
Chapter 5
Security-Aware Independent Batch Scheduling
in Computational Grids

Abstract. This chapter presents a model for independent batch scheduling in Com-
putational Grid that enables the aggregation of security requirements as additional
scheduling criteria. Artificial Neural Network (ANN) module is an important com-
ponent of this model. It is designed for supporting the security-aware evolutionary
single- and multi-population grid schedulers.Based on a preliminary analysis of the
trust levels of resources and security demand parameters of tasks, the neural net-
work monitors the scheduling and task execution processes and generates the tasks-
machines mapping “suggestions” based on the information about resource failures
and the resulting tasks and machines characteristics. This information is used by the
schedulers for an effective minimization of the scheduling objective function and
the improvement of the system throughput.

5.1 Introduction

While the maximization of the resource utilization and profits of the resource own-
ers are the key objectives of the grid scheduling, they may conflict with grid users’
security requirements and system reliability . A major hurdle in effective job out-
sourcing in grid is caused by network security threats. The grid resources may not
be accessible if the grid cluster is under attack. The system infections may lead to
machine crashes during the execution of tasks dispatched to that cluster. Therefore,
it is desirable to have a prior knowledge about the security demands from grid jobs
and the trust level assured by a resource provider at the grid cluster. An effective
grid scheduler must be then security-driven and resilient in response to all schedul-
ing and risky conditions. It means that to achieve the successful tasks executions
according the specified users’ requirements, the relation between the assurance of
secure computing services by a grid site or by a cluster node (security) and the
behavior of a resource node (trust) must be defined and analyzed.

The main problem addressed in this chapter is an improvement of the effective-
ness of the single- and multi-population genetic-based grid schedulers in the low-
cost resource allocations under security constraints. The security awareness of those

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 81–111.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

82 5 Security-Aware Independent Batch Scheduling in Computational Grids

schedulers is supported by an Artificial Neural Network (ANN) module integrated
with the system. Based on a prior analysis of trust levels of the resources and security
demand parameters of tasks, the neural network monitors the scheduling and task
execution, and produces task-machine mapping “suggestions” (recommendations)
by using the system information, such as resource failure rates and system input pa-
rameters. Thereafter, based on the ANN “suggestions”, sub-optimal schedules are
generated and used in the initialization procedures of genetic-based schedulers for
optimizing the main scheduling objective functions such as makespan and flowtime.

Despite the generation of the sub-optimal solution to the specified scheduling
problems, the ANN module is not considered in this work as additional scheduler. It
works in a “background” of the main scheduling process and monitors the schedul-
ing results. However, the schedules generated by ANN may be accepted as the opti-
mal solutions if the employed schedulers cannot generate the better ones.

According to the notation introduced in Sec. 1.4.2 the independent batch security-
aware scheduling in which the makespan and flowtime are optimized in a hierarchi-
cal mode can be specified as follows:

Rm [{b, indep,(stat,dyn),hier}] (Cmax(sec)[Cmax(ris)],F(sec)[F(risk)])) (5.1)

where:

• Cmax(sec) – stands for a makespan as the primary scheduling objective under
security constraints;

• F(sec) – stands for a flowtime as the second scheduling objective under security
constraints;

• Cmax(risk) – stands for a makespan as the primary scheduling objective in the
risky scheduling mode;

• F(risk) – stands for a flowtime as the second scheduling objective in the risky
scheduling mode.

The procedures of calculating the Cmax(sec), F(sec), Cmax(risk) and F(risk) values
will be defined later on. The interpretations of the remaining parameters are the
same as in Sec. 2.1 (Eq. (2.1)).

This chapter extends the model and results presented in [18] by the implemen-
tation and the comparative analysis of the effectiveness of multi-population and
single-population GA-based grid schedulers and the integration of the ANN module
with Sim-G-Batch grid simulator. In the ANN module the Minimal Completion Time
(MCT) algorithm is used for the generation of sub-optimal schedules.

5.2 Related Work

There has been a number of studies over the last years in which the security proce-
dures in grid scheduling are verified in risky environments, where the resource trust
parameters must be analyzed. The security-aware scheduling process in grid envi-
ronment [65], [152], [165] is more difficult for the management than conventional
scheduling defined for supercomputers, real-time, and parallel computers [66], [91],

5.2 Related Work 83

[100]. Unfortunately, well-known scheduling approaches for grid computing largely
ignore this security factor, with only a handful of exceptions.

A simple classification of security-aware grid models for an immediate job ex-
ecution mode is presented by Humphrey and Thompson in [65]. They define a job
control system for accessing grid information services through authentication. How-
ever, they did not elaborate on how a scheduler should be designed to address the
security concerns in collaborative computing over distributed cluster environment.
An extensive survey of the research endeavors in this domain is presented in [34].

Hwang et al. [67] developed an interesting fault-tolerance mechanism in CGs
with a failure detection service, that enables the detection of both task failures and
user’s secure requirements in a dynamic environment. Abawajy [1] developed a
model, that faces the system dynamics by a replication of the users’ jobs at mul-
tiple grid sites in order to improve reliability of grid resources, and successful job
executions.

Due to their high scalability heuristic methods seem to be the effective tools
in solving the large-scale grid scheduling problem with additional security and re-
source reliability criteria [137]). However, security and task abortion mechanism are
usually applied as the external procedures separated from the core of the scheduling
system. For example, security requirements can be specified in the grid system by
using a simple trust model [8].

Some recent security-aware approaches in CG scheduling are based on the game-
theoretical models . In [136] and [137] the authors define the risky and secure con-
ditions in online scheduling in CGs caused by software vulnerability and distrusted
security policy. They apply the game model introduced in [92] for simulating the
resource owners selfish behavior. The results presented in [137] are extended by Wu
et al. in [155]. The authors consider the heterogeneity of fault-tolerance mechanism
in a security-assured grid job scheduling and define four types of GA-based online
schedulers for the simulation of fault-tolerance mechanisms.

In the aforementioned models the final decisions on the secure allocation of task
to resources are made by the CG users who do not cooperate with each other. The
costs of the risk-resilient tasks executions are interpreted as the users’ cost func-
tions, which are specified as the scheduling objectives and are minimized during
the game. The main drawback of the online scheduling approaches may be the high
computational complexity of the schedulers. In many cases the games are provided
on the different grid levels and the design of an effective synchronization mecha-
nism is a challenging task. A game-theoretical support to the users’ decisions and
actions will be discussed in Chapter 6.

Artificial Neural Networks (ANNs) are usually implemented as schedulers in grid
computing. An illustrating example can be the grid scheduler based on the Fuzzy
Neural Networks presented in [166]. The authors used the fuzzy logic module for
monitoring the status of machine loads in grid system. The parameters of fuzzy
membership functions in this model are tuned by using the ANN trained by back-
propagation algorithm.

In [131] the ANN mechanism is used for supporting the users’ decisions. The
authors defined a decision model which is composed of three main components: (a)

84 5 Security-Aware Independent Batch Scheduling in Computational Grids

online module for the prediction of the users’ actions; (b) off-line module for the
analysis of statistical data acquired during user’s work; and (c) ’users activity’ mod-
ule defined for the detection of trends and changes in users’ activities. The users’
decisions mechanisms are supported by the feed-forward neural networks trained by
the back-propagation method. The authors additionally proposed the offline model,
where another neural network is applied for the detection of normal/abnormal users
activities, by analyzing the statistical data accumulated during the users’ actions.

The above mentioned model is a promising solution for simulation and simple
analysis of the users’ decisions. This model can be considered as an alternative to
game-based methodology in online scheduling. However the high complexity of
this model can be a main drawback for its successful application in real-life grid
scenarios.

5.3 Security as Scheduling Criterion in Computational Grids

A general security-aware grid model is based on the hierarchical multi-level ar-
chitecture presented in Chapter 1 (see Sec. 1.2.2). However, the role of the meta-
scheduler is different when security is considered as additional criterion in the
scheduling process. The meta-scheduler must analyze the security requirements for
the execution of tasks and requests of the CG users for trustful resources available
within the system. The system brokers analyze “reputation” indexes of the machines
received from the resource managers and send proposals to the scheduler. More-
over, the brokers also control the resource allocation and communication between
CG users and resource owners.

Fig. 5.1 depicts the 3-level architecture of the security-aware grid cluster.
The trust level and security demand parameters are generated by aggregation of

several scheduling and system attributes. Those parameters depend heavily on the
security policy, accumulated resource or grid cluster “reputation”, self-defense ca-
pability, attack history, special users’ requirements, and peer authentication. Fig. 5.2
presents the major behavior and intrinsic security attributes needed for the specifica-
tion of trust levels of the grid clusters and security demand of the grid applications
(see also [137]).

Song et al. in [136] have developed a fuzzy-logic trust model, in which the afore-
mentioned attributes are aggregated into single scalar parameters. The task security
demand in this model is supplied by the user’s programs as request for authentica-
tion, data encryption, access control, etc. The trust level parameters of the resource
clusters are aggregated through a two-level hierarchic fuzzy-logic based trust pro-
cedure in the following way:

• At the lower intra-site level there are applied two fuzzy inference systems for
the evaluation of the self-defence capabilities and trust indexes of the resources;
each grid cluster reports its assessed self-defense capability to all other clusters;

• At the higher inter-site level there are collected the inputs from all resource clus-
ters and the trust level vector is defined through another fuzzy inference process
(see [136]).

5.3 Security as Scheduling Criterion in Computational Grids 85

Fig. 5.1 The model of secure grid cluster

This fuzzy trust model was used in this work for the specification of new character-
istics of tasks and resources in the grid system, namely security demand and trust
level vectors. The security demand vector , denoted by SD = [sd1, . . . ,sdn] sd j, is
defined as a vector of the security demand parameters sd j, (j ∈ N), for all tasks
in the batch. The trust level vector , denoted by T L = [tl1, . . . , tlm], is defined as a
vector of trust level parameters tli for all resources in the system. The trust level pa-
rameters specify how much a grid user can trust the resource manager. The manager
maintains machine i status and monitors the execution of the tasks assigned to this
machine. The values of the sd j and tli parameters are real fractions within the range
[0,1] with 0 representing the lowest and 1 the highest security requirements for a
task execution and the most risky and fully trusted machine, respectively. A task
can be successfully completed at a resource when a security assurance condition is
satisfied. That is to say that sd j ≤ tli for a given (j, i) task-machine pair.

Let us denote Prf to be a Machine Failure Probability matrix , the elements of
which, are interpreted as the probabilities of failures of the machines during the tasks

86 5 Security-Aware Independent Batch Scheduling in Computational Grids

Fig. 5.2 The major attributes affecting the trust level and security demand in grid systems

5.3 Security as Scheduling Criterion in Computational Grids 87

executions due to the high security restrictions. These probabilities are denoted by
Pf [j]i] and are calculated by using the negative exponential distribution function,
that is to say:

Prf [j][i] =

{

0 , sd j ≤ tli
1− e−α(sd j−tli) , sd j > tli

(5.2)

where α is interpreted as a failure coefficient and is a global parameter of the model.
The process of matching sd j with tli is similar to that of a real-life scenario where

users of some portals, such as Yahoo!, are required to specify the security level of
the login session.

5.3.1 Scheduling Scenarios and Objectives

The grid cluster or the grid resource may be not accessible to the global meta-
scheduler when being infected with intrusions or by malicious attacks. The sched-
uler has two options of initializing his work: (a) to analyze the Machine Failure
Probability matrix in order to minimize the failure probabilities for task-machine
pairs; or (b) to perform an “ordinary” scheduling without any preliminary analysis
of the security conditions, abort the task scheduling in the case of machine failure,
and reschedule this task at another resource. The scheduler’s strategies give rise to
two modes of processing (and modelling in particular) the grid schedules, namely
secure and risky modes.

Secure Mode

In this scenario all of the security and resource reliability conditions are verified for
all task-machine pairs. The main goal of the meta-scheduler is to design an optimal
schedule for which, beyond the makespan and flowtime, the probabilities of failures
of the machines during the tasks executions will be minimal. It is assumed that
additional “cost” of the verification of security assurance condition for a given task-
machine pair: (a) may delay the predicted execution time of the task on the machine,
and (b) is proportional to the probability of failure of the machine during the task
execution. This “cost” is defined as the product of Prf [j][i] and ETC[j][i]. In this
case the completion time of the machine i is denoted by completions[i]1 and can be
calculated as follows:

completions[i] = readyi + ∑
{ j∈Tasks(i)}

(1+Prf [j][i])ETC[j][i]) (5.3)

where Tasks(i) denotes the set of tasks assigned to the machine i in a given batch.
In this mode the main scheduling objectives, namely makespan and flowtime, can

be expressed as follows:

1 The general concept of the completion time of machine was explained in Sec. 2.2.2 in
Chapter 2.

88 5 Security-Aware Independent Batch Scheduling in Computational Grids

Cmax(sec) = max
i∈M

completions[i]. (5.4)

F(sec) = ∑
i∈M

Fs[i] (5.5)

where
Fs[i] = readyi + ∑

j∈Sorted[i]

(1+Prf [j][i])ETC[j][i]) (5.6)

and Sorted[i] denotes the set tasks assigned to the machine i sorted in ascending
order by the corresponding ETC values.

Risky Mode

In this scenario all secure and failing conditions are ignored. The scheduling pro-
cess is realized as a two-step procedure. First, the scheduling is performed just by
analyzing the ETC matrix. If failures of machines are observed, then the unfinished
tasks are temporarily moved into the backlog set. This set is defined as a ‘batch
supplement’ and the tasks form this set are re-scheduled in the way as in the secure
mode. The total completion time of machine i(i ∈ M) in this case can be defined as
follows:

completionr[i] = completion[i]+ completions
res[i] (5.7)

where completion[i] is calculated by using the Eq. (2.13)(see Chapter 2, Sec. 2.2.2),
for tasks primarily assigned to the machine i , and completions

res[i] is the completion
time of machine i calculated by using the Eq.(5.3) for rescheduled tasks, i.e. the
tasks re-assigned to the machine i from the other resources.

The formulas for makespan and flowtime in this mode are defined in the follow-
ing way:

Cmax(risk) = max
i∈M

completionr[i]. (5.8)

F(risk) = ∑
i∈M

Fr[i] (5.9)

where

Fr[i] = readyi + ∑
j∈Sorted[i]

ETC[j][i]+ ∑
j∈Sortedres[i]

(1+Prf [j][i])ETC[j][i]) (5.10)

and and Sortedres[i] denotes the set of rescheduled tasks assigned to the machine i
sorted in ascending order by the corresponding ETC values

Assuming the hierarchical optimization mode (see Eq. (5.1), parameter hier) with
the makespan as the primarily scheduling criterion, the flowtime should be mini-
mized in both secure and risky scenarios subject to the the following constraints:

5.4 Artificial Neural Network Module 89

• in the secure mode

Fs[i] ≤ Cmax(sec) ∀i ∈ M; (5.11)

• in the risky mode

Fr[i] ≤ Cmax(risk) ∀i ∈ M. (5.12)

Although the probabilities of machines’ failures are expected to be higher in the
risky than in the secure mode, there is certainly no guarantee of the successful
execution of all tasks in the security scenario. It can be observed that if the se-
curity assurance condition is satisfied for each task-machine pair (i.e. sd j ≤ tli
for i ∈ M, j ∈ N), the completion times of machines in both secure and risky
modes are identical with the completion times defined for standard independent
scheduling problem (see Chapter 2, Eq.(2.13)), where it is assumed that each task
must be successfully executed on each machine and no security requirements are
analyzed2.

5.4 Artificial Neural Network Module

The implementation of Artificial Neural Network (ANN) module requires prelim-
inary classification of tasks and machines available in the system. This classifi-
cation is based on the values of the workload (WL), computing capacity (CC),
trust level (TL) and security demand (SD) vectors. Machines are categorized
into the Rr types according to their processing power features, namely slowest,
slower,· · · ,medium,· · · ,fastest classes; and into Rs types according their trust level
features, namely secure, less secure,· · · ,medium,· · · ,fully risky classes. This initial
classification leads to the overall categorization of the resources into R = Rr ·Rs

classes, namely slowest-secure,· · · ,medium-secure,· · · ,fastest-fully risky types, in
order to characterize the grid machine under the processing power and trust criteria.

Similar classification can be provided for the submitted tasks under workload and
security demand features. The tasks are categorized into T = Tw ·Tsd types, where
Tw is number of workload classes and Tsd is number of security demand classes.
R machine classes and T task classes generate R + T possible inputs for neural
network.

Formally, the ANN input data can be expressed by the following pair of vectors:
{TASKS MX ;MACHINES MX}, where:

• TASKS MX [̂t] = Tt for tasks classification, where ̂t denotes a task class, (t =
1, . . . ,T), and Tt denotes the fraction of tasks in the class ̂t. That is to say:

Tt =
̂tt
n
, (5.13)

2 The component completions
res[i] in Eq. (5.7) is not calculated while all tasks are success-

fully executed on the grid machines.

90 5 Security-Aware Independent Batch Scheduling in Computational Grids

where ̂tt is the number of tasks in the class ̂t and

T

∑
t=1

Tt = 1 (5.14)

• MACHINES MX [r̂] = Rr for resources classification, where r̂ denotes a machine
class (r̂ = 1, . . . ,R), and proportion of machines in the class r̂ is denoted by Rr.
That is to say:

Rr =
r̂r

m
, (5.15)

where r̂r is the number of machines in the class r̂ and

R

∑
r=1

Rr = 1 (5.16)

ANN module monitors the machine failures and the successful execution of tasks
on machines. The information about the failures of the grid resources is needed for
the classification of the results generated by the neural network. For each class r̂
of machines, there is selected a unique major class tma j(r̂) of successfully executed
tasks. This class is specified based on the number of completed tasks on a given
machine without any failures and re-scheduling procedures. The results generated
by the neural network are defined as an output matrix OUT MX of the size T ·R
with just R non-zero (positive) elements (one major class of tasks for each host is
indicated in such a way), where:

OUT MX [r̂][tma j(r̂)] = r(tma j (r̂)) (5.17)

and r(tma j(r̂)) is the proportion of the tasks from the major class tma j(r̂) submitted to
the machines of the class r̂. The main concept of the network is presented in Fig. 5.3.

The network is trained by the back propagation algorithm [61]. The results gener-
ated by the ANN module are used for the specification of the grid schedules, which
may be accepted as the partial (or optimal) solutions for the problem, or may be
passed on to the heuristic or meta-heuristic schedulers as the initial solutions. The
procedure of the generation of the schedules based on the ANN “suggestions” can
be defined as follows. First, a ’major class’ tma j(r̂) membership is verified for all
tasks in the batch. For each task from the ‘major class’ the class of the fastest and
most trustful machines is selected. Thereafter, this task is assigned to the machine
from the selected class, with the minimal completion time. The tasks from the other
classes than the ‘major’ one are assigned to the machines with the shortest comple-
tion times without analyzing the network results. The Minimum Completion Time
(MCT) method is used for all those assignments. The general framework of MCT
procedure is presented in Alg. 2.

Both input and output matrices defined for ANN are totally independent of num-
bers of hosts and tasks in the system. Therefore, the ANN module can be trained
even on a small batch of task and small cluster of machines and then the generated
results may be used in more complex scenarios.

5.5 Empirical Evaluation of the Genetic Metaheuristics 91

Fig. 5.3 Neural network architecture

Algorithm 2. MCT algorithm template
1: Calculate the ready times of the machines ;
2: for all Tasks in a given batch do
3: Calculate the completion times of the machines for the tasks;
4: Find the machine that gives minimum completion time, mbest ;
5: Assign task to mbest machine;
6: Update the machine completion time;
7: end for
8: Return the resulting schedule

5.5 Empirical Evaluation of the Genetic Metaheuristics for
Security-Aware Scheduling

The specification of just one major class of tasks for the network results may be
of course the main reason of relatively low efficiency of the ANN module in some
realistic approaches. The intelligent modification of this neural network model into
the low-cost (in the sense of the execution time) multi-class version remains still
challenging research issue. However, the monitoring of the system, the provisioning
of the resources and scheduling according to various security requirements, should

92 5 Security-Aware Independent Batch Scheduling in Computational Grids

be even partially automated. Otherwise, the information about the reliability of the
resources, all negotiations of the particular security conditions, or simply the infor-
mation about the failures of the nodes, must be proceed by the system administrators
and grid users. It usually delays the realization of the schedules because of the sheer
scale of the system and different, and often conflicting, goals and interests of the
users working at the various system levels. The ANN model presented in this chap-
ter may serve as a prototype solution for both automatic monitoring and detection of
the system failures and intelligent supporting of the users decisions, with a tangible
benefit of reducing an overall computing overhead in high-performance computing
systems (not just grids).

The aim of the empirical study presented in this section is the verification of the
efficiency of the neural network support for single- and multi-population genetic-
based schedulers in the reduction of the number of failures of the resources caused
by too restrictive security conditions, and in the minimization of two conventional
scheduling objectives, namely makespan and flowtime. The experiments were con-
ducted in two main steps. First, six variants of single-population GA-based sched-
ulers with different crossover, mutation and replacement operators were evaluated in
both scheduling modes. The goal of this analysis is to compose an optimal combina-
tion of genetic operators for multi-population hierarchical, island and hybrid genetic
schedulers. Thereafter, four genetic meta-heuristics were evaluated in risky and se-
cure modes, namely the best single-population GA in the first part of the analysis,
and HGS-Sched, Island GA and hybridization of GA with Tabu Search (GA+TS).

5.5.1 Security Aware Sim-G-Batch Grid Simulator

The ANN module was integrated with the Sim-G-Batch simulator for modelling
and monitoring the grid system behavior under the specified security conditions.
The module works in the “background” of the main system and supports the resolu-
tion methods implemented in Scheduler class. The sub-optimal schedules generated
based on the neural networks “suggestions”, are passed on to the initial populations
of the genetic schedulers. The main concept of the security-aware version of Sim-
G-Batch simulator with the ANN module is presented in Fig. 5.4.

In the case of security scheduling, the list of typical input parameters for Sim-
G-Batch (see Chapter 2, Sec. 2.3.1) is extended by the trust level vector T L and
the security demand vector SD. Table 5.1 presents the values of key parameters
in four grid size scenarios, namely Small, Medium, Large and Very Large in static
and dynamic modes. Most of those parameters (excluding the numbers of tasks and
machines) were tuned in empirical analysis presented in [136], [137], [92] and the
recent publications of the author of this book [18], [87], [89].

For activating the ANN module, the tasks and machines are divided into 18
classes: 9 categories for processing power and trust level criteria (machines), and
9 categories for workload and security demand criteria (tasks). The ANN is a feed-
forward network with two hidden layers, the weight coefficients are in the range
of [−0.2;0.2] and the learning rate is 0.01. The training set for ANN contains the

5.5 Empirical Evaluation of the Genetic Metaheuristics 93

Fig. 5.4 General Flowchart of the secure Sim-G-Batch Simulator Supported by Neural Net-
work Linked to Scheduling

94 5 Security-Aware Independent Batch Scheduling in Computational Grids

Table 5.1 Values of key parameters of the secure Sim-G-Batch in static and dynamic modes

Small Medium Large Very Large

Static case

Nb. of hosts 32 64 128 256

Resource cap. (in MHz CPU) N(5000,875)

Total nb. of tasks 512 1024 2048 4096

Workload of tasks N(250000000,43750000)

Security demandssd j U [0.6;0.9]

Trust levels tli U [0.3;1]

Failure coefficient α 3

Dynamic case

Init. hosts 32 64 128 256

Max. hosts 37 70 135 264

Min. hosts 27 58 121 248

Resource cap. (in MHz CPU) N(5000,875)

Add host N(625000,93750) N(562500,84375) N(500000,75000) N(437500,65625)

Delete host N(625000,93750)

Init. tasks 384 768 1536 3072

Total tasks 512 1024 2048 4096

Inter arrival E(7812.5) E(3906.25) E(1953.125) E(976.5625)

Workload N(250000000,43750000)

Security demandssd j U [0.6;0.9]

Trust levels tli U [0.3;1]

Failure coefficient α 3

characteristics of the tasks and machines and the task-machine matching results col-
lected after the 500 runs of the simulator with inactive Neural Network module.

5.5.2 Performance Measures

The performances of all schedulers in experiments were evaluated under the follow-
ing three metrics:

5.5 Empirical Evaluation of the Genetic Metaheuristics 95

• Makespan – a primarily scheduling criterion, which is expressed in Eq. (5.8) in
risky scenario, and in Eq. (5.4) in the secure mode,

• Mean Flowtime – flowtime scheduling criterion, which is defined in Eq. (5.8) for
the risky mode, and in Eq. (5.4) for the secure mode; and

• FailureRate Failr parameter defined as follows:

Failr =
n f ailed

n
·100% (5.18)

where n f ailed is the number of unfinished tasks, which must be rescheduled3.

Both Makespan and Mean Flowtime measures are expressed in arbitrary time units
specified for the scheduling.

5.5.3 Tuning the Genetic Engine for Multi-Population Batch
Schedulers

In the first part of empirical study six single-population risk-resilient GA sched-
ulers have been compared in order to define an effective genetic engine for multi-
population meta-heuristics. The configuration of the genetic parameters for those
six schedulers are presented in Table 5.2.

Table 5.2 Configuration of six single-population GA-based grid schedulers

Scheduler Replacement method Scheduling scenario

GA-SS-R Steady State Risky

GA-SS-S Steady State Secure

GA-SS-ANN Steady State Secure supported by ANN

GA-ST-R Struggle Risky

GA-ST-S Struggle Secure

GA-ST-ANN Struggle Secure supported by ANN

The aforementioned methodologies differ in the implementation of the replace-
ment mechanism. The Steady State replacement method is used in GA-SS-xxx

3 According the notation introduced in Chapter 2, n stands for the number of tasks in a given
batch.

96 5 Security-Aware Independent Batch Scheduling in Computational Grids

algorithms and Struggle procedure – in GA-ST-xxx. The ANN module is active just
in GA-SS-ANN and GA-ST-ANN algorithms for generating a part of an initial pop-
ulation. All of the remaining procedures in these algorithms are identical with the
schedulers working in the secure scenario. Based on the results of the tuning pro-
cess of genetic-based meta-heuristics in conventional grid scheduling presented in
Chapter 4, Sec. 4.4.1, the remaining genetic operations in the schedulers are config-
ured as follows: (i) Linear Ranking as selection scheme, (ii) Cycle Crossover (CX)
operator and (iii) Move mutation method [107].

The generic frameworks of all considered schedulers are the same as in Alg. 1
defined in Chapter 3. The key parameters of HGS-Sched model for generating all
types of genetic-based schedulers are presented in Table 5.3.

Table 5.3 GA Steady State and GA Struggle settings in static and dynamic cases

Parameter Value

degree of branches (t) 0

period of metaepoch (α) (5∗n)/10

nb of metaepochs 10

population size (pop size) 60

intermediate pop. 48

cross probab. 0.9

mutation probab. 0.15

max time to spend 200 sec. (static) 400 sec. (dynamic)

The HGS-Sched has in this case just one core branch. Each experiment was re-
peated 30 times under the same configuration of operators and parameters.

5.5.3.1 Results

The results of the minimization of the Makespan in both risky and secure modes and
all grid scenarios, are presented as the box-plots in Fig. 5.5–5.8.

The best results in the Makespan optimization have been achieved by both GA-
XX-ANN schedulers. The efficiency of the ANN support can be observed especially

5.5 Empirical Evaluation of the Genetic Metaheuristics 97

Fig. 5.5 The box-plot of the results for Makespan in static scheduling: Small and Medium
grids

98 5 Security-Aware Independent Batch Scheduling in Computational Grids

Fig. 5.6 The box-plot of the results for Makespan in static scheduling: Large and Very Large
grids

in the ‘Large’ and ‘Very Large’ grid scenarios. The worst in the Makespan reduction
were the schedulers working in the risky mode. While in the ‘Small’ grid case the
differences in the averaged Makespan values are not so big, in all other scenarios
GA-SS-R and GA-ST-R meta-heuristics significantly lag behind the secure sched-
ulers. It can be also observed that in all instances the distribution of the results are
asymmetric and the medians are very close to the first or the third quantiles.

The box-plots of the Mean Folwtime results are presented in Fig. 5.9–5.12.

5.5 Empirical Evaluation of the Genetic Metaheuristics 99

Fig. 5.7 The box-plot of the results for Makespan in dynamic scheduling: Small and Medium
grids

In the case of the minimization of the flowtime, both GA-XX-ANN meta-heuristics
outperform again the rest of the methods in both static and dynamic modes, however
the differences in the results are not so significant as it was in the Makespan case.
Additionally, it can be noted that as the instance size is doubled, the Mean Flowtime
values increase considerably for all applied schedulers, while the Makespan is al-
most at the same level. Another observation is that all schedulers are rather ‘sym-
metric’ in the sense of the distribution of the results and the differences between the
first and the third quantiles are rather small. The best relative effectiveness of the
ANN support may be observed in ‘Very Large’ grids in static and dynamic cases.

100 5 Security-Aware Independent Batch Scheduling in Computational Grids

Fig. 5.8 The box-plot of the results for Makespan in dynamic scheduling: Large and Very
Large grids

Similarly to other experiments presented in this book, the maximal number of
generations in GA was defined as a stopping criterion for all schedulers. However,
the solutions generated by ANN may not be improved by the GA meta-heuristics,
and the search process can be stopped because of the stagnation in the improvement
of the solutions’ quality. Table 5.4 presents the averaged (in 30 runs of the simu-
lator) minimal numbers of genetic epochs (generations) needed for generating the
best solutions by all considered genetic schedulers. A relative effectiveness of each

5.5 Empirical Evaluation of the Genetic Metaheuristics 101

Fig. 5.9 The box-plot of the results for Mean Folwtime in static scheduling: Small and
Medium grids

scheduler is expressed as the ratio of the minimal number of genetic epochs nec-
essary for finding the optimal solutions, and the stopping criterion, which is 5 · n,
where n denotes the number of tasks in the system. These parameters are displayed
in parentheses in Table 5.4.

It can be noted than ANN module in most of the instances reduced the time
necessary for finding the best solutions approximately by 30–40 %, and successfully
speeded up the search process in both secure and risky scenarios. The effectiveness
of the ANN support is confirmed by the lowest failure rates achieved by the GA-XX-
ANN schedulers. The results for all six schedulers are presented in Table 5.5.

102 5 Security-Aware Independent Batch Scheduling in Computational Grids

Fig. 5.10 The box-plot of the results for Mean Folwtime in static scheduling: Large and Very
Large grids

In all instances but one – the ‘Small’ grid in static scenario – the schedulers
with the active ANN module outperform the other methods. The ANN support al-
low to reduce the machine failures by 1%−−6% compared to the ‘conventional’
schedulers.

5.5 Empirical Evaluation of the Genetic Metaheuristics 103

Fig. 5.11 The box-plot of the results for Mean Folwtime in dynamic scheduling: Small and
Medium grids

5.5.3.2 Summary

Based on the results of all experiments provided for single-population GA sched-
ulers, the most effective in the optimization of both scheduling objective functions
is GA-SS-ANN. This algorithm works in the secure mode with the ANN support
and steady state replacement mechanism in the main genetic engine. This algo-
rithm achieved the lowest failure rates in half of the instances, and most of them
in the dynamic grid, which makes it the best candidate methodology for the secure

104 5 Security-Aware Independent Batch Scheduling in Computational Grids

Fig. 5.12 The box-plot of the results for Mean Folwtime in dynamic scheduling: Large and
Very Large grids

scheduling in the realistic scenario. It is also the best in the minimization of the
Makespan and flowtime in most of the instances of the scheduling problem.

It can be observed that generally it is more resilient for the grid schedulers to
‘pay’ a priori some additional scheduling ‘cost’ due to verification of the security
conditions, than taking a risk on allocating the unreliable resources. As a result,
the failure rates in the risky mode are much higher than in the secure case, espe-
cially in the dynamic grid where the frequency of the machine failures are 3–4 times
greater than in the secure scenario. This is the main reason of lower effectiveness of

5.5 Empirical Evaluation of the Genetic Metaheuristics 105

Table 5.4 The averaged minimal numbers of genetic epochs necessary for generating the
best solutions by six considered GA-based schedulers

Strategy Small Medium Large Very Large

Static Instances

GA-SS-R 2302 (89.92%) 4722 (92.22%) 10008 (97.73%) 19226 (93.87%)

GA-SS-S 2031 (79.33%) 3620 (70.70%) 8345 (81.49%) 19740 (96.38%)

GA-SS-ANN 1722 (67.26%) 2733 (53.37%) 7992 (78.04%) 17739 (86.61%)

GA-ST-R 1923 (75.11%) 4213 (82.28%) 10013 (97.78%) 20054 (97.91%)

GA-ST-S 1987 (77.61%) 4005 (78.22%) 8022 (78.33%) 18654 (91.08%)

GA-ST-ANN 1592 (62.18%) 3872 (75.62%) 8591 (83.89%) 16940 (82.71%)

Dynamic Instances

GA-SS-R 2090 (83.6%) 5099 (99.78%) 10100 (98.63%) 20145 (98.75%)

GA-SS-S 1831 (71.52%) 3925 (76.96%) 9036 (90.36%) 19002 (92.78%)

GA-SS-ANN 1522 (60.60%) 3021 (59.23%) 8010 (78.52%) 17830 (87.06%)

GA-ST-R 2175 (85.21%) 4923 (96.15%) 10057 (98.59%) 19353 (94.86%)

GA-ST-S 1703 (68.52%) 2954 (57.92%) 8238 (80.70%) 17993 (88.63%)

GA-ST-ANN 1611 (61.44%) 3401 (66.68%) 6035 (60.78%) 17910 (87.83%)

the schedulers in the optimization of the main grid objective functions in the risky
mode. The ANN support in the security scheduling allow to reduce significantly the
Makespan and Mean Folwtime values and to keep the failure rates of the machines
at the sufficiently low levels.

106 5 Security-Aware Independent Batch Scheduling in Computational Grids

Table 5.5 Average values of failure rate Failr parameter for six GA-based schedulers [±s.d.]
(s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-R 4.832% 7.201% 11.824% 31.721%
[± 0.97] [± 0.78] [± 1.26] [± 3.28]

GA-SS-S 4.008% 4.135% 10.698% 11.635%
[± 1.15] [± 1.27] [± 3.26] [± 3.13]

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

GA-ST-R 4.697% 17.516% 14.013% 35.643%
[± 1.71] [± 3.39] [± 4.08] [± 6.73]

GA-ST-S 3.897% 5.540% 10.945% 10.402%
[± 0.96] [± 1.89] [± 1.63] [± 3.42]

GA-ST-ANN 3.967% 6.430% 6.11% 9.196%
[± 0.79] [± 0.63] [± 1.28] [± 2.77]

Dynamic Instances

GA-SS-R 12.126% 25.306% 31.342% 25.794%
[± 1.80] [± 2.79] [± 3.44] [± 2.48]

GA-SS-S 6.104% 6.916% 9.507% 8.943%
[± 1.69] [± 2.40] [± 1.84] [± 2.07]

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

GA-ST-R 26.797% 22.96% 29.227% 29.380%
[± 5.25] [± 4.19] [± 4.95] [± 5.30]

GA-ST-S 9.218% 7.623% 8.084 % 9.744%
[± 2.84] [± 2.02] [± 2.49] [± 2.69]

GA-ST-ANN 4.093% 6.991% 7.681% 7.894%
[± 0.97] [± 1.44] [± 1.33] [± 2.41]

5.5 Empirical Evaluation of the Genetic Metaheuristics 107

5.5.4 Evaluation of Multi-Population and Hybrid Genetic
Metaheuristics

The effectiveness of the multi-population meta-heuristics and hybrid genetic sched-
ulers depend on the efficiency of their single-population genetic engines. GA−SS−
ANN algorithm, as the best single-population GA in the first part of the empirical
analysis, was selected to serve as the main genetic mechanism in HGS-Sched, Is-
land GA and GA+T S hybrid algorithms applied to the secure grid scheduling. The
following four meta-heuristics were considered in this part of analysis:

• GA-SS-ANN - with the settings defined in Table 5.3;
• Sec-HGS-Sched - with GA− SS−ANN engine and various population sizes and

mutation rates in the branches of different degrees;
• Sec-IGA - Island Genetic Algorithm with GA−SS−ANN as the basic mechanism

in all sub-populations;
• Sec-(GA+TS) - hybrid scheduler with GA−SS−ANN as the control strategy and

Tabu Search (T S).

The general characteristics of hierarchical, island and hybrid schedulers are pre-
sented in Sec. 4.4.2.1 in Chapter 4. The settings for all considered meta-heuristics
are the same as the values of global parameters for IGA, HGS-Sched and GA+TS
presented defined in Tables 4.16, 4.17 and 4.18. It means that Sec-HGS-Sched is
composed of one branch of degree 0 and branches of degrees 1.

5.5.4.1 Results

The results of the comparative analysis of the minimization of Makespan,
Mean Folwtime and the failure rates in static and dynamic instances are presented
in Tables 5.6, 5.7 and 5.8. The results were averaged over the 30 runs of the simula-
tor for the same configuration of schedulers and all parameters.

The results show the high effectiveness of the hierarchic scheduler in the security-
aware scheduling. Sec-HGS-Sched achieved the best results in 80 % of the instances
for all scheduling metrics. It is the best in the reduction of the failing rates in 7 cases,
which makes this model a solid base for the development of the real-life scheduling
strategies in the security mode. The ANN module is a good candidate technology for
an automatic verification of the security condition. Sec-HGS-Sched algorithm needs
also the shortest time measured in the genetic epochs for the detection of the best
schedules, which is illustrated in Table 5.9. This algorithm is the best in 7 instances,
and the execution time for this method may be reduced in 25%–59% in the static
case and in 21%–40% in the dynamic case.

108 5 Security-Aware Independent Batch Scheduling in Computational Grids

Table 5.6 Average values of Makespan for single-population, multi-level and hybrid genetic
schedulers [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 4208842.037 4216980.163 4309539.605 4399950.825
[± 210505.265] [± 249225.887] [± 263233.057] [± 290453.201]

Sec-HGS-Sched 3902040.474 4051566.475 4101943.296 414387056.050
[± 249630.764] [± 319691.981] [± 308590.795] [± 2664631.423]

Sec-IGA 4000936.859 4208675.544 4245347.850 4377434.150
[± 271909.245] [±292686.570] [± 328969.468] [± 339217.338]

Sec-(GA+TS) 4070923.243 4195886.584 4278491.285 4400502.382
[± 282963.771] [± 249817.482] [± 262374.619] [± 281474.189]

Dynamic Instances

GA-SS-ANN 4141538.885 4212439.475 4232327.490 4364692.950
[± 24798859.145] [± 342459.080] [± 333199.727] [± 339043.674]

Sec-HGS-Sched 3971502.411 3991503.974 4198873.263 4227569.385
[± 259973.626] [± 321385.198] [± 251572.072] [± 281680.755]

Sec-IGA 4064692.950 4162170.950 4202452.157 4315327.490
[± 339043.674] [± 302537.087] [± 277217.723] [± 344120.912]

Sec-(GA+TS) 4039043.535 4068783.648 4230791.746 4263913.826
[± 281858.929] [± 253899.771] [± 290132.215] [± 294304.036]

5.5 Empirical Evaluation of the Genetic Metaheuristics 109

Table 5.7 Average values of Mean Folwtime for single-population, multi-level and hybrid
genetic [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1098725220.445 2261958805.835 4395864089.470 8705728350.062
[± 148984029.042] [± 196213971.853] [± 103819795.484] [± 179128466.164]

Sec-HGS-Sched 1065676446.564 2143359732.256 4294563557.141 8514397268.110
[± 101692277.056] [± 211454784.794] [± 373883906.206] [± 602503134.100]

Sec-IGA 1085575340.426 2138208217.698 4236077792.436 8593447951.179
[± 110993632.105] [± 221258711.190] [± 404456270.115] [± 551754278.966]

Sec-(GA+TS) 1102225326.145 2199643747.642 4296055243.299 8608732539.636
[± 197874153.696] [± 189693364.444] [± 386740590.285] [± 504003787.972]

Dynamic Instances

GA-SS-ANN 1163342728.245 2161846250.347 4322245472.632 8734534678.245
[± 136548966.434] [± 272493690.708] [± 533180226.552] [± 635468708.749]

Sec-HGS-Sched 1100334164.177 2113783653.774 4269654378.495 8701108455.913
[± 181318391.192] [± 22486203.090] [± 547345211.754] [± 779952031.937]

Sec-IGA 1198943746.287 2198965387.563 4308567534.205 8666386800.606
[± 139503645.521] [± 221434723.381] [± 50953994.605] [± 884803516.367]

Sec-(GA+TS) 1189239424.349 2197268532.324 4320061767.548 8800435684.376
[± 132687197.083] [± 167974536.172] [± 468802204.277] [± 800470337.071]

110 5 Security-Aware Independent Batch Scheduling in Computational Grids

Table 5.8 Average values of failure rate Failr parameter for single-population, multi-level
and hybrid genetic schedulers [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

Sec-HGS-Sched 3.522% 4.011% 5.342% 5.328%
[± 1.04] [± 1.33] [± 0.98] [± 1.02]

Sec-IGA 4.167% 4.324% 5.944% 6.035%
[± 0.98] [± 1.26] [± 1.89] [± 2.23]

Sec-(GA+TS) 4.378% 5.016% 6.223% 6.927%
[± 0.92] [± 1.05] [± 1.35] [± 1.56]

Dynamic Instances

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

Sec-HGS-Sched 3.116% 3.994% 4.250% 4.845
[± 0.80] [± 0.93] [± 0.99] [± 1.14]

Sec-IGA 4.030% 4.951% 5.016% 5.136%
[± 0.90] [± 0.81] [± 1.05] [± 1.36]

Sec-(GA+TS) 4.93% 6.93% 6.327% 6.001%
[± 1.18] [± 0.99] [± 0.94] [± 2.10]

5.6 Conclusions 111

Table 5.9 The number of genetic epochs necessary for the generation of the best solutions
found by single-population, hybrid and multi-level schedulers

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1722 (67.26%) 2733 (53.37%) 7992 (78.04%) 17739 (86.61%)

Sec-HGS-Sched 1645 (64.25%) 2118 (41.24%) 6995 (63.60%) 15355 (74.97%)

Sec-IGA 1788 (69.84%) 2475 (48.33%) 7044(68.78%) 16227 (79.22%)

Sec-(GA+TS) 1702 (66.48%) 2688 (52.50%) 7110 (69.42%) 15998 (78.11%)

Dynamic Instances

GA-SS-ANN 1522 (60.60%) 3021 (59.23%) 8010 (78.52%) 17830 (87.06%)

Sec-HGS-Sched 1505 (59,93%) 2935 (57.54%) 7877 (77.22%) 16285 (79.51%)

Sec-IGA 1612 (64.19%) 2924 (57.33%) 8054 (78.96%) 17922 (87.45%)

Sec-(GA+TS) 1578 (62.84%) 2989 (58.60%) 8035 (78.77%) 17911 (87.39%)

5.6 Conclusions

This chapter addressed the problem of the integration of the security mechanisms
as additional criterion in the grid scheduling. Artificial Neural Network (ANN) was
successfully implemented as the support mechanism for risk resilient genetic-based
schedulers. The high effectiveness of this support was demonstrated by a compari-
son of the results of the performance of various GA-based schedulers in risky and
secure scheduling scenarios. The proposed neural networks model seems to be a
good solution for automatic monitoring of the grid system performance, but also
a candidate technology for supporting the decision processes of the grid users and
managers. In fact, all grid users working at different levels of the system, may spec-
ify their own strategies and preferences related to the security aspects in the schedul-
ing process. In online scheduling, the users decisions are usually supported by the
fuzzy-based online learning methodologies [110]. In batch scheduling the users’
strategies and actions may be modelled by using the game-theory, as it is presented
in the next chapter.

	Security-Aware Independent Batch Scheduling in Computational Grids
	Introduction
	RelatedWork
	Security as Scheduling Criterion in Computational Grids
	Scheduling Scenarios and Objectives

	Artificial Neural Network Module
	Empirical Evaluation of the Genetic Metaheuristics for Security-Aware Scheduling
	Security Aware Sim-G-Batch Grid Simulator
	Performance Measures
	Tuning the Genetic Engine for Multi-Population Batch Schedulers
	Evaluation of Multi-Population and Hybrid Genetic Metaheuristics

	Conclusions

