
Chapter 6
Game-Theoretical Models of the Grid User
Decisions in Security-Assured Scheduling: Basic
Principles and Heuristic-Based Solutions

Abstract. This chapter presents two non-cooperative game approaches, namely the
symmetric non-zero sum game and asymmetric Stackelberg game, for modelling the
grid users’ behavior. These models allow to illustrate new scenarios in scheduling
and resource allocation problems, such as asymmetric users’ relations, security and
reliability restrictions in computational grids (CGs). Four GA-based hybrid sched-
ulers are implemented for the approximation of the equilibrium states of both games.
The proposed hybrid resolution methods are empirically evaluated through the grid
simulator under the heterogeneity, security, large-scale and dynamics conditions.

6.1 Introduction

The security scheduling conditions defined in the previous chapter, may not be spec-
ified just by the analysis of the type of the applications submitted to grid, some local
access policies to the grid resources, or the behavior and system security attributes
defined in Sec. 5.3. Different types of the grid users may address their own indi-
vidual requirements for the secure assignments of their tasks to the most trustful
resources. In such a case the scheduling problem may be formulated as the decision
problem of the grid users working at the different levels of the grid system.

In CGs the system management techniques must be able to group, predict, and
classify different sets of rules, configuration directives, and environmental condi-
tions. This management model must effectively deal with uncertainties in system
information, that may be incomplete, imprecise, fragmentary, or overloading to con-
trol specific constituents and objects within intricate configurations. Decision sce-
narios ought to be outlined assuming partial visibility of environmental conditions,
user heterogeneity, and resource dynamism in order to determine and select ade-
quate evaluation criteria and assignment scores to render a final integrated decision
result.

In many decision-making problems, most of the information is provided by hu-
mans, which is inherently non-numeric. Partial evaluations, preferences, weights
are expressed linguistically. The evident role of fuzzy sets in decision-making and

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 113–135.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

114 6 Game-Theoretical Models of the Grid User Decisions

associated important processes such as consensus building, is well documented in
the literature [118], [119], [69]. However, in large-scale grid systems all the users’
information must be analyzed and interpreted in a short time, and special users’
preferences must be taken into account. The fuzzy rules may be then wrongly in-
terpreted by the system management components, or filtered in order to design the
optimal strategies for minimizing the scheduling costs.

Game-theoretical models may be considered as alternative solutions for large-
scale decision problems in highly parametrized heterogeneous environments. All
scheduling criteria can be aggregated and defined as cumulative users’ cost or pay-
off functions, which makes the game models very useful in the analysis of the var-
ious users’ strategies in the resource allocation process. Game-based models com-
bined with the economic theory can capture many realistic scenarios in computa-
tional markets, computational auctions, grid and P2P systems as well as security
and information markets. An important challenge in using game-theoretic models
for grid scheduling and resource management is the large size scale of the grid
system and the fact that resources cross different administrative domains. The grid
game players should behave rationally, pursue well-defined objective functions (cost
or pay-off functions), and react fast to the other players’ actions and decisions.

This work is based on the results presented in [85], where the preliminary ver-
sions of the symmetric and asymmetric non-cooperative grid users games were de-
fined for the purpose of illustrating the users strategies in the security-aware schedul-
ing. This chapter summarizes those results and presents the formal models of gen-
eral symmetric and asymmetric Stackelbelg games. These models are based on the
premise about the users’ behavior in a realistic large-scale grid, where users, usually
independently of each to another, submit their tasks/applications to the grid system.
Additionally, in the Stackelberg game, one player (user) is acting as a Leader with
a privileged access to resources. This Leader assigns his tasks first, and the rest of
the users (Followers) react rationally to the Leader’s actions. The Followers do not
cooperate with each other, but their decisions depend on the Leader’s action. This
model illustrates very well the real-life situation, where the roles of the users are in
fact asymmetric with regard to their access rights and usage of resources. It must
also be noted that in many economical models the sellers and buyers stand in asym-
metric positions as well. Having a control over large resource pools and maintaining
the large fraction of the task batch for scheduling can be the reasons of having some
privileges in the resource access, or in the setting of the reasonable resource utiliza-
tion pricing policies.

The users cost functions in the game are interpreted as the cummulative cost of
the secure execution of their tasks and the costs of the utilization of resources. The
cumulative cost function specified for the whole game is optimized at global and
local (users’) levels, through four genetic-based hybrid meta-heuristics, which com-
bine Genetic Algorithm (GAs) and modified Minimum Completion Time (MCT)
method.

Two scheduling scenarios are considered in in this work, namely risky and secure
mode. In the former, security conditions are ignored by the users by allocating their
tasks to all available machines, independently of the trusted levels. In the later, users

6.2 Users’ Behavior Models in Grid Scheduling 115

allocate tasks to available machines assuring task security demands. It should be
noted that in task scheduling the definition of the security demand can be two-fold:
(a) tasks can have security demands on resources to be allocated at and (b) resources
can have security demands on tasks to be assigned to them. This work is focused on
the condition (a) of security requirements.

The proposed models were evaluated under the heterogeneity, the large scale and
dynamics conditions using the Sim-G-Batch simulator. The relative performance of
four hybrid schedulers are measured by the makespan and flowtime metrics. How-
ever, the main aim of the empirical analysis is to compare the effectiveness of the
game models in the reduction of the scheduling costs in the secure scenario, and the
results achieved by the best single-population grid scheduler generated in Chapter 5
for the secure scheduling with the ANN support (see Sec. 5.5.3.1).

6.2 Users’ Behavior Models in Grid Scheduling

The classifications of the grid scheduling problems presented in Sec. 1.3.2 in Chap-
ter 1 do not span over the analysis of the relations and behavior of the grid users at
different systems levels (see Fig. 1.3). Three basic models of grid users’ relation in
grid scheduling processes can be defined as follows:

• Cooperativeness: In this case the users can form a coalition to plan in advance
their actions;

• Non-cooperativeness: In this scenario the users act independently of one an-
other;

• Semi-cooperativeness: In this model each user can select a partner for the coop-
eration.

The analysis of the above mentioned relations of the users is used for the specifica-
tion of the generic models of the following three types of grid user games, namely
non-cooperative, cooperative and semi-cooperative games:

• In non-cooperative game the players act independently of each other. This model
is based on the premise about the users’ behavior in realistic grids, where cooper-
ation is difficult in large-scale system, and grid users submit their tasks indepen-
dently. Also the resource owners act selfishly in order to maximize the resource
utilization and to execute the tasks from the local users.

• In cooperative game the players can form a coalition to plan their future actions.
This model is useful for the intra-site grid negotiations, where the local job dis-
patchers can define the joint “execution capabilities” parameters for the clusters
of the grid sites and declare them to the global scheduler.

• In semi-cooperative game each player can choose (randomly) another player for
cooperation. This game is usually proposed as a multi-round auction to incorpo-
rate the task rescheduling.

The solution of each of those games is an equilibrium state, in which each player
holds correct expectations concerning the other players’ behavior (see [75] for the
detailed analysis).

116 6 Game-Theoretical Models of the Grid User Decisions

The users can have different privileges to the resources, resulting in the examina-
tion of the following two scenarios:

• Symmetric scenario. In this case there are no special privileges in the resource
usage for the grid users.

• Asymmetric scenario. In this case there is a privileged user (Leader), who can
have full access to resources as opposed to the rest of users who can be granted
only limited access to resources. The Leader could also be the owner of a large
portion of the task pool, as it is reasonable to allocate first his tasks at best re-
sources in the system.

The game models presented in this chapter are based on the non-cooperative sce-
nario in symmetric and asymmetric modes.

6.3 Symmetric and Asymmetric Games of Independent Grid
Users

One of the main benefits of the game-based scheduling and resource management
in CGs is that it enables a scalability and personalization of the decision-making
processes of grid users and resource owners. Due to the sheer scale of grid systems,
the non-cooperative game is a potential model for integrating security and resource
reliability requirements in grid scheduling. This section presents two different gen-
eral scenarios of the non-cooperative grid users behaviors, namely symmetric and
asymmetric strategic game models.

6.3.1 Non-cooperative Symmetric Game

Let us denote by Play the number of grid users (players). The total number of tasks
n ∈ N in a given batch can be expressed as the sum of numbers of tasks submitted
by all users, i.e.

n =
Play

∑
a=1

ka, (6.1)

where ka is the number of tasks of the user a = 1, . . . ,Play.
Each player a controls his strategic variables defined as the following user’s strat-

egy vector :

Pla =

[

j
(k̂(a−1)+1)

, . . . , j
(k̂(a−1)+ka

)

]

(6.2)

where k̂(a−1) = k1 + . . .+ k(a−1)
The schedules can be then expressed by the following vectors of the users’ pa-

rameters:

S =

[

i11, . . . , i
1
k1
, . . . , ia

(k̂(a−1)+1)
, . . . , ia

(k̂(a−1)+ka)
, iPlay

kPlay

]

, (6.3)

6.3 Symmetric and Asymmetric Games of Independent Grid Users 117

in the direct representation, and

Sch = [Pl1, . . . ,PlPlay], (6.4)

in permutation-based representation (see Chapter 2, Sec. 2.2.1 for details on the
schedules representations).

In symmetric non-cooperative users’ game the privileges to the resources are the
same for all users. Each user tries to choose an optimal strategy for the assignment
of his tasks to machines in order to minimize his cost of tasks scheduling and, as the
results, also the overall scheduling costs. An illustrative example of the symmetric
game can be a scheduling scenario in which each player submits an equal amount
of tasks, i.e. k = k1 = k2 =, . . . ,= kPlay. It means that in such a case the total number
of tasks in the batch can be calculated in the following way: n = Play · k.

Definition 6.1. The symmetric grid users’ non-cooperative game can be defined as
a tuple

GPlay = (Play;{Ja}a=1,...Play;{Qa}a=1,...,Play), where:

• Play is the number of grid users;
• {J1, . . . ,JPlay}; are the sets of users’ strategies;
• {Q1, . . . ,QPlay};Qa : J1× . . .×JPlay →R;∀a=1,...,Play is the set of users’ cost func-

tions.

The users’ strategy vectors Pla are the elements of the strategy spaces Jl = J((a−1)·k+1)
× . . .× J(a·k) specified for each user a,(a = 1, . . . ,Play). The cost of playing the
game calculated for a particular user a is defined as the cost of scheduling of his
tasks (or the user’s cost function) and is denoted by Qa. The players try to minimize
simultaneously their cost functions Qa in the game.

Definition 6.2. A multi-vector (̂Pl1, . . . , P̂lPlay) of strategies is called an equilib-
rium state (point) of the game if :

Qa

(

̂PL1, . . . , P̂LPlay

)

=

= minPl1∈J1 Qa

(

̂Pl1, . . . , P̂L(a−1),PLa, P̂l(a+1), . . . , P̂lPlay

) (6.5)

for all a = 1, . . . ,Play.

The formulas of Qa functions are specified for the permutation-based representation
of the schedules because of the simpler notation used in the Eq. (6.4). Those pro-
cedures can be easily transformed into the direct representation by substituting the
(

̂PL1, . . . , P̂LPlay

)

vector by the vector defined in Eq. (6.3). The equilibrium point

can be interpreted as a steady state of the a strategic game, in which each player
holds correct expectations concerning the other players behavior1. If the strategies

1 In the case of continuous players’ cost functions the equilibrium state of the game is called
the Nash equilibrium [39].

118 6 Game-Theoretical Models of the Grid User Decisions

chosen by all players are equilibrium points, no player is interested in changing his
strategy.

To be a solution of the grid users’, the game the equilibrium point should be
additionally Pareto-optimal [139, 117]. In this chapter we consider the non-zero
sum games2, for which the equilibrium points are the results of minimization of a
multi-cost game function Q defined as follows.

Let us denote by minQa,(a = 1, . . .Play), the minimal value of the function Qa

calculated for each user a, that is to say:

minQa = min
PLa∈Ja

{Qa(PL1, ...,PLPlay)}. (6.6)

The results of the global minimization of the following game multi-cost function
Q : J1 ×·· ·× JPlay → R:

Q(PL1,,PLPlay) =
Play

∑
a=1

1
Play

(

Qa(PL1, ...,PLPlay)−minQa
)

, (6.7)

is an equilibrium state of non-cooperative non-zero sum symmetric game of the grid
users, which satisfies the condition of the Pareto-optimality [117]3.

6.3.2 Asymmetric Scenario – Stackelberg Game

The symmetric games are quite simple for the implementation and well studied for
many high-performance computing approaches. However, the symmetric scenario
may not be a good model of the realistic users’ relations. Due to the cross-domain
access, authorization and resource management features of the grid system, the grid
users have different access policies to the resources and they stand in an asymmetric
position with regard to resource usage privileges. The asymmetric behavior of grid
users directly impacts the results of the scheduling process.

A Stackelberg game is the simplest model for illustrating the asymmetric scenario
of the behavior of non-cooperative grid users. In this game one privileged user acts
as a Leader, and the rest of players (users) are his Followers.

The Stackelberg games have been well-studied in the game theory literature (see,
e.g. [10]). Roughgarden [126] defined a Stackelberg game model for scheduling
tasks on a set of machines with load-dependent latencies in order to minimize the
total latency of the system.

The following examples illustrate some real-life grid scenarios, to which the
Stackelberg game model can be applied:

2 In this scenario the strategies of the players are not opposite, i.e. the sum or the values of
all players cost functions Qa is not 0.

3 In fact, the function Q is a special case of the weighed or weighed distance Lp metric
function with p = 1. The values of all Qa functions are non-negative, and the weight coor-
dinates are strictly positive, which means that the global solutions of the problem defined
in Eq. (6.7)are Pareto-optimal [142].

6.3 Symmetric and Asymmetric Games of Independent Grid Users 119

• There is a privileged grid user (Leader), who can have the full access to resources
as opposed to the other users with limited access to resources.

• Some tasks can have critical deadlines (especially in online scheduling) and they
can be sent by the Leader to the meta-broker with a request to allocate them first.

• Considering a batch of tasks, the Leader can be the owner of a large portion of
the tasks in the batch; therefore it might be reasonable to allocate his tasks to the
best resources in the system.

• Some tasks could have security requirements. Therefore the Leader can send
such an information and all security parameters to the scheduler or directly to
the meta-broker requesting to allocate them in the most trustful resources (secure
machines).

• Tasks submitting to a grid system could be varied in their needs for computa-
tional resources. Some of them could be atomic tasks generated by compound
tasks while the others could be just monolithic applications. The high degree of
heterogeneity of tasks usually has a great impact on the grid system’s perfor-
mance. In such a scenario the Leader could create a small batch of the most time
consuming tasks as the backlog set of grid applications, in order to “balance” the
computational loads of machines during the scheduling. These tasks would be
sent to the meta-broker requesting to allocate them first.

Formally the two-level Stackelberg game of the grid users can be defined in the
following way:

• Leader’s Level: Leader’s action I - Leader chooses his initial strategy ˜Pl1 =
[˜j1, . . . ,˜jk1], where k1 denotes the number of tasks submitted by the Leader.

• Followers’ Level: Followers’ action - Followers minimize simultaneously their
cost functions relative to the Leader’s choice:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

PlFol
2 = argmin(Pl2∈J2) {Q2(˜Pl1,Pl2, . . . ,PlPlay)}

...
PlFol

Play = argmin(PlPlay)∈JPlay
{QPlay(˜Pl1, . . . ,PlPlay)}

(6.8)

where J1 is the set of the Leader’s strategies and Qa is the cost function of the
user a defined as in the symmetric case in Eq. (6.12). Let us denote by PlFol =
[

˜Pl1,PlFol
2 , . . . ,PlFol

Play

]

a Followers’ Vector, which is interpreted as the result of

the Followers’ action.
• Leader’s Level: Leader’s action II - Leader updates his strategy by minimizing

his cost function Q1 (see also Eq. (6.12)) taking into account the result of Fol-

lowers’ actions. The following vector PlG =
[

PlLead ,PlFol
2 , . . . ,PlFol

Play

]

, where:

PlLead = arg min
(Pl1∈J1)

Q1

(

Pl1,PlFol
2 , . . . ,PlFol

Play

)

(6.9)

is a solution of the whole game.

120 6 Game-Theoretical Models of the Grid User Decisions

It has to be noted that the Followers can play an “ordinary” non-cooperative sym-
metric game, but they must know the Leader’s action first. The game multi-cost
function Q in this case can be defined in the following way:

QStac =
1

Play
Q1 +QFol; (6.10)

where Q1 is the Leader’s cost function and

QFol :=
Play− 1

Play

Play

∑
a=2

Qa; (6.11)

is a Followers’ cost function. An optimal solution of the whole game is called Stack-
elberg Equilibrium.

6.3.2.1 Users’ Cost Functions in Security-Aware Scheduling

In conventional grid scheduling with the typical scheduling objective functions such
as makespan and flowtime, the users’ costs of scheduling their tasks are limited to
the costs of tasks execution. In utility grids, there are the resource utility functions
that must be specified for the calculation of the resource utilization cost [50]. In
security-assured scheduling some additional costs must be considered. The users
have to “pay” an additional “fee” for the secure allocation of their tasks in the ma-
chines. In this work all of those costs are integrated into cumulative-cost functions
Qa,a ∈ {1, . . . ,Play}, defined separately for each grid user as the weighed sum of
the following three components:

Qa(S) = Q(ex)
a (S)+Q(util)

a (S)+Q(sec)
a (S), (6.12)

where:

• Q(ex)
a indicates the user’s task execution cost ,

• Q(util)
a denotes the resource utilization cost , and

• Q(sec)
a is the cost of security-assured allocation of the user tasks .

In this work the ETC Matrix model (see Chapter 2) is used for the specification of
all cost functions for the users.

6.3.3 Task Execution Cost

The total cost of execution of the user’s tasks can be calculated as an average com-
pletion time of his tasks on machines, to which they are allocated4. In terms of the

4 The values of all components of the users game cost functions, i.e. Q(ex)
a , Q(util)

a and Q(sec)
a

functions, are scaled to get the all values in the same range.

6.3 Symmetric and Asymmetric Games of Independent Grid Users 121

completion times of machines (see Chapter 2, Eq. (2.13)) the function Q(ex)
a can be

defined using the following formula:

Q(ex)
a =

∑ka
j=ka−1+1 completion[j][i]

completionm · ka
, (6.13)

where completions[j][i] denotes the completion time of a task j on a given machine
machine i and and it is calculated in the following way:

completions[j][i] = ETC[j][i]+ ready[i]. (6.14)

In Eq. (6.13), the completionm indicates the maximal completion time of all tasks
submitted by the user a, that is to say:

completionm = max
j=ka−1+1,...,ka

completion[j][i]. (6.15)

6.3.4 Resource Utilization Cost

The grid user’s utility function is usually defined as a cost of buying free CPU
cycles [50]. In this work the utilization cost paid by the user a is calculated as a
“portion” of the average idle time of machines on which his tasks are executed. This

cost depends on the completion times of the user’s tasks. The utility function Q(util)
a

is defined as follows:

Q(util)
a = ∑

i∈machines(a)

(

1− Completion(a)[i]

Cmax

)

· Idle Factor[i] (6.16)

where machines(a) denotes the set of machines, to which all tasks of the user a are
assigned and Cmax refers to the makespan. The completion time of a given machine
i ∈ machines(a), denoted by Completion(a)[i], is calculated in the following way:

Completion(a)[i] = ready[i]+ ∑
j∈N:

S[j]=i

ETC[j][i] (6.17)

where S[j] is the value of j-th coordinate in a given schedule vector S (or Sch –
both implementations of the schedules may be used in Eq. (6.17). The following
expression:

(

1− Completion(a)[i]

Cmax

)

· Idle Factor[i], (6.18)

in Eq. (6.16) is interpreted as an idle time of machine i calculated for a given user
a. This is just a “portion” of the total idle time of machine i, and it is proportional

122 6 Game-Theoretical Models of the Grid User Decisions

to the time of execution of all tasks of the user a assigned to this machine. This
proportion is specified by the coefficient Idle Factor[i] in the following way:

Idle Factor[i] =
∑ j∈Tasks(a)[i]

ETC[j][i]

Completion(a)[i]
(6.19)

where Tasks(a)[i] is the set of the tasks of the user a assigned to the machine i.
It follows from Eq. (6.16) that the utilization cost is minimal in the case of allo-

cation of the user tasks to machines with the maximal completion times.

6.3.5 Security-Assurance Cost

The security-assurance cost of scheduling the tasks of the user a, denoted by Q(sec)
a

in Eq. (6.12, depends on the scheduling strategy and the result of the verification
of security condition by the trust manager. The manager must analyze the security
demand SD and trust level T L vectors for tasks and machines and the Machine
Failure Probability matrix Prf =

[

Prf [j][i]
]

n×m must be specified in the similar
way as in Eq. (5.2), that is to say:

Prf [j][i] =

{

0 , sd j ≤ tli
1− e−α(sd j−tli) , sd j > tli

(6.20)

where α is the failure coefficient and sd j and tli are the security demand and trust
level parameters for task j and machine i.

Similarly to Sec. 5.3.1 in Chapter 5, two different scheduling strategies can be
considered, namely Risky and Secure modes, in order to illustrate the various users’
and grid managers’ decisions. The formulas for calculating the security cost for the
users are based on the formulas for the completion times of machines and flowtime
in Eq. (5.3)– (5.6).

In the Risky mode all risky and failing conditions are ignored by the users. In
this case the “security” components of the functions Qa are in fact not calculated, i.e.

Q(sec)
a = 0, ∀a = 1, . . . ,Play. However, some machines may fail during the tasks ex-

ecution because of too restrictive security requirements and rescheduling procedure
of those tasks must be activated. Therefore the security cost in this case is calculated
as follows:

Q(sec)
l [ris] = ∑

j∈Res(a)

Pf [j][i] ·ETC[j][i]
(ETC)m(a) · �(Res(a))

, (6.21)

where Res(a) is the set of the tasks of the user a which must be rescheduled, and
(ETC)m(a) is the (expected) maximal computation time of the tasks of the user a in
a considered schedule, i.e.:

(ETC)m(a) = max
j∈Task(a)

i∈machines(a)

ETC[j][i]. (6.22)

6.4 Solving the Grid Users Games 123

In Eq. (6.22), Task(a) denotes the set of the tasks of the user a and machines(a) is
the set of the machines to which the user tasks are mapped in a considered schedule.

In Secure mode the users must pay the cost of the verification of the security
condition for his tasks (see Sec. 5.3). The cost of possible failures of machines
during the tasks executions are calculated as the products of the failure probabilities
and the expected times of computation of the tasks on the inaccessible machines.

The secure cost function Q(sec)
a in this case is defined as follows:

Q(sec)
a [secure] =

ka

∑
j=ka−1+1

Pf [j][i] ·ETC[j][i]

(ETC)m(a) · ka
, (6.23)

The security-assurance cost expressed as Q(sec)
a [secure] for each grid user is mini-

mized. It means that each user tries to allocate his tasks in the most trustful resources
and the values of task failure probabilities Pf [j][i] should be minimal.

6.4 Solving the Grid Users Games

The problem of solving the finite strategic game remains challenging especially
in real-life approaches. In order to compute the values of the game cost functions
Q defined in Eqs. (6.7) and (6.10), the cost functions of all players must be first
minimized. Therefore the problem of the minimization of Q function can be defined
as a hierarchical procedure presented in Fig. 6.1. This procedure is composed of
two cooperating modules: Global Module, in which the values of the function Q
are calculated and optimized, and the Players’ Module - which solves the local
level problems of the minimization of the users’ cost functions Qa.

The communication procedure between Global and Players’ Modules can be de-
fined as follows: Let us denote by S(0) an initial schedule generated in the Global

Module, i.e. S(0) = [Pl(0)1 , . . . ,Pl(0)Play], where Pl(0)a is the initial strategy vector of the

Fig. 6.1 Hierarchical procedure of solving non-cooperative symmetric game of grid users

124 6 Game-Theoretical Models of the Grid User Decisions

user a (see Eq. (6.2)). Vector S(0) is replicated and its copies are sent to the Players’
Module - one copy per user. Then, each user independently optimizes his game cost
function5 by changing the allocations of just his own tasks. As the result of this
minimization, the optimal values of the Qa cost functions are calculated:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minQa
(0) = min(Pl1∈J1) Q1

(

Pl1,Pl(0)2 , . . . ,Pl(0)Play

)

...

minQPlay
(0) = min(PlPlay∈JPlay)

QPlay

(

Pl(0)1 , . . . ,Pl(0)Play−1,PlPlay

)

(6.24)

These values are sent back to the Global Module, where the objective function for
the whole game Q is calculated for the schedule S(0).

In the case of Stackelberg game the Global Module plays the role of the Leader’s
component and the Player’s Module – the Follower’s procedure, as it is presented
in Fig. 6.2.

Fig. 6.2 Hierarchical procedure of solving Stackelberg game

However, in this case the schedule vector S(0)L before its replication and sending
to the Followers, is partially ‘fulfilled’ by the Leader. The Leader makes his prelim-
inary assignments and send the incomplete schedule vectors to the Followers.

6.4.1 Genetic Hybrid Metaheuristic Solvers

Similar to the empirical analysis presented in the previous chapters, and due to mul-
tiple constraints and different preferences of the grid users, genetic-based heuris-
tic approaches seem to be the best candidate methodologies for solving the users’

5 Note that the users costs optimization in the Players’ Module can be implemented as a
parallel multi-threaded procedure, which can speed-up the whole process.

6.4 Solving the Grid Users Games 125

games. However, in this case the main framework of the scheduler must be extended
by the hybridization of genetic algorithm (GA) working in the Global/Leader’s
Module with some other heuristic method implemented in the Players’/Followers’
Module.

Four hybrid GA-based schedulers have been defined for solving the symmetric
and asymmetric grid users’ games. The combinations of the heuristic components
of these hybrids are presented in Table 6.1.

Table 6.1 Hybrid meta-heuristics for risky and secure-assured scheduling

Meta-heuristic Global/Leader’s Players’/Followers’
Module Module

RGA-GA RGA PGA

RGA-PMCT RGA PMCT

SGA-GA SGA PGA

SGA-PMCT SGA PMCT

The GA-based meta-heuristics may work as global and local optimizers in the
Global/Leader and Players’/Followers’ Modules. Each hybrid algorithm is de-
fined as a combination of two methods, namely Risky Genetic Algorithm (RGA)
and Secure Genetic Algorithm (SGA)– in the Global Module; and two local level
optimizers, namely Player’s Genetic Algorithm (PGA) and Player’s Minimum Com-
pletion Time (PMCT)– in the Players’ Module. It can be observed that, in fact, it is
not necessary to replicate the whole population form the Global or Leader’s Module
to the Players’/Followers’ Module. For each player independently, just the changes
in machine completion times must be updated. Therefore the general procedure of
Players’/Followers algorithm may be defined as follows:

Algorithm 3. The optimization procedure in Player’s/Followers’ Module
1: Send the ready times vectors to the individual players;
2: Individual players compute the MinQa values;
3: Receive the MinQa values from the individual players;
4: Send the MinQa values to Global Module;

Schedulers Implemented in Global and Leader’s Module

The generic template of the main GA-based engine of the hybrid scheduler designed
for solving the symmetric games is presented in Alg. 4. This template is similar to
the Alg. 1 defined in Chapter 3 for HGS-Sched (see. Sec. 3.3).

126 6 Game-Theoretical Models of the Grid User Decisions

Algorithm 4. Genetic Algorithm template
1: Generate the initial population P0 of size μ;
2: Send the ready times vectors of the machines corresponding to the individuals of the population P0 to the Player’s

Module;
3: Receive the minQa values from the subordinate unit
4: Evaluate P0;
5: while not termination-condition do
6: Select the parental pool T t of size λ ; Tt := Select(Pt);
7: Perform crossover procedure on pars of individuals in T t with probability pc; Pt

c :=Cross(Tt);
8: Perform mutation procedure on individuals in Pt

c with probability pm; Pt
m := Mutate(Pt

c);
9: Send the ready times vectors of the machines corresponding to the individuals of the population Pt

m to the
Player’s Module;

10: Receive the minQa values from the Players’ Module
11: Evaluate Pt

m ;
12: Create a new population Pt+1 of size μ from individuals in Pt and/or Pt

m ;
13: t := t +1;
14: end while
15: return Best found individual as solution;

The main difference between RGA and SGA algorithms is the method of the eval-
uation of the population by using the users’ cost functions Qa, which is different in
the Risky (RGA) and Secure (SGA) modes. The formulas of calculating the ‘secu-
rity’ costs in both scenarios are defined in Sec. 6.3.5.

In the case of Stackelberg game the initialization procedure in the main GA al-
gorithm is a bit different than in the symmetric scenario. The general template of
the main genetic engine at the Leader’s (Global) Module in this game is defined in
Alg. 5.

Algorithm 5. A GA-based scheduler at the Leader’s level

1: Generate P0 containing μ “incomplete” schedules; t = 0;
2: Send P0 to the Followers to complete the respective parts of all schedules in P0; P0(F)

is created;
3: Update the population P0 according to the Followers’ solutions;P0 := P0(F);
4: Evaluate P0;
5: while not termination-condition do
6: Select the parental pool T t of size λ ; T t := Select(Pt);
7: Perform crossover procedures separately on Leader’s and Followers’variables on pairs

of individuals in T t(F) with probability pc; Pt
c :=Cross(T t);

8: Perform mutation procedures separately to Leader’s and Followers’ variables on indi-
viduals in Pt

c with probability pm; Pt
m := Mutate(Pt

c);
9: Evaluate Pt

m ;
10: Create a new population Pt+1 of size μ from individuals in Pt and Pt

m ; Pt+1 :=
Replace(Pt ;Pt

m)
11: t := t +1;
12: end while
13: return Best found individual as solution;

The process of initialization of the population in the main GA algorithm is de-
fined as a two-step procedure. In the first step, the P0 set is generated as a candidate
initial population. It consists of the incomplete schedules generated by the Leader

6.4 Solving the Grid Users Games 127

by using one of the initialization methods for GA-based schedulers (see Chapter 3,
Sec. 3.3). Each schedule from this set contains just the values of the Leader’s deci-
sion variables. All those “incomplete” chromosomes are sent to the Followers’ Mod-
ule. The Followers complete each schedule by using one of the ad-hoc heuristics.
The updated population P0 is then evaluated under the game cost function QStac de-
fined in Eq. (6.10. The crossover and mutation operations are performed separately
on Leader’s and Followers’ decision variables. Therefore in each generation the Fol-
lowers can update their own decisions (including the initial choices) according to all
changes in availability of resources introduced by the Leader.

Local Schedulers in Players’ and Followers’ Modules

Two modifications of well-known grid schedulers are implemented in the Players’
and Followers’ Modules.

The first scheduler, called Player’s Genetic Algorithm, is a simple extension of
the classical GA-based scheduler defined in Alg. 1 applied independently for each
user with the cost function Qa as the fitness measure. The genetic operations are ex-
ecuted on sub-schedules of the length ka labeled just by the tasks submitted by user
a. In the implementation presented in this work the GA procedures in the Players’
or Followers Modules are executed sequentially for the “queue” of users, however
each algorithm may be implemented as a separate process on parallel multiproces-
sor machine the number of processors must be in this case the same as the number
of players or followers)

The second method, called Player’s Minimum Completion Time - (PMCT), is
the modification of Minimum Completion Time - MCT. In this method, a task is
assigned to the machine yielding the earliest completion time (defined as the sum
of ready time for the machine and time of computing all tasks assigned there). The
process is repeated until there remain tasks to be assigned. The template of the main
mechanism of PMCT procedure is defined in Alg. 6.

Algorithm 6. PMCT algorithm template
1: Receive the population of schedules and ready times of the machines from the Global

Module;
2: for all Schedule in the population do
3: Calculate the completion times of the machines in a given schedule;
4: for all Individual user/Follower do
5: for all User’s Task/Follower’s Task do
6: Find the machine that gives minimum completion time;
7: Assign task to its best machine;
8: Update the machine completion time;
9: end for

10: Calculate the minQa value for a given schedule;
11: end for
12: Send the minQa values to the Global Module;
13: end for

128 6 Game-Theoretical Models of the Grid User Decisions

6.5 Empirical Analysis

The main aim of the empirical evaluation of the genetic hybrid schedulers defined
in the previous section is to compare the effectiveness of the game-based models
in the optimization of the main scheduling objective functions, namely Makespan
and Mean Flowtime defined in Sec. 5.5.2, with the results achieved by the best
single population GA−CX −R−ANN scheduler supported by the neural network
mechanism in the similar analysis in Chapter 5.

Four hybrid meta-heuristics defined in Table 6.1 have been used for solving the
symmetric and asymmetric games. These methods were integrated with the Sim-G-
Batch simulator. The experiments have been conducted on two benchmarks com-
posed by a set of static and dynamic instances. Similarly to the empirical analysis
provided in Chapters 4 and 5, four grid size scenarios are considered, namely Small,
Medium, Large and Very Large grids.

The key parameters of the simulator in all experiments are the same as in Ta-
ble 5.1 The parameters of HGS-Sched for generating the GA algorithms in Global,
Leader’s, Players’ and Followers’ Modules are defined in Table 6.2.

Table 6.2 GA settings in the Global/Leader’s and Players’/Followers’ Modules for large
static and dynamic benchmarks

Parameter Global/Leader’s Module Players’/Followers’ Module

period o f metaepoch (5∗ (n))/10 (
0.5∗ (n)�)/10

nb o f metaepochs 10

population size (pop size) 60 20

intermediate pop. 48 14

selection method LinearRanking

crossover method CX

cross probab. 0.8 0.8

mutation method Rebalancing

mutation probab. 0.2

initialization LJFR-SJFR + Random

max time to spend 500 secs (static) / 800 secs (dynamic)

There are 16 players in symmetric game and 15 Followers in the Stackelberg
game, and the number of the Leader’s tasks is a half of the whole task batch. The
coefficients of SD and TL vectors, and the machines reliability probabilities Pi are
defined as the uniformly generated fractions in the ranges [0.6;0.9], [0.3;1] and
[0.85;1] respectively. The value of the failure coefficient λ is 3.

Each experiment was repeated 30 times under the same configuration of param-
eters and operators.

6.5 Empirical Analysis 129

The histograms of the average values of Makespan and Mean Flowtime achieved
by four hybrid meta-heuristics designed for solving the users games are presented
in Fig. 6.3 and 6.3.

Fig. 6.3 Experimental results for non-cooperative symmetric game: in static case - (a) aver-
age Makespan, (b) average Mean Flowtime ; in dynamic case - (c) average Makespan, (d)
average Mean Flowtime.

130 6 Game-Theoretical Models of the Grid User Decisions

Fig. 6.4 Experimental results for Stackelberg game: in static case - (a) average Makespan,
(b) average Mean Flowtime ; in dynamic case - (c) average Makespan, (d) average
Mean Flowtime.

6.5 Empirical Analysis 131

In the symmetric game the best results for Makespan and Mean Flowtime in all
considered grid scenarios were achieved by SGA-GA scheduler. Especially in static
‘Small’ grid this method is very effective in Makespan reduction. The differences
in the Mean Flowtime results achieved by all hybrid meta-heuristics are not so sig-
nificant, while in the case of Makespan both SGA hybrids significantly outperform
risky hybrids in all grid scenarios.

In the case of Stackelbeg game two PMCT hybrids outperform the RGA-GA and
SGA-GA algorithms. For Makespan values the differences in the results achieved
by PMCT and GA hybrids are significant, while in the case of Mean Flowtime all
values are at the same level, except those obtained for ‘Very Large’ grid size. The
best results in all instances are achieved by SGA-PMCT algorithm. However, in the
case of static scheduling the efficiencies of RGA-PMCT and SGA-PMCT are very
similar, while in the dynamic case, especially for Makespan values, the differences
in both schedulers performances are significant.

The results achieved by two most efficient meta-heuristics in optimizing the
users’ game costs, namely SGA−GA in the symmetric game and SGA− PMCT
in Stackelberg game, have been compared with the results generated by the best
single-population security-aware scheduler from the previous chapter, namely GA−
SS−ANN algorithm. Tables 6.3, 6.4 and 6.5 present the comparison of the average
values of Maespan, Mean Flowtime and failure rate Failr parameter (see Sec. 5.5.2
in Chapter 5).

It can be observed that both hybrid strategies outperform the GA− SS−ANN
algorithm in all but 3 cases. It confirms that game-based models are better adapted
for the management of all security requirements in the grid system when compared
to standard scheduling models, even if the res

Although the security requirements would imply some additional cost to the users
of the grid system, it is worth assuming this cost in order to allocate tasks to trustful
resources.

6.5.1 Computational Economy and Game-Based Models

The experimental analysis presented in the previous section show that hybrid GA-
based schedulers can be effective in solving the users games, however the main
drawback of using such methods is their high computation complexity. The game
scenarios presented in Sec. 6.3 are very general, which makes them useful in sup-
porting the users decision process in various situations. In some real-life approaches
the game scenarios are usually based on the well-known economical models.

Market-based approaches in grid computing enable grid resource owners, act-
ing as sellers, to earn revenue by allowing others (mainly grid End-users, acting
as buyers) to use their (idle) computational resources. The pricing of resources is
driven by supply and demand. These models can be easily translated into the game-
theoretical frameworks and are useful in grid resource management, as well as in
defining users’ decision strategies.

132 6 Game-Theoretical Models of the Grid User Decisions

Table 6.3 Average values of Makespan for GA−SS−ANN, SGA−GA and SGA−PMCT
algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 4208842.037 4216980.163 4309539.605 4399950.825
[± 210505.265] [± 249225.887] [± 263233.057] [± 290453.201]

SGA-GA 4104953.259 4156536.877 4264926.597 4353604.208
[± 379579.997] [± 319105.946] [± 548415.652] [± 595472.951]

SGA-PMCT 4185298.477 4162755.537 4260258.291 4365824.522
[± 574689.195] [± 444243.979] [± 676018.949] [± 487088.573]

Dynamic Instances

GA-SS-ANN 4141538.885 4212439.475 4232327.490 4364692.950
[± 247988.145] [± 342459.080] [± 333199.727] [± 339043.674]

SGA-GA 4064399.586 4159942.678 4181202.361 4330472.697
[± 295082.511] [± 573609.898] [± 503195.319] [± 485326.735]

SGA-PMCT 4104009.894 4194715.259 4229959.495 4329168.378
[± 230614.767] [± 525510.365] [± 410287.752] [± 454255.168]

The following paragraphs present a general characteristics of the most popular
economically- and game-based approaches for modelling users’ relations and deci-
sions in scheduling process.

Commodity Market Model

This model is based on the Meta-broker architecture (described in Sec. 1.2.2). It
is assumed here that the service providers primarily charge the end user for the
resources they consume and the pricing policies are based on the demand from the
users and the supply of resources. The resource owners and service providers are
selfish in this approach and the end-users may or may not cooperate [26].

6.5 Empirical Analysis 133

Table 6.4 Average values of Mean Flowtime for GA− SS−ANN, SGA−GA and SGA−
PMCT algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1098725220.445 2261958805.835 4395864089.470 8705728350.062
[± 148984029.042] [± 296213971.853] [± 403819795.484] [± 779128466.164]

SGA-GA 1080025209.170 2212272645.989 7649954581.921 8790927826,710
[± 106385883.899] [± 225632106.035] [± 564374456.205] [± 820203622.476]

SGA-PMCT 1039256248.489 2177583973.023 4251057955.321 8752787592.196
[± 132828810.736] [± 279653260.144] [± 390873259.314] [±849851282.277]

Dynamic Instances

GA-SS-ANN 1163342728.245 2161846250.347 4322245472.632 8734534678.245
[± 136548966.434] [± 272493690.708] [± 533180226.552] [± 835468708.749]

SGA-GA 1124621170.786 2137984828.270 4254686510.766 8720343632.821
[± 247484952.990] [± 143846367.588] [± 407990354.145] [± 931632311.801]

SGA-PMCT 1155781873.098 2200754844.400 4293599602.333 8712482470.785
[± 109523418.319] [± 203859979.408] [± 350634474.868] [± 912872163.393]

Auctions

In this model there are two groups of participants: sellers (resource owners) and
buyers (grid end-users). The cooperation between users to form a coalition and win
the auction is possible, but usually the users behave selfishly. The auction mech-
anism can be defined in many ways (e.g. English, Dutch, First and Second Price
auctions). All of which differ in terms of whether they are performed as open or
closed auctions and the offer price for the highest bidder. The users’ strategies in
particular auctions are discussed e.g. in [52].

Bi-level Synchronized Auctions

The First Price bidding auction mechanism has been extended by Kwok et al. [92]
to define the resource management and global scheduling policy at the intra- and
inter-site levels in the 3-levels hierarchical grid structure. In the intra-site bidding
each machine owner in the site, who acts selfishly, declares the “execution capabil-

134 6 Game-Theoretical Models of the Grid User Decisions

Table 6.5 Average values of failure rate Failr parameter for GA−SS−ANN, SGA−GA and
SGA−PMCT algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

SGA-GA 3.877% 4.356% 7.543% 9.015%
[± 0.98] [± 1.26] [± 1.89] [± 2.23]

SGA-PMCT 3.738% 4.005% 7.456% 9.832%
[± 0.92] [± 1.05] [± 1.35] [± 1.56]

Dynamic Instances

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

SGA-GA 4.423% 5.533% 6.944% 7.046%
[± 0.73] [± 0.69] [± 0.98] [± 1.44]

SGA-PMCT 3.875% 4.542% 5.953% 7.211%
[± 0.88] [± 1.03] [± 1.21] [± 1.95]

ity” of the resource. The local manager monitors these amounts and sends a single
value to the global scheduler. In the inter-site bidding the global scheduler should al-
locate tasks according to the values sent by the local dispatchers. The authors prove
that the cooperation of the players at both levels are the optimal strategies for both
level-auctions. However, for the successful execution of all strategies some syn-
chronization mechanism must be introduced, which can make the system in whole
inefficient in a large-scale dynamic environment.

Bargaining Models

In this model the resource brokers bargain with resource providers for lower ac-
cess price and longer usage duration. The negotiation process is guided by the end-
users requirements (e.g., deadline) and can be provided directly between buyers
(End-users) and sellers (resource owners). The most recent study on the bargain-

6.6 Conclusions 135

ing cooperative model application in optimizing the energy consumption in grid is
proposed in [141].

6.6 Conclusions

This chapter showed the game-theoretic models as the effective methodologies for
supporting the grid users’ decisions, where the different scheduling criteria, includ-
ing security and resource reliability, must be considered at the same time. The users’
behavior can be effectively translated into the computational model linked to the
grid scheduling. Due to large scale of the grid, the non-cooperative games seems to
be a potential model for integrating various requirements in grid scheduling.

The users decisions in the scheduling process are modelled by using the two gen-
eral non-cooperative game scenarios, namely symmetric non-zero sum game and
Stackelberg game. The hierarchical procedure of solving those games is complex
because of the need of integration and synchronization of two cooperating mod-
ules. However, the experimental analysis shows the high efficiency using the meta-
heuristics as the resolution methods for game-based models, especially in the case
of additional security casts paid by the users. The game-based model concepts can
be successfully implemented also in cloud computing, where the secure scheduling
and information management remain challenging research problems.

	Game-Theoretical Models of the Grid User Decisions in Security-Assured Scheduling: Basic Principles and Heuristic-Based Solutions
	Introduction
	Users’ Behavior Models in Grid Scheduling
	Symmetric and Asymmetric Games of Independent Grid Users
	Non-cooperative Symmetric Game
	Asymmetric Scenario – Stackelberg Game
	Task Execution Cost
	Resource Utilization Cost
	Security-Assurance Cost

	Solving the Grid Users Games
	Genetic Hybrid Metaheuristic Solvers

	Empirical Analysis
	Computational Economy and Game-Based Models

	Conclusions

