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Foreword

Emerging paradigms for the development and deployment of massively distributed
computational systems allow resources to span diverse locations, organizations, and
platforms connected through wide area networks. In such systems, both service pro-
vision and services may arrive, be organized, and dissipated, as computational capa-
bilities are formulated and reformulated without reference to any central authority
or any coordinator.

The term Grid was coined in the mid-1990s in reference to technologies that
would allow consumers to utilize computing power on demand. Ian Foster, in his
pioneering work on grid computing, posited that a simple grid environment may
be created by standardizing the protocols used to request computing power across
several computing clusters. His methodology was analogous in form and utility to
the conventional electric power grid. Although the concept of Grid Computing has
grown far beyond its original intent, from an engineering perspective grid schedul-
ing retains the original (and general) objective of system resource allocation. A
well-known example of the original objective is load balancing, in which the task
of providing a resource is distributed evenly between some nodes. However, more
complex objectives are defined in today’s grid systems, such as. both stable and
uneven allocations where other factors are taken into account, including users’ pref-
erences related to quality of service issues, underlying computational overhead in-
curred by the service provider, security of access to the resources, energy utilized
by the system, and many others. The ability to effectively allocate resources in a
desired configuration in a scalable and robust manner is essential.

This book presents a new categorization of grid scheduling problems. Two new
scheduling criteria, namely security and energy consumption, are embedded in the
proposed scheduling models. In addition, the author demonstrates that the grid
scheduling problem may be interpreted as a difficult decision problem for grid users
working at the different grid levels. The fundamental features arising in user behav-
ior in grid scheduling include: dynamics, selfishness, cooperativeness, trustfulness,
and their symmetric and asymmetric roles. User decisions are modeled on game-
theoretical models. All of the issues identified above provide a basis upon which
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traditional scheduling problems may be viewed from a contemporaneous and unique
perspective.

Two major challenges in the use of evolutionary-based techniques for solving
dynamic optimization problems are (1) to generate and maintain sufficiently high
diversity levels in the population, and (2) to evolve robust solutions that track the
optimal solutions identified during the process. Ideally, we want an adaptive algo-
rithm that responds in an appropriate way every time a change in the environment
occurs. This book presents a generic model for a hierarchical multi-population ge-
netic scheduler that enables an undemanding configuration of the numerous genetic
operators and an effective exploration of the search space with an adaptive accuracy.
This model may be easily adapted to a range of scheduling scenarios. The function-
ality of this model and its effectiveness in multi-criteria grid scheduling is justified
in the comprehensive experimental analysis.

I believe that you will find the contributions in this book very interesting as they
provide innovative and contemporary expositions of new concepts and techniques in
advanced scalable grid computing. It is devoted to the study of common and related
subjects in two intensive research areas of distributed computing and evolutionary
computation. It is a very timely volume to be welcomed by the wider Computational
Intelligence community and beyond.

Adelaide, Australia Zbigniew Michalewicz
January 2012



Preface

In the recent years, we are witnessing a growing interest in the need for designing in-
telligent models and methodologies to address and solve complex issues within the
domain of large-scale distributed systems that provide high performance capabilities
to a wide range of applications with different, and at times conflicting requirements.
In today’s Computational Grids, Clouds, or modern Clusters the Information Tech-
nology (IT) resources usually belong to different owners (institutions, enterprises
or individuals) and are managed by different administrators. Resource administra-
tors conform to different sets of rules and configuration directives, and can impose
different usage policies on the system users.

Highly complex large-scale distributed computing systems, which could be made
up of hundreds or thousands of various components (computers, databases, etc)
must provide (in fact) a wide range of services and high performance computing
platforms. Moreover, a user in one locality (geographical or managerial) might not
be able to have control over other parts of the system. Various types of information
and data processed in the large-scale dynamic environment may be incomplete, im-
precise, fragmentary and overloading, which complicates the specification of proper
evaluation criteria, assignment scores, availability of resources, and the final collec-
tive decisions of the users. The system complexity may also be the reason of the
higher energy consumption. All of the above mentioned issues will necessitate the
development of intelligent resource management techniques.

Scheduling problems in highly heterogeneous environments may be considered
as a family of NP-complete optimization problems. Depending on the restrictions
imposed by the application needs, the complexity of the problem can be determined
by the number of objectives to be optimized, such as (single vs. multi-objective), the
type of the environment (static vs. dynamic), the processing mode (immediate vs.
batch), and tasks interrelations (independence vs. dependency). Therefore, there is
a great need for the development of newer highly scalable scheduling models with
newer metrics for large-scale distributed systems that could capture all of the com-
plexity and provide meaningful measures for a wide range of applications. That is to
say that new classes of algorithms, schedulers and simulation models, that would be
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able to characterize the system dynamics and variety of services and applications,
must be developed.

Artificial Intelligence-based metaheuristics, such as fuzzy logic, neural networks,
evolutionary and memetic algorithms have shown great potential to solve many de-
manding, real-world decision and optimization problems in uncertain large-scale
environments. Heuristic approaches seem to be the effective means for designing
multi-criteria grid or cloud schedulers by trading-off various preferences and goals
of the system users, resource and service managers and resource owners. The afore-
mentioned technologies are the foundations for the intelligent scalable computing,
future generation grid computing and, recently, green computing technologies in
grids and clouds.

Although, most of the metaheuristics attempt to find an optimal solution with
respect to a specific fixed fitness measure. In the case of evolutionary or genetic
algorithms, a great deal of effort has gone into designing efficient representation
schemes and genetic operators so as to produce rapid convergence for a good so-
lution. The rapid decrease in diversity of the population results in a highly fitted
but homogeneous population, which does not allow the algorithm to perform well
in large-scale dynamic environments. Parallelization and hybridization have proven
to be an effective solution for increasing diversity in the population and to evolve
robust solutions that are able to track the optima. However, the cost of their imple-
mentation and execution in the large-scale systems may be very high. Therefore, it
is most important to investigate a novel general framework for modeling the mono-
and multi-population evolutionary-based metaheuristics to enable the secure access
to data and resources, flexible communication, efficient scheduling, self-adaptation,
decentralization, and energy-awareness of the system.

This book discusses the advanced research on the effective scalable genetic-based
heuristic approaches to grid scheduling, where new scheduling criteria, such as sys-
tem reliability, security, and energy consumption are introduced and incorporated
into a general scheduling model. It serves as a monograph book, which covers the
recent hot topics in design, administration and management of the dynamic grid en-
vironment with a special emphasis on the preferences and autonomous decisions of
the system users, secure access to the processed data and services, and green tech-
nologies in computational grids. The book consists of the eight chapters structured
into four main parts:

I. Scheduling Problems in Grid Computing: collectively known as computational
resources or simply infrastructure, computing elements, storage, and services
represent a crucial component in the formulation of intelligent decisions of the
grid users at all system levels. The first two chapters introduce the general con-
cepts of Computational grids, the types of grid users and scheduling problems
in the dynamic grid environment. An ETC Matrix model for Independent Batch
Scheduling problem is presented and a number of scheduling constraints, criteria,
and scenarios are discussed throughout the text.

II. Multi-Level Genetic-Based Hierarchical Grid Schedulers: Chapters 3 and 4
present a concept and the results of the empirical evaluation of a multi-level
metaheuristic grid scheduler. The main goal of this method is an effective
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hierarchical multi-level exploration of the search space by a family of dependent
genetic processes.

III. Security-Driven Scheduling Model for Computational Grid Using Multi-level
Genetic Metaheuristics: Scheduling and resource allocation in today’s Compu-
tational Grids arises new requirements and challenges not considered in conven-
tional distributed computing environments. Among these new requirements, task
abortion and security become needful criteria for grid schedulers. The former
arises due to the dynamics of the grid systems, in which resources are expected
to enter and leave the system in an unpredictable way. The later appears cru-
cial mainly due to a multi-domain nature of the grid environment. Chapters 5
and 6 showcase techniques, models and concepts for security awareness in grid
scheduling.

IV. Genetic Solutions to ’Green’ Scheduling in Computational Grids: The efficient
resource allocation in grids becomes even more challenging when energy uti-
lization, beyond the classical makespan and user’s Quality of Service (QoS), is
treated as first-class additional scheduling objective. Chapter 7 presents a brief
survey on genetic metaheuristic solutions to green computing. Chapter 8 demon-
strates the genetic energy-aware grid schedulers applied to the Dynamic Voltage
and Frequency Scaling (DVFS) model for the management of the cumulative
power energy utilized by the grid resources.

I believe that this book ought to serve as a reference for students, researchers,
and industry practitioners interested or currently working in the evolving interdis-
ciplinary area of intelligent scheduling and resource management models using
emergent distributed computing paradigms. I hope that the readers will find new
inspiration for their research in high performance computing by seeing the old
scheduling problems from a newer and a unique perspective.

Bielsko-Biała, Kraków Joanna Kołodziej
June 2011 – January 2012
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sta static scheduling

dyn dynamic scheduling

C centralized grid architecture

D decentralized grid architecture

H(i) hierarchical grid architecture

d j deadline constraint for task j
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Notation Definition

sim multi-objective optimization in simulta-
neous mode

hier multi-objective optimization in hierarchi-
cal mode

Cmax makespan

F flowtime

Fj time of finishing the task j

Tasks a set of tasks submitted to the grid

Schedules a set of all possible schedules

Latmax maximum lateness

Lat j lateness for the task j

Tard total weighted tardiness

Tard j tardiness for the task j

w̃ j weight coordinate for Tj

Independent Batch Scheduling

n the number of tasks in a batch

m the number of machines available in the
system for the execution of a given batch
of tasks

N = {1, . . . ,n} the set of tasks’ labels

M = {1, . . . ,m} the set of machines’ labels

ob jectives the set of the scheduling objective
functions
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Notation Definition

wl j workload of task j

W L = [wl1, . . . ,wln] workload vector

cci computing capacity of machine i

CC = [cc1, . . . ,ccm] computing capacity vector

readyi ready time of machine i

ready times = [ready1, . . . ,readym] ready times vector

ETC[ j][i] completion time of task j on machine i

execave the estimated execution time of all tasks
on an ‘average’ machine in the system

tvartasks the variance in the execution times of task

mvarmach the variance in the heterogeneity of Grid
resources

S the set of schedules encoded by using the
direct method

S(1) the set of schedules encoded by using the
permutation-based method

S schedule vector in direct representation

Sch schedule vector in permutation-based
representation

completion[i] completion time of machine i

F [i] flowtime for machine i

Tasks(i) the set of tasks assigned to machine i

Hierarchical Genetic Scheduler (HGS-Sched)
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t degrees of the the branches

˜Max maximal degree of the branches

1 ≥ pop1 ≥ pop2 ≥ . . .≥ pop
˜Max cardinalities (‘sizes’) of populations in the

branches

μ1 ≥ μ2 ≥ . . .≥ μ
˜Max mutation parameters (rates) in the

branches

Pē
(r,t) population in the branch of degree t

Metα α-periodic metaepoch

SO sprouting operator

su f neighborhood parameter

St the length of the suffix of schedule S

fhash hash function

Security and Game Parameters

SD security demand vector

sd j security demand parameter for the task j

T L trust level vector

tli trust level parameter for the machine i

Pr f machine failure probability matrix

Prf [ j]i] probability of failure of the machine i dur-
ing the execution of the task j

completions[i] the completion time of the machine i in
the secure mode
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Cmax(sec) makespan in secure mode

F(sec) flowtime in secure mode

Failr failure rate parameter

Play number of players (grid users)

Qa cost function of the user a

Pla strategy vector of user a

Q multi-cost game function

QStac multi-cost game function in Stackelberg
game

QFol aggregate Followers’ multi-cost game
function

Q(ex)
a user’s task execution cost

Q(util)
a resource utilization cost

Q(sec)
a cost of security-assured allocation of the

user tasks

Energy-aware Scheduling Parameters

si energetic class of the machine i

Powji capacitive power utilized by the machine
i for computing the task j

V r(i) meta-vector of voltage and frequency lev-
els for machine i

vsl (i) voltage supply for machine i at the DVFS
level sl
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fsl (i) scaling parameter for the frequency of
machine i at the DVFS level sl

E ji(sl) energy utilized for completing the task j
on machine i at the level sl

Ei cumulative energy utilized by the ma-
chine i for computing all tasks assigned
to this machine

Idle[i] idle time of machine i

Ebatch total energy consumed for scheduling a
batch of tasks

mig relative amount of the migrating individ-
uals in IGA

deme size of the sub-population in IGA

mdeme number of migrating individuals in each
deme

Im(E) relative energy consumption improve-
ment rate
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Chapter 1
Scheduling Problems in Hierarchical Grid
Environment

Abstract. Scheduling and efficient resource management are the key issues for
grid computing. This chapter reveals the complexity of the scheduling problem in
Computational Grids under various criteria and users’ requirements. This chapter
presents a simple taxonomy of Grid Systems and defines the hierarchic multi-layer
system model along with a general characteristics of the class of grid users, their
functions and requirements related to scheduling in grid computing. It introduces
a general classification and notation of the grid scheduling problems and the basic
scheduling attributes. This chapter ends with a short discussion on the grid users be-
havior scenarios related to scheduling and a brief survey of the realistic scheduling
models.

1.1 Introduction

Grid computing is one of the most popular combinations of traditional distributed
computing and utility computing. This combination greatly facilitates today’s In-
formation Technology (IT) outsourcing and has become very effective in solving
large-scale complex problems from a variety fields, such as social and biological
sciences, engineering, and finance. Computational Grids (CGs) are primarily con-
cerned with the development of high-performance applications, which can be ex-
ecuted simultaneously on multiple computers or supercomputers connected by the
wide area networks.

Task scheduling and resource allocations are the key issues for CGs. Specifically,
in large-scale CGs, distributed resource clusters work within different autonomous
domains with their own access policies, which impacts the successful execution of
the grid applications across the domain boundaries.

The concept of the ’Grid’ has been developed over the past 20 years as part of
grid computing project aimed at linking geographically dispersed supercomputers.
The grid idea was popularized by the late 1990s by Foster et al. [48] who developed
the Globus Toolkit as a general middleware for grid systems [47].

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 3–18.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Today’s Grid Systems, are considered along with the Cluster and Cloud systems,
as a principal category of modern High Performance Distributed Systems (HPDSs)
as presented in Fig. 1.1.

Fig. 1.1 The main categories of High Performance Distributed Systems (HPDSs)

Despite the fact that all HPDS’s models are collectively based on the distributed
computing paradigm, they have different characteristics which are crucial for the
potential system users. Table 1.1 presents a comparison of the main features for
three HPDS classes.

Table 1.1 Main features of three HPDS classes

Feature Cluster Grid Cloud

Scale Small and medium Large From Small to Large

Network type Private LAN Private, WAN Public, WAN

Administrative domain Single Multi Both

Resources’ domain structure Homogeneous Heterogeneous Heterogeneous

Security Very High High Low

The modern Cluster Systems are composed of computers usually restricted to a
single switch, or group of interconnected switches, within a single virtual local-area
network (VLAN). These systems are designed as platforms for processing the data
intensive applications, multi-level system management, and the implementation of
the scalable methodologies and techniques. Despite executing computer-intensive
applications, today’s cluster systems are also used for replicated storage and backup
servers, which provide the fault tolerance and reliability for applications.
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The main goal of the Grid Systems is to connect geographically distributed re-
sources through wide area high speed networks (Internet) in order to minimize the
cost of their utilization. In contrast with the cluster and other conventional dis-
tributed systems, grids account for the different administrative domains with their
own access policies, users’ privileges and requirements. The management of the
grid resources can be very complex mainly as a result of the high system dynamics
and additional users’ requirements (e.g., security and low cost scheduling).

The Cloud Systems class is the most recently developed HPDS category and is
based on the Internet infrastructure. The cloud system is a new supplement and
delivery model for IT services, involving over-the-Internet provisions of both phys-
ical and virtualized scalable resources. The model is based for the most part on
the Virtual Grid Application Development Software project (VGrADS), which is
sponsored by The National Institute of Standards and Technology (NIST). The cur-
rent clouds may be seen as a next step in the evolution of the grid environments.
The cloud providers deliver common business applications online, while the soft-
ware and data are stored on physical servers. From the user’s perspective, the cloud
model requires minimal management and interactions with IT administrators and
resource providers. On the other hand, cloud systems need the complex network-
ing, storage and intelligent system configuration to be self-monitoring and in fact
also self-healing system. A self-monitoring of all actions in cloud and the systems
states is necessary for the automatic balancing of workloads across the physical net-
work nodes in order to optimize the costs of the system utilization. The self-healing
feature means that the system guarantees an automatic service restoration in case
of failure of any individual physical software or hardware component of the cloud.
However, the efficient solutions for the service and resource management in cloud
systems still remain as hot open research problems.

1.2 Grid Types and Multilevel Architecture

Although CG remains the most popular grid environment, today’s Grid Systems
have grown far beyond their original intention. Modern grid infrastructures can ben-
efit various complex applications, e.g., collaborative engineering, data processing
and exploration, e-Science applications, by providing many of the preceedingly dis-
cussed features. This section presents a simple taxonomy and briefly review the
most important types of grids and define a multi-layer architecture of CGs.

1.2.1 Types of Grids

The Grid Systems class contains several high performing distribution systems with a
varying degree of grid characteristics. There are many grid-like systems developed
and deployed for a mixture of purposes, namely computational grid, data/storage
grid, campus grid, enterprise grid, global grid, knowledge grid, sensor grid, cluster
grid, pc grid, commodity/utility grid, etc. The full list of systems can be found in [48].
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Fig. 1.2 Taxonomy of Grid Systems

A simple taxonomy of the Grid Systems is presented in Fig. 1.2, and includes
seven of the most prevailing types of grids developed over the past few years.

Computational Grids: CGs were developed for solving complex computational
problems that require the processing of large quantities of mathematical operations
and/or data. They use the high speed connection network as a, low-cost commodity,
medium for accessing the wide spread availability of powerful computing resources.
CG systems are a natural extension of the High Performance Computing (HPC) sys-
tems, which enable the sharing of a wide variety of computing clusters owned by
different geographically distributed organizations [12]. The major CGs’ projects in-
clude: NASA IPG project [68], the World Wide Grid project [23], the NSF TeraGrid
project [144], Nimgrod/G [25] .

Data Grids: Data Grids systems provide the services and infrastructure needed for
data-intensive applications to access and modify the large distributed databases re-
sources . All procedures in a Data Grid are mediated by a security layer that han-
dles authentication of entities and ensures the administering of only authorized
operations. The main services offered by the system include, but are not limited
to, consistency management for replicas, meta-data management, and data filter-
ing [32], [147].

Desktop Grids: The main concept of the Desktop Grids is to connect personal com-
puters (PCs) to large-scale networks by using the Internet or other high-speed wide
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area networks. To access this feature a PCs owner must simply install an utility
application and register in the grid web service. The Desktop Grids architecture is
based on the conventional Master-Slave model. The grid applications are split up
into many small subtasks that can be processed independently. SZTAKI project [58]
is an example of such systems.

Utility Grids: In Utility Grids organizations subscribe to an external utility com-
puting service provider and pay for the utilization of the hardware and software re-
sources. The physical resources in the system are shared and utilized by a number of
applications and users from delet numerous organizations. The principal resources
offered include, but are not limited to virtual computing environments and storage
capacity [50].

Enterprise Grids: Enterprise Grids are made up of grid services and infrastructures,
which can be used as support platforms for e-Business and enterprise applications.
The Enterprise Grids can process and execute a very wide range of projects; from an
investment portfolio risk analysis and pricing securities in the finance and insurance
sector; to drug discovery in the pharmaceutical sector; as well as digital media cre-
ations. “IBM Grid” project [57], “Oracle Grid” [115] and “HP Grid” project [134]
explore some examples of the most widely known Enterprise Grids.

Scavenging Grids: Scavenging Grids are at [33]. Scavenging Grids are considered
as an underlying technology of computational and volunteer computing projects,
where by the system administrators locate and exploit the Central Processing Unit
(CPU) cycles on idle servers and desktop computers in order to compute and execute
the users’ tasks. Setihome [130] and Rosettahome [125] projects are instances where
scavenging grids are used. e-Science Grids: These systems are defined as the dis-
tributed cyber-infrastructures that support scientific investigations performed during
global collaborations (particularly those between scientists and their resources). e-
Science Grids enable the users to combine and coordinate the research and innova-
tion activities at global levels.

1.2.2 Multi-Level Hierarchical Grid Architecture

The grids are modeled as hierarchical multi-layer systems, which are the result of
the hybridization of centralized and decentralized resources and service manage-
ment. The hierarchy usually consists of two or three levels, depending on the system
knowledge, access to data and resources and the organization of the scheduling pro-
cess. The general concept of multi-level hierarchical grid architecture is presented
in Fig. 1.3.

An example of a two-level grid architecture is the Meta-Broker model (MB) [50].
In this system, grid users submit their applications to the MB system (the inter-site
level), which uses the information supplied by the resource owners (the intra-site
level) to assign user and application requirements to the appropriate user and their
machines.

A three-level grid system example is presented by Kwok et al. in [92]. All types
of grid users work at global, inter-site and the intra-site levels. At the intra-site level,
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Fig. 1.3 Two-level (left) and three-level (right) hierarchical architecture of Computational
Grids

there is an alliance of autonomous machines. The resource owners send information
about the computational capacities of the machines to local managers, who define
the “grid sites reputation indexes” and forward them to the global scheduler. At the
global level the scheduler performs the tasks adaptively, using scheduling algorithms
and suggested resources based on availability.

The characteristics of each of the grid levels may be difficult to interpret, mainly
because of the intricate and intertwining multi-layer structure of the grid compo-
nents that span the hierarchical architecture of the system. The four key layers of
grid components can be defined by: (1) grid ‘fabric’ layer, (2) grid core middleware,
(3) grid user layer, and (4) applications [27]. The grid ‘fabric’ layer is composed of
the grid resources, services, and local resource management systems. The grid core
middleware provides services related to security and access management, remote
job submission, storage, and resource information and scheduling. The grid users’
layer contains all of the grid service end-users and system entities, and plays the
most important role in ensuring multi-criterion scheduling and resource manage-
ment efficiency.

1.3 Users’ Layer in the Grid System

In conventional distributed computing environments just a few categories of users
can maintain the whole system. These users’ characteristics include operating in
the same administrative domains, restricted requirements and actions to small area
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networks and clusters. In CG systems, due to high heterogeneity of services and
resources, as well as hierarchical grid architecture, a large community of the sys-
tem users co-exist and perform their tasks with different, and sometimes conflicting
requirements. These conflicts imply that there are a variety of users’ relationships,
behavior, and scheduling scenarios. The IT resources generally belong to different
owners (institutions, enterprises, or individuals) and are managed by different ad-
ministrators. Every resource administrators can potentially adopt different sets of
rules and configuration directives, as well as impose different usage policies on the
system users. In addition, the task managers, resource providers, and local sched-
ulers may each play a different role if the new conceptual scheduling criteria such as
energy awareness, security, and resource reliability are considered. Therefore there
is a need to analyze and model such users’ requirements and relations to predict the
users’ actions, and to optimize the schedulers’ behavior as well as the whole system
performance at both the individual and global levels.

1.3.1 Main Types of Grid Users

In large-scale dynamic grid environments the users play an assortment of roles at the
different system’s levels, these include working as the: grid administrators, com-
munity or Virtual Organization (VO) administrators, node administrators, service
owners, users’ groups administrators, service end-users, etc. Based on the grid users
taxonomy defined in [111], below this chapter will present a brief profile of six main
types grid users, namely Grid System Administrators, Grid Service Providers, Grid
Service End-Users and three categories of Grid Power Users [88], [89].

Grid-sys-admin: Grid System Administrator. The main function of system adminis-
trator is the management of grid nodes and clusters security, infrastructure delivery,
and system configuration. The system administrator is an expert in computer science
and is also in charge of monitoring the users’ activities and system performance.

Grid-sp: Grid Service Provider. Users in this role also have expertise in computer
science, as well as authorization and personalized identity management. This role
provides authentication, authorization, and accounting for the Grid Service-End
users.

Grid-seu: Grid Service End-User. The Grid Service End-User’s main focus is the
submission of task and applications to the grid schedulers and managers. The role
also requires the ability to specify time and budget constraints for the task schedul-
ing and execution systems. Additionally, individuals in this role upload the data,
scripts or source codes necessary for solving the submitted tasks and the execution
of applications, as well as run queries, executable code or scripts with the assis-
tance of the grid Service Provider . Unlike many of the other roles the Grid-seu
does not need to be an expert in computer science or with the grid architecture and
management.

Grid-pua: Grid Power User Agnostic of grid resource node. Individuals in this
role focus mainly on activities associated with program development and data
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management. The Grid-pua is not usually concerned with where the processing
takes place in the grid system.

Grid-pu: Grid Power User requiring specific grid resource nodes. The main duties
of this role consist of activities similar to those of the Grid-pua’s. In addition, the
grid service and resource owners may wish to have a direct authentication, autho-
rization, and accounting relationship with the Grid-pus (differently from Grid-pua
users).

Grid-puds: Grid Power user Developing a Service are generally individuals with-
expertise in computer science (like Grid-pua and Grid-pus) and service administra-
tion and development (similarly to Grid-sp). This role at times may interact with
Grid-seu in an tentative manner.

There are a variety of ways the access management requirements and the special
polices pertaining to each user group, and defined by the resource owners, may be
fulfilled. Each and every user group, should adapt in response to the requirements
of the users’ communities. Table 1.2 presents the users’ general requirements with
respect to the grid administration, service, application and porting, usability and
resource utilization (see also [40]).

An important concept to address, as it is imperative across all grid levels, is the
standardized authentication and authorization mechanisms as well as the globally
accepted trustworthiness of the grid user. The trustworthiness of the grid user can
be defined as a user authentication trustworthiness parameter (UAT), which is ex-
pressed as a degree of the user’s approved system authentications, and must be taken
as a basic qualification in judging access requests. The system makes an access
control decision based on the user’s authentication trustworthiness. Although the
user has passed system authentication, one cannot be certain whether that individ-
ual should be trusted or not. There are some uncertainties in authentication systems,
i.e., uncertainties of the authentication mechanisms, authentication rules, and au-
thentication conclusions. These uncertainties in the authentication process can be
modeled using the Fuzzy Logic. The Fuzzy Logic has been widely accepted in grid
computing for intrusion detection systems purposes, as well as for the prediction of
the users’ actions and decisions [3, 167]).

The problems of authentication trustworthiness have been extensively studied,
analyzed, and applied in a significant volume of publications in the domain [150].
A majority of the methods are based on the concepts similar to those of the Virtual
Organization (VO) model. User’s who acquire membership with the VO are autho-
rized and granted access to VO’s resources. The VO membership contributes to the
distribution of the user’s management overheads as well as reduces the procedures
in replicating administrative efforts across the grid. This concept of VOs is also a
key issue in the grid architecture development. The proper designing of a CG archi-
tectural model is one of the most important concerns in ensuring efficient resources,
as well as task and user management according to the various users’ requirements.
The hierarchical layered structure of the system in conjunction with user relations
is sufficient to capture the realistic administrative features of a real-life, large-scale
distributed CG environment.
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Table 1.2 Grid Users’ general requirements

Requirement type User type
Grid General Requirements

Reliable grid middleware; Quality of Service (QoS) All users

Fine grained simple access policies to data and databases All users

Monitoring the grid jobs and tasks, estimation of task queue
delay

All users

Standardized authentication and authorization mechanisms All users

Globally accepted, trustworthy grid user identity All users

Administration Requirements

Secure communication and transfer Grid-sys, Grid-puds
Grid-seu

Uniform configuration across all grid components Gris-sys-admin, Grid-puds

Upgrading and the management of the software Grid-pua, Grid-pu
Grid-sys-admin

Testing and monitoring of grid components, service recov-
ery, outages and maintenance scheduling

Grid-sys-admin

Service Requirements
Encryption and protection of data on grid storage elements Grid-sp, Grid-pua

Grid-pu

Fast access and reliable transfer of massive amounts of data Grid-sp, Grid-seu
Grid-sys-admin

Ad-hoc integration of external arbitrary data sources Grid-sp

Application and Porting Requirements

Consistent API for all middleware components Grid-sys-admin

Standardized error codes and error handling procedures All users

Utilization and Usability Requirements

Visualization of the computational results Grid-seu

Safe and easy authentication procedures Grid-seu, Grid-sp

Reliable real-time and instantaneous task submission for
high priority tasks for e.g. risk and disaster management,
recovery, etc.

Grid-seu
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1.3.2 Grid End Users’ Requirements for Scheduling

The complexity of the scheduling scenarios and the roles of the system administra-
tors, service providers, and grid power users strongly depend on the Grid-seu’s QoS
requirements and specific scheduling and task execution criteria, which is defined
as follows:

Requirements for Specifying a Single Computational Task. At the basic level,
the Grid-seu needs to be able to specify and submit a single monolithic application
(with well defined input and output data), a bag-of-tasks application with no de-
pendencies among them, and complex parallel applications. The user may also be
required by the system to provide information on types of tasks (e.g. data intensive
vs. CPU intensive computing) and an estimation of task workload. In many cases,
the users should be able to submit their tasks/applications as either executable or
source code, which need to be compiled and linked for further execution. Some
source codes may require a software deployment not available in the grid cluster.
Due to the complexity of the compilation and execution processes on heteroge-
neousarchitectures within the grid, it is recommended to build and test applications
on a specific platform prior to submitting them to the system. Finally, in most cases
data is assumed to be shipped with the task/application.

Requirements for Specifying a Job of Multiple Tasks. The user should be able
to specify a complex job involving the execution of multiple tasks with internal
relations among all the components. The input and output data must be defined for
each task, providing the ability to specify relational data. Some graphical interfaces
and representation of the graph structures (like Directed Acyclic Graph (DAG)) may
also be provided for the specification of tasks inter-relations.

Access to Remote Data. The input and output data specified by the user may be
stored remotely. Therefore, users will need to provide the location of the remote
data. If a ubiquitous wide-area file system is in operation on the grid, the user would
only have to care about the location of files and data with respect to some root
location under which they are stored.

Resource Specification. The user may specify special requirements for the re-
sources necessary in optimizing the execution times and costs of scheduling and
computing tasks. The user may wish to target particular types of resources (e.g. SMP
machines), but should not be concerned with the type of resource management on
the grid, nor with the resource management systems on individual resources on the
grid.

Resource reliability. In some cases, the machines within the grid system could be
unavailable due to high system dynamics or special policies of the resource owners.
The user should be informed about the resource reliability in order to reduce the cost
of possible resource failures or the abortion of executed tasks. In the case of resource
failure the system administrators (Grid-sys-admin users) can activate re-scheduling
or task migration procedures, and preemption policies.
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Trustfulness of Resources - Secure Scheduling. The user may be required to al-
locate his tasks in the most trustful resources. Therefore the user should be able to
verify the trust indexes of the resources and estimate the security demands for his
tasks on the available resources.

Standardized authentication and authorization mechanisms requirements. The
CG’s users will likely utilize a standardized certificate authentication scheme. The
certificates can be digitally signed by a certificate authority, and kept in the user’s
repository, which is recognized by the resources and resource owners. It is desirable
for a certificate to be automatically created by the user’s interface application during
task submission.

Job Monitoring and Control. The grid users should be able to monitor the current
status of their tasks and applications in the system.

1.4 Scheduling Attributes and Problem Types

The main aim of scheduling in large-scale distributed computational environments is
efficient mapping of tasks originated by applications to a set of available resources.
The tasks and resources can be added and dropped to and from the system. Schedul-
ing in computational grids remains a challenging NP-complete global optimization
problem due to the heterogeneous structure of the system and co-existence of local
geographically dispersed job dispatchers and resource owners working in different
autonomous administrative domains.

This section defines the main scheduling attributes and introduces a general clas-
sification of the scheduling problems in CGs and the scheduling criteria.

1.4.1 Scheduling Attributes

Different types of scheduling problems in CGs may be defined with respect to dif-
ferent properties of the underlying grid environment and various requirements of
the users. To achieve the desired performance of the system, both users’ conditions
and grid environment information must be “embedded” into the scheduling mecha-
nism [2], [157], [86].

Fig. 1.4 depicts four main scheduling attributes that must be setup to specify a
particular tasks-machines mapping problem, namely: (a) the environment, (b) grid
architecture, (c) task processing policy, and (d) tasks’ interrelations.

The general scheduling scenario in CGs may be realized in static or dynamic
environments. In the case of the static scenario the number of the submitted appli-
cations and the available resources remain constant in a considered time interval,
while in the dynamic scenario the resources may be added or removed from the
system in an unpredictable way.

The resource management and scheduling can be organized in centralized, decen-
tralized, or hierarchical modes. In centralized model, there is a central authority, who
has a full knowledge of the system. The primary disadvantages of this model is its
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Fig. 1.4 Main scheduling attributes in CGs

limited scalability, lack of fault tolerance, and the difficulty in accommodating mul-
tiple local policies imposed by the resource owners. In decentralized model, local
schedulers interact with each other to manage the tasks pool. In this model, there is
no central authority responsible for resource allocation. Hence, the model naturally
addresses issues such as fault-tolerance, scalability, site-autonomy, and multi-policy
scheduling. Finally, in the hierarchical model, there is a central meta-scheduler (or
meta-broker), which interacts with local job dispatchers in order to define the op-
timal schedules. The higher level scheduler manages large sets of resources while
the lower level job managers control small set of resources. The local schedulers
have knowledge about resource clusters, but they cannot monitor the whole system.
The advantage of using hierarchical scheduling is that it incorporates scalability and
fault-tolerance issues while also retaining some of the advantages of the centralized
scheme such as co-allocation.

A specification of the tasks’ processing policy is important in the identification of
the particular scheduling problem. In the instantaneous mode the tasks are scheduled
as soon as they are entered into the system. In batch scheduling, the submitted tasks
are grouped into batches and the scheduler assigns each batch to the resources.

Finally, tasks may be independently submitted and calculated in the grid sys-
tem or considered as parallel applications with priority constraints and interrelations
among the application components (usually modeled by a Directed Acyclic Graph
(DAG)).
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1.4.2 Grid Scheduling Notation and Criteria

Research conducted produced no known standard notation for classification of the
scheduling problems in CGs. Fibich et al. [45] proposed an extension of the Gra-
ham’s [56] and Brucker’s [21] classifications of scheduling problems. The charac-
teristics of the resource-constrained project scheduling problem [22] and resource-
constrained machine scheduling [17] [16] might be helpful in specifying and formal
describing the grid resources.

Based on the methodology presented in [45] and [78] and the main scheduling
attributes specified in the previous section, the basic notation for the grid scheduling
problem instances in CGs can be defined as follows:

α|β |γ (1.1)

where α characterizes the resource layer and grid architecture type, β specifies the
processing characteristics and the constraints, and γ denotes the scheduling criteria.

(α) Resource Characteristics and Grid Architecture Type

According to the standard resource notation [56] the grid computational resources
can be classify as Rm machines1 with possible different speeds for different jobs.
grid architecture type can be denoted by C for centralized, D for decentralized and
H(i) for hierarchical system, where i denotes the system levels. The following no-
tation

Rm,H(3) (1.2)

is used for the representation of the 3-level hierarchical grid with heterogeneous
resources. The detailed characteristics of each resource may be specified by using
special local policies and characteristics according to the users’ and applications
requirements [17] [16].

(β ) Tasks Processing Mode, Tasks Interrelations, Static and Dynamic
Scheduling Modes and Scheduling Constraints

The following notation can be used for setting the grid tasks’ attributes and schedul-
ing modes:

• b – batch mode;
• im – immediate mode;
• dep – dependency among tasks ;
• indep – independent scheduling;
• sta – static scheduling;
• dyn – dynamic scheduling;

1 For single CPU machine α=1; identical machines in parallel infrastructure – Pm, ma-
chines in parallel with different speeds – Qm, unrelated machines in parallel –Rm, and
(flow—open—job) shop resources (Fm,Om,Jm).
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The scheduling may be conducted under various constraints specified by all the
grid users. The typical constraints include budget and deadline (d j) limits for a given
task j. An instant of the independent batch scheduling in dynamic mode with a
limited deadline can be denoted as follows:

b, indep,dyn,d j. (1.3)

(γ) Scheduling Criteria and Objectives

The problem of scheduling tasks in CG is multi-objective in its general setting as
the quality of the solutions can be measured using several criteria.

Two basic models are utilized in multi-objective optimization: hierarchical and
simultaneous modes. In the simultaneous mode (sim) all objectives are optimized
simultaneously while in the hierarchical (hier) case, the objectives are sorted a pri-
ori according to their importance in the model. The process starts by optimizing the
most important objective and when further improvements are impossible, the second
objective is optimized under the restriction of keeping unchanged (or improving) the
optimal values of the first, and so on. It is very hard in grid scheduling to define or
efficiently approximate the Pareto front, especially in dynamic scheduling2. This
set of Pareto optimal solutions may extend very fast together with the scale of the
grid and the number of the submitted tasks. The specification of the structure of the
Pareto front is also an open problem in grid scheduling. Due to the sheer size of
the grid itself and huge number of possible schedulers event for a small amount of
tasks, an effective and fast exploration of the search space for the problem is very
difficult. The knowledge of the optimization landscape is usually limited just to the
small-area clusters [41].

The main scheduling criteria can be divided into two classes: grid system per-
formance criteria and optimization criteria [157]. Grid system performance criteria
include CPU utilization of grid resources, load balancing, system usage, queuing
time, throughput, turnaround time, cumulative thorough output. Recently this class
was extended by the resource failure rates and energy consumption, which will be
discussed in details in Chapters 6-7.

The main scheduling optimization criteria include: makespan, flowtime, resource
utilization, load balancing, matching proximity, turnaround time, total weighted
completion time, lateness, weighted number of tardy jobs, weighted response time,
etc.

Four basic scheduling objectives for grid scheduling are:

• The makespan is defined as the finishing time of the latest task and can be calcu-
lated by the following formula:

Cmax = min
S∈Schedules

{

max
j∈Tasks

Cj

}

, (1.4)

2 A solution is Pareto optimal if it is not possible to improve a given objective function
without deteriorating at least another one [142].
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where Cj denotes the time when task j is finalized, Tasks denotes the set of
all tasks submitted to the grid system and Schedules is the set of all possible
schedules.

• The flowtime is expressed as the sum of finalization times of all the tasks. It can
be defined in the following way:

F = min
S∈Schedules

{

∑
j∈Tasks

Cj

}

(1.5)

• The maximum lateness is calculated as follows:

Latmax = max
j∈Tasks

Lat j, (1.6)

where Lj denotes the lateness for the task j and

Lat j =Cj − d j (1.7)

where d j is the deadline for task j.
• A total weighted tardiness is calculated by using the following formula:

Tard = ∑
j∈Tasks

wjTard j (1.8)

where wj is a weight coordinate and Tard j = max(Lat j,0).

The detailed definition of the rest of the optimization metrics can be found for ex-
ample in [157]. The class has been recently extended by the security criteria [87].

The notation
hier,(Cmax,F) (1.9)

means that makespan and flowtime are optimized in the hierarchical mode.
Both performance and optimization criteria are desirable for any grid system;

however, their achievement depends on the considered model (batch system, inter-
active system, etc.). It should be stressed that these criteria can be conflicting; for
instance, minimizing makespan conflicts with resource usage and response time.

1.5 Summary

The main aim of this chapter was the overall characteristics of the hierarchical
dynamic CG system, its components and users. Modern grid computing systems,
which are made up of hundreds or thousands of various components (computers,
databases, etc) must provide (in fact) a whole range of services and not just a high
performance computing platform. Various types of information and data processed
in today’s CGs may be incomplete, imprecise, fragmentary and overloading, which
complicates the specification of proper evaluation criteria, assignment scores, avail-
ability of resources, and the final collective decisions of the users. The system
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complexity may also be the reason for higher energy consumption. It makes that
the design of the efficient grid resource management model remains the challenging
problem for the researchers and practitioners. Scheduling problems in grids are be
considered as a family of NP-complete optimization problems. Depending on the
restrictions imposed by the application needs, the complexity of the problem can be
determined by the number of objectives to be optimized, such as (single vs. multi-
objective), the type of the environment (static vs. dynamic), the processing mode
(immediate vs. batch), and tasks interrelations (independence vs. dependency). This
chapter presented a novel categorization of the grid scheduling problems. This clas-
sification may be easily extended if the detailed specification of tasks and system
resources is provided.



Chapter 2
Independent Batch Scheduling: ETC Matrix
Model and Grid Simulator

Abstract. This chapter addresses the problem of Independent Batch Scheduling in
Computational Grids (CGs). The Expected Time to Compute (ETC) matrix model
is defined and employed for the specification of the main scheduling objectives,
namely makespan and flowtime, in terms of completion times of the grid computa-
tional nodes. This chapter ends with a outline of the main concept of the grid sim-
ulator dedicated to the batch scheduling. This simulator is used in the experimental
analysis presented in the rest of this book.

2.1 Introduction

Independent Batch Scheduling is a fundamental model of scheduling in grid sys-
tems. In this model the tasks are grouped into batches and can be executed inde-
pendently in a hierarchically structured static or dynamic grid environments. Due
to the massive capacity of parallel computation in CGs, this kind of scheduling is
very useful in illustrating large amount of realistic scenarios. Real life examples
of batch scheduling include: (a) processing of large log data files of online systems
(e.g. banking systems, virtual campuses, and health systems), (b) processing of large
data sets from scientific experimental simulations (e.g. High Energy Physics and Pa-
rameter Sweep Applications), and (c) data mining in bio-informatics applications.

According to the notation introduced in Sec. 1.4.2 an instance of the independent
batch grid scheduling problem can be defined as follows:

Rm [{b, indep,(stat,dyn),hier}] (ob jectives)) (2.1)

where:

• Rm – Graham’s notation references that tasks are mapped into (parallel) resources
of various speed1

• b – designates that the task processing mode is ‘batch mode’

1 In independent grid scheduling it is usually assumed that each task may be assigned just
to one machine.

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 19–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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• indep – denotes ‘independency’ as the task interrelation
• (sta,dyn) – indicates that we will consider both static and dynamics grid schedul-

ing modes
• hier – references that the scheduling objectives are optimized in hierarchical

mode
• ob jectives – denotes the set of the considered scheduling objective functions.

2.2 Expected Time to Compute (ETC) Matrix Model

In this section, the following notation for tasks and machines in independent grid
scheduling is introduced from this point forward will be used throughout the book:

• n – the number of tasks in a batch;
• m – the number of machines available in the system for the execution of a given

batch of tasks;
• N = {1, . . . ,n} – the set of tasks’ labels;
• M = {1, . . . ,m} – the set of machines’ labels.

Tasks and machines are characterized by the following parameters:

(a)Task j:

– wl j – workload parameter expressed in Millions of Instructions (MI)
– WL = [wl1, . . . ,wln] is a workload vector for all tasks in the batch;

(b)Machine i:

– cci – computing capacity parameter expressed in Millions of Instructions Per
Second (MIPS) , this parameter is a coordinate of a computing capacity vec-
tor, which is denoted by CC = [cc1, . . . ,ccm] ;

– readyi – ready time of i, which expresses the time needed for the reloading of
the machine i after finishing the last assigned task, a ready times vector for all
machines is denoted by
ready times = [ready1, . . . ,readym] .

Tasks in this model may be considered as monolithic applications or meta-task with
no dependencies among the components. The workloads of tasks can be estimated
based on specifications provided by the users, or on historical data, or can be ob-
tained from system predictions [64]. The term ‘machine’ is related to a single or
multiprocessor computing unit or even to a local small-area network.

For each pair ( j, i) of task-machine labels, the coordinates of WL and CC vectors
are used for an approximation of the completion time of the task j on machine i.
This completion time is denoted by ETC[ j][i] and can be calculated in the following
way:

ETC[ j][i] =
wl j

cci
. (2.2)
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All ETC[ j][i] parameters are defined as the elements of an ETC matrix , ETC =
[ETC[ j][i]]n×m, which is the main structure in ETC model. The elements in the rows
of the ETC matrix define the estimated completion times of a given task on different
machines, and elements in the column of the matrix are interpreted as approximate
times of the completion of different tasks on a given machine.

The ETC matrix model can be characterized by three main parameters:

• heterogeneity of resource;
• heterogeneity of task;
• consistency.

Heterogeneity of machine is defined as a variation of the values in rows of the ETC
matrix. It is interpreted as a degree of variation of the machine execution times
for a given task. Heterogeneity of task is defined as a variation of the values in
matrix columns. It is interpreted as a degree of variation of the task execution times
for a given machine. The averaged values of all tasks and machine heterogeneity
parameters define the heterogeneities of tasks and resources in the whole system.

Another feature of the ETC matrix is its consistency . An ETC matrix is con-
sistent if for each pair of the machines i and î the following condition is satisfied:
if the completion time of some task j is shorter on machine i than on machine
î then all tasks can be executed (and finalized) faster on i than on î. The incon-
sistency of the matrix ETC means that there no consistency relation among ma-
chines. Semi-consistent ETC matrices are inconsistent matrices having a consistent
sub-matrix.

There are numerous methods of generating the ETC matrices, which reflect the
machine and task heterogeneity. In the range-based method [100] the heterogene-
ity of a set of completion times is quantified by the range of the values of those
times. Two range parameters are defined as task and machine heterogeneities, and
an uniform distribution is used for generating the ETC matrix elements.

In a Coefficient-of-Variation (CVB) [6] method the ETC matrix is generated
by gamma distributions [93]. The key parameters for this method are defined as
follows:

• the estimated execution time of all tasks on an ‘average’ machine in the system,
execave,

• the variance in the execution times of task, tvartasks,
• the variance in the heterogeneity of grid resources, mvarmach.

The parameters exec j and tvartasks are used for estimating the execution times
ETC[ j][i] of the tasks on the machine i with the ‘average’ speed in the systems.
The times ETC[ j][i] are generated by using the gamma distribution with the shape
and scale parameters denoted by αt and βt respectively. That is:

ETC[ j][i] = Gamma(αt ,βt), (2.3)
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where:

αt =
1

tvar2
tasks

(2.4)

βt =
execave

αt
(2.5)

A vector of ETC[ j][i] parameters ( j ∈ N) defines one column (indexed by i) of the
ETC matrix. Each element of this column is then used for generating one row of the
ETC matrix, that is:

ETC[ j][î] = Gamma(αm,βm[ j]), (2.6)

where:

lαm =
1

mvar2
mach

(2.7)

βt =
ETC[ j][i]

αm
(2.8)

and î ∈ M, î �= i.
Finally, the Eq.( 2.2) may be used for calculating the ETC matrix. The coor-

dinates of W L and CC vectors are generated by using the Gaussian distributions
the parameters of which express the heterogeneities of tasks and resources in the
system.

2.2.1 Schedule Representation

Schedules in grid computing can be represented by the vectors of machines’ or
tasks’ labels. Two different encoding methods of schedules in grids can be defined
in the following way.

Definition 2.1. Let us denote by S the set of all permutations with repetition of the
length n over the set of machine labels M. An element S ∈ S is termed a schedule
and it is encoded by the following vector:

S = [i1, . . . , in]
T , (2.9)

where i j ∈ M denotes the number of the machine on which the task labeled by j is
executed.

This encoding method is called direct representation of the schedule.
The S set can be also defined as the Cartesian product of n copies of the M sets.

That is to say:

Schedules = M× . . .×M
︸ ︷︷ ︸

n

. (2.10)

The cardinality of S is mn.
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Remark 2.1. In some approaches the S set may be considered as a discrete subset
of an n-dimensional metric space R

n with the conventional Euclidean Metrics re-
stricted to S . The distance of any two schedules S1,S2 ∈ Schedules is calculated by
using the following formula:

Diste(S
1,S2) =

√

n

∑
j=1

(S1[ j]− S2[ j])2 (2.11)

The metrics Diste(S1,S2) can be further normalized and used for the definition of
the similarity relation for the schedules (see Chapter 3, Sec. 3.2 and 3.3).

The direct representation of the schedules can be easily transformed into a
permutation-based representation , which is defined as a vector u of labels of tasks
assigned to the machines. For each machine the labels of the tasks assigned to this
machine are sorted in ascending order by the completion times of the tasks. For-
mally, this kind of schedule encoding method can be defined in the following way:

Definition 2.2. Let us denote by S(1) the set of all permutations without repetitions
of the length n over the set of task labels N. A permutation Sch ∈ S(1) is called a
permutation-based representation of a schedule in CG and can be defined by the
following vector:

Sch = [Sch1, . . . ,Schn]
T , (2.12)

where Schi ∈ N, i = 1, . . . ,n. The cardinality of S(1) is n!.

In this representation some additional information about the numbers of tasks as-
signed to each machine is required. The total total number of tasks assigned to
a machine i is denoted by ˜Schi and is interpreted as the i-th coordinate of an as-
signment vector ˜Sch = [˜Sch1, . . . , ˜Schm]

T , which defines in fact the loads of grid
machines.

Example 2.1. The following vector S= [1,2,1,4,3,1,2,4,3,3]T is an example of the
schedule for 4 machines and 10 tasks encoded by the direct representation method.
The same schedule in the permutation-based representation is as follows:

(Sch = [1,3,6,2,7,5,9,10,4,8]T ; ˜Sch = [3,2,3,2]T ).

2.2.2 Scheduling Criteria

ETC matrix model is very useful for the formal definition of all main scheduling
objective functions (see Chapter 1, Sec. 1.4.2 ). The makespan and flowtime may be
additionally expressed in terms of the completion times of the machines . A comple-
tion time Ci of the machine i is defined as the sum of the ready time parameters for
this machine and a cumulative execution time of all tasks actually assigned to this
machine. The completion time of the machine i is denoted by completion[i] and it
is calculated in the following way:
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completion[i] = readyi + ∑
j∈Task(i)

ETC[ j][i], (2.13)

where Task(i) is the set of tasks assigned to the machine i.
The completion[i] parameters are the coordinates of the following completion

vector:
completion = [completion[1], . . . ,completion[m]]T (2.14)

Vector C is used for calculating the makespan Cmax
2 in the following way:

Cmax = max
i∈M

completion[i]. (2.15)

In terms of ETC matrix model, a flowtime for a machine i can be calculated as a
workflow of the sequence of tasks on a given machine i, that is to say:

F [i] = readyi + ∑
j∈Sorted[i]

ETC[ j][i] (2.16)

where Sorted[i] denotes a set tasks assigned to the machine i sorted in ascending
order by the corresponding ETC values.

The cumulative flowtime in the whole system is defined as the sum of F [i] pa-
rameters, that is:

F = ∑
i∈M

F [i] (2.17)

A comprehensive list of the scheduling criteria defined in terms of completion times
and by using the ETC matrix model can be found in [157].

2.3 Main Concept of the Grid Simulator: Sim-G-Batch

Simulation seems to be the most effective method for a comprehensive analysis of
the scheduling algorithms in large-scale distributed dynamic systems, such as grid
or cloud environments. It simplifies the study of schedulers performances and avoids
the overhead of coordination of the resources, which usually happens in the real-life
grid or cloud scenarios. Simulation is also effective in working with difficult and
highly parametrized problems. In such cases a considerable number of independent
runs is needed to ensure significant statistical results. Using the simulators for the
evaluation of grid schedulers is feasible, mainly because of the high complexity of
the grid environment.

Using the simulators for the evaluation of the grid schedulers is feasible, mainly
because of high complexity of the grid environment. Many simulation packages,
useful in the design and analysis of scheduling algorithms in grid systems, have
been recently proposed in literature. MicroGrid [135] , ChicSim [121] and Grid-
Sim [27] are currently the major projects in grid simulation.

2 The notation for the scheduling objectives is the same as in Sec. 1.4.2.
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This section presents the main concept of a Sim-G-Batch grid simulator for in-
dependent batch scheduling,as an extension and modification of the HyperSim-G
framework [163].

2.3.1 Basic Concept of Sim-G-Batch

Sim-G-Batch is based on the discrete event-based model, which facilitates the evalu-
ation of different scheduling heuristics under a variety of scheduling criteria across
several grid scenarios. These scenarios are defined by the configuration of secu-
rity conditions for scheduling and the access to the grid resources, grid size, en-
ergy utilization parameters, and system dynamics. The simulator allows the flexible
activation or deactivation of all of the scheduling criteria and modules, as well as
works with a mixture of meta-heuristic schedulers. The simulation results and traces
are graphically represented and may be saved as files of different formats such as
spreadsheets or pdf files. The simulator structure allows for an easy association with
the external or internal embedded database systems particularly for storing historical
executions.

The main concept of the Sim-G-Batch simulator is presented in Fig. 2.1.

Fig. 2.1 General flowchart of the Sim-G-Batch simulator linked to independent batch
scheduling in CGs
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The Sim-G-Batch simulator generates an instance of the scheduling problem by
using the following input data:

• the workload vector of tasks ,
• the computing capacity vector of machines,
• the vector of prior loads of machines, and
• the ETC matrix of estimated execution times of tasks on machines.

It is important to address that fact that input data may be extended if additional
scheduling criteria are or need to be considered (see Chapter 5 and Chapter 8). The
static benchmarks for the small grids are generated by using the external Static ETC
Generator module.

The users can specify their own scheduling scenario by changing the number of
tasks and machines. The capacity of the resources and the workload of tasks are
randomly generated by using the Gaussian distribution [101]. It is also assumed that
all tasks submitted to the system must be scheduled and all machines in the system
can be used.

The structure of the Sim-G-Batch application is based on the 2-module HyperSim-
G architecture and it is composed of Simulator and Scheduler modules. The main
simulation flow can be defined as follows. When a scheduling event is triggered, the
Simulator creates an instance of the scheduling problem, based on the current task
batch and the pool of available machines. The Simulator computes an instance of the
scheduling and passes it on to the Scheduler, which activates a scheduling method
specified by the user of the simulator software. The Scheduler generates the opti-
mal schedules according to the specified scheduling criteria and sends the schedules
back to the Simulator. The Simulator makes the allocation of the grid resources and
re-schedules any tasks assigned to machines which are unavailable in the system.

The Sim-G-Batch software was written in C++ for Linux Ubuntu 10.10. The ac-
cess to selected modules and resolution methods is available through the Web ser-
vice, which is the result of work on the WebGridUPC project – a common project
with Technical University of Catalonia in Barcelona (UPC Spain) [151]3.

2.3.2 Key Parameters

The simulator is highly parameterized in order to illustrate the typical realistic grid
scenarios. The main parameters of Sim-G-Batch can be interpreted as follows:

• Init. hosts: Number of hosts initialized in the grid environment.
• Max. hosts: Maximum number of resources in the grid system.
• Min. hosts: Minimum number of resources in the grid system.
• MIPS: Computing capacity of resource.
• Add host: The frequency of activation of the new resources in the system.
• Delete host: The frequency of deactivation of the idle or failed resources in the

system.

3 The codes of the benchmars and meta-heuristics are available upon request to Fatos Xhafa
(www.lsi.upc.edu/fatos) or Joanna Kołodziej (www.joannakolodziej.org)
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• Total tasks: Total number of tasks in the batch.
• Init. tasks: Initial number of tasks in the system .
• Workload: Workload of task.
• Interarrival: Frequency of submission of new tasks to the system .
• Reschedule: Re-scheduling policy.
• Number runs: Number of independent runs of the simulator with the same con-

figuration of the parameters.
• Scheduling strategy : The type of the scheduler, maximal execution time of the

scheduler (in seconds), and the optimization mode of the scheduling objective
functions.

The initial number of machines in the system is defined by the parameter Init. num-
ber of hosts. The parameters Max.hosts and Min.hosts specify the range of changes
in the number of active hosts during the simulation process4. The frequency of ap-
pearing and disappearing resources is defined by Add host and Delete host, accord-
ing to the constant distributions for the static case, and normal distributions in the
dynamic case. The initial number of tasks is denoted by Init. tasksparameter, which
is constant in the static case. New tasks in the dynamic scheduling can be submitted
to the system with the frequency defined by Interarrival parameter until the Total
tasks value is reached. The Scheduler strategy parameter defines the type of sched-
uler, the termination condition for the scheduler and the optimization mode for the
scheduling objectives. The setting GA Scheduler(25,s) means that the simulator
runs the GA-based scheduler for 25 seconds in simultaneous optimization mode5.

2.3.3 Heuristic Schedulers Integrated with the Simulator

The Sim-G-Batch simulator allows and facilitates an integration of a mixture of
heuristic scheduling algorithms. The simulator architecture enables to design the
schedulers as the external dynamic-link libraries (dll files) and store them separated
from the simulator main body. The schedulers are plugged in the simulator by using
and Adapter pattern as it is presented in Fig. 2.2.

The heuristic scheduling methods are usually classified into three main groups,
namely (1) calculus-based (greedy algorithms and ad-hoc methods); (2) stochas-
tic (guided and non-guided methods); and (3) enumerative methods (dynamic pro-
gramming and branch-and-bound algorithm). The heuristic schedulers integrated
with Sim-G-Batch simulator are divided into three classes, namely ad hoc, local
search-based, population-based heuristics. A simple taxonomy of those schedulers
is presented in Fig. 2.3.

Ad-Hoc Methods

These methods are usually used for single-objective optimization. They are char-
acterized by the low computational cost. Those methods are also very useful in

4 In the case of dynamic scheduling, they are different from the initial number of hosts.
5 The parameter h is used for hierarchical optimization mode , e.g. GA Scheduler(25,h).
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Fig. 2.2 The simulator adapter pattern used for different evolutionary based grid schedulers

generating the initial solutions for population-based schedulers. The Ad-hoc heuris-
tics could be categorized as immediate mode heuristics and batch mode heuristics.

The Immediate Mode Heuristics group includes the following schedulers:

• Opportunistic Load Balancing (OLB), sends a task to the first idle machine with-
out taking into account the machines execution time;

• Minimum Completion Time (MCT), assigns tasks to machines yielding the earli-
est completion times;

• Minimum Execution Time (MET), assigns tasks to the machine having the small-
est execution time for this task.

The Batch Mode Heuristics group contains the following methods:

• Min-Min: In this method for each task the machine yielding the earliest comple-
tion time is computed, then the task with the shortest completion time is selected
and mapped to the corresponding machine.

• Max-Min: This method differs from the Min-Min as far as the final selection of
the task with the latest completion time.

• Sufferage: The main idea of this method is to assign a given machine a task,
which would “suffer” more if it were assigned to any other machine.
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Fig. 2.3 Taxonomy of heuristic schedulers integrated with Sim-G-Batch

• Relative Cost: This methods allocates the grid resources according to the load
balancing of machines and the execution times of tasks on machines.

• Longest Job to Fastest Resource - Shortest Job to Fastest Resource (LJFR-SRFR):
This method tries to simultaneously minimize both makespan and flowtime val-
ues: LJFR minimizes makespan and SJFR minimizes flowtime.

Local Search Methods

Methods from this category explore the optimization domain by constructing a se-
quence (‘path’) of partial solutions in optimization space. The most effective local-
based grid scheduler is Tabu Search (TS) [162]. TS can be easily hybridized with
more sophisticated schedulers (like GAs) to improve their efficiency.

Population-Based Heuristics

These methods use a population of individuals for the exploration of the solution
space. The individuals in the populations represent the partial solutions of the con-
sidered problem. The major group in this class is a mixture of the single population
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Genetic Algorithms (GAs), proposed by many authors as the effective grid sched-
ulers [160, 161, 120]. Recently, a multi-population hierarchical GA-based scheduler
has been defined in [90], [86]. In this method a set of dependent genetic processes is
executed simultaneously. Each process creates a branch within the whole strategies
tree structure, by using the GA-based scheduler with different settings. The search
accuracy in a given branch (expressed as the branch degree parameter) depends on
the mutation probability set for the scheduler activated in this branch (the higher
mutation problem–the lower accuracy). A generic model of the hierarchical genetic
scheduler and its several implementations are presented in Chapters 3-8 in this book.
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Chapter 3
A Multi-Level Genetic Scheduling in Dynamic
Grid Reinforced by the Population Hierarchy:
Basic Model

Abstract. Exploring the search space in grid scheduling is a very complex problem,
mainly because of the sheer size of the space and the dynamics of the system. This
chapter presents a general concept of multilevel genetic metaheuristic scheduling,
that is easily implemented and adapted to the various scheduling scenarios in the
dynamic grid environment.

3.1 Introduction

Formal analyses of optimization landscapes for many classical combinatorial prob-
lems, such as Traveling Salesman Problem , Graph Bi-Partitioning , Flowshop
scheduling, etc. [138], are potentially the outline for the development of mathemat-
ical models for the wide range of NK family optimization landscapes. This chap-
ter allows for the defining and estimating of the distributions of the solutions. The
features of the optimization landscape depend on the resolution methods used for
problem solving. In contrast, the detailed characteristic of such landscapes allows
individuals to tune the optimizer configuration to adapt to search mechanisms, par-
ticularly to the instance of the problem. In grid scheduling, this modelling is much
more complicated, mainly because of different local scheduling policies and the
system dynamics [100].

As a result of the wide assortment of constraints and different optimization crite-
ria in the grid scheduling, heuristic and metaheuristic methods are the most feasible
solutions for the grids scheduling problems. Metaheuristic schedulers Can easily
explore the robustness of the search space. Another benefit of the scheduler is
its ability for tackling various scheduling attributes, such as immediate and batch
scheduling, multi-objectivity, decentralized and hierarchical grid architecture,
etc [19].

Most of the currently available metaheuristic algorithms attempt to find an opti-
mal solution with respect to a specific fitness measure. In the case of Genetic Algo-
rithms (GAs) a great deal of effort has gone into designing efficient representation
schemes and genetic operators so as to produce capable and effective solutions. The

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 33–43.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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major challenges when using GAs to solve dynamic optimization problems are the
ability to maintain diversity (or generate diversity) in the population and the ability
to create robust solutions that are able to track the global solutions of the scheduling
problem.

Table 3.1 presents selected examples of major projects in GA-based Grid schedul-
ing. The presented algorithms belong to a wide class of population-based sched-
ulers, and are divided into two additional categories, namely single-population and
multi-population metaheuristics.

Table 3.1 Population-based metaheuristics in grid scheduling

Metaheuristic class Class characteristic Scheduler type Methods

Population-based

- explore of the search
space

Single-population

Genetic Algorithms (GAs)

by the populations of in-
dividuals

Memetic Algorithms (MAs)

- require a large running
time

Particle Swarm Optimization
(PSO)

- effective in finding Ant Colony Optimization
(ACO)

near-optimal solutions
Multi-population

Island Genetic Algorithm
Grid-Enabled Hierarchical
Parallel Genetic Algorithm
(GE-HPGA)

Single-population GAs grid schedulers are presented in several works on grid
computing. Zomaya and Teh [168] used GAs for dynamic load balancing. Braunt
et al. [20] compare the efficiency of a simple GA-based scheduler based on meth-
ods from the set of ten static meta-task mapping heuristics from literature, including
Min-Min, Min-Max, Minimum Completion Time (MTC) algorithms [7]. The au-
thors provided their empirical study for the static benchmark for independent job
scheduling in distributed heterogenous computing environment. The instances in
this benchmark have been defined using the Expected Time to Compute (ETC) ma-
trix model [5]. The same type of scheduling problem is considered by Xhafa et
al. [161]. The authors examine in their study several combinations of GAs operators
in order to identify the configuration of most effective and efficient operators and
parameters for the problem. Following this the efficiency of the GA-based sched-
uler with the most effective and efficient combination of operators is compared to
the effectiveness of the GAs approach presented in [20]. This model was extended
by plugging the GA scheduler into a grid simulator [163] in order to perform the ex-
periments in a dynamic Grid environment. The results of the evaluation of the GA
scheduler were reported in [160]. Other GA approaches to different problems can
be found and addressed by Martino and Mililotti [37], Page and Naughton [116],
Gao et al. [49]. Another class of population-based methods is Memetic Algorithms
(MAs). These algorithms combine the genetic algorithms (or evolutionary strategies)
with the local search methods. Therefore, MAs could be considered as hybrid evolu-
tionary algorithms. What is more so is that MAs occurred as an attempt to combine
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concepts and strategies from different meta-heuristics. Xhafa in [156] applied un-
structured MAs for independent scheduling under the ETC model. Other examples
can be found in [31].

The implementation of the Ant Colony Optimization (ACO) algorithm to the
grid scheduling problem modelled by the ETC matrix has been reported by Chang
et al. in [30]. Lorpunmanee et al. in [99] applied ACO to the dynamic scheduling in
grids. Other single-population approaches to the grid scheduling include the Particle
Swarm Optimization [96], economic-based approaches [24] and Artificial Immune
Systems [143]. A detailed survey of genetic-based meta-heuristics in grid schedul-
ing is presented in [91].

In contrast to the single-population meta-heuristics, multi-population class of
genetic-based grid schedulers is very small. The major projects include Grid-
Enabled Hierarchical Parallel Genetic Algorithm (GE-HPGA) proposed by Lim et
al. [95]. In this model the parallel single-population GAs, which generates the par-
tial solutions of the scheduling problem, are managed by the centralized scheduler
in a Master-Slave configuration. Rubio-Solar et al. [127] propose a Island Genetic
Algorithm for solving the placement and routing problems in grids.

One of the most important and beneficial features of meta-heuristics in grid
scheduling is that they can be easily hybridized with other approaches. It makes
the receptive Grid schedulers adaptive to the various Grid types and specific types
of applications. Abraham et al. [2] present a model for the hybridization of GA,
Simulated Annealing (SA), and Tabu Search (TS) heuristics. Each GA-based hy-
brid, namely GA+SA and GA+TS, improves the efficiency of the genetic scheduler.
Ritchie and Levine [124] combine an ACO with a TS algorithm for Grid scheduling.

3.2 Hierarchic Genetic Strategy Based Scheduler (HGS-Sched)

The exploration of the search space in combinatorial optimization remains a chal-
lenging problem, because of the sheer size of this space. In grid scheduling the task
is even more difficult due to the high parameterization of the optimization problem
as well as system dynamics. In addition, while the list of all possible schedules is
determined by the permutations of tasks’ or machines’ labels (see Sec. 2.2.1), it
is important to note that the lengths of these permutation strings may vary as the
number of tasks and machines can change over time.

This section presents the general concept of the Hierarchic Genetic Scheduler
(HGS-Sched). HGS-Sched framework is based on searching the grid environment
through the execution of many dependent evolutionary processes.

3.2.1 HGS-Sched Essentials

The main concept of HGS-Sched’s architecture is based on the general model of
Hierarchic Genetic Strategy (HGS) developed by Kołodziej et al. [80] [79] for global
optimization in continuous domains. In the simplest implementation of HGS, the
strategy is modelled as a decision tree and the individuals in each population are
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encoded using binary strings of different lengths. In such cases a single-population
GA is applied as a main genetic mechanism at all levels of the strategy [129]. In
another implementation of HGS [154], the main mechanism in all branches of the
tree has been defined by using various evolutionary strategies with populations of
individuals encoded by the vectors with the floating-point coordinates.

HGS algorithms span few classes of the parallel GAs taxonomies (see [142], [4]).
For example, according to the classification presented in [112], HGS algorithms can
be categorized as a ‘Dynamic Deme’-like method and a method from the class of
meta-heuristics with the ‘adaptive accuracy of search’.In fact, the HGS framework
may be easily adapted for designing of many single-population GAs. However, as a
result it is very difficult to find proper classification rules for this strategy.

HGS strategy has been successfully applied as an efficient method for Permuta-
tion Flowshop Scheduling [83] , as well as for solving some practical engineering
problems [81], [84]. Both basic HGS models can be used for solving combinatorial
global optimization problems. However, the strategy in this case may generate many
‘infeasible’ solutions to the problem and may need some additional specialized re-
pair algorithms.

In HGS-Sched the search process is initialized by activating a scheduler with low
search accuracy. This scheduler is the main module of the entire strategy and is re-
sponsible for the ‘management’ of the general structure of the tree1 and exploration
of new and unrecognized regions in the optimization domain. As a result of its low
accuracy, the main scheduler is not very effective in detecting the global solutions
to the problem. However, it may generate in a short amount of time a large num-
ber partial and potential solutions, which can be validated by the activation of more
accurate processes The activation of these processes does not dramatically increase
the complexity of the whole hierarchical scheduler for the following three reasons:

• In contrast to the hybrid strategies, where the components are usually composed
of various meta-heuristics and local search methods, the same general framework
is applied for modelling the algorithms working at all levels of the tree.

• The management of the tree structure is steered by specialized operations respon-
sible for the deactivation of the flawed processes.

• Finally, the synchronization of the search is provided ‘horizontally’ at each level
of the tree, so there is no need to refer to the tree’s parental nodes. This fea-
ture enables an easy adaptation of the strategy to the current state of the grid
system.

For all of the above reasons HGS-Sched significantly differs from all existing hier-
archical, hybrid, and branching schedulers applied for solving the grid scheduling
problems and classical job-shop problems (see e.g. [21]).

Figure 3.1 depicts a simple graphical representation of 3-level structure of
HGS-Sched.

1 The scheduler with the lowest accuracy of search is called the core of the HGS tree
structure.
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Fig. 3.1 3 levels of HGS-Sched tree structure

The configuration of the HGS-Sched strategy is defined by the following key
parameters:

• t – degree of the branch;
• ˜Max– maximal degree of the branches;
• 1 ≥ pop1 ≥ pop2 ≥ . . . ≥ pop

˜Max – cardinalities (‘sizes’) of populations in the
branches;

• μ1 ≥ μ2 ≥ . . .≥ μ
˜Max – mutation parameters (rates) in the branches;

Each branch of the tree is created by an active GA designed for solving scheduling
problems. The accuracy of search in HGS-Sched branches is defined by the degree
parameter with the lowest value, e.g. 0, set for the core of the system2.

Populations of the schedules (individuals) are the main structures in the HGS-
Sched branches. A population in a branch of degree t is denoted by Pē

(r,t), where:

• ē ∈ N defines the global metaepoch counter,
• r is the number of branches of the same degree in the tree.

The hierarchical structure of the scheduler is modified periodically after the execu-
tion of α-generation evolutionary processes in each active branch. Such a process is
called a α-periodic metaepoch Metα ,(α ∈N) and define it in the following way:

2 The HGS-Sched framework may be used for the implementation of the single-population
genetic algorithms and evolutionary strategies. In such a case the value of t parameter is 0.
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Definition 3.1. A α-periodic metaepoch Metα ,α ∈N is a discrete evolution process
which starts by selection of the best adapted individual from the given population
and terminating after α generations.

Metα
(

Pē
(r,t)

)

=
(

Pē+l
(r,t),

̂S
)

; (3.1)

where ̂S is the best adapted individual in the metaepoch, Pē
(r,t),(t ∈ {0, . . . ,˜Max},

˜Max ∈N).

New branches of the higher degree can be created by using a Sprouting Operation
(SO) defined as follows:

SO
(

Pē
(r,t)

)

=
(

Pē
(r,t),P

0
(r′,t+1)

)

, (3.2)

where Pē
(r,t) is a parental branch, and P0

(r′,t+1) denotes the initial population for a new
branch of degree t + 1.

Individuals of this population are selected from an St -neighborhood (1 ≤ St ≤ n)
of the best adapted individual ̂S in the parental population Pē

(r,t). This neighbour-

hood is defined as the set of modifications of the schedule ̂S created by all possible
permutations or reassignments of tasks in

(

n− St
)

-length suffix of ̂S. The St -length
prefix of a given schedule S is generated by using the following operator:

A(St )(S) = S̃, |S̃|= St ,St ≤ n (3.3)

where |S̃| denotes the length of the suffix in the permutation sequence which encodes
the schedule S. The values of St parameters may be different in branches of different
degrees. In this approach they are calculated in the following way:

St = (su f )t ·n, (3.4)

where su f ∈ [0,1] is a global strategy parameter called a neighborhood parameter
and t is the branch degree.

The search process in all sprouted branches must be more detailed than in the
parental ones. In HGS-Sched the accuracy of the search is determined by the value
of the mutation probability. This parameter should be more refined in the sprouted
branches than in the parental branch. The process extending the tree in HGS-
Sched is different than the sprouting mechanism in the binary implementation of
HGS [79]. In binary implementation the chromosomes of the individuals in the
sprouted branches are interpreted as nodes of the encoding mesh, which is denser
that in the case of the encoding mesh defined for the parental branch. The density of
the encoding structure defines the accuracy of the search in the HGS branches. This
encoding method is called Nested Coding [129].

The sprouting operation is conditionally activated depending on the results of the
application of a Branch Comparison (BC) binary operator to the parental branch
and its all directly sprouted branches. This operator is used for the detection of
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‘similarity’ of the resulting populations in each parental-sprouted pair of branches.
Formally the BC : POP →{0,1} operator is defined by the following formula:

BC(P, P̂,St) =

⎧

⎨

⎩

1, ∃S ∈ P,∃Ŝ ∈ P̂ : ASt (S) = ASt (Ŝ)

0, otherwise,
(3.5)

where POP = {(P, P̂,St)} and P, P̂- are populations within branches of degrees t and
t + 1 respectively. This operator is activated after execution of at least two metae-
pochs in the core.

The outcome of the BC operator is 1 if the parental branch and its ‘descendant’
(sprouted) branch operates in a similar region within the optimization landscape. In
such a case, another meta-epoch is executed in the parental branch without creating a
new process. This technique is crucial for the effective management of the algorithm
structure and preventing the activation of many similar processes in the same local
region, which could significantly increase the complexity of the strategy as a whole.

The execution of the BC operator can be time consuming, as such as in the im-
plementations of the prototypes of HGS-Sched in static networks (see [90]). In those
early versions of the hierarchical scheduler all populations at a given tree level were
scanned and individuals with the same prefixes were found. In the current version of
HGS-Sched the hash technique is implemented in order to reduce the execution time
of the procedure BC. The hash table is defined with the task-resource allocation key
denoted by K. The value of this key is calculated as the sum of the absolute values
of the subtraction of each position and its precedent in the St-length suffix in direct
representation of the schedule vector (reading the suffix in a circular way). The hash
function fhash is defined as follows:

fhash(K) =

⎧

⎪

⎨

⎪

⎩

0, K < Kmin
⌊

N ·
(

K−Kmin
Kmax−Kmin

)⌋

Kmin ≤ K < Kmax

pop− 1, K ≥ Kmax

(3.6)

where Kmin and Kmax correspond respectively to the smallest and the largest value
of K in the population, and pop is the population size.

In the case of the conditional sprouting of new branches of the degree t +1 from
the parental branch of the degree t the keys are calculated for the best individual in
the parental branch and individuals in all populations in all active branches of the
degree t + 1. If there is any individual in the higher degree branches for which the
key matches the key of the best adapted individual in the parental branch, then the
value of BC is 1 and no branch of the degree t + 1 is sprouted.

In the case of the comparison of the branches of the same degree t, all branches in
which there exists individuals with identical keys must be reduced and a single joint
branch created (the value of BC is 1). The individuals in this branch are selected
from the ‘youngest’ (in the sense of the population evolution) populations in all
reduced branches.
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3.3 Genetic Mechanism in HGS-Sched Branches

Several single-population genetic algorithms may be implemented as the main ge-
netic mechanism in the HGS-Sched branches [11]. However, it is recommended to
use simple mechanisms in order to keep the complexity of the whole strategy at a
lower level. Alg. 1 defines a generic framework for a genetic engine implemented in
all HGS-Sched branches for the experiments described in this book. This framework
is based on the general model of the conventional single-population GA [107].

Algorithm 1. A template of the genetic engine for HGS-Sched

1: Generate the initial population P0 of size μ; e = 0
2: Evaluate P0;
3: while not termination-condition do
4: Select the parental pool T e of size λ ; T t := Select(Pe);
5: Perform crossover procedure on pars of individuals in T e with probability pc; Pe

c :=
Cross(T e);

6: Perform mutation procedure on individuals in Pe
c with probability pm; Pe

m :=
Mutate(Pe

c );
7: Evaluate Pe

m ;
8: Create a new population Pe+1 of size μ from individuals in Pe and Pe

m ; Pe+1 :=
Replace(Pe;Pe

m)
9: e := e+1;

10: end while
11: return Best found individual as solution;

The parameter e in Alg. 1 is the counter of the generations in GA (e counts the
number of loops in GA). The direct representation method defined in Sec. 2.2.1 (see
Chapter 2) is used for encoding schedules in the base populations Pe and Pe+1, and
permutation representation – in Pe

c and Pt
m populations.

The initial population in Alg. 1 is generated by using the Minimum Completion
Time + Longest Job to Fastest Resource - Shortest Job to Fastest Resource MTC +
LJFR-SJFR method, in which all but two individuals are generated randomly. Those
two individuals are created by using the Longest Job to Fastest Resource - Short-
est Job to Fastest Resource (LJFR-SJFR) and Minimum Completion Time (MCT)
heuristics [161]. In LJFR-SJFR method initially the number of m tasks with the
highest workload are assigned to the available m machines sorted in ascending or-
der by the computing capacity criterion. Then the remaining unassigned tasks are
allocated to the fastest available machines. In the MCT heuristics, a given task is as-
signed to the machine yielding the earliest completion time. The detailed definition
of those procedures may be found in [29].

Alg. 1 was adapted to the CG scheduling problem through an implementation of
specialized encoding methods and genetic operators. The operators from the follow-
ing set were used in experiments presented in this book:
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• Selection operators: Linear Ranking;
• Crossover operators: Partially Mapped Crossover (PMX) and Cycle Crossover

(CX);
• Mutation operators: Move, Swap and Rebalancing;
• Replacement operators: Steady State, Elitist Generational, Struggle.

All the above mentioned operators are commonly used in the genetic meta-heuristics
dedicated to solving combinatorial optimization problems [36]. The detailed defini-
tion and examples may be found in [11].

In Linear Ranking method a selection probability for each individual in a popu-
lation is proportional to the rank of the individual. The rank of the worst individual
is defined as zero, while the best rank is defined as pop size− 1, where pop size is
the size of the population.

The following crossover and mutation operators are implemented for permutation-
based representation of the schedules. In the examples we show the results of the
crossover just on the vectors u (see Chapter 2, Sec. 2.2.1).

In Partially Matched Crossover (PMX) [55] a segment of one parent-chromosome
is mapped to a segment of the other parent-chromosome (corresponding positions)
and the remaining genes are exchanged according to the mapping ‘relationship’ of
tasks and machines specified by the concrete scheduling rules. An example of the
result of using the PMX operator for two schedules of the length 10 is defined as
follows:

Parents (10 9 6 |5 3 7 8| 1 4 2)
(10 5 3 |7 4 1 8| 2 6 9)

Offsprings (10 9 6 |7 4 1 8| 5 3 2)
(10 1 4 |5 3 7 8| 2 6 9)

(3.7)

Tn Cycle Crossover (CX) [113], first, a cycle of alleles is identified. The crossover
operator leaves the cycles unchanged, while the remaining segments in the parental
strings are exchanged. An example of the result of using the CX operator for two
schedules of the length 10 from the previous example is defined as follows:

Parents (10 9 6 5 3 7 8 1 4 2)
(10 5 3 7 4 1 8 2 6 9)

Cycles (− 9 − 5 − 7 − 1 − 2)
(− 5 − 7 − 1 −2 − 9)

Offsprings ( 10 9 3 5 4 7 8 1 6 2 )
( 10 5 6 7 3 1 8 2 4 9 )

(3.8)

In Move mutation a task is moved from one machine to another one. Although the
task can be appropriately chosen, this mutation strategy tends to unbalance the num-
ber of jobs per machine. It is realized by the modification of two coordinates in the
vector ũ of the schedule code (see Chapter 2, Sec. 2.2.1).

The main idea of the Rebalancing method is to first improve the solution (by
rebalancing the machine loads) and then mutate it. A rebalancing procedure is exe-
cuted as follows. First, the most overloaded machine is selected. Two tasks j and ĵ
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are identified in the following way: j is assigned to another machine i′, ĵ is assigned
to i and ETC[ j][i′] ≤ ETC[ ĵ][i]. Then the assignments are interchanged for tasks j
and ĵ.

In Swap mutation the indexes of two selected tasks in the schedule representation
are swapped.

A base population for a new GA loop in Alg. 1 may be defined by using the Elitist
generational replacement method, where a new population contains two best solu-
tions from the old base population and the rest are the newly generated offsprings.

In the Steady State replacement method, the set of the best offsprings (the num-
ber of elements in this set is fixed) replaces the worst solutions in the old base
population. The main drawback of this methods is that it can lead to the premature
convergence of the algorithms in some local solutions.

The Struggle replacement mechanism can be an effective tool for avoiding too
fast of a scheduler’s convergence to the local optima. In such method, new genera-
tions of individuals are created by replacing a part of the population by the individ-
uals most similar – if this replacement minimizes the fitness value. The definition
of the struggle replacement procedure requires a specification of the appropriate
similarity measure, which indicates the degree of the similarity among two GA’s
chromosomes. We use in this work the Mahalanobis distance [101] for measuring
the distances between schedules according to the following formula:

sime(S
1;S2) =

√

n

∑
j=1

(S1[ j]− S2[ j])

σ2
P

(3.9)

where σP is the standard deviation of the S1[ j] over the population P.
The struggle strategy has shown to be very effective in solving several large-scale

multi-objective problems (see e.g., [14], [59]). However, the computational cost can
be very high, because of the need to calculate distances among all off springs in
resulting population and the individuals in the base population for the current GA
loop. To reduce the execution time of the struggle procedure we use a hash tech-
nique, in which the hash table with the task-resource allocation key is created. The
value of this key, denoted by K, is calculated as the sum of the absolute values
of the subtraction of each position and its precedent in the direct representation of
the schedule vector (reading the schedule vector in a circular way). The hash func-
tion for the struggle replacement method is defined by using Eq. (3.6). The struggle
mechanism allows a tuning of the Grid scheduler to the particular scheduling prob-
lem and scenario.

3.4 Summary

The general idea of adaptive exploration of the search space in global optimiza-
tion is a basic principle of evolutionary computation [54]. The accuracy of the
search process is usually defined by the crossover and mutation parameters [11].
These parameters may be dynamically adapted to the current state of the algorithms
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or the optimization landscape. However, the high accuracy in the exploration of
the optimization landscape is achieved by hybrid techniques with the main genetic
mechanism and other optimization techniques (local search method or another meta-
heuristic) [42], or Island genetic models [153]. In both cases some prior knowledge
of the optimization landscape is needed. This knowledge is not necessary for HGS-
Sched model presented in this chapter. In conventional scheduling problems, such
as static or dynamic job-shop scheduling, the optimization landscape for a single-
objective scheduling (with a makespan as a scheduling criterion) is characterized by
Reeves in [123] . Reeves defined a landscape structure for the small-size problems
(5 machines and 1—20 tasks) as the set of separated clusters of local solutions. The
sizes of the clusters in this model are rather small, and the distances between the
different clusters – significant. In grid scheduling such characteristic may be very
complex. In fact, there are no theoretical models that can tackle the high complexity
and dynamics of the grid systems and all relations among the grid users. Addition-
ally, the Markov models of GAs [148] and HGS algorithms [79] cannot be easily
adapted to the scheduling in grids. In such models the knowledge of all system
states is necessary, which makes the models ineffective in the large-scale dynamic
grid environment. The following chapters in this book will present a comprehensive
empirical study of various implementations of HS-Sched in different scheduling
scenarios.



Chapter 4
Hierarchic vs. Single–Population and Hybrid
Metaheuristic Grid Schedulers: A Comparative
Empirical Study

Abstract. This chapter presents the results of comprehensive empirical evaluation
of hierarchical, hybrid, single- and multi-population genetic metaheuristics in static
and dynamic versions of the scheduling problem in grid. All metaheuristics have
been integrated with the Sim-G-Batch grid simulator. The results of the analysis
show the high effectiveness of HGS-Sched in exploration of the bi-objective dy-
namic optimization landscapes in highly-parametrized grids.

4.1 Introduction

The formal analysis of the features of genetic-based meta-heuristics remains a re-
search challenge from the early studies on Evolutionary Computation (EC). While
all genetic and evolutionary-like methodologies has grown far beyond the original
Genetic Algorithm (GA) concept defined by John Holland [63], the studies on the
theoretical models of the GA-based techniques still cannot extend significantly the
basic models of binary coded GAs [148], [149], [153] and (1+1)-like evolutionary
strategies [128].

The first reason of the stagnation of this kind of research may be the complex-
ity of the optimization process driven by the metaheuristics. The metaheuristics try
to generate high quality solutions of the problem by making a series of improve-
ments during their iterative process. Whether they start with randomly generated
low quality solutions or they use smart initialization methods to take advantage of
the problem-specific knowledge, they aim to improve solution quality during the
search process. At any iteration a metaheuristic method must make some decisions
about loosing or keeping the partial solutions for further processing. This decisions
are often responsible for maintaining a balance between exploration and exploitation
of the search space. Too radical decisions may reduce the exploratory capabilities
of the algorithm and often results in a premature convergence. In the case of genetic
and evolutionary algorithms this problem is even more complicated because of many
selection procedures that must be executed in just the single iteration of the algo-
rithm for selection of the parental mid-population and the base populations. These

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 45–77.
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operations must be synchronized with variation operators and constraint-handling
methods. Unfortunately, any formal GAs model, and in fact also algorithm’s frame-
work, to be successfully applied, must be tailored to a specific domain in order to
be useful and provide decent results in specified time. Therefore, the development
of a generic formal model for a wide class of the metaheuristics for the combinato-
rial optimization is in fact almost impossible. Moreover, the simple models usually
fail in the case of the dynamic changes of problem’s and system’s settings. In this
case the best method of the verification of the features of meta-heuristics is their
empirical evaluation.

The empirical analysis of metaheuristics in the large-scale dynamic environment
needs a specification of a large set of parameters for the environment. In order to en-
sure the achievement of valuable and statistically significant results, the methodolo-
gies must be tested on a ‘representative’, which also means ‘large’, set of problem
instances.

For the static optimization problems, the experimental evaluation and the tuning
of parameters is done through benchmarks of (static) instances. The main aim of
the analysis in this case is to run the metaheuristic a sufficient number of times
on the same instance and using a fixed setting of parameters in order to compare
the results with the best results achieved by other well-known meta-heuristics. For
some classical combinatorial problems those results are stored as reference values
in OR-Library [114]1. In order to avoid biased results, the fine-tuning of parameters
is provided.

In the dynamic case, the set of strategic parameters of the system is larger than
in the static scenario. The dynamic systems are in fact the decision-support systems
that require continuous flow of data, predictive components, almost immediate rec-
ommendations for recovering from violent changes, etc. The optimization problems
defined for such systems usually deal with many variables, nonlinear relationships,
huge variety of constraints, business rules, many (usually conflicting) objectives
and all of these are set in a dynamic and noisy environment. Any empirical analysis
in such complex scenarios may be very expensive for all system users, and in some
cases, simply impossible. Therefore simulation seems to be the key methodology
also for the empirical comparative analysis of the metaheuristics used for solving
the complex optimization problems in highly-parametrized dynamic environments.

The goal of the empirical analysis presented in this chapter is the compari-
son of the effectiveness of single- and multi-population metaheuristics, namely
HGS-Sched defined in Chapter 3, numerous variants of single-population GA-based
schedulers, and hybridized GA+ TabuSearch solution, in the independent batch
scheduling with minimizing the makespan and flowtime as the scheduling objec-
tive functions. These functions are optimized in the hierarchical mode with the
makespan as the most important criterion. All tested metaheuristics are integrated
with the Sched-G-Batch grid simulator (see Chapter 2, Sec. 2.3), which allows to
evaluate the schedulers in the static and dynamic scheduling scenarios on a big set
of benchmarks.

1 OR-Library was originally specified by J.E.Beasley in [15].
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All experiments are scheduled as follows. In the first part of the analysis the HGS-
Sched method is tested along with the conventional and best so far single-population
GA schedulers in the small size static scheduling by using the benchmark generated
by the ETC Matrix model. The main aim of those experiments is to verify and
compare the possible impact of heterogeneity of the tasks and grid resources on the
efficiency of the schedulers in the balancing of the loads of the grid machines, and
as the result, the minimization of the makespan and flowtime criteria. The results of
these experiments are presented in Sec. 4.3. In the second part of the analysis eights
variants of single-population GAs, HGS-Sched and GA+TS hybrid are evaluated in
the large-scale static and dynamic grid scenarios. The results of these experiments
are presented in Sec. 4.4.

4.2 The Settings of the Grid Simulator and Scheduler
Performance Measures

The instances of the scheduling problems for the empirical study presented in
this chapter are generated by the Sim-G-Batch simulator defined in Chapter 2 (see
Sec. 2.3). The basic set of the input data for the simulator includes:

• the workload vector of tasks,
• the computing capacity vector of machines,
• the vector of prior loads of machines, and
• the ETC matrix of estimated execution times of tasks on machines.

The Sim-G-Batch simulator is highly parametrized to reflect the various realistic
grid scenarios. The sample values of key input parameters used in the experiments
for the simulator are presented in Table 4.12.

These parameters are interpreted as the global characteristics of the conventional
grid systems with the low and high heterogeneities of the tasks and resources, and
low and high system dynamics. The following four grid size scenarios are con-
sidered in the study: (a) ‘Small’ grid (32 hosts/512 tasks), (b) ‘Medium’ grid (64
hosts/1024 tasks), (c) ‘Large’ grid (128 hosts/2048 tasks), and (d) ‘Very Large’ grid
(256 hosts/4096 tasks). The similar grid characteristics are used for an experimental
analysis of the effectiveness of the heuristic schedulers in many research projects
in grid computing [159], [29], [157], and in the recent works of the author of this
book [82], [83], [86].

4.2.1 The Measures of the Schedulers Performance

The relative performances of all schedulers in experiments presented in this chapter
were evaluated according to the following two criteria:

• Makespan – the primarily scheduling criterion defined in Eq. (2.15);

2 The following notation U [x,y] , N(a,b) and E(c,d) is used for uniform, Gaussian and
exponential probability distributions, respectively.
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Table 4.1 Values of key parameters of the grid simulator in static and dynamic cases

Small Medium Large Very Large

Static case

Nb. of hosts 32 64 128 256

Resource cap. (in MHz CPU) N(5000,875)

Total nb. of tasks 512 1024 2048 4096

Workload of tasks N(250000000,43750000)

Dynamic case

Init. hosts 32 64 128 256

Max. hosts 37 70 135 264

Min. hosts 27 58 121 248

Resource cap. (in MHz CPU) N(5000,875)

Add host N(625000,93750) N(562500,84375) N(500000,75000) N(437500,65625)

Delete host N(625000,93750)

Init. tasks 384 768 1536 3072

Total tasks 512 1024 2048 4096

Inter arrival E(7812.5) E(3906.25) E(1953.125) E(976.5625)

Workload N(250000000,43750000)

• Mean Flowtime – mean flowtime calculated as follows:

Mean Flowtime = F (4.1)

where F denotes the flowtime defined in Eq. (2.17).

4.3 The Evaluation of HGS-Sched on Static Benchmark for the
Small-Size Grid

In this section HGS-Sched algorithm is evaluated in the static grid scenario for a
small cluster of machines and small batch of tasks. The main aim of this study is
to verify the impact of the distribution of tasks and resources in the system on the
scheduler performance, and the effectiveness of the single- and hierarchical genetic
meta-heuristics in the reduction of the system overheads. HGS-Sched algorithm is
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compared with the most representative single-population GA-based schedulers de-
signed for the independent batch scheduling in grids.

4.3.1 The Benchmark Description

The benchmark for small static grid was generated by the Static ETC Generator
module of the Sim-G-Batch simulator (see Sec. 2.3.1 in Chapter 2). The instances in
this benchmark are classified into 12 types of ETC matrix, according to task hetero-
geneity, machine heterogeneity and consistency of computing. These instances are
labeled by the following parameters

gamma xx yyzz.0 (4.2)

where:

• gamma denotes the gamma distribution used in generating the ETC matrix;
• xx stands for the type of consistency of ETC matrix(ĉ–consistent, ˜̂i–inconsistent,

and ŝ– semi-consistent);
• yy indicates the heterogeneity of tasks (hi – high heterogeneity, and lo – low

heterogeneity);
• zz expresses the heterogeneity of the resources (hi – high, and lo –low).

All ETC matrices were generated by using the CVB method (see Chapter2, Sec. 2.2)
with the following input parameters: execave = 10, and 0.1 ≤ tvartasks , mvarmach ≤
0.35. The grid cluster network is composed of 16 nodes (machines) and there are
512 tasks submitted for scheduling. The analysis starts by tuning the genetic en-
gine for HGS-Sched algorithm. The result of this tuning process is a configuration
of single-population GA algorithm, which is implemented as the genetic engine
in HGS-Sched. HGS-Sched with such an engine is used in the comparison anal-
ysis of the performances of hierarchical meta-heuristic and two single-population
GA-based schedulers defined in [20] and [161]. These single-population sched-
ulers are promoted as the effective methods for solving small-scale static scheduling
problems.

4.3.2 Tuning of GA Operators for HGS-Sched

The genetic operators used in the tuning process were selected from the set of op-
erators (3.3) defined in Chapter 3, Sec. 3.3. Each experiment was repeated 30 times
under the same configuration of operators and parameters and the average values of
Makespan and Mean Flowtime were computed.

Table 4.2 shows the results achieved by the schedulers with two crossover oper-
ators, namely Cycle Crossover (CX) and Partially Matched Crossover (PMX), and
Rebalancing mutation. The CX crossover outperforms the rest of the operators in
the minimization of both makespan and flowtime criteria.
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Table 4.2 Comparison of crossover operators ([±s.d.]= standard deviation)

Operator
Average Average
Makespan Mean Flowtime

PMX 8253658.817 1083433775.989
[± 522982.428] [± 300917659.178]

CX 7582290.438 1032764993.452
[± 962174.801] [± 147902068.802]

The results of the tuning the mutation operators are presented in Table 4.3. Three
selected mutation methods –Move, Swap and Rebalancing – were combined with
CX crossover operator. In this case Rebalancing mutation achieves the best results
in the optimization of the scheduling objective functions.

Table 4.3 Comparison of mutation operators for makespan and flowtime values.

Operator
Average Average
Makespan Mean Flowtime

Move 9201421.234 1103421125.004
[± 719048.166] [± 109300376.601]

Swap 10753798.757 1197064425.190
[± 12734428.834] [± 921729050.218]

Rebalancing 7665531.021 10416946991.943
[± 743666.66] [± 115207562.548]

Three replacement operators were considered as the candidate methodologies of
generation of the base populations for GA schedulers, namely Steady State, Elitist
Generational, and Struggle operations. The results for both methods are presented
in Table 4.4. The Struggle is the most effective in the optimization of the makespan
and flowtime objectives although the differences in the results are minor.

Based on the results of this simple tuning process, the optimal configuration of
genetic operators for the main engines of the GA-based grid schedulers is defined
as follows:

• Selection – Linear Ranking;
• Crossover – CX;
• Mutation – Rebalancing;
• Replacement – Struggle.

This engine is used as the main genetic mechanism in all HGS-Sched branches in
small-scale static scheduling.
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Table 4.4 Comparison of performance of replacement operators.

Operator
Average Average
Makespan Mean Flowtime

Steady State 7714176.552 1054674832.098
[± 646120.259] [± 117471995.462]

Elitist Generational 7702158.131 1040779095.420
[± 849364.304] [± 279901270.213]

Struggle 7634563.365 1022253853.537
[± 712499.473] [± 95836415.955]

4.3.3 The Comparative Analysis of Single-Population and
Hierarchical Genetic Schedulers in Static Scheduling in
Small-Area Grid Cluster

The goal of the empirical analysis presented in this section is to compare the effec-
tiveness of the hierarchical HGS-Sched algorithm with the results achieved by two
representative single-population genetic meta-heuristics, namely the classical GA
grid scheduler defined by Braunt et al. in [20], and Xhafa et al. [158]. The configu-
ration of the Braunt’s algorithm is defined by the set of the following genetic opera-
tors: random selection, . OX crossover, Swap mutation and Elitist Generational The
configuration of the Xhafa’s algorithm is identical with the optimal genetic engine
of the HGS-Sched generated in the previous section.

The values of HGS-Sched control parameters are presented in Table 4.5. The
nb o f metaepochs denotes the maximal number of metaepochs executed in the core

Table 4.5 HGS-Sched global parameter values

Parameter

degrees of branches (t) 0 and 1

period of metaepoch (α) 200

nb of metaepochs 10

neighborhood parameter (su f ) 0.5

mut prob(0) 0.4

mut prob(1) 0.2

cross prob 0.8
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of the structure and it is defined as a global stopping criterion for the whole strategy.
It is assumed that there are just two types of branches in HGS-Sched tree, namely
core of the structure (one branch of degree 0 and sprouted branches of degree 1. The
numbers of individuals in HGS-Sched populations were 50 individuals in the core
and 18 – in the sprouted branches. The parameters cross prob, mut prob(0) and
mut prob(1) are used for the notation of of the crossover and mutation probabilities.

In order to make a fair comparison analysis and reconstruct the experiments pro-
vided by Braunt and Xhafa a work parameter Work was defined for all algorithms.
This parameter expresses the amount of work of the particular scheduler. The Work
parameter is defined as follows:

Work = (mut prob+ cross prob)× pop size× nb o f generations (4.3)

For HGS-Sched algorithm, the value of the Work parameter is approximated by
using the parameters in all possible branches, that is to say:

Work =
[

(mut prob(0)+cross prob)× pop size(0)+

+∑M̃
t=1

(

(mut prob(t)+cross prob)×
×pop size(t)×nb br(t)

)

]

× period o f metaepoch×nb o f metaepochs

(4.4)

where:

• M̃ is the maximal degree of all branches in HGS-Sched,
• nb br(t) is the number of sprouted branches of degree t,
• pop size(t) denotes the size of the population in the branch of degree t.

Based on Eq. (4.3) and Eq. (4.4), the amounts of work of three analyzed schedulers
are specified as follows:

• for GA in [20]: WorkBraunt = (0.4+ 0.6)∗ 200∗ 1000= 200000,
• for GA in [158]: WorkXha f a = (0.4+ 0.8)∗ 68 ∗2500= 240000, and
• for HGS-Sched: WorkHGS = ((0.2+ 0.8)∗ 8 ∗ 12+(0.4+0.8)∗28)∗200∗ 10=

259200.

It can be noted from the above calculation, that the values of work parameters are in
the same range ensuring a proper comparison of the considered algorithms.

4.3.3.1 Results

Tables 4.6 and 4.7 present the average values of Makespan and Mean Flowtime
achieved by the three considered GA-based schedulers3.

Both Makespan and Mean Flowtime metrics are expressed in arbitrary (but not
concrete) time units.

3 The flowtime criterion was not optimized in [20], but the configurations of operators and
parameters were kept the same as in the case of makespan minimization.
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Table 4.6 Comparison of average Makespan values for three hierarchical and single-
population genetic schedulers ([±s.d.]: s.d–standard deviation)

Instance Braunt’s GA Xhafa’s GA HGS-Sched

gamma c hihi 8050844.500 7610176.437 7607296.918
[± 600034.582] [± 697710.369] [± 631202.153]

gamma c hilo 156249.200 155251.196 154812.745
[± 18836.883] [± 16533.074] [± 10846.362]

gamma c lohi 258756.770 248466.775 247899.224
[± 19323.273] [± 21665.664] [± 24492.211]

gamma c lolo 5272.250 5226.972 5210.134
[± 770.943] [± 251.945] [± 240.110]

gamma i hihi 3104762.500 3077705.818 3078056.432
[± 703298.094] [± 1102800.748] [± 888645.874]

gamma i hilo 75816.130 75924.023 75699.814
[± 4562.552] [± 4173.978] [± 3295.872]

gamma i lohi 107500.720 106069.101 107342.096
[± 21982.994] [± 18348.615] [± 24526.384]

gamma i lolo 2614.390 2613.110 2622.514
[± 133.731] [± 149.972] [± 168.561]

gamma s hihi 4566206.000 4359312.628 4343467.785
[± 578839.375] [± 663325.239] [± 853673.523]

gamma s hilo 98519.400 98334.640 98179.9684
[± 7448.582] [± 4526.485] [± 6191.471]

gamma s lohi 130616.530 127641.889 126822.766
[± 37307.500] [± 44480.9] [± 53702.900]

gamma s lolo 3583.440 3515.526 3555.009
[± 276.094] [± 279.368] [± 218.364]

In the case of makespan optimization, HGS-Sched scheduler outperforms the
Braunt’s GA in all instances, and the Xhafa’s GA in 75% of considered instances.
The hierarchical algorithm seems to be the most effective for consistent and semi-
consistent ETC matrices, and it is worse than single-population Xhafa’s struggle



54 4 Hierarchic vs. Single–Population and Hybrid Meta-heuristic Grid Schedulers

Table 4.7 Average values of Mean Flowtime for benchmark instances [±s.d.]: –standard
deviation

Instance Braunt’s GA Xhafa’s GA HGS-Sched

gamma c hihi 1048333229.742 1039048563.591 1038849002.691
[± 62551800.953] [± 108789000.034] [± 95274900.026]

gamma c hilo 27687019.467 27620519.758 27397760.132
[± 1855790.564] [± 1572700.532] [± 1761150.483]

gamma c lohi 34767197.164 34566883.883 34501187.333
[± 1662420.222] [± 4060500.544] [± 4362160.643]

gamma c lolo 920475.174 917647.316 915488.420
[± 51414.611] [± 56050.154] [± 34862.677]

gamma i hihi 378010732.653 379768078.537 357299609.516
[± 108287000.473] [± 190414000.845] [± 148015000.873]

gamma i hilo 12775104.787 12674329.173 12517223.618
[± 894854.731] [± 749330.642] [± 680981.333]

gamma i lohi 13444708.394 13417596.793 12819181.271
[± 3503680.766] [± 3324080.433] [± 4401610.934]

gamma i lolo 446695.831 440728.985 440511.843
[±25385.445 ] [± 34978.732] [± 32745.674]

gamma s hihi 526866515.467 524874694.232 521884731.434
[± 105362000.654] [± 126013000.322] [± 134002000.119]

gamma s hilo 16598635.595 16372763.267 16432276.198
[± 1244710.342] [± 1078820.565] [± 1157260.442]

gamma s lohi 15644101.363 15639622.548 15322972.987
[± 4981350.746] [± 6657510.543] [± 8207100.773]

gamma s lolo 605375.388 598332.695 602565.625
[± 37980.799] [± 59455.762] [± 43452.103]

GA for inconsistent matrices. The efficiency of the hierarchical scheduler is better
in the case of flowtime minimization: HGS-Sched performs coherently for all three
groups of instances – consistent, semi-consistent and inconsistent ETC matrices.
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4.4 The Empirical Study in Large-Scale Static and Dynamic
Instances

The benchmarks for large-scale static and dynamic grid scenarios were generated
by the main module of Sim-G-Batch simulator with the input parameters defined in
Sec. 4.2. The experiments were performed for two multi-population genetic sched-
ulers, namely HGS-Sched and Island GA, single-population GA schedulers and a
hybrid meta-heuristic defined by GA and Tabu Search methods.

Similarly to the previous section, the empirical analysis was conducted in two
main steps: the tuning process of the genetic engine for the hybrid and multi-
population schedulers, and the comparative analysis of all types of metaheuristics.

4.4.1 The Tuning the GA Engine

The tuning process of GA schedulers in large-scale grids has been provided for the
same set of the genetic operators as this specified in Sec. 4.3.2. Eighteen GA variants
with all possible combinations of these operators are defined in Table 4.8.

The values of key parameters a general HG-Sched model for each single-
population scheduler are shown in Table 4.9. These parameters were tuned empiri-
cally in the study provided by the research group of Fatos Xhafa (see [161], [158],
[159]) and the previous study of the author of this book [90], [86].

The HGS-Sched has in this case just one core branch. Eighteen GA meta-
heuristics were evaluated in the static and the dynamic grid environments. Each
experiment was repeated 30 times under the same configuration of operators and
parameters. The averaged Makespan and Mean Flowtime values obtained by all
schedulers are presented in Tables 4.10–4.13.

Tables 4.15 and 4.15 summarize the relative ranking of eighteen scheduling al-
gorithms for Makespan and Mean Flowtime minimization in both the static and the
dynamic grid scenarios.

It follows from the results that the quality of scheduling strongly depends on
the proper combination of crossover and mutation operations. In all considered in-
stances the PMX crossover together with Move mutation give the worst results and
the combination of CX crossover with Rebalancing mutation seems to be the most
effective in the most of the instances. Indeed, in the static case GA−CX −R− ST
algorithm ranks first in 75% of instances and GA−CX −R− SS algorithm is the
best in the remaining 25%of the total instances. In the dynamic scenario the situa-
tion is similar: GA−CX −R− ST algorithm achieves the best results in 62.5% of
instances and GA−CX −R−SS – in the remaining 27.5%. The GA−CX −R−EG
algorithm ranks in all cases as the second or third best scheduler. I can be observed
that in the groups of algorithm with the same mutation and crossover operators,
the Struggle replacement mechanism has the best positive impact on the algorithm
performance.
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Table 4.8 Eighteen variants of single-population GA-based schedulers

Scheduler Crossover method Mutation method Replacement method

GA-PMX-M-SS Partially Matched (PMX) Move Steady State

GA-PMX-M-EG Partially Matched (PMX) Move Elitist Generational

GA-PMX-M-ST Partially Matched (PMX) Move Struggle

GA-PMX-S-SS Partially Matched (PMX) Swap Steady State

GA-PMX-S-EG Partially Matched (PMX) Swap Elitist Generational

GA-PMX-S-ST Partially Matched (PMX) Swap Struggle

GA-PMX-R-SS Partially Matched (PMX) Rebalancing Steady State

GA-PMX-R-EG Partially Matched (PMX) Rebalancing Elitist Generational

GA-PMX-R-ST Partially Matched (PMX) Rebalancing Struggle

GA-CX-M-SS Cycle (CX) Move Steady State

GA-CX-M-EG Cycle (CX) Move Elitist Generational

GA-CX-M-ST Cycle (CX) Move Struggle

GA-CX-S-SS Cycle (CX) Swap Steady State

GA-CX-S-EG Cycle (CX) Swap Elitist Generational

GA-CX-S-ST Cycle (CX) Swap Struggle

GA-CX-R-SS Cycle (CX) Rebalancing Steady State

GA-CX-R-EG Cycle (CX) Rebalancing Elitist Generational

GA-CX-R-ST Cycle (CX) Rebalancing Struggle

By summarizing the results for both objective functions, the GA-CX-R-ST algo-
rithm is selected as the genetic engine for the experimental analysis of multilevel
grid scheduling presented in the following section.
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Table 4.9 GA setting for large static and dynamic benchmarks

Parameter Elitist Generational/Struggle Steady State

degree of branches (t) 0

period of metaepoch (α) 1/2∗n/10 (2∗n/10

nb of metaepochs 10

population size (pop size) 
(log2 n)2 − log2 n� 4∗ (log2 n−1)

intermediate pop. pop size−2 (pop size)/3

cross probab. 0.8 1.0

mutation probab. 0.2

initialization LJFR-SJFR + MCT + Random

max time to spend 40 sec. (static) / 75 sec. (dynamic)

4.4.2 The Empirical Evaluation of Single-, Multi-Population and
Hybrid Genetic-Based Schedulers in Static and Dynamic
Scenarios

The objective of the study presented in this section is to verify and compare the
efficiency of single population genetic-based schedulers with multi-level meta-
heuristics, namely HGS-Sched and GA-CX-R-SS hybridized with Tabu Search
method. Based on the evaluation results of all GA variants we implemented the
GA-CX-R-SS as a basic genetic mechanism in HGS-Sched.

4.4.2.1 Metaheuristics for Study

The following single- and multi-population genetic schedulers are considered in this
part of the empirical analysis:

• GA-CX-R-ST - a single population genetic algorithm generated as the best sched-
uler in the previous section (Sec. 4.4.1) with CX crossover, Rebalancing mutation
and Struggle replacement operators. This algorithm is used as the main genetic
mechanism in the remaining two multi-level techniques and hybrid strategy. The
GA−CX −R− ST settings are given in Table 4.9.

• HGS-Sched with GA−CX −R− ST with various population sizes and mutation
rates in the branches;

• IGA - Island Genetic Algorithm with GA−CX −R−ST as the basic mechanism
in all sub-populations;
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Table 4.10 Average Makespan values for eighteen GA-based schedulers in static instances
[±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

GA-PMX-M-SS 4162673.327 4298014.024 4484782.436 4464900.721
[± 790668.957] [± 824291.171] [± 911521.151] [± 560336.505]

GA-PMX-M-EG 4178242.873 4300135.827 4480981.012 4486359.298
[± 209829.920] [± 552350.473] [± 375819.451] [± 750553.881]

GA-PMX-M-ST 4157240.307 4295825.090 4477518.527 443533.726
[± 379850.512] [± 415189.756] [± 449752.022] [± 364469.067]

GA-PMX-S-SS 4125691.126 4268348.675 4401693.348 4417588.754
[± 659448.392] [± 475553.050] [± 673682.970] [± 853210.688]

GA-PMX-S-EG 4148405.275 4285671.797 4416301.090 4421427.663
[± 43761.015] [± 605962.237] [± 53486.153] [± 701992.116]

GA-PMX-S-ST 4133822.183 4261593.241 4399261.431 439189.653
[± 380836.642] [± 634705.248] [± 555304.633] [± 711735.974]

GA-PMX-R-SS 4099722.422 4209834.534 4322903.467 4332736.028
[± 939509.617] [± 505720.705] [± 149437.882] [± 563164.075]

GA-PMX-R-EG 4111018.744 4217551.633 4361359.893 4375643.075
[± 837452.949] [± 540610.017] [± 590881.527] [± 748754.806]

GA-PMX-R-ST 4096457.271 4202740,309 4309984.381 4313319.068
[± 553704.095] [± 468878.756] [± 497267.784] [± 552852.618]

GA-CX-M-SS 4057867.000 4175408.001 4234538.827 4284402.774
[± 711772.879] [± 796525.118] [± 933600.720] [± 684131.232]

GA-CX-M-EG 4067320.903 4184339.982 4290330.342 4303769.532
[± 654607.977] [± 582147.023] [± 751364.567] [± 952170.387]

GA-CX-M-ST 4041129.964 4167727.904 4209105.106 4241630.898
[± 987767.110] [± 803611.007] [± 679072.949] [± 728165.507]

GA-CX-S-SS 3954447.328 4125317.265 4172916.118 4205709.695
[± 566725.393] [± 771196.560] [± 618157.753] [± 944696.828]

GA-CX-S-EG 4004965.627 4156258.860 4190734.257 4222631.851
[± 918998.520] [± 713229.061] [± 594713.746] [± 957740.279]

GA-CX-S-ST 3940188.666 4098993.759 4161474.891 4219927.630
[± 399958.718] [± 775636.448] [± 65051.579] [± 828429.144]

GA-CX-R-SS 3923847.672 4053438.673 4105672.240 4152951.283
[± 384195.770] [± 697330.842] [± 581510.738] [± 712805.158]

GA-CX-R-EG 3912183.019 4095293.387 4093277.276 4197426.188
[± 611208.560] [± 621501.898] [± 984994.621] [± 584731.707]

GA-CX-R-ST 3907275.654 3982875.764 4065433.887 4100554.634
[± 472756.651] [± 527598.824] [± 628860.552] [± 684458.248]
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Table 4.11 Average Makespan values for eighteen GA-based schedulers in dynamic in-
stances [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

GA-PMX-M-SS 4183064.389 41996544.500 4272342.027 4351579.014
[± 303594.681] [± 633541.835] [± 523861.891] [± 955889.372]

GA-PMX-M-EG 4196660.637 4207559.346 4250769.729 4378943.912
[± 795391.867] [± 673312.285] [± 570063.523] [± 663276.562]

GA-PMX-M-ST 41666682.922 4182062.259 4242506.997 4342520.961
[± 557522.757] [± 659041.716] [± 564267.992] [± 435640.377]

GA-PMX-S-SS 4150255.659 4156125.373 4239582.165 4323745.969
[± 364204.730] [± 612692.293] [± 566626.175] [± 685834.282]

GA-PMX-S-EG 4149105.038 416379.853 4220166.253 4309346.443
[± 440578.157] [± 472235.032] [± 837511.681] [± 515978.598]

GA-PMX-S-ST 4133090.502 4177107.429 4198308.287 4294855.678
[± 271571.051] [± 473557.935] [± 492853.075] [± 430583.789]

GA-PMX-R-SS 4126676.780 4118808.678 4164756.208 4254796.820
[± 728966.192] [± 649630.565] [± 56766.709] [± 580607.466]

GA-PMX-R-EG 4129602.691 4109778.902 4182790.083 4270973.780
[± 270662.077] [± 913428.430] [± 761523.938] [± 100219.228]

GA-PMX-R-ST 4063022.741 4077928.331 4158207.631 4232768.084
[± 430715.830] [± 410172.944] [± 611305.330] [± 499217.899]

GA-CX-M-SS 4096232.073 4093218.110 4114422.323 4188744.263
[± 554669.949] [± 602133.299] [± 721311.202] [± 672746.995]

GA-CX-M-EG 4109712.181 4099788.995 4141965.814 4209289.242
[± 869717.384] [± 453095.636] [± 817008.729] [± 636853.293]

GA-CX-M-ST 4054429.908 4070157.151 4127500.870 4198327.481
[± 464589.755] [± 446428.587] [± 870899.646] [± 631520.079]

GA-CX-S-SS 4022572.196 4032408.549 4090392.967 4129281.695
[± 516330.313] [± 590815.709] [± 898536.995] [± 917216.254]

GA-CX-S-EG 4015442.255 4033181.392 4106452.250 4164853.468
[± 405905.662] [± 650601.916] [± 982489.800] [± 785931.696]

GA-CX-S-ST 4006934.189 4010678.953 4039201.986 4140525.379
[± 436482.946] [± 516992.488] [± 816514.067] [± 633513.047]

GA-CX-R-SS 3986872.198 3972483.354 4024651.986 4109893.365
[± 806632.171] [± 618035.814] [± 436431.848] [± 747400.818]

GA-CX-R-EG 3998111.691 4002987.983 4089790.044 4091857.920
[± 692024.001] [± 467779.063] [± 632965.292] [± 791598.934]

GA-CX-R-ST 3956624.255 3968890.040 4033653.781 4040335.820
[± 521037.286] [± 659955.935] [± 600996.138] [± 642477.287]
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Table 4.12 Average Mean Flowtime values for eighteen GA-based schedulers in static in-
stances [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

GA-PMX-M-SS 1193567211.537 2309597733.454 4399334723.599 8401592320.869
[± 128370293.469] [± 291748525.988] [± 411586354.582] [± 889213844.016]

GA-PMX-M-EG 1206734272.356 2326428289.314 4404322051.418 8410389312.587
[± 135504556.429] [± 13744410.910] [± 439654339.019] [± 989122999.052]

GA-PMX-M-ST 1182232499.779 2297351808.190 4357752153.775 8395922739.597
[± 218224825.514] [± 207359074.643] [± 476389087.741] [± 606291276.896]

GA-PMX-S-SS 1158140985.025 2261813008.415 4316860418.277 8367766411.152
[± 180302378.918] [± 240332696.510] [± 593778909.154] [± 755794904.240]

GA-PMX-S-EG 1175542598.454 228568131.930 4332618330.048 8388110055.663
[± 162987312.683] [± 369229026.877] [± 45367872.253] [± 507151151.344]

GA-PMX-S-ST 1147247760.724 2271025623.997 4320515589.851 8373206007.045
[± 211590465.457] [± 453137510.918] [± 711100452.764] [± 784801239.205]

GA-PMX-R-SS 1142225326.145 2249643747.642 4286055243.299 8338732539.636
[± 240067553.885] [± 253050662.960] [± 577523722.350] [± 741000998.450]

GA-PMX-R-EG 1136071183.723 2258614783.371 4292713481.576 835216627.023
[± 143892082.090] [± 233840747.951] [± 377833946.994] [± 699126484.932]

GA-PMX-R-ST 1117878614.800 2227564670.521 4283126157.824 8322161405.019
[± 196255094.628] [± 225294411.337] [± 543390178.534] [± 736033399.656]

GA-CX-M-SS 1105676446.564 2195359732.256 4263563557.141 8294397268.110
[± 18596758.737] [± 282655389.940 ] [± 539894530.830] [± 790327708.149]

GA-CX-M-EG 1125655077.793 2238431289.893 4274715011.673 8306547838.652
[± 142293067.762] [± 212224990.911] [± 604531703.308] [± 812904982.726]

GA-CX-M-ST 11111848829.461 2204221008.299 4238467253.243 8272449832.295
[± 110335889.154] [± 254605827.121] [± 513415557.850] [± 822664629.425]

GA-CX-S-SS 1084338418.886 2179625719.400 4204403080.180 8242964769.102
[± 165598016.948] [± 250682728.242] [± 430849430.300] [± 600614818.712]

GA-CX-S-EG 1097868914.479 2190763974.690 4227164271.644 8260315502.581
[± 17614361.064] [± 334857074.927] [± 473657175.059] [± 569231789.391]

GA-CX-S-ST 1078132035.030 2166781141.473 4195675260.221 8253290991.790
[± 120473769.993] [± 250660461.860] [± 577482551.646] [± 769767684.495]

GA-CX-R-SS 1060575340.426 2138208217.698 4188077792.436 8213447951.179
[± 123314394.677] [± 362885985.554] [± 537308748.955] [± 803914314.541]

GA-CX-R-EG 1066071183.009 2143852396.768 4196929745.169 8235408309.560
[± 103578848.015] [± 272146853.672] [± 533701714.987] [± 795752579.317]

GA-CX-R-ST 1054421614.528 2111081930.859 4190750381.697 8221050176.578
[± 15296382.605] [± 339791854.177] [± 436450229.143] [± 708270871.387]
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Table 4.13 Average Mean Flowtime values for eighteen GA-based schedulers in dynamic
instances [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

GA-PMX-M-SS 1343724728.245 2321846250.347 4413245472.632 8644534678.245
[± 598538835.360] [± 431346593.814] [± 417986755.794] [± 404482983.284]

GA-PMX-M-EG 1389239424.349 2347268532.324 4436061767.548 8660435684.376
[± 129097532.581] [± 432955978.981] [± 701148099.631] [± 664054585.165]

GA-PMX-M-ST 1307355142.051 2308727439.878 4403766189.879 8605175251.450
[± 126906586.696] [± 256156869.233] [± 469026059.421] [± 693219859.321]

GA-PMX-S-SS 1263649999.867 2262608448.916 4360160544.425 8502620979.464
[± 268317752.960] [± 216787358.248] [± 656197729.295] [± 851502055.485]

GA-PMX-S-EG 1286784630.430 2292058041.397 4393131389.346 8531596508.841
[± 184783757.268] [± 499461667.383] [± 454805534.425] [± 573812983.895]

GA-PMX-S-ST 1237247760.724 2271025623.997 4377515589.851 8513206007.045
[± 244213856.135] [± 434633012.674] [± 788991696.341] [± 719513808.715]

GA-PMX-R-SS 1226429310.580 2229357685.290 4333974209.902 8472673073.563
[± 255806730.308] [± 290693183.985] [± 519849125.536] [± 743945636.397]

GA-PMX-R-EG 1213613356.567 2254728732.731 4348829866.347 8493687750.198
[± 167571940.967] [± 283645546.676] [± 526061100.837] [± 784339554.900]

GA-PMX-R-ST 1151930817.794 2184860096.988 4320407124.381 8466099314.428
[± 134663685.381] [± 242728273.618] [± 528711756.114] [± 728490457.382]

GA-CX-M-SS 1188284638.934 2199577483.835 4239455642.778 8426829568.357
[± 162112136.850] [± 257276315.811] [± 387064110.517] [± 537095310.247]

GA-CX-M-EG 1193593276.050 2211445673.176 4296573568.612 8457381627.647
[± 163978670.974] [± 173050142.794] [± 621630992.871] [± 596961998.050]

GA-CX-M-ST 1132978230.586 2166440897.331 4270646610.327 8432573052.527
[± 129547599.824] [± 182827503.146] [± 616490962.213] [± 885691236.077]

GA-CX-S-SS 1126523158.454 2161517451.690 4222289600.939 8365526025.239
[± 228154433.283] [± 277432894.907] [± 552469744.108] [± 773215992.243]

GA-CX-S-EG 1113772162.066 2154839647.617 4233669538.605 8392873916.020
[± 187159613.747] [± 326230384.931] [± 620551577.626] [± 859689519.119]

GA-CX-S-ST 1106340445.440 2146356979.846 4218990182.691 8345528446.458
[± 138247946.733] [± 239873730.726] [± 525735729.121] [± 947608913.414]

GA-CX-R-SS 1076534164.177 2116783653.774 421654378.495 8291108455.913
[± 181982147.103] [± 19799961.957] [± 48988254.993] [± 632222716.240]

GA-CX-R-EG 1098943746.287 2138965387.563 4208567534.205 8339386800.606
[± 143403467.472] [± 176627923.813] [± 564619337.921] [± 730340037.273]

GA-CX-R-ST 1028717087.273 2122230062.891 4178971901.269 8310330051.728
[± 177645283.759] [± 217213422.096] [± 528146731.361] [± 711071173.232]
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Table 4.14 Ranking of eighteen genetic-based schedulers in static instances

Strategy Makespan Flowtime
Small Medium Large Very Large Small Medium Large Very Large

GA-PMX-M-SS 17 17 18 17 17 17 17 17

GA-PMX-M-EG 18 18 17 18 18 18 18 18

GA-PMX-M-ST 16 16 16 16 16 16 16 16

GA-PMX-S-SS 13 14 14 14 14 13 13 13

GA-PMX-S-EG 15 15 15 15 15 15 15 15

GA-PMX-S-ST 14 13 13 13 13 14 14 14

GA-PMX-R-SS 11 11 11 11 12 11 11 11

GA-PMX-R-EG 12 12 12 12 11 12 12 12

GA-PMX-R-ST 10 10 10 10 9 9 10 10

GA-CX-M-SS 8 8 8 8 7 7 8 8

GA-CX-M-EG 9 9 9 9 10 10 9 9

GA-CX-M-ST 7 7 7 7 8 8 7 7

GA-CX-S-SS 5 5 5 4 5 5 5 4

GA-CX-S-EG 6 6 6 6 6 6 6 6

GA-CX-S-ST 4 4 4 5 4 4 4 5

GA-CX-R-SS 3 2 3 2 2 2 1 1

GA-CX-R-EG 2 3 2 3 3 3 3 3

GA-CX-R-ST 1 1 1 1 1 1 2 2

• GA+TS - hybrid scheduler with GA−CX −R− ST as the control strategy and
Tabu Search (T S).

The Island Genetic Algorithm (IGA) [153] is a well-known parallel GA technique.
An initial (usually big) population is divided into several sub-populations, ‘islands’
or ‘demes’, for which single-population GAs with identical configurations of the
parameters and operators are activated (one algorithm for each deme). After a fixed
number of iterations, denoted as itd , the migration procedure is activated. It enables a
partial exchange (usually according to the standard ring topology) of the individuals
among islands. The relative amount of the migrating individuals, represented by
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Table 4.15 Ranking of eighteen genetic-based schedulers in dynamic instances

Strategy Makespan Flowtime
Small Medium Large Very Large Small Medium Large Very Large

GA-PMX-M-SS 17 17 18 17 17 17 17 17

GA-PMX-M-EG 18 18 17 18 18 18 18 18

GA-PMX-M-ST 16 16 16 16 16 16 16 16

GA-PMX-S-SS 15 13 15 15 14 13 13 13

GA-PMX-S-EG 14 14 14 14 15 15 15 15

GA-PMX-S-ST 13 15 13 13 13 14 14 14

GA-PMX-R-SS 11 12 11 11 12 11 11 11

GA-PMX-R-EG 12 11 12 12 11 12 12 12

GA-PMX-R-ST 8 8 10 10 8 8 10 10

GA-CX-M-SS 9 9 7 7 9 9 7 7

GA-CX-M-EG 10 10 9 9 10 10 9 9

GA-CX-M-ST 7 7 8 8 7 7 8 8

GA-CX-S-SS 6 5 5 4 6 6 5 5

GA-CX-S-EG 5 6 6 6 5 5 6 6

GA-CX-S-ST 4 4 3 5 4 4 4 4

GA-CX-R-SS 2 2 1 3 2 1 3 1

GA-CX-R-EG 3 3 4 2 3 3 2 3

GA-CX-R-ST 1 1 2 1 1 2 1 2

mig, is the algorithm global parameter commonly known as the migration rate, and
calculated as:

mig =
mdeme

deme
·100% (4.5)

where deme is the size of the sub-population in IGA and mdeme is the number of
migrating individuals in each deme.

The general concept of the ‘islands’ and ‘migration’ procedure in IGA is pre-
sented in Fig. 4.1.

The procedure of migration is repeated after each execution of itd iterations of
genetic algorithm in each sub-population.
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Fig. 4.1 A concept of Island GA

The general flow of the GA+TS hybrid scheduler is presented in Fig. 4.2.
Tabu Search (TS) algorithm is implemented as subordinate module in the GA

scheduler for the replacement of the mutation operation in GA−CX −R− ST , i.e.
selection, crossover and mutation in GA is replaced by selection, crossover and TS
procedures. In each iteration of the GA+TS algorithm, the T S method starts from
the population generated as the result of application of the crossover procedure in
GA−CX −R− ST . The structures of chromosomes are modified by ‘moving’ the
current schedules to their neighbors in order to improve their fitness values.

One of the most important features of T S is the use of a historical memory,
which consists of a short term memory (or recency) with information on recently
visited solutions, and a long term memory (or frequency), where all information
gathered in the exploration of the search space process by T S module is cumu-
lated. Both ‘memory’ modules are represented as the lists in the T S implementa-
tion. The ‘movements’ in these two lists are considered as ‘tabu operations’ and
then they cannot be activated. Therefore, some aspiration criteria are needed for
removing the tabu movements. Additionally, some local search inner heuristics are
also needed for an exploration of a neighborhood of a given solution, and the inten-
sification and diversification procedures are necessary for the management of the
exploration/exploitation tradeoff in the global search.

The following configuration of T S algorithm is used in this study:

• historical memory – both short and long term memories are used. For the recency
memory, a tabu list matrix T L(n×m) is generated to maintain the tabu status. In
addition, a tabu hash table (TH) is used in order to further filter the tabu solu-
tions [164];

• neighborhood exploration – steepest descent/mildest ascent method with swap
moving strategy, which exchanges two tasks assigned to different machines [145];

• aspiration criterium– GA fitness function;
• intensification – this procedure is executed for the detailed exploration of promis-

ing regions in the optimization landscape by rewarding (attributes of) the current
solution. The structure of the neighborhood of a given solution is modified by
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Fig. 4.2 The general flowchart of hybrid GA+TS algorithm

performing all possible swap movements between two machines and just one
transfer from one machine to the other [53].

• diversification – a soft diversification method is realized by using a penalization
of ETC values technique [164], and strong diversification method is realized by
random modifications in the assignments of a sufficient number of tasks.

The key parameters for HGS−Sched, IGA and GA+TS schedulers used in this part
of the empirical study are presented in Tables 4.16, 4.17, and 4.18.

It is assumed that HGS-Sched tree is composed of the branches of degrees 0
and 1, and the search process in the sprouted branches is approximately two times
slower than in the core (the mutation rates in the sprouted branches are two times
lower than the mutation rate in the core).



66 4 Hierarchic vs. Single–Population and Hybrid Meta-heuristic Grid Schedulers

Table 4.16 HGS-Sched settings for static and dynamic benchmarks

Parameter

period o f metaepoch 20∗n

nb o f metaepochs 10

degrees of branches (t) 0 and 1

population size in the core 3∗ (
4∗ (log2 n−1)/(11.8)�)

population size in the sprouted branches (b pop size) (
(4∗ (log2 n−1)/(11.8)�)

intermediate pop. in the core abs((r pop size)/3)

intermediate pop. in the sprouted branch abs((b pop size)/3)

cross probab. 0.9

mutation probab. in core 0.4

mutation probab. in the sprouted branches 0.2

max time to spend 40 sec. (static) / 70 sec. (dynamic)

Table 4.17 Configuration of IGA algorithm

Parameter

itd 20∗n

mig 5 %

number of islands (demes) 10

cross probab. 1.0

mutation probab. 0.2

max time to spend 40 sec. (static) / 70 sec. (dynamic)
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Table 4.18 Configuration of TS algorithm

Parameter

start choice Min-Min method

tabu size 918133

max tabu status 32

max repetitions 69

nb diversifications 8

nb intensifications 8

nb iterations 8192

elite size 30

aspiration value 20

max time to spend 100 seconds

4.4.2.2 Results

Similarly to the GAs tuning analysis, each experiment was repeated 30 times under
the same configuration of operators and parameters. The box-plots4 for the values
of the Makespan and Mean Flowtime achieved by four considered schedulers are
presented in Fig. 4.3–4.10.

It can be observed that in the case of Makespan minimization three multi-level
and multi-population schedulers outperform the GA−CX −R− ST method in all
considered instances, but the differences in the results of these three schedulers are
not so significant. GA+TS hybrid scheduler is the most efficient in ‘Small’ static and
dynamic grids and the case of ‘Very large’ static grid. It may stem from the fact that
Tabu Search technique is usually accurate in exploration of the highly parametrized
local static neighborhoods of the partial solutions found by the genetic steering mod-
ule. However, this technique may be sensitive to any modifications of the system
state. TS meta-heuristic cannot guarantee the fast escape from a basin of attraction
of already detected local optima in the case of appearance of new promising solu-
tions. Similarly, the island algorithm can explore effectively the search space only
in the case of minor changes in the system states. It works quite well in most of the

4 All statistical analysis was provided and all box-plot charts ware plotted by using the
‘STATISTICA PL 9.0’ Software Package (�StatSoft, www.statsoft.pl).
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Fig. 4.3 The box-plot of the results for Makespan in static scheduling: Small and Medium
grids
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Fig. 4.4 The box-plot of the results for Makespan in static scheduling: Large and Very Large
grids
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Fig. 4.5 The box-plot of the results for Makespan in dynamic scheduling: Small and Medium
grids
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Fig. 4.6 The box-plot of the results for Makespan in dynamic scheduling: Large and Very
Large grids
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Fig. 4.7 The box-plot of the results for Mean Folwtime in static scheduling: Small and
Medium grids
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Fig. 4.8 The box-plot of the results for Mean Folwtime in static scheduling: Large and Very
Large grids
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Fig. 4.9 The box-plot of the results for Mean Folwtime in dynamic scheduling: Small and
Medium grids
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Fig. 4.10 The box-plot of the results for Mean Folwtime in dynamic scheduling: Large and
Very Large grids
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static scenarios, however the differences between the first and the third quantiles for
IGA are the largest when compared to the other schedulers. HGS-Sched performs
very well in most of the dynamic cases.

In the case of Mean Flowtime, hierarchical scheduler outperforms all other
meta-heuristics in all instances but ‘Very Large‘ grid in the dynamic scenario. How-
ever in this case the difference between the results generated by HGS-Sched and
GA+TS are very minor. It can be observed that the stability of hierarchical sched-
uler is much better than the stability of the other methods, for which the ‘shapes‘ of
the ‘boxes‘ in the plots are relatively big. Those results confirm the high of HGS-
Sched in the reduction of overall execution time of the schedules, which makes this
method well suited to an effective exploration of the new regions in the scheduling
space.

A simple comparison of the averaged values of the scheduling objective func-
tions and the standard deviations is usually insufficient to measure the relative per-
formance of the schedulers. Therefore, the standard Student’s t–test for the compar-
ison of two means [101] was used for the verification of statistical significance of
all empirical results of minimization of Makespan and Mean Flowtime. The result
of this test is the acceptance or rejection of the null hypothesis (H0), which states
that any differences in results are purely random. An erroneous rejection of the null
hypothesis constitutes a Type 1 error.

The best achieved Makespan and Mean Flowtime values in each problem in-
stance have been defined as the reference values in the verification of the ‘null’
hypothesis, and the confidence level was 95 % in each instance of the t-test.

Table 4.19 Comparison of the two-tailed P-values for Makespan and Mean Flowtime results
in the large size static and dynamic instances

Strategy Makespan Mean Flowtime
Small Medium Large Very Large Small Medium Large Very Large

Large Static Instances

GA-CX-R-ST 0.059 0.185 0.126 0.075 0.119 0.128 0.211 0.055

HGS-Sched < 0.0001 < 0.0001 1 0.031 1 1 1 1

IGA 0.012 1 0.063 0.068 0.072 0.215 0.051 0.185

GA+TS 1 < 0.0001 0.058 1 0.065 0.098 0.049 0.115

Dynamic Instances

GA-CX-R-ST 0.049 0.055 0.049 0.042 0.112 0.057 0.121 0.105

HGS-Sched 0.021 1 1 1 1 1 1 < 0.0001

IGA 0.052 0.041 0.039 0.031 0.121 0.032 0.059 0.101

GA+TS 1 < 0.0001 0.027 0.031 0.023 0.0029 0.198 1
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Table 4.19 contains the P-value parameters, which are interpreted as the proba-
bilities of the errors of Type 1 [101]. These results give the adequate information
about possible acceptance or the rejection of the ‘null’ hypothesis. The difference
in the results is not statistically significant if the P-value is not greater than 0.05
(P-value is 1 for the base (best) results).

In the static instances the results achieved by the single-population algorithm
differ significantly from the results generated by the other meta-heuristics. The ef-
ficiency of HGS-Sched and TS+GA is similar in all but large-scale grids in the case
of flowtime minimization. IGA algorithm is more effective than single-population
scheduler, but it is not as good as hierarchical and hybrid meta-heuristics. In the dy-
namic scenario the highest effectiveness of HGS− Sched is demonstrated in all but
very large grid in the case of flowtime optimization. The differences in the achieved
Makespan results are small, while in the case of flowtime the HGS-Sched is the best
adapted to the system dynamics.

4.5 Summary

This chapter presents the comprehensive experimental analysis of various imple-
mentations of HGS-Sched grid scheduler versus Island GA, single-population and
hybrid GA meta-heuristics. Those techniques were used for exploration of the bi-
objective fitness landscape for independent grid scheduling. Hybrid methodology
is based on the 2-level search of GA and T S algorithms. GA plays the role of the
control strategy, while T S in subordinated module is responsible for the accurate
exploration of the neighborhoods of suboptimal schedulers detected by GA.

The results of experiments show the high effectiveness of GA+T S hybrid meta-
heuristic in static scheduling. Indeed, T S component is efficient in the fast reduction
of the completion times of machines. It can also easily detect the near-optimal local
solutions distributed in the small narrow regions of the search space. On the other
hand, the major drawback of this method may be the low resistance to the system
dynamics. In such cases HGS-Sched outperforms the other approaches. Hierarchical
genetic scheduler is the most efficient in all considered scenarios of dynamic grids,
which makes it a good candidate solution for scheduling in the realistic grids. The
general HGS-Sched framework presented in Chapter 3 was successfully applied for
the implementation of single- and multi-population genetic schedulers. Different
models of the schedulers can be created just by setting a proper configuration of the
key parameters in the main hierarchical framework.

Similarly to the classical combinatorial optimization, even simple theoretical
analysis of the scheduling landscapes in computational grids may be a strong sup-
port to the design of the scalable grid schedulers that can be easily adapted to ac-
tual system states. This research area is still very superficially explored and each
progress in the landscape characteristics may be the hottest research issue in future
generation grid and cloud computing.
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Chapter 5
Security-Aware Independent Batch Scheduling
in Computational Grids

Abstract. This chapter presents a model for independent batch scheduling in Com-
putational Grid that enables the aggregation of security requirements as additional
scheduling criteria. Artificial Neural Network (ANN) module is an important com-
ponent of this model. It is designed for supporting the security-aware evolutionary
single- and multi-population grid schedulers.Based on a preliminary analysis of the
trust levels of resources and security demand parameters of tasks, the neural net-
work monitors the scheduling and task execution processes and generates the tasks-
machines mapping “suggestions” based on the information about resource failures
and the resulting tasks and machines characteristics. This information is used by the
schedulers for an effective minimization of the scheduling objective function and
the improvement of the system throughput.

5.1 Introduction

While the maximization of the resource utilization and profits of the resource own-
ers are the key objectives of the grid scheduling, they may conflict with grid users’
security requirements and system reliability . A major hurdle in effective job out-
sourcing in grid is caused by network security threats. The grid resources may not
be accessible if the grid cluster is under attack. The system infections may lead to
machine crashes during the execution of tasks dispatched to that cluster. Therefore,
it is desirable to have a prior knowledge about the security demands from grid jobs
and the trust level assured by a resource provider at the grid cluster. An effective
grid scheduler must be then security-driven and resilient in response to all schedul-
ing and risky conditions. It means that to achieve the successful tasks executions
according the specified users’ requirements, the relation between the assurance of
secure computing services by a grid site or by a cluster node (security) and the
behavior of a resource node (trust) must be defined and analyzed.

The main problem addressed in this chapter is an improvement of the effective-
ness of the single- and multi-population genetic-based grid schedulers in the low-
cost resource allocations under security constraints. The security awareness of those

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 81–111.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



82 5 Security-Aware Independent Batch Scheduling in Computational Grids

schedulers is supported by an Artificial Neural Network (ANN) module integrated
with the system. Based on a prior analysis of trust levels of the resources and security
demand parameters of tasks, the neural network monitors the scheduling and task
execution, and produces task-machine mapping “suggestions” (recommendations)
by using the system information, such as resource failure rates and system input pa-
rameters. Thereafter, based on the ANN “suggestions”, sub-optimal schedules are
generated and used in the initialization procedures of genetic-based schedulers for
optimizing the main scheduling objective functions such as makespan and flowtime.

Despite the generation of the sub-optimal solution to the specified scheduling
problems, the ANN module is not considered in this work as additional scheduler. It
works in a “background” of the main scheduling process and monitors the schedul-
ing results. However, the schedules generated by ANN may be accepted as the opti-
mal solutions if the employed schedulers cannot generate the better ones.

According to the notation introduced in Sec. 1.4.2 the independent batch security-
aware scheduling in which the makespan and flowtime are optimized in a hierarchi-
cal mode can be specified as follows:

Rm [{b, indep,(stat,dyn),hier}] (Cmax(sec)[Cmax(ris)],F(sec)[F(risk)])) (5.1)

where:

• Cmax(sec) – stands for a makespan as the primary scheduling objective under
security constraints;

• F(sec) – stands for a flowtime as the second scheduling objective under security
constraints;

• Cmax(risk) – stands for a makespan as the primary scheduling objective in the
risky scheduling mode;

• F(risk) – stands for a flowtime as the second scheduling objective in the risky
scheduling mode.

The procedures of calculating the Cmax(sec), F(sec), Cmax(risk) and F(risk) values
will be defined later on. The interpretations of the remaining parameters are the
same as in Sec. 2.1 (Eq. (2.1)).

This chapter extends the model and results presented in [18] by the implemen-
tation and the comparative analysis of the effectiveness of multi-population and
single-population GA-based grid schedulers and the integration of the ANN module
with Sim-G-Batch grid simulator. In the ANN module the Minimal Completion Time
(MCT) algorithm is used for the generation of sub-optimal schedules.

5.2 Related Work

There has been a number of studies over the last years in which the security proce-
dures in grid scheduling are verified in risky environments, where the resource trust
parameters must be analyzed. The security-aware scheduling process in grid envi-
ronment [65], [152], [165] is more difficult for the management than conventional
scheduling defined for supercomputers, real-time, and parallel computers [66], [91],
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[100]. Unfortunately, well-known scheduling approaches for grid computing largely
ignore this security factor, with only a handful of exceptions.

A simple classification of security-aware grid models for an immediate job ex-
ecution mode is presented by Humphrey and Thompson in [65]. They define a job
control system for accessing grid information services through authentication. How-
ever, they did not elaborate on how a scheduler should be designed to address the
security concerns in collaborative computing over distributed cluster environment.
An extensive survey of the research endeavors in this domain is presented in [34].

Hwang et al. [67] developed an interesting fault-tolerance mechanism in CGs
with a failure detection service, that enables the detection of both task failures and
user’s secure requirements in a dynamic environment. Abawajy [1] developed a
model, that faces the system dynamics by a replication of the users’ jobs at mul-
tiple grid sites in order to improve reliability of grid resources, and successful job
executions.

Due to their high scalability heuristic methods seem to be the effective tools
in solving the large-scale grid scheduling problem with additional security and re-
source reliability criteria [137]). However, security and task abortion mechanism are
usually applied as the external procedures separated from the core of the scheduling
system. For example, security requirements can be specified in the grid system by
using a simple trust model [8].

Some recent security-aware approaches in CG scheduling are based on the game-
theoretical models . In [136] and [137] the authors define the risky and secure con-
ditions in online scheduling in CGs caused by software vulnerability and distrusted
security policy. They apply the game model introduced in [92] for simulating the
resource owners selfish behavior. The results presented in [137] are extended by Wu
et al. in [155]. The authors consider the heterogeneity of fault-tolerance mechanism
in a security-assured grid job scheduling and define four types of GA-based online
schedulers for the simulation of fault-tolerance mechanisms.

In the aforementioned models the final decisions on the secure allocation of task
to resources are made by the CG users who do not cooperate with each other. The
costs of the risk-resilient tasks executions are interpreted as the users’ cost func-
tions, which are specified as the scheduling objectives and are minimized during
the game. The main drawback of the online scheduling approaches may be the high
computational complexity of the schedulers. In many cases the games are provided
on the different grid levels and the design of an effective synchronization mecha-
nism is a challenging task. A game-theoretical support to the users’ decisions and
actions will be discussed in Chapter 6.

Artificial Neural Networks (ANNs) are usually implemented as schedulers in grid
computing. An illustrating example can be the grid scheduler based on the Fuzzy
Neural Networks presented in [166]. The authors used the fuzzy logic module for
monitoring the status of machine loads in grid system. The parameters of fuzzy
membership functions in this model are tuned by using the ANN trained by back-
propagation algorithm.

In [131] the ANN mechanism is used for supporting the users’ decisions. The
authors defined a decision model which is composed of three main components: (a)
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online module for the prediction of the users’ actions; (b) off-line module for the
analysis of statistical data acquired during user’s work; and (c) ’users activity’ mod-
ule defined for the detection of trends and changes in users’ activities. The users’
decisions mechanisms are supported by the feed-forward neural networks trained by
the back-propagation method. The authors additionally proposed the offline model,
where another neural network is applied for the detection of normal/abnormal users
activities, by analyzing the statistical data accumulated during the users’ actions.

The above mentioned model is a promising solution for simulation and simple
analysis of the users’ decisions. This model can be considered as an alternative to
game-based methodology in online scheduling. However the high complexity of
this model can be a main drawback for its successful application in real-life grid
scenarios.

5.3 Security as Scheduling Criterion in Computational Grids

A general security-aware grid model is based on the hierarchical multi-level ar-
chitecture presented in Chapter 1 (see Sec. 1.2.2). However, the role of the meta-
scheduler is different when security is considered as additional criterion in the
scheduling process. The meta-scheduler must analyze the security requirements for
the execution of tasks and requests of the CG users for trustful resources available
within the system. The system brokers analyze “reputation” indexes of the machines
received from the resource managers and send proposals to the scheduler. More-
over, the brokers also control the resource allocation and communication between
CG users and resource owners.

Fig. 5.1 depicts the 3-level architecture of the security-aware grid cluster.
The trust level and security demand parameters are generated by aggregation of

several scheduling and system attributes. Those parameters depend heavily on the
security policy, accumulated resource or grid cluster “reputation”, self-defense ca-
pability, attack history, special users’ requirements, and peer authentication. Fig. 5.2
presents the major behavior and intrinsic security attributes needed for the specifica-
tion of trust levels of the grid clusters and security demand of the grid applications
(see also [137]).

Song et al. in [136] have developed a fuzzy-logic trust model, in which the afore-
mentioned attributes are aggregated into single scalar parameters. The task security
demand in this model is supplied by the user’s programs as request for authentica-
tion, data encryption, access control, etc. The trust level parameters of the resource
clusters are aggregated through a two-level hierarchic fuzzy-logic based trust pro-
cedure in the following way:

• At the lower intra-site level there are applied two fuzzy inference systems for
the evaluation of the self-defence capabilities and trust indexes of the resources;
each grid cluster reports its assessed self-defense capability to all other clusters;

• At the higher inter-site level there are collected the inputs from all resource clus-
ters and the trust level vector is defined through another fuzzy inference process
(see [136]).
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Fig. 5.1 The model of secure grid cluster

This fuzzy trust model was used in this work for the specification of new character-
istics of tasks and resources in the grid system, namely security demand and trust
level vectors. The security demand vector , denoted by SD = [sd1, . . . ,sdn] sd j, is
defined as a vector of the security demand parameters sd j, ( j ∈ N), for all tasks
in the batch. The trust level vector , denoted by T L = [tl1, . . . , tlm], is defined as a
vector of trust level parameters tli for all resources in the system. The trust level pa-
rameters specify how much a grid user can trust the resource manager. The manager
maintains machine i status and monitors the execution of the tasks assigned to this
machine. The values of the sd j and tli parameters are real fractions within the range
[0,1] with 0 representing the lowest and 1 the highest security requirements for a
task execution and the most risky and fully trusted machine, respectively. A task
can be successfully completed at a resource when a security assurance condition is
satisfied. That is to say that sd j ≤ tli for a given ( j, i) task-machine pair.

Let us denote Prf to be a Machine Failure Probability matrix , the elements of
which, are interpreted as the probabilities of failures of the machines during the tasks
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Fig. 5.2 The major attributes affecting the trust level and security demand in grid systems
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executions due to the high security restrictions. These probabilities are denoted by
Pf [ j]i] and are calculated by using the negative exponential distribution function,
that is to say:

Prf [ j][i] =

{

0 , sd j ≤ tli
1− e−α(sd j−tli) , sd j > tli

(5.2)

where α is interpreted as a failure coefficient and is a global parameter of the model.
The process of matching sd j with tli is similar to that of a real-life scenario where

users of some portals, such as Yahoo!, are required to specify the security level of
the login session.

5.3.1 Scheduling Scenarios and Objectives

The grid cluster or the grid resource may be not accessible to the global meta-
scheduler when being infected with intrusions or by malicious attacks. The sched-
uler has two options of initializing his work: (a) to analyze the Machine Failure
Probability matrix in order to minimize the failure probabilities for task-machine
pairs; or (b) to perform an “ordinary” scheduling without any preliminary analysis
of the security conditions, abort the task scheduling in the case of machine failure,
and reschedule this task at another resource. The scheduler’s strategies give rise to
two modes of processing (and modelling in particular) the grid schedules, namely
secure and risky modes.

Secure Mode

In this scenario all of the security and resource reliability conditions are verified for
all task-machine pairs. The main goal of the meta-scheduler is to design an optimal
schedule for which, beyond the makespan and flowtime, the probabilities of failures
of the machines during the tasks executions will be minimal. It is assumed that
additional “cost” of the verification of security assurance condition for a given task-
machine pair: (a) may delay the predicted execution time of the task on the machine,
and (b) is proportional to the probability of failure of the machine during the task
execution. This “cost” is defined as the product of Prf [ j][i] and ETC[ j][i]. In this
case the completion time of the machine i is denoted by completions[i]1 and can be
calculated as follows:

completions[i] = readyi + ∑
{ j∈Tasks(i)}

(1+Prf [ j][i])ETC[ j][i]) (5.3)

where Tasks(i) denotes the set of tasks assigned to the machine i in a given batch.
In this mode the main scheduling objectives, namely makespan and flowtime, can

be expressed as follows:

1 The general concept of the completion time of machine was explained in Sec. 2.2.2 in
Chapter 2.
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Cmax(sec) = max
i∈M

completions[i]. (5.4)

F(sec) = ∑
i∈M

Fs[i] (5.5)

where
Fs[i] = readyi + ∑

j∈Sorted[i]

(1+Prf [ j][i])ETC[ j][i]) (5.6)

and Sorted[i] denotes the set tasks assigned to the machine i sorted in ascending
order by the corresponding ETC values.

Risky Mode

In this scenario all secure and failing conditions are ignored. The scheduling pro-
cess is realized as a two-step procedure. First, the scheduling is performed just by
analyzing the ETC matrix. If failures of machines are observed, then the unfinished
tasks are temporarily moved into the backlog set. This set is defined as a ‘batch
supplement’ and the tasks form this set are re-scheduled in the way as in the secure
mode. The total completion time of machine i(i ∈ M) in this case can be defined as
follows:

completionr[i] = completion[i]+ completions
res[i] (5.7)

where completion[i] is calculated by using the Eq. (2.13)(see Chapter 2, Sec. 2.2.2),
for tasks primarily assigned to the machine i , and completions

res[i] is the completion
time of machine i calculated by using the Eq.( 5.3) for rescheduled tasks, i.e. the
tasks re-assigned to the machine i from the other resources.

The formulas for makespan and flowtime in this mode are defined in the follow-
ing way:

Cmax(risk) = max
i∈M

completionr[i]. (5.8)

F(risk) = ∑
i∈M

Fr[i] (5.9)

where

Fr[i] = readyi + ∑
j∈Sorted[i]

ETC[ j][i]+ ∑
j∈Sortedres[i]

(1+Prf [ j][i])ETC[ j][i]) (5.10)

and and Sortedres[i] denotes the set of rescheduled tasks assigned to the machine i
sorted in ascending order by the corresponding ETC values

Assuming the hierarchical optimization mode (see Eq. (5.1), parameter hier) with
the makespan as the primarily scheduling criterion, the flowtime should be mini-
mized in both secure and risky scenarios subject to the the following constraints:
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• in the secure mode

Fs[i] ≤ Cmax(sec) ∀i ∈ M; (5.11)

• in the risky mode

Fr[i] ≤ Cmax(risk) ∀i ∈ M. (5.12)

Although the probabilities of machines’ failures are expected to be higher in the
risky than in the secure mode, there is certainly no guarantee of the successful
execution of all tasks in the security scenario. It can be observed that if the se-
curity assurance condition is satisfied for each task-machine pair (i.e. sd j ≤ tli
for i ∈ M, j ∈ N), the completion times of machines in both secure and risky
modes are identical with the completion times defined for standard independent
scheduling problem (see Chapter 2, Eq.( 2.13)), where it is assumed that each task
must be successfully executed on each machine and no security requirements are
analyzed2.

5.4 Artificial Neural Network Module

The implementation of Artificial Neural Network (ANN) module requires prelim-
inary classification of tasks and machines available in the system. This classifi-
cation is based on the values of the workload (WL), computing capacity (CC),
trust level (TL) and security demand (SD) vectors. Machines are categorized
into the Rr types according to their processing power features, namely slowest,
slower,· · · ,medium,· · · ,fastest classes; and into Rs types according their trust level
features, namely secure, less secure,· · · ,medium,· · · ,fully risky classes. This initial
classification leads to the overall categorization of the resources into R = Rr ·Rs

classes, namely slowest-secure,· · · ,medium-secure,· · · ,fastest-fully risky types, in
order to characterize the grid machine under the processing power and trust criteria.

Similar classification can be provided for the submitted tasks under workload and
security demand features. The tasks are categorized into T = Tw ·Tsd types, where
Tw is number of workload classes and Tsd is number of security demand classes.
R machine classes and T task classes generate R + T possible inputs for neural
network.

Formally, the ANN input data can be expressed by the following pair of vectors:
{TASKS MX ;MACHINES MX}, where:

• TASKS MX [̂t] = Tt for tasks classification, where ̂t denotes a task class, (t =
1, . . . ,T ), and Tt denotes the fraction of tasks in the class ̂t. That is to say:

Tt =
̂tt
n
, (5.13)

2 The component completions
res[i] in Eq. (5.7) is not calculated while all tasks are success-

fully executed on the grid machines.



90 5 Security-Aware Independent Batch Scheduling in Computational Grids

where ̂tt is the number of tasks in the class ̂t and

T

∑
t=1

Tt = 1 (5.14)

• MACHINES MX [r̂] = Rr for resources classification, where r̂ denotes a machine
class (r̂ = 1, . . . ,R), and proportion of machines in the class r̂ is denoted by Rr.
That is to say:

Rr =
r̂r

m
, (5.15)

where r̂r is the number of machines in the class r̂ and

R

∑
r=1

Rr = 1 (5.16)

ANN module monitors the machine failures and the successful execution of tasks
on machines. The information about the failures of the grid resources is needed for
the classification of the results generated by the neural network. For each class r̂
of machines, there is selected a unique major class tma j(r̂) of successfully executed
tasks. This class is specified based on the number of completed tasks on a given
machine without any failures and re-scheduling procedures. The results generated
by the neural network are defined as an output matrix OUT MX of the size T ·R
with just R non-zero (positive) elements (one major class of tasks for each host is
indicated in such a way), where:

OUT MX [r̂][tma j(r̂)] = r(tma j (r̂)) (5.17)

and r(tma j(r̂)) is the proportion of the tasks from the major class tma j(r̂) submitted to
the machines of the class r̂. The main concept of the network is presented in Fig. 5.3.

The network is trained by the back propagation algorithm [61]. The results gener-
ated by the ANN module are used for the specification of the grid schedules, which
may be accepted as the partial (or optimal) solutions for the problem, or may be
passed on to the heuristic or meta-heuristic schedulers as the initial solutions. The
procedure of the generation of the schedules based on the ANN “suggestions” can
be defined as follows. First, a ’major class’ tma j(r̂) membership is verified for all
tasks in the batch. For each task from the ‘major class’ the class of the fastest and
most trustful machines is selected. Thereafter, this task is assigned to the machine
from the selected class, with the minimal completion time. The tasks from the other
classes than the ‘major’ one are assigned to the machines with the shortest comple-
tion times without analyzing the network results. The Minimum Completion Time
(MCT) method is used for all those assignments. The general framework of MCT
procedure is presented in Alg. 2.

Both input and output matrices defined for ANN are totally independent of num-
bers of hosts and tasks in the system. Therefore, the ANN module can be trained
even on a small batch of task and small cluster of machines and then the generated
results may be used in more complex scenarios.
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Fig. 5.3 Neural network architecture

Algorithm 2. MCT algorithm template
1: Calculate the ready times of the machines ;
2: for all Tasks in a given batch do
3: Calculate the completion times of the machines for the tasks;
4: Find the machine that gives minimum completion time, mbest ;
5: Assign task to mbest machine;
6: Update the machine completion time;
7: end for
8: Return the resulting schedule

5.5 Empirical Evaluation of the Genetic Metaheuristics for
Security-Aware Scheduling

The specification of just one major class of tasks for the network results may be
of course the main reason of relatively low efficiency of the ANN module in some
realistic approaches. The intelligent modification of this neural network model into
the low-cost (in the sense of the execution time) multi-class version remains still
challenging research issue. However, the monitoring of the system, the provisioning
of the resources and scheduling according to various security requirements, should
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be even partially automated. Otherwise, the information about the reliability of the
resources, all negotiations of the particular security conditions, or simply the infor-
mation about the failures of the nodes, must be proceed by the system administrators
and grid users. It usually delays the realization of the schedules because of the sheer
scale of the system and different, and often conflicting, goals and interests of the
users working at the various system levels. The ANN model presented in this chap-
ter may serve as a prototype solution for both automatic monitoring and detection of
the system failures and intelligent supporting of the users decisions, with a tangible
benefit of reducing an overall computing overhead in high-performance computing
systems (not just grids).

The aim of the empirical study presented in this section is the verification of the
efficiency of the neural network support for single- and multi-population genetic-
based schedulers in the reduction of the number of failures of the resources caused
by too restrictive security conditions, and in the minimization of two conventional
scheduling objectives, namely makespan and flowtime. The experiments were con-
ducted in two main steps. First, six variants of single-population GA-based sched-
ulers with different crossover, mutation and replacement operators were evaluated in
both scheduling modes. The goal of this analysis is to compose an optimal combina-
tion of genetic operators for multi-population hierarchical, island and hybrid genetic
schedulers. Thereafter, four genetic meta-heuristics were evaluated in risky and se-
cure modes, namely the best single-population GA in the first part of the analysis,
and HGS-Sched, Island GA and hybridization of GA with Tabu Search (GA+TS).

5.5.1 Security Aware Sim-G-Batch Grid Simulator

The ANN module was integrated with the Sim-G-Batch simulator for modelling
and monitoring the grid system behavior under the specified security conditions.
The module works in the “background” of the main system and supports the resolu-
tion methods implemented in Scheduler class. The sub-optimal schedules generated
based on the neural networks “suggestions”, are passed on to the initial populations
of the genetic schedulers. The main concept of the security-aware version of Sim-
G-Batch simulator with the ANN module is presented in Fig. 5.4.

In the case of security scheduling, the list of typical input parameters for Sim-
G-Batch (see Chapter 2, Sec. 2.3.1) is extended by the trust level vector T L and
the security demand vector SD. Table 5.1 presents the values of key parameters
in four grid size scenarios, namely Small, Medium, Large and Very Large in static
and dynamic modes. Most of those parameters (excluding the numbers of tasks and
machines) were tuned in empirical analysis presented in [136], [137], [92] and the
recent publications of the author of this book [18], [87], [89].

For activating the ANN module, the tasks and machines are divided into 18
classes: 9 categories for processing power and trust level criteria (machines), and
9 categories for workload and security demand criteria (tasks). The ANN is a feed-
forward network with two hidden layers, the weight coefficients are in the range
of [−0.2;0.2] and the learning rate is 0.01. The training set for ANN contains the
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Fig. 5.4 General Flowchart of the secure Sim-G-Batch Simulator Supported by Neural Net-
work Linked to Scheduling
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Table 5.1 Values of key parameters of the secure Sim-G-Batch in static and dynamic modes

Small Medium Large Very Large

Static case

Nb. of hosts 32 64 128 256

Resource cap. (in MHz CPU) N(5000,875)

Total nb. of tasks 512 1024 2048 4096

Workload of tasks N(250000000,43750000)

Security demandssd j U [0.6;0.9]

Trust levels tli U [0.3;1]

Failure coefficient α 3

Dynamic case

Init. hosts 32 64 128 256

Max. hosts 37 70 135 264

Min. hosts 27 58 121 248

Resource cap. (in MHz CPU) N(5000,875)

Add host N(625000,93750) N(562500,84375) N(500000,75000) N(437500,65625)

Delete host N(625000,93750)

Init. tasks 384 768 1536 3072

Total tasks 512 1024 2048 4096

Inter arrival E(7812.5) E(3906.25) E(1953.125) E(976.5625)

Workload N(250000000,43750000)

Security demandssd j U [0.6;0.9]

Trust levels tli U [0.3;1]

Failure coefficient α 3

characteristics of the tasks and machines and the task-machine matching results col-
lected after the 500 runs of the simulator with inactive Neural Network module.

5.5.2 Performance Measures

The performances of all schedulers in experiments were evaluated under the follow-
ing three metrics:
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• Makespan – a primarily scheduling criterion, which is expressed in Eq. (5.8) in
risky scenario, and in Eq. (5.4) in the secure mode,

• Mean Flowtime – flowtime scheduling criterion, which is defined in Eq. (5.8) for
the risky mode, and in Eq. (5.4) for the secure mode; and

• FailureRate Failr parameter defined as follows:

Failr =
n f ailed

n
·100% (5.18)

where n f ailed is the number of unfinished tasks, which must be rescheduled3.

Both Makespan and Mean Flowtime measures are expressed in arbitrary time units
specified for the scheduling.

5.5.3 Tuning the Genetic Engine for Multi-Population Batch
Schedulers

In the first part of empirical study six single-population risk-resilient GA sched-
ulers have been compared in order to define an effective genetic engine for multi-
population meta-heuristics. The configuration of the genetic parameters for those
six schedulers are presented in Table 5.2.

Table 5.2 Configuration of six single-population GA-based grid schedulers

Scheduler Replacement method Scheduling scenario

GA-SS-R Steady State Risky

GA-SS-S Steady State Secure

GA-SS-ANN Steady State Secure supported by ANN

GA-ST-R Struggle Risky

GA-ST-S Struggle Secure

GA-ST-ANN Struggle Secure supported by ANN

The aforementioned methodologies differ in the implementation of the replace-
ment mechanism. The Steady State replacement method is used in GA-SS-xxx

3 According the notation introduced in Chapter 2, n stands for the number of tasks in a given
batch.
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algorithms and Struggle procedure – in GA-ST-xxx. The ANN module is active just
in GA-SS-ANN and GA-ST-ANN algorithms for generating a part of an initial pop-
ulation. All of the remaining procedures in these algorithms are identical with the
schedulers working in the secure scenario. Based on the results of the tuning pro-
cess of genetic-based meta-heuristics in conventional grid scheduling presented in
Chapter 4, Sec. 4.4.1, the remaining genetic operations in the schedulers are config-
ured as follows: (i) Linear Ranking as selection scheme, (ii) Cycle Crossover (CX)
operator and (iii) Move mutation method [107].

The generic frameworks of all considered schedulers are the same as in Alg. 1
defined in Chapter 3. The key parameters of HGS-Sched model for generating all
types of genetic-based schedulers are presented in Table 5.3.

Table 5.3 GA Steady State and GA Struggle settings in static and dynamic cases

Parameter Value

degree of branches (t) 0

period of metaepoch (α) (5∗n)/10

nb of metaepochs 10

population size (pop size) 60

intermediate pop. 48

cross probab. 0.9

mutation probab. 0.15

max time to spend 200 sec. (static) 400 sec. (dynamic)

The HGS-Sched has in this case just one core branch. Each experiment was re-
peated 30 times under the same configuration of operators and parameters.

5.5.3.1 Results

The results of the minimization of the Makespan in both risky and secure modes and
all grid scenarios, are presented as the box-plots in Fig. 5.5–5.8.

The best results in the Makespan optimization have been achieved by both GA-
XX-ANN schedulers. The efficiency of the ANN support can be observed especially
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Fig. 5.5 The box-plot of the results for Makespan in static scheduling: Small and Medium
grids
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Fig. 5.6 The box-plot of the results for Makespan in static scheduling: Large and Very Large
grids

in the ‘Large’ and ‘Very Large’ grid scenarios. The worst in the Makespan reduction
were the schedulers working in the risky mode. While in the ‘Small’ grid case the
differences in the averaged Makespan values are not so big, in all other scenarios
GA-SS-R and GA-ST-R meta-heuristics significantly lag behind the secure sched-
ulers. It can be also observed that in all instances the distribution of the results are
asymmetric and the medians are very close to the first or the third quantiles.

The box-plots of the Mean Folwtime results are presented in Fig. 5.9–5.12.
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Fig. 5.7 The box-plot of the results for Makespan in dynamic scheduling: Small and Medium
grids

In the case of the minimization of the flowtime, both GA-XX-ANN meta-heuristics
outperform again the rest of the methods in both static and dynamic modes, however
the differences in the results are not so significant as it was in the Makespan case.
Additionally, it can be noted that as the instance size is doubled, the Mean Flowtime
values increase considerably for all applied schedulers, while the Makespan is al-
most at the same level. Another observation is that all schedulers are rather ‘sym-
metric’ in the sense of the distribution of the results and the differences between the
first and the third quantiles are rather small. The best relative effectiveness of the
ANN support may be observed in ‘Very Large’ grids in static and dynamic cases.
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Fig. 5.8 The box-plot of the results for Makespan in dynamic scheduling: Large and Very
Large grids

Similarly to other experiments presented in this book, the maximal number of
generations in GA was defined as a stopping criterion for all schedulers. However,
the solutions generated by ANN may not be improved by the GA meta-heuristics,
and the search process can be stopped because of the stagnation in the improvement
of the solutions’ quality. Table 5.4 presents the averaged (in 30 runs of the simu-
lator) minimal numbers of genetic epochs (generations) needed for generating the
best solutions by all considered genetic schedulers. A relative effectiveness of each
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Fig. 5.9 The box-plot of the results for Mean Folwtime in static scheduling: Small and
Medium grids

scheduler is expressed as the ratio of the minimal number of genetic epochs nec-
essary for finding the optimal solutions, and the stopping criterion, which is 5 · n,
where n denotes the number of tasks in the system. These parameters are displayed
in parentheses in Table 5.4.

It can be noted than ANN module in most of the instances reduced the time
necessary for finding the best solutions approximately by 30–40 %, and successfully
speeded up the search process in both secure and risky scenarios. The effectiveness
of the ANN support is confirmed by the lowest failure rates achieved by the GA-XX-
ANN schedulers. The results for all six schedulers are presented in Table 5.5.
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Fig. 5.10 The box-plot of the results for Mean Folwtime in static scheduling: Large and Very
Large grids

In all instances but one – the ‘Small’ grid in static scenario – the schedulers
with the active ANN module outperform the other methods. The ANN support al-
low to reduce the machine failures by 1%−−6% compared to the ‘conventional’
schedulers.
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Fig. 5.11 The box-plot of the results for Mean Folwtime in dynamic scheduling: Small and
Medium grids

5.5.3.2 Summary

Based on the results of all experiments provided for single-population GA sched-
ulers, the most effective in the optimization of both scheduling objective functions
is GA-SS-ANN. This algorithm works in the secure mode with the ANN support
and steady state replacement mechanism in the main genetic engine. This algo-
rithm achieved the lowest failure rates in half of the instances, and most of them
in the dynamic grid, which makes it the best candidate methodology for the secure
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Fig. 5.12 The box-plot of the results for Mean Folwtime in dynamic scheduling: Large and
Very Large grids

scheduling in the realistic scenario. It is also the best in the minimization of the
Makespan and flowtime in most of the instances of the scheduling problem.

It can be observed that generally it is more resilient for the grid schedulers to
‘pay’ a priori some additional scheduling ‘cost’ due to verification of the security
conditions, than taking a risk on allocating the unreliable resources. As a result,
the failure rates in the risky mode are much higher than in the secure case, espe-
cially in the dynamic grid where the frequency of the machine failures are 3–4 times
greater than in the secure scenario. This is the main reason of lower effectiveness of
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Table 5.4 The averaged minimal numbers of genetic epochs necessary for generating the
best solutions by six considered GA-based schedulers

Strategy Small Medium Large Very Large

Static Instances

GA-SS-R 2302 (89.92%) 4722 (92.22%) 10008 (97.73%) 19226 (93.87%)

GA-SS-S 2031 (79.33%) 3620 (70.70%) 8345 (81.49%) 19740 (96.38%)

GA-SS-ANN 1722 (67.26%) 2733 (53.37%) 7992 (78.04%) 17739 (86.61%)

GA-ST-R 1923 (75.11%) 4213 (82.28%) 10013 (97.78%) 20054 (97.91%)

GA-ST-S 1987 (77.61%) 4005 (78.22%) 8022 (78.33%) 18654 (91.08%)

GA-ST-ANN 1592 (62.18%) 3872 (75.62%) 8591 (83.89%) 16940 (82.71%)

Dynamic Instances

GA-SS-R 2090 (83.6%) 5099 (99.78%) 10100 (98.63%) 20145 (98.75%)

GA-SS-S 1831 (71.52%) 3925 (76.96%) 9036 (90.36%) 19002 (92.78%)

GA-SS-ANN 1522 (60.60%) 3021 (59.23%) 8010 (78.52%) 17830 (87.06%)

GA-ST-R 2175 (85.21%) 4923 (96.15%) 10057 (98.59%) 19353 (94.86%)

GA-ST-S 1703 (68.52%) 2954 (57.92%) 8238 (80.70%) 17993 (88.63%)

GA-ST-ANN 1611 (61.44%) 3401 (66.68%) 6035 (60.78%) 17910 (87.83%)

the schedulers in the optimization of the main grid objective functions in the risky
mode. The ANN support in the security scheduling allow to reduce significantly the
Makespan and Mean Folwtime values and to keep the failure rates of the machines
at the sufficiently low levels.
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Table 5.5 Average values of failure rate Failr parameter for six GA-based schedulers [±s.d.]
(s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-R 4.832% 7.201% 11.824% 31.721%
[± 0.97] [± 0.78] [± 1.26] [± 3.28]

GA-SS-S 4.008% 4.135% 10.698% 11.635%
[± 1.15] [± 1.27] [± 3.26] [± 3.13]

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

GA-ST-R 4.697% 17.516% 14.013% 35.643%
[± 1.71] [± 3.39] [± 4.08] [± 6.73]

GA-ST-S 3.897% 5.540% 10.945% 10.402%
[± 0.96] [± 1.89] [± 1.63] [± 3.42]

GA-ST-ANN 3.967% 6.430% 6.11% 9.196%
[± 0.79] [± 0.63] [± 1.28] [± 2.77]

Dynamic Instances

GA-SS-R 12.126% 25.306% 31.342% 25.794%
[± 1.80] [± 2.79] [± 3.44 ] [± 2.48]

GA-SS-S 6.104% 6.916% 9.507% 8.943%
[± 1.69] [± 2.40] [± 1.84] [± 2.07]

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

GA-ST-R 26.797% 22.96% 29.227% 29.380%
[± 5.25] [± 4.19] [± 4.95] [± 5.30]

GA-ST-S 9.218% 7.623% 8.084 % 9.744%
[± 2.84] [± 2.02] [± 2.49] [± 2.69]

GA-ST-ANN 4.093% 6.991% 7.681% 7.894%
[± 0.97] [± 1.44] [± 1.33] [± 2.41]
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5.5.4 Evaluation of Multi-Population and Hybrid Genetic
Metaheuristics

The effectiveness of the multi-population meta-heuristics and hybrid genetic sched-
ulers depend on the efficiency of their single-population genetic engines. GA−SS−
ANN algorithm, as the best single-population GA in the first part of the empirical
analysis, was selected to serve as the main genetic mechanism in HGS-Sched, Is-
land GA and GA+T S hybrid algorithms applied to the secure grid scheduling. The
following four meta-heuristics were considered in this part of analysis:

• GA-SS-ANN - with the settings defined in Table 5.3;
• Sec-HGS-Sched - with GA− SS−ANN engine and various population sizes and

mutation rates in the branches of different degrees;
• Sec-IGA - Island Genetic Algorithm with GA−SS−ANN as the basic mechanism

in all sub-populations;
• Sec-(GA+TS) - hybrid scheduler with GA−SS−ANN as the control strategy and

Tabu Search (T S).

The general characteristics of hierarchical, island and hybrid schedulers are pre-
sented in Sec. 4.4.2.1 in Chapter 4. The settings for all considered meta-heuristics
are the same as the values of global parameters for IGA, HGS-Sched and GA+TS
presented defined in Tables 4.16, 4.17 and 4.18. It means that Sec-HGS-Sched is
composed of one branch of degree 0 and branches of degrees 1.

5.5.4.1 Results

The results of the comparative analysis of the minimization of Makespan,
Mean Folwtime and the failure rates in static and dynamic instances are presented
in Tables 5.6, 5.7 and 5.8. The results were averaged over the 30 runs of the simula-
tor for the same configuration of schedulers and all parameters.

The results show the high effectiveness of the hierarchic scheduler in the security-
aware scheduling. Sec-HGS-Sched achieved the best results in 80 % of the instances
for all scheduling metrics. It is the best in the reduction of the failing rates in 7 cases,
which makes this model a solid base for the development of the real-life scheduling
strategies in the security mode. The ANN module is a good candidate technology for
an automatic verification of the security condition. Sec-HGS-Sched algorithm needs
also the shortest time measured in the genetic epochs for the detection of the best
schedules, which is illustrated in Table 5.9. This algorithm is the best in 7 instances,
and the execution time for this method may be reduced in 25%–59% in the static
case and in 21%–40% in the dynamic case.
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Table 5.6 Average values of Makespan for single-population, multi-level and hybrid genetic
schedulers [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 4208842.037 4216980.163 4309539.605 4399950.825
[± 210505.265] [± 249225.887] [± 263233.057] [± 290453.201]

Sec-HGS-Sched 3902040.474 4051566.475 4101943.296 414387056.050
[± 249630.764] [± 319691.981] [± 308590.795] [± 2664631.423]

Sec-IGA 4000936.859 4208675.544 4245347.850 4377434.150
[± 271909.245] [±292686.570] [± 328969.468] [± 339217.338]

Sec-(GA+TS) 4070923.243 4195886.584 4278491.285 4400502.382
[± 282963.771] [± 249817.482] [± 262374.619] [± 281474.189]

Dynamic Instances

GA-SS-ANN 4141538.885 4212439.475 4232327.490 4364692.950
[± 24798859.145] [± 342459.080] [± 333199.727] [± 339043.674]

Sec-HGS-Sched 3971502.411 3991503.974 4198873.263 4227569.385
[± 259973.626] [± 321385.198] [± 251572.072] [± 281680.755]

Sec-IGA 4064692.950 4162170.950 4202452.157 4315327.490
[± 339043.674] [± 302537.087] [± 277217.723] [± 344120.912]

Sec-(GA+TS) 4039043.535 4068783.648 4230791.746 4263913.826
[± 281858.929] [± 253899.771] [± 290132.215] [± 294304.036]
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Table 5.7 Average values of Mean Folwtime for single-population, multi-level and hybrid
genetic [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1098725220.445 2261958805.835 4395864089.470 8705728350.062
[± 148984029.042] [± 196213971.853] [± 103819795.484] [± 179128466.164]

Sec-HGS-Sched 1065676446.564 2143359732.256 4294563557.141 8514397268.110
[± 101692277.056] [± 211454784.794] [± 373883906.206] [± 602503134.100]

Sec-IGA 1085575340.426 2138208217.698 4236077792.436 8593447951.179
[± 110993632.105] [± 221258711.190] [± 404456270.115] [± 551754278.966]

Sec-(GA+TS) 1102225326.145 2199643747.642 4296055243.299 8608732539.636
[± 197874153.696] [± 189693364.444] [± 386740590.285] [± 504003787.972]

Dynamic Instances

GA-SS-ANN 1163342728.245 2161846250.347 4322245472.632 8734534678.245
[± 136548966.434] [± 272493690.708] [± 533180226.552] [± 635468708.749]

Sec-HGS-Sched 1100334164.177 2113783653.774 4269654378.495 8701108455.913
[± 181318391.192] [± 22486203.090] [± 547345211.754] [± 779952031.937]

Sec-IGA 1198943746.287 2198965387.563 4308567534.205 8666386800.606
[± 139503645.521] [± 221434723.381] [± 50953994.605] [± 884803516.367]

Sec-(GA+TS) 1189239424.349 2197268532.324 4320061767.548 8800435684.376
[± 132687197.083] [± 167974536.172] [± 468802204.277] [± 800470337.071]



110 5 Security-Aware Independent Batch Scheduling in Computational Grids

Table 5.8 Average values of failure rate Failr parameter for single-population, multi-level
and hybrid genetic schedulers [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

Sec-HGS-Sched 3.522% 4.011% 5.342% 5.328%
[± 1.04] [± 1.33] [± 0.98] [± 1.02]

Sec-IGA 4.167% 4.324% 5.944% 6.035%
[± 0.98] [± 1.26] [± 1.89] [± 2.23]

Sec-(GA+TS) 4.378% 5.016% 6.223% 6.927%
[± 0.92] [± 1.05] [± 1.35] [± 1.56]

Dynamic Instances

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

Sec-HGS-Sched 3.116% 3.994% 4.250% 4.845
[± 0.80] [± 0.93] [± 0.99] [± 1.14]

Sec-IGA 4.030% 4.951% 5.016% 5.136%
[± 0.90] [± 0.81] [± 1.05] [± 1.36]

Sec-(GA+TS) 4.93% 6.93% 6.327% 6.001%
[± 1.18] [± 0.99] [± 0.94] [± 2.10]



5.6 Conclusions 111

Table 5.9 The number of genetic epochs necessary for the generation of the best solutions
found by single-population, hybrid and multi-level schedulers

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1722 (67.26%) 2733 (53.37%) 7992 (78.04%) 17739 (86.61%)

Sec-HGS-Sched 1645 (64.25%) 2118 (41.24%) 6995 (63.60%) 15355 (74.97%)

Sec-IGA 1788 (69.84%) 2475 (48.33%) 7044(68.78%) 16227 (79.22%)

Sec-(GA+TS) 1702 (66.48%) 2688 (52.50%) 7110 (69.42%) 15998 (78.11%)

Dynamic Instances

GA-SS-ANN 1522 (60.60%) 3021 (59.23%) 8010 (78.52%) 17830 (87.06%)

Sec-HGS-Sched 1505 (59,93%) 2935 (57.54%) 7877 (77.22%) 16285 (79.51%)

Sec-IGA 1612 (64.19%) 2924 (57.33%) 8054 (78.96%) 17922 (87.45%)

Sec-(GA+TS) 1578 (62.84%) 2989 (58.60%) 8035 (78.77%) 17911 (87.39%)

5.6 Conclusions

This chapter addressed the problem of the integration of the security mechanisms
as additional criterion in the grid scheduling. Artificial Neural Network (ANN) was
successfully implemented as the support mechanism for risk resilient genetic-based
schedulers. The high effectiveness of this support was demonstrated by a compari-
son of the results of the performance of various GA-based schedulers in risky and
secure scheduling scenarios. The proposed neural networks model seems to be a
good solution for automatic monitoring of the grid system performance, but also
a candidate technology for supporting the decision processes of the grid users and
managers. In fact, all grid users working at different levels of the system, may spec-
ify their own strategies and preferences related to the security aspects in the schedul-
ing process. In online scheduling, the users decisions are usually supported by the
fuzzy-based online learning methodologies [110]. In batch scheduling the users’
strategies and actions may be modelled by using the game-theory, as it is presented
in the next chapter.



Chapter 6
Game-Theoretical Models of the Grid User
Decisions in Security-Assured Scheduling: Basic
Principles and Heuristic-Based Solutions

Abstract. This chapter presents two non-cooperative game approaches, namely the
symmetric non-zero sum game and asymmetric Stackelberg game, for modelling the
grid users’ behavior. These models allow to illustrate new scenarios in scheduling
and resource allocation problems, such as asymmetric users’ relations, security and
reliability restrictions in computational grids (CGs). Four GA-based hybrid sched-
ulers are implemented for the approximation of the equilibrium states of both games.
The proposed hybrid resolution methods are empirically evaluated through the grid
simulator under the heterogeneity, security, large-scale and dynamics conditions.

6.1 Introduction

The security scheduling conditions defined in the previous chapter, may not be spec-
ified just by the analysis of the type of the applications submitted to grid, some local
access policies to the grid resources, or the behavior and system security attributes
defined in Sec. 5.3. Different types of the grid users may address their own indi-
vidual requirements for the secure assignments of their tasks to the most trustful
resources. In such a case the scheduling problem may be formulated as the decision
problem of the grid users working at the different levels of the grid system.

In CGs the system management techniques must be able to group, predict, and
classify different sets of rules, configuration directives, and environmental condi-
tions. This management model must effectively deal with uncertainties in system
information, that may be incomplete, imprecise, fragmentary, or overloading to con-
trol specific constituents and objects within intricate configurations. Decision sce-
narios ought to be outlined assuming partial visibility of environmental conditions,
user heterogeneity, and resource dynamism in order to determine and select ade-
quate evaluation criteria and assignment scores to render a final integrated decision
result.

In many decision-making problems, most of the information is provided by hu-
mans, which is inherently non-numeric. Partial evaluations, preferences, weights
are expressed linguistically. The evident role of fuzzy sets in decision-making and
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associated important processes such as consensus building, is well documented in
the literature [118], [119], [69]. However, in large-scale grid systems all the users’
information must be analyzed and interpreted in a short time, and special users’
preferences must be taken into account. The fuzzy rules may be then wrongly in-
terpreted by the system management components, or filtered in order to design the
optimal strategies for minimizing the scheduling costs.

Game-theoretical models may be considered as alternative solutions for large-
scale decision problems in highly parametrized heterogeneous environments. All
scheduling criteria can be aggregated and defined as cumulative users’ cost or pay-
off functions, which makes the game models very useful in the analysis of the var-
ious users’ strategies in the resource allocation process. Game-based models com-
bined with the economic theory can capture many realistic scenarios in computa-
tional markets, computational auctions, grid and P2P systems as well as security
and information markets. An important challenge in using game-theoretic models
for grid scheduling and resource management is the large size scale of the grid
system and the fact that resources cross different administrative domains. The grid
game players should behave rationally, pursue well-defined objective functions (cost
or pay-off functions), and react fast to the other players’ actions and decisions.

This work is based on the results presented in [85], where the preliminary ver-
sions of the symmetric and asymmetric non-cooperative grid users games were de-
fined for the purpose of illustrating the users strategies in the security-aware schedul-
ing. This chapter summarizes those results and presents the formal models of gen-
eral symmetric and asymmetric Stackelbelg games. These models are based on the
premise about the users’ behavior in a realistic large-scale grid, where users, usually
independently of each to another, submit their tasks/applications to the grid system.
Additionally, in the Stackelberg game, one player (user) is acting as a Leader with
a privileged access to resources. This Leader assigns his tasks first, and the rest of
the users (Followers) react rationally to the Leader’s actions. The Followers do not
cooperate with each other, but their decisions depend on the Leader’s action. This
model illustrates very well the real-life situation, where the roles of the users are in
fact asymmetric with regard to their access rights and usage of resources. It must
also be noted that in many economical models the sellers and buyers stand in asym-
metric positions as well. Having a control over large resource pools and maintaining
the large fraction of the task batch for scheduling can be the reasons of having some
privileges in the resource access, or in the setting of the reasonable resource utiliza-
tion pricing policies.

The users cost functions in the game are interpreted as the cummulative cost of
the secure execution of their tasks and the costs of the utilization of resources. The
cumulative cost function specified for the whole game is optimized at global and
local (users’) levels, through four genetic-based hybrid meta-heuristics, which com-
bine Genetic Algorithm (GAs) and modified Minimum Completion Time (MCT)
method.

Two scheduling scenarios are considered in in this work, namely risky and secure
mode. In the former, security conditions are ignored by the users by allocating their
tasks to all available machines, independently of the trusted levels. In the later, users
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allocate tasks to available machines assuring task security demands. It should be
noted that in task scheduling the definition of the security demand can be two-fold:
(a) tasks can have security demands on resources to be allocated at and (b) resources
can have security demands on tasks to be assigned to them. This work is focused on
the condition (a) of security requirements.

The proposed models were evaluated under the heterogeneity, the large scale and
dynamics conditions using the Sim-G-Batch simulator. The relative performance of
four hybrid schedulers are measured by the makespan and flowtime metrics. How-
ever, the main aim of the empirical analysis is to compare the effectiveness of the
game models in the reduction of the scheduling costs in the secure scenario, and the
results achieved by the best single-population grid scheduler generated in Chapter 5
for the secure scheduling with the ANN support (see Sec. 5.5.3.1).

6.2 Users’ Behavior Models in Grid Scheduling

The classifications of the grid scheduling problems presented in Sec. 1.3.2 in Chap-
ter 1 do not span over the analysis of the relations and behavior of the grid users at
different systems levels (see Fig. 1.3). Three basic models of grid users’ relation in
grid scheduling processes can be defined as follows:

• Cooperativeness: In this case the users can form a coalition to plan in advance
their actions;

• Non-cooperativeness: In this scenario the users act independently of one an-
other;

• Semi-cooperativeness: In this model each user can select a partner for the coop-
eration.

The analysis of the above mentioned relations of the users is used for the specifica-
tion of the generic models of the following three types of grid user games, namely
non-cooperative, cooperative and semi-cooperative games:

• In non-cooperative game the players act independently of each other. This model
is based on the premise about the users’ behavior in realistic grids, where cooper-
ation is difficult in large-scale system, and grid users submit their tasks indepen-
dently. Also the resource owners act selfishly in order to maximize the resource
utilization and to execute the tasks from the local users.

• In cooperative game the players can form a coalition to plan their future actions.
This model is useful for the intra-site grid negotiations, where the local job dis-
patchers can define the joint “execution capabilities” parameters for the clusters
of the grid sites and declare them to the global scheduler.

• In semi-cooperative game each player can choose (randomly) another player for
cooperation. This game is usually proposed as a multi-round auction to incorpo-
rate the task rescheduling.

The solution of each of those games is an equilibrium state, in which each player
holds correct expectations concerning the other players’ behavior (see [75] for the
detailed analysis).
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The users can have different privileges to the resources, resulting in the examina-
tion of the following two scenarios:

• Symmetric scenario. In this case there are no special privileges in the resource
usage for the grid users.

• Asymmetric scenario. In this case there is a privileged user (Leader), who can
have full access to resources as opposed to the rest of users who can be granted
only limited access to resources. The Leader could also be the owner of a large
portion of the task pool, as it is reasonable to allocate first his tasks at best re-
sources in the system.

The game models presented in this chapter are based on the non-cooperative sce-
nario in symmetric and asymmetric modes.

6.3 Symmetric and Asymmetric Games of Independent Grid
Users

One of the main benefits of the game-based scheduling and resource management
in CGs is that it enables a scalability and personalization of the decision-making
processes of grid users and resource owners. Due to the sheer scale of grid systems,
the non-cooperative game is a potential model for integrating security and resource
reliability requirements in grid scheduling. This section presents two different gen-
eral scenarios of the non-cooperative grid users behaviors, namely symmetric and
asymmetric strategic game models.

6.3.1 Non-cooperative Symmetric Game

Let us denote by Play the number of grid users (players). The total number of tasks
n ∈ N in a given batch can be expressed as the sum of numbers of tasks submitted
by all users, i.e.

n =
Play

∑
a=1

ka, (6.1)

where ka is the number of tasks of the user a = 1, . . . ,Play.
Each player a controls his strategic variables defined as the following user’s strat-

egy vector :

Pla =

[

j
(k̂(a−1)+1)

, . . . , j
(k̂(a−1)+ka

)

]

(6.2)

where k̂(a−1) = k1 + . . .+ k(a−1)
The schedules can be then expressed by the following vectors of the users’ pa-

rameters:

S =

[

i11, . . . , i
1
k1
, . . . , ia

(k̂(a−1)+1)
, . . . , ia

(k̂(a−1)+ka)
, . . . . . . iPlay

kPlay

]

, (6.3)
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in the direct representation, and

Sch = [Pl1, . . . ,PlPlay], (6.4)

in permutation-based representation (see Chapter 2, Sec. 2.2.1 for details on the
schedules representations).

In symmetric non-cooperative users’ game the privileges to the resources are the
same for all users. Each user tries to choose an optimal strategy for the assignment
of his tasks to machines in order to minimize his cost of tasks scheduling and, as the
results, also the overall scheduling costs. An illustrative example of the symmetric
game can be a scheduling scenario in which each player submits an equal amount
of tasks, i.e. k = k1 = k2 =, . . . ,= kPlay. It means that in such a case the total number
of tasks in the batch can be calculated in the following way: n = Play · k.

Definition 6.1. The symmetric grid users’ non-cooperative game can be defined as
a tuple

GPlay = (Play;{Ja}a=1,...Play;{Qa}a=1,...,Play), where:

• Play is the number of grid users;
• {J1, . . . ,JPlay}; are the sets of users’ strategies;
• {Q1, . . . ,QPlay};Qa : J1× . . .×JPlay →R;∀a=1,...,Play is the set of users’ cost func-

tions.

The users’ strategy vectors Pla are the elements of the strategy spaces Jl = J((a−1)·k+1)
× . . .× J(a·k) specified for each user a,(a = 1, . . . ,Play). The cost of playing the
game calculated for a particular user a is defined as the cost of scheduling of his
tasks (or the user’s cost function) and is denoted by Qa. The players try to minimize
simultaneously their cost functions Qa in the game.

Definition 6.2. A multi-vector (̂Pl1, . . . , P̂lPlay) of strategies is called an equilib-
rium state (point) of the game if :

Qa

(

̂PL1, . . . , P̂LPlay

)

=

= minPl1∈J1 Qa

(

̂Pl1, . . . , P̂L(a−1),PLa, P̂l(a+1), . . . , P̂lPlay

) (6.5)

for all a = 1, . . . ,Play.

The formulas of Qa functions are specified for the permutation-based representation
of the schedules because of the simpler notation used in the Eq. (6.4). Those pro-
cedures can be easily transformed into the direct representation by substituting the
(

̂PL1, . . . , P̂LPlay

)

vector by the vector defined in Eq. (6.3). The equilibrium point

can be interpreted as a steady state of the a strategic game, in which each player
holds correct expectations concerning the other players behavior1. If the strategies

1 In the case of continuous players’ cost functions the equilibrium state of the game is called
the Nash equilibrium [39].
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chosen by all players are equilibrium points, no player is interested in changing his
strategy.

To be a solution of the grid users’, the game the equilibrium point should be
additionally Pareto-optimal [139, 117]. In this chapter we consider the non-zero
sum games2, for which the equilibrium points are the results of minimization of a
multi-cost game function Q defined as follows.

Let us denote by minQa,(a = 1, . . .Play), the minimal value of the function Qa

calculated for each user a, that is to say:

minQa = min
PLa∈Ja

{Qa(PL1, ...,PLPlay)}. (6.6)

The results of the global minimization of the following game multi-cost function
Q : J1 ×·· ·× JPlay → R:

Q(PL1, ....,PLPlay) =
Play

∑
a=1

1
Play

(

Qa(PL1, ...,PLPlay)−minQa
)

, (6.7)

is an equilibrium state of non-cooperative non-zero sum symmetric game of the grid
users, which satisfies the condition of the Pareto-optimality [117]3.

6.3.2 Asymmetric Scenario – Stackelberg Game

The symmetric games are quite simple for the implementation and well studied for
many high-performance computing approaches. However, the symmetric scenario
may not be a good model of the realistic users’ relations. Due to the cross-domain
access, authorization and resource management features of the grid system, the grid
users have different access policies to the resources and they stand in an asymmetric
position with regard to resource usage privileges. The asymmetric behavior of grid
users directly impacts the results of the scheduling process.

A Stackelberg game is the simplest model for illustrating the asymmetric scenario
of the behavior of non-cooperative grid users. In this game one privileged user acts
as a Leader, and the rest of players (users) are his Followers.

The Stackelberg games have been well-studied in the game theory literature (see,
e.g. [10]). Roughgarden [126] defined a Stackelberg game model for scheduling
tasks on a set of machines with load-dependent latencies in order to minimize the
total latency of the system.

The following examples illustrate some real-life grid scenarios, to which the
Stackelberg game model can be applied:

2 In this scenario the strategies of the players are not opposite, i.e. the sum or the values of
all players cost functions Qa is not 0.

3 In fact, the function Q is a special case of the weighed or weighed distance Lp metric
function with p = 1. The values of all Qa functions are non-negative, and the weight coor-
dinates are strictly positive, which means that the global solutions of the problem defined
in Eq. (6.7)are Pareto-optimal [142].
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• There is a privileged grid user (Leader), who can have the full access to resources
as opposed to the other users with limited access to resources.

• Some tasks can have critical deadlines (especially in online scheduling) and they
can be sent by the Leader to the meta-broker with a request to allocate them first.

• Considering a batch of tasks, the Leader can be the owner of a large portion of
the tasks in the batch; therefore it might be reasonable to allocate his tasks to the
best resources in the system.

• Some tasks could have security requirements. Therefore the Leader can send
such an information and all security parameters to the scheduler or directly to
the meta-broker requesting to allocate them in the most trustful resources (secure
machines).

• Tasks submitting to a grid system could be varied in their needs for computa-
tional resources. Some of them could be atomic tasks generated by compound
tasks while the others could be just monolithic applications. The high degree of
heterogeneity of tasks usually has a great impact on the grid system’s perfor-
mance. In such a scenario the Leader could create a small batch of the most time
consuming tasks as the backlog set of grid applications, in order to “balance” the
computational loads of machines during the scheduling. These tasks would be
sent to the meta-broker requesting to allocate them first.

Formally the two-level Stackelberg game of the grid users can be defined in the
following way:

• Leader’s Level: Leader’s action I - Leader chooses his initial strategy ˜Pl1 =
[˜j1, . . . ,˜jk1 ], where k1 denotes the number of tasks submitted by the Leader.

• Followers’ Level: Followers’ action - Followers minimize simultaneously their
cost functions relative to the Leader’s choice:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

PlFol
2 = argmin(Pl2∈J2) {Q2(˜Pl1,Pl2, . . . ,PlPlay)}

...
PlFol

Play = argmin(PlPlay)∈JPlay
{QPlay(˜Pl1, . . . ,PlPlay)}

(6.8)

where J1 is the set of the Leader’s strategies and Qa is the cost function of the
user a defined as in the symmetric case in Eq. (6.12). Let us denote by PlFol =
[

˜Pl1,PlFol
2 , . . . ,PlFol

Play

]

a Followers’ Vector, which is interpreted as the result of

the Followers’ action.
• Leader’s Level: Leader’s action II - Leader updates his strategy by minimizing

his cost function Q1 (see also Eq. (6.12)) taking into account the result of Fol-

lowers’ actions. The following vector PlG =
[

PlLead ,PlFol
2 , . . . ,PlFol

Play

]

, where:

PlLead = arg min
(Pl1∈J1)

Q1

(

Pl1,PlFol
2 , . . . ,PlFol

Play

)

(6.9)

is a solution of the whole game.
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It has to be noted that the Followers can play an “ordinary” non-cooperative sym-
metric game, but they must know the Leader’s action first. The game multi-cost
function Q in this case can be defined in the following way:

QStac =
1

Play
Q1 +QFol; (6.10)

where Q1 is the Leader’s cost function and

QFol :=
Play− 1

Play

Play

∑
a=2

Qa; (6.11)

is a Followers’ cost function. An optimal solution of the whole game is called Stack-
elberg Equilibrium.

6.3.2.1 Users’ Cost Functions in Security-Aware Scheduling

In conventional grid scheduling with the typical scheduling objective functions such
as makespan and flowtime, the users’ costs of scheduling their tasks are limited to
the costs of tasks execution. In utility grids, there are the resource utility functions
that must be specified for the calculation of the resource utilization cost [50]. In
security-assured scheduling some additional costs must be considered. The users
have to “pay” an additional “fee” for the secure allocation of their tasks in the ma-
chines. In this work all of those costs are integrated into cumulative-cost functions
Qa,a ∈ {1, . . . ,Play}, defined separately for each grid user as the weighed sum of
the following three components:

Qa(S) = Q(ex)
a (S)+Q(util)

a (S)+Q(sec)
a (S), (6.12)

where:

• Q(ex)
a indicates the user’s task execution cost ,

• Q(util)
a denotes the resource utilization cost , and

• Q(sec)
a is the cost of security-assured allocation of the user tasks .

In this work the ETC Matrix model (see Chapter 2) is used for the specification of
all cost functions for the users.

6.3.3 Task Execution Cost

The total cost of execution of the user’s tasks can be calculated as an average com-
pletion time of his tasks on machines, to which they are allocated4. In terms of the

4 The values of all components of the users game cost functions, i.e. Q(ex)
a , Q(util)

a and Q(sec)
a

functions, are scaled to get the all values in the same range.
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completion times of machines (see Chapter 2, Eq. (2.13)) the function Q(ex)
a can be

defined using the following formula:

Q(ex)
a =

∑ka
j=ka−1+1 completion[ j][i]

completionm · ka
, (6.13)

where completions[ j][i] denotes the completion time of a task j on a given machine
machine i and and it is calculated in the following way:

completions[ j][i] = ETC[ j][i]+ ready[i]. (6.14)

In Eq. (6.13), the completionm indicates the maximal completion time of all tasks
submitted by the user a, that is to say:

completionm = max
j=ka−1+1,...,ka

completion[ j][i]. (6.15)

6.3.4 Resource Utilization Cost

The grid user’s utility function is usually defined as a cost of buying free CPU
cycles [50]. In this work the utilization cost paid by the user a is calculated as a
“portion” of the average idle time of machines on which his tasks are executed. This

cost depends on the completion times of the user’s tasks. The utility function Q(util)
a

is defined as follows:

Q(util)
a = ∑

i∈machines(a)

(

1− Completion(a)[i]

Cmax

)

· Idle Factor[i] (6.16)

where machines(a) denotes the set of machines, to which all tasks of the user a are
assigned and Cmax refers to the makespan. The completion time of a given machine
i ∈ machines(a), denoted by Completion(a)[i], is calculated in the following way:

Completion(a)[i] = ready[i]+ ∑
j∈N:

S[ j]=i

ETC[ j][i] (6.17)

where S[ j] is the value of j-th coordinate in a given schedule vector S (or Sch –
both implementations of the schedules may be used in Eq. (6.17). The following
expression:

(

1− Completion(a)[i]

Cmax

)

· Idle Factor[i], (6.18)

in Eq. (6.16) is interpreted as an idle time of machine i calculated for a given user
a. This is just a “portion” of the total idle time of machine i, and it is proportional
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to the time of execution of all tasks of the user a assigned to this machine. This
proportion is specified by the coefficient Idle Factor[i] in the following way:

Idle Factor[i] =
∑ j∈Tasks(a)[i]

ETC[ j][i]

Completion(a)[i]
(6.19)

where Tasks(a)[i] is the set of the tasks of the user a assigned to the machine i.
It follows from Eq. (6.16) that the utilization cost is minimal in the case of allo-

cation of the user tasks to machines with the maximal completion times.

6.3.5 Security-Assurance Cost

The security-assurance cost of scheduling the tasks of the user a, denoted by Q(sec)
a

in Eq. (6.12, depends on the scheduling strategy and the result of the verification
of security condition by the trust manager. The manager must analyze the security
demand SD and trust level T L vectors for tasks and machines and the Machine
Failure Probability matrix Prf =

[

Prf [ j][i]
]

n×m must be specified in the similar
way as in Eq. (5.2), that is to say:

Prf [ j][i] =

{

0 , sd j ≤ tli
1− e−α(sd j−tli) , sd j > tli

(6.20)

where α is the failure coefficient and sd j and tli are the security demand and trust
level parameters for task j and machine i.

Similarly to Sec. 5.3.1 in Chapter 5, two different scheduling strategies can be
considered, namely Risky and Secure modes, in order to illustrate the various users’
and grid managers’ decisions. The formulas for calculating the security cost for the
users are based on the formulas for the completion times of machines and flowtime
in Eq. (5.3)– (5.6).

In the Risky mode all risky and failing conditions are ignored by the users. In
this case the “security” components of the functions Qa are in fact not calculated, i.e.

Q(sec)
a = 0, ∀a = 1, . . . ,Play. However, some machines may fail during the tasks ex-

ecution because of too restrictive security requirements and rescheduling procedure
of those tasks must be activated. Therefore the security cost in this case is calculated
as follows:

Q(sec)
l [ris] = ∑

j∈Res(a)

Pf [ j][i] ·ETC[ j][i]
(ETC)m(a) · �(Res(a))

, (6.21)

where Res(a) is the set of the tasks of the user a which must be rescheduled, and
(ETC)m(a) is the (expected) maximal computation time of the tasks of the user a in
a considered schedule, i.e.:

(ETC)m(a) = max
j∈Task(a)

i∈machines(a)

ETC[ j][i]. (6.22)
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In Eq. (6.22), Task(a) denotes the set of the tasks of the user a and machines(a) is
the set of the machines to which the user tasks are mapped in a considered schedule.

In Secure mode the users must pay the cost of the verification of the security
condition for his tasks (see Sec. 5.3). The cost of possible failures of machines
during the tasks executions are calculated as the products of the failure probabilities
and the expected times of computation of the tasks on the inaccessible machines.

The secure cost function Q(sec)
a in this case is defined as follows:

Q(sec)
a [secure] =

ka

∑
j=ka−1+1

Pf [ j][i] ·ETC[ j][i]

(ETC)m(a) · ka
, (6.23)

The security-assurance cost expressed as Q(sec)
a [secure] for each grid user is mini-

mized. It means that each user tries to allocate his tasks in the most trustful resources
and the values of task failure probabilities Pf [ j][i] should be minimal.

6.4 Solving the Grid Users Games

The problem of solving the finite strategic game remains challenging especially
in real-life approaches. In order to compute the values of the game cost functions
Q defined in Eqs. (6.7) and (6.10), the cost functions of all players must be first
minimized. Therefore the problem of the minimization of Q function can be defined
as a hierarchical procedure presented in Fig. 6.1. This procedure is composed of
two cooperating modules: Global Module, in which the values of the function Q
are calculated and optimized, and the Players’ Module - which solves the local
level problems of the minimization of the users’ cost functions Qa.

The communication procedure between Global and Players’ Modules can be de-
fined as follows: Let us denote by S(0) an initial schedule generated in the Global

Module, i.e. S(0) = [Pl(0)1 , . . . ,Pl(0)Play], where Pl(0)a is the initial strategy vector of the

Fig. 6.1 Hierarchical procedure of solving non-cooperative symmetric game of grid users
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user a (see Eq. (6.2)). Vector S(0) is replicated and its copies are sent to the Players’
Module - one copy per user. Then, each user independently optimizes his game cost
function5 by changing the allocations of just his own tasks. As the result of this
minimization, the optimal values of the Qa cost functions are calculated:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minQa
(0) = min(Pl1∈J1) Q1

(

Pl1,Pl(0)2 , . . . ,Pl(0)Play

)

...

minQPlay
(0) = min(PlPlay∈JPlay)

QPlay

(

Pl(0)1 , . . . ,Pl(0)Play−1,PlPlay

)

(6.24)

These values are sent back to the Global Module, where the objective function for
the whole game Q is calculated for the schedule S(0).

In the case of Stackelberg game the Global Module plays the role of the Leader’s
component and the Player’s Module – the Follower’s procedure, as it is presented
in Fig. 6.2.

Fig. 6.2 Hierarchical procedure of solving Stackelberg game

However, in this case the schedule vector S(0)L before its replication and sending
to the Followers, is partially ‘fulfilled’ by the Leader. The Leader makes his prelim-
inary assignments and send the incomplete schedule vectors to the Followers.

6.4.1 Genetic Hybrid Metaheuristic Solvers

Similar to the empirical analysis presented in the previous chapters, and due to mul-
tiple constraints and different preferences of the grid users, genetic-based heuris-
tic approaches seem to be the best candidate methodologies for solving the users’

5 Note that the users costs optimization in the Players’ Module can be implemented as a
parallel multi-threaded procedure, which can speed-up the whole process.
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games. However, in this case the main framework of the scheduler must be extended
by the hybridization of genetic algorithm (GA) working in the Global/Leader’s
Module with some other heuristic method implemented in the Players’/Followers’
Module.

Four hybrid GA-based schedulers have been defined for solving the symmetric
and asymmetric grid users’ games. The combinations of the heuristic components
of these hybrids are presented in Table 6.1.

Table 6.1 Hybrid meta-heuristics for risky and secure-assured scheduling

Meta-heuristic Global/Leader’s Players’/Followers’
Module Module

RGA-GA RGA PGA

RGA-PMCT RGA PMCT

SGA-GA SGA PGA

SGA-PMCT SGA PMCT

The GA-based meta-heuristics may work as global and local optimizers in the
Global/Leader and Players’/Followers’ Modules. Each hybrid algorithm is de-
fined as a combination of two methods, namely Risky Genetic Algorithm (RGA)
and Secure Genetic Algorithm (SGA)– in the Global Module; and two local level
optimizers, namely Player’s Genetic Algorithm (PGA) and Player’s Minimum Com-
pletion Time (PMCT)– in the Players’ Module. It can be observed that, in fact, it is
not necessary to replicate the whole population form the Global or Leader’s Module
to the Players’/Followers’ Module. For each player independently, just the changes
in machine completion times must be updated. Therefore the general procedure of
Players’/Followers algorithm may be defined as follows:

Algorithm 3. The optimization procedure in Player’s/Followers’ Module
1: Send the ready times vectors to the individual players;
2: Individual players compute the MinQa values;
3: Receive the MinQa values from the individual players;
4: Send the MinQa values to Global Module;

Schedulers Implemented in Global and Leader’s Module

The generic template of the main GA-based engine of the hybrid scheduler designed
for solving the symmetric games is presented in Alg. 4. This template is similar to
the Alg. 1 defined in Chapter 3 for HGS-Sched (see. Sec. 3.3).
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Algorithm 4. Genetic Algorithm template
1: Generate the initial population P0 of size μ;
2: Send the ready times vectors of the machines corresponding to the individuals of the population P0 to the Player’s

Module;
3: Receive the minQa values from the subordinate unit
4: Evaluate P0;
5: while not termination-condition do
6: Select the parental pool T t of size λ ; Tt := Select(Pt);
7: Perform crossover procedure on pars of individuals in T t with probability pc; Pt

c :=Cross(Tt );
8: Perform mutation procedure on individuals in Pt

c with probability pm; Pt
m := Mutate(Pt

c);
9: Send the ready times vectors of the machines corresponding to the individuals of the population Pt

m to the
Player’s Module;

10: Receive the minQa values from the Players’ Module
11: Evaluate Pt

m ;
12: Create a new population Pt+1 of size μ from individuals in Pt and/or Pt

m ;
13: t := t +1;
14: end while
15: return Best found individual as solution;

The main difference between RGA and SGA algorithms is the method of the eval-
uation of the population by using the users’ cost functions Qa, which is different in
the Risky (RGA) and Secure (SGA) modes. The formulas of calculating the ‘secu-
rity’ costs in both scenarios are defined in Sec. 6.3.5.

In the case of Stackelberg game the initialization procedure in the main GA al-
gorithm is a bit different than in the symmetric scenario. The general template of
the main genetic engine at the Leader’s (Global) Module in this game is defined in
Alg. 5.

Algorithm 5. A GA-based scheduler at the Leader’s level

1: Generate P0 containing μ “incomplete” schedules; t = 0;
2: Send P0 to the Followers to complete the respective parts of all schedules in P0; P0(F)

is created;
3: Update the population P0 according to the Followers’ solutions;P0 := P0(F);
4: Evaluate P0;
5: while not termination-condition do
6: Select the parental pool T t of size λ ; T t := Select(Pt);
7: Perform crossover procedures separately on Leader’s and Followers’variables on pairs

of individuals in T t(F) with probability pc; Pt
c :=Cross(T t);

8: Perform mutation procedures separately to Leader’s and Followers’ variables on indi-
viduals in Pt

c with probability pm; Pt
m := Mutate(Pt

c);
9: Evaluate Pt

m ;
10: Create a new population Pt+1 of size μ from individuals in Pt and Pt

m ; Pt+1 :=
Replace(Pt ;Pt

m)
11: t := t +1;
12: end while
13: return Best found individual as solution;

The process of initialization of the population in the main GA algorithm is de-
fined as a two-step procedure. In the first step, the P0 set is generated as a candidate
initial population. It consists of the incomplete schedules generated by the Leader
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by using one of the initialization methods for GA-based schedulers (see Chapter 3,
Sec. 3.3). Each schedule from this set contains just the values of the Leader’s deci-
sion variables. All those “incomplete” chromosomes are sent to the Followers’ Mod-
ule. The Followers complete each schedule by using one of the ad-hoc heuristics.
The updated population P0 is then evaluated under the game cost function QStac de-
fined in Eq. (6.10. The crossover and mutation operations are performed separately
on Leader’s and Followers’ decision variables. Therefore in each generation the Fol-
lowers can update their own decisions (including the initial choices) according to all
changes in availability of resources introduced by the Leader.

Local Schedulers in Players’ and Followers’ Modules

Two modifications of well-known grid schedulers are implemented in the Players’
and Followers’ Modules.

The first scheduler, called Player’s Genetic Algorithm, is a simple extension of
the classical GA-based scheduler defined in Alg. 1 applied independently for each
user with the cost function Qa as the fitness measure. The genetic operations are ex-
ecuted on sub-schedules of the length ka labeled just by the tasks submitted by user
a. In the implementation presented in this work the GA procedures in the Players’
or Followers Modules are executed sequentially for the “queue” of users, however
each algorithm may be implemented as a separate process on parallel multiproces-
sor machine the number of processors must be in this case the same as the number
of players or followers)

The second method, called Player’s Minimum Completion Time - (PMCT), is
the modification of Minimum Completion Time - MCT. In this method, a task is
assigned to the machine yielding the earliest completion time (defined as the sum
of ready time for the machine and time of computing all tasks assigned there). The
process is repeated until there remain tasks to be assigned. The template of the main
mechanism of PMCT procedure is defined in Alg. 6.

Algorithm 6. PMCT algorithm template
1: Receive the population of schedules and ready times of the machines from the Global

Module;
2: for all Schedule in the population do
3: Calculate the completion times of the machines in a given schedule;
4: for all Individual user/Follower do
5: for all User’s Task/Follower’s Task do
6: Find the machine that gives minimum completion time;
7: Assign task to its best machine;
8: Update the machine completion time;
9: end for

10: Calculate the minQa value for a given schedule;
11: end for
12: Send the minQa values to the Global Module;
13: end for
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6.5 Empirical Analysis

The main aim of the empirical evaluation of the genetic hybrid schedulers defined
in the previous section is to compare the effectiveness of the game-based models
in the optimization of the main scheduling objective functions, namely Makespan
and Mean Flowtime defined in Sec. 5.5.2, with the results achieved by the best
single population GA−CX −R−ANN scheduler supported by the neural network
mechanism in the similar analysis in Chapter 5.

Four hybrid meta-heuristics defined in Table 6.1 have been used for solving the
symmetric and asymmetric games. These methods were integrated with the Sim-G-
Batch simulator. The experiments have been conducted on two benchmarks com-
posed by a set of static and dynamic instances. Similarly to the empirical analysis
provided in Chapters 4 and 5, four grid size scenarios are considered, namely Small,
Medium, Large and Very Large grids.

The key parameters of the simulator in all experiments are the same as in Ta-
ble 5.1 The parameters of HGS-Sched for generating the GA algorithms in Global,
Leader’s, Players’ and Followers’ Modules are defined in Table 6.2.

Table 6.2 GA settings in the Global/Leader’s and Players’/Followers’ Modules for large
static and dynamic benchmarks

Parameter Global/Leader’s Module Players’/Followers’ Module

period o f metaepoch (5∗ (n))/10 (
0.5∗ (n)�)/10

nb o f metaepochs 10

population size (pop size) 60 20

intermediate pop. 48 14

selection method LinearRanking

crossover method CX

cross probab. 0.8 0.8

mutation method Rebalancing

mutation probab. 0.2

initialization LJFR-SJFR + Random

max time to spend 500 secs (static) / 800 secs (dynamic)

There are 16 players in symmetric game and 15 Followers in the Stackelberg
game, and the number of the Leader’s tasks is a half of the whole task batch. The
coefficients of SD and TL vectors, and the machines reliability probabilities Pi are
defined as the uniformly generated fractions in the ranges [0.6;0.9], [0.3;1] and
[0.85;1] respectively. The value of the failure coefficient λ is 3.

Each experiment was repeated 30 times under the same configuration of param-
eters and operators.
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The histograms of the average values of Makespan and Mean Flowtime achieved
by four hybrid meta-heuristics designed for solving the users games are presented
in Fig. 6.3 and 6.3.

Fig. 6.3 Experimental results for non-cooperative symmetric game: in static case - (a) aver-
age Makespan, (b) average Mean Flowtime ; in dynamic case - (c) average Makespan, (d)
average Mean Flowtime.
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Fig. 6.4 Experimental results for Stackelberg game: in static case - (a) average Makespan,
(b) average Mean Flowtime ; in dynamic case - (c) average Makespan, (d) average
Mean Flowtime.
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In the symmetric game the best results for Makespan and Mean Flowtime in all
considered grid scenarios were achieved by SGA-GA scheduler. Especially in static
‘Small’ grid this method is very effective in Makespan reduction. The differences
in the Mean Flowtime results achieved by all hybrid meta-heuristics are not so sig-
nificant, while in the case of Makespan both SGA hybrids significantly outperform
risky hybrids in all grid scenarios.

In the case of Stackelbeg game two PMCT hybrids outperform the RGA-GA and
SGA-GA algorithms. For Makespan values the differences in the results achieved
by PMCT and GA hybrids are significant, while in the case of Mean Flowtime all
values are at the same level, except those obtained for ‘Very Large’ grid size. The
best results in all instances are achieved by SGA-PMCT algorithm. However, in the
case of static scheduling the efficiencies of RGA-PMCT and SGA-PMCT are very
similar, while in the dynamic case, especially for Makespan values, the differences
in both schedulers performances are significant.

The results achieved by two most efficient meta-heuristics in optimizing the
users’ game costs, namely SGA−GA in the symmetric game and SGA− PMCT
in Stackelberg game, have been compared with the results generated by the best
single-population security-aware scheduler from the previous chapter, namely GA−
SS−ANN algorithm. Tables 6.3, 6.4 and 6.5 present the comparison of the average
values of Maespan, Mean Flowtime and failure rate Failr parameter (see Sec. 5.5.2
in Chapter 5).

It can be observed that both hybrid strategies outperform the GA− SS−ANN
algorithm in all but 3 cases. It confirms that game-based models are better adapted
for the management of all security requirements in the grid system when compared
to standard scheduling models, even if the res

Although the security requirements would imply some additional cost to the users
of the grid system, it is worth assuming this cost in order to allocate tasks to trustful
resources.

6.5.1 Computational Economy and Game-Based Models

The experimental analysis presented in the previous section show that hybrid GA-
based schedulers can be effective in solving the users games, however the main
drawback of using such methods is their high computation complexity. The game
scenarios presented in Sec. 6.3 are very general, which makes them useful in sup-
porting the users decision process in various situations. In some real-life approaches
the game scenarios are usually based on the well-known economical models.

Market-based approaches in grid computing enable grid resource owners, act-
ing as sellers, to earn revenue by allowing others (mainly grid End-users, acting
as buyers) to use their (idle) computational resources. The pricing of resources is
driven by supply and demand. These models can be easily translated into the game-
theoretical frameworks and are useful in grid resource management, as well as in
defining users’ decision strategies.
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Table 6.3 Average values of Makespan for GA−SS−ANN, SGA−GA and SGA−PMCT
algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 4208842.037 4216980.163 4309539.605 4399950.825
[± 210505.265] [± 249225.887] [± 263233.057] [± 290453.201]

SGA-GA 4104953.259 4156536.877 4264926.597 4353604.208
[± 379579.997] [± 319105.946] [± 548415.652] [± 595472.951]

SGA-PMCT 4185298.477 4162755.537 4260258.291 4365824.522
[± 574689.195] [± 444243.979] [± 676018.949] [± 487088.573]

Dynamic Instances

GA-SS-ANN 4141538.885 4212439.475 4232327.490 4364692.950
[± 247988.145] [± 342459.080] [± 333199.727] [± 339043.674]

SGA-GA 4064399.586 4159942.678 4181202.361 4330472.697
[± 295082.511] [± 573609.898] [± 503195.319] [± 485326.735]

SGA-PMCT 4104009.894 4194715.259 4229959.495 4329168.378
[± 230614.767] [± 525510.365] [± 410287.752] [± 454255.168]

The following paragraphs present a general characteristics of the most popular
economically- and game-based approaches for modelling users’ relations and deci-
sions in scheduling process.

Commodity Market Model

This model is based on the Meta-broker architecture (described in Sec. 1.2.2). It
is assumed here that the service providers primarily charge the end user for the
resources they consume and the pricing policies are based on the demand from the
users and the supply of resources. The resource owners and service providers are
selfish in this approach and the end-users may or may not cooperate [26].
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Table 6.4 Average values of Mean Flowtime for GA− SS−ANN, SGA−GA and SGA−
PMCT algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 1098725220.445 2261958805.835 4395864089.470 8705728350.062
[± 148984029.042] [± 296213971.853] [± 403819795.484] [± 779128466.164]

SGA-GA 1080025209.170 2212272645.989 7649954581.921 8790927826,710
[± 106385883.899] [± 225632106.035] [± 564374456.205] [± 820203622.476]

SGA-PMCT 1039256248.489 2177583973.023 4251057955.321 8752787592.196
[± 132828810.736] [± 279653260.144] [± 390873259.314] [±849851282.277 ]

Dynamic Instances

GA-SS-ANN 1163342728.245 2161846250.347 4322245472.632 8734534678.245
[± 136548966.434] [± 272493690.708] [± 533180226.552] [± 835468708.749]

SGA-GA 1124621170.786 2137984828.270 4254686510.766 8720343632.821
[± 247484952.990] [± 143846367.588] [± 407990354.145] [± 931632311.801 ]

SGA-PMCT 1155781873.098 2200754844.400 4293599602.333 8712482470.785
[± 109523418.319] [± 203859979.408] [± 350634474.868] [± 912872163.393]

Auctions

In this model there are two groups of participants: sellers (resource owners) and
buyers (grid end-users). The cooperation between users to form a coalition and win
the auction is possible, but usually the users behave selfishly. The auction mech-
anism can be defined in many ways (e.g. English, Dutch, First and Second Price
auctions). All of which differ in terms of whether they are performed as open or
closed auctions and the offer price for the highest bidder. The users’ strategies in
particular auctions are discussed e.g. in [52].

Bi-level Synchronized Auctions

The First Price bidding auction mechanism has been extended by Kwok et al. [92]
to define the resource management and global scheduling policy at the intra- and
inter-site levels in the 3-levels hierarchical grid structure. In the intra-site bidding
each machine owner in the site, who acts selfishly, declares the “execution capabil-
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Table 6.5 Average values of failure rate Failr parameter for GA−SS−ANN, SGA−GA and
SGA−PMCT algorithms [±s.d.], (s.d. = standard deviation)

Strategy Small Medium Large Very Large

Static Instances

GA-SS-ANN 3.993% 4.089% 8.436% 8.736%
[± 0.98] [± 1.56] [± 1.67] [± 2.09]

SGA-GA 3.877% 4.356% 7.543% 9.015%
[± 0.98] [± 1.26] [± 1.89] [± 2.23]

SGA-PMCT 3.738% 4.005% 7.456% 9.832%
[± 0.92] [± 1.05] [± 1.35] [± 1.56]

Dynamic Instances

GA-SS-ANN 4.880% 6.097% 7.456% 7.026%
[± 0.98] [± 1.62] [± 1.32] [± 2.11]

SGA-GA 4.423% 5.533% 6.944% 7.046%
[± 0.73] [± 0.69] [± 0.98] [± 1.44]

SGA-PMCT 3.875% 4.542% 5.953% 7.211%
[± 0.88] [± 1.03] [± 1.21] [± 1.95]

ity” of the resource. The local manager monitors these amounts and sends a single
value to the global scheduler. In the inter-site bidding the global scheduler should al-
locate tasks according to the values sent by the local dispatchers. The authors prove
that the cooperation of the players at both levels are the optimal strategies for both
level-auctions. However, for the successful execution of all strategies some syn-
chronization mechanism must be introduced, which can make the system in whole
inefficient in a large-scale dynamic environment.

Bargaining Models

In this model the resource brokers bargain with resource providers for lower ac-
cess price and longer usage duration. The negotiation process is guided by the end-
users requirements (e.g., deadline) and can be provided directly between buyers
(End-users) and sellers (resource owners). The most recent study on the bargain-
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ing cooperative model application in optimizing the energy consumption in grid is
proposed in [141].

6.6 Conclusions

This chapter showed the game-theoretic models as the effective methodologies for
supporting the grid users’ decisions, where the different scheduling criteria, includ-
ing security and resource reliability, must be considered at the same time. The users’
behavior can be effectively translated into the computational model linked to the
grid scheduling. Due to large scale of the grid, the non-cooperative games seems to
be a potential model for integrating various requirements in grid scheduling.

The users decisions in the scheduling process are modelled by using the two gen-
eral non-cooperative game scenarios, namely symmetric non-zero sum game and
Stackelberg game. The hierarchical procedure of solving those games is complex
because of the need of integration and synchronization of two cooperating mod-
ules. However, the experimental analysis shows the high efficiency using the meta-
heuristics as the resolution methods for game-based models, especially in the case
of additional security casts paid by the users. The game-based model concepts can
be successfully implemented also in cloud computing, where the secure scheduling
and information management remain challenging research problems.
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Chapter 7
Evolutionary Inspired Solutions for Energy
Management in Green Computing:
State-of-the-Arts

Abstract. The quest for more powerful computational resources has enabled sig-
nificant scientific discoveries and also has immensely improved people’s daily life.
However, such advancement has significantly strained the electrical energy
resources, distribution, and protection systems. Therefore, in the past several years,
engineers, researchers, and vendors have teamed up to design, develop, and test de-
vices, procedures, methodologies, and algorithms that constrict the use of electrical
energy in computing devices. This chapter surveys the field from the perspective of
evolutionary inspired solutions for energy management in “green” computing. This
survey bridges two distinct research fields: (a) evolutionary computing and (b) green
computing. The presented models are classified according to a general taxonomy of
energy and resource management methods in large-scale heterogeneous computing
systems.

7.1 Taxonomy of Energy Management in Modern Distributed
Computing Systems

A significant volume of research has been done in the domain of energy aware
resource management in today’s large-scale computing system. Following a taxon-
omy for cloud computing proposed in [51] the management methods in modern
distributed computing systems can be classified into two main categories: Static En-
ergy Management (SEM) and Dynamic Energy Management (DEM), as it is shown
in Fig. 7.1.

SEM class contains all technologies that are applied for the system components,
architecture and software optimization. At the hardware level the system devices
can be replaced by the low-power battery machines or nano-processors and the sys-
tem workload can be effectively distributed. It allows to optimize the energy utilized
in the system, storage and data transfer by reducing the number of idle devices and
idle periods of active processors. It is important to carefully consider the imple-
mentation of software that is executed in the system in order to achieve a high and
fast reduction in the energy usage. Even with perfectly designed hardware, poor

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 139–153.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 Taxonomy of Energy Management in Large-scale Distributed Computing Systems
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software design can lead to significant power and energy losses. Therefore the pro-
cess of compilation or code generation and the order of instructions in application
source code may have an impact on energy utilization.

DEM techniques include the strategies for dynamic adaptation of the system per-
formance to the current states of the resources and system’s services. DEM methods
enable a dynamic adjustment of power states according to current system’s perfor-
mance. Similarly to the static methods, dynamic management methodologies can
be categorizes into hardware– and software–based techniques according to the ap-
plication levels criterion. Hardware tools can be classified as Dynamic Performance
Scaling (DPS), such as Dynamic Voltage and Frequency Scaling (DVFS), and par-
tial or complete dynamic deactivation of idle processors. The software techniques
class includes all optimization techniques related to dynamic workload distribution,
efficient data broadcasting, data aggregation and dynamic data (and memory) com-
pression.

A fast development of global communication technologies enables an unlimited
access of the computing systems’ users to all system resources. However, the re-
source management in such systems remains challenging, because of the different
local policies at the system and operational levels and high parametrization and dy-
namics of the whole structure. Evolutionary and genetic techniques, due to their
robustness and abilities of easy hybridization with other approaches, are promis-
ing candidate solutions for the resource management in today’s high performance
systems. However, the class of energy-aware genetic-based optimization methods is
not so large. Basically, conventional single-population genetic and evolutionary al-
gorithms are applied to the energy optimization. If energy consumed by the system
is a component of a multi-objective fitness function, the Multi-objective Genetic
Algorithm (MOGA) framework [46] is a key solution to tackle the complexity of
the optimization process. Ant Colony Optimization (ACO) [38] and Particle Swarm
Optimization (PSO) [71] algorithms are useful in creating optimal path and tree
structures in graph-based models of networks, multi-processor machines and par-
allel applications. Finally, just few approaches in Grid and Cloud scheduling show
that Island and Cellular Parallel GAs (CPGA) can generate the low-cost schedules
in various ‘energetic’ scenarios.

This chapter classifies the recent and most promising evolutionary inspired solu-
tions to the static and dynamic energy-aware resource management in modern large-
scale distributed computing systems according to the following four attributes:

• evolutionary search technique (algorithm’s type);
• representation of problem solution (chromosome encoding method and struc-

ture);
• objective function;
• application environment.
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7.2 Evo-Driven Static Energy Optimizers in Embedded
Systems

Static methods of energy conservation in distributed systems are mainly employed
at the hardware system’s level. Energy absorbing devices can be replaced by the
machines with low–power batteries and nano-processors. In such a case the meta-
heuristics are applied for the optimization of the system’s architecture, and opti-
mization of compilers and the generators of the source codes at the software level.

Table 7.1 present three basic genetic-based approaches to static energy manage-
ment in embedded systems.

Table 7.1 Genetic-based methods for static resource management in embedded systems

Project Algorithm Type Chromosome Objective System

Energy-aware
code genera-
tor [98]

single population
genetic algorithm

sequence of basic
operations with
their parameters

a consumed power
or energy of a pro-
gram

embedded
systems

Energy-aware
code opti-
mizer [9]

single population
multi-objective
genetic algorithm

sequence of basic
operations with
their parameters

cycles per instruc-
tion and energy
dissipation

embedded
systems

NSGA for re-
dundancy allo-
cation [103]

Non-dominated
Sorting
GA (NSGA)

vector of redun-
dancy levels for
the resources

system reliability
and energy con-
sumption

embedded
systems

Most of the embedded systems are composed of the Digital Signal Processors
(DSPs) that flexibly account for the modification of the system specification. How-
ever, many embedded applications are still prepared in assembly code, that usually
leads to incorrect codes. This kind of implementation is time-consuming and inef-
ficient in the utilization of the system energy. For such reasons, there is a need for
optimizing compilers and and application source codes to make them capable of
exploiting the irregular architecture features of DSPs.

Lorenz et al. define in [98] an energy aware code generator (GCG) based on sin-
gle population genetic algorithm. This code generator reduces the energy consump-
tion by the optimal selection and scheduling of the instructions in the source codes.
The genetic algorithm module works on specialized chromosomes, that encode a
set of basic blocks, which are created by using a simple decomposition procedure to
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the source program. Each such a block is represented by a node in Data Flow Graph
(DFG). Each gene of the chromosome represents an information about used regis-
ters, performed processor instruction, execution cycle (etc.), which are needed for
compilation simple software instructions like ‘a load’ or ‘an addition’. An objective
function is defined as an amount of power or energy consumed during a compila-
tion of a code. The authors used their method for ‘Single Instruction Multiple Data’
(SIMD) instructions. The obtained results show the 30% of the energy reduction
with 8% of reduction of the application code.

Similar GA-inspired approach to code optimization is proposed by Azzemi in [9].
The author considers the multimedia DSP processors and defines an architecture-
based parametric optimization of C source codes for an iterative compilation. Suc-
cessive source-level, code transformations are applied in order to evaluate an ap-
plication expression profile. The optimization criteria are defined as a bi-objective
fitness with cycles per instruction and energy dissipation as the components. This
function is optimized by a simple MOGA technique. The achieved energy reduction
is in the range of 17%.

Optimal utilization and reliability of resources associated to the data consolida-
tion are the key quality attributes in several types of today’s complex embedded
systems. The energy consumption may be reduced by replication of computational
and data nodes. This problem is referred to as redundancy allocation in embedded
systems . In [103] Meedeniya et al. try to solve the redundancy allocation problem
in the embedded systems by using the Markov Reward Model [70] for system repre-
sentation. The authors optimized a bi-objective function with system reliability and
energy consumption components by using the Non-dominated Sorting GA (NSGA)
. Each chromosome encodes a single redundancy allocation. Each allele in a chro-
mosome represents a redundancy level for a system component. The experimental
results show that the proposed method can significantly reduce the energy consump-
tion for a very small trade-off of reliability, which would definitely be an interesting
information for the system designer.

7.3 Evolutionary Inspired Dynamic Data and Resource
Management in Green Computing

Evolutionary-based solutions to dynamic energy management in large-scale dis-
tributed systems are primarily proposed as scalable and robust methodologies for
scheduling and data processing in networking, cluster and grid computing. This
section highlights the most recent research in energy aware grid and cloud schedul-
ing, where the voltage supply of the devices may be modulated in the system. The
genetic support in data broadcasting and aggregation in wireless sensor networks is
also discussed in this section.
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7.3.1 Dynamic Voltage and Frequency Scaling in Energy-Aware
Resource Allocation and Scheduling in Distributed
Computing Systems

Scheduling in conventional distributed systems has been mainly studied for system
performance parameters without data transmission requirements. With the emer-
gence of Data Grids (DGs) and data centers, data-aware scheduling has become a
major research issue. Today’s data centers arise quite naturally to support needs of
scientific communities to share, access, process, and manage large data collections.

Computing devices (CPUs) are the major energy “consumers” in a data center.
The energy of the system is utilized for the tasks execution, data storage at the data
hosts, data transmission, decoupling of data from processing and data replication.

Power and total energy consumption can be reduced by lowering the supply volt-
age of CPUs by using the Dynamic Voltage Scaling (DVS) or Dynamic Voltage and
Frequency Scaling (DVFS) methods [97]. It is assumed in these models that each
machine in the system (it can be a data or computing node) is equipped with a DVS
module. It allows to modulate the supply voltage and operating frequencies of the
resources. Instead of complete deactivation of the processors, the clock frequencies
along with adjustments of the supply voltage can be gradually reduced or increased
in cases when the resources are not fully utilized.

The energy consumption model in the data center is usually based on the power
consumption model in Complementary Metal-Oxide Semiconductor (CMOS) logic
circuits. The power consumption of a CMOS-based microprocessor is defined as a
sum of the capacitive, short-circuit and leakage powers. The most significant factor
is the capacitive power , which can be interpreted as the dynamic power consump-
tion Powd of a CPU at the data center and can be calculated in the following way:

Powd = A ·C · v2 · f , (7.1)

where A is the number of switches per clock cycle, C is an effective switched capac-
itance of the circuits, v is the supply voltage and f is the clock frequency. Assuming
that A and C are the constant parameters of CPUs (or machines), it can be observed
for Eq. 7.1 that power is proportional to v2. Energy consumption of the processor
can be expressed as processor power multiplied by execution time of the computing
application. Therefore, the decrease in voltage supply can reduce the energy per op-
eration in a quadratic manner. Unfortunately, it may also significantly increase the
completion time of the computation. The detailed energy model description in grid
and cloud data centers can be found in [73] and [51].

The DVFS technique is classified as an effective hardware dynamic energy opti-
mizer in resource allocation and scheduling problems in large-scale distributed sys-
tems. The energy-aware scheduling is usually considered as a multi-objective global
optimization problem with makespan and cumulative energy consumption as the
main criteria. In most of the DVFS approached the scheduling has been defined as
classical or dynamic load balancing problem. In such cases linear, dynamic and goal
programming are the major optimization techniques (see i.e. [94], [169], [74], [73],
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Table 7.2 Selected population-based meta-heuristic for energy aware scheduling with mod-
ular voltage supply

Project Algorithm Type Chromosome Objective Application
Area

Price Guided
GA [132, 133]

single population GA
with modified mutation
operation (shadow price
index for each task ma-
chine pair and classi-
cal move or swap oper-
ation)

vector of tasks
labels

total energy con-
sumption

cloud com-
puting

Energy Aware
GA Grid Sched-
uler [82]

combinatorial GA
(specified genetic op-
erations) with various
replacement techniques

schedule rep-
resentation for
independent
batch schedul-
ing in grids

makespan (priv-
ileged) and total
energy consump-
tion

grid com-
puting

Parallel Hy-
brid GA-based
Scheduler [72]

Parallel Multi-objective
GA (PMOGA) – Island
based model multistart–
hybridized with energy-
conscious scheduling
heuristics (ECS)

length: num-
ber of tasks,
each gene is
defined by task-
machine-voltage
triplet

makespan (priv-
ileged) and total
energy consump-
tion

computing
and em-
bedded
systems

Parallel Hy-
brid GA-based
Scheduler [105]

Parallel Multi-objective
GA (PMOGA)– is-
land based model and
multistart– hybridized
with energy-conscious
scheduling heuristics
(ECS)

length: num-
ber of tasks,
each gene is
defined by task-
machine-voltage
triplet

makespan and
total energy
consumption
(simultaneously)

cloud com-
puting

Multiobjective
Hybrid GA
Scheduler [106]

MOGA is hybridized
with simulated an-
nealing for scheduling
problem in chip multi-
processor (CMP)
system

schedule repre-
sentation

total execution
time of tasks
and the system
energy consump-
tion (optimized
simultaneously)

cluster
computing
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[77]). Recent evolutionary-based approaches with DVFS method applied to reduc-
ing the energy consumption are presented in Table 7.2. The total energy utilization
in the system is a component of the fitness function.

In [132] and [133] Shen et al. present a Shadow Price GA technique for im-
proving the genetic operations in standard GA used as a scheduler in computational
cloud. The ‘shadow price’ for a pair task-machine is defined as the average energy
consumption per instruction for the processor that can operate at different voltage
levels. Then the classical move and swap mutation operations are used for an op-
timal mapping of tasks to machines. A total energy consumption in the system is
defined as a fitness function for shadow price GA scheduler.

Total energy consumed by a computational grid is the key criterion in indepen-
dent batch scheduling problem discussed by Kołodziej, Khan and Xhafa in [82]. The
expected times of the execution of tasks on the machines in the system are estimated
by using the Expected Time to Compute matrix model [5]. Two implementations of
single-population GA-based schedulers were developed for makespan and energy
consumption optimization. The authors consider two scenarios, where all machines
works at the highest voltage level and are switched to the sleep mode in idle peri-
ods, and the case of operating at different voltage levels under optimal makespan
constraint. The schedulers were experimentally evaluated in static and dynamic grid
environment. In both cases the modulation of the voltage supply of the machines
reduced the energy consumption by 25–30 % in average.

Kessaci et al. in [72] present two versions of Multi-objective Parallel Genetic Al-
gorithm (MOPGA) hybridized with Energy-Conscious Scheduling heuristic (ECS).
The GA engine is based on the concepts of Island GA and multistart GA mod-
els. The authors consider parallel applications represented by a Directed Acyclic
Graph (DAG), which are mapped onto multi-processors machines. The voltage and
frequencies of the processors are scaled up at 16 discrete levels and genes in GA
chromosomes are defined by the task-processor labels and processor voltage. The
objective function is composed of two criteria: makespan and cumulative energy
consumption in the system. The reduction of the energy utilization achieved in the
experimental analysis is about 47.4%. Mezmaz et al. in [105] present an application
of the aforementioned methodology in computational cloud. The energy conserva-
tion rate in cloud system is very similar to the results presented in [72] .

Another hybrid GA approach is presented by Miao et al. in [106]. The authors
propose a multi-objective genetic algorithm hybridized with simulated annealing for
solving the scheduling problem a the Chip Multiprocessor (CMP) cluster system.
The total execution time of all tasks and the total energy consumption in the system
are the main components of the objective function.

7.3.2 Energy Efficient Data Transmission

Data transmission, sometimes referred to as data broadcasting, is, together with
the resource allocation and scheduling, a fundamental problem in large-scale data
centers, intelligent networks and grid and cloud environments. This problem is
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important in today’s large-scale wireless networks such as ad-hoc and sensor net-
works , where the nodes, acting potentially both as routers and hosts, are equipped
with antennas for sending and receiving information. Communication among such
nodes may be performed by one-to-one transmissions (single-hop) or by using other
nodes as relay stations (multi-hop) . In both cases each sender node must adjust its
emission power in order to reach the respective receiver node. Additionally, in the
cases where energy is supplied by batteries, the network lifetime is limited by the
batteries of the wireless devices. Therefore, energy saving is critical in all network
operations.

Minimum Energy Broadcast (MEB) is defined as a problem of minimizing the
energy during the data transfer. Formally, it can be formulated as the minimal span-
ning tree task (T = (V,ET )) in the fully connected graph G = (V,E) representing
the system structure. The root of the tree is the source node for the data (signals)
emission and the following energy emission function is minimized:

P(T ) = ∑
i∈V

max
(i, j)∈VT

d(i, j)α , (7.2)

where d(i, j) is the Euclidean distance between the nodes i and j and α is a param-
eter that, depending on the environment, takes typically values between 2 and 4. It
is assumed that the graph G for wireless networks is directed and d(i, j)α < pmax,
where pmax is a maximal emission power in the system. If the antennas in the net-
work nodes are directional, a beamwidth and a beam direction must be chosen for
each node i ∈V .

In classical cluster and grid systems the energy utilized for the data files transfer
between two connected nodes is summarized (and then optimized) for all possible
nodes pairs.

Table 7.3 presents the evolutionary inspired approaches to energy aware data
transfer in cluster system and wireless sensor networks.

Hernández, Blum and Francès in [62], address the problem of signal broadcast-
ing in the ad-hoc networks. They consider the system with omni-directional and
directional antennas . The emission energy defined in Eq. 7.2 is an objection func-
tion, which is globally optimized by using a specialized Ant Colony Optimization
algorithm – Min-Max Ant System in the Hyper-Cube Framework [140]. At each
iteration of the algorithm artificial ants construct a broadcasting tree rooted at the
emission source node. Local search r-shrink algorithm is applied to each of these
trees and the pheromone values may be updated by using also the best-so-far so-
lutions. The power saving rates achieved in the experimental analysis is ab. 85 %,
which makes the methodology spectacular solution for improving the network ef-
fectiveness in the reduction of the energy emission.

Cao et al. in [28] have considered a routing problem in Wireless Sensor Networks
(WSNs) , in which a node and its cluster-head engage in a multi-hop communica-
tion. They used a PSO algorithm for clustering the network nodes. A distance based
minimum spanning tree of the weighted graph of the network is generated and the
best connection between a node and its cluster-head is searched from all the optimal
spanning trees according to the criterion of energy consumption. Cluster-heads are
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Table 7.3 Evo-based solutions for energy aware data broadcasting

Project Algorithm Type Chromosome Objective System

Ant Colony
Optimizer for
Broadcast-
ing [62]

Ant Colony Optimiza-
tion (ACO) algorithm
- Min-Max Ant Sys-
tem in the Hyper- Cube
Framework

emission span-
ning tree nodes

total energy emis-
sion

ad-hoc net-
works

MST-PSO
for clustering
and routing
problem [28]

Particle Swarm Opti-
mization (PSO)

vector of nodes
of spanning
trees in the
network cluster

total energy emis-
sion

wireless
sensor
networks

Cellular Genetic
Scheduler [60]

cellular GA (cGA) for
combinatorial problems

vector of cluster
labels for sub-
tasks in the ap-
plication

makespan (priv-
ileged) and total
energy consump-
tion

cluster
computing
system

NSGA-II for
data compres-
sion [102]

Non-dominated Sorting
GA-II (NSGA-II)

binary vector of
quantization pa-
rameters

information en-
tropy and the
number of distinct
quantization lev-
els (used in the
quantizer

wireless
sensor
networks

elected based on the energy available to the nodes and the Euclidean distance to its
neighbor node in the optimal tree. The results show that the PSO-based clustering
methods ensure longer network life compared with the reliability of the system with
its original architecture.

An interesting approach of cellular GA-based schedulers to cluster computing is
presented by Guzek et al. in [60]. The authors consider a general scheduling problem
of parallel application modeled by a DAG in a cluster of heterogeneous machines.
The cellular algorithm is used primarily for sub-tasks clustering (the number of
clusters is proportional to the number of processors in the machine) and scheduling.
The primary objection is makespan and the second criterion – total energy consumed
during the inter-processor communication. This communication model is based on
the classical delay model [122] and the energy utilized for a data transfer is mea-
sured for each CPUs connection in a parallel machine.

Dynamic data compression in the application codes seems to be a promising
software tool for saving the energy used for the data propagation in wireless sensor
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networks. Compression methods exploit the data structure and reduce the data size.
Marcelloni and Vecchio [102] perform a data compression on a network (single)
node based on a differential pulse code modulation scheme with quantization of the
differences between consecutive codes of the signal samples. The trade-off between
a performance of compression algorithm and the amount of the lost information
is determined by the set of quantization parameters. The authors employ the Non-
dominated Sorting Genetic Algorithm II (NSGAII) for optimizing the combinations
of these parameters corresponding to different optimal trade-offs. The chromosomes
in this approach encode quantizers defined by using the following parameters:

• width of the dead zone;
• width of the cell in the first granular subregion;
• number of cells in the first granular subregion;
• width of the cell in the second granular subregion; and
• number of cells in the second granular subregion.

The chromosomes are represented by binary Gray strings. The granular regions are
the regions with quantization levels. Information entropy and the number of dis-
tinct quantization levels (used in the quantizer are the optimization criteria. The
evaluation analysis of the proposed method shows the 62% reduction of the energy
consumed in data transmission.

7.3.3 The Workload Placement Problem – The Data Aggregation

The data aggregation is the combination of data from different sources according
to a certain aggregation function, e.g., duplicate suppression, minima, maxima and
average. A big amount of the energy in data centers is the idle power wasted when
servers run at low utilization. Multiple data center applications may be hosted on a
common set of servers. Also sensor nodes in wireless networks may generate sig-
nificant volume of the redundant data. This allows for consolidation of application
workloads on a smaller number of servers and aggregation of similar data packets
from multiple network nodes that may increase the system utilization by save the
energy.

In grid and Cloud computing the problem of loading servers to a desired utiliza-
tion level for each resource may be modelled as a multi-dimensional bin packing
problem where servers are bins with each resource (CPU, disk, etc.) being one di-
mension of the bin. The bin size along each dimension is given by the energy opti-
mal utilization level. Each hosted application with known resource utilizations can
be treated as an object with a given size in each dimension. The ultimate goal of the
consolidation algorithm is to pack all items to possible minimal number of bins. An
objective function for such a problem can be defined as follows (see also [44]):

f =
n−1

∑
v=0

yv, (7.3)
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and is minimized subject to the following constraints:

m−1

∑
i=0

r̄i,kxi,v ≤Cv,kyv,∀v ∈ {0, . . . ,n− 1},∀k ∈ R (7.4)

n−1

∑
v=0

xi,v = 1,∀i ∈ {0, . . . ,m− 1} (7.5)

where

• n is the number of bins;
• m is the number of items;
• yv is the bin variable which is 1 if the bin v is selected and 0 otherwise;
• xi,v is the allocation variable equals 1 if the item i is assigned to the bin v, and 0

otherwise;
• Cv,k is the capacity of bin v of resource k ∈ R;
• r̄i,k is the i-th item maximum demand for resource k ∈ R over the last measure-

ment period.

The condition 7.4 ensures that the capacity of each bin is not exceeded and con-
straint 7.5 guarantees that each item is assigned to at most one bin.

In wireless sensor networks signal processing methods may be used for data ag-
gregation. In this case, it is referred to as data fusion where a node is capable of
producing a more accurate output signal by using some techniques such as beam
forming to combine the incoming signals and reducing the noise in those signals.

Selected genetic-based methods for data aggregation are reported in Table 7.4.
One of the most recent ACO approaches in data aggregation in cloud comput-

ing is presented by Feller et al. in [44]. The authors used ant colony optimization
technique for the consolidation of virtual machines on the least number of physical

Table 7.4 Genetic-based methods for data aggregation in large-scale distributed systems

Project Algorithm Type Chromosome Objective System

Energy-aware
ACO data ag-
gregator in
clouds [44]

Ant Colony Optimiza-
tion (ACO) algorithm

binary vector of
bin variables

the number of ac-
tive servers in the
system and energy
utilization

cloud com-
puting

ABC-PSO [146] Particle Swarm Op-
timization (PSO)
algorithm hybridized
with ant-based control
technique

vector of sensor
nodes

PSO algorithm
determines a local
thresholds and
decision error is
minimized

wireless
sensor
networks
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nodes in the cloud system. The problem is interpreted as an instance of the Multi-
Dimensional Bin-Packing (MDBP) problem . The fitness function is defined as the
sum of boolean bin variables given by the Eq. 7.3. The authors follow the MAX-
MIN Ant System (MMAS) Framework for updating the pheromone trials [140] for
the ants. In order to estimate the energy consumed by a workload placement, the au-
thors approximate the power function of a host, which is defined as a linear function
P(u) of the host utilization u, i.e.:

P(u) = (Pmax, . . . ,PPidle)× u+Pidle, (7.6)

where Pidle and Pmax denote the average power values when the system is idle and
fully utilized, respectively. Computational results show the 4.1% of energy conser-
vation on average 4.7% of hosts.

High effectiveness in the data-aggregation in wireless sensor networks can be
achieved by the determination of optimal local thresholds in the decisions made for
detecting the events. Each sensor node in the network collects local observations
corrupted by noise and sends a summary to a fusion center, which is responsible for
making the final decision. Thresholding may lead to a gain in terms of bandwidth
and energy consumed by the system. Veeramachaneni et al. [146] present a hybrid of
ant-based control and PSO (ABC-PSO) method for the local threshold management
to achieve an optimal decision route. Partial solutions to the optimization problem
are constructed by artificial ants that move from a node to another and define the
paths of network nodes. Then PSO algorithm identifies the thresholds and achieves
the minimum error for the sequence. The feedback on this is presented to ants to
help them to improve the qualities of node sequences to achieve optimal thresholds
on all nodes and an optimal decision route (hierarchy) that assure minimum energy
expenditure.

7.4 Conclusions

This chapter surveyed the recent research results related to the evolutionary inspired
methodologies supporting the energy and power management in modern large-scale
distributed computing systems. Although, the genetic meta-heuristics are still not
the most popular solutions to the green computing problems, the experimental re-
sults briefly analyzed in this chapter, confirm the efficiency of the genetic techniques
in the reduction (in the range of 6 to 85%) of energy consumed for computing.

Table 7.5 presents the summary of the evolutionary approaches to energy man-
agement in today’s distributed computing systems, as a critical analysis of state-of-
the-art in ‘evolutionary-driven green computing’.

The algorithms in Table 7.5 are classified into mono- and multi-population cate-
gories. The first group contain conventional single population genetic techniques for
global optimization. They are employed as promising tools for solving all problems
addressed in this chapter and work in all types of dynamic environments discussed
in this survey. The second class of multi-population algorithms is very small, that
confirms an early stage of the research in this field.
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Table 7.5 Summative analysis of evolutionary-based approaches to energy management in
distributed computing systems

Algorithm Class Algorithm Type Application
Areas

Problems to
Which Applica-
ble

Mono-population

Basic GA grid and cloud
computing, em-
bedded systems

scheduling and re-
source allocation,
code optimization

ACO ad-hoc networks,
cloud computing

data broadcasting,
data aggregation

PSO wireless sensor
networks

data broad-
casting,data
aggregation

NSGA embedded sys-
tems

data aggregation

NSGA-II wireless sensor
networks

data compression,
source code opti-
mization

MOGA cluster comput-
ing, embedded
systems

scheduling and re-
source allocation,
code optimization

Multi-population

Cellular GA cluster computing data broadcasting

Island and Multi-
start Parallel GAs

cluster, grid and
cloud comput-
ing, embedded
systems

scheduling and re-
source allocation
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An emergence of new generation IT systems, implies new challenges in efficient
management of huge packages of highly parameterized data. A promising research
direction, which can make a significant progress in green computing, is the uti-
lization of game-theoretical models and evolutionary-based resolution methods for
supporting the decisions of the system’s users and resource providers. Simple co-
operative games with Nash-bargained solutions have been already developed and
successfully applied in energy-aware scheduling in grids and data centers (see [76],
[141]), which can be a basis for evolutionary inspired solvers of such models. How-
ever, these models may not reflect the dynamic nature of the large-scale computa-
tional systems. An incorporation of new additional criteria into the energy-aware
data and resource management in future generation distributed systems may ex-
pose the low efficiency of existing solutions at both hardware and software levels.
It certainly implies a need of development of new models and meta-heuristic opti-
mization techniques which can tackle the demand of the system components, new
access polices and conditions for the resources, and users’ special preferences and
requirements.



Chapter 8
Energy-Aware Scheduling of Independent Tasks
in Computational Grids

Abstract. This chapter introduces the application of the Hierarchical Genetic
Strategy-based Grid scheduler (HGS-Sched) to the energy-aware independent batch
scheduling problem in Computational Grids (CGs). The Dynamic Voltage Scaling
(DVS) methodology is used for both scaling the power supply of the grid resources
and reducing the cumulative power energy utilized by the grid computing machines.
Two implementations of HGS-Sched—with elitist and struggle replacement mecha-
nisms respectively—are defined and empirically evaluated. The effectiveness of the
hierarchical schedulers are compared with the quality of single-population Genetic
Algorithms (GAs) and Island GA models for four CG significant scenarios in static
and dynamic modes. The simulation results show that meta-heuristic grid schedulers
can significantly reduce the energy consumption in the system as well as be easily
adapted to various scheduling scenarios.

8.1 Introduction

The main issues related to power consumption and effective thermal management
in high performance computing have been induced by the sheer scale of enterprise
computing environments and data centers. In large supercomputer centers and next
generation distributed systems such as ‘green’ grid clusters and clouds, the growing
operating, power and cooling rates have become the dominant part of the users’
and system managers’ budgets. Novel innovative green computing technologies are
mainly devoted to the optimization of system thermodynamics [108]. Profiles of
hardware energy consumption and application energy consumption are gathered in
order to be correlated with workload distribution and energy consumption of the
different power and cooling systems [43].

While CGs have been widely promoted as affordable alternatives to supercom-
puters, a significant disproportion of resource availability and resource provision-
ing has been empirically observed [76]. Therefore, a significant deal of research in
grid computing is devoted to design novel, effective grid schedulers, which can si-
multaneously optimize the key grid objectives—such as makespan, flowtime, and

J. Kołodziej: Evolutionary Hierarchical Multi-Criteria Metaheuristics, SCI 419, pp. 155–175.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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resource utilization [35], as well as the energy consumed by all system components
and users.

That is to say, while the main purpose of grid schedulers is to efficiently and
optimally allocate application tasks to a set of available resources, one should also
consider a series of requirements including energy efficiency. Energy-efficient
scheduling in CGs has therefore become a relevant yet complex endeavor due to
the multitude of constraints and the different optimization criteria and priorities of
the resource owners. Heuristic approaches have demonstrated to be effective for
designing energy-aware grid schedulers by keeping a balance among various pref-
erences and goals of the grid users, resource and service managers, and resource
owners.

This chapter addresses the problem of energy optimization for Independent Batch
Scheduling in CGs. The average energy consumption is considered as a complemen-
tary scheduling criterion along with the makespan as the primary objective. Accord-
ing to the notation introduced in Sec. 1.4.2, an instance of the independent batch grid
scheduling problem with energy optimization criterion is expressed in the following
way:

Rm [{b, indep,(stat,dyn),hier}] (Cmax,EI(EII)) (8.1)

where:

• Cmax – denotes a makespan as the primary scheduling objective
• EI(EII) – denotes total energy consumption as the second scheduling criterion

(EI or EII is selected depending on the scheduling scenario (see Sec. 8.3.2))

This chapter extends the empirical analysis presented in [82] by the implementation
and the comparative analysis of the effectiveness of the multi-population and single-
population GA-based Grid schedulers. The term ‘green’ used in this chapter refers
not just to the low-power system devices, but also to the energy-aware schedulers.

8.2 Energy Model

The main module in the energy-aware grid scheduling model presented in this chap-
ter is the Dynamic Voltage and Frequency Scaling (DVFS) technique. Used for ad-
justing the voltage supplies and frequencies of the grid computational nodes, the
DVFS technique is primarily based on the power consumption model employed
in complementary metal-oxide semiconductor (CMOS) logic circuits [13]. In this
model, the capacitive power Powji–utilized by the machine i for computing the task
j–depends on the voltage supply and machine frequency, and it is calculated as
follows:

Powji = A ·C · v2 · f , (8.2)

where A is the number of switches per clock cycle, C is the total capacitance load,
v is the supply voltage and f is the frequency of the machine (see also Chapter 7,
Sec. 7.3.1, Eq. (7.1)). The energy consumed per machine i for the computation of
task j can then be derived using the following formula:
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E ji =

∫ completion[ j][i]

0
Powji(t)dt (8.3)

where completion[ j][i] is a completion time of the task j on machine i.
Each machine in the grid has been equipped with a DVFS module [97] for scaling

its supply voltage and operating frequency. It has been assumed that the frequency
of the machine is proportional to its processing speed (see [104]). It follows from the
Eq. (8.2) that the reduction of the supply voltage and frequency is directly correlated
to the reduction of the energy utilization. Table 8.1 shows the parameters for 16
DVFS levels and three main ‘energetic’ categories for machines defined for the grid
system employed in this study.

Table 8.1 DVFS levels for three machine classes

Class I Class II Class III

Level Volt. Rel.Freq. Volt. Rel.Freq. Volt. Rel.Freq.

0 1.5 1.0 2.2 1.0 1.75 1.0

1 1.4 0.9 1.9 0.85 1.4 0.8

2 1.3 0.8 1.6 0.65 1.2 0.6

3 1.2 0.7 1.3 0.50 1.9 0.4

4 1.1 0.6 1.0 0.35

5 1.0 0.5

6 0.9 0.4

The energetic class of machine i, (i ∈ M), denoted by si and represented by the
meta-vector Vr(i) of DVFS levels, can be specified as:

Vr(i) =
[

(vs0(i), fs0(i)); . . . ;(vsl(max)
(i), fsl(max)

(i))
]T

(8.4)

where vsl (i) refers to the voltage supply for machine i at level sl , fsl (i) is a scaling
parameter for the frequency of the machine at the same level sl , and lmax is the
number of levels in the class si. The parameters { fs0(i), . . . , fsl(max)

(i)} are in the
[0,1] range and should be interpreted as the relative frequencies of the machine i of
class si at the s0, . . . ,sl(max) DVFS levels.

The reduction of the machine frequency and its supply voltage can lead to the
extension of the computational times of the tasks executed on that machine. For a
given ‘task-machine’ pair ( j, i), the completion times for the task j on machine i at
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different DVFS levels in the class si can be interpreted as the coordinates of a vector
ÊTC[ j][i] which is defined as:

ÊTC[ j][i] =

[

1
fs0(i)

·ETC[ j][i], . . . ,
1

fsl(max)
(i)

·ETC[ j][i]

]

(8.5)

where ETC[ j][i] are the expected completion times for task j on machine i calcu-
lated by using the conventional ETC matrix model (see Chapter 2, Sec. 2.2).

The ETC matrix model defined in Chapter 2 can be directly adapted to the energy-
aware scheduling of independent tasks in grids. The completion times calculated for
each pair ( j, i) of task–machine labels in conventional ETC matrix (see Eq. (2.2))
should be replaced by the ÊTC[ j][i] vectors, that is:

ÊTC =
[

ÊTC[ j][i][sl ]
]

n×m×sl(max)

(8.6)

where ÊTC[ j][k][sl ] is the time necessary for the completion of the task j on ma-
chine i at the level sl .

Based on Equations (8.2), (8.3) and (8.6) the energy utilized for completing task j
on machine i at level sl can be defined as a scalar product of the number of switches
per clock cycle, the total capacitance load, the frequency and the squared voltage at
level sl , and the estimated completion time of task j on machine i. That is to say:

E ji(sl) = γ · ( fsl (i)) j · f · [(vsl (i)) j]
2 · ÊTC[ j][i][sl ], (8.7)

where γ = A ·C is a constant parameter for a given machine class, (vsl (i)) j is a
voltage supply value for class si and machine i at level sl for computing task j, and
( fsl (i)) j is a corresponding relative frequency for machine i.

Based on the Equations (8.6), (8.7) and (8.5) the computational times for each
possible pair ( j, i) at the level sl can be calculated as:

Tim{ j,i,sl} = γ · ( fsl (i)) j · f · [(vsl (i)) j ]
2 · ( fs1(i)) j ·ETC[ j][i] =

= γ · f · [(vsl (i)) j ]
2 ·ETC[ j][i]

(8.8)

The cumulative energy utilized by the machine i for the completion of all tasks from
the batch that are assigned to this machine, is defined in the following way:

Ei = ∑ j∈Tasks(i)
l∈L̂ j

{Tim{ j,i,sl}}+ γ · f · [vsmax ]
2 · readyi + γ · fsmin(i) · f ·

·[vsmin(i)]
2 · Idle[i] = γ · f ·∑ j∈Tasks(i)

l∈L̂i

([(vsl (i)) j ]
2 ·ETC[ j][i])+

+[vsmax(i)]
2 · readyi+ fsmin(i) · [vsmin(i)]

2 · Idle[i]

(8.9)
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where Tasks(i) is a set of tasks assigned to machine i, readyi is the ready time of
machine i, Idle[i] denotes an idle time of machine i, and L̂i denotes a subset of DVFS
levels used for the tasks assigned to machine i. All additional machine frequency
transition overheads are ignored. These overheads take usually a negligible amount
of time (e.g., 10ms- 150ms, see [109]) and do not bear down on the overall ETC
model with an active ‘energetic’ module.

Finally, an average cumulative energy utilized by the grid system for completion
of all tasks in the batch is defined as follows:

Ebatch =
∑m

i=1 Ei

m
(8.10)

This model is used in the following section for specification of two scheduling sce-
narios and the definition of the scheduling criteria.

8.3 Scheduling Scenarios and Objectives

Two main scheduling scenarios are considered in this study, namely:

I. I – Max-Min Mode, in which each machine works at the maximal DVFS level
during the execution and computation of tasks and enters into idle mode after
the execution of all tasks assigned to this machine;

II. II – Modular Power Supply Mode, in which each machine can work at differ-
ent DVFS levels during the task executions and can then enter into idle mode.

In the former, the consumption of the of the energy depends on the ‘energetic’ class
of the system devices or services, defined as ‘machines’ (resources) in the system.
No modifications of the conventional scheduling procedures and standard schedul-
ing objectives—such as makespan, flowtime, tardiness, etc. (see Chapters 1 and
2)—are needed. In the latter, the optimal power supply levels can be specified for
each machine, and the energy consumption can subsequently be reduced by dimin-
ishing the power supply in the machines while preserving the deadline constraints
for the main tasks.

The procedures for calculation and optimization of the two scheduling objective
functions, makespan and cumulative energy utilized by the system, are different
in the aforementioned scheduling scenarios. The details are discussed in the two
following subsections.

8.3.1 Makespan Optimization

The minimization of the makespan is the first step of the optimization procedure in
the scheduling objectives. Based on the ETC matrix model and denoted by Cmax,
the makespan can be defined in terms of the completion times of the machines (see
Chapter 2, Sec. 2.2.2). The finishing time for the last task in the batch is specified
as the maximal completion time of all machines available in that batch. Denoted by
completion[i], the completion time of machine i is the cumulative time required for
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both reloading the machine i after finalizing the previously assigned tasks and for
completing the tasks currently assigned to the machine.

In Max-Min Mode such completion time can be defined as:

completionI[i] = readyi + ∑
j∈Tasks(i)

ETC[ j][i]. (8.11)

The makespan in this mode is calculated in the following way:

(Cmax)I =
m

max
i=1

completionI[i]. (8.12)

The idle time for machine i working in Max-Min Mode can be expressed as the
difference between the makespan and completionI[i], i.e.:

IdleI [i] = (Cmax)I − completionI[i] (8.13)

It should be clear that for the machine with the maximal completion time (makespan)
the idle factor is zero.

In Modular Power Supply Mode, for each task-machine pair, the DSV level sl

must be specified. The formulae for computing the completion time, makespan, and
idle time at the level si can be defined as:

completionII[i] = readyi + ∑
j∈Tasks(i)

1
fsl (i)

·ETC[ j][i]. (8.14)

(Cmax)II =
m

max
i=1

completionII[i]. (8.15)

IdleII [i] = (Cmax)II − completionII[i] (8.16)

8.3.2 Energy Optimization

The second step of the scheduling optimization procedure is the minimization of the
total energy consumed in CG for scheduling a given batch of tasks.

The average energy consumed in the system in Min-Max Mode is defined as:

EI =
1
m ·∑m

i=1 γ · completionI[i] · f · [vsmax(i)]
2+

+ 1
m ·∑m

i=1 γ · fsmin(i) · [vsmin(i)]
2 · IdleI[i]

(8.17)

In Modular Power Supply Mode the average cumulative energy is given by
Eq. (8.10):

EII = Ebatch =
∑m

i=1 Ei

m
(8.18)
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where1

Ei = γ · f ·∑ j∈T (i)
l∈Li

([(vsl (i)) j ]
2 ·ETC[ j][i])+

+[vsmax(i)]
2 · readyi + fsmin(i) · [vsmin(i)]

2 · Idle[i]

(8.19)

In both cases EI and EII are minimized and subject to the following constraint:

∑
l∈L̂i

[

1
fsl (i)

·ETC[ j][i]

]

≤ Cmax; ∀i ∈ {1, . . . ,m}, (8.20)

where L̂i denotes a subset of DVFS levels specified for tasks assigned to machine i.

8.4 Empirical Analysis

The implementation of the energy management model based on the DVFS method
typically produces an improvement in the load balancing of machines. However,
DVFS itself does not change the task assignment. While machines are kept in use
for a longer time, they work in a low-cost mode in terms of energy consumption.
Conventional load-balancing methods, such as goal programming, are typically ef-
fective just for the static scheduling case. It is arguable that, for a successful im-
plementation of dynamic load-balancing and dynamic programming schedulers, a
knowledge of all possible states in the system is needed, which is not feasible for
large-scale grids.

Metaheuristic approaches are the most promising solution for ‘green’ schedul-
ing. The effectiveness of single-population GAs for the energy optimization in grid
scheduling has been presented in [82]. This chapter substantially extends our initial
analysis by introducing an empirical evaluation of multi-population grid schedulers.
Within this section, the implementations of the HGS-Sched algorithm for energy-
aware scheduling problem is referred by Green-HGS-Sched.

Similarly to previous chapters, several grid scenarios for static and dynamic
scheduling are modeled using the grid simulator. In this case the general architec-
ture of Sim-G-Batch has been extended through an energy module as presented in
Fig. 8.1.

The simulator generates benchmarks for the problem based on the following in-
put data:

• workload vector of tasks;
• computing capacities of machines;
• prior machines loads;
• machine categories specification parameters (number of classes, maximal com-

putational capacity value, computational capacity ranges interval for each class,
machine operational speed parameter for each class, etc.);

• DVFS levels matrix for machine categories; and
• the ETC matrix.

1 See Equation (8.9).
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Fig. 8.1 General model of the ‘energy-aware’ implementation of Sim-G-Batch simulator

The machines can work at 16 DVFS levels and can be categorized into three ‘en-
ergetic’ resource classes, Class I, Class II, and Class III. The class identifiers have
been selected randomly for the machines. The values of supply voltages and rela-
tive machine frequencies at all DVFS levels are specified in Table 8.1. The general
settings of the simulator for four grid scenarios—Small, Medium, Large and Very
Large grids—are the same as in the empirical analysis presented in Chapter 4, and
defined in Table 4.1.

The configurations of key parameters for both implementations of single-
population GA, IGA and Green-HGS-Sched meta-heuristics are presented in Ta-
bles 8.3, 8.4 and 8.5. The size of the initial and intermediate populations in IGA
depends on the implementation of the genetic engine in islands and are the same as
for the single-population GA-Elit and GA-St algorithms. The parameters for single-
population GA schedulers and the energy-aware implementation of HGS-Sched are
similar to the settings defined in Chapters 4 and 5 for GAs and HGS-Sched.

8.4.1 Energy Aware Genetic-Based Batch Schedulers

Six genetic-based meta-heuristics have been developed for minimizing the makespan
and energy consumption in the Max-Min and Modular Power Supply scheduling
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Table 8.2 Six GA-based grid schedulers evaluated in the empirical analysis

Scheduler Type of algorithm Replacement method

GA-Elit Single-population GA Elitist Generational

GA-St Single-population GA Struggle

IGA-Elit Island GA Elitist Generational

IGA-St Island GA Struggle

HGS-Elit Green-HGS-Sched Elitist Generational

HGS-St Green-HGS-Sched Struggle

modes defined in the previous section. The configuration of the genetic operators in
those meta-heuristics is presented in Table 8.2.

The aforementioned methodologies differ in the implementation of the replace-
ment mechanism in the main genetic framework. The Elitist Generational replace-
ment is used in xxx-Elit algorithms and the Struggle procedure in xxx-St algorithms.
Both single-population GAs—GA-Elit and GA-St—are implemented as the main
genetic mechanism in IGA-Elit, HGS-Elit, IGA-St, and HGS-St respectively.

The concept of IGA algorithm with the specification of all key parameters for
this strategy, was presented in Chapter 4 (Sec. 4.4.2.1).

The template of the main genetic engine in all schedulers is defined in Alg. 1 in
Chapter 3, and the encoding methods for the schedulers are the same as in Sec. 3.3.
The combination of the main operators for all schedulers is similar to the optimal
configuration of the genetic mechanism in the HGS-Sched generated in Chapter 4.
The Linear Ranking is used as the selection scheme, and the Cycle Crossover (CX)
and Move mutation are selected as the main genetic operators.

The configurations of key parameters for both implementations of single-
population GA, IGA and Green-HGS-Sched meta-heuristics are presented in
Tables 8.3, 8.4 and 8.5. The size of the initial and intermediate populations in IGA
depends on the implementation of the genetic engine in islands and are the same as
for the single-population GA-Elit and GA-St algorithms. The parameters for single-
population GA schedulers and the energy-aware implementation of HGS-Sched are
similar to the settings defined in Chapters 4 and 5 for GAs and HGS-Sched.

The relative performance of all six schedulers has been quantified with the fol-
lowing two metrics:

• minimal makespan defined as follows:

makespan = min{MakespanI,MakespanII} (8.21)
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Table 8.3 GA setting for static and dynamic benchmarks

Parameter GA-Elit GA-St

evolution steps 5∗m 20∗m

pop. size (pop size) 
(log2(m))2 − log2(m)� 4∗ (log2(m)−1)

intermediate pop. pop size−2 (pop size)/3

cross probab. 1.0 1.0

mutation probab. 0.2

max time to spend 30 secs (static) / 45 secs (dynamic)

Table 8.4 HGS-Sched settings for static and dynamic benchmarks

Parameter

period of metaepoch 20∗n

nb of metaepochs 10

degrees of branches (t) 0 and 1

population size in the core 3∗ (
4∗ (log2 n−1)/(11.8)�)

population size in the sprouted branches (b pop size) (
(4∗ (log2 n−1)/(11.8)�)

intermediate pop. in the core abs((r pop size)/3)

intermediate pop. in the sprouted branch abs((b pop size)/3)

cross probab. 0.9

mutation probab. in core 0.4

mutation probab. in the sprouted branches 0.2

max time to spend 40 secs (static) / 70 secs (dynamic)

• a relative energy consumption improvement rate expressed as follows:

Im(E) =
EI −Ebatch

Ebatch
·100%, (8.22)

where EII and EI are defined in Eq. (8.10) and Eq. (8.17) respectively;
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Table 8.5 Configuration of IGA algorithm

Parameter

itd 20∗n

mig 5 %

number of islands (demes) 10

cross probab. 1.0

mutation probab. 0.2

max time to spend 40 secs (static) / 70 secs (dynamic)

8.4.2 Results

Each experiment has been repeated 30 times under the same configuration of op-
erators and parameters. The box-plots of the first, mean, and the third quantiles
(confidence level - 95 %) for the makespan and relative energy consumption rate
Im(E) are presented in Fig. 8.2–8.5.

Makespan optimization results

Fig. 8.2–8.5 depicts the box-plots of the makespan values for six considered sched-
ulers. The makespan is measured and expressed in arbitrary time units defined for
the execution of tasks.

Both implementations of the Green-HGS-Sched have achieved the best results in
all instances but Large grid in the static case and Small and Large instances in the
dynamic case, where they are outperformed by the IGA algorithm.

On the one hand, a simple comparison of the impact of the replacement method on
the algorithms performance provided for all pairs of the xxx-Elit and xxx-St sched-
ulers shows that Struggle replacement is much more effective that Elitist Gener-
ational method in the case of single-population GA and IGA schedulers. It also
confirms the results of the preliminary study on the effectiveness of single-
population genetic schedulers in CGs presented in [82].

On the other hand, for the Green-HGS-Sched the situation is completely different.
In most of the scheduling instances the effectiveness of both hierarchical schedulers
are at comparative levels, with little advantage for the elite technique in the dynamic
cases. It seems to indicate that the replacement mechanism does not play a crucial
role in the fast exploration of the search space by the Green-HGS-Sched. Such explo-
ration process can be construed as very slow when using the conventional GA and
IGA schedulers. The core of Green-HGS-Sched can activate the more accurate pro-
cesses in the neighborhoods of the partial solutions of the problem. Those solutions
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Fig. 8.2 The box-plot of the results for makespan in static case: Small and Medium grids
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Fig. 8.3 The box-plot of the results for makespan in static case: Large and Very Large grids
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Fig. 8.4 The box-plot of the results for makespan in dynamic case: Small and Medium grids
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Fig. 8.5 The box-plot of the results for makespan in dynamic case: Large and Very Large
grids
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may be not detected by the other schedulers, which makes the Green-HGS-Sched
very effective in the exploration of new regions in the optimization domain and in
escaping the basins of attraction of the local solutions.

The complexity of the hierarchic system is, in fact, not a drawback of the Green-
HGS-Sched, because the constraints of the execution time for HGS and IGA are
exactly the same. The ranges in the achieved makespan values for all considered
meta-heuristics are not greater than 30−35 % of the mean makespan values, which
means that the stability of all schedulers in all cases is at an acceptable level. The
distributions of the makespan results are asymmetric: the skewness in the static case
is positive—for GA and IGA and negative for Green-HGS-Sched in most of the
static instances—and it is negative in the dynamic grids for almost all schedulers. It
also implies that the reduction of the average makespan in this case is more difficult
than in the static case, which confirms the complexity of the problem in the realistic
dynamic grid scenarios.

Energy optimization results

The main effect of the makespan minimization is arguably the balance of the loads
in grid resources. The application of the DVFS technique typically leads to a sig-
nificant reduction of the energy consumption in the system, especially in the case
of substantial differences in the loads of particular machines. The box-plots for the
energy saving rates Im(E) are presented in Fig. 8.6–8.9.

The results of the energy optimization are slightly different in comparison with
the makespan ones. In this case, each of the IGA-Elit and GA-Elit algorithms out-
performs the rest of the schedulers in five instances, and the single-population GAs
are the best in the three cases. Green-HGS-Sched is not as effective in energy opti-
mization as in the makespan minimization. It means that this algorithm works quite
well in Min-Max scenario: the makespan is relatively short, and the scaling of the
voltage supply may lead to not so significant energy conservation.

In the case of single population and island models, the extensions of the comple-
tion times of the tasks in Modular Power Supply mode allow to keep the machines
busy for a longer time than in the Min-Max mode. However, the average difference
in energy saving rates achieved by the Green-HGS-Sched scheduler and the remain-
ing meta-heuristics does not exceed 10 %, which is smaller than in the makespan
case (15 %). This signifies that the average cumulative energy utilization achieved
by Green-HGS-Sched is lower than the island GA and conventional GAs. The range
of the average energy saving rate values is 10%–35% for most of the schedulers. It
can also be observed that the skewness of the distribution of the results is positive
or neutral for the worst ‘energy optimizers’ and negative for the best ones.
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Fig. 8.6 The box-plot of the results for relative energy saving rate in static case (in %): Small
and Medium grids
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Fig. 8.7 The box-plot of the results for relative energy saving rate in static case (in %): Large
and Very Large grids
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Fig. 8.8 The box-plot of the results for relative energy saving rate in dynamic case (in %):
Small and Medium grids
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Fig. 8.9 The box-plot of the results for relative energy saving rate in dynamic case (in %):
Large and Very Large grids
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8.5 Summary

This chapter addressed the problem of optimizing the energy utilized in CGs in
independent batch scheduling. The energy management model is based on Dy-
namic Voltage Scaling (DVFS) technique adapted to the dynamic Grid environment.
The energy-aware Grid scheduling was formalized as a bi-objective optimization
problem with makespan and average cumulative energy consumption as the main
objectives.

For solving the addressed Grid scheduling problem, two implementations of an
energy-efficient Hierarchical Grid Scheduler HGS-Sched were developed evaluated
in two ‘energetic’ scheduling modes in static and dynamic Grid scenarios under
the makespan and relative energy consumption improvement rate criteria. The ef-
ficiencies of the hierarchical schedulers were compared with the results achieved
by four single-population Genetic Algorithm (GA) and Island GA schedulers. The
simulation results confirmed the effectiveness of the proposed schedulers in the re-
duction of the energy consumed by the whole system and in dynamic load balancing
of the resources in Grid clusters, which is sufficient to maintain the desired quality
level(-s).



Summary

The concepts of today’s grid computing systems grown far beyond the original
model of Ian Foster of the power electric grid. The modern large-scale grids are
made up of hundreds or thousands of various components (computers, databases,
etc), not just the computing nodes and high performance computing platforms. Due
to the high heterogeneity of the users and resources, the grid managers in one local-
ity (geographical or managerial) might not be able to have control over other parts
of the system. The ability of the efficient scheduling of the grid applications and the
allocation of the resources in a desired configuration of all system components in a
scalable and robust manner is essential in today’s grid computing.

The categorization of the grid scheduling problems presented in this book allows
to look at the old scheduling models from a contemporaneous and unique perspec-
tive. Two new scheduling criteria, namely security and energy consumption, usually
considered as the separate optimization problems, are embedded in the proposed
scheduling models. The simulated grid scenarios in such cases can better illustrate
the realistic systems, in which large number of variables, numerous objectives, con-
straints, and business rules, all contributing in various ways must be analyzed.

In many cases the management system in the grid environment should be able to
group, predict, and classify the different sets of individual rules and requirements
of the grid users. Therefore the scheduling problem in grids has been interpreted in
this book as a difficult decision problem for grid users working at different levels
of the system. Users decisions and fundamental features arising in the users’ behav-
ior, such as cooperativeness, trustfulness and symmetric and asymmetric roles, are
modeled based on the game theory paradigm.

The main reason behind the complexity of the multi-criteria grid scheduling
is that this problems consist of several interconnected components (criteria, sub-
problems), which makes many standard approaches ineffective. Even if the exact
and efficient algorithms for solving particular components or aspects of an over-
all problem are well-known, these algorithms only yield solutions to sub-problems,
and it remains an open question how to integrate these partial solutions to achieve
a global optimum. Metaheuristics, due to their robustness and high scalability, are
able to tackle the various and also sometimes conflicting scheduling attributes and
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criteria. A generic model for a hierarchical multi-population genetic scheduler pre-
sented in this book, enables an undemanding configuration of the numerous genetic
operators and an effective exploration of the search space with an adaptive accuracy.
This model has been easily adapted to a range of scheduling scenarios. The func-
tionality of this model and its effectiveness in multi-criteria grid scheduling have
been justified in the comprehensive experimental analysis.

All models presented in this book are in fact not restricted just to the conventional
grid systems. They may be easily adapted to cloud environments, where security
awareness and intelligent power management are the hottest research issues.
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Agent Systems, pp. 149–161. UJ Press, Cracow (2001)

81. Kołodziej, J., Jakubiec, W., Starczak, M., Schaefer, R.: Hierarchical genetic strategy ap-
plied to the problem of the coordinate measuring machine geometrical errors. In: Proc.
of the IUTAM 2002 Symposium on Evolutionary Methods in Mechanics, September
24-27, pp. 22–30. Kluver Ac. Press, Cracow (2002)

82. Kołodziej, J., Khan, S., Xhafa, F.: Genetic algorithms for energy-aware scheduling in
computational grids. In: Proc. of the 6th IEEE International Conference on P2P, Par-
allel, Grid, Cloud and Internet Computing (3PGCIC 2011), Barcelona, Spain, October
26-28, pp. 17–24 (2011)

83. Kołodziej, J., Rybarski, M.: An application of hierarchical genetic strategy in sequential
scheduling of permutated independent jobs. In: Arabas, J. (ed.) Evolutionary Compu-
tation and Global Optimization. Lectures on Eletronics, vol. 1, pp. 95–103. Warsaw
University of Technology (2009)
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