
Chapter 8
Energy-Aware Scheduling of Independent Tasks
in Computational Grids

Abstract. This chapter introduces the application of the Hierarchical Genetic
Strategy-based Grid scheduler (HGS-Sched) to the energy-aware independent batch
scheduling problem in Computational Grids (CGs). The Dynamic Voltage Scaling
(DVS) methodology is used for both scaling the power supply of the grid resources
and reducing the cumulative power energy utilized by the grid computing machines.
Two implementations of HGS-Sched—with elitist and struggle replacement mecha-
nisms respectively—are defined and empirically evaluated. The effectiveness of the
hierarchical schedulers are compared with the quality of single-population Genetic
Algorithms (GAs) and Island GA models for four CG significant scenarios in static
and dynamic modes. The simulation results show that meta-heuristic grid schedulers
can significantly reduce the energy consumption in the system as well as be easily
adapted to various scheduling scenarios.

8.1 Introduction

The main issues related to power consumption and effective thermal management
in high performance computing have been induced by the sheer scale of enterprise
computing environments and data centers. In large supercomputer centers and next
generation distributed systems such as ‘green’ grid clusters and clouds, the growing
operating, power and cooling rates have become the dominant part of the users’
and system managers’ budgets. Novel innovative green computing technologies are
mainly devoted to the optimization of system thermodynamics [108]. Profiles of
hardware energy consumption and application energy consumption are gathered in
order to be correlated with workload distribution and energy consumption of the
different power and cooling systems [43].

While CGs have been widely promoted as affordable alternatives to supercom-
puters, a significant disproportion of resource availability and resource provision-
ing has been empirically observed [76]. Therefore, a significant deal of research in
grid computing is devoted to design novel, effective grid schedulers, which can si-
multaneously optimize the key grid objectives—such as makespan, flowtime, and

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 155–175.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

156 8 Energy-Aware Scheduling in Computational Grids

resource utilization [35], as well as the energy consumed by all system components
and users.

That is to say, while the main purpose of grid schedulers is to efficiently and
optimally allocate application tasks to a set of available resources, one should also
consider a series of requirements including energy efficiency. Energy-efficient
scheduling in CGs has therefore become a relevant yet complex endeavor due to
the multitude of constraints and the different optimization criteria and priorities of
the resource owners. Heuristic approaches have demonstrated to be effective for
designing energy-aware grid schedulers by keeping a balance among various pref-
erences and goals of the grid users, resource and service managers, and resource
owners.

This chapter addresses the problem of energy optimization for Independent Batch
Scheduling in CGs. The average energy consumption is considered as a complemen-
tary scheduling criterion along with the makespan as the primary objective. Accord-
ing to the notation introduced in Sec. 1.4.2, an instance of the independent batch grid
scheduling problem with energy optimization criterion is expressed in the following
way:

Rm [{b, indep,(stat,dyn),hier}] (Cmax,EI(EII)) (8.1)

where:

• Cmax – denotes a makespan as the primary scheduling objective
• EI(EII) – denotes total energy consumption as the second scheduling criterion

(EI or EII is selected depending on the scheduling scenario (see Sec. 8.3.2))

This chapter extends the empirical analysis presented in [82] by the implementation
and the comparative analysis of the effectiveness of the multi-population and single-
population GA-based Grid schedulers. The term ‘green’ used in this chapter refers
not just to the low-power system devices, but also to the energy-aware schedulers.

8.2 Energy Model

The main module in the energy-aware grid scheduling model presented in this chap-
ter is the Dynamic Voltage and Frequency Scaling (DVFS) technique. Used for ad-
justing the voltage supplies and frequencies of the grid computational nodes, the
DVFS technique is primarily based on the power consumption model employed
in complementary metal-oxide semiconductor (CMOS) logic circuits [13]. In this
model, the capacitive power Powji–utilized by the machine i for computing the task
j–depends on the voltage supply and machine frequency, and it is calculated as
follows:

Powji = A ·C · v2 · f , (8.2)

where A is the number of switches per clock cycle, C is the total capacitance load,
v is the supply voltage and f is the frequency of the machine (see also Chapter 7,
Sec. 7.3.1, Eq. (7.1)). The energy consumed per machine i for the computation of
task j can then be derived using the following formula:

8.2 Energy Model 157

E ji =

∫ completion[j][i]

0
Powji(t)dt (8.3)

where completion[j][i] is a completion time of the task j on machine i.
Each machine in the grid has been equipped with a DVFS module [97] for scaling

its supply voltage and operating frequency. It has been assumed that the frequency
of the machine is proportional to its processing speed (see [104]). It follows from the
Eq. (8.2) that the reduction of the supply voltage and frequency is directly correlated
to the reduction of the energy utilization. Table 8.1 shows the parameters for 16
DVFS levels and three main ‘energetic’ categories for machines defined for the grid
system employed in this study.

Table 8.1 DVFS levels for three machine classes

Class I Class II Class III

Level Volt. Rel.Freq. Volt. Rel.Freq. Volt. Rel.Freq.

0 1.5 1.0 2.2 1.0 1.75 1.0

1 1.4 0.9 1.9 0.85 1.4 0.8

2 1.3 0.8 1.6 0.65 1.2 0.6

3 1.2 0.7 1.3 0.50 1.9 0.4

4 1.1 0.6 1.0 0.35

5 1.0 0.5

6 0.9 0.4

The energetic class of machine i, (i ∈ M), denoted by si and represented by the
meta-vector Vr(i) of DVFS levels, can be specified as:

Vr(i) =
[

(vs0(i), fs0(i)); . . . ;(vsl(max)
(i), fsl(max)

(i))
]T

(8.4)

where vsl (i) refers to the voltage supply for machine i at level sl , fsl (i) is a scaling
parameter for the frequency of the machine at the same level sl , and lmax is the
number of levels in the class si. The parameters { fs0(i), . . . , fsl(max)

(i)} are in the
[0,1] range and should be interpreted as the relative frequencies of the machine i of
class si at the s0, . . . ,sl(max) DVFS levels.

The reduction of the machine frequency and its supply voltage can lead to the
extension of the computational times of the tasks executed on that machine. For a
given ‘task-machine’ pair (j, i), the completion times for the task j on machine i at

158 8 Energy-Aware Scheduling in Computational Grids

different DVFS levels in the class si can be interpreted as the coordinates of a vector
ÊTC[j][i] which is defined as:

ÊTC[j][i] =

[

1
fs0(i)

·ETC[j][i], . . . ,
1

fsl(max)
(i)

·ETC[j][i]

]

(8.5)

where ETC[j][i] are the expected completion times for task j on machine i calcu-
lated by using the conventional ETC matrix model (see Chapter 2, Sec. 2.2).

The ETC matrix model defined in Chapter 2 can be directly adapted to the energy-
aware scheduling of independent tasks in grids. The completion times calculated for
each pair (j, i) of task–machine labels in conventional ETC matrix (see Eq. (2.2))
should be replaced by the ÊTC[j][i] vectors, that is:

ÊTC =
[

ÊTC[j][i][sl]
]

n×m×sl(max)

(8.6)

where ÊTC[j][k][sl] is the time necessary for the completion of the task j on ma-
chine i at the level sl .

Based on Equations (8.2), (8.3) and (8.6) the energy utilized for completing task j
on machine i at level sl can be defined as a scalar product of the number of switches
per clock cycle, the total capacitance load, the frequency and the squared voltage at
level sl , and the estimated completion time of task j on machine i. That is to say:

E ji(sl) = γ · (fsl (i)) j · f · [(vsl (i)) j]
2 · ÊTC[j][i][sl], (8.7)

where γ = A ·C is a constant parameter for a given machine class, (vsl (i)) j is a
voltage supply value for class si and machine i at level sl for computing task j, and
(fsl (i)) j is a corresponding relative frequency for machine i.

Based on the Equations (8.6), (8.7) and (8.5) the computational times for each
possible pair (j, i) at the level sl can be calculated as:

Tim{ j,i,sl} = γ · (fsl (i)) j · f · [(vsl (i)) j]
2 · (fs1(i)) j ·ETC[j][i] =

= γ · f · [(vsl (i)) j]
2 ·ETC[j][i]

(8.8)

The cumulative energy utilized by the machine i for the completion of all tasks from
the batch that are assigned to this machine, is defined in the following way:

Ei = ∑ j∈Tasks(i)
l∈L̂ j

{Tim{ j,i,sl}}+ γ · f · [vsmax]
2 · readyi + γ · fsmin(i) · f ·

·[vsmin(i)]
2 · Idle[i] = γ · f ·∑ j∈Tasks(i)

l∈L̂i

([(vsl (i)) j]
2 ·ETC[j][i])+

+[vsmax(i)]
2 · readyi+ fsmin(i) · [vsmin(i)]

2 · Idle[i]

(8.9)

8.3 Scheduling Scenarios and Objectives 159

where Tasks(i) is a set of tasks assigned to machine i, readyi is the ready time of
machine i, Idle[i] denotes an idle time of machine i, and L̂i denotes a subset of DVFS
levels used for the tasks assigned to machine i. All additional machine frequency
transition overheads are ignored. These overheads take usually a negligible amount
of time (e.g., 10ms- 150ms, see [109]) and do not bear down on the overall ETC
model with an active ‘energetic’ module.

Finally, an average cumulative energy utilized by the grid system for completion
of all tasks in the batch is defined as follows:

Ebatch =
∑m

i=1 Ei

m
(8.10)

This model is used in the following section for specification of two scheduling sce-
narios and the definition of the scheduling criteria.

8.3 Scheduling Scenarios and Objectives

Two main scheduling scenarios are considered in this study, namely:

I. I – Max-Min Mode, in which each machine works at the maximal DVFS level
during the execution and computation of tasks and enters into idle mode after
the execution of all tasks assigned to this machine;

II. II – Modular Power Supply Mode, in which each machine can work at differ-
ent DVFS levels during the task executions and can then enter into idle mode.

In the former, the consumption of the of the energy depends on the ‘energetic’ class
of the system devices or services, defined as ‘machines’ (resources) in the system.
No modifications of the conventional scheduling procedures and standard schedul-
ing objectives—such as makespan, flowtime, tardiness, etc. (see Chapters 1 and
2)—are needed. In the latter, the optimal power supply levels can be specified for
each machine, and the energy consumption can subsequently be reduced by dimin-
ishing the power supply in the machines while preserving the deadline constraints
for the main tasks.

The procedures for calculation and optimization of the two scheduling objective
functions, makespan and cumulative energy utilized by the system, are different
in the aforementioned scheduling scenarios. The details are discussed in the two
following subsections.

8.3.1 Makespan Optimization

The minimization of the makespan is the first step of the optimization procedure in
the scheduling objectives. Based on the ETC matrix model and denoted by Cmax,
the makespan can be defined in terms of the completion times of the machines (see
Chapter 2, Sec. 2.2.2). The finishing time for the last task in the batch is specified
as the maximal completion time of all machines available in that batch. Denoted by
completion[i], the completion time of machine i is the cumulative time required for

160 8 Energy-Aware Scheduling in Computational Grids

both reloading the machine i after finalizing the previously assigned tasks and for
completing the tasks currently assigned to the machine.

In Max-Min Mode such completion time can be defined as:

completionI[i] = readyi + ∑
j∈Tasks(i)

ETC[j][i]. (8.11)

The makespan in this mode is calculated in the following way:

(Cmax)I =
m

max
i=1

completionI[i]. (8.12)

The idle time for machine i working in Max-Min Mode can be expressed as the
difference between the makespan and completionI[i], i.e.:

IdleI [i] = (Cmax)I − completionI[i] (8.13)

It should be clear that for the machine with the maximal completion time (makespan)
the idle factor is zero.

In Modular Power Supply Mode, for each task-machine pair, the DSV level sl

must be specified. The formulae for computing the completion time, makespan, and
idle time at the level si can be defined as:

completionII[i] = readyi + ∑
j∈Tasks(i)

1
fsl (i)

·ETC[j][i]. (8.14)

(Cmax)II =
m

max
i=1

completionII[i]. (8.15)

IdleII [i] = (Cmax)II − completionII[i] (8.16)

8.3.2 Energy Optimization

The second step of the scheduling optimization procedure is the minimization of the
total energy consumed in CG for scheduling a given batch of tasks.

The average energy consumed in the system in Min-Max Mode is defined as:

EI =
1
m ·∑m

i=1 γ · completionI[i] · f · [vsmax(i)]
2+

+ 1
m ·∑m

i=1 γ · fsmin(i) · [vsmin(i)]
2 · IdleI[i]

(8.17)

In Modular Power Supply Mode the average cumulative energy is given by
Eq. (8.10):

EII = Ebatch =
∑m

i=1 Ei

m
(8.18)

8.4 Empirical Analysis 161

where1

Ei = γ · f ·∑ j∈T (i)
l∈Li

([(vsl (i)) j]
2 ·ETC[j][i])+

+[vsmax(i)]
2 · readyi + fsmin(i) · [vsmin(i)]

2 · Idle[i]

(8.19)

In both cases EI and EII are minimized and subject to the following constraint:

∑
l∈L̂i

[

1
fsl (i)

·ETC[j][i]

]

≤ Cmax; ∀i ∈ {1, . . . ,m}, (8.20)

where L̂i denotes a subset of DVFS levels specified for tasks assigned to machine i.

8.4 Empirical Analysis

The implementation of the energy management model based on the DVFS method
typically produces an improvement in the load balancing of machines. However,
DVFS itself does not change the task assignment. While machines are kept in use
for a longer time, they work in a low-cost mode in terms of energy consumption.
Conventional load-balancing methods, such as goal programming, are typically ef-
fective just for the static scheduling case. It is arguable that, for a successful im-
plementation of dynamic load-balancing and dynamic programming schedulers, a
knowledge of all possible states in the system is needed, which is not feasible for
large-scale grids.

Metaheuristic approaches are the most promising solution for ‘green’ schedul-
ing. The effectiveness of single-population GAs for the energy optimization in grid
scheduling has been presented in [82]. This chapter substantially extends our initial
analysis by introducing an empirical evaluation of multi-population grid schedulers.
Within this section, the implementations of the HGS-Sched algorithm for energy-
aware scheduling problem is referred by Green-HGS-Sched.

Similarly to previous chapters, several grid scenarios for static and dynamic
scheduling are modeled using the grid simulator. In this case the general architec-
ture of Sim-G-Batch has been extended through an energy module as presented in
Fig. 8.1.

The simulator generates benchmarks for the problem based on the following in-
put data:

• workload vector of tasks;
• computing capacities of machines;
• prior machines loads;
• machine categories specification parameters (number of classes, maximal com-

putational capacity value, computational capacity ranges interval for each class,
machine operational speed parameter for each class, etc.);

• DVFS levels matrix for machine categories; and
• the ETC matrix.

1 See Equation (8.9).

162 8 Energy-Aware Scheduling in Computational Grids

Fig. 8.1 General model of the ‘energy-aware’ implementation of Sim-G-Batch simulator

The machines can work at 16 DVFS levels and can be categorized into three ‘en-
ergetic’ resource classes, Class I, Class II, and Class III. The class identifiers have
been selected randomly for the machines. The values of supply voltages and rela-
tive machine frequencies at all DVFS levels are specified in Table 8.1. The general
settings of the simulator for four grid scenarios—Small, Medium, Large and Very
Large grids—are the same as in the empirical analysis presented in Chapter 4, and
defined in Table 4.1.

The configurations of key parameters for both implementations of single-
population GA, IGA and Green-HGS-Sched meta-heuristics are presented in Ta-
bles 8.3, 8.4 and 8.5. The size of the initial and intermediate populations in IGA
depends on the implementation of the genetic engine in islands and are the same as
for the single-population GA-Elit and GA-St algorithms. The parameters for single-
population GA schedulers and the energy-aware implementation of HGS-Sched are
similar to the settings defined in Chapters 4 and 5 for GAs and HGS-Sched.

8.4.1 Energy Aware Genetic-Based Batch Schedulers

Six genetic-based meta-heuristics have been developed for minimizing the makespan
and energy consumption in the Max-Min and Modular Power Supply scheduling

8.4 Empirical Analysis 163

Table 8.2 Six GA-based grid schedulers evaluated in the empirical analysis

Scheduler Type of algorithm Replacement method

GA-Elit Single-population GA Elitist Generational

GA-St Single-population GA Struggle

IGA-Elit Island GA Elitist Generational

IGA-St Island GA Struggle

HGS-Elit Green-HGS-Sched Elitist Generational

HGS-St Green-HGS-Sched Struggle

modes defined in the previous section. The configuration of the genetic operators in
those meta-heuristics is presented in Table 8.2.

The aforementioned methodologies differ in the implementation of the replace-
ment mechanism in the main genetic framework. The Elitist Generational replace-
ment is used in xxx-Elit algorithms and the Struggle procedure in xxx-St algorithms.
Both single-population GAs—GA-Elit and GA-St—are implemented as the main
genetic mechanism in IGA-Elit, HGS-Elit, IGA-St, and HGS-St respectively.

The concept of IGA algorithm with the specification of all key parameters for
this strategy, was presented in Chapter 4 (Sec. 4.4.2.1).

The template of the main genetic engine in all schedulers is defined in Alg. 1 in
Chapter 3, and the encoding methods for the schedulers are the same as in Sec. 3.3.
The combination of the main operators for all schedulers is similar to the optimal
configuration of the genetic mechanism in the HGS-Sched generated in Chapter 4.
The Linear Ranking is used as the selection scheme, and the Cycle Crossover (CX)
and Move mutation are selected as the main genetic operators.

The configurations of key parameters for both implementations of single-
population GA, IGA and Green-HGS-Sched meta-heuristics are presented in
Tables 8.3, 8.4 and 8.5. The size of the initial and intermediate populations in IGA
depends on the implementation of the genetic engine in islands and are the same as
for the single-population GA-Elit and GA-St algorithms. The parameters for single-
population GA schedulers and the energy-aware implementation of HGS-Sched are
similar to the settings defined in Chapters 4 and 5 for GAs and HGS-Sched.

The relative performance of all six schedulers has been quantified with the fol-
lowing two metrics:

• minimal makespan defined as follows:

makespan = min{MakespanI,MakespanII} (8.21)

164 8 Energy-Aware Scheduling in Computational Grids

Table 8.3 GA setting for static and dynamic benchmarks

Parameter GA-Elit GA-St

evolution steps 5∗m 20∗m

pop. size (pop size)
(log2(m))2 − log2(m)� 4∗ (log2(m)−1)

intermediate pop. pop size−2 (pop size)/3

cross probab. 1.0 1.0

mutation probab. 0.2

max time to spend 30 secs (static) / 45 secs (dynamic)

Table 8.4 HGS-Sched settings for static and dynamic benchmarks

Parameter

period of metaepoch 20∗n

nb of metaepochs 10

degrees of branches (t) 0 and 1

population size in the core 3∗ (
4∗ (log2 n−1)/(11.8)�)

population size in the sprouted branches (b pop size) (
(4∗ (log2 n−1)/(11.8)�)

intermediate pop. in the core abs((r pop size)/3)

intermediate pop. in the sprouted branch abs((b pop size)/3)

cross probab. 0.9

mutation probab. in core 0.4

mutation probab. in the sprouted branches 0.2

max time to spend 40 secs (static) / 70 secs (dynamic)

• a relative energy consumption improvement rate expressed as follows:

Im(E) =
EI −Ebatch

Ebatch
·100%, (8.22)

where EII and EI are defined in Eq. (8.10) and Eq. (8.17) respectively;

8.4 Empirical Analysis 165

Table 8.5 Configuration of IGA algorithm

Parameter

itd 20∗n

mig 5 %

number of islands (demes) 10

cross probab. 1.0

mutation probab. 0.2

max time to spend 40 secs (static) / 70 secs (dynamic)

8.4.2 Results

Each experiment has been repeated 30 times under the same configuration of op-
erators and parameters. The box-plots of the first, mean, and the third quantiles
(confidence level - 95 %) for the makespan and relative energy consumption rate
Im(E) are presented in Fig. 8.2–8.5.

Makespan optimization results

Fig. 8.2–8.5 depicts the box-plots of the makespan values for six considered sched-
ulers. The makespan is measured and expressed in arbitrary time units defined for
the execution of tasks.

Both implementations of the Green-HGS-Sched have achieved the best results in
all instances but Large grid in the static case and Small and Large instances in the
dynamic case, where they are outperformed by the IGA algorithm.

On the one hand, a simple comparison of the impact of the replacement method on
the algorithms performance provided for all pairs of the xxx-Elit and xxx-St sched-
ulers shows that Struggle replacement is much more effective that Elitist Gener-
ational method in the case of single-population GA and IGA schedulers. It also
confirms the results of the preliminary study on the effectiveness of single-
population genetic schedulers in CGs presented in [82].

On the other hand, for the Green-HGS-Sched the situation is completely different.
In most of the scheduling instances the effectiveness of both hierarchical schedulers
are at comparative levels, with little advantage for the elite technique in the dynamic
cases. It seems to indicate that the replacement mechanism does not play a crucial
role in the fast exploration of the search space by the Green-HGS-Sched. Such explo-
ration process can be construed as very slow when using the conventional GA and
IGA schedulers. The core of Green-HGS-Sched can activate the more accurate pro-
cesses in the neighborhoods of the partial solutions of the problem. Those solutions

166 8 Energy-Aware Scheduling in Computational Grids

Fig. 8.2 The box-plot of the results for makespan in static case: Small and Medium grids

8.4 Empirical Analysis 167

Fig. 8.3 The box-plot of the results for makespan in static case: Large and Very Large grids

168 8 Energy-Aware Scheduling in Computational Grids

Fig. 8.4 The box-plot of the results for makespan in dynamic case: Small and Medium grids

8.4 Empirical Analysis 169

Fig. 8.5 The box-plot of the results for makespan in dynamic case: Large and Very Large
grids

170 8 Energy-Aware Scheduling in Computational Grids

may be not detected by the other schedulers, which makes the Green-HGS-Sched
very effective in the exploration of new regions in the optimization domain and in
escaping the basins of attraction of the local solutions.

The complexity of the hierarchic system is, in fact, not a drawback of the Green-
HGS-Sched, because the constraints of the execution time for HGS and IGA are
exactly the same. The ranges in the achieved makespan values for all considered
meta-heuristics are not greater than 30−35 % of the mean makespan values, which
means that the stability of all schedulers in all cases is at an acceptable level. The
distributions of the makespan results are asymmetric: the skewness in the static case
is positive—for GA and IGA and negative for Green-HGS-Sched in most of the
static instances—and it is negative in the dynamic grids for almost all schedulers. It
also implies that the reduction of the average makespan in this case is more difficult
than in the static case, which confirms the complexity of the problem in the realistic
dynamic grid scenarios.

Energy optimization results

The main effect of the makespan minimization is arguably the balance of the loads
in grid resources. The application of the DVFS technique typically leads to a sig-
nificant reduction of the energy consumption in the system, especially in the case
of substantial differences in the loads of particular machines. The box-plots for the
energy saving rates Im(E) are presented in Fig. 8.6–8.9.

The results of the energy optimization are slightly different in comparison with
the makespan ones. In this case, each of the IGA-Elit and GA-Elit algorithms out-
performs the rest of the schedulers in five instances, and the single-population GAs
are the best in the three cases. Green-HGS-Sched is not as effective in energy opti-
mization as in the makespan minimization. It means that this algorithm works quite
well in Min-Max scenario: the makespan is relatively short, and the scaling of the
voltage supply may lead to not so significant energy conservation.

In the case of single population and island models, the extensions of the comple-
tion times of the tasks in Modular Power Supply mode allow to keep the machines
busy for a longer time than in the Min-Max mode. However, the average difference
in energy saving rates achieved by the Green-HGS-Sched scheduler and the remain-
ing meta-heuristics does not exceed 10 %, which is smaller than in the makespan
case (15 %). This signifies that the average cumulative energy utilization achieved
by Green-HGS-Sched is lower than the island GA and conventional GAs. The range
of the average energy saving rate values is 10%–35% for most of the schedulers. It
can also be observed that the skewness of the distribution of the results is positive
or neutral for the worst ‘energy optimizers’ and negative for the best ones.

8.4 Empirical Analysis 171

Fig. 8.6 The box-plot of the results for relative energy saving rate in static case (in %): Small
and Medium grids

172 8 Energy-Aware Scheduling in Computational Grids

Fig. 8.7 The box-plot of the results for relative energy saving rate in static case (in %): Large
and Very Large grids

8.4 Empirical Analysis 173

Fig. 8.8 The box-plot of the results for relative energy saving rate in dynamic case (in %):
Small and Medium grids

174 8 Energy-Aware Scheduling in Computational Grids

Fig. 8.9 The box-plot of the results for relative energy saving rate in dynamic case (in %):
Large and Very Large grids

8.5 Summary 175

8.5 Summary

This chapter addressed the problem of optimizing the energy utilized in CGs in
independent batch scheduling. The energy management model is based on Dy-
namic Voltage Scaling (DVFS) technique adapted to the dynamic Grid environment.
The energy-aware Grid scheduling was formalized as a bi-objective optimization
problem with makespan and average cumulative energy consumption as the main
objectives.

For solving the addressed Grid scheduling problem, two implementations of an
energy-efficient Hierarchical Grid Scheduler HGS-Sched were developed evaluated
in two ‘energetic’ scheduling modes in static and dynamic Grid scenarios under
the makespan and relative energy consumption improvement rate criteria. The ef-
ficiencies of the hierarchical schedulers were compared with the results achieved
by four single-population Genetic Algorithm (GA) and Island GA schedulers. The
simulation results confirmed the effectiveness of the proposed schedulers in the re-
duction of the energy consumed by the whole system and in dynamic load balancing
of the resources in Grid clusters, which is sufficient to maintain the desired quality
level(-s).

	Energy-Aware Scheduling of Independent Tasks in Computational Grids
	Introduction
	Energy Model
	Scheduling Scenarios and Objectives
	Makespan Optimization
	Energy Optimization

	Empirical Analysis
	Energy Aware Genetic-Based Batch Schedulers
	Results

	Summary

