
Chapter 2
Independent Batch Scheduling: ETC Matrix
Model and Grid Simulator

Abstract. This chapter addresses the problem of Independent Batch Scheduling in
Computational Grids (CGs). The Expected Time to Compute (ETC) matrix model
is defined and employed for the specification of the main scheduling objectives,
namely makespan and flowtime, in terms of completion times of the grid computa-
tional nodes. This chapter ends with a outline of the main concept of the grid sim-
ulator dedicated to the batch scheduling. This simulator is used in the experimental
analysis presented in the rest of this book.

2.1 Introduction

Independent Batch Scheduling is a fundamental model of scheduling in grid sys-
tems. In this model the tasks are grouped into batches and can be executed inde-
pendently in a hierarchically structured static or dynamic grid environments. Due
to the massive capacity of parallel computation in CGs, this kind of scheduling is
very useful in illustrating large amount of realistic scenarios. Real life examples
of batch scheduling include: (a) processing of large log data files of online systems
(e.g. banking systems, virtual campuses, and health systems), (b) processing of large
data sets from scientific experimental simulations (e.g. High Energy Physics and Pa-
rameter Sweep Applications), and (c) data mining in bio-informatics applications.

According to the notation introduced in Sec. 1.4.2 an instance of the independent
batch grid scheduling problem can be defined as follows:

Rm [{b, indep,(stat,dyn),hier}] (ob jectives)) (2.1)

where:

• Rm – Graham’s notation references that tasks are mapped into (parallel) resources
of various speed1

• b – designates that the task processing mode is ‘batch mode’

1 In independent grid scheduling it is usually assumed that each task may be assigned just
to one machine.

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 19–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

20 2 Independent Batch Scheduling...

• indep – denotes ‘independency’ as the task interrelation
• (sta,dyn) – indicates that we will consider both static and dynamics grid schedul-

ing modes
• hier – references that the scheduling objectives are optimized in hierarchical

mode
• ob jectives – denotes the set of the considered scheduling objective functions.

2.2 Expected Time to Compute (ETC) Matrix Model

In this section, the following notation for tasks and machines in independent grid
scheduling is introduced from this point forward will be used throughout the book:

• n – the number of tasks in a batch;
• m – the number of machines available in the system for the execution of a given

batch of tasks;
• N = {1, . . . ,n} – the set of tasks’ labels;
• M = {1, . . . ,m} – the set of machines’ labels.

Tasks and machines are characterized by the following parameters:

(a)Task j:

– wl j – workload parameter expressed in Millions of Instructions (MI)
– WL = [wl1, . . . ,wln] is a workload vector for all tasks in the batch;

(b)Machine i:

– cci – computing capacity parameter expressed in Millions of Instructions Per
Second (MIPS) , this parameter is a coordinate of a computing capacity vec-
tor, which is denoted by CC = [cc1, . . . ,ccm] ;

– readyi – ready time of i, which expresses the time needed for the reloading of
the machine i after finishing the last assigned task, a ready times vector for all
machines is denoted by
ready times = [ready1, . . . ,readym] .

Tasks in this model may be considered as monolithic applications or meta-task with
no dependencies among the components. The workloads of tasks can be estimated
based on specifications provided by the users, or on historical data, or can be ob-
tained from system predictions [64]. The term ‘machine’ is related to a single or
multiprocessor computing unit or even to a local small-area network.

For each pair (j, i) of task-machine labels, the coordinates of WL and CC vectors
are used for an approximation of the completion time of the task j on machine i.
This completion time is denoted by ETC[j][i] and can be calculated in the following
way:

ETC[j][i] =
wl j

cci
. (2.2)

2.2 Expected Time to Compute (ETC) Matrix Model 21

All ETC[j][i] parameters are defined as the elements of an ETC matrix , ETC =
[ETC[j][i]]n×m, which is the main structure in ETC model. The elements in the rows
of the ETC matrix define the estimated completion times of a given task on different
machines, and elements in the column of the matrix are interpreted as approximate
times of the completion of different tasks on a given machine.

The ETC matrix model can be characterized by three main parameters:

• heterogeneity of resource;
• heterogeneity of task;
• consistency.

Heterogeneity of machine is defined as a variation of the values in rows of the ETC
matrix. It is interpreted as a degree of variation of the machine execution times
for a given task. Heterogeneity of task is defined as a variation of the values in
matrix columns. It is interpreted as a degree of variation of the task execution times
for a given machine. The averaged values of all tasks and machine heterogeneity
parameters define the heterogeneities of tasks and resources in the whole system.

Another feature of the ETC matrix is its consistency . An ETC matrix is con-
sistent if for each pair of the machines i and î the following condition is satisfied:
if the completion time of some task j is shorter on machine i than on machine
î then all tasks can be executed (and finalized) faster on i than on î. The incon-
sistency of the matrix ETC means that there no consistency relation among ma-
chines. Semi-consistent ETC matrices are inconsistent matrices having a consistent
sub-matrix.

There are numerous methods of generating the ETC matrices, which reflect the
machine and task heterogeneity. In the range-based method [100] the heterogene-
ity of a set of completion times is quantified by the range of the values of those
times. Two range parameters are defined as task and machine heterogeneities, and
an uniform distribution is used for generating the ETC matrix elements.

In a Coefficient-of-Variation (CVB) [6] method the ETC matrix is generated
by gamma distributions [93]. The key parameters for this method are defined as
follows:

• the estimated execution time of all tasks on an ‘average’ machine in the system,
execave,

• the variance in the execution times of task, tvartasks,
• the variance in the heterogeneity of grid resources, mvarmach.

The parameters exec j and tvartasks are used for estimating the execution times
ETC[j][i] of the tasks on the machine i with the ‘average’ speed in the systems.
The times ETC[j][i] are generated by using the gamma distribution with the shape
and scale parameters denoted by αt and βt respectively. That is:

ETC[j][i] = Gamma(αt ,βt), (2.3)

22 2 Independent Batch Scheduling...

where:

αt =
1

tvar2
tasks

(2.4)

βt =
execave

αt
(2.5)

A vector of ETC[j][i] parameters (j ∈ N) defines one column (indexed by i) of the
ETC matrix. Each element of this column is then used for generating one row of the
ETC matrix, that is:

ETC[j][î] = Gamma(αm,βm[j]), (2.6)

where:

lαm =
1

mvar2
mach

(2.7)

βt =
ETC[j][i]

αm
(2.8)

and î ∈ M, î �= i.
Finally, the Eq.(2.2) may be used for calculating the ETC matrix. The coor-

dinates of W L and CC vectors are generated by using the Gaussian distributions
the parameters of which express the heterogeneities of tasks and resources in the
system.

2.2.1 Schedule Representation

Schedules in grid computing can be represented by the vectors of machines’ or
tasks’ labels. Two different encoding methods of schedules in grids can be defined
in the following way.

Definition 2.1. Let us denote by S the set of all permutations with repetition of the
length n over the set of machine labels M. An element S ∈ S is termed a schedule
and it is encoded by the following vector:

S = [i1, . . . , in]
T , (2.9)

where i j ∈ M denotes the number of the machine on which the task labeled by j is
executed.

This encoding method is called direct representation of the schedule.
The S set can be also defined as the Cartesian product of n copies of the M sets.

That is to say:

Schedules = M× . . .×M
︸ ︷︷ ︸

n

. (2.10)

The cardinality of S is mn.

2.2 Expected Time to Compute (ETC) Matrix Model 23

Remark 2.1. In some approaches the S set may be considered as a discrete subset
of an n-dimensional metric space R

n with the conventional Euclidean Metrics re-
stricted to S . The distance of any two schedules S1,S2 ∈ Schedules is calculated by
using the following formula:

Diste(S
1,S2) =

√

n

∑
j=1

(S1[j]− S2[j])2 (2.11)

The metrics Diste(S1,S2) can be further normalized and used for the definition of
the similarity relation for the schedules (see Chapter 3, Sec. 3.2 and 3.3).

The direct representation of the schedules can be easily transformed into a
permutation-based representation , which is defined as a vector u of labels of tasks
assigned to the machines. For each machine the labels of the tasks assigned to this
machine are sorted in ascending order by the completion times of the tasks. For-
mally, this kind of schedule encoding method can be defined in the following way:

Definition 2.2. Let us denote by S(1) the set of all permutations without repetitions
of the length n over the set of task labels N. A permutation Sch ∈ S(1) is called a
permutation-based representation of a schedule in CG and can be defined by the
following vector:

Sch = [Sch1, . . . ,Schn]
T , (2.12)

where Schi ∈ N, i = 1, . . . ,n. The cardinality of S(1) is n!.

In this representation some additional information about the numbers of tasks as-
signed to each machine is required. The total total number of tasks assigned to
a machine i is denoted by ˜Schi and is interpreted as the i-th coordinate of an as-
signment vector ˜Sch = [˜Sch1, . . . , ˜Schm]

T , which defines in fact the loads of grid
machines.

Example 2.1. The following vector S= [1,2,1,4,3,1,2,4,3,3]T is an example of the
schedule for 4 machines and 10 tasks encoded by the direct representation method.
The same schedule in the permutation-based representation is as follows:

(Sch = [1,3,6,2,7,5,9,10,4,8]T ; ˜Sch = [3,2,3,2]T).

2.2.2 Scheduling Criteria

ETC matrix model is very useful for the formal definition of all main scheduling
objective functions (see Chapter 1, Sec. 1.4.2). The makespan and flowtime may be
additionally expressed in terms of the completion times of the machines . A comple-
tion time Ci of the machine i is defined as the sum of the ready time parameters for
this machine and a cumulative execution time of all tasks actually assigned to this
machine. The completion time of the machine i is denoted by completion[i] and it
is calculated in the following way:

24 2 Independent Batch Scheduling...

completion[i] = readyi + ∑
j∈Task(i)

ETC[j][i], (2.13)

where Task(i) is the set of tasks assigned to the machine i.
The completion[i] parameters are the coordinates of the following completion

vector:
completion = [completion[1], . . . ,completion[m]]T (2.14)

Vector C is used for calculating the makespan Cmax
2 in the following way:

Cmax = max
i∈M

completion[i]. (2.15)

In terms of ETC matrix model, a flowtime for a machine i can be calculated as a
workflow of the sequence of tasks on a given machine i, that is to say:

F [i] = readyi + ∑
j∈Sorted[i]

ETC[j][i] (2.16)

where Sorted[i] denotes a set tasks assigned to the machine i sorted in ascending
order by the corresponding ETC values.

The cumulative flowtime in the whole system is defined as the sum of F [i] pa-
rameters, that is:

F = ∑
i∈M

F [i] (2.17)

A comprehensive list of the scheduling criteria defined in terms of completion times
and by using the ETC matrix model can be found in [157].

2.3 Main Concept of the Grid Simulator: Sim-G-Batch

Simulation seems to be the most effective method for a comprehensive analysis of
the scheduling algorithms in large-scale distributed dynamic systems, such as grid
or cloud environments. It simplifies the study of schedulers performances and avoids
the overhead of coordination of the resources, which usually happens in the real-life
grid or cloud scenarios. Simulation is also effective in working with difficult and
highly parametrized problems. In such cases a considerable number of independent
runs is needed to ensure significant statistical results. Using the simulators for the
evaluation of grid schedulers is feasible, mainly because of the high complexity of
the grid environment.

Using the simulators for the evaluation of the grid schedulers is feasible, mainly
because of high complexity of the grid environment. Many simulation packages,
useful in the design and analysis of scheduling algorithms in grid systems, have
been recently proposed in literature. MicroGrid [135] , ChicSim [121] and Grid-
Sim [27] are currently the major projects in grid simulation.

2 The notation for the scheduling objectives is the same as in Sec. 1.4.2.

2.3 Main Concept of the Grid Simulator: Sim-G-Batch 25

This section presents the main concept of a Sim-G-Batch grid simulator for in-
dependent batch scheduling,as an extension and modification of the HyperSim-G
framework [163].

2.3.1 Basic Concept of Sim-G-Batch

Sim-G-Batch is based on the discrete event-based model, which facilitates the evalu-
ation of different scheduling heuristics under a variety of scheduling criteria across
several grid scenarios. These scenarios are defined by the configuration of secu-
rity conditions for scheduling and the access to the grid resources, grid size, en-
ergy utilization parameters, and system dynamics. The simulator allows the flexible
activation or deactivation of all of the scheduling criteria and modules, as well as
works with a mixture of meta-heuristic schedulers. The simulation results and traces
are graphically represented and may be saved as files of different formats such as
spreadsheets or pdf files. The simulator structure allows for an easy association with
the external or internal embedded database systems particularly for storing historical
executions.

The main concept of the Sim-G-Batch simulator is presented in Fig. 2.1.

Fig. 2.1 General flowchart of the Sim-G-Batch simulator linked to independent batch
scheduling in CGs

26 2 Independent Batch Scheduling...

The Sim-G-Batch simulator generates an instance of the scheduling problem by
using the following input data:

• the workload vector of tasks ,
• the computing capacity vector of machines,
• the vector of prior loads of machines, and
• the ETC matrix of estimated execution times of tasks on machines.

It is important to address that fact that input data may be extended if additional
scheduling criteria are or need to be considered (see Chapter 5 and Chapter 8). The
static benchmarks for the small grids are generated by using the external Static ETC
Generator module.

The users can specify their own scheduling scenario by changing the number of
tasks and machines. The capacity of the resources and the workload of tasks are
randomly generated by using the Gaussian distribution [101]. It is also assumed that
all tasks submitted to the system must be scheduled and all machines in the system
can be used.

The structure of the Sim-G-Batch application is based on the 2-module HyperSim-
G architecture and it is composed of Simulator and Scheduler modules. The main
simulation flow can be defined as follows. When a scheduling event is triggered, the
Simulator creates an instance of the scheduling problem, based on the current task
batch and the pool of available machines. The Simulator computes an instance of the
scheduling and passes it on to the Scheduler, which activates a scheduling method
specified by the user of the simulator software. The Scheduler generates the opti-
mal schedules according to the specified scheduling criteria and sends the schedules
back to the Simulator. The Simulator makes the allocation of the grid resources and
re-schedules any tasks assigned to machines which are unavailable in the system.

The Sim-G-Batch software was written in C++ for Linux Ubuntu 10.10. The ac-
cess to selected modules and resolution methods is available through the Web ser-
vice, which is the result of work on the WebGridUPC project – a common project
with Technical University of Catalonia in Barcelona (UPC Spain) [151]3.

2.3.2 Key Parameters

The simulator is highly parameterized in order to illustrate the typical realistic grid
scenarios. The main parameters of Sim-G-Batch can be interpreted as follows:

• Init. hosts: Number of hosts initialized in the grid environment.
• Max. hosts: Maximum number of resources in the grid system.
• Min. hosts: Minimum number of resources in the grid system.
• MIPS: Computing capacity of resource.
• Add host: The frequency of activation of the new resources in the system.
• Delete host: The frequency of deactivation of the idle or failed resources in the

system.

3 The codes of the benchmars and meta-heuristics are available upon request to Fatos Xhafa
(www.lsi.upc.edu/fatos) or Joanna Kołodziej (www.joannakolodziej.org)

2.3 Main Concept of the Grid Simulator: Sim-G-Batch 27

• Total tasks: Total number of tasks in the batch.
• Init. tasks: Initial number of tasks in the system .
• Workload: Workload of task.
• Interarrival: Frequency of submission of new tasks to the system .
• Reschedule: Re-scheduling policy.
• Number runs: Number of independent runs of the simulator with the same con-

figuration of the parameters.
• Scheduling strategy : The type of the scheduler, maximal execution time of the

scheduler (in seconds), and the optimization mode of the scheduling objective
functions.

The initial number of machines in the system is defined by the parameter Init. num-
ber of hosts. The parameters Max.hosts and Min.hosts specify the range of changes
in the number of active hosts during the simulation process4. The frequency of ap-
pearing and disappearing resources is defined by Add host and Delete host, accord-
ing to the constant distributions for the static case, and normal distributions in the
dynamic case. The initial number of tasks is denoted by Init. tasksparameter, which
is constant in the static case. New tasks in the dynamic scheduling can be submitted
to the system with the frequency defined by Interarrival parameter until the Total
tasks value is reached. The Scheduler strategy parameter defines the type of sched-
uler, the termination condition for the scheduler and the optimization mode for the
scheduling objectives. The setting GA Scheduler(25,s) means that the simulator
runs the GA-based scheduler for 25 seconds in simultaneous optimization mode5.

2.3.3 Heuristic Schedulers Integrated with the Simulator

The Sim-G-Batch simulator allows and facilitates an integration of a mixture of
heuristic scheduling algorithms. The simulator architecture enables to design the
schedulers as the external dynamic-link libraries (dll files) and store them separated
from the simulator main body. The schedulers are plugged in the simulator by using
and Adapter pattern as it is presented in Fig. 2.2.

The heuristic scheduling methods are usually classified into three main groups,
namely (1) calculus-based (greedy algorithms and ad-hoc methods); (2) stochas-
tic (guided and non-guided methods); and (3) enumerative methods (dynamic pro-
gramming and branch-and-bound algorithm). The heuristic schedulers integrated
with Sim-G-Batch simulator are divided into three classes, namely ad hoc, local
search-based, population-based heuristics. A simple taxonomy of those schedulers
is presented in Fig. 2.3.

Ad-Hoc Methods

These methods are usually used for single-objective optimization. They are char-
acterized by the low computational cost. Those methods are also very useful in

4 In the case of dynamic scheduling, they are different from the initial number of hosts.
5 The parameter h is used for hierarchical optimization mode , e.g. GA Scheduler(25,h).

28 2 Independent Batch Scheduling...

Fig. 2.2 The simulator adapter pattern used for different evolutionary based grid schedulers

generating the initial solutions for population-based schedulers. The Ad-hoc heuris-
tics could be categorized as immediate mode heuristics and batch mode heuristics.

The Immediate Mode Heuristics group includes the following schedulers:

• Opportunistic Load Balancing (OLB), sends a task to the first idle machine with-
out taking into account the machines execution time;

• Minimum Completion Time (MCT), assigns tasks to machines yielding the earli-
est completion times;

• Minimum Execution Time (MET), assigns tasks to the machine having the small-
est execution time for this task.

The Batch Mode Heuristics group contains the following methods:

• Min-Min: In this method for each task the machine yielding the earliest comple-
tion time is computed, then the task with the shortest completion time is selected
and mapped to the corresponding machine.

• Max-Min: This method differs from the Min-Min as far as the final selection of
the task with the latest completion time.

• Sufferage: The main idea of this method is to assign a given machine a task,
which would “suffer” more if it were assigned to any other machine.

2.3 Main Concept of the Grid Simulator: Sim-G-Batch 29

Fig. 2.3 Taxonomy of heuristic schedulers integrated with Sim-G-Batch

• Relative Cost: This methods allocates the grid resources according to the load
balancing of machines and the execution times of tasks on machines.

• Longest Job to Fastest Resource - Shortest Job to Fastest Resource (LJFR-SRFR):
This method tries to simultaneously minimize both makespan and flowtime val-
ues: LJFR minimizes makespan and SJFR minimizes flowtime.

Local Search Methods

Methods from this category explore the optimization domain by constructing a se-
quence (‘path’) of partial solutions in optimization space. The most effective local-
based grid scheduler is Tabu Search (TS) [162]. TS can be easily hybridized with
more sophisticated schedulers (like GAs) to improve their efficiency.

Population-Based Heuristics

These methods use a population of individuals for the exploration of the solution
space. The individuals in the populations represent the partial solutions of the con-
sidered problem. The major group in this class is a mixture of the single population

30 2 Independent Batch Scheduling...

Genetic Algorithms (GAs), proposed by many authors as the effective grid sched-
ulers [160, 161, 120]. Recently, a multi-population hierarchical GA-based scheduler
has been defined in [90], [86]. In this method a set of dependent genetic processes is
executed simultaneously. Each process creates a branch within the whole strategies
tree structure, by using the GA-based scheduler with different settings. The search
accuracy in a given branch (expressed as the branch degree parameter) depends on
the mutation probability set for the scheduler activated in this branch (the higher
mutation problem–the lower accuracy). A generic model of the hierarchical genetic
scheduler and its several implementations are presented in Chapters 3-8 in this book.

	Independent Batch Scheduling: ETC Matrix Model and Grid Simulator
	Introduction
	Expected Time to Compute (ETC) Matrix Model
	Schedule Representation
	Scheduling Criteria

	Main Concept of the Grid Simulator: Sim-G-Batch
	Basic Concept of Sim-G-Batch
	Key Parameters
	Heuristic Schedulers Integrated with the Simulator

