
Nonmultiplying Bacteria are Profoundly

Tolerant to Antibiotics

Yanmin Hu and Anthony Coates

Contents

1 Nonmultiplying Bacteria and Persisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1.1 Nonmultiplying Stationary-Phase Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

1.2 Biofilms: Another Form of Nonmultiplying Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

1.3 Persisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1.4 Dormant Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2 Clinical Importance of Persistent Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Persistent M. tuberculosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.1 Different Populations of M. tuberculosis in Human Lesions . . . . . . . . . . . . . . . . . . . . . . . 107

3.2 Dormant M. tuberculosis in Animal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Subpopulations of Nonmultiplying M. tuberculosis In Vitro . . . . . . . . . . . . . . . . . . . . . . . 108

4 Antibiotics Kill Nonmultiplying Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1 Bactericidal and Sterilizing Antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Antimicrobials Targeting Cell Membrane and Cell Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Antipersister Formation and Waking up Dormancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Abstract Bacteria survive treatments with antimicrobial agents; they achieve this

in two ways. Firstly, bacteria quickly become tolerant to these agents. This toler-

ance is temporary, reversible, and associated with slowing of the multiplication

rate. Secondly, bacteria can undergo genetic mutations leading to permanent clonal

resistance to antimicrobial agents. In patients with infections, nonmultiplying

bacteria, some of which may be viable but nonculturable, exist side by side with

multiplying bacteria. Current antibiotics capable of killing actively multiplying

bacteria have very limited or no effect against nonmultiplying bacteria. Treatment
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of such infections requires a regimen of multiple antimicrobial agents in order to

control nonmultiplying persistent bacteria. This is especially important in tubercu-

losis where there is co-existence of slowly multiplying tolerant bacteria with fast

growing sensitive organisms. For this reason, a prolonged length of chemotherapy,

lasting 6 months, is necessary to achieve cure. This long duration of treatment is due

to the slow, inadequate effect of antibiotics on nonmultiplying persistent bacteria.

Similar problems with eradication of persistent bacteria are evident in the treatment

of biofilms. These bacteria serve as a pool for recurrent infections. Extended

courses of antibiotics increase the likelihood of genetic resistance, raise the cost

of treatments, and lead to more side effects.

Keywords Antibiotic tolerance • Nonmultiplying bacteria • Stationary phase •

Persisters • Dormant bacteria

1 Nonmultiplying Bacteria and Persisters

In modern medicine, antibiotics are important in the fight against infections (Ball

et al. 2004) such as bacteremia (Austrian and Gold 1964) and tuberculosis (Dineeen

et al. 1976) which used to have a poor survival rate. Today, bacterial resistance to

antimicrobial agents is emerging at a rate which outpaces the discovery of new

antibiotics (Vashishtha 2010) and multiple-drug-resistant (MDR) bacterial

pathogens (Gootz 2010) are common. This resistance profile is due to genomic

modifications of bacteria by point mutations and horizontal gene transfer which

lead to permanent clonal resistance to antimicrobial agents. There is another

mechanism of antibiotic resistance or tolerance which is primarily dependent on

the bacterial physiological state. The efficacy of the majority of antibiotics depends

on the target bacteria exhibiting a high level of metabolic activity. However, once

growth rate of bacteria slows down, they become insensitive to antibiotic treatment.

In infectious diseases, slow or nonmultiplying tolerant bacteria coexist with fast

growing sensitive organisms (Seguin et al. 2003). Antibiotics are capable of killing

actively multiplying bacteria, but are almost always only partially active against

slowly multiplying, or are inactive against nonmultiplying persistent bacteria (Hu

et al. 2010; Coates and Hu 2006; Hu and Coates 2005). Also more than 60% of all

microbial infections are caused by nonmultiplying bacteria such as those present in

biofilms (Lewis 2001). The persistent bacteria are responsible for recurrent

infections as seen in tuberculosis. With the currently available antibiotics, most

persistent infections cannot be eradicated and are therefore associated with poor

clinical outcomes (Kyd et al. 2011; Wood and Douglas 2010). Antibiotic tolerance

is an important problem in patients with infections because prolonged treatment

with multiple doses of antimicrobial agents is required for most bacterial infections.

Compared to shorter courses with a single agent, this prolonged treatment with

multiple antibiotic regimens can increase the frequency of genetic resistance

associated with poor patient compliance (Coates and Hu 2006; Pechere et al.

2007), increase the cost of the treatment, and cause more side effects.

100 Y. Hu and A. Coates



1.1 Nonmultiplying Stationary-Phase Bacteria

Bacteria grow and divide exponentially in cell suspension when growth conditions

are favorable. If a certain nutrient in a medium is reduced below a threshold level, it

halts key metabolic processes, such as DNA replication, and growth is arrested

(Navarro Llorens et al. 2010). In order to survive nutrient deprivation, the bacteria

are able to make an orderly transition from exponential growth phase to stationary

phase. Cells in stationary-phase culture can survive long periods of starvation (Hu

and Coates 2005) in the nonmultiplying stage (Roostalu et al. 2008). The stationary-
phase nonmultiplying bacteria are able to resume growth rapidly when nutrients

again become available (Siegele and Kolter 1992, 1993). Kolter et al. (1993)

reported that entry into stationary phase involves a process of transition which

starts at a time point in the exponential phase when DNA, proteins, and total cell

mass stop increasing and continues until no further increase in cell numbers is

detected. Cells are then in the stationary phase. Many factors can be responsible for

this phenomenon. The most clearly defined one is starvation for a single nutrient

required for growth. Some bacteria form endospores and myxospores in response to

starvation (Kaiser 1986; Losick et al. 1986), but most bacterial species do not

generate such differentiated cells. Only nondifferentiating bacteria are discussed in

this chapter.

The stationary-phase response gives rise to dramatic changes in cell morphology,

physiology, and gene expression (Smith 1995; Wortinger et al. 1998; Navarro Llorens
et al. 2010). Lange and Hengge-Aronis examined Escherichia coli cells by light

microscopy (Lange and Hengge-Aronis 1991). They found that E. coli cells became

much smaller and almost spherical by reductive division when they entered into

stationary phase. Some bacteria greatly reduce their size during starvation and form

ultramicrocells which are less than 0.4 mm in diameter (Yourassowsky et al. 1979; Lee

and Veeranagouda 2009). Changes in chromosomal topology accompanied with

reduced cell division were also observed. After a few hours in stationary phase, changes

in the negative superhelical density of plasmids can be detected in E. coli (Balke and
Gralla 1987). The stationary-phase cultures of S. aureus produce small-colony variants

(Fig. 1) which are very tolerant to antibiotics and are responsible for recurrent

infections in humans (Proctor et al. 1998, 2006; Singh et al. 2009).

The changes in cell envelope and cell membrane of starved cells mirror those

which insulate and protect bacteria from stress (Martinez-Rodriguez and Mackey

2005; Siegele and Kolter 1992; Tuomanen and Tomasz 1990). For example, many

stationary-phase marine bacteria coat their surfaces with hydrophobic materials that

lead to cell adhesion and aggregation. Alterations in membrane composition such as

fatty acids result in less fluid and less permeable membranes (Siegele and Kolter

1992; Cronan 1968).

As bacteria enter into stationary phase, their overall metabolic rate decreases but

a low level of endogenous metabolism is retained (Hu et al. 2000), which enables

the bacteria to take substrates into the cell during starvation and resume growth

when nutrients become available (Siegele and Kolter 1992). At the same time
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stationary-phase bacteria synthesize and accumulate storage compounds, such as

glycogen and polyphosphates and protective substances, such as trehalose (Hengge-

Aronis et al. 1991).

Stationary-phase bacteria are more resistant to stress conditions such as heat

shock, osmotic challenge, acidic and oxidative stress than exponential-phase bac-

teria (Soares et al. 2010; Hengge-Aronis 1993; Jenkins et al. 1988, 1990; Cornet
et al. 2010; Davis et al. 1996; Steels et al. 1994; Arnold and Kaspar 1995; Navarro

Llorens et al. 2010; Zech et al. 2009). Particularly, stationary-phase bacteria are

insensitive to conventional antibiotic treatment and can only be killed by multiple

doses of antibiotics at high concentration (McLeod and Spector 1996; Tuomanen

and Tomasz 1990; Hu et al. 2000; Dorr et al. 2009). This is called antibiotic

indifference (Jayaraman 2008).

1.2 Biofilms: Another Form of Nonmultiplying Bacteria

In nature, apart from growing in a planktonic form which is suspended or growing

in a fluid environment, bacteria will also grow on surfaces to form biofilms

(Trautner and Darouiche 2004). A biofilm is highly organized. It is a compact

multicellular community which is on a liquid–surface interface and is embedded in

a self-produced exopolysaccharide matrix. Multiplying cells occur superficially and

slow or nonmultipliers live in the deeper layers. Biofilm formation is an inevitable

key step in the life cycle of most microorganisms and found on many biological and

nonbiological surfaces. They are associated with many infectious diseases, such as

infective endocarditis, chronic skin wounds, osteomyelitis, dental plaques, infective

cystic fibrosis, and infections due to indwelling medical devices such as catheters,

prosthetic heart valves, and shunts (Fux et al. 2005; Mittal et al. 2009). Antibiotic

therapy of infections which are associated with biofilms often lead to a poor clinical

Fig. 1 Colony morphology of S. aureus in stationary-phase cultures. S. aureuswas grown in broth
culture for 6 days. The stationary-phase culture was diluted and plated onto a nutrient agar plate.

There are many small colony variants formed in the stationary-phase culture indicated by the

arrow (a) compared to the colonies formed by an exponential growth phase culture (b)
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outcome, because the bacteria within the biofilms are extremely tolerant to antimi-

crobial agents (Lewis 2008). Successful treatment of biofilm-associated diseases

requires multiple doses of high concentration antibiotic regimens or the removal of

foreign body devices (Trautner and Darouiche 2004). Bacteria within biofilms are

not genetically resistant strains per say. When the same cells are spread out and re-

cultured in a planktonic culture, they retain sensitivity to the antibiotics (Spoering

and Lewis 2001). The physiological states of the bacteria in the depth of a biofilm

are very similar to those in stationary-phase planktonic culture. They are induced by

nutrient starvation, high density of cell population, and accumulation of metabolic

waste (Spoering and Lewis 2001; Fux et al. 2005). Biofilms are resistant to

environmental stresses such as altered pH, osmolarity, and nutrient limitation.

Furthermore, biofilm formation enables the bacteria to become resistant to host

immune defenses (Vuong et al. 2004; Fux et al. 2005).

It has been suggested that biofilm tolerance to antibiotics and host immunity is due

to the following (Lewis 2001; Fux et al. 2005): Firstly, slimematrix limits penetration

of the antibiotic (Renslow et al. 2010). The exopolysaccharide matrix in which

bacteria are embedded plays a key role in preventing large or small antimicrobial

agents from binding to and penetrating into a biofilm. The slime matrix also protects

bacteria from being engulfed during phagocytosis (Rohde et al. 2005; Vuong et al.

2004) and enhances bacterial virulence (Begun et al. 2007). Antibodies bind to the

matrix and are not able to penetrate into bioflims (de Beer et al. 1997). Bacterial
proteins in the biofilm matrix render them more resistant to attacks by complement

(Simmons and Dybvig 2007). The exopolysaccharide matrix is likely to prevent

smaller antibiotics, such as glycopeptides, crossing the diffusion barrier (Lewis

2001; Singh et al. 2010). In addition, the negatively charged exopolysaccharide

binds to the positively charged antibiotics such as aminoglycosides, which effectively

blocks antibiotic activity (Walters et al. 2003). Secondly, different physiological

states of bacteria determine antibiotic tolerance. Biofilm formation undergoes highly

regulated processes including surface attachment, cellular proliferation by cell–cell

interactions, maturation by producing matrix, antibiotic tolerance development and

detachment which results in bacteria regaining planktonic growth mode (O’Toole

et al. 2000). In the early stage of biofilm formation, when bacteria are actively

replicating, the cells are sensitive to eradication by antimicrobial agents (Gunther

et al. 2009). In a mature bioflim, bacteria slow down or terminate replication and

become tolerant to antibiotics. A small proportion of nonmultiplying bacteria in a

biofilm cannot be eradicated by any antimicrobial agents and human immune clear-

ance (Lewis 2008). Once the antimicrobial agents become unavailable, these persis-

tent bacteria reform the biofilm and this leads to the relapse of infection.

1.3 Persisters

In the 1940s, Bigger (Bigger 1944) noticed that a culture of S. aureus could not

be completely killed by penicillin, even at high concentration. He called these

surviving bacterial cells “persisters.” Persistent cells are also present in the
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populations of “old” stationary-phase bacteria in batch cultures (Kaprelyants and

Kell 1993; Kaprelyants et al. 1993). Old persisters can survive for a long time—it

has been demonstrated that a 38-year-old stationary-phase E. coli culture

contained more than 105 viable bacteria/ml in the nonmultiplying persistent stage

(Eisenstark et al. 1992). Generally, persistent bacteria can be isolated by antibiotic

treatment which eliminates the multiplying bacterial population (Hu et al. 2000).

Persisters can be found in exponential growth culture ofE. coli (Balaban et al. 2004),
and this has been observed in single cells using a microfluidic device. So, persisters

preexist the addition of an antibiotic to a culture and are not actually produced by

such treatment. The proportion of the persistent bacteria increases upon entry into

stationary phase and during biofilm formation. Persisters are nonmultiplying

(Roostalu et al. 2008) and constitute 1% of the bacterial population in stationary-

phase cultures and biofilms (Shah et al. 2006; Balaban et al. 2004; Spoering and

Lewis 2001). These persisters are not genetically modified mutants, but are transient

phenotypic variants of their parental population (Wiuff et al. 2005). They are

profoundly tolerant to most marketed antibiotics (Wiuff et al. 2005; Hu et al.

2010; Keren et al. 2004a, b). If E. coli or S. aureus cells in a late stationary-phase

culture are resuspended in phosphate buffered saline, the nonmultiplying persistent

bacteria are very tolerant to high doses of the current antibiotics (Hu et al. 2010) as

seen in Fig 2. After removal of antibiotic pressure, the small fraction of the persistent

cells restore growth and become sensitive to antibiotics again (Bigger 1944).
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Fig. 2 Activities of currently marketed antibiotics against stationary-phase nonmultiplying

S. aureus. The 6-day stationary-phase culture was incubated with augmentin (amoxicillin/

clavulanate), azithromycin, levofloxacin, linezolid, and mupirocin at 100 mg/ml for 24 h. Viability

of the bacteria was determined by colony forming unit counts. There were no antimicrobial

activities observed against the stationary-phase nonmultiplying bacteria for any the tested

antibiotics
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1.4 Dormant Bacteria

A number of studies have indicated that there is a subgroup of dormant microbes

among nonsporulating bacterial species which are unable to divide or form colonies

on agar plates but are able to produce daughter cells under appropriate conditions

(Kaprelyants et al. 1993). They are formed as a result of adaptation to starvation or

other unfavorable conditions. The term “viable but nonculturable” (VBNC) was

introduced by Colwell et al. (1985) and includes the dormant bacteria which are

present in populations of some Gram-negative bacteria such as E. coli (Darcan et al.
2009), Salmonella (Turner et al. 2000), and Vibrio spp. (Chaiyanan et al. 2007;

Baffone et al. 2003) starved in an aquatic environment. VBNC cells are also evident

in many human pathogens such as S. enteritidis, V. cholerase, Shigella sonnei,
S. flexneri (Colwell et al. 1985; Roszak et al. 1984), Listeria monocytogenes
(Lindback et al. 2010; Cappelier et al. 2005, 2007), Enterococcus spp. (Lleo et al.

2001), Campylobacter jejuni (Jackson et al. 2009; Klancnik et al. 2009; Baffone

et al. 2006), Helicobacter pylori (Saito et al. 2003), Staphylococcus aureus
(Masmoudi et al. 2010),Mycobacterium tuberculosis (Hu et al. 2000), and Pseudo-
monas aeruginosa (Moore et al. 2007).

VBNC cells are usually smaller than the normal cells (Roszak and Colwell

1987). Torrellar and Morita (1981) observed very small cells of marine bacteria

(ultramicrocells) which had reduced growth rates. Nilsson and colleagues (1991)

also found that nonculturable V. vulnificus formed small cocci of 1.0 mm in

diameter. In contrast, their rod-shaped (3.0 mm in length) vegetative cells are

much larger. In general, most ultramicrobacteria of marine bacteria are unable to

form colonies on agar plates (Morita 1988) but can exist as VBNCs. These cells still

exhibit low metabolic activity (Barcina et al. 1989). Also, it has been found that

Gram-negative and Gram-positive VBNC cells alter their cell wall components

which results in robust resistance to environmental stress (Signoretto et al. 2000,

2002; Costa et al. 1999). VBNC cells can be resuscitated. Successful in vitro

resuscitation and growth of S. enteritidis has been reported by Roszak et al.

(1984). After addition of nutrients to microcosms (sterile river water cultures) for

25 h, the nonculturable cells produce colonies on solid agar plates.

2 Clinical Importance of Persistent Bacteria

Persistent bacteria including the VBNC forms are present in many chronic human

infectious diseases (Rihl et al. 2006; Coates et al. 2008). Although persisters such as

VBNC bacteria cannot cause overt disease, they form an important reservoir of

latent survivors and are responsible for persistent and recurrent infections

(Velazquez and Feirtag 1999). Persistent infections almost always need multiple

antibiotic regimens and long periods of treatment (El Solh et al. 2008). As these

persistent bacteria are nonmultiplying and cannot be cultured by traditional
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microbiological methods, it has proved to be difficult to detect the presence of these

populations in an infection (Lleo et al. 2007; Signoretto et al. 2004). Persisters

retain their pathogenicity as evidenced by maintaining their ability to adhere to

human tissues and to produce toxins (Oliver 1995; Fischer-Le Saux et al. 2002;

Pruzzo et al. 2002, 2003; Pommepuy et al. 1996). In chronic urinary tract infections

(UTIs), a nonculturable form of E. coli with a round shape has been detected in

bladder epithelial cells, and this may serve as a pool for recurrent UTIs (Anderson

et al. 2003, 2004; Rivers and Steck 2001; Mulvey et al. 2001). Persistent bacteria

which are present in UTIs are extremely tolerant to the highest achievable serum

concentrations of all antibiotics commonly prescribed for this disease (Seguin et al.

2003). This means that eradication of persisters needs long-term antibiotic treat-

ment, and under certain circumstances, such as catheter-associated infections,

persisters cannot be eradicated by antibiotics at all, so the infected catheter has to

be physically removed from the patient. This situation also applies to many other

implant-associated infections. It has also been found that VBNCH. pylori is present
in the gastric mucosa. These bacteria change shape from vegetative rods to an

unusual round form (Kusters et al. 2006). Reactive arthritis is associated with

bacterial infections which are caused by pathogens such as Chlamydia spp., Salmo-
nella spp., Yersinia spp., Shigella spp., Campylobacter spp., and Clostridium spp. It

is believed that there may be small numbers of VBNC persisters present in the joint.

These bacteria cannot be cultured from synovial specimens, but their existence can

be confirmed by the presence of bacterial antigens which are synthesized by

metabolically active bacteria (Colmegna et al. 2004; Rihl et al. 2006). Prolonged

antibiotic therapy of 12–50 weeks duration is required to cure the disease (Rihl et al.

2006) due to these persistent nonculturable bacteria.

3 Persistent M. tuberculosis

One of the most important characteristics of M. tuberculosis in the pathogenesis of

the disease is its ability to persist in human tissue for the life span of the human host.

During M. tuberculosis infection, the acquired immune response inhibits the repli-

cation of tubercle bacilli, but not all bacilli are destroyed. A small proportion of the

bacilli remain in a dormant or persistent form (Dannebery and Rook 1994) causing

latent infections. Dormant M. tuberculosis is important not only because it can

survive attacks by the immune response but also because, when compared to

actively growing bacteria, it is more tolerant to antibacterial agents. This means

prolonged chemotherapy for 6 months is required to produce a cure (Mitchison

2004). These persistent bacteria are usually drug sensitive at relapse, so their

resistance to chemotherapy is phenotypic tolerance (Hu et al. 2000) rather than

genetic mutation. It is suggested that an altered physiological state of persistent

M. tuberculosis accounts for its tolerance to drugs as well as the ability to survive in
the host for many years. Persistence is likely to be a combined effect of both the

immune system and bacterial physiology, resulting in what is generally referred to

as a dormant or a latent state (Bloom and McKinney 1999).
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3.1 Different Populations of M. tuberculosis in Human Lesions

It has been suggested (Mitchison 1979) that there are four different components of the

bacterial population in tuberculosis lesions. As shown in Fig. 3, the majority of bacilli

in the lesions of an untreated patient with tuberculosis are actively multiplying,

probably at a rate similar to that in a log phase culture (population A). These bacilli

may be present in the lining of open cavities with an abundant of oxygen supply,

which favors the bacilli to grow rapidly. There is also a small proportion of dormant

bacilli (population D) whose metabolism and growth is almost completely inhibited

by an unfavorable environment, such as in closed lesions where oxygen becomes

unavailable. In addition there are semidormant bacilli: Population B consists of those

organisms which are inhibited by an acid environment, such as in early acute

inflammatory lesions or within the phagolysosomes of macrophages. Population C

is assumed to be those bacilli which contain brief or intermittent metabolic activity.

3.2 Dormant M. tuberculosis in Animal Models

The existence of dormant or persistent M. tuberculosis after chemotherapy was

shown for the first time in an animal model by McCune and colleagues more than

half century ago (McCune and Tompsett 1956; McCune et al. 1966b). The “Cornell
model” which was named after Cornell University where the work was performed

is considered to be the most useful model for demonstrating and studying myco-

bacterial dormancy. In this model, a large number of mice are infected

Isoniazid

Pyrazinamide Rifampicin

High

Speed of
bacterial
growth

Low

A

Actively 
multiplying

B 
Acid 
inhibition

C 
Low or 
intermediate 
metabolism

D
Dormant

Fig. 3 Hypothesis of special

populations of tubercle bacilli

within lesions killed by the

bactericidal and sterilizing

drugs (Mitchison 1979)
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intravenously with 105–106 CFU ofM. tuberculosisH37Rv. Therapy with isoniazid
and pyrazinamide for 12 weeks is started immediately after infection. After termi-

nation of treatment, a “sterile” state is achieved. At this stage, no tubercle bacilli are

detected from homogenates of lungs or spleens of the mice by bacteriological

culture and microscopy. However, the disappearance of the bacilli does not mean

that the organisms have been eliminated from the tissues. About 3 months after the

end of drug treatment, culturable bacilli are detected from about one-third of the

mice. The reappearance of the tubercle bacilli in another two-thirds of the animals

occurs within 9 months after termination of the chemotherapy. Administration of

large doses of cortisone, which suppresses the immune system of the mice,

accelerates the reactivation of the tubercle bacilli. The persistence of the tubercle

bacilli after 12 weeks of chemotherapy is not due to the emergence of drug-resistant

mutants since the bacilli which are recovered from the mice remain essentially drug

sensitive (McCune et al. 1956). Some similar studies were performed later with a

combination of isoniazid and rifampicin. Isoniazid and rifampicin in combination

were given to M. tuberculosis infected mice for 12 months. A high relapse rate of

60% was observed by giving the mice 2 months of high dose of cortisone (Grosset

1978). The original Cornell model and the later studies show that human tubercu-

losis can be converted from active disease to a latent infection with chemotherapy.

The dormant bacilli which survive the drug treatment can be reactivated and can

cause active disease later in life. So, latent infection in animal models is

characterized by the presence of the tubercle bacilli which cannot be detected by

microscopy or by culture and can only be demonstrated by the emergence of active

disease (McCune et al. 1966a).

3.3 Subpopulations of Nonmultiplying M. tuberculosis In Vitro

Subpopulations of nonmultiplying bacteria have been modeled in experimental

cultures. M. tuberculosis is allowed to grow in a culture without agitation. The

initial growth of bacilli occurs at an exponential rate with a doubling time of

16–18 h (population A) until the cell density reaches 4 � 108 CFU/ml. At this

stage, dissolved oxygen becomes limiting, and the growth rate decreases while the

bacilli settle to the bottom of the container (Wayne 1976, 1994). The organisms in

the sediment adapt to microaerophilic conditions and enter a homogenous physio-

logical state of dormancy. The bacilli in the deposit of the settling culture can

persist for long periods after transfer to anaerobic conditions (Wayne 1977). When

an old, micro-aerophilically adapted culture is treated with a high dose of rifampi-

cin, the antibiotic kills most of the bacilli which actively replicate (A) or shows

intermittent metabolic activity (population B and C), but fails to remove a small

proportion of a bacterial population (D) (Hu et al. 2000) which are rifampicin

tolerant persisters. These persisters rapidly lose the ability to grow on solid medium
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plates, but are alive and able to grow in liquid medium which contains no rifampicin

(Hu et al. 2000). In such liquid subcultures, they regain the ability to grow on plates

after 7 days of incubation and are then fully susceptible to rifampicin. During

chemotherapy with rifampicin, tolerant bacilli that persist during treatment with

rifampicin are likely to be the most difficult to kill, so that the in vitro models should

reflect the likely sterilizing activity during human treatment of the drug under test,

in combination with rifampicin.

4 Antibiotics Kill Nonmultiplying Bacteria

4.1 Bactericidal and Sterilizing Antibiotics

Currently, although certain antibiotics are capable of killing nonmultiplying bacte-

ria, a very limited number of antibiotics can kill persistent or dormant bacteria. It is

well established that antibiotics are ineffective against bacteria whose growth or

metabolic activity has been almost completely inhibited. For example, antibiotics in

the penicillin family such as penicillin, ampicillin, and amoxicillin only kill rapidly

growing cells, but are ineffective against nonmultiplying cells. Although some of

the antibiotics such as aminoglycosides and fluoroquinolone have activities against

nongrowing bacteria such as those in biofilms, they are more effective in killing

growing bacteria. In tuberculosis, antituberculous drugs have been shown to be both

bactericidal and sterilizing (Fig. 3). Bactericidal activity of a drug is defined as the

ability to kill rapidly replicating bacilli (population A) and is mostly effective at the

beginning of treatment, such as isoniazid. The sterilizing activity of drugs such as

rifampicin and pyrazinamide depends on their ability to kill semidormant bacilli

(population B and C) which can persist for long periods during chemotherapy and

give rise to relapses. Sterilizing activity may start early in treatment but is more

evident in the later stages of treatment after bactericidal activity has declined

(Mitchison and Fourie 2010). The sterilizing activity of drugs is of great clinical

importance, since it determines the length of the chemotherapy. Neither bacteri-

cidal nor sterilizing drugs are currently available to kill the population D of dormant

bacilli. The success of a combination of isoniazid, rifampicin, streptomycin, and

pyraziamide or some other drugs in the short-course chemotherapy lies in their

capacity to attack the semidormant as well as the actively replicating bacilli. In a

nonmultiplying culture of M. tuberculosis, addition of fluoroquinolones such as

moxifloxacin and gatifloxacin to the drug regimen of isoniazid, rifampicin, and

pyraziamide reduces the numbers of persisters (Hu et al. 2003, 2006a). This

indicates a need for new antibiotics which target nonmultiplying bacteria (Coates

and Hu 2006, 2008) in order to shorten the length of chemotherapy.
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4.2 Antimicrobials Targeting Cell Membrane and Cell Wall

There is growing evidence indicating that antimicrobial drugs against

nonmultiplying bacteria are likely to target the bacterial cell membrane (Hurdle

et al. 2011). The recently approved lipopeptide antibiotic, daptomycin, exhibits

activity against stationary-phase nonmultiplying bacteria (Mascio et al. 2007). The

mode of action of this drug is associated with modification of cell membrane

potential by depolarization of the bacterial membrane (Silverman et al. 2003).

Telavancin is a lipoglycopeptide derivative of vancomycin. Its mechanism of

bactericidal action against nonmultiplying bacteria (Gander et al. 2005) is depen-

dent on its ability to depolarize the bacterial cell membrane and to increase

membrane permeability as well as inhibiting cell wall synthesis (Lunde et al.

2009; Nannini et al. 2010; Higgins et al. 2005). There are some antimicrobial

drugs either in preclinical or clinical development targeting bacterial cell mem-

brane or cell walls. For example, other lipoglycopeptide antibiotics such as

oritavancin and dalbavancin are able to kill nonmultiplying S. aureus in

stationary-phase cultures and biofilms (Belley et al. 2009; Darouiche and Mansouri

2005). The mechanism of action is to disrupt membrane potentials and to enhance

the permeability of cell membranes (Belley et al. 2009). A small quinoline-derived

compound HT61 was developed in an antibiotic discovery program which targets

nonmultiplying bacteria from the onset of antibiotic development process (Hu et al.

2010). This is the first time that nonmultiplying cells have been targeted during the

initial phases of antibiotic discovery. HT61 is very potent against nonmultiplying

Gram-positive bacteria, including those that are methicillin sensitive and resistant,

as well as Panton-Valentine leukocidin-carrying S. aureus. It also kills mupirocin-

resistant MRSA. The action of the drug is fast, showing a complete kill within

0.5–1 h (Fig. 4). The mechanism of action of the drug is depolarization of the cell

membrane and destruction of the cell wall (Hu et al. 2010). HT61 is in clinical trials
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with aim of decolonizing the nose of S. aureus including MRSA. Other examples of

these membrane acting drugs are XF-70 and XF-73, which are porphyrin-derived

compounds (Ooi et al. 2009). XF-70 and XF-73 show significant potency against

nonmultiplying or slowly multiplying bacteria (Ooi et al. 2010). Ceragenins such as

CSA-13 are derived from bile acid which kills bacteria by depolarization of

bacterial cell membrane (Epand et al. 2010).

Potential advantages of these membrane targeting antibiotics are firstly, they are

not only active against actively multiplying bacterial but most importantly they are

active against nonmultiplying bacteria. Treatment using single-drug regimens may

remove all populations of bacteria in different physiological states which may lead

to shortened or efficient antibiotic therapy. Secondly, experimental data

demonstrates that there is a very low frequency of resistance development (Van

Bambeke et al. 2008; Hu et al. 2010) against this class of antibiotics. After 50

passages of S. aureus with sub-MIC concentrations of HT61, no HT61 resistant

strains were selected (Hu et al. 2010). The cell membrane is essential. In order for

bacteria to develop resistance to membrane active drugs, they need to modify the

charges on their membrane lipids or cell membrane components. This almost

always leads to death (Van Bambeke et al. 2008). Thirdly, membrane active agents

normally possess rapid bactericidal activities (Hu et al. 2010) which remove the

persistent bacteria prior to the drug serum level dropping below their therapeutic

concentrations. In other words, these agents destroy the bacteria before resistance

has a chance to occur. Mutations which are capable of conferring drug resistance

cannot occur in dead bacteria.

4.3 Antipersister Formation and Waking up Dormancy

The presence of persisters in human infections is the main reason for prolonged

antibiotic treatment and recurrent infection. The mechanisms in which a bacterial

community forms persisters are largely unknown. Obviously, a global metabolic

shut down and a program of differential gene expression play very important roles.

Protein and RNA synthesis associated with stationary phase has been intensively

studied in bacteria such as E. coli, S. typhimurium, and M. tuberculosis (Hu et al.
1998; Ward et al. 2010; Soares et al. 2010; Chaussee et al. 2008; Spector and Cubitt
1992; Spector et al. 1988). The stationary-phase response involves the synthesis of
a characteristic set of proteins (Dong and Schellhorn 2009) which is accompanied

by a gradual decrease in total protein synthesis (Groat et al. 1986; Hu et al. 1998).

Most of these proteins are unique to stationary phase (De Groote et al. 2009). This
essential de novo protein synthesis, accompanied by the metabolic shutdown,

affords the bacteria a remarkable degree of resistance to many stress conditions.

Furthermore, these processes enable the bacteria to withstand prolonged periods of
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stationary phase. Using transposon mutagenesis to search for persistent genes, it has

been demonstrated that an intergenic region of E. coli genome is responsible for the

persisters’ tolerance to high dose antibiotics (Hu and Coates 2005). In M. tubercu-
losis, genes which control bacterial growth have been found (Hu et al. 2006b; Parish
et al. 2003). hspX gene which encodes an alpha-crystallin-like protein acts as a

growth suppresser (Hu et al. 2006b; Stewart et al. 2006). Deletion of the gene

results in a hyper-virulent mutant which grows faster than its parental strain (Hu

et al. 2006b). This indicates that if the hspX gene product was inhibited by targeting

with novel drugs, it might be possible to prevent the transition of the bacilli from

log-phase growth to the nonmultiplying stage or reduce the speed of growth

shifting. If persisters no longer existed or are formed at a significantly reduced

speed, conventional antibiotics could be more effective.

VBNC cells can be resuscitated to normal vegetative cells when growth

conditions become favorable again. Also bacterial cells are capable of producing

growth promoting factors or resuscitation promoting factors such as proteins which

stimulate the VBNC cells to regain growth (Mukamolova et al. 1998). If dormant

bacteria in human infection can be woken up on a regular basis followed by

treatments with the current antibiotic arsenal, it might be possible to effectively

achieve complete sterilization and shorten the duration of chemotherapy.

5 Conclusion

Nonmultiplying persistent bacteria were discovered more than 67 years ago. It is

commonly accepted that after initial exponential growth in nutrient-rich conditions,

bacteria slow their metabolic activities and gradually reach a nonmultiplying stage.

When bacteria grow on a solid surface, the growth mimics the profiles of planktonic

culture except that biofilms are formed with a self-generated matrix.

Nonmultiplying persisters, for example, VBNC cells are present in both planktonic

cultures and biofilms and are also present in almost all bacterial infections. The

clinical significance of these persisters is that they are profoundly tolerant to

antibiotics, which leads to the need to prolong the duration of antibiotic therapy,

to use high doses and to employ drug combinations. It is therefore critically

important to search for antimicrobials which target nonmultiplying persisters. The

most promising antibiotics discovered to date are those acting on structures such as

the cell membrane or cell wall. Also, using novel agents to slow down persister

formation or waking up dormant cells will be beneficial to potentiate the activities

of current antibiotics. In addition, combination therapy with bactericidal and

sterilizing antibiotics such as tuberculosis treatment may be able to achieve shorter

and more effective antibiotic therapy with improved clinical outcomes and better

patient compliance.
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