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Abstract. Magneto-rheological damper is a nonlinear system. In this case 
study, system has been identified using Neural Network tool. Optimization  
between number of neurons in the hidden layer and number of epochs has been 
achieved and discussed by using multilayer perceptron Neural Network. 
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1 Introduction 

Magneto-rheological (MR) dampers are semi-active control devices to reduce vibra-
tions of various dynamic structures. MR fluids, whose viscosities vary with input 
voltages/currents, are exploited in providing controllable damping forces. MR dam-
pers were first introduced by Spencer to civil applications in mid- 1990s. In 2001, MR 
dampers were applied to the cable-stayed Dongting Lake Bridge in China and the 
National Museum of Emerging Science and Innovation Building in Japan, which are 
the world’s first full-scale implementations in civil structures [1]. Modeling of MR 
dampers has received considerable attention [2-4]; however, these proposed models 
are often too complicated for practical usage. Recently, [5] proposed a so-called non-
parametric model that has demonstrated two merits so far [6]:  

1. The model can be numerically solved much faster than the existing parametric 
models;  

2. The stability of an MR damper control system can be proved by adopting the non-
parametric model. If currents/voltages of MR dampers are constants, the non-
parametric model becomes a Hammerstein system depicted in Figure 1.  

 
Fig. 1. A discrete-time Hammerstein system 
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Here the input  and output  stand for the velocity and damping force, re-
spectively. [5] suggested a first-order model for the linear system, 

1  

and three candidate functions for the non-linearity,  tanh  1 exp | |  | | | |
 

Our objective is to design an identification experiment and estimate the output  
from the measured damping force  and velocity , using of neural networks 
black box models. 

To study the behavior of such devices, a MR damper is fixed at one end to  
the ground and connected at the other end to a shaker table generating vibrations. The 
voltage of the damper is set to 1.25 . The damping force  is measured at the 
sampling interval of 0.005 . The displacement is sampled every 0.001 , which is 
then used to estimate the velocity  at the sampling period of 0.005 . The data 
used in this demo is provided by Dr. Akira Sano (Keio University, Japan) and Dr. 
Jiandong Wang (Peking University, China) who performed the experiments in a la-
boratory of Keio University. See [7] for a more detailed description of the experimen-
tal system and some related studies. We applied Neural Network for this nonlinear 
system identification because Neural Network stands out among other parameterized 
nonlinear models in function approximation properties and modeling nonlinear sys-
tem dynamics [8]. And clearly, nonlinear system identification is more complex as 
compare to linear identification in a sense of computation and approximations. In 
section 2, Neural Network is designed with detailed description on it’s I/Os (inputs, 
outputs), used data sets and training algorithm. In section 3, obtained results are pre-
sented in graphical and numerical forms. Section 4 discusses details about these ob-
tained results. Finally, in section 5, case study conclusion is made. 

 

Fig. 2. System input (velocity) and output (damping force) 
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2 Neural Network Design 

Designing a Neural Network black-box model to perform the system identification of 
a nonlinear SISO (Single Input Single Output) system, namely (Magneto-rheological 
Damper); following design variables should be achieved. 

2.1 Input/output and Transfer Function 

Neural Network input 

One delayed system output plus, one delayed system input and the actual input i.e. 1 , 1   and , are used as NN inputs. This results in a NARX mod-
el, similar to the Hammerstein model. As the results are satisfactory for the above 
cited NN inputs, the dynamic of the system could be captured with only one delay for 
each system input and output. There is no need to increase, then, the number of delays 
on the input and output.  

The result for 50 epochs and 10 neurons and Levenberg-Marquadt backpropagation 
training procedure is presented below to justify this choice. For this case, a value of 
MSE (Mean Square Error) of 6.4180 is obtained. 

 

 

Fig. 3. Levenberg-Marquadt backpropagation training procedure 

Neural Network output 

For the neural network output it is used, obviously, the system output, that is .  

Neural Network transfer function 

The NN transfer functions are chosen as hyperbolic tangent sigmoid (tansig) in hid-
den layer and pure linear (purelin) in output layer. 

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

10
5

M
ea

n 
S

qu
ar

ed
 E

rr
or

# Epoch

# Neurons:10

 

 
Training set

Validation set
Test set

0 500 1000 1500 2000 2500 3000 3500
-80

-60

-40

-20

0

20

40

60

80

100

# Sample

O
ut

pu
t

# Neurons:10

 

 

Training

Validation
Test

Target



 Nonlinear System Identification Using Neural Network 125 

2.2 Data Sets 

The data set of nonlinear magneto-rheological dampers, provided by Dr. Akira Sano 
(Keio University, Japan) and Dr. Jiandong Wang (Peking University, China) contains 
3499 input and output samples, each. The data is split into three sets; 

i. One for training, containing first 50% of the amount of data. 
ii. One for validating, containing second 30% (from 51% to 80%) of the 

amount of data. This data set is used for checking the increase of error 
among the epochs – it is used mainly as stop criterion.  

iii. One for testing, containing last 20% (from 81% to 100%) of the amount of 
data. This data set does not influence the training procedure. 

The stop criteria 

The stop criterion of number of epochs for checking the increase of error on the vali-
dation data set is set as the number of epochs + 1, so the training procedure never 
stops because of that. In this study it is focused the effect of number of neurons and 
number of epochs on the result. Practically there are two data sets: one for training 
and another for testing, the last being constituted of the validation and test data sets. 

2.3 Training Algorithm 

The gradient descent backpropagation is tested, and it diverged for a set of number of 
neurons on the hidden layer. One hidden layer is used. An example for 10 neurons 
and 50 epochs is shown in Fig 4. Two training procedures are used. In first, number of 
epochs is fixed and numbers of neurons are varying. In second, number of neuron is 
fixed and numbers of epochs are varying. 
 

 

Fig. 4. Gradient Descent Backpropagation diverges 
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Varying neurons and fixed epochs 

Test the performance, for 50 epochs, of 2, 4, 6, 8, 10, 12 numbers of neurons in the 
hidden layer. 

i. The results are shown in Table 1 and Figure 5. 
ii. MSE values are calculated for training, validation and test datasets. 

Fixed neurons and varying epochs 

For 10 neurons in the hidden layer, change different number of epochs as 20, 100, 
300, 500, 700 and 1000. 

i. The results are shown in Table 2 and Figure 6. 
ii. MSE values were calculated for training, validation and test datasets. 

Result criteria 

i. Calculate the MSE for all cases. The MSE represents the metric adopted for 
the training. 

ii. Plot neural network output and desired output in the same graph (for com-
paring) for all cases. 

iii. Plot neural network output error ( ) for all cases. 
iv. Analyze general results. 
v. What is the influence of the number of neurons in a fixed number of epochs 

on the NN result? 
vi. What is the influence of the number of epochs on the NN training perfor-

mance? 

3 Results 

Using above training algorithm, obtained results are presented both in graphical and 
numerical forms. Fig. 5 shows graphical results obtained using different number of 
neurons and fixed epochs. Fig. 6 shows graphical results using fixed neurons and 
different number of epochs. In graphical results, MSE is plotted on logarithmic scale. 
Instead of using error only, MSE (mean square error) variable was used to show a 
clear identification of error trend in training, validation and testing sets with respect to 
number of epochs, this comparison is shown in Fig.7. In numerical results, MSE in 
training, validation and testing sets against variable neurons and epochs is presented 
in Table 1 and Table 2 respectively. 

Graphical Results 
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Fig. 5. Results for 50 (fixed) epochs and 2, 4, 6, 8, 10 and 12 neurons in the hidden layer 
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Fig. 6. Results for 20, 100, 300, 500, 700 and 1000 epochs and 10 (fixed) neurons in the  
hidden layer 
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Fig. 7. Representation of error and MSE for 10 neurons in hidden layer 

Numerical Results 

Table 1. Results for different number of neurons and 70 epochs 

Neurons MSE – Train MSE - Validation MSE – Test 

2 15.6728707486869 14.4948575906152 13.6752183182602 

4 10.7218539702842 11.3195658194943 10.6840535069316 

6 13.3840846836663 13.6716607191865 13.1696042197544 

8 8.40574921395610 9.84068816503996 11.0299877969621 

10 8.29385308661188 9.06040436519353 10.4993626210124 

12 8.23019058719595 9.58944665057627 10.4232375024308 

Table 2. Results for different number of epochs and 10 neurons 

Epochs MSE – Train MSE - Validation MSE – Test 

20 8.46213141484072 9.28610314243466 10.5389069957705 

100 8.68527655115772 9.55504632661187 10.6903292802750 

300 8.37896217859245 8.80832992981236 10.2434588260025 

500 8.27327467204573 9.05391102870505 10.4767184896312 

700 8.15121872108450 9.82165043634970 10.4437982077475 

1000 7.90768469589262 8.99822232524322 10.7080085654322 
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4 Discussions 

The results shown are trying to expose the influence of the number of epochs and 
number of neurons issue in NN design. It can be noted, from Figure 5 and Table 1 that 
the number of neurons has a maximal value for improving the accuracy of the NN. 
From Table 1, one can say that the best value for the numbers of the NN hidden layer 
neurons is 10; with 12 neurons the error for the validation increases, though the test 
data error is diminished. This fact shows that the NN starts to represent over-fitting of 
the data with 12 neurons. 

From Figure 6, it can be seen that there is also a maximum number of epochs that 
improve the NN results accuracy. Figure 6 shows that at epoch 700 the validation 
error starts to grow, what also can be seen as over-fitting of data. Moreover, it may 
also be noted that there is a number of epochs that the NN stops to improve the train-
ing data set result; around 70 epochs in the case studied in this work. The backpropa-
gation algorithm stays at local minima (it may also be global) in this point. One may 
use several stop criteria for the backpropagation algorithm in order to avoid this 
drawback of limiting only the number of epochs. 

General results show that the proposed designed NN can be a powerful tool to perform 
the systems identification with complex and nonlinear behavior. It is possible to affirm 
that the use of Levenberg-Marquadt backpropagation for training multilayer perceptrons 
has given accurate results, as shown by numerical expositions in Table 1 and 2. 

5 Conclusion 

This case study presented an application of multilayer perceptron Neural Networks to 
perform the nonlinear system identification having its parameters defined by Leven-
berg-Marquadt Backpropagation training procedure. Such training procedure is cho-
sen because the standard Steepest Descent Backpropagation does not converge for 
several sets of configurations. It is attempted, with this configuration, to build a black-
box model that could represent the system. The tested case study, the magneto-
rheological damper, is a nonlinear SISO system. For obtaining the exposed results, all 
methods are described and put under context. 

Finally, the obtained results are considered satisfactory, showing that the present 
methodology can achieve the identification of the analyzed nonlinear system. The 
results could be observed on graphs and tables, where the MSE is presented in train-
ing, validation and test phases. The proposed methodology proved that it can be tested 
with systems having different characteristics, such as chaotic systems and controller 
design using neural network models. Future work could aim the adaptation of differ-
ent optimization techniques to perform the NN training procedure in order to guaran-
tee accuracy and generalization capability. 
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