme. To compact notation, we
extend it to vector inputs by letting E(m; r) be the vector whose i-th component
is E(m[i]; r[i]). Let M be a message sampler that outputs a vector m of messages
and let R be a relation. Adversary A, given ciphertext vector c = E(m; r) will
corrupt a subset I of the senders, get their messages and coins, and output a value
w. It is said to win if R(m, I, w) is true. The simulator, given no ciphertexts, can
also corrupt a subset I of senders but gets back only the corresponding messages,
and outputs a value w. It too is said to win if R(m, I, w) is true. Security requires
that for every M, R and adversary A there is a simulator S such that S wins
with about the same probability as A. DNRS [19, Sec 7.1] require this to be true
even for any auxiliary input a given initially to A and also to S. See Section 4
for a formal definition.

The attack. Let E be any, given HB-secure commitment scheme. We construct
M, R, A for which we prove there is no simulator. We let M output n = 2h
randomly and independently distributed messages, each of length �. Our ad-
versary A applies to the vector c = E(m; r) of commitments a hash function
H to get back an h-bit string b[1] . . . b[h] and then corrupts the set of indices
I = {2j − 1 + b[j] : 1 ≤ j ≤ h} to get back 〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉.
Its output w consists of c and 〈r[i] : i ∈ I〉. We define R, on inputs m, I and
w, to check two constraints. The opening constraint is that E(m[i]; r[i]) = c[i]
for all i ∈ I. The hash constraint is that I = {2j − 1 + b[j] : 1 ≤ j ≤ h} for
b[1] . . . b[h] = H(c). A detailed description of A and R is in Fig. 3.

The simulator gets no ciphertexts. It must corrupt some set I of indices to
get back 〈m[i] : i ∈ I〉. Now it must create a ciphertext vector c and a list
〈r[i] : i ∈ I〉 of coins to output as w to R, and to satisfy the latter it must satisfy
both constraints. Intuitively, the simulator faces a Catch-22. It is helpful for the
intuition to think of H as a random oracle. The simulator could first pick I in
some way, get 〈m[i] : i ∈ I〉 from its oracle, and compute c and 〈r[i] : i ∈ I〉
to satisfy the opening constraint. But it is unlikely, given only poly(·) queries
to H , to satisfy the hash constraint. On the other hand it could pick some c,
define I to satisfy the hash constraint, and get 〈m[i] : i ∈ I〉 from its oracle.
But now it would have a hard time satisfying the opening constraint because the
commitment scheme is binding.

This intuition that the simulator’s task is hard is, however, not a proof that
a simulator does not exist. Furthermore, the intuition relies on the hash func-
tion being a random oracle and we only want to assume collision-resistance. Our
proof takes an arbitrary simulator and proves that the probability that it makes
the relation true is small unless it finds a hash collision or violates binding. The
proof involves backing up the simulator, feeding it different, random responses
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to its corruption query, and applying a Reset Lemma analogous to that of [4].
We do not assume the simulation is blackbox. See Theorem 2.

Related work. The strategy of specifying challenges by a hash of commitments
arose first in showing failure of parallel-repetition to preserve zero-knowledge
[22,23]. The model, goals and techniques are however quite different. Also in [23]
the simulator is assumed to make only blackbox calls to the adversary (verifier)
and we make no such assumption, and they use a pairwise independent hash
rather than a CR one. We point out that although the seed of our technique
can be traced back 20 years it was not noted until now that it could be of use
in settling the long-standing open question of whether HB-secure commitments
are SS-SOA-secure.

Adaptive security. Our definition of SS-SOA, following [19,3,7] is one-shot,
meaning the adversary gets all the ciphertexts at once and performs all its
corruptions in parallel. A definition where the adversary can make adaptive
ciphertext-creation and corruption requests is more suitable for applications.
But our result is negative so using a restricted adversary only makes it stronger.
(We are saying there is an attack with a one-shot adversary so certainly there is
an attack with an adaptive adversary.)

The flip side is that if the adversary is allowed to be adaptive, so is the
simulator. Our theorems only consider (and rule out) one-shot simulators for
simplicity, but the proofs can be extended to also rule out adaptive simulators.
We discuss briefly how to do this following the proof of Theorem 2.

Auxiliary inputs. As indicated above, the definition of DNRS [19] that we
use allows both the adversary and simulator to get an auxiliary input, denoted
“z” in [19, Sec 7.1]. The simplest and most basic form of our result exploits
the auxiliary input to store the key describing the CR hash function. (If the
simulator can pick this key the function will not be CR.)

Auxiliary inputs model history. They were introduced in the context of zero-
knowledge by Goldreich and Oren [25] who showed that in their presence ZK
had natural and desirable composability properties absent under the original
definition of [27]. They have since become standard in zero-knowledge and also
in simulation-based definitions in other contexts [18,19] to provide composability.
Their inclusion in the SS-SOA definition of commitment by DNRS [19] was thus
correct and justified and we put them to good use.

Later definitions [3,29] however appear to have dropped the auxiliary inputs.
Although this appears to be only for notational simplicity (modern works on
ZK also often drop auxiliary inputs since it is well understood how to extend
the definition to include them) it does raise an interesting technical question,
namely what negative results can we prove without auxiliary inputs?

A simple solution is to use one of the messages as a key. The adversary would
corrupt the corresponding party to get this key, thereby defining the hash func-
tion, and then proceed as above. This however makes the adversary adaptive,
and while this is still a significant result, we ask whether anything can be shown
for one-shot adversaries without using auxiliary inputs.



652 M. Bellare et al.

This turns out to be technically challenging. The difficulty is that the simu-
lator can control the hash key. In [2] we present a construction relying on a new
primitive we call an encrypted hash scheme (EHS). The idea is that there is an
underlying core hash function whose keys are messages and an encrypted hash
function whose keys are ciphertexts. We show how to build an EHS based on
DDH.

We remark that from a practical perspective these distinctions are moot since
hash functions like SHA-256 are keyless. Also, it is possible to work theoret-
ically with keyless hash functions [38]. But in classical asymptotic theoretical
cryptography, hash functions are keyed and we were interested in results in this
setting.

3 Preliminaries

Notation and conventions. If n ∈ N then let 1n denote the string of n ones
and [n] the set {1, . . . , n}. The empty string is denoted by ε. By a ‖ b we denote
the concatenation of strings a, b. If a is tuple then (a1, . . . , an) ← a means we
parse a into its constituents. We use boldface letters for vectors. If x is a vector
then we let |x| denote the number of components of x and for 1 ≤ i ≤ |x| we let
x[i] denote its i-th component. For a set I ⊆ [|x|] we let x[I] be the |x|-vector
whose i-th component is x[i] if i ∈ I and ⊥ otherwise. We let ⊥n denote the
n-vector all of whose components are ⊥. We define the Embedding subroutine
Emb to take 1n, I ⊆ [n], a |I|-vector x∗ and a n-vector x and return the n-
vector that consists of x with x∗ embedded in the positions indexed by I. More
precisely,

Subroutine Emb(1n, I,x∗,x)
j ← 0 ; For i = 1, . . . , n do If i ∈ I then j ← j + 1 ; x[i] ← x∗[j]
Return x.

All algorithms are randomized, unless otherwise specified as being deterministic.
We use the abbreviation PT for polynomial-time. If A is an algorithm then
y ← A(x1, . . . , xn; r) represents the act of running the algorithm A with inputs
x1, . . . , xn and coins r to get an output y and y←$ A(x1, . . . , xn) represents the
act of picking r at random and letting y ← A(x1, . . . , xn; r). By [A(x1, . . . , xn)]
we denote the set of all y for which there exists r such that y = A(x1, . . . , xn; r).

Games. We use the language of code-based game-playing [6]. A game (see Fig. 1
for examples) has an Initialize procedure, procedures to respond to adversary
oracle queries, and a Finalize procedure. A game G is executed with an adver-
sary A and security parameter λ as follows. A is given input 1λ and can then call
game procedures. Its first oracle query must be Initialize(1λ) and its last oracle
query must be to Finalize, and it must make exactly one query to each of these
oracles. In between it can query the other procedures as oracles as it wishes. The
output of Finalize, denoted GA(λ), is called the output of the game, and we
let “GA(λ)” denote the event that this game output takes value true.
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Initialize(1λ)

b←$ {0, 1} ; π←$P(1λ)
(ek, dk)←$K(π)
Return (π, ek)

LR(m0, m1)

c←$ E(1λ, π, ek, mb)
Return c

Finalize(b′)
Return (b′ = b)

Initialize(1λ)

π←$P(1λ)
Return π

Finalize(ek, c, m0, m1, r0, r1)

d0 ← V(1λ, π, ek, c, m0, r0)

d1 ← V(1λ, π, ek, c, m1, r1)
Return (d0 ∧ d1 ∧ (m0 �= m1))

Fig. 1. Game INDΠ (left) and game BINDΠ (right) defining, respectively, IND-CPA
privacy and binding security of CE scheme Π = (P ,K, E ,V)

CE Schemes. We introduce CE (Committing Encryption) schemes as a way
to unify commitment and encryption schemes under a single syntax and avoid
duplicating similar definitions and results for the two cases. A CE scheme Π =
(P ,K, E ,V) is specified by four PT algorithms. Via π←$P(1λ) the parameter-
generation algorithm P generates system parameters such as a description of
a group. Via (ek, dk)←$K(π) the key-generation algorithm K generates an en-
cryption key ek and decryption key dk. Via c ← E(1λ, π, ek, m; r) the encryption
algorithm deterministically maps a message m and coins r ∈ {0, 1}ρ(λ) to a ci-
phertext c ∈ {0, 1}∗∪ {⊥} where ρ: N → N is the randomness length associated
to Π and c �= ⊥ iff |m| = �(λ) where �: N → N is the message length associated
to Π . Via d ← V(1λ, π, ek, c, m, r), deterministic verification algorithm V returns
true or false. We require that V(1λ, π, ek, E(1λ, π, ek, m; r), m, r) = true for all
λ ∈ N, all π ∈ [P(1λ)], all (ek, dk) ∈ [K(π)], all r ∈ {0, 1}ρ(λ) and all m ∈ {0, 1}∗
such that E(1λ, π, ek, m; r) �= ⊥. We say that the verification algorithm V is
canonical if V(1λ, π, ek, c, m, r) returns the boolean (E(1λ, π, ek, m; r) = c �= ⊥).

Game INDΠ of Fig. 1 captures the standard notion of indistinguishability
under chosen-plaintext attack (IND-CPA) [26] and serves to define privacy for
CE schemes. The adversary is allowed only one LR query and the messages
m0, m1 involved must be of the same length. Game BINDΠ captures binding
security. For adversaries A, B we let

Advindcpa
Π,A (λ) = 2 Pr[INDA

Π(λ)]−1 and Advbind
Π,B(λ) = Pr[BINDB

Π(λ)] .

We say that Π is IND-CPA secure if Advindcpa
Π,A (·) is negligible for all PT A, bind-

ing if Advbind
Π,B(·) is negligible for all PT B and perfectly binding if Advbind

Π,B(·) = 0
for all (not necessarily PT) B.

Discussion. Commitment and encryption schemes can be recovered as special
cases of CE schemes as follows. We say that Π is a commitment scheme if K
always returns (ε, ε). We see that our two security requirements capture the stan-
dard hiding and binding properties. In Section 1 we had simplified by assuming
the verification algorithm is canonical and there were no parameters but here we
are more general. We say that D is a decryption algorithm for CE scheme Π if
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D(1λ, π, dk, E(1λ, π, ek, m; r)) = m for all λ ∈ N, all π ∈ [P(1λ)], all (ek, dk) ∈
[K(π)], all r ∈ {0, 1}ρ(λ) and all m ∈ {0, 1}∗ such that E(1λ, π, ek, m; r) �= ⊥.
We say that Π admits decryption if it has a PT decryption algorithm and in
that case we say Π is an encryption scheme. IND-CPA is then, of course, the
standard privacy goal.

Typical encryption schemes are perfectly binding under canonical verification
with some added checks. For example, the ElGamal encryption scheme over a
order-p group G with generator g (these quantities in the parameters) is binding
under a verification algorithm that performs the re-encryption check and then
also checks that quantities that should be in G or Zp really are. RSA-based
schemes can be made binding by requiring the encryption exponent to be a
prime larger than the modulus.

Lossy encryption schemes [3,30,37] are not binding because the adversary
could provide a lossy encryption key and, under this, be able to generate encryp-
tion collisions. Non-commiting [12,16] and deniable [11,33] encryption schemes
are intentionally not binding. These types of encryption schemes have been
shown to have SOA security. Our results show that the lack of binding was
necessary for their success at this task.

Hash Functions. A hash function Γ = (A,H) with associated output length
h: N → N is a tuple of PT algorithms. Via a←$A(1λ) the key-generation algo-
rithm A produces a key a. Via y ← H(a, x) the deterministic hashing algorithm
H produces the h(λ)-bit hash of a string x under key a. Collision-resistance
is defined via game CRΓ whose Initialize(1λ) procedure returns a←$A(1λ)
and whose Finalize procedure on input (x, x′) returns (x �= x′) ∧ (H(a, x) =
H(a, x′)). There are no other procedures. The advantage of an adversary C is de-
fined by Advcr

Γ,C(λ) = Pr
[
CRC

Γ (λ)
]
. We say that Γ is collision-resistant (CR)

if Advcr
Γ,C(·) is negligible for every PT C. The following says that CR hash

functions must have super-logarithmic output length and will be useful later:

Proposition 1. LetΓ = (A,H) be a hash function with associatedoutput length
h: N → N. If Γ is collision-resistant then the function 2−h(·) is negligible.

4 SOA-C Insecurity of CE Schemes

Here we show that no CE-scheme that is binding is SOA-C secure. This im-
plies that no HB-secure commitment scheme is SOA-secure and that no binding
IND-CPA encryption scheme is SOA-secure under sender corruptions. In [2] we
establish similar results for SOA-K to show that no robust IND-CPA encryption
scheme is SOA-secure for receiver corruptions.

SOA-C Security. A relation is a PT algorithm with boolean output. A message
sampler is a PT algorithm M taking input 1λ and a string α and returning a
vector over {0, 1}∗. There must exist a function n: N → N (called the number
of messages) and a function �: N×{0, 1}∗ ×N → N (called the message length)
such that |m| = n(λ) and |m[i]| = �(λ, α, i) for all m ∈ [M(1λ, α)] and all
i ∈ [n]. An auxiliary-input generator is a PT algorithm.
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Initialize(1λ)

π←$P(1λ) ; a← A(1λ) ; (ek, dk)←$K(π)
Return (a, π, ek)

Enc(α)

m←$M(1λ, α)
For i = 1, . . . , n(λ) do

r[i]←$ {0, 1}ρ(λ) ; c[i]← E(1λ, π, ek,m[i]; r[i])
Return c

Corrupt(I)

Return m[I ], r[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I,w)

Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
Return (a, π)

Msg(α)

m←$M(1λ, α)

Corrupt(I)

Return m[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I, w)

Fig. 2. Game RSOACΠ,M,R,A capturing the real-world SOA-C attack to be mounted
by an adversary (left) and game SSOACΠ,M,R,A capturing the simulated-world SOA-C
attack to be mounted by a simulator (right)

Let Π = (P ,K, E ,V) be a CE-scheme, R a relation, M a message sampler
and A an auxiliary-input generator. We define SOA-C security via the games of
Fig. 2. “Real” game RSOACΠ,M,R,A will be executed with an adversary A. An
soa-c adversary’s (mandatory, starting) Initialize(1λ) call results in its being
returned an auxiliary input, parameters, and an encryption key, the latter cor-
responding to the single receiver modeled here. The adversary is then required
to make exactly one Enc(α) call. This results in production of a message vector
whose encryption is provided to the adversary. Now the adversary is required
to make exactly one Corrupt(I) call to get back the messages and coins cor-
responding to the senders named in the set I ⊆ [n(λ)]. It then calls Finalize

with some value w of its choice and wins if the relation returns true on the in-
puts shown. A soa-c simulator S runs with the simulator game SSOACΠ,M,R,A
and gets back only auxiliary input and parameters from its Initialize(1λ) call,
there being no encryption key in its world. It is then required to make ex-
actly one Msg(α) call resulting in creation of a message vector but the simu-
lator is returned nothing related to it. It must then make its Corrupt(I) and
Finalize(w) calls like the adversary and wins under the same conditions. The
soa-c-advantage of an soa-c-adversary A with respect to CE-scheme Π , message
sampler M, relation R, auxiliary input generator A and soa-c simulator S is
defined by

Advsoa-c
Π,M,R,A,A,S(λ) = Pr

[
RSOACA

Π,M,R,A(λ)
] − Pr

[
SSOACS

Π,M,R,A(λ)
]

.

We say that Π is (M,A)-SOA-C-secure if for every PT R and every PT soa-c
adversary A there exists a PT soa-c simulator S such that Advsoa-c

Π,M,R,A,A,S(·)
is negligible. We say that Π is SOA-C-secure if it is (M,A)-SOA-C-secure for
every PT M,A.

Result. The following implies that any binding CE-scheme is not SOA-C-secure.
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Theorem 2. Let Π = (P ,K, E ,V) be a binding CE-scheme with message length
�: N → N. Let Γ = (A,H) be a collision-resistant hash function with associated
output length h: N → N. Let n(·) = 2h(·) and let M be the message sampler
that on input 1λ, α (ignores α and) returns a n(λ)-vector whose components are
uniformly and independently distributed over {0, 1}�(λ). Then there exists a PT
soa-c adversary A and a PT relation R such that for all PT simulators S there is
a negligible function ν such that Advsoa-c

Π,M,R,A,A,S(λ) ≥ 1− ν(λ) for all λ ∈ N.

Thus, Π is not (M,A)-SOA-C-secure and hence cannot be SOA-C-secure. More-
over, this is true when the distribution on messages is uniform. These claims
would only require Advsoa-c

Π,M,R,A,A,S(·) in the theorem to be non-negligible, but
we show more, namely that it is almost one. Note that � is arbitrary and could
even be �(·) = 1, meaning we rule out SOA-C-security even for bit-commitment
and encryption of 1-bit messages. The proof will make use of the following variant
of the Reset Lemma of [4].

Lemma 3. Let V = {Vλ}λ∈N be a collection of non-empty sets. Let P1, P2 be
algorithms, the second with boolean output. The single-execution acceptance prob-
ability AP1(P1, P2, V, λ) is defined as the probability that d = true in the single
execution experiment St ←$ P1(1λ) ; m∗←$ Vλ ; d←$ P2(St ,m∗). The double-
execution acceptance probability AP2(P1, P2, V, λ) is defined as the probabil-
ity that d1 = d2 = true and m∗

0 �= m∗
1 in the double execution experiment

St ←$ P1(1λ); m∗
0,m

∗
1 ←$ Vλ ; d0 ←$ P2(St ,m∗

0); d1 ←$ P2(St ,m∗
1). Then AP1(P1,

P2, V, λ) ≤ 1/|Vλ| +
√

AP2(P1, P2, V, λ) for all λ ∈ N.

The two executions in the double-execution experiment are not independent
because St is the same for both, which is why the lemma is not trivial.

Proof (Lemma 3). Let δ = 1/|Vλ|. Let X(ω) = Pr[d = true] in the experiment
St ← P1(1λ; ω) ; m∗←$ Vλ ; d←$ P2(St ,m∗). So E[X] = AP1(P1, P2, V, λ) where
the expectation is over the coins ω of P1. Let a1 = AP1(P1, P2, V, λ) and a2 =
AP2(P1, P2, V, λ). Then

a2 ≥ E[X(X − δ)] = E[X2] − δ ·E[X] ≥ E[X]2 − δ ·E[X] = a2
1 − δ · a1

where the third step above is by Jensen’s inequality. Now a2
1 − δ · a1 = (a1 −

δ/2)2 − δ2/4 so

a1 ≤ δ/2 +
√

a2 + δ2/4 ≤ δ/2 +
√

a2 +
√

δ2/4 = δ +
√

a2

which yields the lemma.

Proof (Theorem 2). The adversary A and relation R are depicted in Fig. 3. Let
S be any PT soa-c simulator. In the real game the adversary always makes the
relation return true hence

Advsoa-c
Π,M,R,A,A,S(λ) = 1 − Pr

[
SSOACS

Π,M,R,A(λ)
]

.
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Adversary A(1λ)

(a, π, ek)← Initialize(1λ)
c← Enc(ε)
b[1] . . . b[h(λ)]←H(a, ek ‖ c)
I ← {2j − 1 + b[j] : 1 ≤ j ≤ h(λ)}
(m, r)← Corrupt(I)
w← (ek, c, r)
Finalize(w)

Relation R(1λ, a, π,m, α, I, w)

If α �= ε then return false
(ek, c, r)← w ; b[1] . . . b[h(λ)]←H(a, ek ‖ c)
If (I �= {2j − 1 + b[j] : 1 ≤ j ≤ h(λ)}) then

return false
If |c| �= n(λ) or |r| �= n(λ) then return false
For all i ∈ I do

If V(1λ, π, ek, c[i], m[i], r[i]) = false then
return false

Return true

Fig. 3. Adversary A and relation R for the proof of Theorem 2

We will construct a binding-adversary B and cr-adversary C such that

Pr
[
SSOACS

Π,M,R,A(λ)
] ≤ 2−h(λ)�(λ) +

√
Advcr

Γ,C(λ) + Advbind
Π,B(λ) . (1)

The assumptions that Γ is collision-resistant, Π is binding, together with Propo-
sition 1, imply that the RHS of Eq. (1) is negligible, which proves the theorem.
It remains to construct B and C. Given S we can define sub-algorithms S1, S2

such that S can be written in terms of S1, S2 as follows:

Simulator S(1λ)
(a, π) ← Initialize(1λ) ; Msg(1λ, ε) ; (St , I)←$ S1(a, π)
m ← Corrupt(I) ; w ← S2(St ,m) ; Finalize(w)

We clarify that we are not defining S; the latter is given and arbitrary. Rather,
any S has the form above for some S1, S2 that can be determined given S.
Specifically, S1 runs S until S makes its Corrupt(I) query, returning I along
with the current state St of S. Then S2, given the response m to the query, feeds
it back to S and continues executing S from St . By having S1 put all S’s coins
in St we can assume S2 is deterministic. We may assume wlog that |I| is always
h(λ) and that the argument α in S’s Msg call is ε since otherwise R rejects.
We now define adversary B. The embedding subroutine Emb it calls and the
notation ⊥n(λ) were defined in Section 3:

Adversary B(1λ)
π ← Initialize(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π)
m∗

0,m
∗
1 ←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; (ek0, c0, r0) ← w0

w1 ← S2(St ,m1) ; (ek1, c1, r1) ← w1 ; t←$ I
For all i ∈ I do If m0[i] �= m1[i] then t ← i
Finalize(ek0, c0[t],m0[t],m1[t], r0[t], r1[t])

Adversary B is running S to get its Corrupt query I and then, by backing it
up, providing two different responses. Adversary C has a similar strategy, only
deviating in how the final values are used:
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Adversary C(1λ)
a ← Initialize(1λ) ; π←$P(1λ) ; (St , I)←$ S1(a, π)
m∗

0,m
∗
1 ←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; (ek0, c0, r0) ← w0

w1 ← S2(St ,m1) ; (ek1, c1, r1) ← w1

Finalize((ek0 ‖ c0, ek1 ‖ c1)).

The analysis will use Lemma 3. Let Vλ = ({0, 1}�(λ))h(λ) and V = {Vλ}λ∈N.
Define P1, P2 via:

Algorithm P1(1λ)
π ← P(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π)
m←$ ({0, 1}�(λ))n(λ) ; St ← (1λ, a, π,m, I,St)
Return St

Algorithm P2(St ,m∗)
(1λ, a, π,m, I,St) ← St
m ← Emb(1n(λ), I,m∗,⊥n(λ))
w ← S2(St ,m)
m ← Emb(1n(λ), I,m∗,m)
Return R(1λ, a, π,m, ε, I, w)

Above the argument m∗ to P2 is drawn from Vλ. Now

Pr
[
SSOACS

Π,M,R,A(λ)
]

= AP1(P1, P2, V, λ)

≤ 2−h(λ)�(λ) +
√

AP2(P1, P2, V, λ) (2)

Above the equality is from the definitions and the inequality is by Lemma 3.
Finally we claim that

AP2(P1, P2, V, λ) ≤ Advcr
Γ,C(λ) + Advbind

Π,B(λ) . (3)

Eqs. (2) and (3) imply Eq. (1) and conclude the proof. We now justify Eq. (3).
To do so it is helpful to write down the double-execution experiment underlying
AP2(P1, P2, V, λ):

π ← P(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π) ; m←$ ({0, 1}�(λ))n(λ)

m∗
0,m

∗
1 ←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; w1 ← S2(St ,m1) ; (ek0, c0, r0) ← w0 ; (ek1, c1, r1) ← w1

m0 ← Emb(1n(λ), I,m∗
0,m) ; m1 ← Emb(1n(λ), I,m∗

1,m)
Return R(1λ, a, π,m0, ε, I, w0) ∧ R(1λ, a, π,m1, ε, I, w1) ∧ (m∗

0 �= m∗
1).

Assume this experiment returns true. By definition of R it must be that I = {2j−
1 + b0[j] : 1 ≤ j ≤ h(λ)} where b0[1] . . . b0[h(λ)] = H(a, ek0 ‖ c0) and also I =
{2j−1+b1[j] : 1 ≤ j ≤ h(λ)} where b1[1] . . . b1[h(λ)] = H(a, ek1 ‖ c1). However,
I is the same in both cases, so we must have H(a, ek0 ‖ c0) = H(a, ek1 ‖ c1),
meaning we have a hash collision. This means that C succeeds unless ek0 ‖ c0 =
ek1 ‖ c1. But we now argue that in the latter case, B succeeds. We know m∗

0 �= m∗
1

so there is some t ∈ I such that m0[t] �= m1[t]. The definition of R implies that
V(1λ, π, ek0, c0[t],m0[t], r0[t]) = true and also V(1λ, π, ek1, c1[t],m1[t], r1[t]) =
true. But since ek0 ‖ c0 = ek1 ‖ c1 we have V(1λ, π, ek0, c0[t],m0[t], r0[t]) = true
and also V(1λ, π, ek0, c0[t],m1[t], r1[t]) = true with m0[t] �= m1[t] so B wins.
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Extensions, applications and remarks. The SOA-C definition could be
weakened by allowing the simulator’s corruptions to be adaptive, meaning S
is allowed multiple queries to procedure Corrupt that now would take input
i ∈ [n(λ)] and return m[i]. The proof strategy of Theorem 2 no longer works but
can be extended to also rule out adaptive simulators. We would back S up to its
last Corrupt query and give a new response only to this query. We would now
require �(·) to be super-logarithmic so that collisions are rare on single messages.
We omit the details.

Theorem 2 applies to all commitment schemes since they are binding by defi-
nition. Not all encryption schemes are binding, but many popular ones are. For
example, the ElGamal scheme is binding. The Cramer-Shoup scheme [15] is also
binding, showing that IND-CCA is not a panacea against SOAs.

Our model allows a scheme to have system parameters π that effectively func-
tion as auxiliary input. This means the simulator cannot modify them. This is
not necessary but merely makes the results more general. If one wishes to view
commitment, as in DNRS [19], as having no parameters, just restrict attention
to schemes where π is always 1λ. Our result applies to these as a special case.

5 SOA-K Insecurity of Encryption Schemes

Here we show that no decryption-verifiable IND-CPA encryption scheme is SOA-
secure for receiver corruptions.

SOA-K Security. This is the dual of SOA-C where there are multiple receivers
and a single sender rather than a single receiver and multiple senders, and cor-
ruptions reveal decryption keys rather than coins. The definition uses games
RSOAKΠ,M,R,A and SSOAKΠ,M,R,A of Fig. 4. The soa-k-advantage of an soa-
k-adversary A with respect to the encryption scheme Π , message sampler M,
relation R, auxiliary input generator A and soa-k simulator S is defined by

Advsoa-k
Π,M,R,A,A,S(λ) = Pr

[
RSOAKA

Π,M,R,A
] − Pr

[
SSOAKS

Π,M,R,A
]

.

We say that Π is (M,A)-SOA-K-secure if for every PT R and every PT soa-k
adversary A there exists a PT soa-k simulator S such that Advsoa-k

Π,M,R,A,A,S(·)
is negligible. We say that Π is SOA-K-secure if it is (M,A)-SOA-K-secure for
every PT M,A.

Result. The following implies that any decryption-verifiable encryption scheme
is not SOA-K-secure. Decryption-verifiable encryption schemes are defined in [2]
and include many common schemes. The proof is in [2].

Theorem 4. Let Π = (P ,K, E ,V) be a decryption-verifiable encryption scheme
with decryption verifier W and message length �: N → N. Let Γ = (A,H) be
a collision-resistant hash function with associated output length h: N → N. Let
n(·) = 2h(·) and let M be the message sampler that on input 1λ, α (ignores α
and) returns a n(λ)-vector whose components are uniformly and independently
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Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
For i = 1, . . . , n(λ) do (ek[i], dk[i])←$K(π)
Return (a, π, ek)

Enc(α)

m←$M(1λ, α)
For i = 1, . . . , n(λ) do

r[i]←$ {0, 1}ρ(λ) ; c[i]← E(1λ, π, ek[i], m[i]; r[i])
Return c

Corrupt(I) Finalize(w)

Return m[I ],dk[I ] Return R(1λ, a, π,m, α, I, w)

Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
Return (a, π)

Msg(α)

m←$M(1λ, α)

Corrupt(I)

Return m[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I,w)

Fig. 4. Game RSOAKΠ,M,R,A capturing the real-world SOA-K attack to be mounted
by an adversary (left) and game SSOAKΠ,M,R,A capturing the simulated-world SOA-K
attack to be mounted by a simulator (right)

distributed over {0, 1}�(λ). Then there exists a PT soa-k adversary A and a PT
relation R such that for all PT soa-k simulators S there is a negligible function
ν such that Advsoa-k

Π,M,R,A,A,S(λ) ≥ 1 − ν(λ) for all λ ∈ N.
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Abstract. We present a new approach for creating chosen ciphertext
secure encryption. The focal point of our work is a new abstraction that
we call Detectable Chosen Ciphertext Security (DCCA). Intuitively, this
notion is meant to capture systems that are not necessarily chosen ci-
phertext attack (CCA) secure, but where we can detect whether a certain
query CT can be useful for decrypting (or distinguishing) a challenge ci-
phertext CT∗.

We show how to build chosen ciphertext secure systems from DCCA
security. We motivate our techniques by describing multiple examples of
DCCA systems including creating them from 1-bit CCA secure encryp-
tion — capturing the recent Myers-shelat result (FOCS 2009). Our work
identifies DCCA as a new target for building CCA secure systems.

1 Introduction

A central goal of public key cryptography is to design encryption systems that
are secure against chosen ciphertext attacks. Public key encryption systems that
are chosen ciphertext attack (CCA) secure are robust against powerful adver-
saries that are able to leverage interaction with a decryptor. Such an attacker is
modeled by allowing him to query for the decryption of any ciphertext except
a challenge ciphertext for which he is trying to break. This includes ciphertexts
derived from the challenge ciphertext1. Due to its robustness against powerful
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attackers, chosen ciphertext security has become the accepted goal for building
secure encryption. For this reason, building chosen ciphertext secure systems has
been a central pursuit of cryptographers for over twenty years and we have seen
many distinct approaches to achieving CCA security.

Early pioneering work in chosen ciphertext security [23,14,26] introduced the
technique of leveraging Non-Interactive Zero Knowledge Proofs (NIZKs) [5] to
build CCA-secure encryption systems from chosen plaintext secure encryption
systems. Roughly, a NIZK is used to prove that a ciphertext is “well-formed” or
legal. Later Cramer and Shoup [12,13] introduced the first practical CCA-secure
systems that were built on specific number theoretic assumptions such as Deci-
sional Diffie Hellman. These techniques implicitly embed a certain form of des-
ignated verifier Non-Interactive Zero Knowledge proofs in them. More recently,
different methods for building chosen ciphertext security from Identity-Based
Encryption [7] and Lossy Trapdoor Functions [25] have emerged. In addition,
Myers and shelat [22] described general methods for amplifying CCA encryption
of 1 bit to many bits.

In this work, we introduce a new approach to obtaining chosen ciphertext
secure systems. The focal point of our work is a new abstraction that we call
Detectable Chosen Ciphertext Security (DCCA). Intuitively, this notion is meant
to capture systems that are not necessarily CCA secure, but where we can detect
whether a certain query CT can be useful for decrypting (or distinguishing) a
challenge ciphertext CT∗.

A system that is DCCA secure will be associated with a boolean function F
that takes in three inputs: a public key pk , a challenge ciphertext CT∗ and a
query ciphertext CT. The function will output 1 if the query CT is “dangerous”
for the an attacker wishing to distinguish CT∗. A DCCA secure system must
have the following two properties stated here informally:

– Unpredictability. Without seeing CT∗ it should be hard to find a cipher-
text CT such that F (PK,CT∗,CT) = 1. In other words, an attacker must
first see a challenge ciphertext in order to discover a dangerous query for it.

– Indistinguishability. The system will be secure under a detectable chosen
ciphertext attack if the attacker is limited to decryption queries of cipher-
texts CT where F (pk ,CT∗,CT) = 0 for challenge ciphertext CT∗. I.e. the
system is CCA secure if the attacker does not make dangerous queries.

The goal of our work will be to construct fully chosen ciphertext secure systems
from detectable CCA-secure systems. We first motivate this goal by observing
multiple DCCA systems that naturally occur:

– Many Bit Encryption from 1-bit CCA. Suppose we have a 1-bit CCA-
secure system and we wish to encrypt multiple bits by concatenating multiple
1-bit encryptions together. The resulting system is no longer chosen cipher-
text secure, but is DCCA secure. The detecting function F is 1 iff any of the
1-bit ciphertext components between CT∗ and CT are equal. This scenario
is akin to the problem of showing that bit encryption is complete considered
by Myers and shelat [22], where they worried about such “quoting” attacks.
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– Tag-Based Encryption Systems. MacKenzie, Reiter and Yang [21] and
Kiltz [19] define a tag-based encryption scheme as an encryption scheme that
takes in an additional “tag” parameter on encryption and decryption. The
security game allows an attacker to make decryption queries with any tag
parameter t, except for the tag t∗ that the challenge ciphertext is encrypted
under. Several examples of tag-based schemes exist. Kiltz [19] gave a direct
construction from the linear assumption. The CCA1-secure encryption vari-
ant of the Canetti, Halevi and Katz [7] construction where the tag is an
IBE identity is an additional example. One can also view the CCA1-secure
variant of Peikert and Waters [25] as a tag-based scheme, where the tag is
the “branch” in an all-but-one encryption scheme.

Most of the above examples of tag-based encryption can be proven selec-
tively secure,where an attackermust commit to the tag of the challenge cipher-
text before seeing the public key. However, if we are willing to utilize complex-
ity leveraging arguments, we can argue that these are adaptively secure. In
addition, the CHK-lite transformation will be an adaptively secure tag-based
scheme if used with an adaptively secure Identity-Based Encryption system.
We observe that adaptively-secure tag-based encryption immediately gives
rise to DCCA-secure encryption. A ciphertext of the DCCA-secure system
consists of a random tag t plus a tag-based encryption of the message under
the tag t. Decryption follows analogously and the function F simply tests
if two ciphertexts have the same tag. Unpredictability follows from having
a large tag space. Although it is already possible to transform tag-based
encryption into CCA-secure encryption using a strongly unforgeable signa-
ture [19], these examples demonstrate natural DCCA systems.

– “Sloppy” CCA Encryption. One can envision that in practice an encryp-
tion system is CCA secure, but an implementation of it is not due to certain
nuances. For instance, suppose a number theoretic library had a slack bit in
its representation of group elements (e.g. a bit that was supposed to be 0, but
if set to 1 does not affect any computations.) A CCA attacker could exploit
this weakness in an implementation, however, it is possible that the system
would still be DCCA secure. One might use our techniques as a hedge against
such problems. This is somewhat analogous to recent work [2] on applying
deterministic encryption as a hedge against faulty random bit generation.

In addition to the examples listed above, we believe that it is useful to identify
DCCA security as a new “target” for achieving chosen ciphertext security.

Overview of Our Techniques. We now give an overview of our construction and
proof. Our construction will build a chosen ciphertext secure system from three
components: a chosen plaintext secure system, 1-bounded CCA-secure system2,
and a detectable CCA-secure system. Since DCCA security (trivially) implies
CPA, and we can build 1-bounded CCA from CPA encryption [24,11,10], it
follows that all components are realizable from DCCA as a building block.

2 A 1-bounded CCA-secure encryption system is secure against one chosen ciphertext
query.
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A public key from our system consists of three components. An “inner” public
key PKin which is a DCCA public key and two “outer” keys PKA,PKB respec-
tively from 1-bounded CCA and CPA secure systems. To encrypt a message M ,
one first chooses the randomness rA, rB to be used for the outer encryptions and
then encrypts the tuple (rA, rB ,M) under the inner (detectable) key to compute
an inner ciphertext CTin. Next, the encryption algorithm encrypts CTin under
the outer public key PKA using randomness rA to get CTA. It then analogously
creates CTB as the encryption of CTin under key PKB and randomness rB. The
output ciphertext is CT = (CTA,CTB).

The structure of our ciphertexts is that the two outer ciphertexts both encrypt
the same message — the inner ciphertext. This ciphertext itself encrypts the
message and the randomness used to create the outer ciphertexts. Thus, the outer
ciphertexts indirectly encrypt their own randomness.3 The decryption algorithm
will receive CT = (CTA,CTB) and first decrypt CTA to get CT′

in and decrypt
this to get (rA

′, rb
′,M ′) using the appropriate secret keys. Finally, it will check

that the ciphertext is well formed by itself encrypting CT′
in under PKA,PKB

and the respective randomness rA
′, rB

′ and validating that the output matches
CTA and CTB before accepting M ′ as the message. Our encryption system
has elements both of the Naor-Yung [23] two key method for our two outer
keys and the Myers-shelat [22] method of embedding outer randomness in inner
ciphertexts.

Security of our system depends on the premise that no attacker is able to
learn the message encrypted in the inner ciphertext. This will follow from the
Detectable CCA security if we are able to guarantee that an attacker is unable
to make any ciphertext queries CTA,CTB where the decryption of CTA, de-
noted CTin, is related to the inner component of our challenge ciphertext CT∗

in

according to to the DCCA function F . Intuitively, we hope to achieve this from
the combination of two features of our system. First, the 1-bounded CCA secu-
rity of PKA will (hopefully) make it difficult to create an encryption under PKA

related to CT∗
in. Second, the embedded randomness will allow us to check that

ciphertexts are well formed and thus answer multiple ciphertext queries under
the Naor-Yung two key type manner.

The trickiness in proving security lies with the embedded randomness which
is a two-edge sword. On one hand, forcing the attacker queries to embed ran-
domness allows a reduction algorithm to decrypt if it knows either one of the
two outer keys. On the other hand, it is not clear how such a reduction can

3 This construction implicitly assumes that the length of the random string needed
for encryption is dependent only on the security parameter and is independent (or
at least smaller than) the message size of the outer ciphertexts. We can justify this
assumption with the common technique of using a seed to a (variable length) Pseudo
Random Generator (PRG) as the input to each encryption algorithm. The PRG
can then extend the randomness to whatever length is required by the underlying
encryption system. By using this justified assumption in our definitions, we are able
to simplify the presentation of our construction and proofs. In contrast, Myers and
shelat [22] explicitly carry the PRG technique through their exposition. This choice
gives our exposition and proof an advantage in simplicity.
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create valid ciphertexts while playing the 1-bounded CCA game, since a reduc-
tion algorithm will not know the randomness rA to embed. Thus, this circularity
creates a fundamental barrier similar to difficulties encountered in attempts to
create trapdoor functions from encryption [15].

We deal with this by arguing security in an indirect way that steps around this
barrier. We first define a security game specific to our construction called nested
indistinguishability. In this game, an attacker will receive a public key and is
allowed to make decryption queries. The attacker at some point submits a single
message M . The challenger will flip a coin z. If z = 0, the challenger creates a
valid encryption of M ; otherwise, if z = 1 the challenger creates a encryption
where the innermost message is all 0’s — it neither includes the message nor
the embedded randomness. The attacker continues to make decryption queries
(other than the challenge ciphertext) and wins if it is successfully able to guess
z. It follows that if no attacker is successful in this game, then our system is
chosen ciphertext secure.

To prove security of this nested indistinguishability game, we begin by defining
a “bad event”. The bad event is defined to be when the attacker submits a query
(CTA,CTB) such that CTA �= CT∗

A where CT∗
A is from the challenge ciphertext

and the decryption of CTA gives a ciphertext that is related to the inner challenge
ciphertext according to F . If we can argue that such bad events only occur
with negligible probability, then security of the nested indistinguishability game
follows straightforwardly from DCCA security.

The crux of our proof is how we eliminate the possibility of a bad event. We do
so in an indirect manner. We begin by arguing this event cannot happen in the
case where z = 1, which is where all 0’s are encrypted and the randomness is not
embedded. In this case, we get the best of both worlds. We are able to require
that the attacker’s queries have the randomness embedded in them, so that we
can check ciphertext well-formedness, however, the challenge ciphertext is not
required to embed the outer randomness. We argue that the bad event does not
happen by applying a set of hybrid experiments. First, we change CT∗

B to be an
encryption of all 1’s. Next, we change the decryption algorithm to decrypt using
the secret key for PKB. Finally, we change CT

∗
A to be an encryption of all 1’s. In

each experiment we argue that the chance of a bad event must be very close to
that of the prior experiment. For the last step we leverage the 1-bounded CCA
property of the first component. Finally, we note that in the last experiment the
probability of a bad event is negligible since the inner challenge ciphertext CT∗

in

is replaced by all 1’s and is not even present.
One interesting question is why is 1-bounded CCA security needed for the PKA

since at the last step in the proof we can use the secret key SKB to execute de-
cryption. While this is true, it is actually possible for the bad event to occur on a
malformed ciphertext that will not decrypt.We need the 1-boundedCCAproperty
to detect the occurrence of the bad event in this case during the security reduction.

We are not able to argue the lack of a bad event in a similar manner for the z =
0 (embedded randomness) case due to the aforementioned circularity problems.
Instead, we can infer this from the lack of event in the z = 1 case along with



668 S. Hohenberger, A. Lewko, and B. Waters

DCCA security. To prove this, we can create an algorithm that plays the DCCA
indistinguishability game while simulating the nested indistinguishability game
to the attacker. The simulator will choose the outer keys and outer randomness
for the challenge ciphertext itself. It submits the message and outer randomness
as one inner message and the 0’s string as another. Then it will be able to decrypt
all ciphertext queries until a bad event happens using its keys in addition to the
DCCA decryption oracle. Once a bad event query is made though, it is stuck.
However, it need not go any further! The fact that the attacker was able to create
a bad event at all must mean that the message and randomness were embedded.
It can then break the DCCA distinguishing game. Thus, we can infer that the
bad event happens with negligible probability in either case. The remainder of
the proof follows straightforwardly.

Comparison to Myers-shelat. Myers and shelat [22] showed how to achieve many-
bit chosen ciphertext security from 1-bit chosen ciphertext security and moti-
vated us to explore the notion of detectability. They created a system using
an inner/outer structure where the inner ciphertext encrypted the outer random
coins. Their inner scheme, built from 1-bit CCA, is what they call “unquoteable”
secure. Their concept is roughly analogous to a specific instance of a DCCA
scheme. Encryptions of many-bit messages are concatenations of 1-bit encryp-
tions; the system is chosen ciphertext secure as long as queries do not copy a 1-bit
ciphertext component of the underlying scheme. For the outer scheme, they use
a notion of security that is an amalgam of unquoteability and non-malleability.
Their outer construction follows a specific adaptation of the Choi et. al. [10]
methods applied to the 1-bit primitive. (No two key structure is used.) Their
proof relies on defining quoting attacks on both the inner and outer layers and
then establishing a certain order that outer quoting attacks must happen before
inner quoting attacks.

We believe our methods offer benefits in terms of generality, simplicity, and
efficiency. First, our general notion of Detectable Chosen Ciphertext Security can
be realized by multiple systems. These include the 1-bit to many-bit examples,
the tag-based encryption class and future systems that can leverage this as a
new target path for creating CCA secure encryption.

Another key difference is that the outer layer of our scheme is built from
simple 1-bounded CCA and CPA-secure parts. We argue these provide simpler
concepts and are easier to work with. In addition, one can instantiate them
from any 1-bounded encryption system. For instance, we can apply any candi-
date 1-bounded CCA-secure system and do not need to work through the Choi
et. al. [10] construction. Instead we can apply the 1-bounded CCA system of
Cramer et. al. [11], which is signficantly more efficient and simpler than the non-
malleable systems of either PSV [24] or Choi et. al. [10]. We also regard avoiding
a combination security definition between 1-bounded CCA (or non-malleability)
and detection as a benefit for simplicity. This simplification will also improve
efficiency in the case where there is a candidate CPA primitive that is more
efficient than the candidate DCCA primtive, since we can build the 1-bounded
scheme out of the CPA primitive.
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Our choice of abstractions and structure allow us to have a simple proof. We
can eliminate the possibility of a bad event using a basic Naor-Yung two key
argument. Then once we are able to eliminate this, the rest of the proof follows
in a straightforward manner.

Why not CCA1? One intriguing possibility is to try to leverage our techniques
to build full chosen ciphertext security from CCA1 security. A natural direction
would be to use a CCA1 system for the inner component in place of the detectable
encryption scheme. The intuitive rationale would be if the outer keys are 1-
bounded CCA or non-malleable then the queries produced by the attacker should
not be related to the inner challenge ciphertext and thus CCA1 might suffice.
Unfortunately, we were able to create an attack oracle which breaks full CCA
security in our scheme, yet does not perturb the 1-bounded CCA or CCA1
primitives, giving evidence that this approach may not work. However, the oracle
we use is quite strong and “exotic”. This suggests that there might be primitives
that lie somewhere in between DCCA and CCA1. One interesting example is the
CCA-1 secure “Cramer-Shoup lite” [12] cryptosystem. There exists a malleability
attack on a challenge CT∗ that produces a query ciphertext which has the same
distribution as a fresh encryption of a random message. Hence the CS-lite system
is not CCA secure. However, it would be very interesting and surprising if there
existed attack algorithms that matched the above oracle. We expand on this in
the full version of this paper.

1.1 Related Work

Relaxations of CCA. Multiple relaxations of chosen ciphertext security have
been proposed in the literature.

One interesting class of relaxations is the notion of Replayable Chosen Cipher-
text Security [8] and other similar works [29,1]. These works aim to capture the
concept that some malleability attacks might intuitively be benign. In particu-
lar, consider a cryptosystem where an attacker is only able to maul a ciphertext
CT encrypting a message M into a different ciphertext C′ that encrypts the
same message M . If an application (or user) makes all decisions based on the
decrypted plaintexts as opposed to the representation of the ciphertext such
notions might be sufficient.

The primary goal of RCCA is to formally capture a form of “good enough”
security under ciphertext attacks. In contrast, Detectable CCA inherently does
not have good enough security on its own. In DCCA systems, it may be possible
to maul ciphertexts to be encryptions of different messages or even create attack
ciphertexts that each target a single bit of a target ciphertext. Thus, our primary
focus is to create CCA security from a less secure DCCA building block.

We observe that DCCA does not imply RCCA. In [8], the authors gave an
example of an RCCA scheme that could not be publicly detected. Conversely,
not all DCCA schemes will be RCCA secure. Our bit encryption instance serves
as an example. We also note that [8] discusses a notion of detectability and
introduces a definition that combines replayable and detectable properties. This
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combined definition is a particular instance of DCCA. However, they do not
explore the notion of detectability in isolation or how to build CCA security
from it. Canetti, Krawcyzk, and Nielsen [8] do show how to create CCA security
from RCCA security using the KEM/DEM framework.

Finally, Hofheinz and Kiltz [17] introduce a notion they call Constrained CCA
security particular to developing Key Encapsulation Mechanisms. In their defi-
nition an attacker must include a predicate p along with each query ciphertext
CT. The challenger will only answer the query if the predicate evaluated on
the decrypted key of the ciphertext is true and the predicate is false for all but
a negligible fraction of possible KEM keys. While this notion is weaker than
CCA security, they show that when combined with a (symmetric) authenticated
encryption scheme, the resulting system is CCA secure.

Other Related Work. Goldwasser and Micali [16] gave the first formal definition
of security for public key encryption systems. Naor and Yung [23] and Rackoff
and Simon [26] extended this to include chosen ciphertext attacks.

Naor and Yung [23] initiated the approach of leveraging NIZKs to build cho-
sen ciphertext security by introducing their “two key” method. A NIZK would
guarantee the integrity of the ciphertext by giving a proof that the same message
was encrypted to two keys. While their system gave security against lunchtime or
CCA1 attacks, Dolev, Dwork and Naor [14] showed how to achieve full CCA2 se-
curity. In addition, they introduced the fundamental concept of non-malleability.
Sahai [28] introduced a concept of simulation sound NIZKs that could be used to
achieve CCA security through the NY two key structure. Bellare and Sahai [4]
gave relations between non-malleability [14] chosen ciphertext security.

Since then, different approaches to achieving CCA security have been pro-
posed. Cramer and Shoup [12,13] showed techniques for proving ciphertexts
were well-structured and abstracted this into projective hash functions. Sev-
eral other novel cryptosystems make use of specific number-theoretic techniques
(e.g. [19,9,18]). Boneh, Canetti, Halevi and Katz [6] showed a generic method of
achieving chosen ciphertext security from IBE systems. Peikert and Waters [25]
gave a new avenue for achieving CCA security with the introduction of Lossy
Trapdoor Functions (TDFs). Notably, this gave the first chosen ciphertext se-
cure systems from lattice-based assumptions. Subsequently, various refinements
of weaker conditions on the trapdoor functions were introduced [27,20].

The above techniques are proven secure in the standard model. Bellare and
Rogaway [3] show that in the random oracle model chosen ciphertext security
can be built from chosen plaintext security.

2 Detectable Chosen Ciphertext Security

In this section, we define detectable chosen ciphertext security. An encryption
scheme satisfying this definition is called a detectable encryption system. Our
discussions assume a familiarity with CPA, CCA1 and CCA2 security as well as
bounded CCA security and non-malleability. A reader wishing to review these
definitions can find them in the full version of this paper.
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2.1 Detectable Encryption

We define a detectable encryption scheme as having the usual algorithms (KeyGen,
Enc,Dec) together with an efficiently-computable boolean function F . Informally,
F tests for a “detectable” relationship between two ciphertexts. The security game
will mirror that of CCA2 security, except that decryption queries in the second
phase will not be answered for ciphertexts detectably-related to the challenge
ciphertext. Our formal definition follows below.

Definition 1 (Detectable Encryption System). A detectable encryption
system is a tuple of probabilistic polynomial-time algorithms (KeyGen,Enc,Dec, F )
such that:

1. (KeyGen,Enc,Dec) have the usual input and output, although we sometimes
denote Enc(pk ,m; r) as a deterministic function of the public key pk , the
message m and randomness r, and

2. F (pk , c′, c) → {0, 1} : the detecting function F takes as input a public key
pk and two ciphertexts c′ and c, and outputs a bit.

Correctness is the same as a regular encryption system.

A detectable encryption system must have the following two properties.

Unpredictability of the Detecting Function F . Informally, given the description
of F and a public key pk , for an unknown ciphertext c, it should be hard to find
a second ciphertext c′ that is “related” to c; i.e., such that F (pk , c′, c) = 1. We
consider both a basic and a strong formalization.

Basic Unpredictability Experiment. Consider the experiment Exppredict.basicA,Π (λ)
defined for a detectable encryption scheme Π = (KeyGen,Enc,Dec, F ) and an
adversary A:

1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Queries: Adversary A is given pk and access to a decryption oracle Dec(sk , ·).

The adversary outputs a message m in the message space associated with
pk and a ciphertext c in the ciphertext space associated with pk .

3. Challenge: A ciphertext c∗ ← Enc(pk ,m) is computed.
4. Output: The output of the experiment is defined to be 1 if F (pk , c∗, c), and

0 otherwise.

We also define a stronger variant Exppredict.strongA,Π (λ) of the unpredictability ex-
periment where the adversary is additionally given sk . We observe that strong
unpredictability implies basic unpredictability since the adversary can simulate
the decryption oracle using the secret key.

Indistinguishability of Encryptions. Next, we formalize the confidentiality guar-
antee. Consider the following experiment ExpindistA,Π (λ) defined for a detectable
encryption scheme Π = (KeyGen, Enc,Dec, F ) and an adversary A:
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1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Phase 1: AdversaryA is given pk and access to a decryption oracle Dec(sk , ·).

A outputs a pair of messagesm0,m1 of the same length in the message space
associated with pk .

3. Challenge: A random bit b ← {0, 1} is chosen, and then a ciphertext c∗ ←
Enc(pk ,mb) is computed and given to A. We call c∗ the challenge ciphertext.

4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a
decryption of a ciphertext c such that F (pk , c∗, c) = 1. Finally, A outputs a
bit b′.

5. Output: The output of the experiment is defined to be 1 if b′ = b, and 0
otherwise.

Definition 2 (Detectable Chosen Ciphertext Security). A detectable
encryption scheme Π = (KeyGen,Enc,Dec, F ) has an unpredictable detecting
function and indistinguishable encryptions under a detectable chosen-ciphertext
attack (or is DCCA-secure) if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that:

1. (F is unpredictable:) Pr[Exppredict.basicA,Π (λ) = 1] ≤ negl(λ) and

2. (Encryptions are indistinguishable:) Pr[ExpindistA,Π (λ) = 1] ≤ 1
2 + negl(λ).

2.2 Facts about DCCA Security

For space reasons, we omit the simple proofs of the first two lemmas. We conjec-
ture that the converse of Lemma 2 is not true. Indeed if the DDH assumption
holds, then the CCA-1 secure Cramer-Shoup lite system would separate these
two notions as discussed in the introduction.

Lemma 1 (CCA2 =⇒ DCCA). If Π = (KeyGen,Enc,Dec) is a CCA2-secure
encryption scheme, then Π ′ = (KeyGen,Enc,Dec, F ) is a DCCA-secure encryp-
tion scheme where F outputs 0 on all inputs except those of the form (·, c, c).

Lemma 2 (DCCA =⇒ CCA1). If Π = (KeyGen,Enc,Dec, F ) is a DCCA-
secure encryption scheme, then Π ′ = (KeyGen,Enc,Dec) is a CCA1-secure en-
cryption scheme.

We also claim that one-bit DCCA-secure encryption implies arbitrary-length
DCCA-secure encryption. Say Π = (KeyGen,Enc,Dec, F ) is a detectable en-
cryption system with plaintext space {0, 1}. We can construct a new scheme
Π ′ = (KeyGen,Enc′,Dec′, F ′) with plaintext space {0, 1}∗ by defining Enc′ as:

Enc′(pk ,m) = Enc(pk ,m1), . . . ,Enc(pk ,mn)

where m = m1 . . .mn. The decryption algorithm Dec′ decrypts each ciphertext
piece using Dec. The function F ′ performs n2 invocations of F , testing each
ciphertext piece of C with each ciphertext piece of C′, and outputting 1 if any
invocation of F returned 1, and 0 otherwise.
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Lemma 3 (1-bit DCCA Encryption Implies Many-bit DCCA Encryp-
tion). Let Π and Π ′ be as above. If Π is DCCA-secure, then so is Π ′.

We defer the proof of this lemma to the full version of the paper.

3 The Construction: CCA2 Security from DCCA
Security

An overview of the techniques used for our construction is provided in Section 1.

The Construction Description We now construct a CCA2-secure public-key en-
cryption scheme Π = (KeyGen, Enc,Dec) using three building blocks4:

1. a DCCA-secure encryption scheme, denoted Πdcca = (KeyGendcca,Encdcca,
Decdcca, F ).

2. a 1-bounded CCA-secure encryption scheme with perfect correctness, de-
noted Π1b−cca = (KeyGen1b−cca, Enc1b−cca, Dec1b−cca).

3. a CPA-secure encryption scheme with perfect correctness, denoted Πcpa =
(KeyGencpa, Enccpa, Deccpa).

We assume that the message space of each system is {0, 1}∗ and that messages
of the form (x, y, z) can be uniquely and efficiently encoded as strings in {0, 1}∗,
where the encoding length is the same for all inputs of the same length. We
assume that λ bits will be sufficient randomness for the encryption algorithm of
each system, where 1λ is the security parameter. We assume that Π1b−cca and
Πcpa have perfect correctness for decryption. Finally, we assume that for Πdcca

the ciphertext length is a deterministic function of the security parameter and
the message length. We further justify these assumptions in the full version.

KeyGen(1λ) Run KeyGendcca(1
λ) to produce (PKin, SKin), KeyGen1b−cca(1

λ) to
produce (PKA, SKA), and KeyGencpa(1

λ) to produce (PKB, SKB). Set the public
key as PK := (PKin,PKA, PKB) and the secret key as SK := (SKin, SKA, SKB).

Enc(PK,M) The encryption algorithm first chooses random strings rin, rA, rB ∈
{0, 1}λ. Next, it computes the ciphertext CTin := Encdcca(PKin, (rA, rB ,M); rin).
It treats this ciphertext as the message and computes CTA := Enc1b−cca(PKA,
CTin; rA) and CTB := Enccpa(PKB,CTin; rB). Finally, it outputs (CTA,CTB).

Dec(SK,CT) The decryption algorithm takes a ciphertext CT := (CTA,CTB).
It decrypts the first ciphertext as CTin := Dec1b−cca(SKA,CTA). It then de-
crypts this output as (rA, rB,M) := Decdcca(SKin,CTin). It then checks that

CTA = Enc1b−cca(PKA,CTin; rA) and CTB = Enccpa(PKB ,CTin; rB).

If all checks pass, it outputs M ; otherwise, it outputs ⊥.

4 A 1-bounded CCA-secure encryption system is secure if an attacker makes at most
one decryption query. One-bounded CCA security can be constructed from CPA
security [24,10]. CPA security is trivially implied by DCCA security. Thus, there is
really only one necessary building block: a DCCA-secure system.
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4 Proof of Security

We will now argue that the Section 3 construction is CCA2 secure, assuming
the respective security properties of the underlying building blocks. To do so, it
will be easier to consider a slight variant of the CCA2 security game, which we
call nested indistinguishability, where the challenger either encrypts one of the
two challenge messages or encrypts a string of zeros. The experiment involves
three encryption schemes and combines them in the same manner as our main
construction.

Nested Indistinguishability. Consider the experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ)

defined for detectable encryption schemeΠdcca, encryption schemesΠ1b−cca, Πcpa

and an adversary A:

1. Setup: Run KeyGendcca, KeyGen1b−cca and KeyGencpa to obtain key pairs
(PKin, SKin), (PKA, SKA) and (PKB, SKB) respectively. Set pk := (PKin,
PKA,PKB) and sk := (SKin, SKA, SKB).

2. Phase 1: AdversaryA is given pk and access to a decryption oracle Dec(sk , ·),
which executes the decryption algorithm as defined in Section 3. A outputs a
pair of messages m0,m1 of the same length in the message space associated
with pk .

3. Challenge: Randomness β, z ← {0, 1} and rA, rB ← {0, 1}λ are chosen. Let
� denote the length of the encoding of (rA, rB,mβ). Then compute:

CT∗
in :=

{
Encdcca(PKin, (rA, rB,mβ)) if z = 0;

Encdcca(PKin, 0

) if z = 1.

(1)

Next compute CT∗
A := Enc1b−cca(PKA,CT

∗
in; rA) and CT∗

B := Enccpa(PKB,
CT∗

in; rB). Return to A the ciphertext CT∗ := (CT∗
A,CT

∗
B).

4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a
decryption of the challenge ciphertext CT∗. Finally, A outputs a bit z′.

5. Output: The output of the experiment is defined to be 1 if z′ = z, and 0
otherwise.

Definition 3 (Nested Indistinguishability). A tuple of encryption systems
(Πdcca, Π1b−cca, Πcpa) has nested indistinguishable encryptions under a chosen-
ciphertext attack if for all probabilistic polynomial-time adversaries A there ex-
ists a negligible function negl such that:

Pr[ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ) = 1] ≤ 1

2
+ negl(λ).

It is important to observe that the nested indistinguishability experiment com-
bines Πdcca, Π1b−cca, Πcpa in exactly the same manner as the Section 3 con-
struction. When z = 1, it encrypts “properly” and when z = 0, it encrypts all
zeros.

With a goal of proving CCA2 security, our main task is to argue that our
Section 3 construction provides nested indistinguishability. To do this, we must
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first establish that a certain event does not happen, except with negligible prob-
ability. We define this event as follows.

Definition 4 (The Bad Query Event). Let Πdcca, Π1b−cca, and Πcpa be

the schemes parameterizing the experiment Expnested. Let PKin be the public key
output by running KeyGendet during the course of the experiment. We say that a
bad query event has occurred during an execution of this experiment if in Phase
2, the adversary A makes a decryption query of the form CT := (CTA,CTB)
such that

– (Query inner is “related” to challenge inner:)
F (PKin,CT

∗
in,Dec1b−cca(SKA,CTA)) = 1, and

– (Query ciphertext differs from challenge ciphertext in first half):
CT∗

A �= CTA.

where CT∗ := (CT∗
A,CT

∗
B) is the challenge ciphertext and CT∗

A is an encryption
of CT∗

in. We note that this event is well defined in both the cases where z = 0
and z = 1.

4.1 Proof That Bad Query Event Does Not Happen

Lemma 4 (No Bad Query Event when z = 1 (all zeros encrypted)).
Suppose that Πdcca is DCCA secure, Π1b−cca is 1-bounded CCA secure, and Πcpa

is CPA secure, all with perfect correctness. Then for all probabilistic polynomial-
time adversaries A, during a run of experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with
z = 1, a bad query event does not take place except with negligible probability in λ
where the probability is taken over the coins of the adversary and the experiment.

Proof. We proceed via a series of hybrids. Let BQE denote a bad query event.

Step 1: Pr[BQE in Nested] ∼ Pr[BQE in Right-Erased] from CPA-security of
Πcpa. We first define a variation of the nested indistinguishability experiment
with z = 1, which we call the right-erased experiment. In this experiment, CT∗

B is
formed as CT∗

B := Enccpa(PKB , 1
k; rB) where k denotes the length of CT∗

in. CT
∗
A

is formed the same as in the nested indistinguishability experiment with z = 1.
We suppose there exists a PPT adversary A for the nested indistinguishability
experiment which causes the bad query event to occur with non-negligibly differ-
ent probability in the usual experiment with z = 1 compared to the right-erased
experiment. We construct a PPT algorithm B which violates the CPA-security
of Πcpa.

B is given PKB. B then runs KeyGendcca and KeyGen1b−cca for itself to pro-
duce PKin, SKin and PKA, SKA respectively. It gives A pk = (PKin,PKA,PKB).
B can simulate the decryption oracle Dec(sk , ·) for A by running the usual de-
cryption algorithm (note that this does not require SKB).

The adversary A outputs a pair of messages m0,m1 of the same length in
the message space associated with pk . B chooses rA ∈ {0, 1}λ and computes
CT∗

in = Encdcca(PKin, 0

), where � is the length of the encoding of (rA, rA,m0).
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It then computes CT∗
A = Enc1b−cca(PKA,CT

∗
in; rA). It submits CT∗

in and 1k to
its challenger as its two messages. It receives CT∗

B as the ciphertext. It gives
CT∗ := (CT∗

A,CT
∗
B) to A.

To respond to remaining decryption queries A makes, B runs the usual decryp-
tion algorithm (after checking that the query is not equal to the challenge cipher-
text). In addition, B checks for the bad query event by first checking if CTA �=
CT∗

A and then computing F (PKin,CT
∗
in,Dec1b−cca(SKA, CTA)). We recall that

B generated SKA,PKA for itself, so it can compute Dec1b−cca(SKA,CTA).
If CT∗

B is an encryption of CT∗
in, then B has properly simulated the usual

experiment with z = 1. If it is instead an encryption of 1k, then B has properly
simulated the right-erased experiment. We note that the bad query event occurs
in the simulation if and only if it is detected by B.

We let ε denote the probability that the bad query event occurs in the usual ex-
periment with z = 1 and δ denote this probability in the right-erased experiment.
We suppose ε− δ is positive and non-negligible (the opposite case is analogous).
Now, if B detects the bad query event, it guesses that CT∗

A is an encryption of
CT∗

in. Otherwise, it guesses the opposite. B’s probability of guessing correctly in
the CPA security game for Πcpa is then equal to ε

2 +
1
2 (1−δ) = 1

2 +
1
2 (ε−δ). The

quantity ε − δ is non-negligible, so B violates the CPA-security of Πcpa. Hence
we may conclude that the probability of the bad query event happening in the
usual experiment with z = 1 is the same (up to a negligible difference) as the
probability of the bad query event happening in the right-erased experiment for
any PPT adversary.

Step 2: Pr[BQE in Full-Erased] is negligible from the unpredictability of the de-
tecting function of Πdcca. We now define an additional variation of the exper-
iment, which we call the full-erased experiment. This is like the right-erased
experiment, except that CT∗

A is also an encryption of 1k, instead of an encryp-
tion of CT∗

in. We claim that in the full-erased experiment, the bad query event
can only occur with negligible probability. To see this, we suppose we have a
PPT adversary A which causes the bad query event to occur with non-negligible
probability in the full-erased experiment. We will build a PPT adversary B for
the basic unpredictability experiment which violates unpredictability of the de-
tecting function for Πdcca.

B is given PKin and access to a decryption oracle Dec(SKin, ·). It runs
KeyGen1b−cca and KeyGencpa for itself to produce PKA, SKA and PKB, SKB. It
gives (PKin,PKA,PKB) to A. B can simulate the decryption oracle for A using
SKA and its own decryption oracle. A outputs m0,m1. B then computes CT∗

A =
Enc1b−cca(PKA, 1

k) and CT∗
B = Enccpa(PKB, 1

k) and gives CT∗ = (CT∗
A,CT

∗
B)

to A. We let q denote the number of Phase 2 queries made by A. B can respond
to these queries as before. B chooses a random i ∈ {1, 2, . . . , q} and a random
bit b ∈ {0, 1}. It takes the ith Phase 2 query of A, denoted by (CTi

A,CT
i
B),

and computes CTi
in = Dec1b−cca(SKA,CT

i
A). It submits mb and CTi

in to its
challenger. Then, the distribution of c∗ = Encdcca(PKin,mb) in the basic un-
predictability experiment is precisely the distribution of CT∗

in. Hence, the bad
query event for query i corresponds to an output of 1 for basic unpredictability
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experiment. Thus, if the bad query event occurs with some non-negligible prob-
ability ε, B will cause an output of 1 in the basic unpredictability experiment
with probability at least ε

q , which is non-negligible.

Step 3: Pr[BQE in Right-Erased] ∼ Pr[BQE in Full-Erased] from the 1-bounded
CCA security of Π1b−cca. We now return to considering a PPT adversary A
in the right-erased experiment. We let q denote the number of Phase 2 queries
made by A. We suppose that A causes the bad query event with non-negligible
probability. Then there exists some index i ∈ {1, . . . , q} such that A causes the
bad query event to occur with non-negligible probability on its ith Phase 2 query.
In other words, if there exists a PPT adversary A for which the bad query event
occurs with non-negligible probability in the right-erased experiment, then for
each value of the security parameter, there exists an index i such that A causes
the BQE to occur on its ith Phase 2 query with non-negligible probability. We
note that for any i, the probability that A causes the BQE to occur on its ith

Phase 2 query in the full-erased experiment is negligible, as we proved above.
We fix such an i, and we define a PPT algorithm B which violates the 1-

bounded CCA security of Π1b−cca. B receives PKA from its challenger. It runs
KeyGendcca and KeyGencpa for itself to produce PKin, SKin and PKB , SKB. It
gives (PKin,PKA,PKB) to A as the public key.

B simulates the decryption oracle for A as follows. Upon receiving a cipher-
text (CTA,CTB), B decrypts CTB using Deccpa with SKB, and we let CTin

denote the output. It then decrypts CTin using Decdcca with SKin, and parses
the output as rA, rB,M . It checks if CTA = Enc1b−cca(PKA,CTin; rA) and
if CTB = Enccpa(PKB,CTin; rB). If both checks pass, it outputs M . Else, it
outputs ⊥.

We claim that this matches the output of the usual decryption algorithm,
even though B is first decrypting CTB instead of CTA. To see this, note that
the outputs are the same whenever Dec1b−cca(CTA, SKA) = Deccpa(CTB, SKB).
Whenever these are unequal, both decryption methods will output ⊥. This is
because CTA = Enc1b−cca(PKA,CTin; rA) and CTB = Enccpa(PKB ,CTin; rB)
imply that Dec1b−cca(CTA, SKA) = CTin = Deccpa(CTB, SKB). (Recall here
that we have assumed Π1b−cca and Πcpa have perfect correctness.)

At some point, A outputs m0,m1. B forms CT∗
in = Encdcca(PKin, 0


) and
CT∗

B = Enccpa(PKB, 1
k). It outputs the messages CT∗

in and 1k to its chal-
lenger, and receives a ciphertext which it sets as CT∗

A. It gives the ciphertext
(CT∗

A,CT
∗
B) to A. It can then respond to A’s Phase 2 decryption queries in the

same way as before. When it receives the ith Phase 2 query of A, denoted by
(CTi

A,CT
i
B), B checks for the bad query event by first checking if CTi

A �= CT∗
A

and if so, submitting CTi
A as its one decryption query to its decryption oracle

for PKA. It can compute F (PKin,CT
∗
in,Dec(SKA,CT

i
A)). This equals 1 if and

only if the bad query event has occurred for query i, and in this case B guesses
that CT∗

A is an encryption of CT∗
in. Otherwise, B guesses the opposite.

We observe that when CT∗
A is an encryption of CT∗

in, then B has properly
simulated the right-erased experiment, and when CT∗

A is an encryption of 0k,
then B has properly simulated the full-erased experiment. We let ε denote the
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non-negligible probability that A causes the bad query event to occur on (Phase
2) query i in the right-erased experiment, and we let δ denote the corresponding
probability for the full-erased experiment. We know that δ must be negligible,
therefore ε − δ is positive and non-negligible. The probability that B guesses
correctly is: 1

2 (1−δ)+
1
2ε =

1
2+

1
2 (ε−δ), so B achieves a non-negligible advantage

in the 1-bounded CCA security game for Π1b−cca.
Thus, it must be the case that for all PPT algorithms A, the BQE occurs

with only negligible probability in the right-erased experiment, and hence also
in the nested experiment with z = 1.

Lemma 5 (NoBadQuery Event when z=0 (RealMessage Encrypted)).
As a consequence of Lemma 4 and the DCCA security of Πdcca, it holds that
for all probabilistic polynomial-time adversaries A, during a run of experiment
ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with z = 0, a bad query event does not take place ex-
cept with negligible probability in λ where the probability is taken over the coins
of the adversary and the experiment.

Proof. In Lemma 4, we established that bad query events happen with at most
negligible probability when z = 1. We will use this fact to argue that they
cannot happen much more frequently when z = 0. Suppose to the contrary
that there exists a PPT adversary A that forces bad query events to happen
with non-negligible probability ε when z = 0. We create an PPT adversary B
who interacts with A in a run of the nested indistinguishability experiment to
break the DCCA security of Πdcca with detecting function F with probability
negligibly-close to 1

2 + ε
2 as follows:

1. Setup: B obtains PKin from the Expindist challenger. It runs KeyGen1b−cca to
obtain (PKA, SKA) and KeyGencpa to obtain (PKB, SKB).

2. Phase 1: B gives to A the public key PK = (PKin,PKA,PKB). When A
queries the decryption oracle on CT, B can simulate the normal decryption
algorithm using SKA and the phase 1 oracle Dec(SKin, ·). Eventually, A
outputs a pair of messages m0,m1.

3. Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}λ. Send to the
Expindist challenger the messagesM0 = (rA, rB,mβ) andM1 = 0|M0|, and ob-
tain from the challenger CT∗

in. Compute CT∗
A := Enc1b−cca(PKA,CT

∗
in; rA)

and CT∗
B := Enccpa(PKB ,CT

∗
in; rB). Return CT∗ := (CT∗

A,CT
∗
B) to A.

4. Phase 2: When A queries the decryption oracle on CT := (CTA,CTB),
compute CTin := Dec1b−cca(SKA,CTA). If
(a) Case 1 (a bad query event): CTA �= CT∗

A and yet F (PKin,CT
∗
in,CTin) =

1, then abort and output the bit 0.
(b) Case 2 (partial match with challenge): CTA = CT∗

A, then return ⊥ to
A.

Otherwise, query the phase 2 oracle, Dec(SKin, ·), to decrypt CTin, and re-
turn its response to A.

5. Output: When A outputs a bit, B echos the bit as its output.



Detecting Dangerous Queries 679

Analysis. We begin our analysis by arguing that B correctly answers all de-
cryption queries except when it aborts. First, we show that a partial match
with the challenge, causing the ⊥ response in Case 2, is correct because that
query must be invalid. Since a decryption query on the challenge is forbidden
by the experiment, if CTA = CT∗

A, then CTB �= CT∗
B. However, we argue that

this must be an invalid ciphertext, i.e., one on which the main construction’s
decryption algorithm would return ⊥. We see this as follows. Since decryption
is deterministic, we have T := Dec1b−cca(SKA,CTA) = Dec1b−cca(SKA,CT

∗
A)

and (rA, rB ,m) := Decdcca(SKin, T ). By the checks enforced by the main con-
struction’s decryption algorithm, there is only one “second half” that matches
CTA = CT∗

A, that is Enccpa(PKB, T ; rB). Since the challenge is a valid cipher-
text, CT∗

B must be this value and CTB must cause an error.
When neither Case 1 or Case 2 applies in phase 2, the inner decryption query

will succeed since the ciphertext is not detectably related to the challenge. This
allows B to respond correctly.

When a bad query event occurs in Phase 2, B cannot query Expindist’s decryp-
tion oracle to decrypt the ciphertext. At first glance, one seems stuck. However,
we assumed bad query events happen only when z = 0 with all but negligible
probability. Thus, B can guess that A thinks z = 0, which corresponds to M0

being encrypted in our reduction. Thus, B can abort and guess 0 at this point.
When B aborts, it causes the Expindist experiment to output 1 with high prob-

ability. When B does not abort, it causes Expindist experiment to output 1 with
probability 1

2 . Since B aborts with non-negligible probability ε when z = 0, then
B causes the experiment’s output to be 1 with probability non-negligibly greater
than 1

2 .

4.2 Putting the Proof of the Main Theorem together

Theorem 1 (Main Construction is Nested Indistinguishable). Our main
construction in Section 3, comprised of the three building blocks Πdcca, Π1b−cca,
Πcpa, has nested indistinguishable encryptions under a chosen-ciphertext attack
under the assumptions that Πdcca is DCCA secure, Π1b−cca is 1-bounded CCA
secure, and Πcpa is CPA secure, all with perfect correctness.

Proof of Theorem 1 appears in the full version. The crux of the argument is that
bad query events do not happen (except with negligible probability). This was
already established in Lemmas 4 and 5. Armed with this fact, we can prove the
nested indistinguishability of the main construction based on the indistinguisha-
bility property of the DCCA-security of Πdcca. The reduction and its analysis
are similar to those in the proof of Lemma 5.5

The following corollary follows from Theorem 1. Informally, if the adversary
cannot distinguish an encryption of a message from an encryption of zeros, then
she also cannot distinguish between the encryptions of two different messages.

5 We alternatively could have merged the proofs of Lemma 5 and Theorem 1. However,
we chose to keep the bad event analysis separate for pedagogical purposes at the
expense of some redundancy in the description of the related reductions.
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Corollary 1 (Main Construction is CCA2 Secure). Our main construc-
tion in Section 3, comprised of the three building blocks Πdcca, Π1b−cca, Πcpa,
is CCA2 secure under the assumptions that Πdcca is DCCA secure, Π1b−cca is
1-bounded CCA secure, and Πcpa is CPA secure, all with perfect correctness.

Acknowledgments. The authors thank Steven Myers and the anonymous re-
viewers for helpful comments.
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Abstract. In recent years, a number of standardized symmetric encryp-
tion schemes have fallen foul of attacks exploiting the fact that in some
real world scenarios ciphertexts can be delivered in a fragmented fashion.
We initiate the first general and formal study of the security of symmet-
ric encryption against such attacks. We extend the SSH-specific work
of Paterson and Watson (Eurocrypt 2010) to develop security models
for the fragmented setting. We also develop security models to formalize
the additional desirable properties of ciphertext boundary hiding and
robustness against Denial-of-Service (DoS) attacks for schemes in this
setting. We illustrate the utility of each of our models via efficient con-
structions for schemes using only standard cryptographic components,
including constructions that simultaneously achieve confidentiality, ci-
phertext boundary hiding and DoS robustness.

1 Introduction

Despite the existence of proofs guaranteeing security, deployed schemes do get
compromised sometimes. Consider for example SSH, one of the most widely used
secure protocols. Bellare et al. [4] have formally analysed variants of SSH’s Bi-
nary Packet Protocol (BPP) and showed that these variants are secure. Yet a
few years later, Albrecht et al. [1] presented plaintext recovery attacks against
these provably secure SSH BPP variants. These attacks exploited the fact that
encrypted data can be delivered to the receiver in a fragmented, byte-by-byte
manner, and that the attacker can observe the receiver’s behaviour at each point
(in particular how long it takes to reject certain carefully crafted faulty cipher-
texts). On the other hand, formal security definitions, including the one used
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to prove SSH secure, traditionally treat plaintexts and ciphertexts as atomic,
meaning that the entire ciphertext is offered for decryption and a plaintext (or
error symbol) is instantly returned.

To bridge this gap between theory and practice and to have schemes with
security guarantees that hold not only on paper but also in reality, one has to
design security definitions which are integrated better with the environments in
which the protocols are deployed. Paterson and Watson [14] recently took a first
step in this direction by showing that certain SSH BPP variants meet a newly
introduced security notion that takes the aforementioned attacks into account.
However, their security definition itself is heavily intertwined with the SSH BPP
specification and too complex to be extended easily to apply to different schemes.
We provide a more detailed critique of this precursor [14] in the full version [6].

Overview of Contributions. In this work we initiate a general study of secu-
rity of symmetric encryption schemes against fragmentation attacks. Our study
goes beyond just message privacy, and also includes length-hiding (or, more pre-
cisely, hiding ciphertext boundaries in a ciphertext stream) and the prevention
of fragmentation-enabled Denial-of-Service (DoS) attacks against the receiver.
These two properties have not been previously studied, partly because the cor-
responding threats are not present if encryption is treated as being atomic. The
framework we develop can be used to provide meaningful provable security anal-
yses of practical schemes when deployed in environments that permit ciphertext
fragmentation attacks (including but not limited to the ones from [14]).

We complement our new security definitions with efficient cryptographic con-
structions based on standard primitives meeting the new goals. While it may
be relatively easy to achieve each security goal independently, it transpires that
it is not straightforward to achieve two or three of the aforementioned goals
simultaneously and one of our schemes is the first to do so.

Let us now describe our focus and results in a little more detail.

Data Fragmentation. Data sent over networks is often fragmented, meaning
that it is broken up into smaller pieces, or packets. If the data is encrypted, the
receiver first has to determine what constitutes a complete ciphertext in order
to decrypt it and obtain the underlying message. Reconstruction of the original
ciphertext by the receiver can be accomplished by various methods. For example,
SSH uses a length field that tells the receiver how many bytes are needed before
the complete ciphertext has arrived; this length field is encrypted, ostensibly to
increase the security of the protocol against traffic analysis.

During transmission, the packets can be accidentally delayed or delivered out
of order. But there also may be malicious tampering of legitimate fragmenta-
tion, such as breaking the encrypted data into adversarially selected packets, or
maliciously delaying their delivery. We already mentioned an attack of this kind
on SSH [1]. Another example is an attack by Degabriele and Paterson [8] on the
IPsec protocol. While fragmentation is used adversarially in both attacks, there
are some notable differences. In particular, in SSH for honest users, the cipher-
text can be effectively regarded as a bitstring (the result of say CBC-and-MAC)
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and it is only the adversary who starts fragmenting this string. In IPsec, further
protocol layers already forcibly introduce fragmentation; on the one hand this
ties the adversary, but on the other hand the interaction of this protocol layer
with the cryptographic layer can offer new avenues of attack (as exploited by
the attack on IPsec [8]). Our treatment addresses both scenarios.

Syntax for Encryption Supporting Fragmentation. We start our analysis with
defining encryption in the presence of fragmentation. A symmetric encryption
scheme supporting fragmentation is defined similarly to a regular atomic (frag-
mentation devoid) encryption scheme, except the decryption algorithm is always
stateful, mainly to model decryption algorithms that may, for example, combine
data coming from multiple ciphertext fragments before outputting any plaintext.
In addition to state, decryption takes input fragments, one-by-one. Depending
on the scheme, the minimal fragment length can be one bit, a byte or a block (of
some fixed length). The correctness requirement is defined more intricately than
that for atomic encryption. It requires that regardless of how one fragments the
ciphertexts, the original messages are returned, with correct message boundaries
indicated.

In this paper we focus on two subclasses of symmetric encryption schemes
for fragmented ciphertexts, for which we give separate security definitions. One
subclass, to which we will simply refer to as stateful, covers most practical en-
cryption schemes, whose encryption and decryption algorithms are both stateful.
For example, encryption and decryption can both use a counter that increases
depending on the number of messages or ciphertexts processed.

The other subclass we consider is an extension of standard (atomic) encryp-
tion schemes that makes handling fragmented ciphertexts possible. Namely, the
decryption algorithm is now stateful, but the state just models the buffer the
receiver keeps to store the ciphertext fragments before a complete ciphertext is
received (thus allowing the decryption oracle to perform operations on the entire
ciphertext, even if it arrives in fragments). We call such schemes stateless beyond
buffering (sbb). Because of space constraints, we focus here on the stateful case,
with details for the sbb case appearing in the full version [6].

Message Privacy in the Presence of Fragmentation. We observe that fragmen-
tation becomes relevant for security only in the case of chosen-ciphertext at-
tacks (CCA). We extend the existing CCA security notions for regular atomic
(IND-CCA) and atomic and stateful (IND-sfCCA [4]) schemes to the case of ci-
phertext fragmentation (denoted CFA).

Recall that for IND-sfCCA there is no restriction on the decryption queries, but
if the adversary forwards the challenge ciphertexts returned by the left-or-right
encryption oracle to the decryption oracle in order, this is considered in-sync,
and the decryption output is suppressed. Otherwise, it is declared out-of-sync,
and the decryptions are returned to the adversary. This allows the adversary to
advance the state of both encryption and decryption algorithms to potentially
favourable values. When dealing with fragments, the challenge is to decide when
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to enter the out-of-sync state. We found the need to declare part of the fragment
in-sync, and part of it out-of-sync and resolve the ambiguity with regards to the
exact boundary to use. We provide our IND-sfCFA definition and more discussion
in Section 3.2.

Ciphertext Boundary Hiding. It is conventional wisdom in cryptographic secu-
rity definitions that an encryption scheme is allowed to leak the length of the
ciphertext; it is often regarded as inevitable. However, real schemes try to achieve
another goal as well: they try to hide the lengths of encrypted messages, with
a view to frustrating traffic analysis based on these lengths. This is generally
achieved in practice by two distinct mechanisms.

Firstly, an encryption scheme for which the ciphertext length does not deter-
ministically depend on the message length may be used (e.g. by using variable-
length padding). The SSH Binary Packet Protocol and the TLS Record Protocol
both adopt this approach. This mechanism has recently received attention from
differing perspectives [16, 18]. Secondly, an encryption scheme may be designed
in such a way that it is hard to distinguish where the boundaries between ci-
phertexts lie in a stream of ciphertexts. TLS, with its explicit length field in the
header of each TLS Record Protocol message, does not achieve this. But SSH’s
Binary Packet Protocol (BPP) does attempt to achieve boundary hiding. This
necessitated the introduction of an encrypted length field in SSH, which is used
by the receiver to determine how many bytes are required before a complete ci-
phertext has arrived and a MAC on the plaintext can be checked. However, this
design decision, coupled with the use of CBC mode encryption, is precisely what
enabled recent fragmentation attacks against SSH [1]. Thus having boundary
hiding as a security goal can act in opposition to achieving other, more standard
security goals.

In Section 4, we formalize the goal of boundary hiding for ciphertext streams.
We give definitions for both the passive and the active adversary cases, which
we call BH-CPA and BH-sfCFA. The passive case is very common in the traffic
analysis literature. Here the adversary merely monitors encrypted traffic and
tries to infer information from ciphertext lengths and other information such
as network packet timings, but without giving away its presence by actively
modifying network traffic. By hiding the ciphertext boundaries, the adversary no
longer has access to fine-grained ciphertext lengths (our solution of course does
not help to hide the total volume being sent). We also define boundary hiding
in the active case and find out that it is much more challenging to achieve.

Denial-of-Service. Next, we focus on the very important goal of preventing
fragmentation-related Denial-of-Service (DoS) attacks against the receiver. This
is, to the best of our knowledge, the first formal treatment of DoS prevention
as a property of encryption. For an example of such an attack, consider the
SSH-CTR scheme (see [14] for a description) and the adversary who changes
the length field that occupies the first 32 bits of plaintext by bit flipping in
the ciphertext. If the length is maliciously increased to a very large value (say,
232 − 1, the maximum possible value for a 32-bit field), then the receiver will
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Table 1. Stateful schemes and their security properties

Scheme Ref. IND-sfCFA BH-CPA BH-sfCFA DOS-sfCFA

Prefix free (EC ◦ E) (Sec. 3.3) + × × ×
Keyed Prefix Free (KPF) (full version [6]) + + × ×

InterMAC (Sec. 5) + + + +

continue listening for ciphertext fragments awaiting message completion, until
232 bytes of data have been received. Only then will SSH-CTR’s MAC verifica-
tion be conducted and the message rejected. The application (or user) receiving
data from the SSH connection experiences this as an SSH connection hang, a
form of Denial-of-Service.

We provide a security definition DOS-sfCFA for DoS attacks in Section 5 that
is sufficiently flexible to capture the SSH attack and others like it. Essentially,
we measure the attacker’s ability to create a sequence of ciphertext fragments
for which the decryption algorithm of a scheme does not output any message or
failure symbol within a reasonable timeframe, measured in terms of the number
of symbols submitted to a decryption oracle by the adversary.

Constructions and Their Security. So far, our emphasis has been on developing
security models and notions. However, as we proceed, we demonstrate how each
of the security notions we provide can be met in practice by efficient schemes
using only standard symmetric components. These constructions are illustrative
rather than definitive. Table 1 lists our main schemes for the stateful setting
and their properties; for definitions and further discussions, see the referenced
sections. We note that the scheme InterMAC is able to simultaneously achieve
all three of our active security notions IND-sfCFA, BH-sfCFA, and DOS-sfCFA.

Further Related Work. Our fragmented approach bears more than a pass-
ing resemblance to work on on-line encryption [2, 3, 7, 9, 10, 11, 12]. However,
whereas the on-line setting concerns a single continuous message and ciphertext,
with each block of plaintext leading to a block of ciphertext being output during
encryption (and vice-versa during decryption), our setting concerns atomic en-
cryption (reflecting how many secure protocols operate) but allows fragmented
decryption of ciphertexts. Moreover, we extensively treat the case of active ad-
versaries, a topic that has not achieved much attention in the on-line literature,
and we consider more than just confidentiality security notions. This said, our
ultimate construction, InterMAC, can be seen as a kind of online scheme with a
large block size.

2 Preliminaries

Since manipulating sequences of symbols (strings) in various ways will be cru-
cial to our later exposition, we begin with some standard and not-so-standard
definitions relating to strings.
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Let B be a set and B∗ denote the set of finite strings with symbols from B
(including the empty string ε). Let B+ denote B∗ \{ε}. Denote by | · | : B∗ → �

+

the length function which counts the number of symbols in a string. Typically we
will have that B is the set of bitstrings of some fixed length n, that is B = {0, 1}n,
leading to the usual notation of {0, 1}∗ for the set of all binary strings of finite
length. In this case, if X is a string, then |X | denotes its bit-length. If X is a
vector of strings, then |X| denotes the number of its components. Given two
strings X,Y ∈ B∗, we write X ‖ Y for the concatenation of the two strings.
Given a sequence of strings, we define the operator || that simply concatenates
all the constituent strings. For example, if X = (00) and Y = (11), then X ‖
Y = (0011) ∈ {0, 1}∗ and ||((00), (11)) = (0011) ∈ {0, 1}∗.

For two elements a, b ∈ B∗ we call a a prefix of b if there exists c ∈ B∗ such
that b = a ‖ c. For two elements a, b ∈ B∗ we denote with a ) b the greatest
common prefix of a and b and by a % b the remainder string of a with respect
to b (so in particular, a = (a ) b) ‖ (a% b) and b = (a ) b) ‖ (b% a)). A subset S
of B∗ is called prefix-free if for all distinct a, b ∈ S it holds that a is not a prefix
of b.

If A is finite, we can identify it with �|A|. In the specific case of A = {0, 1}n

we use the notation 〈·〉n : �2n → {0, 1}n for the corresponding mapping. We
extend this notion to a more general map from � to A∗ or A+.

3 Symmetric Encryption Supporting Fragmentation

3.1 Unified Syntax

Morphology. We extend the standard definition of symmetric encryption for
the case of fragmented ciphertexts. For fragmentation to make sense, we will
restrict our attention to ciphertexts that are strings, so CphSp = B∗ where
e.g. B = {0, 1} (bits), B = {0, 1}8 (bytes), or B = {0, 1}128 (blocks). Further-
more, we assume that the message space consists of strings, so MsgSp = B∗.
The move to fragmentation results in some complications. For instance, a single
ciphertext can be split up in multiple fragments or a single fragment can contain
multiple ciphertexts.

Definition 1. A symmetric encryption scheme supporting fragmentation SE =
(K, E ,D) with associated message space MsgSp = B∗, ciphertext space CphSp =
B∗ and error messages S⊥ is defined by three algorithms:

– The randomized key generation algorithm K returns a secret key K and
initial states σ0 and τ0.

– The randomized or stateful (or both) encryption algorithm

E : K × MsgSp ×Σ → CphSp ×Σ

takes input the secret key K ∈ K, a plaintext m ∈ MsgSp, and optional
state σ ∈ Σ, and returns a ciphertext in CphSp together with an updated
state. For m = (m1, . . . ,m
) ∈ (B∗)∗ and c = (c1, c2, . . . , c
), we write
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(c, σ) ← EK(m, σ0) as shorthand for (c1, σ1) ← EK(m1, σ0), (c2, σ2) ←
EK(m2, σ1), . . . (c
, σ
) ← EK(m
, σ
−1) where σ = σ
.

– The deterministic and stateful decryption algorithm

D : K × B∗ ×Σ → (B ∪ {¶} ∪ S⊥)
∗ ×Σ

takes the secret key K, a ciphertext fragment f ∈ B∗, and the current state
τ to return the corresponding plaintext fragment m (which can be the empty
string ε or an error from error space S⊥) and also the updated state τ . For
f = (f1, . . . , f
) ∈ (B∗)∗, we write (m, τ) ← DK(f , τ0) as shorthand for
(m1, τ1) ← DK(f1, τ0), (m2, τ2) ← DK(f2, τ1), . . . (m
, τ
) ← DK(f
, τ
−1),
where m = m1 ‖ . . . ‖ m
 and τ = τ
.

This definition requires a little unpacking. Firstly, and in contrast to the usual
definitions, our decryption algorithm is stateful, mainly to model decryption
algorithms that may, for example, combine data coming from multiple ciphertext
fragments before outputting any plaintext.

Secondly, note that the decryption algorithm is assumed to be able to handle
ciphertexts which decrypt to multiple plaintext messages, or to a mixture of
plaintexts and error symbols, or possibly to nothing at all (perhaps because
the input ciphertext is insufficient to enable decryption to yet output anything,
giving a significant difference from the atomic setting where decryption always
outputs something). We use ¶ �∈ B∪S⊥ to denote the end of plaintext messages,
enabling an application making use of the decryption algorithm to parse the
output uniquely into a sequence of elements of B∗ and errors from S⊥. Our
introduction of an explicit symbol ¶ to help delineate messages during decryption
seems novel. This is not because our solution is in any way innovative, but rather
because the problem does not arise in earlier works.

Thirdly, note that, when failing, the decryption algorithm can output one of
possibly many error messages from the set S⊥. This reflects the fact that real
schemes may fail in more than one way, with the different failure modes being
visible to both legitimate users and adversaries. Our definition is sufficiently
flexible to model schemes (such as those used in SSH and TLS) that tear down
secure sessions and destroy session keys as soon as an error is detected during
decryption, by having the decryption algorithm maintain an extra “abort” status
flag, setting the flag once a first error is encountered, and always outputting a
failure symbol once the flag is set. The definition can also handle schemes (such
as those used in IPsec and DTLS) which are more tolerant of errors.

While we enforce that from a decryption of a sequence of ciphertext fragments,
the corresponding message boundaries are easy to distinguish, we make no such
requirement for ciphertexts. Indeed, given a sequence of ciphertext fragments,
it will not be a priori clear what the constituent ciphertexts are (and in fact, in
Section 4, we want to model schemes which hide these boundaries as a security
goal). Looking ahead, the absence of clear ciphertext boundaries (in a sequence
of fragments) will cause challenging parsing problems for our CCA definitions:
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1 2 3 4′ 5′

Fig. 1. Two consecutive fragments f1 = (1) and f2 = (234′5′). The second fragment
completes the first ciphertext c1 = (12), so we expect that to be decrypted at this
point, even though ciphertext c2 = (345) in the second fragment has been modified to
produce a possibly invalid ciphertext.

in order to ‘forbid’ decryption of the challenge ciphertext, a prerequisite is that
this challenge ciphertext can be located accurately in the sequence of ciphertext
fragments!

Correctness. If a single message is encrypted and the corresponding cipher-
text is subsequently decrypted, we expect that the message is returned. When
multiple messages are encrypted and the fragments correspond exactly to the
ciphertext, again we expect to retrieve the original messages. However, we ex-
pect something stronger, namely that regardless of how we fragment the ci-
phertext(s), the original message(s) are returned. Moreover, we require correct
decryption, even when an extra string B∗ is added to the original (string of)
ciphertexts. This forces correct decryption once a complete valid ciphertext has
been received, even if what intuitively might remain in the buffer is invalid.
For instance, in the situation depicted in Fig. 1 two ciphertexts c1 = (12) and
c2 = (345) are produced by the encryption oracle, the adversary subsequently
submits fragments f1 = (1) and f2 = (234′5′) to its decryption oracle, and we
still want to see the first ciphertext decrypted properly.

With this intuition in mind, we are almost ready to give our definition of
correctness for a symmetric encryption scheme with fragmented ciphertexts. We
first define a map ¶ : (B∗ ∪ S⊥)

∗ → (B ∪ {¶} ∪ S⊥)
∗ by ¶(m1, . . . ,m
) = m1 ‖

¶ ‖ . . .¶ ‖ m
 ‖ ¶. Note that ¶ is injective but not surjective.

Definition 2 (Correctness Requirement). For all (K,σ0, τ0) that can be
output by K and for all m ∈ MsgSp∗ and f ∈ (B∗)∗, it holds (with probability
1) that if (c, σ) ← EK(m, σ0) and ||(c) prefixes ||(f), then (m′, τ) ← DK(f , τ0)
satisfies m′ is prefixed by ¶(m).

Stateful Versus Stateless Schemes. As noted in the introduction, we mainly
study two subclasses of symmetric encryption schemes supporting fragmentation,
stateful, which covers most practical encryption schemes, and stateless beyond
buffering, an extension of standard (atomic), stateless encryption schemes that
makes handling fragmented ciphertexts possible. The former case is covered by
Definition 1 above. In the latter case, the decryption algorithm is still stateful,
but we impose that after receiving any valid ciphertext it returns to the original
state (output by key generation). More formally, we have:
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ExpIND-sfCFA-b
SE (A):

C ← ε, F ← ε,M ← ε
C← (),M← (), i← 0, j ← 0
active← false

(K,σ, τ )
$← K

b′ $← ALoR(·,·),Dec(·)

return b′

LoR(m0, m1):
if |m0| �= |m1| then return �

(c, σ)← EK(mb, σ)
i← i+ 1
Ci ← c, Mi ← mb

return c

Dec(f):
(m, τ )← DK(f, τ )
F ← F ||f and M ← M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is prefix of C then
m← ε

else
active← true

determine m′ ← ¶(M1, . . . , Mj−1)
extract m←M %m′

return m

Fig. 2. The experiment defining the IND-sfCFA security notion for fragmented decryp-
tion of stateful schemes

Definition 3. A symmetric encryption scheme with fragmented ciphertexts is
called stateless beyond buffering (or sbb for short) if it is correct (Definition 2)
and satisfies the additional conditions

1. The initial decryption state is empty, that is for all (K,σ0, τ0) that can be

output by K, τ0 = ε; for simplicity’s sake, we will often simply write (K,σ)
$←

K for sbb schemes.
2. The decryption state is empty after decryption of each ciphertext obtained

from encryption, i.e. for all K that can be output by K, for all σ ∈ Σ, for
all m ∈ MsgSp, it holds (with probability 1) that if (c, σ) ← EK(m,σ) then
(m′, τ) ← DK(c, ε) satisfies τ = ε.

3. The scheme satisfies literal decryption: for all K ∈ K and for all f =
(f1, . . . , f
), when f

′ = f1 ‖ . . . ‖ f
, then DK(f , ε) = DK(f ′, ε).

For schemes with literal decryption we assume, without loss of generality, that
the decryption algorithm only keeps a buffer ρ as state, where a buffer is un-
derstood to be a suffix of the stream of ciphertext fragments received so far.
Moreover, if the scheme is sbb as well, this buffer will be emptied after each
valid ciphertext. Essentially, the scheme is stateless beyond the necessary buffer-
ing (to keep track of the current ciphertext).

3.2 Security for Stateful Schemes

When discussing a security notion a scheme supporting fragmentation, the first
thing to note is that this only makes sense in the CCA setting: if there is no
decryption oracle, then whether decryption is fragmented or atomic is immaterial
to the security of the scheme. In the context of fragmentation, we will replace
the usual notion of chosen-ciphertext attacks by chosen-fragment attacks (CFA).
Our first notion, IND-sfCFA is tailored for stateful schemes and it is inspired by



Security of Symmetric Encryption 691

Bellare et al.’s notion of IND-sfCCA (for atomic schemes) from [4]. Recall that
for IND-sfCCA, an adversary has unlimited access to the decryption oracle; there
are no ‘prohibited’ queries. Instead, to avoid trivial attacks (by the adversary
simply relaying its challenge ciphertext for decryption) a syncing mechanism is
used. Initially the decryption oracle is in-sync and its output (to the adversary)
will be suppressed. Only when the adversary causes the decryption oracle to be
out-of-sync (by deviating from the ciphertext stream output by the encryption
oracle) will the purported plaintexts (or error messages) be returned.

For atomic schemes, this is relatively straightforward to define, but for schemes
supporting fragmentation, some ambiguity arises. Consider again the scenario
sketched in Fig. 1. The first fragment is in-sync and its output will be suppressed.
In the second fragment a deviation from the challenge ciphertext stream occurs.
However, part of the fragment is still in-sync and certainly outputting the full
decryption would—mindful of the correctness requirement—reveal (part of) the
plaintext (12). We will need to formalize this by officially declaring part of the
fragment in-sync, and part of it out-of-sync. The ambiguity arises with regards
to the boundary we should use: is sync lost already at ‘3’ (being the first symbol
of a ciphertext that is not completed properly) or only at ‘4’ (being the first
symbol of the fragment that actually deviates)?

In our definition of IND-sfCFA (Definition 4) we opted for the strongest in-
terpretation, namely where synchronization is lost at the ciphertext boundary.
Since this results in synchronization potentially being lost earlier, the decryption
oracle consequently suppresses less of its output, making it the stronger option.

Definition 4. Let SE = (K, E ,D) be an encryption scheme supporting fragmen-
tation. For an adversary A and a bit b, define the experiments ExpIND-sfCFA-b

SE (A)
as depicted in Fig. 2.

In both experiments, first the key K is generated by K. The adversary A is
given access to two oracles. The first is the left-or-right encryption oracle LoR(·, ·)
that it can query on any pair of messages of equal length. The second oracle is the
stateful decryption oracle Dec(·) that it can query on any sequence of ciphertext
fragments, but for certain sequences the output is artificially suppressed.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. The IND-sfCFA advantage of an adversary
A is defined as:

AdvIND-sfCFA
SE (A) = Pr

[
ExpIND-sfCFA-1

SE (A) = 1
]
− Pr

[
ExpIND-sfCFA-0

SE (A) = 1
]
.

The scheme with fragmentation SE is said to be indistinguishable against chosen-
ciphertext-fragments attack or IND-sfCFA secure, if for every adversary A with
reasonable resources its IND-sfCFA advantage is small.

Security for Stateless Schemes. In the full version [6], we define security
of stateless beyond buffering encryption schemes by appropriately modifying
the standard notion of indistinguishability against chosen-ciphertext attacks
(IND-CCA). We also provide the details and discuss the subtleties regarding
the definition.
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Algorithm Kf :
ρ← ε

(K,σ, τ )
$← Ka

return (K, σ, (τ, ρ))

Algorithm E f
K(m,σ):

(c, σ′)← Ea
K(m,σ)

v ← EC(c)
return (v, σ′)

Algorithm Df
K(f, (τ, ρ)):

w ← f , m′ ← ε
ρ← ρ ‖ f
while (w �= ε)

(w, ρ)← DC(ρ)
if (w �= ε) then

(m,τ )← Da
K(w, τ )

m′ ← m′ ‖ m ‖ ¶
return (m′, (τ, ρ))

Fig. 3. Construction of encryption schemes supporting fragmentation

3.3 Realizations and Non-realizations

In the full version [6], we simplify an attack by Albrecht et al. [1] to show that
schemes meeting traditional notions of security in the atomic setting can fail to
be secure in the fragmented setting. This establishes that our whole approach is
not vacuous.

Prefix-Free Postprocessing. Next we give a simple transformation that con-
verts any secure atomic scheme SEa with MsgSp = B∗ into a secure scheme
SEf supporting fragmentation. One of the challenges that has to be overcome is
ensuring correct decryption of the fragmented scheme. We solve this by encoding
ciphertexts (originating from SEa) using a prefix-free encoding scheme EC. This
allows the decrypting algorithm to correctly parse a concatenation of ciphertexts
into discrete ciphertexts which it can then decrypt in an atomic fashion.

A prefix-free encoding scheme EC : B+ → B+ is a (deterministic) function
whose image (viewed as a multiset) is prefix-free and that can be evaluated
efficiently. A useful property of a prefix-free encoding scheme is that an arbitrary
concatenation of encoded strings can be uniquely decoded, moreover this can
be done instantaneously and we will assume efficiently. This property, dubbed
instantaneous decodability, is defined below.

Definition 5. A prefix-free encoding scheme EC : B+ → B+ has instantaneous
decodability iff there exists an efficient deterministic algorithm DC : B∗ → B∗ ×
B∗ such that:

1. For all w ∈ B+ and all s ∈ B∗ it holds that if v ← EC(w) then (w, s) =
DC(v ‖ s).

2. For all x ∈ B∗, if no v ∈ EC(B+) is a prefix of x then (ε, x) = DC(x).

A prefix-free encoding scheme EC can be combined with an atomic encryption
scheme with message space B∗ to yield an encryption scheme supporting frag-
mentation as in Construction 6.

Construction 6 (Encrypt-then-prefix-free-encode). Let SEa = (Ka , Ea ,Da) be
an atomic encryption scheme with Ea : B∗ → B+ and let EC : B+ → B+ be a
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prefix-free encoding scheme with associated (instantaneous) decoding algorithm
DC. Then Fig. 3 defines encryption scheme supporting fragmentation SE f =
(Kf , E f ,Df ).

Proposition 7. Construction 6 provides an encryption scheme supporting frag-
mentation with message space MsgSp = B∗, ciphertext space CphSp = B+, the
same S⊥ as SEa and it satisfies the correctness requirement given by Definition 2
(assuming SEa itself is correct). Furthermore if Da is stateless, then Construc-
tion 6 is stateless beyond buffering.

Theorem 8. If SEa is IND-sfCCA secure then SE f from Construction 6 is IND-
sfCFA secure. More precisely, for any adversary AsfCFA there exists an equally
efficient adversary AsfCCA such that

AdvIND-sfCFA
SEf (AsfCFA) ≤ AdvIND-sfCCA

SEa (AsfCCA) .

Theorem 9. Let SEa have stateless decryption. If SEa is IND-CCA secure then
SE f from Construction 6 is IND-sbbCFA secure. More precisely, for any adver-
sary AsbbCFA there exists an equally efficient adversary ACCA such that

AdvIND-sbbCFA
SEf (AsbbCFA) ≤ AdvIND-CCA

SEa (ACCA) .

The proofs of these results (and the definition of IND-sbbCFA security) can be
found in the full version [6].

4 Boundary Hiding

In this section, we focus on formalizing the goal of boundary hiding for ciphertext
streams, giving security definitions and constructions achieving these definitions.
While the boundaries should be hidden to an adversary, they should of course not
lead to decryption problems: a stream (i.e. concatenation) of ciphertexts should
still lead to the correct sequence of plaintexts. The correctness requirement for an
encryption scheme with fragmented decryption already ensures that everything
goes well here.

Definition 10. Let SE = (K, E ,D) be an encryption scheme supporting frag-
mentation. For an adversary A and a bit b, define experiments ExpBH-sfCFA-b

SE (A)
as depicted in Fig. 4.

In these experiments, the adversary A is given access to a special left-or-right
oracle: on input two vectors of messages, either the left or the right result is
returned, but with the caveat that the concatenated ciphertext is returned only if
in both worlds the same length ciphertext is produced (but note that we do not
insist that the two vectors of messages contain the same number of components).
The adversary is also given access to a decryption oracle that is identical to the
one provided in the IND-sfCFA security experiment.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. The BH-sfCFA advantage of an adversary
A is defined as:

AdvBH-sfCFA
SE (A) = Pr

[
ExpBH-sfCFA-1

SE (A) = 1
]
− Pr

[
ExpBH-sfCFA-0

SE (A) = 1
]
.
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ExpBH-sfCFA-b
SE (A):

C ← ε, F ← ε,M ← ε
C← (), M← (), i← 0, j ← 0
active← false

(K,σ, τ )
$← K

b′ $← ALoR(·,·),Dec(·)

return b′

LoR(m0,m1):
σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| �= |c1| then return �

σ ← σb

for ι = 1 to ι = |cb|
i← i+ 1
Ci ← cb(ι), Mi ←mb(ι)

return cb

Dec(f):
(m, τ )← DK(f, τ )
F ← F ||f and M ← M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is prefix of C then
m← ε

else
active← true

determine m′ ← ¶(M1, . . . , Mj−1)
extract m←M %m′

return m

Fig. 4. Experiment ExpBH-sfCFA-b
SE (A) for defining boundary hiding security for stateful

schemes and an active adversary

We say that SE is boundary-hiding against chosen-ciphertext-fragments attack
or BH-sfCFA secure, if for every adversary A with reasonable resources its
BH-sfCFA advantage is small.

Boundary-hiding notions for the case of passive adversaries can be obtained
simply by removing the adversary’s access to the relevant decryption oracle.
In this case, we refer to BH-CPA security (this notion is implied by the notion
IND$-CPA as introduced by Rogaway [17], see the full version [6]). The notion of
boundary-hiding security for sbb schemes for active attacks BH-sbbCFA can also
be developed, by replacing the decryption oracle Dec in Fig. 4 by the decryption
oracle Dec from the corresponding sbb security game and by appropriately mod-
ifying how ciphertexts generated by queries to the encryption oracle are tracked.
The details are in the full version [6].

Constructions. In order to achieve BH-CPA security we extend Construction 6
by using keyed encoding schemes. The use of a key in the encoding scheme
enables the encryption algorithm to disguise the ciphertext boundaries from a
passive adversary. Details of this construction, dubbed KPF (Keyed Prefix Free),
can be found in the full version [6]. Achieving BH-sfCFA requires more work. We
show that this can be done at the same time as achieving DoS security in the
next section. In the sbb setting, however, we will only achieve BH-CPA secu-
rity (we show this and discuss the difficulty of meeting BH-sbbCFA security in the
next section as well). It remains an open problem to design a practical BH-sbbCFA
secure sbb scheme.
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ExpN-DOS-sfCFA
SE (A):

C ← ε, F ← ε,M ← ε
C← (),M← (), i← 0, j ← 0
active← false

(K,σ, τ )
$← K

run AEnc(·),Dec(·)

return 1

Enc(m):
(c, σ)← EK(m,σ)
i← i+ 1
Ci ← c, Mi ← m
return c

Dec(f):
(m, τ )← DK(f, τ )
F ← F ||f and M ←M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is not a prefix of C then
active← true

m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

if active then
if m �= ε then

exit Exp with 0
else if |F % C| ≥ N then

exit Exp with 1
return m

Fig. 5. The experiment defining the N-DOS-sfCFA security notion for Denial of Service
attack against stateful schemes

5 Denial-of-Service Attacks

In this section we study fragmentation-related Denial-of-Service (DoS) attacks.
In the introduction we mentioned an example of a fragmentation-related attack
that constitutes DoS. Here we provide formal definitions that are general enough
to capture all such attacks. We focus on the stateful setting.

Definition 11. Let SE = (K, E ,D) be a stateful encryption scheme with frag-
mented ciphertexts. For an adversary A and N ∈ N define the experiment
ExpN−DOS-sfCFA

SE (A) as in Fig. 5. In the experiment, A is given access to two
oracles. The first is a regular encryption oracle Enc(·) that it can query on any
message in the message space. The second oracle is a special stateful decryption
oracle Dec(·) that it can query on any string treated as a ciphertext fragment. The
adversary’s goal is to submit to the special decryption oracle Dec(·) a fragment
or a sequence of fragments of length at least N , which is not a valid replay of
legitimate ciphertexts and such that Dec(·) does not return a non-empty message
m or a failure symbol from S⊥. In this case the oracle exits the experiment with
a value 1. In other out-of-sync cases the oracle exits with 0. When decryption is
still in-sync, the oracle just returns the correct decryption m. The N-DOS-sfCFA
advantage of A is defined to be:

AdvN-DOS-sfCFA
SE (A) = Pr

[
ExpN-DOS-sfCFA

SE (A) = 1
]
.
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The scheme SE is said to be N -DOS-sfCFA secure if for every legitimate adver-
sary A with reasonable resources, its N -DOS-sfCFA advantage is small.

Note that, to win the above game, the adversary need not make his attack in the
first out-of-sync query to Dec(·). Also note that in order to win the adversary
must submit at least N symbols after the longest common prefix with a valid
ciphertext stream obtained from the encryption oracle without provoking any
output from the decryption oracle.

The parameter N in the definition above measures the shortest fragment
length below which a DoS attack cannot be prevented by a scheme; since all
reasonable schemes that meet our other security notions must do some degree
of buffering before outputting any message symbols, we cannot hope to make N
as small as we please. Our objective then, when designing a scheme, is to make
the scheme N -DOS-sfCFA secure for N as small as possible.

We develop a similar definition for the sbb setting in the full version [6].

InterMAC: Construction in the Stateful Case and its Security. Our
idea for DoS prevention in the stateful setting is to break the ciphertexts into
equal-sized segments and authenticate all of them. We could use this idea to
modify an IND-sfCFA scheme, but we propose a more efficient construction that
uses an IND-CPA (possibly stateless) scheme and a SUF-CMA MAC. (We defer
standard definitions for syntax and security of MACs to the full version [6].) In
our construction, the sender and receiver keep a state which contains a message
and a segment number. The encryption algorithm MACs this state together with
the encryption of the segment, but the state does not have to be transmitted,
as the receiver maintains it for himself. Each segment uses a bit flag to indicate
the last segment in a message. We now provide the details.

Construction 12 (InterMAC). Let SE = (Ke, E ,D) be an encryption scheme
with associated message space MsgSpe and let MAC = (Kt, T ,V) be a message
authentication code with associated message space MsgSpt. Let N ∈ N be a
DoS parameter. We assume that MsgSpt = {0, 1}∗ and, for simplicity, that
MsgSpe = {{0, 1}N−el−1−tl}∗ where T always outputs tags of fixed length tl and
E always produces ciphertexts which are el bits longer than the messages. This
restriction on the message space can be relaxed by introducing an appropriate
padding scheme (such as abit padding, as analysed in [15]) but we omit this
detail for simplicity. Define a new stateful encryption scheme with fragmentation
SEf = (Kf , Ef ,Df ) as in Figure 6.

It is not hard to check that the scheme is correct.
The proofs of the following two theorems are in the full version [6].

Theorem 13. If MAC is SUF-CMA, then SEf constructed as per Construction
12 is N -DOS-sfCFA secure. More precisely, for any adversary A there exists an
equally efficient adversary A′ so that

Advuf-cma
MAC (A′) ≥ AdvN-DOS-sfCFA

SEf (A).
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Algorithm Ef
Ke‖Kt,σ

(m;σ):

σ ← σ + 1
parse m as m1 ‖ . . . ‖ m�

where for each 1 ≤ i ≤ 
,
|mi| = N − el − 1− tl

for j = 1 to 
 do
if j = 
 then

bmj ← 1 ‖ mj

else bmj ← 0 ‖ mj

cj ← EKe(bmj)
tj ← TKt(σ ‖ j ‖ cj)

c← c1 ‖ t1 . . . ‖ c� ‖ t�
return (c, σ)

Algorithm Df
Ke‖Kt

(f, τ ):

parse τ as (im, is, bad,m, F )
if |F ‖ f | < N then

F ← F ‖ f
return (ε, (im, is, bad,m, F ))

else parse F ‖ f as c1 ‖ t1 ‖ . . . ‖ c� ‖ t� ‖ s
where |s| < N and for each 1 ≤ i ≤ 
,
|ci ‖ ti| = N and |ti| = tl

for j = 1 to 
 do
is ← is + 1
if bad = 1 then

output ⊥
else if VKt(im ‖ is ‖ cj , tj) = 0 then

bad← 1 ; output ⊥
else

bmj ← DKe(cj) ; parse bmj as b ‖ mj

m← m ‖ mj

if b = 1 then
im ← im + 1; is ← 0
if bad = 0 then

output (m¶) ; m← ε
return(ε, (im, is, bad,m, s))

Fig. 6. The stateful construction SEf . Key generation Kf picks Ke
$← Ke, Kt

$← Kt,
sets σ ← 0 and τ = (im, is, bad,m, F )← (0, 0, 0, ε, ε), and returns (c, σ, τ ).

Theorem 14. If SE is IND$-CPA1 and MAC is SUF-CMA and PRF secure,
then SEf constructed as per Construction 12 is BH-sfCFA and IND-sfCFA secure.

We provide the concrete security statements in [6].

Construction in the sbb Case and its Security. In the full version [6]
we provide an analogous scheme for the sbb setting. We also use the idea of
authenticating the ciphertext segments, however, the solution becomes more
complex as we cannot keep message and segment numbers as state and it is not
efficient to keep them as part of the segments. To prevent the re-ordering attacks
we need to authenticate the previous segments as well. To improve efficiency we
only authenticate the tags from the previous segments. The security results we
get are similar, but the sbb scheme does not provide BH-sbbCFA security.

The reason for the difficulty in achieving BH-sbbCFA security in the sbb setting
is as follows. An adversary can always query a valid ciphertext to the stateful de-
cryption oracle fragment by fragment and flip the last bit at the end. Observing
when the decryption algorithm returns ⊥ gives the adversary information about

1 This notion captures indistinguishability of ciphertexts from random strings and is
introduced by Rogaway [17]. We recall the formal definition in [6].
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the ciphertext boundary. Prohibiting the decryption algorithm to ever return ⊥
is not very practical and is subject to DoS attacks. It is an open question to
provide a practical scheme with both BH-sbbCFA and DOS-sbbCFA security.

6 Conclusions

In this paper, we have initiated the formal study of fragmentation attacks against
symmetric encryption schemes. We also developed security models to formalise
the additional desirable properties of ciphertext boundary-hiding and robustness
against Denial-of-Service (DoS) attacks for schemes in this setting. We illustrated
the utility of each of our models via efficient constructions for schemes using only
standard cryptographic components. This work raises many interesting open
questions, amongst which we list:

– We have focussed on confidentiality notions here, and suitable integrity no-
tions remain to be developed. Can such notions then be combined to provide
more general notions of security as seen in authenticated encryption?

– Some of our constructions build fragmented schemes from atomic schemes.
What general relationships are there between schemes in the two settings?

– In the sbb case, the properties of DoS resistance and ciphertext boundary
hiding appear to be in opposition to one another. Can this be formally
proven? Is there a fundamental reason (beyond the ability to keep state)
why this does not seem to arise in the stateful setting?
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Abstract. We give new methods for generating and using “strong trap-
doors” in cryptographic lattices, which are simultaneously simple, effi-
cient, easy to implement (even in parallel), and asymptotically optimal
with very small hidden constants. Our methods involve a new kind of
trapdoor, and include specialized algorithms for inverting LWE, randomly
sampling SIS preimages, and securely delegating trapdoors. These tasks
were previously the main bottleneck for a wide range of cryptographic
schemes, and our techniques substantially improve upon the prior ones,
both in terms of practical performance and quality of the produced out-
puts. Moreover, the simple structure of the new trapdoor and associated
algorithms can be exposed in applications, leading to further simplifica-
tions and efficiency improvements. We exemplify the applicability of our
methods with new digital signature schemes and CCA-secure encryption
schemes, which have better efficiency and security than the previously
known lattice-based constructions.

1 Introduction

Cryptography based on lattices has several attractive and distinguishing features:

– On the security front, the best attacks on the underlying problems require
exponential 2Ω(n) time in the main security parameter n, even for quantum
adversaries. By constrast, for example, mainstream factoring-based cryptog-

raphy can be broken in subexponential 2Õ(n1/3) time classically, and even
in polynomial nO(1) time using quantum algorithms. Moreover, lattice cryp-
tography is supported by strong worst-case/average-case security reductions,
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which provide solid theoretical evidence that the random instances used in
cryptography are indeed asymptotically hard, and do not suffer from any
unforeseen “structural” weaknesses.

– On the efficiency and implementation fronts, lattice cryptography operations
can be extremely simple, fast and parallelizable. Typical operations are the
selection of uniformly random integer matrices A modulo some small q =
poly(n), and the evaluation of simple linear functions like

fA(x) := Ax mod q and gA(s, e) := stA+ et mod q

on short integer vectors x, e.1 (For commonly used parameters, fA is sur-
jective while gA is injective.) Often, the modulus q is small enough that all
the basic operations can be directly implemented using machine-level arith-
metic. By contrast, the analogous operations in number-theoretic cryptogra-
phy (e.g., generating huge random primes, and exponentiating modulo such
primes) are much more complex, admit only limited parallelism in practice,
and require the use of “big number” arithmetic libraries.

In recent years lattice-based cryptography has also been shown to be extremely
versatile, leading to a large number of theoretical applications ranging from
(hierarchical) identity-based encryption [20, 13, 1, 2], to fully homomorphic en-
cryption schemes [17, 16, 45, 12, 11, 18, 10], and much more (e.g., [29, 40, 26,
38, 39, 35, 6, 42, 9, 19, 22]).

Not all lattice cryptography is as simple as selecting random matrices A and
evaluating linear functions like fA(x) = Ax mod q, however. In fact, such opera-
tions yield only collision-resistant hash functions, public-key encryption schemes
that are secure under passive attacks, and little else. Richer and more advanced
lattice-based cryptographic schemes, including chosen ciphertext-secure encryp-
tion, “hash-and-sign” digital signatures, and identity-based encryption also re-
quire generating a matrix A together with some “strong” trapdoor, typically in
the form of a nonsingular square matrix (a basis) S of short integer vectors such
that AS = 0 mod q. (The matrix S is usually interpreted as a basis of a lattice
defined by using A as a “parity check” matrix.) Applications of such strong trap-
doors also require certain efficient inversion algorithms for the functions fA and
gA, using S. Appropriately inverting fA can be particularly complex, as it typi-
cally requires sampling random preimages of fA(x) according to a Gaussian-like
probability distribution (see [20]).

Theoretical solutions for all the above tasks (generating A with strong trap-
door S [3, 5], trapdoor inversion of gA and preimage sampling for fA [20]) are
known, but they are rather complex and not very suitable for practice, in either
runtime or the “quality” of their outputs. (The quality of a trapdoor S roughly
corresponds to the Euclidean lengths of its vectors — shorter is better.) The

1 Inverting these functions corresponds to solving the “short integer solution” (SIS)
problem [4] for fA, and the “learning with errors” (LWE) problem [41] for gA, both
of which are widely used in lattice cryptography and enjoy provable worst-case
hardness.
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current best method for trapdoor generation [5] is conceptually and algorithmi-
cally complex, and involves costly computations of Hermite normal forms and
matrix inverses. And while the dimensions and quality of its output are asymp-
totically optimal (or nearly so, depending on the precise notion of quality), the
hidden constant factors are rather large. Similarly, the standard methods for
inverting gA and sampling preimages of fA [7, 24, 20] are inherently sequential
and time-consuming, as they are based on an orthogonalization process that
uses high-precision real numbers. A more efficient and parallelizable method for
preimage sampling (which uses only small-integer arithmetic) has recently been
discovered [36], but it is still more complex than is desirable for practice, and the
quality of its output can be slightly worse than that of the sequential algorithm
when using the same trapdoor S.

More compact and efficient trapdoors appear necessary for bringing advanced
lattice-based schemes to practice, not only because of the current unsatisfactory
runtimes, but also because the concrete security of lattice cryptography can be
quite sensitive to changes in the main parameters, and improvements by even
small constant factors can have a significant impact on concrete security. (See,
e.g., [15, 34], and the full version for a more detailed discussion.)

1.1 Contributions

The first main contribution of this paper is a new method of trapdoor genera-
tion for cryptographic lattices, which is simultaneously simple, efficient, easy to
implement (even in parallel), and asymptotically optimal with small hidden con-
stants. The new trapdoor generator strictly subsumes the prior ones of [3, 5], in
that it proves the main theorems from those works, but with improved concrete
bounds for all the relevant quantities (simultaneously), and via a conceptually
simpler and more efficient algorithm. To accompany our trapdoor generator, we
also give specialized algorithms for trapdoor inversion (for gA) and preimage
sampling (for fA), which are simpler and more efficient in our setting than the
prior general solutions [7, 24, 20, 36].

Our methods yield large constant-factor improvements, and in some cases even
small asymptotic improvements, in the lattice dimension m, trapdoor quality2

s, and storage size of the trapdoor. Because trapdoor generation and inversion
algorithms are the main operations in many lattice cryptography schemes, our
algorithms can be plugged in as ‘black boxes’ to deliver significant concrete
improvements in all such applications. Moreover, it is often possible to expose
the special (and very simple) structure of our trapdoor directly in cryptographic
schemes, yielding additional improvements and potentially new applications. In
the full version we detail several improvements to existing applications. We now
give a detailed comparison of our results with the most relevant prior works [3,
5, 20, 36]. The quantitative improvements are summarized in Figure 1.

2 There are several notions quality for lattice trapdoors, of varying strength. For now,
the reader can think of the quality as a measure of the norm of the vectors in S,
where smaller values are better.
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Simpler, Faster Trapdoor Generation and Inversion Algorithms. Our trapdoor
generator is exceedingly simple, especially as compared with the prior construc-
tions [3, 5]. It essentially amounts to just one multiplication of two random
matrices, whose entries are chosen independently from appropriate probability
distributions. Surprisingly, this method is nearly identical to Ajtai’s original
method [4] of generating a random lattice together with a “weak” trapdoor of
one or more short vectors (but not a full basis), with one added twist. And while
there are no detailed runtime analyses or public implementations of [3, 5], it is
clear from inspection that our new method is significantly more efficient, since
it does not involve any expensive Hermite normal form or matrix inversion com-
putations. Our specialized, parallel inversion algorithms for fA and gA are also
simpler and more practically efficient than the general solutions of [7, 24, 20, 36]
(though we note that our trapdoor generator is entirely compatible with those
general algorithms as well). In particular, we give the first parallel algorithm
for inverting gA under asymptotically optimal error rates (previously, handling
such large errors required the sequential “nearest-plane” algorithm of [7]), and
our preimage sampling algorithm for fA works with smaller integers and requires
much less offline storage than the one from [36].

Tighter Parameters. To generate a matrix A ∈ Zn×m
q that is within negligible

statistical distance of uniform, our new trapdoor construction improves the lat-
tice dimension from m > 5n lg q [5] down to m ≈ 2n lg q. (In both cases, the base
of the logarithm is a tunable parameter that appears as a multiplicative factor
in the quality of the trapdoor; here we fix upon base 2 for concreteness.) In addi-
tion, we give the first known computationally pseudorandom construction (under
the LWE assumption), where the dimension can be as small as m = n(1 + lg q),
although at the cost of an Ω(

√
n) factor worse quality s.

Our construction also greatly improves the quality s of the trapdoor. The
best prior construction [5] produces a basis whose Gram-Schmidt quality (i.e.,
the maximum length of its Gram-Schmidt orthogonalized vectors) was loosely
bounded by 20

√
n lg q. However, the Gram-Schmidt notion of quality is use-

ful only for less efficient, sequential inversion algorithms [7, 20] that use high-
precision real arithmetic. For the more efficient, parallel preimage sampling
algorithm of [36] that uses small-integer arithmetic, the parameters guaran-

teed by [5] are asymptotically worse, at m > n lg2 q and s ≥ 16
√
n lg2 q.

By contrast, our (statistically secure) trapdoor construction achieves the “best
of both worlds:” asymptotically optimal dimension m ≈ 2n lg q and quality
s ≈ 1.6

√
n lg q or better, with a parallel preimage sampling algorithm that is

slightly more efficient than the one of [36].
Altogether, for any n and typical values of q ≥ 216, we conservatively estimate

that the new trapdoor generator and inversion algorithms collectively provide
at least a 7 lg q ≥ 112-fold improvement in the length bound β ≈ s

√
m for

fA preimages (generated using an efficient algorithm). We also obtain similar
improvements in the size of the error terms that can be handled when efficiently
inverting gA.
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New, Smaller Trapdoors. As an additional benefit, our construction actually
produces a new kind of trapdoor — not a basis — that is at least 4 times smaller
in storage than a basis of corresponding quality, and is at least as powerful, i.e.,
a good basis can be efficiently derived from the new trapdoor. We stress that
our specialized inversion algorithms using the new trapdoor provide almost ex-
actly the same quality as the inefficient, sequential algorithms using a derived
basis, so there is no trade-off between efficiency and quality. (This is in contrast
with [36] when using a basis generated according to [5].) Moreover, the storage
size of the new trapdoor grows only linearly in the lattice dimension m, rather
than quadratically as a basis does. This is most significant for applications like
hierarchical ID-based encryption [13, 1] that delegate trapdoors for increasing
values of m. The new trapdoor also admits a very simple and efficient delega-
tion mechanism, which unlike the prior method [13] does not require any costly
operations like linear independence tests, or conversions from a full-rank set of
lattice vectors into a basis. In summary, the new type of trapdoor and its asso-
ciated algorithms are strictly preferable to a short basis in terms of algorithmic
efficiency, output quality, and storage size (simultaneously).

Ring-Based Constructions. Finally, and most importantly for practice, all of
the above-described constructions and algorithms extend immediately to the
ring setting, where functions analogous to fA and gA require only quasi-linear
Õ(n) space and time to specify and evaluate (respectively), which is a factor
of Ω̃(n) improvement over the matrix-based functions defined above. See the
representative works [32, 37, 28, 30, 44, 31] for more details on these functions
and their security foundations.

Applications. Our improved trapdoor generator and inversion algorithms can be
plugged into any scheme that uses such tools as a “black box,” and the resulting
scheme will inherit all the efficiency improvements. (Every application we know
of admits such a black-box replacement.) Moreover, the special properties of our
methods allow for further improvements to the design, efficiency, and security
reductions of existing schemes. In the full version we describe new and improved
applications, with a focus on signature schemes and chosen ciphertext-secure
encryption.

To illustrate the kinds of concrete improvements that our methods provide,
in Figure 2 we give representative parameters for the canonical application of
GPV sigantures [20], comparing the old and new trapdoor constructions for
nearly equal levels of concrete security. We stress that these parameters are not
highly optimized, and making adjustments to some of the tunable parameters
in our constructions may provide better combinations of efficiency and concrete
security. We leave this effort for future work.

1.2 Techniques

Themain idea behind our newmethod of trapdoor generation is as follows. Instead
of building a randommatrixA through some specialized and complex process, we
start from a carefully crafted public matrixG (and its associated lattice), for which
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[3, 5] constructions This work (fast f−1
A ) Impr. Factor

Dimension m
slow f−1

A [24, 20]: > 5n lg q ≈ 2n lg q (
s≈)

2.5 to lg q
fast f−1

A [36]: > n lg2 q n(1 + lg q) (
c≈)

Quality s
slow f−1

A : ≈ 20
√
n lg q

≈ 1.6
√
n lg q (

s≈) 12.5 to 10
√
lg q

fast f−1
A : ≈ 16

√
n lg2 q

Length β ≈ s
√
m

slow f−1
A : > 45n lg q

≈ 2.3n lg q (
s≈) 19 to 7 lg q

fast f−1
A : > 16n lg2 q

Fig. 1. Summary of parameters for our constructions versus prior ones. The symbols
s≈ and

c≈ denote constructions producing public keys A that are statistically and com-
putationally close to uniform, respectively. All quality terms s and length bounds β
omit the same “smoothing” factor for Z, which is about 4–5 in practice.

[5] with fast f−1
A This work Improvement Factor

Sec param n 436 284 1.53

Modulus logarithm log2(q) 32 24 1.33

Dimension m 446,644 13,812 32.3

Quality s 10.7× 103 418 25.6

Length β 12.9× 106 91.6 × 103 141

Key size (bits) 6.22× 109 92.2 × 106 67.5

Key size (ring-based) ≈ 16× 106 ≈ 361× 103 ≈ 44.3

Fig. 2. Representative parameters for GPV signatures (using fast inversion algorithms)
estimated using the methodology from [34] with δ ≤ 1.007, which is estimated to require
about 246 core-years on a 64-bit 1.86GHz Xeon [15, 14]. We used ωn = 4.5 for Z, which
corresponds to statistical error < 2−90 for each randomized-rounding operation during
signing. Key sizes for ring-based GPV signatures are approximated to be smaller by a
factor of about 0.9n.

the associated functions fG and gG admit very efficient (in both sequential and
parallel complexity) and high-quality inversion algorithms. In particular, preim-
age sampling for fG and inversion for gG can be performed in essentiallyO(n log n)
sequential time, and can even be performed by n parallelO(log n)-time operations
or table lookups. (This should be compared with the general algorithms for these
tasks, which require at least quadratic Ω(n2 log2 n) time, and are not always par-
allelizable for optimal noise parameters.) We emphasize that G is not a crypto-
graphic key, but rather a fixed and public matrix that may be used by all parties,
so the implementation of all its associated operations can be highly optimized, in
both software and hardware. We also mention that the simplest and most practi-
cally efficient choices of G work for a modulus q that is a power of a small prime,
such as q = 2k, but no LWE search/decision reduction for such q was known till re-
cently, despite its obvious practical utility. The only such result we are aware of is
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the recent sample preserving reduction of [33], which applies to arbitrary q (includ-
ing powers of 2), but requires the error distribution to be polynomially bounded.
In the full version we provide a different and very general reduction (generalizing
and extending [8, 41, 35, 6],) that also covers the q = 2k case and others, and is in-
comparable to [33], as it requires all prime factors of q to be polynomially bounded,
but does not impose this restriction on the errors.

To generate a random matrix A with a trapdoor, we take two additional
steps: first, we extend G into a semi-random matrix A′ = [Ā | G], for uniform
Ā ∈ Zn×m̄

q and sufficiently large m̄. (Concretely, m̄ ≈ n lg q for the statistically
secure construction, and m̄ = 2n or n for computational security.) As shown
in [13], inversion of gA′ and preimage sampling for fA′ reduce very efficiently to
the corresponding tasks for gG and fG. Finally, we simply apply to A′ a certain
random unimodular transformation defined by the matrix T =

[
I −R
0 I

]
, for a

random “short” secret matrix R that will serve as the trapdoor, to obtain

A = A′ · T = [Ā | G− ĀR].

The transformation given by T has the following properties:

– It is very easy to compute and invert, requiring essentially just one multipli-
cation by R in both cases. (Note that T−1 = [ I R

0 I ].)
– It results in a matrix A that is distributed essentially uniformly at random,

as required by the security reductions (and worst-case hardness proofs) for
lattice-based cryptographic schemes.

– For the resulting functions fA and gA, preimage sampling and inversion very
simply and efficiently reduce to the corresponding tasks for fG, gG. The over-
head of the reduction is essentially just a single matrix-vector product with
the secret matrix R (which, when inverting fA, can largely be precomputed
even before the target value is known).

As a result, the cost of the inversion operations ends up being very close to that
of computing fA and gA in the forward direction. Moreover, the fact that the
running time is dominated by matrix-vector multiplications with the fixed trap-
door matrix R yields theoretical (but asymptotically significant) improvements
in the context of batch execution of several operations relative to the same secret
key R: instead of evaluating several products Rz1,Rz2, . . . ,Rzn individually at
a total cost of Ω(n3), one can employ fast matrix multiplication techniques to
evaluate R[z1, . . . , zn] as a whole in subcubic time. Batch operations can be
exploited in applications like the multi-bit IBE of [20] and its extensions to
HIBE [13, 1, 2].

Related Techniques. At the surface, our trapdoor generator appears similar to
the original “GGH” approach of [21] for generating a lattice together with a
short basis. That technique works by choosing some random short vectors as the
secret “good basis” of a lattice, and then transforms them into a public “bad
basis” for the same lattice, via a unimodular matrix having large entries. (Note,
though, that this does not produce a lattice from Ajtai’s worst-case-hard family.)
A closer look reveals, however, that (worst-case hardness aside) our method is
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actually not an instance of the GGH paradigm: in our case, the initial short
basis of the lattice defined by G (or the semi-random matrix [Ā|G]) is fixed
and public, while the random unimodular matrix T =

[
I −R
0 I

]
actually produces

a new lattice by applying a (reversible) linear transformation to the original
one. In other words, in contrast with GGH, we multiply a (short) unimodular
matrix on the “other side” of the original short basis, thus changing the lattice it
generates. Moreover, it is crucial in our setting that the transformation matrix T
has small entries, while with GGH the transformation matrix can be arbitrary.

A more appropriate comparison is to Ajtai’s original method [4] for generat-
ing a random A together with a “weak” trapdoor of one or more short lattice
vectors (but not a full basis). There, one simply chooses a semi-random matrix
A′ = [Ā | 0] and outputs A = A′ · T = [Ā | −ĀR], with short vectors [RI ].
Perhaps surprisingly, our strong trapdoor generator is just a simple twist on
Ajtai’s original weak generator, replacing 0 with the gadget G. We remark that
Ajtai’s method to generate strong trapdoors [3] and follow-up work [5] are quite
different and much more complex.

Our constructions and inversion algorithms also draw upon several other tech-
niques from throughout the literature. The trapdoor basis generator of [5] and
the LWE-based “lossy” injective trapdoor function of [40] both use a fixed “gad-
get” matrix analogous to G, whose entries grow geometrically in a structured
way. In both cases, the gadget is concealed (either statistically or computation-
ally) in the public key by a small combination of uniformly random vectors. Our
method for adding tags to the trapdoor is very similar to a technique for doing
the same with the lossy TDF of [40], and is identical to the method used in [1] for
constructing compact (H)IBE. Finally, in our preimage sampling algorithm for
fA, we use the “convolution” technique from [36] to correct for some statistical
skew that arises when converting preimages for fG to preimages for fA, which
would otherwise leak information about the trapdoor R.

Other Related Work. Concrete parameter settings for a variety “strong” trap-
door applications are given in [43]. Those parameters are derived using the pre-
vious suboptimal generator of [5], and using the methods from this work would
yield substantial improvements. The recent work of [25] also gives improved key
sizes and concrete security for LWE-based cryptosystems; however, that work
deals only with IND-CPA-secure encryption, and not at all with strong trap-
doors or the further applications they enable (CCA security, digital signatures,
(H)IBE, etc.). In a concurrent and independent work, Lyubashevsky [27] con-
structs a signature scheme in the random oracle model “without (strong) trap-
doors,” i.e., without relying on short bases or a gadget matrix G. The form and
sizes of his public and secret keys are very similar to ours, but the schemes and
their security proofs work entirely differently.

2 Primitive Lattices

At the heart of our new trapdoor generation algorithm (described in Section 3)
is the construction of a very special family of lattices which have excellent ge-
ometric properties, and admit very fast and parallelizable decoding algorithms.
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The lattices are defined by means of what we call a primitive matrix. We say
that a matrix G ∈ Zn×w

q is primitive G · Zw = Zn
q .

3 The main results of this
section are summarized in the following theorem.

Theorem 1. For any integers q ≥ 2, n ≥ 1, k = (log2 q� and w = nk, there is
a primitive matrix G ∈ Zn×w

q such that

– The lattice Λ⊥(G) has a known basis S ∈ Zw×w with ‖S̃‖ ≤
√
5 and ‖S‖ ≤

max{
√
5,

√
k}. Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and

‖S‖ =
√
5.

– Both G and S require little storage. In particular, they are sparse (with only
O(w) nonzero entries) and highly structured.

– Inverting gG(s, e) := stG+ et mod q can be performed in quasilinear O(n ·
logc n) time for any s ∈ Zn

q and any e ∈ P1/2(q ·B−t), where B can denote

either S or S̃. Moreover, the algorithm is perfectly parallelizable, running
in polylogarithmic O(logc n) time using n processors. When q = 2k, the
polylogarithmic term O(logc n) is essentially just the cost of k additions and
shifts on k-bit integers.

– Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥
‖S̃‖ · ωn can be performed in quasilinear O(n · logc n) time, or parallel poly-
logarithmic O(logc n) time using n processors. When q = 2k, the polylog-
arithmic term is essentially just the cost of k additions and shifts on k-bit
integers, plus the (offline) generation of about w random integers drawn from
DZ,s.

More generally, for any integer b ≥ 2, all of the above statements hold with
k = (logb q�, ‖S̃‖ ≤

√
b2 + 1, and ‖S‖ ≤ max{

√
b2 + 1, (b− 1)

√
k}; and when

q = bk, we have S̃ = bI and ‖S‖ =
√
b2 + 1.

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Our
construction starts with a primitive vector g ∈ Zk

q , i.e., a vector such that

gcd(g1, . . . , gk, q) = 1. The vector g defines a k-dimensional lattice Λ⊥(gt) ⊂ Zk

having determinant |Zk/Λ⊥(gt)| = q, because the residue classes of Zk/Λ⊥(gt)
are in bijective correspondence with the possible values of 〈g,x〉 mod q for x ∈
Zk, which cover all of Zq since g is primitive. Notice that when q = poly(n), we
have k = O(log q) = O(log n) and so Λ⊥(gt) is a very low-dimensional lattice.
In the full version, we prove that the vector g = (1, 2, 4, . . . , 2k−1) ∈ Zk

q for

k = (lg q� admits a short basis for the lattice Λ⊥(gt), and we also describe
specialized inversion and sampling algorithms that are both very simple and
more efficient than generic solutions.

Let Sk ∈ Zk×k be a basis of Λ⊥(gt), that is, gt · Sk = 0 ∈ Z1×k
q and

|det(Sk)| = q. The primitive vector g and associated basis Sk are used to define
the parity-check matrix G and basis S ∈ Zq as G := In ⊗ gt ∈ Zn×nk

q and

S := In ⊗Sk ∈ Znk×nk. Equivalently, G, Λ⊥(G), and S are the direct sums of n

3 We do not say that G is “full-rank,” because Zq is not a field when q is not prime,
and the notion of rank for matrices over Zq is not well defined.
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copies of gt, Λ⊥(gt), and Sk, respectively. It follows that G is a primitive matrix,
the lattice Λ⊥(G) ⊂ Znk has determinant qn, and S is a basis for this lattice. It

also follows (and is clear by inspection) that ‖S‖ = ‖Sk‖ and ‖S̃‖ = ‖S̃k‖.
By this direct sum construction, it is immediate that inverting gG(s, e) and

sampling preimages of fG(x) can be accomplished by performing the same op-
erations n times in parallel for ggt and fgt on the corresponding portions of
the input, and concatenating the results. For preimage sampling, if each of the
fgt-preimages has Gaussian parameter

√
Σ, then by independence, their concate-

nation has parameter In ⊗
√
Σ. Likewise, inverting gG will succeed whenever all

the n independent ggt-inversion subproblems are solved correctly. Theorem 1
follows by substituting appropriate primitive vectors g and bases Sk into the
definitions of G and S.

3 Trapdoor Generation and Operations

In this section we describe our new trapdoor generation, inversion and sampling
algorithms for hard random lattices. Recall that these are lattices Λ⊥(A) defined
by an (almost) uniformly random matrix A ∈ Zn×m

q , and that the standard
notion of a “strong” trapdoor for these lattices (put forward in [20] and used in
a large number of subsequent applications) is a short lattice basis S ∈ Zm×m

for Λ⊥(A). There are several measures of quality for the trapdoor S, the most
common ones being (in nondecreasing order): the maximal Gram-Schmidt length

‖S̃‖; the maximal Euclidean length ‖S‖; and the maximal singular value s1(S).
Algorithms for generating random lattices together with high-quality trapdoor
bases are given in [3, 5] (and in [44], for the ring setting). In this section we
give much simpler, faster and tighter algorithms to generate a hard random
lattice with a trapdoor, and to use a trapdoor for performing standard tasks
like inverting the LWE function gA and sampling preimages for the SIS function
fA. We also give a new, simple algorithm for delegating a trapdoor, i.e., using a
trapdoor for A to obtain one for a matrix [A | A′] that extends A, in a secure
and non-reversible way.

The following theorem summarizes the main results of this section. Here we
state just one typical instantiation with only asymptotic bounds. More general
results and exact bounds are presented throughout the section.

Theorem 2. There is an efficient randomized algorithm GenTrap(1n, 1m, q) that,
given any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs
a parity-check matrix A ∈ Zn×m

q and a ‘trapdoor’ R such that the distribution
of A is negl(n)-far from uniform. Moreover, there are efficient algorithms Invert
and SampleD that with overwhelming probability over all random choices, do the
following:

– For bt = stA+et, where s ∈ Zn
q is arbitrary and ‖e‖ < q/O(

√
n log q) or e ←

DZm,αq for 1/α ≥
√
n log q · ωn, the deterministic algorithm Invert(R,A,b)

outputs s and e.
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– For any u ∈ Zn
q and large enough s = O(

√
n log q), the randomized algorithm

SampleD(R,A,u, s) samples from a distribution within negl(n) statistical
distance of DΛ⊥

u (A),s·ωn
.

Throughout this section, we let G ∈ Zn×w
q denote some fixed primitive matrix

that admits efficient inversion and preimage sampling algorithms, as described
in Theorem 1. (Recall that typically, w = n(log q� for some appropriate base of
the logarithm.) All our algorithms and efficiency improvements are based on the
primitive matrix G and associated algorithms described in Section 2, and a new
notion of trapdoor that we define next.

3.1 A New Trapdoor Notion

We begin by defining the new notion of trapdoor, establish some of its most
important properties, and give a simple and efficient algorithm for generating
hard random lattices together with high-quality trapdoors.

Definition 1. Let A ∈ Zn×m
q and G ∈ Zn×w

q be matrices with m ≥ w ≥ n. A

G-trapdoor for A is a matrix R ∈ Z(m−w)×w such that A
[
R
I

]
= HG for some

invertible matrix H ∈ Zn×n
q . We refer to H as the tag or label of the trapdoor.

The quality of the trapdoor is measured by its largest singular value s1(R).

We remark that, by definition ofG-trapdoor, ifG is a primitive matrix andA ad-
mits a G-trapdoor, then A is primitive as well. In particular, det(Λ⊥(A)) = qn.
Since the primitive matrix G is typically fixed and public, we usually omit refer-
ences to it, and refer to G-trapdoors simply as trapdoors. Since G is primitive,
the tag H in the above definition is uniquely determined by (and efficiently
computable from) A and the trapdoor R.

In the full version we show that a good basis for Λ⊥(A) may be obtained from
knowledge of the trapdoor R. This is not used anywhere in the rest of the paper,
but it establishes that our new definition of trapdoor is at least as powerful as
the traditional one of a short basis. Our algorithms for Gaussian sampling and
LWE inversion do not need a full basis, and make direct (and more efficient) use
of the new type of trapdoor.

We also make the following simple but useful observations: (1) The rows of[
R
I

]
in Definition 1 can appear in any order, since this just induces a permutation

of A’s columns. (2) If R is a trapdoor for A, then it can be made into an equally
good trapdoor for any extension [A | B], by padding R with zero rows; this
leaves s1(R) unchanged. (3) If R is a trapdoor for A with tag H, then R is
also a trapdoor for A′ = A − [0 | H′G] with tag (H − H′) for any H′ ∈ Zn×n

q ,
as long as (H − H′) is invertible modulo q. This is the main idea behind the
compact IBE of [1], and can be used to give a family of “tag-based” trapdoor
functions [23]. In the full version we recall explicit families of matrices H having
suitable properties for applications.
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3.2 Trapdoor Generation

We now give an algorithm to generate a (pseudo)random matrix A together
with a G-trapdoor. The algorithm is straightforward, and in fact it can be easily
derived from the definition of G-trapdoor itself. A random lattice is built by first
extending the primitive matrix G into a semi-random matrix A′ = [Ā | HG]

(where Ā ∈ Zn×(m−w)
q is chosen at random, and H ∈ Zn×n

q is the desired tag),
and then applying a random transformation T = [ I R

0 I ] ∈ Zm×m to the semi-
random lattice Λ⊥(A′). Since T is unimodular with inverse T−1 =

[
I −R
0 I

]
, this

yields the lattice T · Λ⊥(A′) = Λ⊥(A′ · T−1) associated with the parity-check
matrix A = A′ ·T−1 = [Ā | HG− ĀR]. Moreover, the distribution of A is close
to uniform (either statistically, or computationally) as long as the distribution
of [Ā | 0]T−1 = [Ā | −ĀR] is. For details, see Algorithm 1.

Algorithm 1. Efficient algorithm GenTrapD(Ā,H) for generating a parity-check
matrix A with trapdoor R.

Input: Matrix Ā ∈ Z
n×m̄
q for some m̄ ≥ 1, invertible matrix H ∈ Z

n×n
q , and distribu-

tion D over Zm̄×w.
(If no particular Ā, H are given as input, then the algorithm may choose them
itself, e.g., picking Ā ∈ Z

n×m̄
q uniformly at random, and setting H = I.)

Output: A parity-check matrix A = [Ā | A1] ∈ Z
n×m
q , where m = m̄ + w, and

trapdoor R with tag H.
1: Choose a matrix R ∈ Z

m̄×w from distribution D.
2: Output A = [Ā | HG− ĀR] ∈ Z

n×m
q and trapdoor R ∈ Z

m̄×w.

We next describe two types of GenTrap instantiations. The first type generates
a trapdoor R for a statistically near-uniform output matrix A using dimension
m̄ ≈ n log q or less (there is a trade-off between m̄ and the trapdoor quality
s1(R)). The second type generates a computationally pseudorandom A (under
the LWE assumption) using dimension m̄ = 2n (this pseudorandom construction
is the first of its kind in the literature). Some applications allow for an optimiza-
tion that additionally decreases m̄ by an additive n term; this is most significant
in the computationally secure construction because it yields m̄ = n.

Statistical instantiation. This instantiation works for any parameter m̄ and dis-
tribution D over Zm̄×w having the following two properties:

1. Subgaussianity: D is subgaussianwith someparameter s > 0 (or δ-subgaussian
for some small δ). This impliesthat R ← D has s1(R) = s · O(

√
m̄ +

√
w),

except with probability 2−Ω(m̄+w). (Recall that the constant factor hidden in
the O(·) expression is ≈ 1/

√
2π.)

2. Regularity: for Ā ← Zn×m̄
q and R ← D, A = [Ā | ĀR] is δ-uniform for some

δ = negl(n). In fact, there is no loss in security if Ā contains an identity
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matrix I as a submatrix and is otherwise uniform, since this corresponds
with the Hermite normal form of the SIS and LWE problems. See, e.g., [34,
Section 5] for further details.

For example, let D = Pm̄×w where P is the distribution over Z that outputs 0
with probability 1/2, and ±1 each with probability 1/4. Then P (and hence D)
is 0-subgaussian with parameter

√
2π, and satisfies the regularity condition (for

any q) for δ ≤ w
2

√
qn/2m̄, by a version of the leftover hash lemma (see, e.g., [5,

Section 2.2.1]). Therefore, we can use any m̄ ≥ n lg q + 2 lg w
2δ . Other statistical

instantiations are presented in the full version.

Computational Instantiation. Let Ā = [In | Â] ∈ Zn×m̄
q for m̄ = 2n, and

let D = Dm̄×w
Z,s for some s = αq, where α > 0 is an LWE relative error rate

(and typically αq >
√
n). Clearly, D is 0-subgaussian with parameter αq. Also,

[Ā | ĀR = ÂR2 + R1] for R =
[
R1

R2

]
← D is exactly an instance of decision-

LWEn,q,α in its normal form, and hence is pseudorandom (ignoring the identity
submatrix) assuming that the problem is hard.

Further Optimizations. In applications that use only a single tag H = I (e.g.,
GPV signatures [20]), we can save an additive n term in the dimension m̄ (and
hence in the total dimension m): instead of putting an identity submatrix in Ā,
we can instead use the identity submatrix from G (which exists without loss of
generality, since G is primitive) and conceal the remainder of G using either of
the above methods.

All of the above ideas also translate immediately to the ring setting, using
an appropriate regularity lemma (e.g., the ones from [44] or [31]) for a sta-
tistical instantiation, and the ring-LWE problem for a computationally secure
instantiation.

3.3 LWE Inversion

Algorithm 2 below shows how to use a trapdoor to solve LWE relative to A.
Given a trapdoor R for A ∈ Zn×m

q and an LWE instance bt = stA+et mod q for
some short error vector e ∈ Zm, the algorithm recovers s (and e). This naturally
yields an inversion algorithm for the injective trapdoor function gA(s, e) = stA+
et mod q, which is hard to invert (and whose output is pseudorandom) if LWE
is hard.

Theorem 3. Suppose that oracle O in Algorithm 2 correctly inverts gG(ŝ, ê)
for any error vector ê ∈ P1/2(q · B−t) for some B. Then for any s and e of

length ‖e‖ < q/(2‖B‖s) where s =
√
s1(R)2 + 1, Algorithm 2 correctly inverts

gA(s, e). Moreover, for any s and random e ← DZm,αq where 1/α ≥ 2‖B‖s ·ωn,
the algorithm inverts successfully with overwhelming probability over the choice
of e.

Note that using our constructions from Section 2, we can implement O so that
either ‖B‖ = 2 (for q a power of 2, where B = S̃ = 2I) or ‖B‖ =

√
5 (for

arbitrary q).
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Algorithm 2. Efficient algorithm InvertO(R,A,b) for inverting the function
gA(s, e).

Input: An oracle O for inverting the function gG(ŝ, ê) when ê ∈ Z
w is suitably small.

– parity-check matrix A ∈ Z
n×m
q ;

– G-trapdoor R ∈ Z
m̄×kn for A with invertible tag H ∈ Z

n×n
q ;

– vector bt = gA(s,e) = stA+ et for any s ∈ Z
n
q and suitably small e ∈ Z

m.

Output: The vectors s and e.
1: Compute b̂t = bt

[
R
I

]
.

2: Get (ŝ, ê)← O(b̂).
3: return s = H−tŝ and e = b−Ats, interpreted in Z

m with entries in [− q
2
, q
2
).

Proof. Let R̄ = [Rt | I], and note that s = s1(R̄). By the above description,
the algorithm works correctly when R̄e ∈ P1/2(q · B−t); equivalently, when

(bt
iR̄)e/q ∈ [− 1

2 ,
1
2 ) for all i. By definition of s, we have ‖bt

iR̄‖ ≤ s‖B‖. If
‖e‖ < q/(2‖B‖s), then |(bt

iR̄)e/q| < 1/2 by Cauchy-Schwarz. Moreover, if e is
chosen at random from DZm,αq, then by the fact that e is 0-subgaussian with
parameter αq, the probability that |(bt

iR̄)e/q| ≥ 1/2 is negligible, and the second
claim follows by the union bound.

3.4 Gaussian Sampling

Here we show how to use a trapdoor for efficient Gaussian preimage sampling for
the function fA, i.e., sampling from a discrete Gaussian over a desired coset of
Λ⊥(A). Our precise goal is, given aG-trapdoorR (with tagH) for matrixA and
a syndrome u ∈ Zn

q , to sample from the spherical discrete Gaussian DΛ⊥
u (A),s

for relatively small parameter s. As we show next, this task can be reduced, via
some efficient pre- and post-processing, to sampling from any sufficiently narrow
(not necessarily spherical) Gaussian over the primitive lattice Λ⊥(G).

The main ideas behind our algorithm, which is described formally in the
full version, are as follows. For simplicity, suppose that R has tag H = I, so
A
[
R
I

]
= G, and suppose we have a subroutine for Gaussian sampling from any

desired coset of Λ⊥(G) with some small, fixed parameter
√
ΣG ≥ ηε(Λ

⊥(G)).
For example, Section 2 describes algorithms for which

√
ΣG is either 2 or

√
5.

(Throughout this summary we omit the small smoothing factor ωn from all
Gaussian parameters.) The algorithm for sampling from a coset Λ⊥

u (A) follows
from two main observations:

1. If we sample a Gaussian z with parameter
√
ΣG from Λ⊥

u (G) and produce
y =

[
R
I

]
z, then y is Gaussian over the (non-full-rank) set

[
R
I

]
Λ⊥
u (G) �

Λ⊥
u (A) with parameter

[
R
I

]√
ΣG (i.e., covariance

[
R
I

]
ΣG[Rt | I]). The

(strict) inclusion holds because for any y =
[
R
I

]
z where z ∈ Λ⊥

u (G), we have

Ay = (A
[
R
I

]
)z = Gz = u.
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Note that s1(
[
R
I

]
·
√
ΣG) ≤ s1(

[
R
I

]
) · s1(

√
ΣG) ≤

√
s1(R)2 + 1 · s1(

√
ΣG),

so y’s distribution is only about an s1(R) factor wider than that of z over
Λ⊥
u (G). However, y lies in a non-full-rank subset of Λ⊥

u (A), and its distribu-
tion is ‘skewed’ (non-spherical). This leaks information about the trapdoor
R, so we cannot just output y.

2. To sample from a spherical Gaussian over all of Λ⊥
u (A), we use the ‘convo-

lution’ technique from [36] to correct for the above-described problems with
the distribution of y. Specifically, we first choose a Gaussian perturbation
p ∈ Zm having covariance s2 −

[
R
I

]
ΣG [Rt | I], which is well-defined as

long as s ≥ s1(
[
R
I

]
·
√
ΣG). We then sample y =

[
R
I

]
z as above for an

adjusted syndrome v = u − Ap, and output x = p + y. Now the support
of x is all of Λ⊥

u (A), and because the covariances of p and y are additive
(subject to some mild hypotheses), the overall distribution of x is spherical
with Gaussian parameter s that can be as small as s ≈ s1(R) · s1(

√
ΣG).

Quality Analysis. Our algorithm can sample from a discrete Gaussian with pa-
rameter s ·ωn where s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2. We stress

that this is only very slightly larger — a factor of at most
√
6/4 ≤ 1.23 — than

the bound (s1(R)+1) · ‖S̃‖ on the largest Gram-Schmidt norm of a lattice basis
derived from the trapdoor R. (Recall that our constructions from Section 2 give

s1(ΣG) = ‖S̃‖2 = 4 or 5.) In the iterative “randomized nearest-plane” sampling
algorithm of [24, 20], the Gaussian parameter s is bounded from below by the
largest Gram-Schmidt norm of the orthogonalized input basis (times the same
ωn factor used in our algorithm). Therefore, the efficiency and parallelism of our
algorithm comes at almost no cost in quality versus slower, iterative algorithms
that use high-precision arithmetic. (It seems very likely that the corresponding
small loss in security can easily be mitigated with slightly larger parameters,
while still yielding a significant net gain in performance.)

Runtime Analysis. We now analyze the computational cost of the sampling algo-
rithm, with a focus on optimizing the online runtime and parallelism (sometimes
at the expense of the offline phase, which we do not attempt to optimize).

The offline phase is dominated by sampling from D
Zm,

√
Σ·ωn

for some fixed

(typically non-spherical) covariance matrix Σ > I. By [36, Theorem 3.1], this
can be accomplished (up to any desired statistical distance) simply by sampling
a continuous Gaussian D√

Σ−I·ωn
with sufficient precision, then independently

randomized-rounding each entry of the sampled vector to Z using Gaussian
parameter ωn ≥ ηε(Z).

Naively, the online work is dominated by the computation of H−1(u− w̄) and
Rz (plus the call to O(v), which as described in Section 2 requires only O(logc n)
work, or one table lookup, by each of n processors in parallel). In general, the first
computation takes O(n2) scalar multiplications and additions in Zq, while the
latter takes O(m̄ ·w), which is typically Θ(n2 log2 q). (Obviously, both computa-
tions are perfectly parallelizable.) However, the special form of z, and often ofH,
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Algorithm 3. Efficient algorithm DelTrapO(A′ = [A | A1],H
′, s′) for delegating

a trapdoor.

Input: an oracle O for discrete Gaussian sampling over cosets of Λ = Λ⊥(A) with
parameter s′ ≥ ηε(Λ).
– parity-check matrix A′ = [A | A1] ∈ Z

n×m
q × Z

n×w
q ;

– invertible matrix H′ ∈ Z
n×n
q ;

Output: a trapdoor R′ ∈ Z
m×w for A′ with tag H′ ∈ Z

n×n
q .

1: Using O, sample each column of R′ independently from a discrete Gaussian with
parameter s′ over the appropriate coset of Λ⊥(A), so that AR′ = H′G−A1.

allow for some further asymptotic and practical optimizations: since z is typ-
ically produced by concatenating n independent dimension-k subvectors that
are sampled offline, we can precompute much of Rz by pre-multiplying each
subvector by each of the n blocks of k columns in R. This reduces the online
computation of Rz to the summation of n dimension-m̄ vectors, or O(n2 log q)
scalar additions (and no multiplications) in Zq. As for multiplication by H−1,
in some applications (like GPV signatures) H is always the identity I, in which
case multiplication is unnecessary; in all other applications we know of, H actu-
ally represents multiplication in a certain extension field/ring of Zq, which can
be computed in O(n logn) scalar operations and depth O(log n). In conclusion,
the asymptotic cost of the online phase is still dominated by computing Rz,
which takes Õ(n2) work, but the hidden constants are small and many practical
speedups are possible.

3.5 Trapdoor Delegation

Here we describe very simple and efficient mechanism for securely delegating
a trapdoor for A ∈ Zn×m

q to a trapdoor for an extension A′ ∈ Zn×m′

q of A.
Our method has several advantages over the previous basis delegation algorithm
of [13]: first and most importantly, the size of the delegated trapdoor grows only
linearly with the dimension m′ of Λ⊥(A′), rather than quadratically. Second,
the algorithm is much more efficient, because it does not require testing linear
independence of Gaussian samples, nor computing the expensive ToBasis and
Hermite normal form operations. Third, the resulting trapdoor R has a ‘nice’
Gaussian distribution that is easy to analyze and may be useful in applications.
We do note that while the delegation algorithm from [13] works for any extension
A′ of A (including A itself), ours requires m′ ≥ m + w. Fortunately, this is
frequently the case in applications such as HIBE and others that use delegation.

Usually, the oracle O needed by Algorithm 3 would be implemented (up to
negl(n) statistical distance) by our Gaussian sampling algorithm above, using a
trapdoor R for A where s1(R) is sufficiently small relative to s′. The following
is immediate from the fact that the columns of R′ are independent and negl(n)-
subgaussian.



716 D. Micciancio and C. Peikert

Lemma 1. For any valid inputs A′ and H′, Algorithm 3 outputs a trapdoor R′

for A′ with tag H′, whose distribution is the same for any valid implementation
of O, and s1(R

′) ≤ s′ · O(
√
m+

√
w) except with negligible probability.
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Abstract. Wegive direct constructions of pseudorandom function (PRF)
families based on conjectured hard lattice problems and learning problems.
Our constructions are asymptotically efficient and highly parallelizable in
a practical sense, i.e., they can be computed by simple, relatively small
low-depth arithmetic or boolean circuits (e.g., in NC1 or even TC0). In
addition, they are the first low-depth PRFs that have no known attack by
efficient quantum algorithms. Central to our results is a new “derandom-
ization” technique for the learning with errors (LWE) problem which, in
effect, generates the error terms deterministically.

1 Introduction and Main Results

The past few years have seen significant progress in constructing public-key,
identity-based, and homomorphic cryptographic schemes using lattices, e.g., [35,
33, 15, 14, 13, 1] and many more. Part of their appeal stems from provable
worst-case hardness guarantees (starting with the seminal work of Ajtai [3]),
good asymptotic efficiency and parallelism, and apparent resistance to quantum
attacks (unlike the classical problems of factoring integers or computing discrete
logarithms).

Perhaps surprisingly, there has been comparatively less progress in using lat-
tices for symmetric cryptography, e.g., message authentication codes, block ci-
phers, and the like, which are widely used in practice. While in principle most
symmetric objects of interest can be obtained generically from any one-way
function, and hence from lattices, these generic constructions are usually very
inefficient, which puts them at odds with the high performance demands of
most applications. In addition, generic constructions often use their underlying
primitives (e.g., one-way functions) in an inherently inefficient and sequential
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manner. While most lattice-based primitives are relatively efficient and highly
parallelizable in a practical sense (i.e., they can be evaluated by small, low-depth
circuits), those advantages are completely lost when plugging them into generic
sequential constructions. This motivates the search for specialized constructions
of symmetric objects that have comparable efficiency and parallelism to their
lower-level counterparts.

Our focus in this work is on pseudorandom function (PRF) families, a cen-
tral object in symmetric cryptography first rigorously defined and constructed
by Goldreich, Goldwasser, and Micali (“GGM”) [16]. Given a PRF family, most
central goals of symmetric cryptography (e.g., encryption, authentication, iden-
tification) have simple solutions that make efficient use of the PRF. Informally,
a family of deterministic functions is pseudorandom if no efficient adversary,
given adaptive oracle access to a randomly chosen function from the family, can
distinguish it from a uniformly random function. The seminal GGM construc-
tion is based generically on any length-doubling pseudorandom generator (and
hence on any one-way function), but it requires k sequential invocations of the
generator when operating on k-bit inputs.

In contrast, by relying on a generic object called a “pseudorandom synthesizer,”
or directly on concrete number-theoretic problems (such as decision Diffie-
Hellman, RSA, and factoring), Naor and Reingold [28, 29] and Naor, Reingold,
and Rosen [30] (see also [23, 9]) constructed very elegant and more efficient PRFs,
which can in principle be computed in parallel by low-depth circuits (e.g., in NC2

or TC0). However, achieving such low depth for their number-theoretic construc-
tions requires extensive preprocessing and enormous circuits, so their results serve
mainly as a proof of theoretical feasibility rather than practical utility.

In summary, thus far all parallelizable PRFs from commonly accepted cryp-
tographic assumptions rely on exponentiation in large multiplicative groups,
and the functions (or at least their underlying hard problems) can be broken by
polynomial-time quantum algorithms. While lattices appear to be a natural can-
didate for avoiding these drawbacks, and there has been some partial progress in
the form of randomized weak PRFs [4] and randomized MACs [34, 21], construct-
ing an efficient, parallelizable (deterministic) PRF under lattice assumptions has,
frustratingly, remained open for some time now.

1.1 Results and Techniques

In this work we give the first direct constructions of PRF families based on
lattices, via the learning with errors (LWE) [35] and ring-LWE [25] problems,
and some new variants. Our constructions are highly parallelizable in a practical
sense, i.e., they can be computed by relatively small low-depth circuits, and the
runtimes are also potentially practical. (However, their performance and key sizes
are still far from those of heuristically designed functions like AES.) In addition,
(at least) one of our constructions can be evaluated in the circuit class TC0 (i.e.,
constant-depth, poly-sized circuits with unbounded fan-in and threshold gates),
which asymptotically matches the shallowest known PRF constructions based
on the decision Diffie-Hellman and factoring problems [29, 30].
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As a starting point, we recall that in their work introducing synthesizers as
a foundation for PRFs [28], Naor and Reingold described a synthesizer based
on a simple, conjectured hard-to-learn function. At first glance, this route seems
very promising for obtaining PRFs from lattices, using LWE as the hard learning
problem (which is known to be as hard as worst-case lattice problems [35, 31]).
However, a crucial point is that Naor and Reingold’s synthesizer uses a deter-
ministic hard-to-learn function, whereas LWE’s hardness depends essentially on
adding random, independent errors to every output of a mod-q “parity” function.
(Indeed, without any error, parity functions are trivially easy to learn.) Prob-
ably the main obstacle so far in constructing efficient lattice/LWE-based PRFs
has been in finding a way to introduce (sufficiently independent) error terms
into each of the exponentially many function outputs, while still keeping the
function deterministic and its key size a fixed polynomial. As evidence, consider
that recent constructions of weaker primitives such as symmetric authentication
protocols [18, 19, 20], randomized weak PRFs [4], and message-authentication
codes [34, 21] from noisy-learning problems are all inherently randomized func-
tions, where security relies on introducing fresh noise at every invocation. Un-
fortunately, this is not an option for deterministic primitives like PRFs.

Derandomizing LWE. To resolve the above-described issues, our first main insight
is a way of partially “derandomizing” the LWE problem, i.e., generating the er-
rors efficiently and deterministically, while preserving hardness. This technique
immediately yields a deterministic synthesizer and hence a simple and paral-
lelizable PRF, though with a few subtleties specific to our technique that we
elaborate upon below.

Before we explain the derandomization idea, first recall the learning with er-
rors problem LWEn,q,α in dimension n (the main security parameter) with mod-
ulus q and error rate α. We are given many independent pairs (ai, bi) ∈ Zn

q ×Zq,
where each ai is uniformly random, and the bi are all either “noisy inner prod-
ucts” of the form bi = 〈ai, s〉+ ei mod q for a random secret s ∈ Zn

q and “small”
random error terms ei ∈ Z of magnitude ≈ αq, or are uniformly random and
independent of the ai. The goal of the (decision) LWE problem is to distinguish
between these two cases, with any non-negligible advantage. In the ring-LWE
problem [25], we are instead given noisy ring products bi ≈ ai · s, where s and
the ai are random elements of a certain polynomial ring Rq (the canonical ex-
ample being Rq = Zq[z]/(z

n + 1) for n a power of 2), and the error terms are
“small” in a certain basis of the ring; the goal again is to distinguish these from
uniformly random pairs. While the dimension n is the main hardness parameter,
the error rate α also plays a very important role in both theory and practice:
as long as the “absolute” error αq exceeds

√
n or so, (ring-)LWE is provably as

hard as approximating conjectured hard problems on (ideal) lattices to within
Õ(n/α) factors in the worst case [35, 31, 25]. Moreover, known attacks using
lattice basis reduction (e.g., [22, 37]) or combinatorial/algebraic methods [8, 5]

require time 2Ω̃(n/ log(1/α)), where the Ω̃(·) notation hides polylogarithmic fac-
tors in n. We emphasize that without the error terms, (ring-)LWE would become
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trivially easy, and that all prior hardness results for LWE and its many variants
(e.g., [35, 31, 17, 25, 34]) require random, independent errors.

Our derandomization technique for LWE is very simple: instead of adding a
small random error term to each inner product 〈ai, s〉 ∈ Zq, we just determinis-
tically round it to the nearest element of a sufficiently “coarse” public subset of
p $ q well-separated values in Zq (e.g., a subgroup). In other words, the “error
term” comes solely from deterministically rounding 〈ai, s〉 to a relatively nearby
value. Since there are only p possible rounded outputs in Zq, it is usually easier
to view them as elements of Zp and denote the rounded value by �〈ai, s〉�p ∈ Zp.
We call the problem of distinguishing such rounded inner products from uniform
samples the learning with rounding (LWRn,q,p) problem. Note that the problem
can be hard only if q > p (otherwise no error is introduced), that the “absolute”
error is roughly q/p, and that the “error rate” relative to q (i.e., the analogue of
α in the LWE problem) is on the order of 1/p.

We show that for appropriate parameters, LWRn,q,p is at least as hard as
LWEn,q,α for an error rate α proportional to 1/p, giving us a worst-case hardness
guarantee for LWR. In essence, the reduction relies on the fact that with high
probability, we have �〈a, s〉 + e�p = �〈a, s〉�p when e is small relative to q/p,
while �U(Zq)�p ≈ U(Zp) where U denotes the uniform distribution. Therefore,
given samples (ai, bi) of an unknown type (either LWE or uniform), we can simply
round the bi terms to generate samples of a corresponding type (LWR or uniform,
respectively). (The formal proof is somewhat more involved, because it has to
deal with the rare event that the error term changes the rounded value.) In the
ring setting, the derandomization technique and hardness proof based on ring-
LWE all go through without difficulty as well. While our proof needs both the
ratio q/p and the inverse LWE error rate 1/α to be slightly super-polynomial in n,
the state of the art in attack algorithms indicates that as long as q/p is an integer
(so that �U(Zq)�p = U(Zp)) and is at least Ω(

√
n), LWR may be exponentially

hard (even for quantum algorithms) for any p = poly(n), and superpolynomially
hard when p = 2nε

for any ε < 1.
We point out that in LWE-based cryptosystems, rounding to a fixed, coarse

subset is a common method of removing noise and recovering the plaintext when
decrypting a “noisy” ciphertext; here we instead use it to avoid having to intro-
duce any random noise in the first place. We believe that this technique should be
useful in many other settings, especially in symmetric cryptography. For exam-
ple, the LWR problem immediately yields a simple and practical pseudorandom
generator that does not require extracting biased (e.g., Gaussian) random values
from its input seed, unlike the standard pseudorandom generators based on the
LWE or LPN (learning parity with noise) problems. In addition, the rounding
technique and its implications for PRFs are closely related to the “modulus re-
duction” technique from a concurrent and independent work of Brakerski and
Vaikuntanathan [11] on fully homomorphic encryption from LWE, and a very
recent follow-up work of Brakerski, Gentry, and Vaikuntanathan [10]; see Sec-
tion 1.3 below for a discussion and comparison.
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LWR-based synthesizers and PRFs. Recall from [28] that a pseudorandom syn-
thesizer is a two-argument function S(·, ·) such that, for random and indepen-
dent sequences x1, . . . , xm and y1, . . . , ym of inputs (for any m = poly(n)), the
matrix of all m2 values zi,j = S(xi, yj) is pseudorandom (i.e., computationally
indistinguishable from uniform). A synthesizer can be seen as an (almost) length-
squaring pseudorandom generator with good locality properties, in that it maps
2m random “seed” elements (the xi and yj) to m

2 pseudorandom elements, and
any component of its output depends on only two components of the input seed.

Using synthesizers in a recursive tree-like construction, Naor and Reingold
gave PRFs on k-bit inputs, which can be computed using a total of about k syn-
thesizer evaluations, arranged nicely in only lg k levels (depth). Essentially, the
main idea is that given a synthesizer S(·, ·) and two independent PRF instances
F0 and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F (x1 · · ·x2t) = S
(
F0(x1 · · ·xt) , F1(xt+1 · · ·x2t)

)
. (1)

The base case of a 1-bit PRF can trivially be implemented by returning one of two
random strings in the function’s secret key. Using particular NC1 synthesizers
based on a variety of both concrete and general assumptions, Naor and Reingold
therefore obtain k-bit PRFs in NC2, i.e., having circuit depth O(log2 k).

We give a very simple and computationally efficient LWRn,q,p-based synthe-
sizer Sn,q,p : Zn

q × Zn
q → Zp, defined as

Sn,q,p(a, s) = �〈a, s〉�p. (2)

(In this and what follows, products of vectors or matrices over Zq are always
performed modulo q.) Pseudorandomness of this synthesizer under LWR follows
by a standard hybrid argument, using the fact that the ai vectors given in the
LWR problem are public. (In fact, the synthesizer outputs S(ai, sj) are pseudo-
random even given the ai.) To obtain a PRF using the tree construction of [28],
we need the synthesizer output length to roughly match its input length, so we
actually use the synthesizer Tn,q,p(S1,S2) = �S1 · S2�p ∈ Zn×n

p for Si ∈ Zn×n
q .

Note that the matrix multiplication can be done with a constant-depth, size-
O(n2) arithmetic circuit over Zq. Or for better space and time complexity, we
can instead use the ring-LWR synthesizer SR,q,p(s1, s2) = �s1 · s2�p, since the ring
product s1 · s2 ∈ Rq is the same size as s1, s2 ∈ Rq. The ring product can also
be computed with a constant depth, size-O(n2) circuit over Zq, or in O(log n)
depth and only O(n logn) scalar operations using Fast Fourier Transform-like
techniques [24, 25].

Using the recursive input-doubling construction from Equation (1) above, we
get the following concrete PRF with input length k = 2d. Let qd > qd−1 >
· · · > q0 ≥ 2 be a chain of moduli where each qj/qj−1 is a sufficiently large
integer, e.g., qj = qj+1 for some q ≥

√
n. The secret key is a set of 2k matrices

Si,b ∈ Zn×n
qd for each i ∈ {1, . . . , k} and b ∈ {0, 1}. Each pair (Si,0,Si,1) defines a

1-bit PRF Fi(b) = Si,b, and these are combined in a tree-like fashion according
to Equation (1) using the appropriate synthesizers Tn,qj ,qj−1 for j = d, . . . , 1. As
a concrete example, when k = 4 (so x = x1 · · ·x4 and d = 2), we have
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F{Si,b}(x) =
⌊
�S1,x1 · S2,x2�q1· �S3,x3 · S4,x4�q1

⌉
q0
. (3)

(In the ring setting, we just use random elements si,b ∈ Rqd in place of the
matrices Si,b.) Notice that the function involves d = lg k levels of matrix (or ring)
products, each followed by a rounding operation. In the exemplary case where
qj = qj+1, the rounding operations essentially drop the “least-significant” base-q
digit, so they can be implemented very easily in practice, especially if every qj is
a power of 2. The function is also amenable to all of the nice time/space trade-
offs, seed-compression techniques, and incremental computation ideas described
in [28].

In the security proof, we rely on the conjectured hardness of LWRqj ,qj−1 for
j = d, . . . , 1. The strongest of these assumptions appears to be for j = d, and
this is certainly the case when relying on our reduction from LWE to LWR. For
the example parameters qj = qj+1 where q ≈

√
n, the dominating assumption is

therefore the hardness of LWRqd+1,qd , which involves a quasi-polynomial inverse

error rate of 1/α ≈ qd = nO(lg k). However, because the strongest assumptions
are applied to the “innermost” layers of the function, it is unclear whether se-
curity actually requires such strong assumptions, or even whether the innermost
layers need to be rounded at all. We discuss these issues further in Section 1.2
below.

Degree-k synthesizers and shallower PRFs. One moderate drawback of the above
function is that it involves lg k levels of rounding operations, which appears to
lower-bound the depth of any circuit computing the function by Ω(lg k). Is it
possible to do better?

Recall that in later works, Naor and Reingold [29] and Naor, Reingold, and
Rosen [30] gave direct, more efficient number-theoretic PRF constructions which,
while still requiring exponentiation in large multiplicative groups, can in prin-
ciple be computed in very shallow circuit classes like NC1 or even TC0. Their
functions can be interpreted as “degree-k” (or k-argument) synthesizers for ar-
bitrary k = poly(n), which immediately yield k-bit PRFs without requiring any
composition. With this in mind, a natural question is whether there are direct
LWE/LWR-based synthesizers of degree k > 2.

We give a positive answer to this question. Much like the functions of [29, 30],
ours have a subset-product structure. We have public moduli q , p, and the
secret key is a set of k matrices Si ∈ Zn×n

q (whose distributions may not nec-
essarily be uniform; see below) for i = 1, . . . , k, along with a uniformly random
a ∈ Zn

q .
1 The function F = Fa,{Si} : {0, 1}k → Zn

p is defined as the “rounded
subset-product”

Fa,{Si}(x1 · · ·xk) =

⌊
at ·

k∏
i=1

Sxi

i

⌉
p

. (4)

1 To obtain longer function outputs, we can replace a ∈ Z
n
q with a uniformly random

matrix A ∈ Z
n×m
q for any m = poly(n).
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The ring variant is analogous, replacing a with uniform a ∈ Rq and each Si by
some si ∈ Rq (or R∗

q , the set of invertible elements modulo q). This function
is particularly efficient to evaluate using the discrete Fourier transform, as is
standard with ring-based primitives (see, e.g., [24, 25]). In addition, similarly
to [29, 30], one can optimize the subset-product operation via pre-processing,
and evaluate the function in TC0. We elaborate on these optimizations in the
full version of the paper [7].

For the security analysis of construction (4), we have meaningful security
proofs under various conditions on the parameters and computational assump-
tions, including standard LWE. In our LWE-based proof, two important issues
are the distribution of the secret key components Si, and the choice of moduli
q and p. For the former, it turns out that our proof needs the Si matrices to be
short, i.e., their entries should be drawn from the LWE error distribution. (LWE
is no easier to solve for such short secrets [4].) This appears to be an artifact
of our proof technique, which can be viewed as a variant of our LWE-to-LWR
reduction, enhanced to handle adversarial queries. Summarizing the approach,
define

G(x) = Ga,{Si}(x) := at ·
∏
i

Sxi

i

to be the subset-product function inside the rounding operation of (4). The fact
that F = �G�p lets us imagine adding independent error terms to each distinct
output of G, but only as part of a thought experiment in the proof. More specif-
ically, we consider a related randomized function G̃ = G̃a,{Si} : {0, 1}k → Zn

q

that computes the subset-product by multiplying by each Sxi

i in turn, but then
also adds a fresh error term immediately following each multiplication. Using the
LWE assumption and induction on k, we can show that the randomized function
G̃ is itself pseudorandom (over Zq), hence so is �G̃�p (over Zp). Moreover, we

show that for every queried input, with high probability �G̃�p coincides with

�G�p = F , because G and G̃ differ only by a cumulative error term that is small
relative to q—this is where we need to assume that the entries of Si are small.
Finally, because �G̃�p is a (randomized) pseudorandom function over Zp that
coincides with the deterministic function F on all queries, we can conclude that
F is pseudorandom as well.

In the above-described proof strategy, the gap between G and G̃ grows expo-
nentially in k, because we add a separate noise term following each multiplication
by an Si, which gets enlarged when multiplied by all the later Si. So in order
to ensure that �G̃�p = �G�p on all queries, our LWE-based proof needs both
the modulus q and inverse error rate 1/α to exceed nΩ(k). In terms of efficiency
and security, this compares rather unfavorably with the quasipolynomial nO(lg k)

bound in the proof for our tree-based construction, though on the positive side,
the direct degree-k construction has better circuit depth. However, just as with
construction (3) it is unclear whether such strong assumptions and large param-
eters are actually necessary for security, or whether the matrices Si really need
to be short.
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In particular, it would be nice if the function in (4) were secure if the Si

matrices were uniformly random over Zn×n
q , because we could then recursively

compose the function in a k-ary tree to rapidly extend its input length.2 It would
be even better to have a security proof for a smaller modulus q and inverse error
rate 1/α, ideally both polynomial in n even for large k. While we have been
unable to find such a security proof under standard LWE, we do give a very
tight proof under a new, interactive “related samples” LWE/LWR assumption.
Roughly speaking, the assumption says that LWE/LWR remains hard even when
the sampled ai vectors are related by adversarially chosen subset-products of
up to k given random matrices (drawn from some known distribution). This
provides some evidence that the function may indeed be secure for appropri-
ately distributed Si, small modulus q, and large k. For further discussion, see
Section 1.2, and for full details see the full version of the paper [7].

PRFs via the GGM construction. The above constructions aim to minimize
the depth of the circuit evaluating the PRF. However, if parallel complexity is
not a concern, and one wishes to minimize the total amount of work per PRF
evaluation (or the seed length), then the original GGM construction with an
LWR-based pseudorandom generator may turn out to be even more efficient in
practice. We elaborate in the full version [7].

1.2 Discussion and Open Questions

The quasipolynomial nO(log k) or exponential nO(k) moduli and inverse error
rates used in our LWE-based security proofs are comparable to those used in
recent fully homomorphic encryption (FHE) schemes (e.g., [14, 38, 12, 11, 10]),
hierarchical identity-based encryption (HIBE) schemes (e.g., [13, 1, 2]), and
other lattice-based constructions. However, there appears to be a major dif-
ference between our use of such strong assumptions, and that of schemes such
as FHE/HIBE in the public-key setting. Constructions of the latter systems ac-
tually reveal LWE samples having very small error rates (which are needed to
ensure correctness of decryption) to the attacker, and the attacker can break the
cryptosystems by solving those instances. Therefore, the underlying assumptions
and the true security of the schemes are essentially equivalent. In contrast, our
PRF uses (small) errors only as part of a thought experiment in the security
proof, not for any purpose in the operation of the function itself. This leaves
open the possibility that our functions (or slight variants) remain secure even
for much larger input lengths and smaller moduli than our proofs require. We
conjecture that this is the case, even though we have not yet found security
proofs (under standard assumptions) for these more efficient parameters. Cer-
tainly, determining whether there are effective cryptanalytic attacks is a very
interesting and important research direction.

Note that in our construction (4), if we draw the secret key components from
the uniform (or error) distribution and allow k to be too large relative to q,

2 Note that we can always compose the degree-k function with our degree-2 synthesiz-
ers from above, but this would only yield a tree with 2-ary internal nodes.
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then the function can become insecure via a simple attack (and our new “in-
teractive” LWR assumption, which yields a tight security proof, becomes false).
This is easiest to see for the ring-based function: representing each si ∈ Rq by
its vector of “Fourier coefficients” over Zn

q , each coefficient is 0 with probability
about 1/q (depending on the precise distribution of si). Therefore, with notice-
able probability the product of k = O(q log n) random si will have all-0 Fourier
coefficients, i.e., will be 0 ∈ Rq. In this case our function will return zero on
the all-1s input, in violation of the PRF requirement. (A similar but more com-
plicated analysis can also be applied to the matrix-based function.) Of course,
an obvious countermeasure is just to restrict the secret key components to be
invertible; to our knowledge, this does not appear to have any drawback in terms
of security. In fact, it is possible to show that the decision-(ring-)LWE problem
remains hard when the secret is restricted to be invertible (and otherwise drawn
from the uniform or error distribution), and this fact may be useful in further
analysis of the function with more efficient parameters.

In summary, our work raises several interesting concrete questions, including:

– Is LWRn,q,p really exponentially hard for p = poly(n) and sufficiently large
integer q/p = poly(n)? Are there stronger worst-case hardness guarantees
than our current proof based on LWE?

– Is there a security proof for construction (4) (with k = ω(1)) for poly(n)-
bounded moduli and inverse error rates, under a non-interactive assumption?

– In construction (4), is there a security proof (under a non-interactive assump-
tion) for uniformly random Si? Is there any provable security advantage to
using invertible Si?

– Is there an efficient, low-depth PRF family based on the conjectured average-
case hardness of the subset-sum problem?

– Our derandomization technique and LWR problem require working with
moduli q greater than 2. Is there an efficient, parallel PRF family based
on the learning parity with noise (LPN) problem?

1.3 Other Related Work

In a companion paper [6], we have defined and implemented practically efficient
variants of our functions, using rounding over the ring ZN of integers modulo
large powers-of-2 N . The functions have throughput and security levels that
appear comparable with (or even exceed) those of ASE.

Most closely related to the techniques in this work are two very recent re-
sults of Brakerski and Vaikuntanathan [11] and a follow-up work of Brakerski,
Gentry, and Vaikuntanathan [10] on fully homomorphic encryption from LWE.
In particular, the former work includes a “modulus reduction” technique for
LWE-based cryptosystems, which maps a large-modulus ciphertext to a small-
modulus one; this induces a shallower decryption circuit and allows the system to
be “bootstrapped” into a fully homomorphic scheme using the techniques of [14].
The modulus-reduction technique involves a rounding operation much like the
one we use to derandomize LWE; while they use it on ciphertexts that are already
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“noisy,” we apply it to noise-free LWE samples. Our discovery of the round-
ing/derandomization technique in the PRF context was independent of [11]. In
fact, the first PRF and security proof we found were for the direct degree-k con-
struction defined in (4), not the synthesizer-based construction in (3). As another
point of comparison, the “somewhat homomorphic” cryptosystem from [11] that
supports degree-k operations (along with all prior ones, e.g., [14, 38]) involves
an inverse error rate of nO(k), much like the LWE-based proof for our degree-k
synthesizer.

Building on the modulus reduction technique of [11], Brakerski et al. [10]
showed that homomorphic cryptosystems can support certain degree-k func-
tions using a much smaller modulus and inverse error rate of nO(log k). The
essential idea is to interleave the homomorphic operations with several “small”
modulus-reduction steps in a tree-like fashion, rather than performing all the
homomorphic operations followed by one “huge” modulus reduction. This very
closely parallels the difference between our direct degree-k synthesizer and the
Naor-Reingold-like [28] composed synthesizer defined in (3). Indeed, after we
found construction (4), the result of [10] inspired our search for a PRF having
similar tree-like structure and quasipolynomial error rates. Given our degree-2
synthesizer, the solution turned out to largely be laid out in the work of [28].
We find it very interesting that the same quantitative phenomena arise in two
seemingly disparate settings (PRFs and FHE).

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold
product distribution over Dn. The uniform distribution over a finite domain D is
denoted by U(D). The discrete Gaussian probability distribution over Z with pa-
rameter r > 0, denoted DZ,r, assigns probability proportional to exp(−πx2/r2)
to each x ∈ Z. It is possible to efficiently sample from this distribution (up to
negl(n) statistical distance) via rejection [15].

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integers
modulo q. We define a ‘rounding’ function �·�p : Zq → Zp, where q ≥ p ≥ 2 will
be apparent from the context, as

�x�p = �(p/q) · x̄� mod p, (5)

where x̄ ∈ Z is any integer congruent to x mod q. We extend �·�p component-
wise to vectors and matrices over Zq, and coefficient-wise (with respect to the
“power basis”) to the quotient ring Rq defined in the next subsection. Note that
we can use any other common rounding method, like the floor �·, or ceiling
(·� functions, in Equation 5 above, with only minor changes to our proofs. In
implementations, it may be advantageous to use the floor function �· when q and
p are both powers of some common base b (e.g., 2). In this setting, computing
�·p is equivalent to dropping the least-significant digit(s) in base b.
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Learning With Errors. We recall the learning with errors (LWE) problem due
to Regev [35] and its ring analogue by Lyubashevsky, Peikert, and Regev [25].
For positive integer dimension n (the security parameter) and modulus q ≥
2, a probability distribution χ over Z, and a vector s ∈ Zn

q , define the LWE
distribution As,χ to be the distribution over Zn

q × Zq obtained by choosing a
vector a ← Zn

q uniformly at random, an error term e ← χ, and outputting
(a, b = 〈a, s〉 + e mod q). We use the following “normal form” of the decision-
LWEn,q,χ problem, which is to distinguish (with advantage non-negligible in n)
between any desired numberm = poly(n) of independent samples (ai, bi) ← As,χ

where s ← χn mod q is chosen from the (folded) error distribution, and the same
number of samples from the uniform distribution U(Zn

q × Zq). This form of the
problem is as hard as the one where s ∈ Zn

q is chosen uniformly at random [4].
We extend the LWE distribution to w ≥ 1 secrets, defining AS,χ for S ∈ Zn×w

q

to be the distribution obtained by choosing a ← Zn
q , an error vector et ←

χw, and outputting (a,bt = atS + et mod q). By a standard hybrid argument,
distinguishing such samples (for S ← χn×w) from uniformly random is as hard
as decision-LWEn,q,χ, for any w = poly(n). It is often convenient to group many
(say, m) sample pairs together in matrices. This allows us to express the LWE
problem as: distinguish any desired number of pairs (At,Bt = AtS+E mod q) ∈
Zm×n

q × Zm×w
q , for the same S, from uniformly random.

For certainmoduli q and (discrete) Gaussian error distributions χ, the decision-
LWE problem is as hard as the search problem, where the goal is to find s given
samples fromAs,χ (see, e.g., [35, 31, 4, 26], and [27] for the mildest known require-
ments on q, which include the case where q is a power of 2). In turn, for χ = DZ,r

with r = αq ≥ 2
√
n, the search problem is as hard as approximating worst-case

lattice problems to within Õ(n/α) factors; see [35, 31] for precise statements.3

Ring-LWE. For simplicity of exposition, we use the following special case of the
ring-LWE problem. (Our results can be extended to the more general form defined
in [25].) Throughout the paper we let R denote the cyclotomic polynomial ring
R = Z[z]/(zn + 1) for n a power of 2. (Equivalently, R is the ring of integers
Z[ω] for ω = exp(πi/n).) For any integer modulus q, define the quotient ring
Rq = R/qR. An element of R can be represented as a polynomial (in z) of
degree less than n having integer coefficients; in other words, the “power basis”
{1, z, . . . , zn−1} is a Z-basis for R. Similarly, it is a Zq-basis for Rq.

For a modulus q, a probability distribution χ over R, and an element s ∈ Rq,
the ring-LWE (RLWE) distribution As,χ is the distribution over Rq ×Rq obtained
by choosing a ∈ Rq uniformly at random, an error term x ← χ, and outputting
(a, b = a · s + x mod qR). The normal form of the decision-RLWER,q,χ problem
is to distinguish (with non-negligible advantage) between any desired number
m = poly(n) of independent samples (ai, bi) ← As,χ where s ← χ mod q, and

3 It is important to note that the original hardness result of [35] for search-LWE is for
a continuous Gaussian error distribution, which when rounded näıvely to the near-
est integer does not produce a true discrete Gaussian DZ,r. Fortunately, a suitable
randomized rounding method does so [32].
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the same number of samples drawn from the uniform distribution U(Rq × Rq).
We will use the error distribution χ over R where each coefficient (with respect
to the power basis) is chosen independently from the discrete Gaussian DZ,r for
some r = αq ≥ ω(

√
n logn).

For a prime modulus q = 1 mod 2n and the error distribution χ described
above, the decision-RLWE problem is as hard as the search problem, via a re-
duction that runs in time q · poly(n) [25]. In turn, the search problem is as hard
as quantumly approximating worst-case problems on ideal lattices.4

3 The Learning with Rounding Problem

We now define the “learning with rounding” (LWR) problem and its ring ana-
logue, which are like “derandomized” versions of the usual (ring)-LWE problems,
in that the error terms are chosen deterministically.

Definition 1. Let n ≥ 1 be the main security parameter and moduli q ≥ p ≥ 2
be integers.

– For a vector s ∈ Zn
q , define the LWR distribution Ls to be the distribution

over Zn
q × Zp obtained by choosing a vector a ← Zn

q uniformly at random,
and outputting (a, b = �〈a, s〉�p).

– For s ∈ Rq (defined in Section 2), define the ring-LWR (RLWR) distribution
Ls to be the distribution over Rq×Rp obtained by choosing a ← Rq uniformly
at random and outputting (a, b = �a · s�p).

For a given distribution over s ∈ Zn
q (e.g., the uniform distribution), the decision-

LWRn,q,p problem is to distinguish (with advantage non-negligible in n) between
any desired number of independent samples (ai, bi) ← Ls, and the same number
of samples drawn uniformly and independently from Zn

q × Zp. The decision-
RLWRR,q,p problem is defined analogously.

Note that we have defined LWR exclusively as a decision problem, as this is
the only form of the problem we will need. By a simple (and by now standard)
hybrid argument, the (ring-)LWR problem is no easier, up to a poly(n) factor in
advantage, if we reuse each public ai across several independent secrets. That is,
distinguishing samples (ai, �〈ai, s1〉�p, . . . , �〈ai, s
〉�p) ∈ Zn

q × Z

p from uniform,

where each sj ∈ Zn
q is chosen independently for any � = poly(n), is at least as

hard as decision-LWR for a single secret s. An analogous statement also holds
for ring-LWR.

4 More accurately, to prove that the search problem is hard for an a priori unbounded
number of RLWE samples, the worst-case connection from [25] requires the error
distribution’s parameters to themselves be chosen at random from a certain dis-
tribution. Our constructions are easily modified to account for this subtlety, but
for simplicity, we ignore this issue and assume hardness for a fixed, public error
distribution.
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3.1 Reduction from LWE

We now show that for appropriate parameters, decision-LWR is at least as hard
as decision-LWE. We say that a probability distribution χ over R (more precisely,
a family of distributions χn indexed by the security parameter n) is B-bounded
(where B = B(n) is a function of n) if Prx←χ[|x| > B] ≤ negl(n). Similarly, a
distribution over the ring R is B-bounded if the marginal distribution of every
coefficient (with respect to the power basis) of an x ← χ is B-bounded.

Theorem 1. Let χ be any efficiently sampleable B-bounded distribution over Z,
and let q ≥ p ·B ·nω(1). Then for any distribution over the secret s ∈ Zn

q , solving
decision-LWRn,q,p is at least as hard as solving decision-LWEn,q,χ for the same
distribution over s. The same holds true for RLWRR,q,p and RLWER,q,χ, for any
B-bounded χ over R.

We note that although our proof uses a super-polynomial q = nω(1), as long as
q/p ≥

√
n is an integer, the LWR problem appears to be exponentially hard (in

n) for any p = poly(n), and super-polynomially hard for p ≤ 2nε

for any ε < 1,
given the state of the art in noisy learning algorithms [8, 5] and lattice reduction
algorithms [22, 37]. We also note that in our proof, we do not require the error
terms drawn from χ in the LWE samples to be independent; we just need them
all to have magnitude bounded by B with overwhelming probability.

Proof (Sketch, Theorem 1). We give a rough proof sketch for the LWR case; the
one for RLWR proceeds essentially identically. For the full and detailed proof,
we refer the reader to the full version of the paper. The main idea behind the
reduction is simple: given pairs (ai, bi) ∈ Zn

q ×Zq which are distributed either ac-
cording to an LWE distribution As,χ or are uniformly random, we translate them
into the pairs (ai, �bi�p) ∈ Zn

q × Zp, which we show will be distributed accord-
ing to the LWR distribution Ls (with overwhelming probability) or uniformly
random, respectively.

4 Synthesizer-Based PRFs

We now describe the LWR-based synthesizer and our construction of a PRF
from it. We first define a pseudorandom synthesizer, slightly modified from the
definition proposed by Naor and Reingold [28].

Let S : A× A → B be a function (where A and B are finite domains, which
along with S are implicitly indexed by the security parameter n) and let X =
(x1, . . . , xk) ∈ Ak and Y = (y1, . . . , y
) ∈ A
 be two sequences of inputs. Then
CS(X,Y ) ∈ Bk×
 is defined to be the matrix with S(xi, yj) as its (i, j)th entry.
(Here C stands for combinations.)

Definition 2 (Pseudorandom Synthesizer). We say that a function S :
A×A → B is a pseudorandom synthesizer if it is polynomial-time computable,
and if for every poly(n)-bounded k = k(n), � = �(n),

CS

(
U(Ak) , U(A
)

) c≈ U
(
Bk×


)
.
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That is, the matrix CS(X,Y ) for uniform and independent X ← Ak, Y ←
A
 is computationally indistinguishable from a uniformly random k-by-� matrix
over B.

4.1 Synthesizer Constructions

We now describe synthesizers whose security is based on the (ring-)LWR problem.

Definition 3 ((Ring-)LWR Synthesizer). For moduli q > p ≥ 2, the LWR
synthesizer is the function Sn,q,p : Zn

q × Zn
q → Zp defined as

Sn,q,p(x,y) = �〈x,y〉�p.

The RLWR synthesizer is the function SR,q,p : Rq × Rq → Rp defined as

SR,q,p(x, y) = �x · y�p.

Theorem 2. Assuming the hardness of decision-LWRn,q,p (respectively, decision-
RLWRR,q,p) for a uniformly random secret, the function Sn,q,p (respectively, SR,q,p)
given in Definition 3 above is a pseudorandom synthesizer.

It follows generically from this theorem that the function Tn,q,p : Zn×n
q ×Zn×n

q →
Zn×n

p , defined as Tn,q,p(X,Y) = �X · Y�p, is also a pseudorandom synthesizer,
since by the definition of matrix multiplication, we only incur a factor of n
increase in the length of the input sequences. This is the synthesizer that we use
below in the construction of a PRF.

4.2 The PRF Construction

Definition 4 ((Ring-)LWR PRF). For parameters n ∈ N, input length k =
2d ≥ 1, and moduli qd ≥ qd−1 ≥ . . . ≥ q0 ≥ 2, the LWR family F (j) for 0 ≤ j ≤ d

is defined inductively to consist of functions from {0, 1}2j to Zn×n
qd−j

. We define

F = F (d).

– For j = 0, a function F ∈ F (0) is indexed by Sb ∈ Zn×n
qd

for b ∈ {0, 1}, and
is defined simply as F{Sb}(x) = Sx. We endow F (0) with the distribution
where the Sb are uniform and independent.

– For j ≥ 1, a function F ∈ F (j) is indexed by some F0, F1 ∈ F (j−1), and is
defined as

FF0,F1(x0, x1) = T (j)
(
F0(x0) , F1(x1)

)
where |x0| = |x1| = 2j−1 and T (j) = Tn,qd−j+1,qd−j

is the appropriate syn-

thesizer. We endow F (j) with the distribution where F0 and F1 are chosen
independently from F (j−1).

The ring-LWR family RF (j) is defined similarly to consist of functions from
{0, 1}2j to Rqd−j

, where in the base case (j = 0) we replace each Sb with a
uniformly random sb ∈ Rqd , and in the inductive case (j ≥ 1) we use the ring-
LWR synthesizer S(j) = SR,qd−j+1,qd−j

.
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We remark that the recursive LWR-based construction above does not have to
use square matrices; any legal dimensions would be acceptable with no essential
change to the security proof. Square matrices appear to give the best combination
of seed size, computational efficiency, and input/output lengths.

4.3 Security

The security proof for our PRF hinges on the fact that the functions T (j) =
Tn,qd−j+1,qd−j

are synthesizers for appropriate choices of the moduli. In fact, the
proof is essentially identical to Naor and Reingold’s [28] for their PRF con-
struction from pseudorandom synthesizers; the only reason we cannot use their
theorem exactly as stated is because they assume that the synthesizer output
is exactly the same size as its two inputs, which is not quite the case with our
synthesizer due to the modulus reduction. This is a minor detail that does not
change the proof in any material way; it only limits the number of times we may
compose the synthesizer, and hence the input length of the PRF. We thus refer
the reader to the full version for the proof.

Theorem 3. Assuming that T (j) = Tn,qd−j+1,qd−j
is a pseudorandom synthe-

sizer for every j ∈ [d], the LWR family F from Definition 4 is a pseudorandom
function family.

The same is also true for the ring-LWR family RF , assuming that S(j) =
SR,qd−j+1,qd−j

is a pseudorandom synthesizer for every j ∈ [d].

5 Direct PRF Constructions

Here we present another, potentially more efficient construction of a pseudoran-
dom function family whose security is based on the intractibility of the LWE
problem.

Definition 5 ((Ring-)LWE degree-k PRF). For parameters n ∈ N, moduli
q ≥ p ≥ 2, positive integer m = poly(n), and input length k ≥ 1, the family
F consists of functions from {0, 1}k to Zm×n

p . A function F ∈ F is indexed by
some A ∈ Zn×m

q and Si ∈ Zn×n for each i ∈ [k], and is defined as

F (x) = FA,{Si}(x1 · · ·xk) :=

⌊
At ·

k∏
i=1

Sxi

i

⌉
p

. (6)

We endow F with the distribution where A is chosen uniformly at random, and
below we consider a number of natural distributions for the Si.

The ring-based family RF is defined similarly to consist of functions from
{0, 1}k to Rp, where we replace A with uniformly random a ∈ Rq and each Si

with some si ∈ R.
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5.1 Efficiency

Consider a function F ∈ F as in Definition 5. Using ideas from [36], we see
that both binary matrix product and rounding can be implemented with simple
depth-2 arithmetic circuits, and hence in TC0, so at worst F can be computed
in TC1 by computing the subset product in a tree-like fashion, followed by a
final rounding step.

The ring variant of Construction 6 appears to be more efficient to evaluate,
by storing the ring elements in the discrete Fourier transform or “Chinese re-
mainder” representation modulo q (see, e.g., [24, 25]), so that multiplication of
two ring elements just corresponds to a coordinate-wise product of their vec-
tors. Then to evaluate the function, one would just compute a subset-product
of the appropriate vectors, then interpolate the result to the power-basis repre-
sentation, using essentially an n-dimensional Fast Fourier Transform over Zq, in
order to perform the rounding operation. In terms of theoretical depth, the multi-
product of vectors can be performed in TC0, as can the Fast Fourier Transform
and rounding steps [36]. This implies that the entire function can be computed
in TC0, matching (asymptotically) the shallowest known PRFs based on the
DDH and factoring problems [29, 30].

5.2 Security under LWE

Theorem 4. Let χ = DZ,r for some r > 0, and let q ≥ p · k(Cr
√
n)k · nω(1) for

a suitable universal constant C. Endow the family F from Definition 4 with the
distribution where each Si is drawn independently from χn×n. Then assuming
the hardness of decision-LWEn,q,χ, the family F is pseudorandom.

An analogous theorem holds for the ring-based family RF , under decision-RLWE.

Theorem 5. Let χ be the distribution over the ring R where each coefficient
(with respect to the power basis) is chosen independently from DZ,r for some
r > 0, and let q ≥ p · k(r√n · ω(

√
logn))k · nω(1). Endow the family RF from

Definition 4 with the distribution where each si is drawn independently from χ.
Then assuming the hardness of decision-RLWEn,q,χ, the family RF is pseudo-
random.

Proof (Sketch, Theorem 4). To aid the proof, it helps to define a family G of
functions G : {0, 1}k → Zn×n

q , which are simply the unrounded counterparts of
the functions in F . That is, for A ∈ Zn×m

q and Si ∈ Zn×n for i ∈ [k], we define

GA,{Si}(x1 · · ·xk) := At ·
∏k

i=1 S
xi

i . We endow G with the same distribution over
A and the Si as F has.

We proceed via a sequence of games, much like in the proof of Theorem 1. First
as a “thought experiment” we define a new family G̃ of functions from {0, 1}k to
Zm×n

q . This family is a counterpart to G, but with two important differences: it
is a PRF family without any rounding (and hence, with rounding as well), but
each function in the family has an exponentially large key. Alternatively, one
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may think of the functions in G̃ as randomized functions with small keys. Then
we show that with overwhelming probability, the rounding of G̃ ← G̃ agrees with
the rounding of the corresponding G ∈ G on all the attacker’s queries, because
the outputs of the two functions are relatively close. It follows that the rounding
of G ← G (i.e., F ← F) cannot be distinguished from a uniformly random
function, as desired. We again refer the reader to the full version of the paper
for the formal proof.
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Lattice Signatures without Trapdoors

Vadim Lyubashevsky�
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Abstract. We provide an alternative method for constructing lattice-
based digital signatures which does not use the “hash-and-sign” method-
ology of Gentry, Peikert, and Vaikuntanathan (STOC 2008). Our
resulting signature scheme is secure, in the random oracle model, based
on the worst-case hardness of the Õ(n1.5)-SIVP problem in general lat-
tices. The secret key, public key, and the signature size of our scheme
are smaller than in all previous instantiations of the hash-and-sign sig-
nature, and our signing algorithm is also quite simple, requiring just a
few matrix-vector multiplications and rejection samplings. We then also
show that by slightly changing the parameters, one can get even more
efficient signatures that are based on the hardness of the Learning With
Errors problem. Our construction naturally transfers to the ring setting,
where the size of the public and secret keys can be significantly shrunk,
which results in the most practical to-date provably secure signature
scheme based on lattices.

1 Introduction

The versatility of lattice-based cryptography has elevated it to the status of a
promising potential alternative to cryptography based on standard security as-
sumptions such as factoring and discrete log. But before lattices can become
a viable replacement for number-theoretic schemes, it is crucial to have effi-
cient lattice-based constructions of the most ubiquitous cryptographic primitives
in practical applications, which are arguably encryption schemes and digital
signatures.

On the encryption front, lattice-based schemes have been making a lot of
progress with recent provably-secure schemes [39,28,24,41] being almost as prac-
tical as (and actually looking quite similar to) the deployed NTRU [20] en-
cryption scheme, which in turn has many advantages over number theory-based
schemes. Lattice-based signatures, on the other hand, have been a different story.
An early attempt at lattice-based signatures was the GGH scheme [18] but it
was almost immediately shown to be weaker than expected [33], and eventually
completely broken [34]. The NTRU signature scheme had an even more more
tumultuous history since its introduction in 2001 [21], with attacks [17] being fol-
lowed by fixes [19], until its basic version was also completely broken by Nguyen
and Regev [34].
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Provably secure lattice-based signature schemes were finally constructed in
2008, when Gentry, Peikert, and Vaikuntanathan [16] constructed a “hash-and-
sign” signature scheme based on the hardness of worst-case lattice problems and
Lyubashevsky and Micciancio [27] constructed a one-time signature based on
the hardness of worst-case ideal lattice problems. The hash-and-sign signatures
were rather inefficient (with signatures being megabytes long) and the one-time
signature, while being relatively short, still required Merkle trees to become a
full-fledged signature. Building on [27], Lyubashevsky proposed a digital signa-
ture, using the Fiat-Shamir framework [12] based on the hardness of ideal lattice
problems [26]. This latter scheme has signature lengths on the order of 60000
bits for reasonable security parameters, and while closer to being practical, it is
still not as small as one would like. Subsequently, lattice-based signature schemes
without random oracles were also constructed [11,8], but they are all much less
efficient in practice than their random oracle-using counterparts.

1.1 Related Work and Our Results

A common thread running through constructions of digital signatures in the ran-
dom oracle model, whether using the hash-and-sign or the Fiat-Shamir technique
[12], is to force the distribution of the signature to be statistically independent
of the secret key. If this property is achieved, then by programming the random
oracle, one can hope to produce the valid signatures requested by the potential
forger in the security reduction, without knowing the secret key. Then, when
the forger produces a signature of a new message, it can be used to solve the
underlying hard problem. In the case of lattices, the underlying hard problem is
usually the Small Integer Solution (SIS) problem in which one is given a matrix
A and is asked to find a small vector v such that Av = 0 mod q. The length of
v is very close to the length of signatures in the scheme, and thus the challenge
for improving lattice-based signatures based on SIS is to reduce the norm of the
signatures produced by the signing algorithm.

In lattice-based hash-and-sign signatures [16], every signer has a personal uni-
formly random public matrix A ∈ Zn×m

q and an associated secret “trapdoor”
S ∈ Zm×m

q with small coefficients such that AS = 0 mod q. To sign a message
μ, the signer uses his secret key S to produce a short signature vector z, whose
distribution is independent of S, such that Az = H(μ) mod q, where H is a cryp-
tographic hash function. Since the length of z roughly depends on the norms of
the columns of S, improving the hash-and-sign signature scheme involves com-
ing up with better algorithms for generating the pairs (A,S) such that S has
smaller dimensions and smaller coefficients. Using the original algorithm due to
Ajtai [1], the signature scheme of [16] produced signatures of norm Õ(n1.5). A
subsequent improvement of the key-generation algorithm by Alwen and Peik-
ert [3] lowered the signature length to Õ(n), and the very recent algorithm of
Micciancio and Peikert [30] further reduces the constants (and removes some
logarithmic factors) from the previous algorithms.
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There has been much less progress in the direction of building lattice-based sig-
nature schemes using the Fiat-Shamir technique. In fact, the only such scheme1

is the ring-based one of Lyubashevsky [26], in which the signature vectors are of
norm Õ(n1.5). The first contribution of this current work is adapting the ring-
SIS based scheme from [26] to one based on the hardness of the regular SIS

problem which results in signatures of the same Õ(n1.5) length2. Our second
contribution is analogous to what the works [3,36,30] did for hash-and-sign sig-
natures – reduce the signature length to Õ(n) (of course the issues that have to
be dealt with are completely different). Our third contribution is showing that
the parameters of our scheme can be set so that the resulting scheme produces
much shorter signatures, but is now based on the hardness of the Learning With
Errors (LWE) problem [39] or on the hardness of a low-density version of the SIS
problem. All our results very naturally carry over to the ring setting, where the
key bit-size is reduced by a factor of approximately n (some sample parameters
are given in Figure 2).

Our signature scheme is also quite simple, requiring no pre-image sampling
over arbitrary lattices. All we do is sample the Normal distribution over Zm,
compute a vector-matrix product, do a random oracle query, compute another
vector-matrix product (this time the vector is sparse), and rejection sample. In
fact, in an online/offline setting where we can do pre-computations before being
given the message to sign, the online phase simply consists of doing a few vector
additions (since the matrix is being multiplied by a sparse vector) and rejection
sampling.

1.2 Techniques

We now briefly sketch our signature scheme and describe the issues involved in
lowering the size of the signature. The secret key is a matrix S ∈ Zm×k

q with
small coefficients, and the public key consists of the matrices A ∈ Zn×m

q and
T = AS mod q. The matrix A can be shared among all users, but the matrix T
is individual. To sign a message, the signer first picks a vector y ∈ Zm

q according

to some distribution D. Then he computes c ∈ Zk
q where c ← H(Ay mod q, μ),

and computes the potential signature vector z = Sc + y (there is no reduction
modulo q in this step). The vector z, along with c, will then be output as the
signature based on some criteria with the end goal being that the distribution
of (z, c) should be independent of the secret key matrix S.

1 We mention that the lattice-based identification schemes of Lyubashevsky [25] and
Kawachi et al. [23], while may be converted into signature schemes, are inherently
inefficient because every round of the ID scheme has soundness error at least 1/2.

2 As a side note to this first result, we think that it is interesting to point out that
the ring-structure, which seemed so native to [26] (and to [27]), turns out to not
actually provide any additional functionality, with its purpose being only to shorten
the key-sizes and make operations more efficient. This somewhat resembles the re-
cent developments in constructions of fully-homomorphic encryption schemes, where
the additional structure of ideal lattices was crucially used in earlier constructions
[14,15,10], but was subsequently shown to be unnecessary [9,2].
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Choosing when to output the pair (z, c) can be seen as a kind of rejection
sampling. If f and g are probability distributions and M ∈ R is such that for
all x, f(x) ≤ Mg(x), then if one samples elements z from g and outputs them
with probability f(z)/(Mg(z)), the resulting distribution is exactly f , and the
expected amount of time needed to output a sample is M .

Our goal, in the signature scheme above, is to come up with distributions f
and D so that for all x, two properties are satisfied: there is a small constantM
such that f(x) ≤ Mg(x), where g is the distribution generated by first picking
y from D and adding it to Sc for some random c; and the expected value of
vectors distributed according to f (which is the length of the signature) is as
small as possible. The idea in [26], when put into the above framework, was
to choose y uniformly from an m-dimensional sphere3 βr+v of radius r + v,
where r is some number and v is the maximum possible length of the vector
Sc, and only output z if it fell into a sphere βr of radius r. It’s not hard to
check that if f is the uniform distribution over the sphere βr, then by setting
M = vol(βr+v/βr) ≈ (1+ v/r)m, the distribution of z is exactly f . But in order
to keep M small, we need r > mv = Θ̃(m1.5) = Θ̃(n1.5), and so the vectors z
have length Õ(n1.5).

In our present work we show that we can do better by choosing f and D to
be the m-dimensional Normal distribution with standard deviation σ = Θ̃(v) =
Θ̃(

√
m), and only require that f(x) ≤ Mg(x) for the x that are not too big.

We can then show that M can be set to a constant, and the rejection sampling
algorithm produces a distribution that is statistically close to the distribution
of f . This means that the expected value of the length of the signature of z is
σ
√
m = Õ(m) = Õ(n). We prove the technical rejection sampling theorem in

Section 3 and then prove the security of the above signature scheme based on
the hardness of the SIS problem in Section 4.

Notice that the length of the signature is greatly affected by the parameter
m, and lowering m, while leaving everything else the same would produce even
shorter signatures. The danger of doing this is that the problem of recovering S
when given A and AS mod q now becomes easier (and is no longer based on the
SIS problem). The intuition is then to set all the parameters so that the hardness
of recovering the secret key is equal, in practice, to the hardness of forging
a signature. In Section 5 we explain how the parameters can be significantly
lowered by making our scheme be based on the LWE problem instead of on
SIS.

1.3 A Practical Comparison with Hash-and-Sign Signatures

On the theoretical side, both the scheme constructed in this paper and the
hash-and-sign scheme that uses the trapdoor sampling algorithms of [3,36] are
based on the hardness of finding a vector of length Õ(n) in SIS instances, which
by the worst-case to average-case reduction of Micciancio and Regev [31] is as
hard as solving approximate SIVP with a factor of Õ(n1.5) in all n-dimensional

3 In [26], it was actually a box, but it does not make a difference for the analysis here.
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lattices. On the practical side, however, the bit-length of our signature and keys
(see Figure 2) are approximately two orders of magnitude smaller for the same
security level (see [40] and also Figure 2 in [30]). This is mostly due to the
constants that are hidden in the big-Oh notation of the trapdoor generation
algorithms of [3] and [36].

As mentioned earlier, in a concurrent and independent work, Micciancio and
Peikert greatly improved the constants, and in some cases even removed some
logarithmic factors, in the trapdoor sampling algorithms [30]. While the proof
techniques are completely different, there are some high-level similarities between
the two schemes. The public key in our scheme is (A,AS) where A is a random
matrix mod q and S is a secret matrix with small coefficients. In [30], the public
key is (A,AS+G) where G is an additional public matrix with a very “simple”
form. In our scheme, the signature of a message is an ordered pair (Sc + y, c)
where c is a function (that invokes a random oracle) of the message and the vector
y is there to “hide” the shift Sc; while in [30], the signature is (Sc+ y1, c+ y2)
where c is a (different, random oracle-invoking) function of the message and yi

also serve the purpose of hiding the shift Sc (and c itself). While the schemes
may look similar, under the surface they behave rather differently.

The most interesting and significant difference occurs in the way the signatures
are generated. In our scheme, the vector c is a very sparse −1/0/1 vector whose
entropy is as small as the security parameter, but we must output it as part of
the signature. In [30], however, the size of the elements in c depends inversely
on the number of columns of S, but one only outputs a perturbed version of c as
part of the signature. Notice that the size of our signature is therefore dominated
by the number of rows of S multiplied by the number of bits needed to represent
elements in the vector Sc+ y, whereas in [30], the number of columns of S may
also play a significant role in the signature length.

The advantage in [30] due to the fact that c is never output in the clear is
that they may tailor the perturbations y1,y2 to the particular S that they are
supposed to hide, which allows these perturbations to be smaller than ours in
the case that S has enough columns to allow c to be “small enough”. When
instantiating both signature schemes based on the worst-case hardness of the
SIS problem, S needs to have a large number of rows, and thus the fact that
the bit-size of the entries of the signature from [30] is smaller than of those
in our scheme, may make the scheme from [30] more compact. On the other
hand, if one is to instantiate the more practical version of the schemes based
on the hardness of the LWE problem, then the number of rows in S could be
significantly smaller, and thus the fact that the size of our signature does not
depend on the number of columns of S gives it an advantage over the one in
[30]. We direct the reader to our sample instantiations in Figure 2 where one
can see the signature size rapidly decreasing as the number of rows (denoted by
m) shrinks. The trade-off is that as the number of rows shrinks, the worst-case
hardness assumption becomes stronger, but it is still believed that the security
of the average-case problem remains the same (see Section 2 and the full version
of this work).
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Additionally, the number of columns in our secret key S needs to only be large
enough to support multiplication by c, which allows the number of columns to be
significantly smaller than in the secret key of [30], where, for technical reasons,
reducing the number of columns of S ends up increasing the coefficients of c,
and thus possibly increasing the size of the signature. This allows our secret key
to be smaller that the one in [30]. Compared to the one concrete instantiation
(based on the hardness of the SIS problem) provided in [30], where the key size
is approximately 226.5 bits and the signature is a 13800 dimensional vector of
length 92000, thus requiring at least 13800 · log(92000/

√
13800) ≈ 130000 bits

to represent, for the same security level, some of our instantiations have the
signature bit-length about 25% longer, with the benefit of having the keys be
about 10 times smaller (column I of Figure 2). For different instantiations, we
can have the signature bit-length be about 45% shorter and have the same key
size (column III of Figure 2).

1.4 Notation

Throughout the paper, we will assume that q is a small (i.e. polynomial-size)
prime number and elements in Zq are represented by integers in the range[
− q−1

2 , q−1
2

]
. We will represent vectors by bold-face letters, and matrices by

bold-face capital letters. We will assume that all vectors are column vectors,
and vT will denote the transpose of the vector v. The �p norm of a vector v is
denoted by ‖v‖p, and we will usually avoid writing the p for the �2 norm. When-
ever dealing with elements that are in Zq, we always explicitly assume that all
operations in which they are involved end with a reduction modulo q. Thus for
a matrix A ∈ Zn×n

q and a vector s ∈ Zn, the product As is a vector in Zn
q . For

a distribution D, we use the notation x
$← D to mean that x is chosen according

to the distribution D. If S is a set, then x
$← S means that x is chosen uniformly

at random from S. For an event E, we write Pr[E;x1
$← D1, . . . , xk

$← Dk] to
mean the probability that E occurs when the xi are chosen from distributions
Di. All logarithms are base 2.

2 The SIS Problem and Its Variants

In this section, we will define the average-case problems upon whose security our
signature schemes will be based. All these problems fall into the category of the
Small Integer Solution (SIS) problem, which is essentially the knapsack problem
over elements in Zn

q .

Definition 2.1 (�2-SISq,n,m,β problem). Given a random matrix A
$← Zn×m

q

find a vector v ∈ Zm \ {0} such that Av = 0 and ‖v‖ ≤ β.

In order for the above problem to not be vacuously hard, we need to have
β ≥

√
mqn/m in order for there to exist a solution v. The signature scheme

that we construct in Section 4 is based on the presumed hardness of the above
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problem. In Section 5, we construct a more efficient signature scheme based on
the hardness of SIS variants defined below.

Definition 2.2 (SISq,n,m,d distribution). Choose a randommatrixA
$← Zn×m

q

and a vector s
$← {−d, . . . , 0, . . . , d}m and output (A,As).

Definition 2.3 (SISq,n,m,d search problem). Given a pair (A, t) from the
SISq,n,m,d distribution, find a s ∈ {−d, . . . , 0, . . . , d}m such that As = t.

Definition 2.4 (SISq,n,m,d decision problem). Given a pair (A, t) decide,
with non-negligible advantage, whether it came from the SISq,n,m,d distribution
or whether it was generated uniformly at random from Zn×m

q × Zn
q .

Depending on the relationship between its parameters, the SISq,n,m,d search
(and decision) problem has somewhat different characteristics. If, for example, we
have d $ qn/m, then with very high probability there is only one vector s whose
coefficients have absolute value at most d such that As = t, and such instances
of the SISq,n,m,d problem are said to be low-density instances (borrowing from
terminology used to describe instances of the random subset sum problem).
On the other hand, if d , qn/m then the SISq,n,m,d distribution is actually
statistically close to uniform over Zn×m

q × Zn
q (by the leftover hash lemma)

and there are many possible solutions s for which As = t. These instances are
traditionally called high-density instances. The hardness of the SIS problem is
discussed in the full version of this work, but we will just mention that the
hardest instances are those in which d ≈ qn/m.

Notice that if m ≥ 2n, then the matrix A
$← Zn×m

q will, with high probability,
contain n columns that are linearly independent over Zq (when m ≥ 2n and q is
a prime of size at least 2m, this will be true with probability e−Ω(n)). Without
loss of generality, assume that the last n columns of A are linearly independent,
and so A = [A1||A2] where A2 is an n× n invertible matrix. If we consider the
matrix A′ = A−1

2 A = [A−1
2 A1||I], where I is an n× n identity matrix, then we

have Av = 0 iff A′v = 0, and so the �2-SISq,n,m,β problem is equally hard if
the last n columns of the matrix A form the identity matrix. Similarly, given an
instance (A, t) of the SISq,n,m,d problem, we can change it to (A−1

2 A,A−1
2 t),

and a solution for one will be exactly the same as the solution for the other.
Therefore throughout this paper we will assume, without loss of generality, that
the matrix A ∈ Zn×m

q is of the form A = [Ā||I], where Ā is uniformly generated

in Zn×(m−n)
q . For reasons related to lattices, when A is in this form, we will refer

to it as being in Hermite Normal Form [32].

2.1 Relations between the SIS Variants

We now state some results about the relationship between the SIS variants
defined above. The first relationship is an adaptation of a classic theorem of
Impagliazzo and Naor [22], who showed that the decisional version of the random
subset sum problem is as hard as the search version. This theorem has been
recently generalized by Micciancio and Mol [29].



Lattice Signatures without Trapdoors 745

Theorem 2.5. [22,29] If d is polynomial in n, then there is a polynomial-time
reduction from the SISq,n,m,d search problem to the SISq,n,m,d decision problem.

The next lemma shows that the decision SISq,n,m,d problem gets harder when the
value of d increases. This is a rather intuitive result since the decision SISq,n,m,d

problem becomes vacuously hard when d , qn/m since the SISq,n,m,d distribu-
tion will be statistically close to uniform.

Lemma 2.6. For any non-negative integer α such that gcd(2α + 1, q) = 1,
there is a polynomial-time reduction from the SISq,n,m,d decision problem to
the SISq,n,m,(2α+1)d+α decision problem.

The final lemma that we prove shows that if m = 2n and one can solve the can
solve �2-SISq,n,m,β problem for a small-enough β, then one can solve the decision
SISq,n,m,d problem. This result is essentially folklore (see [32]), but we state it
here for completeness.

Lemma 2.7. If m = 2n and 4dβ ≤ q, then there is a polynomial-time reduction
from solving the SISq,n,m,d decision problem to the �2-SISq,n,m,β problem.

3 Rejection Sampling and the Normal Distribution

Definition 3.1. The continuous Normal distribution over Rm centered at v with

standard deviation σ is defined by the function ρmv,σ(x) =
(

1√
2πσ2

)m

e
−‖x−v‖2

2σ2

When v = 0, we will just write ρmσ (x). We will define the discrete Normal
distribution over Zm as follows:

Definition 3.2. The discrete Normal distribution over Zm centered at some
v ∈ Zm with standard deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρ
m
σ (Zm).

In the above definition, the quantity ρmσ (Zm) =
∑

z∈Zm

ρmσ (z) is just a scaling

quantity needed to make the function into a probability distribution. Also note
that for all v ∈ Zm, ρmv,σ(Z

m) = ρmσ (Zm), thus the scaling factor is the same for
all v.

The below lemma collects some basic facts about the discrete Normal distri-
bution over Zm. These results are special cases of more general results about the
discrete Normal distribution over arbitrary lattices from [6,31,37].

Lemma 3.3

1. Pr[|z| > ω(σ
√
logm); z

$← D1
σ] = 2−ω(logm), and more specifically,

Pr[|z| > 12σ; z
$← D1

σ] < 2−100.
2. For any z ∈ Zm, and σ ≥

√
log 3m, Dm

σ (z) ≤ 2−m+1.

3. Pr[‖z‖ > 2σ
√
m; z

$← Dm
σ ] < 2−m.

We now state the main theorem of this section whose proof is given in the full
version of this paper.
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Signing Key: S
$← {−d, . . . , 0, . . . , d}m×k

Verification Key: A
$← Z

n×m
q ,T← AS

Random Oracle: H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}
Sign(μ,A,S)
1: y

$← Dm
σ

2: c← H(Ay, μ)
3: z← Sc+ y
4: output (z, c) with probability

min
(

Dm
σ (z)

MDm
Sc,σ

(z)
, 1
)

Verify(μ, z, c,A,T)
1: Accept iff
‖z‖ ≤ 2σ

√
m and c = H(Az−Tc, μ)

Fig. 1. Signature Scheme

Theorem 3.4. Let V be a subset of Zm in which all elements have norms less
than T , σ be some element in R such that σ = ω(T

√
logm), and h : V → R be

a probability distribution. Then there exists a constant M = O(1) such that the
distribution of the following algorithm A:

1: v
$← h

2: z
$← Dm

v,σ

3: output (z,v) with probability min
(

Dm
σ (z)

MDm
v,σ(z)

, 1
)

is within statistical distance 2−ω(log m)

M of the distribution of the following algo-
rithm F :

1: v
$← h

2: z
$← Dm

σ

3: output (z,v) with probability 1/M

Moreover, the probability that A outputs something is at least 1−2−ω(log m)

M .

More concretely, if σ = αT for any positive α, then M = e12/α+1/(2α2), the

output of algorithm A is within statistical distance 2−100

M of the output of F , and

the probability that A outputs something is at least 1−2−100

M .

4 Signature Scheme Based on SIS

In this section we present our main theoretical result – a signature scheme based,
in the random oracle model, on the average-case hardness of the �2-SISq,n,m,β

problem for β = Õ(n). The scheme is presented in Figure 1 and the definition
of its parameters and some sample instantiations are in Figure 2. We will now
explain the workings of the scheme and sketch the intuition for its security.

The secret key is an m× k matrix S of random integers of absolute value at
most d, and the public key consists of a random matrix A ∈ Zn×m

q and another

matrix T ∈ Zm×k
q which is equal to AS. For concreteness, we will consider dis-

tributions to be statistically close if they are ≈ 2−100 apart, and we will also
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I II III IV V

n 512 512 512 512 512

q 227 225 233 224 233

d 1 1 31 1 31

k 80 512 512 512 512

m ≈ 64 + n · log q/ log (2d+ 1) 8786 8139 3253 - -

m = 2n (used in Section 5) - - - 1024 1024

κ s.t. 2κ ·
(
n
κ

)
≥ 2100 28 14 14 14 14

σ ≈ 12 · d · κ ·
√
m 31495 15157 300926 5376 166656

M ≈ exp
(
12dκ

√
m/σ + (dκ

√
m/2σ)2

)
2.72 2.72 2.72 2.72 2.72

signature size (bits) ≈ m log (12σ) 163000 142300 73000 16500 20500

secret key size (bits) ≈ m · k · log(2d+ 1) 220 222.5 223 219.5 221.5

public key size (bits) ≈ n · k · log q 220 222.5 223 222.5 223

Fig. 2. Signature Scheme Parameters. The parameters in columns I, II, and III are
based on the hardness of the 
2-SISq,n,m,β problem where for the β in Theorem 4.1.
Columns IV and V are based on the hardness of the SISq,n,m,d search problem (see
Section 5). Furthermore, the parameters in column V are also compatible with the LWE

assumption (see Section 5.1. The security level for all the instantiations is for δ ≈ 1.007
(see the full version of this paper). For the ring-based instantiations, described in the
full version, the key sizes are smaller by a factor of k.

want ≈ 100 bits of security from our cryptographic hash function H, and so we
will assume that the output of H is 100 bits.4

To sign a message μ, the signer first picks an m-dimensional vector y from the
distribution Dm

σ , for some standard deviation σ, then computes c = H(Ay, μ),
and finally computes z = Sc+ y (there is no reduction modulo q in this step!).
The potential signature which he outputs is (z, c), but he only outputs it with

probability min
(

Dm
σ (z)

MDm
Sc,σ(z)

, 1
)
. If nothing was output, the signer runs the signing

algorithm again until some signature is outputted.
The main idea behind this structure of the signing algorithm is to make the

distribution of the signature (z, c) independent of the secret key S. The target
distribution for the z’s that we will be aiming for is Dm

σ , but the elements z in
the signature scheme come from the distribution Dm

v,σ, where v = Sc. This is
where we will apply the rejection sampling theorem, Theorem 3.4, from Section
3 to show that for an appropriately-chosen value of M and σ, the signature
algorithm will output something with probability approximately 1/M and the
statistical distance between its output is statistically close to the distribution in
which z is chosen from Dm

σ .

4 It is generally considered folklore that for obtaining signatures with λ bits of security
using the Fiat-Shamir transform, one only needs random oracles that output λ bits
(i.e. collision-resistance is not a requirement). While finding collisions in the random
oracle does allow the valid signer to produce two distinct messages that have the
same signature, this does not constitute a break.
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Once we decoupled the distribution of the signature from the distribution of
the secret key, we can use a forger who successfully breaks the signature to solve
the �2-SISq,n,m,β problem for β ≈ Õ(‖z‖). The idea is that given an A, one can
create a secret key S and publish the public key (A,AS). Then one can reply to
signing queries of the forger by either using the key S, or simply by producing
signatures by generating z from the distribution Dm

σ and programming the ran-
dom oracle accordingly. In our proof (Lemma 4.4), we choose the latter approach
because in Section 5, we will not know a valid secret key, but we would like to be
able to still use the the same lemma there. Once we have a way to reply to sign-
ing queries, we use the forking lemma [38,7] to use the forger’s valid signatures
to recover a short vector v such that Av = 0. One important caveat is that to
prove that v �= 0, there needs to be a second (unknown to us) valid secret key
S′ such that AS = AS′, and the forger cannot know which secret key we know.
To satisfy the existence of another secret key requires a particular relationship
between n,m, and q (Lemma 4.2), and the indistinguishability of S and S′ is
clearly satisfied because the distribution of the signature is independent of the
secret key.

We now discuss the verification procedure. Since we tailored z to be dis-
tributed according to Dm

σ , by Lemma 3.3, we know that with probability at
least 1− 2−m, we have ‖z‖ < 2σ

√
m. And since Ay = Az−Tc, the second part

of the verification will accept a valid signature.

Theorem 4.1. If there is a polynomial-time forger, who makes at most s queries
to the signing oracle and h queries to the random oracle H, who breaks the
signature in Figure 1 (with the relationship between the parameters as in Figure
2) with probability δ, then there is a polynomial-time algorithm who can solve the

�2-SISq,n,m,β problem for β = (4σ+2dκ)
√
m = Õ(dn) with probability ≈ δ2

2(h+s) .

Moreover, the signing algorithm produces a signature with probability ≈ 1/M
and the verifying algorithm accepts a signature produced by an honest signer
with probability at least 1 − 2−m.

Proof. The theorem is proved in a sequence of two Lemmas. In Lemma 4.3,
we show that our signing algorithm can be replaced by the one in Hybrid 2 of
Figure 3, and the statistical distance between the two outputs will be at most

ε = s(h+s)·2−n+1+s· 2−100

M . Since Hybrid 2 produces an output with probability
exactly 1/M , the signing algorithm produces an output with probability at least
(1 − ε)/M . Then in Lemma 4.4, we show that if a forger can produce a forgery
with probability δ when when the signing algorithm is replaced by one in Hybrid
2, then we can use him to recover a vector v such that ‖v‖ ≤ (4σ+2dκ)

√
m and

Av = 0 with probability at least
(
1
2 − 2−100

) (
δ − 2−100

)(
δ−2−100

h+s − 2−100
)

≈
δ2

2(h+s) . ��

Lemma 4.2. For any A ∈ Zn×m
q where m > 64 + n · log q/ log (2d+ 1), for

randomly chosen s
$← {−d, . . . , 0, . . . , d}m, with probability 1−2−100, there exists

another s′ ∈ {−d, . . . , 0, . . . , d}m such that As = As′.
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Hybrid 1

Sign(μ,A,S)

1: y
$← Dm

σ

2: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

3: z← Sc+ y

4: with probability min
(

Dm
σ (z)

MDm
Sc,σ

(z)
, 1
)
,

5: output (z, c)
6: Program H(Az−Tc, μ) = c

Hybrid 2

Sign(μ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, μ) = c

Fig. 3. Signing Hybrids

Lemma 4.3. Let D be a distinguisher who can query the random oracle H and
either the actual signing algorithm in Figure 1 or Hybrid 2 in Figure 3. If he
makes h queries to H and s queries to the signing algorithm that he has access
to, then for all but a e−Ω(n) fraction of all possible matrices A, his advantage of
distinguishing the actual signing algorithm from the one in Hybrid 2 is at most

s(h+ s) · 2−n+1 + s · 2−ω(log m)

M , or more concretely, s(h+ s) · 2−n+1 + s · 2−100

M .

Proof. We first show that the distinguisher D has advantage of at most s(h +
s)2−n+1 of distinguishing between the real signature scheme and Hybrid 1. The
only difference between the actual signing algorithm and the algorithm in Hybrid
1 is that in Hybrid 1, the output of the random oracle H is chosen at random
from {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ} and then programmed as the answer to
H(Az−Tc, μ) = H(Ay, μ) without checking whether the value for (Ay, μ) was
already set. Since D calls H h times, and the signing algorithm s times, at most
s+h values of (Ay, μ) will ever be set. We now show that each time the Hybrid
1 procedure is called, the probability of generating a y such that Ay is equal to
one of the previous values that was queried is at most 2−n+1. With probability
at least 1−e−Ω(n), the matrix A can be written in “Hermite Normal Form” (see
Section 2) as A = [Ā||I]. Then, for any t ∈ Zn

q ,

Pr[Ay = t;y
$← Dm

σ ] = Pr[y1 = (t − Āy0);y
$← Dm

σ ]

≤ max
t′∈Zn

q

Pr[y1 = t′;y1
$← Dn

σ ] ≤ 2−n+1,

where the last inequality follows from Lemma 3.3. Thus if Hybrid 1 is accessed s
times, and the probability of getting a collision each time is at most (s+h)2−n+1,
the probability that a collision occurs after s queries is at most s(s+ h)2−n+1.

We next show that the statistical distance between the outputs of Hybrid 1 and

Hybrid 2 is at most 2−ω(log m)

M . The proof of this fact is almost a direct consequence
of Theorem 3.4. Notice that if both Hybrids simply outputted (z,v = Sc) with

probability min
(

Dm
σ (z)

MDm
Sc,σ(z)

, 1
)
for Hybrid 1 and probability 1/M for Hybrid 2,

then Hybrid 1 exactly plays the role of the algorithmA in Theorem 3.4 andHybrid
2 corresponds toF (where themaximum T in Theorem 3.4 corresponds to dκ

√
m).
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But instead of outputting v = Sc, the Hybrids output just c. But this does not
increase the statistical distance because given v, one can generate c by picking a
random element c ∈ {w : w ∈ {−1, 0, 1}k, ‖w‖1 ≤ κ} such that Sc = v (for our
choice of parameters in this paper, there will actually be only one possible c, with
very high probability), and this will have the exact same distribution as the c in
both Hybrids. And finally, since the signing oracle is called s times, the statistical

distance is no more than s · 2−ω(log m)

M , or more concretely, s · 2−100

M , (since we set
σ = 12T ), and we obtain the claim in the lemma. ��

Lemma 4.4. Suppose there exists a polynomial-time forger F who makes at
most h queries to the signer in Hybrid 2, s queries to the random oracle H, and
succeeds in forging with probability δ. Then there exists an algorithm of the same

time-complexity as F that for a given A
$← Zn×m

q finds a non-zero v ∈ Zm such
that ‖v‖ ≤ (4σ + 2dκ)

√
m and Av = 0 with probability at least(

1

2
− 2−100

)(
δ − 2−100

)(δ − 2−100

h+ s
− 2−100

)
.

4.1 Setting the Parameters

In Figure 2, we set some sample parameters to demonstrate the influence of their
interplay on the sizes of the signature length and the key size. The secret key
is an m × k matrix with coefficients having absolute value at most d, and so it
can be represented by mk log (2d+ 1) bits. The public key A,T can be spit into
two parts – the matrix A can be shared by all users (and so can be considered
as part of the function), whereas the matrix T is individual. The part of the
public key that is individual for each user requires nk log q bits of storage. The
signature size is dominated by the vector z, since c is just a small bit-string that
is the output of the cryptographic hash function H. By design, the vector z is
distributed according to Dm

σ , and by Lemma 3.3, we know that with probability
at least 1 − 2−100, each coefficient of z is of length at most 12σ. Thus z can be
represented by m log (12σ) bits.

For security, we use the analysis of [13,32] (also discussed in the full version
of this paper), where it is shown that the smallest vector v such that Av = 0

can be produced has length min
(
q, 22

√
n log q log δ

)
. We would like this vector v

to have a larger size than the vector that can be extracted from the successful
forger, which is given in Lemma 4.4. There are some trade-offs between the sizes
of signatures and keys that can be achieved for the same security level. For
example, if we change the value of k from 80 in column I to 512 in column II,
it has the effect of making the keys larger by a factor of around 6, and at the
same time reducing the signature size by a little over 10%. Another interesting
trade-off is achieved by raising the value of d as in column III. Notice that what
most affects the length of the signature size is the parameter m. By raising the
value of d and q, we can lower m, and can reduce the signature size by almost
50% at the expense of slightly increasing the key sizes.
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5 Signatures Based on Low-Density SIS and LWE

From the sample instantiations in the previous section, we saw that m is the
one parameter that most affects the signature size. In this section we explore the
results of breaking the requirement that m ≈ 64 + n · log q/ log (2d+ 1) (which
is required for Lemma 4.2) and show that this still gives us a provably-secure
signature scheme (based on the low-density SISq,n,m,d problem), but with much
smaller signature and key sizes. Let us consider, for example, taking instantiation
III in Figure 2 and lowering the value of d from 31 to, say, 1, without changing
the value of m. The potential advantage of this modification is that the value
of σ goes down by a factor of d, which has the effect of making the signature
vector z smaller (by a factor d), which in turn makes it harder for the adversary
to produce a forgery, since he now needs to find a vector that is d times smaller
than before. This in turn allow us to lower other parameters, such as q and m,
which leads to a “virtuous cycle” of reducing the length of the signature.

We now look at what happens to the security proofs if we proceed as described
above. The main problem is that Lemma 4.2 is no longer true since for every
T, there will now be, with extremely high probability, only one S for which
AS = T. The fact that there were multiple S’s was crucially used at the end of
Lemma 4.4 to argue that a successful forger can be used to extract a small vector
v such that Av = 0. On the other hand, the proof of Lemma 4.3 is not affected
by the relationship between d and m, and so the real signature scheme is still
indistinguishable from one that uses Hybrid 2 as its signing algorithm. And since
Hybrid 2 does not use the secret key to produce signatures, for a given A, we
can use the secret key S with small coefficients in the actual signature, but use
an S′ with large coefficients (so that there exists an S′′ such that AS′ = AS′′)
in the proof (see Figure 4). If the distribution of the verification key (A,AS)
is computationally indistinguishable from that of (A,AS′) (and it is, based on
the hardness of the low-density SISq,n,m,d problem from Definition 2.4), the
distinguisher will not be able to tell that he is given an invalid key pair. And
since we never use the secret key to provide signatures to the forger in Lemma
4.4, the forger should act in the same way, and we will be able to find a non-zero
v such that Av = 0.

Using the above framework, we can obtain a signature scheme that is based on
the hardness of two problems (i.e. both problems need to be hard for our scheme
to be secure): the SISq,n,m,d decisional (and by Theorem 2.5, also computational)
problem and the �2-SISq,n,m,β problem with β = (4σ + 2d′κ)

√
m. Thus the

optimal parameter settings will be where the two problems are equally hard.
Furthermore, if we set m = 2n and have 4dβ ≤ q, then the SISq,n,m,d problem
reduces to the �2-SISq,n,m,β one (Lemma 2.7), and we end up with just one
simple computational hardness assumption – SISq,n,m,d. We formalize the above
intuition in two lemmas analogous to Lemmas 4.3 and 4.4 from Section 4.

Lemma 5.1. Let D be a distinguisher who can query the random oracle H
and either the actual key-generation/signing algorithms in Figure 1 or those in
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Hybrid 2

Signing Key: S
$← {−d, . . . , 0, . . . , d}m×k

Verification Key: A
$← Z

n×m
q ,T← AS

Sign(μ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, μ) = c

Hybrid 3

Signing Key: S
$← {−d′, . . . , 0, . . . , d′}m×k

Verification Key: A
$← Z

n×m
q ,T← AS

Sign(μ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, μ) = c

Fig. 4. Key-Generation and Signing Hybrids: d′ is set so that d′ = (2α + 1)d + α for
some positive integer α and m ≥ 64 + n · log q/ log (2d′ + 1)

Hybrid 3 in Figure 4. If he makes h queries toH and s queries to the signing algo-
rithm that he has access to, and can distinguish the real world from Hybrid 3 with

advantage δ, then he has advantage Ω(δ/k) −
(
s(h+ s) · 2−n+1 + s · 2−ω(log m)

M

)
in solving the SISq,n,m,d decision problem.

Lemma 5.2. Suppose there exists a polynomial-time forger F who is given the
verification key and access to the signing algorithm from Hybrid 3, and makes
at most h queries to the signing algorithm, s queries to the random oracle H,
and succeeds in forging with probability δ. Then there exists an algorithm of the

same time-complexity as F that for a given A
$← Zn×m

q finds a v ∈ Zm such
that ‖v‖ ≤ (4σ + 2d′κ)

√
m and Av = 0 with probability at least(

1

2
− 2−100

)(
δ − 2−100

)(δ − 2−100

h+ s
− 2−100

)
.

Proof. The proof is exactly the same as the one of Lemma 4.4, with d′ playing
the role of d. ��

5.1 The LWE Problem

In the LearningWith Errors (LWE) problem, one is given an oracle that produces
ordered pairs of the form (ai, bi) ∈ Zn

q × Z where the ai are uniformly random in
Zn

q , and bi = ai · s+ ei where s is some secret vector in Zn
q and ei is some “error”

of small absolute value. Regev [39] showed that there is a quantum reduction from
approximating SIVP in all lattices to solving random instances of LWE when the
errors ei come from the discrete Normal distributionDψ, and Peikert later showed
a classical reduction to LWE from some different lattice problems [35].

An equivalent versionofLWE, as shown in [4], is if the secret key is selected from
the distributionDn

ψ rather than from the uniform distribution. In addition, Regev
also showed that the decisional version of the LWE problem, where one is asked
to decide whether the ordered pairs (ai, bi) come from the uniform distribution or
whether they are generated such that bi = ai ·s+ei, is as hard as the search version.
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Using the above definitions, observe that if we have a matrix A = [Ā||I] ∈
Zn×2n

q , where Ā
$← Zn×n

q , then distinguishing pairs (A,As), where each s
$←

D2n
ψ , from uniformly distributed pairs in Zn×2n

q × Z2n
q is exactly the decisional

LWE problem. By the hybrid argument, distinguishing (A,AS), where each
column of the k columns of S is distributed according to D2n

ψ , from uniformly

distributed pairs in Zn×2n
q ×Z2n×k

q is also as hard as LWE. Therefore, except for
the distribution of the secret key S, the LWE problem is exactly the low-density
SISq,n,2n,d problem, and so we can easily change the scheme in the previous
section based on the hardness of low-density SIS to be based on LWE instead.

The most important feature of the secret key S that is used in the proofs is the

norm of each of its columns. If the norm of s
$← Dm

ψ is approximately the same

as that of a vector s′
$← {−d, . . . , 0, . . . , d}m, then the security and correctness

of the scheme from this section will go through almost entirely unchanged. It

can be seen that if ψ ≈
√

d·(d+1)
3 , then the length of s is approximately the same

as that of a vector s′ (since ‖s‖ is tightly concentrated around ψ
√
m and ‖s′‖

around
√
d(d+ 1)m/3). So a scheme based on LWE where ψ ≈ 18 would have

approximately the same signature size and key lengths as the scheme in column
V of Figure 2 where d = 31.

Notice that the LWE-based scheme in column V produces signatures that are
slightly longer than those produced by the scheme in column IV that is based on
the SISq,n,2n,1 problem. At this point, we are not aware of any algorithms that
specifically attack SISq,n,2n,1 which would justify making the signature longer
just so that it is based on the hardness of the LWE problem. But in view of
the recent algorithm of Arora and Ge [5], which uses algebraic attacks to attack
the LWE problem with very small errors, there may be reasons to think that the
instantiation in column V could be more secure because it uses larger coefficients.
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Rosen, Alon 719
Rouselakis, Yannis 375

Sahai, Amit 99
Sasaki, Yu 411



758 Author Index

Scafuro, Alessandra 153
Segev, Gil 628
Seurin, Yannick 554
Shamir, Adi 336
Smart, Nigel P. 465
Stam, Martijn 682
Standaert, Francois-Xavier 45
Steinberger, John 45

Takashima, Katsuyuki 591
Tessaro, Stefano 63
Tibouchi, Mehdi 446, 572
Tischhauser, Elmar 45
Tromer, Eran 483

Unruh, Dominique 135

Vaikuntanathan, Vinod 483
Visconti, Ivan 153
Vitse, Vanessa 9

Waters, Brent 228, 645, 663
Wee, Hoeteck 246
Wichs, Daniel 355, 483
Wiltshire-Gordon, John D. 172

Yilek, Scott 645
Yiu, Siu Ming 117
Yuen, Tsz Hon 117
Yung, Moti 609

Zhang, Ye 117


	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Tutorial on High Performance Computing Applied to Cryptanalysis
	Typical Cryptanalytic Applications
	Hardware Context
	Running Record Computations
	Algorithmic Challenges
	Conclusion
	References

	Another Look at Provable Security
	References


	Index Calculus
	Cover and Decomposition Index Calculus on Elliptic Curves Made Practical
	Introduction
	Survey of Previous Work
	Weil Descent and Cover Attacks
	Decomposition Attack

	Cover and Decomposition Attack
	Description of the Attack
	Sieving for Quadratic Extensions
	Complexity Analysis

	Application to Elliptic Curves Defined over Fp6
	Using a Genus 3 Cover
	Using a Genus 2 Cover
	Complexity and Comparison with Other Attacks

	A 149-Bit Example
	Conclusion and Perspectives
	References

	Improving the Complexity of Index Calculus Algorithms in Elliptic Curves over Binary Fields
	Introduction
	Preliminaries
	Definition and Notation
	Gröbner Bases [10]

	Solving Multivariate Polynomials with Linear Constraints
	Modeling the Linear Constraints
	Low-Degree Equations
	Linear Dependencies
	Description of the Linearization Algorithm
	Complexity Bounds for Solving Problem 2

	Application to ECDLP over Binary Fields
	Diem’s Variant of Index Calculus
	A Linearization Strategy for Solving ECDLP over F2n

	Experimental Results
	Validation of the Heuristic Assumption
	Gröbner Basis Computations

	Conclusion and Perspectives
	References


	Symmetric Constructions I
	Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations
	Introduction
	Related Work
	Our Contribution

	The Construction
	Indistinguishability Analysis
	An Upper Bound

	Attacks
	Daemen’s Attack for t = 1
	A Meet in the Middle Attack

	Statistical Properties
	Fourier Coefficients over All Permutations
	Fourier Coefficients in the Single-Round Even-Mansour Cipher
	Fourier Coefficients in the t-Round Key-Alternating Cipher

	Practical Constructions
	AES2: A Block Cipher Proposal Based on AES

	Conclusion, Open Problems and Future Work
	References

	Efficient and Optimally Secure Key-Length Extension for Block Ciphers via Randomized Cascading
	Introduction
	Key-Length Extension for Block Ciphers
	Existing Approaches to Key-Length Extension
	Our Results

	Preliminaries
	Basic Notation
	Random Systems

	Generic Attacks against Efficient Key-Length Extension Schemes
	One-Query Constructions
	Two-Query Constructions

	The Double XOR-Cascade Construction
	References


	Secure Computation
	Fair Computation with Rational Players
	Introduction
	Our Results
	Other Related Work

	Model and Definitions
	Execution in the Ideal World
	Execution in the Real World

	Positive Results for Rational Fair Computation
	The Fail-Stop Setting
	The Byzantine Setting

	Conclusions and Future Work
	References

	Concurrently Secure Computation in Constant Rounds
	Introduction
	Our Contributions
	The Main Technique
	Other Related Work

	Our Definitions
	UC Security and SPS
	Input Indistinguishable Computation

	Building Blocks
	Our Construction
	References

	Identity-Based Encryption Resilient to Continual Auxiliary Leakage
	Introduction
	Background
	Identity-Based Encryption with Auxiliary Inputs
	Auxiliary Input Model for Confidentiality
	Intuition
	Concrete Construction
	Security

	IBE with Continual Auxiliary Inputs
	Continual Auxiliary Leakage Model
	Construction in the Continual Auxiliary Leakage Model
	Further Discussions on the Continual Auxiliary Input Model
	Construction Supporting Leakage-Resilient Setup

	References


	Protocols
	Quantum Proofs of Knowledge
	Introduction
	Our Techniques
	Preliminaries

	Quantum Proofs of Knowledge
	Definitions
	Discussion

	Elementary Constructions
	QPoKs for All Languages in NP
	References

	On Round-Optimal Zero Knowledge in the Bare Public-Key Model
	Introduction
	Our Results and Techniques

	Issues in Security Proofs of Previous Results
	The Case of ΠMR [18]
	Replacing Simulation in Phases by Threads

	Round-Optimal cZK and rZK in the BPK Model
	Concurrent Zero Knowledge in the BPK Model
	Resettable Zero Knowledge in the BPK Model

	Efficient Instantiations
	References

	Robust Coin Flipping
	Introduction
	Preliminaries and Definitions
	Results
	Yao’s Robust Coin Flipping

	Simulating Finite Random Sources
	Cooperative Numbers
	Restatement Using Multilinear Algebra
	Two Players
	Three or More Players: What Can’t Be Done
	Three Players: What Can Be Done
	Higher-Order Robustness

	Application to Secure Multiparty Computation and Mental Poker
	References

	Unconditionally-Secure Robust Secret Sharing with Compact Shares
	Introduction
	Preliminaries
	Robust Secret Sharing
	Message Authentication Codes
	Reed-Solomon Error Correction

	The New Scheme and Its Analysis
	Conclusion and Open Questions
	References


	Lossy Trapdoor Functions
	All-But-Many Lossy Trapdoor Functions
	Introduction
	Preliminaries
	Definition of ABM-LTFs
	A DCR-Based ABM-LTF
	Setting and Assumptions
	Our Construction
	Security Analysis

	Application: Selective Opening Security
	ABM-LTFs with Explainable Tags
	Selective Opening Security
	IND-SO-CCA Security from ABM-LTFs

	References

	Identity-Based (Lossy) Trapdoor Functions and Applications
	Introduction
	Definitions
	IB-TDFs from Pairings
	References

	Dual Projective Hashing and Its Applications — Lossy Trapdoor Functions and More
	Introduction
	Our Contributions
	PreviousWork

	Dual Projective Hashing
	Lossy Trapdoor Functions
	Deterministic Encryption
	Deterministic Encryption
	Extractors
	Our Construction

	Instantiations from DDH and DLIN
	Instantiations from QR
	Instantiations from DCR
	Instantiations from LWE
	References


	Tools
	Efficient Zero-Knowledge Argumentfor Correctness of a Shuffle
	Introduction
	RelatedWork
	Our Contribution

	Preliminaries
	Special Honest Verifier Zero-Knowledge Argument of Knowledge

	Shuffle Argument
	Multi-exponentiation Argument
	The Prover’s Computation
	Trading Computation for Interaction

	Product Argument
	Implementation and Comparison
	References

	Malleable Proof Systems and Applications
	Introduction
	Definitions and Notation
	Derivation Privacy for Proofs

	Controlled Malleability for NIZKs
	Instantiating cm-NIZKs Using Groth-Sahai Proofs
	Malleability for Groth-Sahai Proofs
	An Efficient Instantiation of Controlled Malleable NIZKs

	Controlled Malleability for Encryption
	Definition of Controlled-Malleable CCA Security

	Compactly Proving Correctness of a Shuffle
	References

	Group to Group Commitments Do Not Shrink
	Introduction
	Preliminaries
	Bilinear Groups
	Notations
	Commitment Schemes
	Strictly Structure-Preserving Commitments
	Algebraic Algorithms
	Assumptions

	Lower Bounds
	Commitment Size
	Number of Verification Equations

	Optimal Constructions
	In Asymmetric Setting
	In Symmetric Setting
	Efficiency

	References

	Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting
	Introduction
	Background
	Composite Order Bilinear Groups
	Prime Order Bilinear Groups

	OurMainTools
	Parameter Hiding in Dual Orthonormal Bases
	The Subspace Assumption

	Analog of the Boneh-Boyen IBE Scheme
	Our Construction
	Semi-functional Algorithms

	Further Applications
	References


	Symmetric Constructions II
	Minimalism in Cryptography: The Even-Mansour Scheme Revisited
	Introduction
	The Even-Mansour Scheme
	Definition of the EM Scheme and Its Notation
	The Lower Bound Security Proof
	Previous Attacks on the Even-Mansour Scheme

	The Slidex Attack and a Tight Bound on the Security of the Even-Mansour Scheme
	The Slide with a Twist Attack
	The New Slidex Attack

	The Single-Key Even-Mansour Scheme
	Definition of the Scheme and Its Security Proof
	A Simple Optimal Attack on SEM

	The Security of Other Variants of the Even-Mansour Scheme
	Even-Mansour with Addition
	Even-Mansour with a Random Involution as the Permutation
	Addition Even-Mansour with an Involution as the Permutation

	Memoryless Attacks on the Even-Mansour Scheme
	OpenProblems
	References

	Message Authentication, Revisited
	Introduction
	Our Results

	Definitions
	Notation
	Message Authentication Codes

	Transformations for MACs
	From One to Multiple Verification Queries: uf-cma + ind-cma uf-cmva
	Domain Extension for ind-cma MACs
	From Selective to Full Security: suf-cma ⇒ uf-cma

	Constructions of Authentication Protocols
	Constructions from CCA-Secure Encryption
	Constructions from Hash Proof Systems
	Construction from Key-Homomorphic Weak-PRFs
	Constructions from Signatures
	Constructions from the LPN Assumption
	Three-Round Authentication from Any Weak PRF

	References

	Property Preserving Symmetric Encryption
	Introduction
	Our Contribution
	Related Work

	Property Preserving Encryption
	Security Notions
	Relations among Security Notions
	LoR vs. FtG

	Constructions of Property-Preserving Encryption
	An Explicit Construction for Testing Orthogonality

	References


	Symmetric Cryptanalysis
	Narrow-Bicliques: Cryptanalysis of Full IDEA
	Introduction
	Cryptanalytic Attacks on IDEA and Our Contribution

	Description of IDEA
	Biclique Attack
	Biryukov-Demirci Relation
	KeyRecoveryfortheFullIDEA
	New 5 Round Attack
	New 6 Round Attack
	New 7.5 Round Attack
	On Practical Verification
	Concluding Discussion
	References

	Cryptanalyses on a Merkle-Damgard Based MAC — Almost Universal Forgery and Distinguishing-H Attacks
	Introduction
	Related Work
	LPMAC with Narrow-Pipe Merkle-Damg˚ard Hash Functions
	Summary of Previous Analyses on MAC Algorithms
	Multi-collision Attack

	Generic Distinguishing-H Attack on LPMAC
	Main Idea
	Attack Procedure

	Generic almost Universal Forgery Attack on LPMAC
	Easiness and Hardness of almost Universal Forgery Attack
	Overall Strategy
	Multi-collision with Diamond Structure
	Forging Procedure
	Comparison between Simple Method and Diamond Structure

	Concluding Remarks
	References

	Statistical Tools Flavor Side-Channel Collision Attacks
	Introduction
	Preliminaries
	Notations and Side-Channel Model
	Correlation Collision Attack

	Shortcomings and Our Solutions
	Higher-Order Moments
	Collision Detection Using Probability Density Functions

	Practical Experiments
	Canright-Batina’s Masked AES S-Box
	Threshold Implementation of PRESENT
	Threshold Implementation of AES
	Boolean Masking in Software

	Conclusions
	References


	Fully Homomorphic Encryption
	Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers
	Introduction
	The DGHV Scheme over the Integers
	The New DGHV Public Key Compression Technique
	Description
	Semantic Security

	Extension of DGHV Encryption to Higher Degrees
	Adaptation of the BGV Framework to the DGHV Scheme
	The BGV Framework for Leveled FHE
	Modulus-Switching for DGHV
	The Modulus-Switching Algorithm for DGHV
	The DGHV Scheme without Bootstrapping
	Correctness and Security

	Improved Attack against the Approximate GCD Algorithm
	Experimental Results

	Implementation of DGHV with Compressed Public Key
	Implementation of Leveled DGHV
	Faster Ciphertext Expansion
	Bootstrapping: The Decryption Circuit
	Implementation Results

	References

	Fully Homomorphic Encryption with Polylog Overhead
	Introduction
	Packing Plaintexts and Batched Homomorphic Computation
	Permuting Plaintexts within the Plaintext Slots
	FHE with Polylog Overhead

	Computing on (Encrypted) Arrays
	Computing with  -Fold Gates
	Permutations over Hyper-rectangles
	Batch Selections, Swaps, and Permutation Networks
	Cloning: Handling High Fan-Out in the Circuit

	Permutation Networks from Abelian Group Actions
	Permutation Networks from Cyclic Rotations and Swaps
	Generalizing to Sharply-Transitive Abelian Groups

	FHE with Polylog Overhead
	The Basic Setting of FHE Schemes Based on Ideal Lattices and Ring LWE
	Implementing Group Actions on FHE Plaintext Slots
	Low-Overhead FHE

	References

	Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE
	Introduction
	Our Results
	Related Work
	Organization

	Preliminaries
	Homomorphic Encryption from LWE
	Fully Homomorphic Encryption from LWE

	Threshold Fully Homomorphic Encryption
	Construction of TFHE

	Secure MPC via TFHE
	Variants and Optimizations
	References


	Asymmetric Cryptanalysis
	Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers
	Introduction
	A Square-Root Algorithm for Partial Approximate Common Divisors
	Overview
	Description
	Logarithmic Speedup
	Application to GACD

	Implementation of the Square-Root PACD Algorithm
	Obstructions
	Tricks
	Logarithmic Speedup and Further Tricks
	New Security Estimates for the FHE Challenges

	Applications to Noisy Factoring
	Known Positions
	Unknown Positions

	Applications to Low-Exponent RSA
	References

	Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set Decoding
	Introduction
	Generalized Information Set Decoding
	The Merge-Join Building Block
	Our New Algorithm for Solving the Submatrix Matching Problem
	Our COLUMNMATCH Algorithm

	Comparison of Asymptotic Complexity
	References


	Efficient Reductions
	Optimal Security Proofs for Full Domain Hash, Revisited
	Introduction
	An Overview of Our Results
	Full Domain Hash and Coron’s Impossibility Result
	A Tight Security Reduction for FDH Signatures
	Extensions
	Related Work
	Open Problems

	Definitions
	Notations and Conventions
	Games
	Signature Schemes
	Trapdoor Permutations
	The RSA Trapdoor Permutation

	Full Domain Hash Signatures
	The Scheme
	Classical Security Results of TDP-FDH
	A Corrected Version of Coron’s Optimality Result
	A Tight Security Proof for TDP-FDH

	Lossiness of RSA from the Φ-Hiding Assumption
	Lossiness of RSA

	References

	On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model
	Introduction
	Preliminaries
	Security Proof with the Forking Lemma
	Description of the New Meta-reduction
	Proof of the Main Theorem
	Successful Simulation of the Forger
	Success of the Meta-reduction
	Main Theorem and Discussion

	References

	Tightly-Secure Signatures from Lossy Identification Schemes
	Introduction
	Related Work and Contributions
	Overview of Our Signature Schemes

	Preliminaries
	The Decisional Short Discrete Logarithm Problem
	The Ring-LWE Problem and Lattices
	The Subset Sum Problem
	Signature Schemes

	Lossy Identification Schemes
	A Signature Scheme Based on the DSDL Problem
	A Signature Scheme Based on Lattices
	A Signature Scheme Based on Subset Sum
	References


	Public-Key Schemes
	Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption
	Introduction
	Background
	Our Results
	Key Techniques
	Notations

	Dual Pairing Vector Spaces (DPVS) and the Decisional Linear (DLIN) Assumption
	Definition of Inner Product Encryption (IPE)
	Proposed (Basic) IPE Scheme
	Construction
	Security

	A Variant for Achieving Shorter Public and SecretKeys
	Comparison
	References

	Scalable Group Signatures with Revocation
	Introduction
	Related Work
	Our Contribution

	Background
	Bilinear Maps and Complexity Assumptions
	Groth-Sahai Proof Systems
	Structure-Preserving Signatures
	The NNL Framework for Broadcast Encryption
	Revocable Group Signatures

	A Revocable Group Signature Based on the Subset Difference Method
	Construction

	References

	Incremental Deterministic Public-Key Encryption
	Introduction
	Our Contributions
	Related Work
	Overview of Our Approach

	Preliminaries
	Probability Distributions
	Deterministic Public-Key Encryption

	Modeling Incremental Deterministic Public-Key Encryption
	A Generic Construction via Random Partitioning
	A Construction Based on the Decisional Diffie-Hellman Assumption
	References


	Security Models
	Standard Security Does Not Imply Security against Selective-Opening
	Introduction
	Technical Approach
	Preliminaries
	SOA-C Insecurity of CE Schemes
	SOA-K Insecurity of Encryption Schemes
	References

	Detecting Dangerous Queries: A New Approach for Chosen Ciphertext Security
	Introduction
	Related Work

	Detectable Chosen Ciphertext Security
	Detectable Encryption
	Facts about DCCA Security

	The Construction: CCA2 Security from DCCA Security
	Proof of Security
	Proof That Bad Query Event Does Not Happen
	Putting the Proof of the Main Theorem together

	References

	Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation
	Introduction
	Preliminaries
	Symmetric Encryption Supporting Fragmentation
	Unified Syntax
	Security for Stateful Schemes
	Realizations and Non-realizations

	Boundary Hiding
	Denial-of-Service Attacks
	Conclusions
	References


	Lattices
	Trapdoors for Lattices:Simpler, Tighter, Faster, Smaller
	Introduction
	Contributions
	Techniques

	Primitive Lattices
	Trapdoor Generation and Operations
	A New Trapdoor Notion
	Trapdoor Generation
	LWE Inversion
	Gaussian Sampling
	Trapdoor Delegation

	References

	Pseudorandom Functions and Lattices
	Introduction and Main Results
	Results and Techniques
	Discussion and Open Questions
	Other Related Work

	Preliminaries
	The Learning with Rounding Problem
	Reduction from LWE

	Synthesizer-Based PRFs
	Synthesizer Constructions
	The PRF Construction
	Security

	Direct PRF Constructions
	Efficiency
	Security under LWE

	References

	Lattice Signatures without Trapdoors
	Introduction
	Related Work and Our Results
	Techniques
	A Practical Comparison with Hash-and-Sign Signatures
	Notation

	TheSIS Problem and Its Variants
	Relations between the SIS Variants

	Rejection Sampling and the Normal Distribution
	Signature Scheme Based on SIS
	Setting the Parameters

	Signatures Based on Low-Density SIS and LWE
	The LWE Problem

	References


	Author Index



