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Abstract. A model of agency that supposes goals are either achieved
fully or not achieved at all can be a poor approximation of scenarios aris-
ing from the real world. In real domains of application, goals are achieved
over time. At any point, a goal has reached a certain level of satisfac-
tion, from nothing to full (completely achieved). This paper presents an
abstract framework that can be taken as a basis for representing partial
goal satisfaction in an intelligent agent. The richer representation enables
agents to reason about partial satisfaction of the goals they are pursu-
ing or that they are considering. In contrast to prior work on partial
satisfaction in the agents literature which investigates partiality from a
logical perspective, we propose a higher-level framework based on metric
functions that represent, among other things, the progress that has been
made towards achieving a goal. We present an example to illustrate the
kinds of reasoning enabled on the basis of our framework for partial goal
satisfaction.

Categories and subject descriptors: I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents.

General terms: Design; Theory.

Keywords: goal reasoning, partial satisfaction, agent programming.

1 Introduction and Motivation

We begin from the observation that existing cognitive agent programming frame-
works (e.g., [35,4,10])—i.e., programming frameworks in which agents are en-
dowed with high-level mental attitudes such as beliefs and goals—take a ‘boolean’
perspective on goals: unless achieved completely, the agents have failed to achieve
them. Following Zhou et al. [37], we argue that many scenarios would benefit
from a more flexible framework in which agents can reason about partial goal
satisfaction. As others have recognized, it is important that agents can be pro-
grammed with this reasoning ability, because often it is not possible for an agent
to achieve a goal completely, in the context of all its commitments situated in
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the resource-bounded real world. A notion of partiality allows to express that
only part of the goal is achieved, and it facilitates, among other possibilities,
changing goals such that only a part has to be achieved.

While prior work proposes a logic-based characterization of partiality, in this
paper we aim for a general framework for partial goal satisfaction that also allows
quantitative notions of partiality. In particular, we propose a framework based
on metric functions that represent, among other things, the progress that has
been made towards achieving a goal. Agents rescuing civilians from a dangerous
area, for example, may have cleared none, some, or all of the area. Progress may
be expressed in terms of different kinds of metrics, such as utility, or in terms of a
logical characterization. This richer representation enables an agent or group of
agents to reason about partial satisfaction of the goals they are pursuing or that
they are considering. The more sophisticated behaviour that can result not only
reflects the behaviour expected in real scenarios, but can enable a greater total
level of goal achievement. For example, an agent might realize that it cannot
completely clear a sub-area and inform teammates of the situation; in turn, they
adjust their behaviour appropriately, e.g., by coming to assist.

This paper aims to further establish partial goal satisfaction as an important
topic of research, and to provide a step towards a metric-based approach that
also allows for quantitative notions of partial achievement. We discuss related
work and give an example scenario (Sections 2 and 3). Then, we develop an
abstract framework for partial goal satisfaction and identify progress appraisal
(the capability of an agent to assess how far along it is in achieving a goal [6])
and goal adaptation (the modification of a goal [20,27,37]) as the basic types
of reasoning that the framework should support (Sections 4 and 5). We sketch
how reasoning using partial goal satisfaction may be embedded into a concrete
computational framework using the example scenario (Section 6).

Although we provide an abstract framework rather than a concrete proposal
on how to embed partial goal satisfaction in cognitive agent programming frame-
works, we believe the proposed framework forms an important step towards this
aim by identifying the main ingredients that we believe should be part of a
framework for partial goal satisfaction. Through this, we lay foundations for fu-
ture work, which will address the important technical challenges that have to
be faced to concretize the framework and render it suitable for programming a
cognitive agent.

2 Background and Related Work

Before introducing a framework for partial goal satisfaction, we survey the sur-
rounding literature. In this section, we discuss several areas of research that are
related to partial goal satisfaction.

Goal representation. In cognitive agent programming, the concept of a goal
has received increasing attention in the past years. Different goal types have been
distinguished (see, e.g., [34,2] for a discussion), including achievement goals and
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maintenance goals. The former, which have received the most attention in the
literature, form the focus of this paper. In the literature, the focus of research
has been on declarative goals, i.e. goals that represent properties of states (goals-
to-be) [35,4,10]. We take the same perspective in this paper.

Achievement goals in logic-based cognitive agent programming languages are
often represented as a logical formula, expressing a property of the state of the
multi-agent system that the agent should try to achieve [35,36,4,34,10]. The
agent considers the goal to be achieved, if it believes a state has been reached in
which the formula is satisfied, according to the semantics of the logic employed.
This logic-based approach can induce a binary way of thinking about goals, in
which the goal is either achieved or not achieved. While we do not reject that
point of view, we suggest in this paper that a framework in which levels of goal
satisfaction can be represented enables several useful kinds of reasoning.

Partial achievement. The concept of partial achievement of a goal appears
in limited extents in the literature. Whereas goals in agent frameworks and
programming languages are not customarily defined to allow for partial satisfac-
tion, philosophically, Holton argues for the existence of “partial intentions” [13],
a concept spanning both desires and goals.

In the foundational work of Rao and Georgeff [23] an intention (goal) is
dropped if it is achieved, not desired, or now believed by the agent to be impos-
sible. Singh [29] drops a goal if another more important task arises. In these and
works that followed them, goal achievement remains a boolean concept.

Haddawy and Hanks made an early study [9], in which a function from propo-
sitions to a real number represents the degree of satisfaction of a goal. Indeed,
various authors have associated goals with a utility, priority, or preference, in
the agents literature (e.g., [15,11,18], among others) and in the AI planning lit-
erature (e.g., [5]), although usually for the purpose of deciding which goals to
prioritize or which subset to pursue, or which plan or action to select.

Zhou and Chen adopt instead a logical approach, defining a semantics for
partial implication of desirable propositions from a symbolic point of view [36].
Zhou et al. [37] investigate partial goal satisfaction on the basis of this logical
semantics, viewing a goal as achieved when a (possibly disjunctive) proposition
is achieved according to the logic. They examine in particular application of
different notions of partial implication to goal modification in the context of belief
change. Although recognizing its value, we do not approach partial satisfaction
viewing goals as logical formulas to be achieved. We discuss the relationship
between the approaches later.

While van der Hoek et al. [33] explore a related concept, in their logical
analysis of BDI intention revision, we aim for more a fine-grained and broader
concept. Morley et al. [21] investigate dynamic computation of resource estimates
as a partially-complete goal is executed. Again, the representation of a generic
concept of partial achievement is not the focus of their work.

Partial plans and goal/plan adaptation. There is a fair amount of work
on reasoning with partial plans, for instance in plan formation or negotiation
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(e.g., [20,7,17]), as well as in the AI planning literature (e.g., [30]). In the area
of multi-agent planning and negotiation, researchers have examined inter-agent
communication (e.g., about problems in goal achievement). Kamar et al., for
instance, investigate helpful assistance of teammates in pursuit of a plan that
could be partially complete [17], and Kamali et al. [16], for instance, investigate
information timing. Goal adaptation has received less attention than the concept
of goal or plan selection (e.g., [20]), or plan adaptation, the benefits of which are
well established [22].

3 Example Scenario

In this section, we illustrate by means of an extended example the benefits that
a framework for partial goal satisfaction may bring. The scenario is from the
domain of crisis management. An accident has occurred in a chemical plant and
hazardous chemicals have leaked into the area. The emergency response team
must prevent anyone from entering the vicinity of the plant, and evacuate those
who are currently in the area. A team of agents will execute a joint plan according
to their training. Securing the area is done by setting up road blocks on the three
main roads leading to the plant; the third road block can be installed in one of
two different places. The two houses within a 3 km radius of the plant must be
evacuated. The forest within the range of the chemical leak must be searched
and any people brought to safety.

Fig. 1 depicts a goal-plan tree (GPT) [32,3,21] for the emergency response
team in the scenario. A goal-plan tree consists of alternating layers of goal nodes
and plan nodes. Goals are depicted in rounded boxes, and plans in square boxes.
Goals descending from a plan node are conjunctive: all must be achieved for the
plan to be successful. An OR node indicates disjunctive subgoals: achievement
of any one renders the plan successful. Thus, the plan EstablishRoadblocks is
successful when goals rb1 and rb2 and at least one of rb3a and rb3b are achieved.
Primitive actions (leaf goal nodes) are depicted in italicized rounded boxes. The
numerical attributes on leaf nodes will be discussed later.

This scenario would benefit from agents being able to reason with partial goal
satisfaction. A basic type of reasoning is progress appraisal [6]. Progress appraisal
is the capability of an agent to assess how far along it is in achieving a goal, i.e.,
which part of a goal it has already achieved. In the scenario, for example, it
may be important for the commander to keep headquarters up-to-date on her
progress in setting up the road blocks.

Another, more advanced, type of reasoning with partial goal satisfaction is
goal negotiation, which has been identified as a key challenge for agents research
[19]. Assume, for example, that the team does not have enough members to
secure the area and evacuate the forest. The commander may engage in goal
negotiation with headquarters, to try to adapt the publicSafety goal so only the
part that is achievable for the team will have to be pursued. Note that the ability
to do goal adaptation is thus necessary in order to engage in goal negotiation. The
commander suggests to set up only road blocks 2 and 3. However, neglecting road
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Fig. 1. Goal-plan tree for the scenario

block 1 is not an option according to headquarters, since people may (re-)enter
the area, which would lead to a hazardous situation and further evacuation
duties. The latter decision is based on an analysis of the importance of achieving
the various subgoals. The commander agrees with headquarters that another
team will be sent to set up road block 1. Both goal negotiation and adaptation
thus require agents to reason about the parts of which a goal is composed.

These kinds of reasoning may occur not only before a goal is adopted, but
also during pursuit of a goal. For example, the commander may notice that
searching the forest is taking more time than expected, and the team will not be
able to search the entire forest before darkness sets in. Rather than abandoning
evacuateForest entirely because the goal cannot be achieved completely, the team
can perform an inferior search of it and achieve it only partially. A decision of
whether this is acceptable, or whether it would be better to abandon the forest
altogether, depends on an analysis the gains made by achieving the goal only
partially—which in this case might be substantial since any person brought to
safety is an accomplishment.

This paper provides a high-level framework for partial goal satisfaction that
allows a quantitative instantiation, aimed at enabling the kinds of reasoning such
as discussed above. After introducing the framework, we mention several other
kinds of reasoning that benefit from such a framework for partial satisfaction.
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4 Abstract Framework for Partial Goal Satisfaction

In this section, we define a new and abstract notion of goal, that allows the
expression of partial satisfaction (Section 4.1). We define notions that are fun-
damental to frameworks for goals, namely achievement and achievability, for our
new notion of goal (Section 4.2), and relate the new definition to the usual binary
definition of goal (Section 4.3).

4.1 Goal Template and Goal Instance

At the heart of conceptualizing partial goal satisfaction is identifying how to de-
fine partiality. For this, it is essential to define when a goal is achieved (satisfied
completely): we cannot define partiality without knowing what complete satis-
faction means. In pursuit of our interest in a quantitative framework, moreover,
one needs a metric in terms of which (complete) satisfaction is expressed. This
metric will be endowed with a partial ordering, to allow an agent to determine
whether a goal is getting closer to completion. We call such a metric the progress
metric of a goal, and denote it as a set A with partial order ≤.1

A goal specifies a minimum value amin ∈ A (called the completion value) that
should be reached in order to consider the goal to have been completely satisfied.
For example, the progress metric for the goal evacuateForest might be defined in
terms of time, where complete satisfaction is achieved when the forest has been
searched for two hours (until it gets dark); or the metric may be defined of a
(boolean) proposition such as isSearched(forest); or it may be defined in terms
of the number of subgoals achieved (e.g., searching tracks 1–3), where complete
satisfaction means that all tracks have been searched, etc.

Two notes are in order. First, a minimum value is specified since we define
achievement as the agent reaching at least this level of satisfaction (see below
for details). In some cases the agent may exceed the completion value, never
exactly attaining it—for example, if six people are estimated to be in the forest,
but really there are seven, and if the last two are found together as a pair, then
the attained progress metric value may jump from five to seven.

Second, we may wish to mandate that the partial order ≤ is total w.r.t. the
completion value amin , i.e., that any value a ∈ A can be compared with amin

according to ≤. This ensures that, if the agent can appraise the current attained
value of the progress metric, then it can compare that value with amin and
conclude whether or not the goal has been achieved. In our examples, ≤ will
typically be a total order, which automatically ensures amin is comparable with
all other values of A.

One may consider a wide range of domain-independent metrics, such as time
(where A may be a set of dates and times with associated order), utility (where
A may be the real numbers with the usual ordering), number of subgoals, be-
sides domain-dependent metrics such as number of road blocks or number
of people brought to safety (where A is the natural numbers). Besides
1 Combinations of metrics might be considered, but for simplicity, here we assume

quantities such as progress are defined in terms of a single metric.
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the metric chosen as the progress metric, the agent (or designer) might have
interest in others: e.g., progress may be defined in terms of tracks searched, but
time taken could be an additional relevant factor in the team’s decisions. An
avenue for future exploration is the relation between domain-independent and
domain-dependent metrics.

Progress appraisal. As seen earlier, a fundamental reasoning concerning par-
tial goal satisfaction is progress appraisal. An agent should thus be able to deter-
mine in a given situation where it is with respect to a progress metric (A,≤). For
example, if time is the metric, the agent needs to be able to determine how long
it has spent so far. In the case of time, the computation from the current state
to the time spent is relatively direct, assuming agents have access to a clock and
have recorded the start time. The computation may be more involved for other
metrics. In the case of utility, for example, more computation might be needed
to determine the current appraised value of utility in terms of other, measurable
quantities (i.e., other metrics besides the progress metric). However, in all cases,
an agent should be able to determine, given its beliefs about the current state,
at least an estimation of the value of the progress metric for a goal.

Formally, for a goal with progress metric (A,≤), we require an agent to have
for each goal a progress appraisal function φ : S → A, where S is the set of states
(i.e., world state and multi-agent system state), that associates states with the
(achieved) value of the progress metric in these states. In addition, in order to
allow determination of whether the completion value amin ∈ A is reachable given
the current state, we normally require the agent to have a progress upper bound
function φ̂ : S ×M → A that takes a state s ∈ S, and the means m ∈ M that
will be used for pursuing the goal, and yields (an estimation of) the maximum
value in A reachable from state s with means m.

The upper bound will enable reasoning about the achievability of a goal. The
function is called an upper bound function because we expect that in practice
it will be difficult to calculate exactly which value in A might be reached from
a certain state with a certain means. It is more practical to calculate an upper
bound on the attainable value. For example, for time remaining for the forest
paths yet to be searched, it may not be possible to precisely compute how many
more people will be found—due for instance to the uneven progress along the
trails, the movement of the civilians, and the fading daylight—but a reasonable
upper estimate is the total number of people thought to be in the vicinity.

Given such an upper bound (for the current state with the means that are to
be used to achieve the goal), the agent knows that it will not be possible to fully
achieve a goal if the completion value of the goal exceeds its upper bound. Note,
on the contrary, that the completion value being below the upper bound is no
guarantee that the goal will be fully achieved. In a more conservative approach,
a lower bound may be computed expressing the minimum achievable value in
A, in which case the agent would know that the goal is fully achievable if the
completion value is below the lower bound. As a further development, a combi-
nation of upper bound and lower bound may be used in the agent’s reasoning.
For simplicity, in this paper we consider only the upper bound function.
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In the abstract framework, we do not further detail the content of the set
of possible means M . The content of M will depend on the domain and the
concrete agent (programming) framework that is used. Typically, we envisage
that M will contain a description of plans and/or resources that can be used to
pursue the goal. Section 6 contains an example in which we use the goal-plan
tree to represent means.

Goal template. The functions φ and φ̂ now allow us to define a goal template.
The intuition is that each type of goal, such as secureArea or evacuateForest,
has an associated template. On the basis of a goal template, goal instances can
be created.

Definition 1 (goal template). Consider a multi-agent system (MAS) for
which the set of possible states is defined as S. Let A be a nonempty set with a
partial ordering ≤ (the progress metric), and let M be a set representing means
that can be used for achieving a goal. A goal template T is then defined as a
tuple 〈A,M, φ : S → A, φ̂ : S × M → A〉, where φ is the progress appraisal
function, and φ̂ is the progress upper bound function.

This notion of goal template may be simplified to consist of only A and φ,
if φ̂ cannot be provided in a certain case, i.e., when no sensible upper bound
can be specified for a goal. Alternatively, it may be extended in various ways.
First, the goal template itself may be parameterized to account for variants of
the template. For example, depending on the area that has to be secured, the
number of road blocks that have to be set up will differ, and this may influence
the definition of φ and φ̂. Second, one may want to define a goal template for
a single goal based on different progress metrics, allowing the agent to choose a
progress metric depending on circumstances. We can capture this most simply
by having two separate goal templates. Formally relating these templates (for
instance by making them siblings in a hierarchy of goal types) is an extension of
our basic framework. For reasons of simplicity and space, we leave the pursuit
of these extensions for future work.

In order to simplify definition and computation of φ and φ̂, these functions
may yield estimated values for progress appraisal and the upper bound. In en-
vironments that are not fully observable or that are open or dynamic, the agent
may not be able to compute precisely the functions. However, an agent must
be mindful of the potential adverse effects of estimation. In over-estimation of
φ̂ or under-estimation of φ, the agent would try to achieve a goal even though
it may be impossible to fully satisfy it, or it is already completely satisfied. On
the other hand, in under-estimation of φ̂ or over-estimation of φ the agent would
stop too soon.

While φ and φ̂ may thus yield estimated values, intuitively the agent should
estimate the progress upper bound in a state s ∈ S with means m to be at least
the current achieved satisfaction in that state. We call this coherency of a goal
template, and formally define it as ∀s ∈ S,m ∈M : φ̂(s,m) ≥ φ(s).
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To illustrate Def. 1, consider the goal secureArea of the example scenario.
In the scenario, the main resource (leaving aside time) is the number of police
officers P = {0, . . . , 10}. We base the progress metric for the goal on the number
of subgoals achieved, modulated by how well they are achieved. Namely, the
progress metric models the quality of achievement of each roadblock subgoal rbi.

Example 1. The goal template for secureArea is: Tsa = 〈R, P, φsa, φ̂sa〉. Thus,
the progress metric is A = R with its standard ≤ ordering. Arbitrarily, we
define φsa(s) to be 20 if all subgoals have been fully achieved in s (assuming
the agent can determine this in each state s), which means that road blocks
have been set up and at least one police officer guards each road block, 10 if all
road blocks have been set up but not all of them have at least one officer, and 0
otherwise. Let the means consist of p, the number of officers allocated. We define
φ̂sa(s, p) to be 20 iff the plan EstablishRoadblocks can be executed in s and it
is executed with at least 6 police officers, i.e., p ≥ 6, 10 if 1 ≤ p < 6 and the
plan can be executed successfully, and 0 otherwise. Computation of the upper
bound thus requires determining whether EstablishRoadblocks can be executed
successfully. This may be done by checking simply the precondition of the plan,
or by performing planning or lookahead (compare [3,12]).

A goal template specifies the progress appraisal and progress upper bound func-
tions. As already addressed above, the definition of a concrete goal includes the
specification of the completion value for the goal to specify when it is com-
pletely satisfied. In addition, the agent should determine the means that will be
allocated for pursuing the goal. The completion value and means, defined with
respect to a goal template, together form a goal instance of this template.

Definition 2 (goal instance). Let T = 〈A,M, φ : S → A, φ̂ : S ×M → A〉
be a goal template. A goal instance of T is specified as (amin ,m) : T , where
amin ∈ A is the completion value, and m ∈ M specifies the means that will be
used for achieving the instance.

Example 2. In the scenario, one goal instance of the goal template Tsa for se-
cureArea is gsa = (20, 6) : Tsa, expressing that the commander would like to
achieve a progress metric value of 20 with no more than six police officers.

4.2 Achievement and Unachievability

Any goal framework needs a definition of when a goal is achieved. Using our
notion of goal instance, we can easily define when a goal is achieved, i.e., com-
pletely satisfied, in a certain state s ∈ S, namely, when the appraised value of
the progress metric in s is at least the completion value. Moreover, logic-based
frameworks for goals incorporate a notion of goal consistency by nature, namely
logical consistency. Goal consistency is related to goal unachievability, since in-
consistent goals are by definition not reachable. In our framework we define a
notion of unachievability on the basis of the completion value of the goal instance
and the progress upper bound function.
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We will assume that each progress metric (A,≤) has a bottom element ⊥A ∈ A
for which ∀a ∈ A with a 
= ⊥A, we have ⊥A < a. The bottom element represents
a ‘zero’ achievement level. When a goal instance g is created in a state s, it may
start partially completed, i.e., φ(s) > ⊥A. For example, the road block on road
1 may already be in place, when an instance of secureArea is created, because
the road was closed for construction.

Definition 3 (goal achievement and unachievability). Let T = 〈A,M, φ :
S → A, φ̂ : S×M → A〉 be a goal template, let (amin ,m) : T be an instance of T ,
and let s ∈ S be the current state. The goal instance (amin ,m) : T is completely
unachieved iff φ(s) = ⊥A, (completely) achieved (or satisfied) iff φ(s) ≥ amin ,
and partially achieved otherwise, i.e., iff ⊥A < φ(s) < amin .2 The goal instance
is unachievable using m (or simply unachievable, where the context is clear) if
φ̂(s,m) < amin .

For example, the goal instance gsa of Example 2 above is achieved if all road
blocks have been set up and each remains guarded by at least one police officer
(since in that case the achieved φsa value is 20). It not unachievable in any state
s ∈ S since six police officers are allocated for achieving the instance, whence
the progress upper bound is 20, equalling the completion value. If less than six
officers were allocated, the goal instance would be unachievable since then the
agent could maximally attain a φsa value of 10.

It is important to be clear that goals which are not unachievable according to
the above definition are not necessarily achievable. The reason is that φ̂ provides
an upper bound on the achievable value of the progress metric, i.e., the actual
reachable value may be lower. Therefore, even if the completion value is below the
progress upper bound, the goal may still be unachievable. This is similar to the
logic-based notion of unachievability, where a goal is by definition unachievable
if it is inconsistent, but not every consistent goal is achievable.

4.3 Binary Goal Achievement

We now discuss how our framework relates to logic-based frameworks for (achieve-
ment) goals. In the latter, as noted in Section 2, the success condition of a goal
is usually defined as a logical formula ψ, which is achieved in a state s ∈ S
if the agent believes ψ to hold in that state. We show how our definition for
partial goal achievement can be instantiated such that it yields the usual binary
definition of goal. We abstract from means M .

Definition 4 (binary goal instance). Let ψ be a logical formula, for which
the truth value can be determined in any MAS state s ∈ S (where s |= ψ denotes
that ψ holds in s). Let A = {false, true} with true > false. Let M = {ε} where
ε is a dummy element. Let φ(s) = true if s |= ψ and false otherwise, and let
φ̂(s, ε) = true if ψ 
|= ⊥ and false otherwise. Let Tbin(ψ) = 〈A,M, φ, φ̂〉. Then we
define a binary goal instance ψ = (true, ε) : Tbin(ψ).

2 In this definition we take advantage of amin being comparable to all elements of A.
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Proposition 1 (correspondence). The instantiation of the partial goal frame-
work as specified in Def. 4, corresponds to the binary definition of goal (Section 2)
with respect to achievement and consistency (no unachievability).

Proof. We have to show that achievement and consistency hold in the binary
definition of goal, iff achievement and no unachievability hold in the instantiated
partial definition of goal. The goal ψ is achieved in the partial case in some state
s iff φ(s) ≥ amin , i.e., iff φ(s) ≥ true, i.e., iff φ(s) = true, i.e., if s |= ψ. This
is exactly the definition of achievement in the binary case. The goal ψ is not
unachievable in the partial case iff φ̂(s, ε) ≥ amin , i.e., iff φ̂(s, ε) = true, which is
precisely the case iff ψ is consistent. ��
We envisage an instantiation of our framework with the logic-based characteri-
zation of partiality of Zhou et al. [37], where in particular the ordering relation of
the progress metric will have to be defined. That is, consider a semantics of par-
tial implication and an alphabet of atoms. Intuitively, we must specify a metric
on a set such as propositions over the alphabet, that gives rise to a partial order
of the propositions w.r.t. the semantics of implication. Making this instantiation
precise will be future research. Indeed, the role of partial implication in connec-
tion with subgoals and plans—which we account for in our framework through
the computation of metrics in the GPT—has already been noted as a research
topic [37].

The instantiation of our framework with a binary goal definition illustrates
that progress metrics need not be numeric. However, if the progress metric A
is numeric, the agent can compute how far it is in achieving a goal as a ra-
tio with the completion value. That is, if T is a goal template with progress
appraisal function φ : S → A and g = (amin,m) : T is a goal instance of T ,
and if quotients in A are defined (e.g., if A = R), then a measure of progress
of goal instance g when the agent is in state s is the ratio φ(s)

amin
. This metric of

% complete corresponds to the intuitive notion of progress as the percentage
of the completion value attained.

5 Goal Adaptation

The previous section outlined an abstract framework for partial goal satisfac-
tion. We have taken progress appraisal as the most basic form of reasoning that
such a framework should support. In the motivating scenario, we argued that
the framework should support more advanced kinds of reasoning, such as goal
negotiation. In this section, we highlight a type of reasoning that we suggest
underlies many of these more advanced kinds of reasoning, namely reasoning
about goal adaptation. Given a goal instance g = (amin,m) : T where T is a goal
template, we define goal adaptation as modifying amin or m (or both). Note that
modifying the plan for g is included in the scope of modifying m.

The reasoning question is how to determine which goals to adapt and how to
adapt them. While this is a question that we cannot fully answer here, we analyze
the kinds of adaptation and possible reasons for adapting. One important factor
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that may influence the decision on how, and particularly when, to adapt is the
evolution of the agent’s beliefs. This aspect is a focus of prior works [26,37].
Another important factor is the consideration of a cost/benefit analysis. We
develop our basic framework to support this kind of reasoning.

5.1 Reasons for and Uses of Adaptation

We begin by distinguishing internal and external reasons for goal adaptation.
By internal reasons for we mean those that arise from issues with respect to the
goal itself, while external reasons are those that arise from other factors.

More specifically, we see unachievability as a main internal reason for goal
adaptation. If a goal instance g is unachievable, it means that its completion
value cannot be attained from the current state with the means that are cur-
rently allocated. The options without a concept of partial satisfaction are to
drop/abort g, to attempt a different plan for g (if possible), to suspend g until it
becomes achievable (for example, waiting for more officers to arrive), or to abort
or suspend another goal in favour of g [31].

In our framework, more options are available since the goal instance can be
adapted to make it achievable by lowering the completion value, which we call
goal weakening, as well as by the alternative of choosing different means that
do allow the achievement of the current completion value, e.g., by investing
additional resources.3 Depending on the circumstances, the latter may not always
be possible. For example, if the goal is to evacuate people from their houses but
it is physically not possible to get to these houses, e.g., because of flooding, it
does not matter whether the officers devote more time or personnel.

Several external reasons may lead to goal adaptation. First, a goal instance g
may in itself be achievable, but (collective) unachievability of other goal instances
may be a reason for adapting g. That is, in practice an agent has only limited
resources and it has to choose how it will invest them to achieve a set of current
and future goal instances [1,32]. For example, the agent may decide that another
goal instance is more important and needs resources, leading to adaptation of
the means of g.

Another external reason is consideration of a new candidate goal instance
g′, i.e., goal adoption. Partial satisfaction allows an agent to consider adapting
an existing goal instance, or adopting the new instance g′ in a weakened form.
Third, an agent might be requested by another agent to increase the completion
value of a goal instance, which we call goal strengthening. For example, the team
leader may decide that more time should be spent searching the forest.

Together, progress appraisal and goal adaptation form a basis for higher-
level reasoning tasks. We have already discussed goal negotiation (Section 3),
goal adoption, and avoiding and resolving goal achievement conflict. We now
briefly discuss several other kinds of reasoning. First, in order to coordinate their

3 Note that the latter is (at least in part) also supported by frameworks where alter-
native plans can be chosen to reach a goal. However, in our framework it is naturally
incorporated as part of goal adaptation.
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actions, agents should communicate about how far they are in achieving certain
goals [8,20,17]. Progress appraisal provides a principled approach. Second, an
agent might realize it cannot achieve a goal completely. Allowing itself to weaken
a goal, it can delegate part of the goal to other agents. Similarly, delegation may
be another option for an agent finding it has achievement difficulties. Related,
third, is reasoning about other agents and their ability to complete tasks. For
example, one agent realizing that another agent is unlikely to fully complete its
task(s), irrespective of whether the other agent has acknowledged this.

5.2 Cost/Benefit Analysis

When deciding which goals to adapt and how, we suggest that a cost/benefit
analysis can be an important consideration (see also, e.g., [1,25]). For example, it
will usually not be sensible to stop pursuit of the goal if only a small amount of
resources still have to be invested to achieve its completion value, in particular
if abandoning before full completion yields zero utility. On the other hand, if
an agent has obtained much utility from a goal instance g, compared to that
expected when the progress metric of g reaches the completion value, and if much
more effort would have to be invested to fully achieve g, it may be sensible to stop
pursuit of the goal if resources are needed elsewhere. These kinds of cost/benefit
analyses to obtain an optimal division of resources over goals essentially form an
optimization problem. While it is beyond the scope of this paper to investigate
how optimization techniques can be applied in this context, we do analyze how
our framework supports it.

In order to do a cost/benefit analysis, one needs to know how much it would
cost to achieve a certain benefit. The benefit obtained through achieving a goal
can be derived in our framework by means of the progress appraisal function. If
the progress metric represents benefit, such as utility, the benefit the agent will
obtain when achieving a goal completely, is the difference between the completion
value and the value of the progress metric in the current state. That is, for a
goal instance (amin,m) : T where T = 〈A,M, φ : S → A, φ̂ : S ×M → A〉, the
benefit is Δa = amin − φ(snow), where snow is the current state. Note that Δa
can only be calculated if difference (−) is defined on A.

In order to calculate the cost associated with obtaining amin, we need to
introduce another function κ : S ×M × S → C, where C is a set representing
cost and κ(s,m, s′) = c means that the cost of going from state s with means
m to state s′ is estimated to be c. Then we can calculate the estimated minimal
cost to move from the current state snow to a completion state, i.e., a state s′

where φ(s′) ≥ amin, with means m as min{κ(snow,m, s
′) | φ(s′) ≥ amin}. In

practice, there will be a very large, possibly even infinite, number of completion
states. It will therefore not be practical to calculate this function directly. Rather,
we expect that the agent will estimate the costs of getting from the current
state to some completion state, since usually only those parts of the state that
have something to do with the state being a completion state are relevant for
calculating costs. Projection into possible future states consists of a body of work
in its own right, e.g., [24,14,12].
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Above, we assumed that the progress metric A represents the benefit obtained
by achieving the goal. Depending on the context, progress may also be measured
in terms of costs—e.g., time—rather than benefit. In that case, we thus have that
A = C. Then we can define κ as κ(snow,m, s

′) = φ(s′) − φ(snow), i.e., the cost
that is to be invested is simply the difference between the desired value of A
(namely φ(s′)), since A are now the costs, and the current value of A, namely
φ(snow). Since progress is then measured in terms of costs rather than in terms
of benefits, we cannot do a cost/benefit analysis. In this case, the analysis would
thus be based only on minimizing costs.

6 Towards an Embedding within a Goal Framework

In this section, we sketch how our metric-based framework for partial goal sat-
isfaction can be applied to a concrete goal representation framework, namely
the GPT as introduced earlier. This is a step towards rendering the capabilities
within a cognitive agent programming framework. An attraction of the GPT is
its representation of goals, subgoals, and plans—which is pertinent for reasoning
about the means and the progress in execution of a goal—combined with the
annotation of and aggregation of quantities on the tree nodes—which we will
use for computation of metrics. Fig. 1 depicted a goal-plan tree for the evacu-
ation scenario. The goal and action nodes correspond to goal instances in our
framework; the tree structure gives the plan aspect of their means.

For the reasons just given, we posit that the concept of partially satisfied goals
fits naturally into this kind of representation framework for goals. Specifically,
we augment annotations of tree nodes to include metrics about goal (and, where
relevant, plan) satisfaction. In the simplest case, this comprises annotating each
goal node with values from its progress metric A, as we will explain. The %
complete metric allows normalization of the values.

Progress appraisal. Inference over the tree structure computes and updates
metrics by propagation upwards from descendant nodes, in a similar fashion as
resource estimates and other information are propagated [3,28]. For example,
the current value of % complete of a parent plan node may be aggregated
from the values of its child goal nodes. Metrics are aggregated according to their
nature and the type of the node. For example, by default, a conjunctive plan
node will aggregate % complete as the arithmetic mean of the children’s values,
while a disjunctive plan node will aggregate it as the maximum of their values.
Mechanisms for aggregation have been explored in the cited literature. Since the
algorithms are already parameterizable according to the nature of the quantity
(in our case, the metric) and the type of the node, we refrain from reiterating
them here.

The computation is to be made dynamically as the current situation evolves
[21,17]. We assume agents can assess the progress of leaf nodes. For instance, the
police officers should believe they know when they have finished clearing a house
(and the team thus achieves so achieve the utility depicted on each leaf node).
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Hence, there are two types of metric values attributed onto nodes. The first
type are static, initial, a priori values before execution (as depicted in Fig. 1).
These static values will typically capture expected, estimated, or required values,
such as the utility expected upon full satisfaction of a goal, and the resources
expected to achieve this. The second type of metric values are dynamic estimates
computed during execution, such as the utility achieved so far from a goal. For
the progress metric of each goal instance g, the static value corresponds to the
completion value amin of g, while the dynamic value corresponds to the appraised
value φg(snow).4

6.1 Reasoning in the Example Scenario

The response team commander is given the goal publicSafety by her superiors.
The doctrinal plan, SecureAndClearArea, involves the two subgoals, secureArea
and evacuatePeople; they may be achieved concurrently, although the team must
be mindful that the public may (re-)enter the incident area until it is secured.

Goal templates, metrics, and goal instances. Including herself, the com-
mander has 10 police officers in her team. We model this resource as the set P =
{0, . . . , 10} ⊂ N. The commander must decide how to allocate her officers be-
tween the two subgoal instantiations, i.e., secureArea(p) and evacuatePeople(10−
p), where p is the number of agents assigned to the first subgoal.

secureArea. Recall from Example 1 that the goal template for secureArea is
Tsa = 〈R, P, φsa, φ̂sa〉, where the progress metric for Tsa is the achievement of
its subgoals. The utility metric of Tsa can be seen from Fig. 1 to be usa =
5 ∗ (# achieved subgoals). For example, if either goal rb1 or goal rb2 is achieved
(but not both), then usa = 5; if both are achieved, then usa = 10.

Since usa is not the progress metric of the goal template secureArea, it does
not define progress of instance of this goal template. Nonetheless, usa may be
of interest to the police team as a measure of progress, even though this metric
does not define the progress (according to police doctrine) nor therefore the
completion of the goal.

publicSafety. By contrast to secureArea, the progress metric of the initial goal
publicSafety in the scenario is defined in terms of utility. Its goal template is
Tps = 〈R, P, uΣ , ûΣ〉 where uΣ specifies the cumulative utility from the subgoals
in the current plan for a goal instance of Tps. This progress metric is computed
in the obvious manner by recursively transversing the subtree below the goal
instance, summing up the current utility estimates for each goal node. Likewise,
the progress upper bound function, ûΣ, can be computed by a recursive descent
4 An agent may be capable of directly computing the value of a metric at a (non-leaf)

node. In that case, if the reasoning is consistent and the static values on leaf notes are
reliable estimates, then the directly-computed and aggregated values should agree.
Where they do not, the agent may resolve the conflict according to which of the two
computations it believes is most reliable.
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through the GPT. An a priori estimate can be computed, based on the upper
bounds of the static, a priori utility attributions on leaf nodes [32,3,28]. For
example, an a priori upper bound on using the plan EstablishRoadblocks, re-
laxing resource considerations, is 4 + 4 + max(2, 5) = 13. Tighter bounds can be
obtained by considering resource limitations and the resulting goal interaction
and plan scheduling [32,28], should the agent so choose.

evacuatePeople. The goal template for evacuatePeople is: Tep = 〈R, P, uΣ , ûΣ〉.
Note the same progress metric is specified for this template as for publicSafety.

Goal adoption. The police commander and her team are tasked with the initial
goal publicSafety; its goal instance is (40, 10) : Tps.5 The team of 10, including
the commander, has too few officers to meet the expected requirements for the
full completion of the three roadblock actions (rbi) and the two house-clearance
actions (hi), let alone the forest. That is, the goal instance is unachievable (i.e.,
ûΣ < amin), as can be seen to be the case by examination of the GPT.

Negotiation, delegation, and requesting help. At first, the commander
considers allocating six officers for secureArea and weakening the evacuatePeople
goal by omitting the evacuateForest subgoal. This is unacceptable to incident
control. After further negotiation, control agrees to send urgently a second team
to perform rb1. The commander thus allocates four officers for secureArea. Hence,
the goal instances are (20, 4) : Tsa and (25, 6) : Tep.6 Two officers will search each
house; when done, they will join the forest search. The commander selects rb3a
over rb3b because it is expected to be quicker to achieve. As officers complete
the roadblocks, those who do not need to remain on guard are instructed to
join the officers searching the forest. The team will gain what utility it can from
performing actions t1, t2, and t3 in that order.

Thus, with the second team fulfilling rb1, then the plan EstablishRoadblocks
for goal secureArea can be achieved, and so a progress metric value of 20 will be
attained. When all three forest tracks have (eventually) been searched, then plan
SearchAndEvacuate for goal evacuateForest will render a progress metric value
of 10 for evacuateForest, leading to a progress metric value of 8 + 7 + 10 for goal
evacuatePeople. This forward projection from the current state thus indicates
that both goals are fully achievable by the augmented team.

Appraisal and sharing information. As the evacuation proceeds, updated
metric values are computed on the leaf nodes of the GPT and aggregated to par-
ent nodes. This provides a situational assessment for the commander. Searching

5 The completion value is 40 because full completion of the instance of secureArea will
have utility 5 ∗ 3 = 15, and full completion of the instance of evacuatePeople will
have utility at least 25, based on the static GPT annotations.

6 For Tsa, the completion value is defined as 20 (Example 1). For Tep, the completion
value is the sum of the utility of the children, i.e., 8 + 7 + (4 + 3 + 3) according to
the static GPT annotations, as noted earlier.
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house 2 is taking longer than anticipated, because a forced entry proves neces-
sary. Should the two officers continue with h2, or join those searching the forest?
Utility of 4 is estimated achieved from h2 after 25 minutes have elapsed. The
original estimate of utility for completion of the goal was 7; but this was only
an a priori estimate based on typical experience. The commander appraises that
the rate of achieving utility for the goal is outweighed by the resources employed
for it, and so calls off the officers from house 2.

This extract from the scenario illustrates the more sophisticated reasoning
enabled by and founded on a metric-based notion of partial goal satisfaction
that is embedded into a concrete computational framework for the metrics.

7 Conclusion and Next Steps

The contribution of this line of work stems from the recognition of the need for
a concept of partial goal satisfaction in cognitive agent frameworks, manifest
in terms of the proposal of an abstract framework for partial goal satisfaction
that identifies the main necessary ingredients for reasoning based on partial goal
satisfaction. Our objective is a representation of partial satisfaction integrated
into a reasoning framework, and allowing for a quantitative instantiation, in
order that cognitive agent programming frameworks might be enhanced. The
benefit of the topic and our approach is more sophisticated reasoning about
goals, impacting reasoning about selection, adoption, and pursuit; goal progress
appraisal; goal interaction; and inter-agent communication and collaboration.

Although we have indicated how our framework may be concretized in the
context of GPTs, more work is needed to flesh out the details and investigate
how advanced types of reasoning can be built on top of this basis and integrated
into a programming framework. The modifications necessary to the semantics of
an agent programming language such as Goal [10] must be established. Goal,
like several other agent programming languages, has a logic-based definition of
goals, and it has reasoning rules to determine which actions to execute, based on
the agent’s beliefs and goals. Modifying the language to include the possibility
to reason about partial goal satisfaction will likely involve providing a new no-
tion of goal, analogous to the one proposed in this paper. The progress appraisal
function can be defined on the agent’s belief base. Defining the progress upper
bound function and possibly cost and benefit functions will be more involved;
annotations of the program text analogous to the suggested annotations of the
GPT may be useful to compute these functions. It will also have to be investi-
gated how action selection is influenced by this new notion of goal, i.e., whether
the existing mechanism can in essence be used, or whether other mechanisms are
required. Finally, it will have to be investigated whether more advanced types of
reasoning such as goal negotiation can be programmed in Goal, or whether ad-
ditional reasoning mechanisms have to be introduced. In particular, cost/benefit
analyses seem to require such additional mechanisms.

Alongside embedding our framework in a cognitive agent programming lan-
guage, to be investigated is how the various functions of our framework can be
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defined in real-world cases. The importance of approximate reasoning is high-
lighted, as we anticipate the challenges of defining functions that will yield, for
instance, exact and tight progress upper bounds. Existing work on, e.g., reason-
ing about resources is expected to be useful in this context [32,25]. Moreover,
while our framework provides the basis for reasoning about goal adaptation, we
have not sought to provide (optimization) algorithms that allow the agent to
decide how to adapt, weighing costs and benefits. This is an important area for
future research, with just one relevant aspect being how to estimate cost and
benefit projection into the future. Lastly, possible extensions to the framework
are ripe for investigation, such as a logical instantiation with reasoning between
goal outcomes, following Zhou et al. [37], inclusion of parameters in goal tem-
plates, and relation of templates in a hierarchy.
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