

Lecture Notes in Artificial Intelligence 6599

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Rem Collier Jürgen Dix
Peter Novák (Eds.)

Programming
Multi-Agent Systems

8th International Workshop, ProMAS 2010
Toronto, ON, Canada, May 11, 2010
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Rem Collier
University College Dublin, College of Science
School of Computer Science and Informatics
Belfield, Dublin 4, Ireland
E-mail: rem.collier@ucd.ie

Jürgen Dix
Technische Universität, Institut für Informatik
Julius-Albert-Straße 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: dix@tu-clausthal.de

Peter Novák
Czech Technical University, Faculty of Electrical Engineering
Department of Computer Science and Engineering
Karlovo namesti 13, 121 35 Prague 2, Czech Republic
E-mail: peter.novak@fel.cvut.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28938-5 e-ISBN 978-3-642-28939-2
DOI 10.1007/978-3-642-28939-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933801

CR Subject Classification (1998): I.2, D.2, C.2.4, I.2.11, I.2.5, I.6, D.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS 2010). It was the eighth of a series of work-
shops that has the main objective of giving an overview of current research on
programming multi-agent systems and providing an interactive discussion forum
for agent researchers.

The ProMAS workshop series aims at promoting and contributing to the
establishment of multi-agent systems as a mainstream approach to the develop-
ment of industrial-strength software. More specifically, the workshop facilitates
the discussion and exchange of ideas concerning the concepts, techniques, and
tools that are important for establishing multi-agent programming platforms
that are useful in practice and have a theoretically sound basis.

In its previous editions, ProMAS constituted an invaluable occasion bringing
together leading researchers from both academia and industry to discuss issues
on the design of programming languages and tools for multi-agent systems. We
are very pleased to be able to again present a range of high-quality papers
from ProMAS 2010. After seven successful editions of the ProMAS workshop
series, which took place at AAMAS 2003 (Melbourne, Australia), AAMAS 2004
(New York, USA), AAMAS 2005 (Utrecht, The Netherlands), AAMAS 2006
(Hakodate, Japan), AAMAS 2007 (Honolulu, Hawai’i), AAMAS 2008 (Estoril,
Portugal) and AAMAS 2009 (Budapest, Hungary), the eighth edition took place
on May 11 in Toronto, Canada, in conjunction with AAMAS 2010, the main
international conference on autonomous agents and multi-agent systems. For
ProMAS 2010 we finally accepted six high-quality submissions for presentation
at the workshop.

In addition, we invited one distinguished scientist, Sarit Kraus, to give an in-
vited talk on “Human–Computer Negotiation: Learning from Different Cultures.”

Following the workshop, we set up a new submission, evaluation and revision
process for publishing these proceedings. The authors of the papers accepted
for the workshop were invited to submit revised papers. In addition we invited
a few more papers from people active in the area. Each paper was reviewed
by two members of the Program Committee and by the editors. Authors were
then requested to further revise their submissions. After a careful selection, we
accepted seven papers plus one invited paper for these proceedings.

The workshop addressed a broad range of mostly practical topics. While two
papers deal with the decision component of agent systems, three papers deal
with practical examples of programming languages and two papers deal with
the interaction with the environment.

VI Preface

We thank the authors whose contributions made this book possible. We also
thank the members of the Program Committee for their dedication in successive
rounds of reviewing papers.

As for previous editions, we hope that the work described in these proceedings
will contribute to the overall goal of stimulating the uptake of agent programming
languages and the adoption of agent-based tools for real-world applications.

January 2010 Rem Collier
Jürgen Dix

Peter Novák

Papers in This Volume

These proceedings contain one invited paper, by Michal Pěchouček, Michal Jakob
and Peter Novák, entitled “Towards Simulation-Aided Design of Multi-Agent
Systems.” This paper gives a vision of how powerful a tool hybrid simulations
can become in the future. This is grounded in several case studies done at Michal
Pěchouček’s lab in Prague.

The first regular paper in these proceedings is the one by Joost Broekens,
Koen Hindriks, and Pascal Wiggers on “Reinforcement Learning as Heuristic for
Action-Rule Preferences.” The authors note that many action selection mecha-
nisms in agent-oriented programming are based on rules and leave a great poten-
tial for optimization. However, this is difficult to achieve in BDI-like concepts.
The authors propose a learning method for sets of rules based on reinforcement.

The second paper, “Towards Reasoning with Partial Goal Satisfaction in
Intelligent Agents,” by M. Birna van Riemsdijk and Neil Yorke-Smith presents
an abstract framework for representing the partial satisfaction of goals. The
representation is not based on logic but on metric functions that represent the
progress that has been made toward achieving a goal.

In “Evaluating Agent-Oriented Programs: Towards Multi-Paradigm Met-
rics,” Howell R. Jordan and Rem Collier consider metrics for the software engi-
neering process in multi-agent systems. The paper is an attempt toward multi-
paradigm structural metrics, which can be applied seamlessly to both agents
and the object-oriented environments in which they live. Applications to Jason
written in AgentSpeak and Java are given.

In “Atomic Intentions in Jason+,” Daniel Kiss, Neil Madden, and Brian
Logan deal with interactions between atomic intentions and plan failures in
Jason. Atomic intentions in Jason are normally not atomic when considered in
conventional programming or in databases. The authors therefore introduce a
new semantics and its implementation, Jason+, and claim that this leads to
more robust agent programs.

Hugo Carr, Alexander Artikis, and Jeremy Pitt deal, in “Software Support for
Organised Adaptation,” with emergence as a mechanism for coordinating hun-
dreds of agents. The authors define a new programming environment, PreSage-
MS, a rapid prototyping and animation tool designed to facilitate experiments
in organized adaptation of metric spaces of agent teams.

In the paper “Action and Perception in Agent Programming Languages: From
Exogenous to Endogenous Environments” by Alessandro Ricci, Andrea Santi,
and Michele Piunti, the authors discuss action and perception models in agent
programming languages and note that they cannot deal well with endogenous
environments. They describe models specifically designed for such environments
and evaluate them using CArtAgO.

VIII Papers in This Volume

Finally, in “An Interface for Agent-Environment Interaction,” Tristan Behrens,
Koen V. Hindriks, Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Jürgen Dix,
Jomi F. Hübner and Alexander Pokahr treat the problem of how exactly agents
and environments interact. While there are many interesting environments avail-
able, there is no standard that would enable agents to easily interface with them.
The paper is a first step toward an environment interface standard. The standard
has been implemented and evaluated in a number of agent platforms.

Organization

The ProMAS 2010 workshop was held on May 11, 2010, in Toronto, Canada.
The workshop was part of the AAMAS 2010 Workshop Program.

Program Chairs

Rem Collier University College Dublin, Ireland
Jürgen Dix Clausthal University of Technology, Germany
Peter Novák Czech Technical University in Prague,

Czech Republic

Steering Committee

Rafael Heitor Bordini Federal University of Rio Grande do Sul, Brazil
Mehdi Dastani Utrecht University, The Netherlands
Jürgen Dix Clausthal University of Technology, Germany
Amal El Fallah Seghrouchni University of Paris VI, France

Program Committee

Matteo Baldoni University of Turin, Italy
Juan Botia Blaya Universidad de Murcia, Spain
Olivier Boissier Ecole des Mines de St Etienne, France
Guido Boella University of Turin, Italy
Lars Braubach University of Hamburg, Germany
Louise Dennis University of Liverpool, UK
Ian Dickinson HP Labs, Bristol, UK
Mauro Dragone University College Dublin, Ireland
Michael Fisher University of Liverpool, UK
Jorge Gómez-Sanz Universidad Complutense de Madrid, Spain
Vladimir Gorodetsky Russian Academy of Sciences, Russian

Federation
James Harland RMIT, Australia
Koen Hindriks Delft University of Technology,

The Netherlands
Benjamin Hirsch TU-Berlin, Germany
Jomi Fred Hübner Federal University of Santa Catarina, Brazil
Joāo Leite Universidade Nova de Lisboa, Portugal
Viviana Mascardi University of Genova, Italy
John-Jules Meyer Utrecht University, The Netherlands
David Morley SRI International, USA

X Organization

Berndt Müller University of Glamorgan, UK
Jörg Müller Clausthal University of Technology, Germany
Andrea Omicini University of Bologna, Italy
Frederic Peschanski LIP6 - UPMC Paris Universitas, France
Michele Piunti ISTC - CNR and DEIS Universitá di Bologna,

Italy
Agostino Poggi University of Parma, Italy
Alexander Pokahr University of Hamburg, Germany
Alessandro Ricci DEIS, Universitá di Bologna, Italy
Birna van Riemsdijk Delft University of Technology,

The Netherlands
Ralph Rönnquist Intendico Pty Ltd, Australia
Sebastian Sardina RMIT University, Australia
Ichiro Satoh National Institute of Informatics, Japan
Munindar P. Singh NCSU, USA
Kostas Stathis Royal Holloway, UK
Leon van der Torre University of Luxembourg, ILIAS, Luxembourg
Paolo Torroni University of Bologna, Italy
Cao-Son Tran New Mexico State University, USA
Gerhard Weiss Maastricht University, The Netherlands
Wayne Wobcke University of New South Wales, Australia
Neil Yorke-Smith SRI International, USA
Yingqian Zhang Delft University of Technology,

The Netherlands

Auxiliary Reviewers

Alberti, Marco
Behrens, Tristan M.

Bulling, Nils
Verwer, Sicco

Table of Contents

Part I: Invited Paper

Towards Simulation-Aided Design of Multi-Agent Systems 3
Michal Pěchouček, Michal Jakob, and Peter Novák

Part II: Reasoning

Reinforcement Learning as Heuristic for Action-Rule Preferences 25
Joost Broekens, Koen Hindriks, and Pascal Wiggers

Towards Reasoning with Partial Goal Satisfaction in Intelligent
Agents . 41

M. Birna van Riemsdijk and Neil Yorke-Smith

Part III: Programming Languages

Evaluating Agent-Oriented Programs: Towards Multi-paradigm
Metrics . 63

Howell R. Jordan and Rem Collier
Atomic Intentions in Jason+ . 79

Daniel Kiss, Neil Madden, and Brian Logan
Software Support for Organised Adaptation . 96

Hugo Carr, Alexander Artikis, and Jeremy Pitt

Part IV: Environments

Action and Perception in Agent Programming Languages: From
Exogenous to Endogenous Environments . 119

Alessandro Ricci, Andrea Santi, and Michele Piunti
An Interface for Agent-Environment Interaction . 139

Tristan Behrens, Koen V. Hindriks, Rafael H. Bordini,
Lars Braubach, Mehdi Dastani, Jürgen Dix, Jomi F. Hübner, and
Alexander Pokahr

Author Index . 159

Part I

Invited Paper

Towards Simulation-Aided Design

of Multi-Agent Systems�

Michal Pěchouček, Michal Jakob, and Peter Novák

Agent Technology Center
Dept. of Cybernetics, Faculty of Electrical Engineering,

Czech Technical University in Prague
Czech Republic

Abstract. With the growing complexity of multi-agent applications and
environments in which they are deployed, there is a need for development
techniques that would allow for early testing and validation of application
design and implementation. This is particularly true in cases where the
developed multi-agent application is to be closely integrated with an
existing, real-world system of multi-agent nature.

Drawing upon our previous experiences with development of complex
multi-agent applications, we propose simulation-aided design of multi-
agent systems (SADMAS), a methodology tightly integrating simulations
of the target system into the MAS application development process. In its
heart lies the use of mixed-mode simulation, a simulation where parts of
the deployed application operate in the target environment and parts re-
main simulated. We argue, that employing SADMAS process contributes
to reduction of risks involved in development of complex MAS applica-
tions, as well as it helps to accelerate the process. Besides describing
the capstones of the SADMAS approach and consequences of its appli-
cation, we also illustrate it’s use on a case-study of a next-generation
decentralised air traffic management system.

1 Introduction

In today’s world, we are increasingly surrounded by and reliant on complex sys-
tems and infrastructures. Often, these systems behave far from the optimum or
even highly undesirably. Roads in our cities are congested, plane trips frequently
delayed, computer networks routinely overrun by worms and electricity grids
fail in split-second cascade reactions. The systems have also grown increasingly
decentralised, interconnected and autonomous, with more and more decisions
originating at the level of individual subsystems rather than being strictly im-
posed top-down.

The paradigm of multi-agent systems is being increasingly successfully ap-
plied in modelling and engineering of complex distributed systems. Examples of

� The presented work was supported by the Czech Republic Ministry of Education,
Youth and Sports, grant no. MSM6840770038.

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 3–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 M. Pěchouček, M. Jakob, and P. Novák

current and future applications of the paradigm include e.g., civilian air traf-
fic with the requirement to double the capacity of the airspace within next ten
years; smart energy grids automatically balancing energy production and con-
sumption between interconnected yet independent producers and consumers;
disaster and emergency management operations, which in the future will rely
on the coordination of heterogeneous ad-hoc teams of semi-autonomous robotic
entities and networks of unattended sensors; or intelligent buildings comprised
of large numbers of interconnected autonomous sensors and actuators adapting
to the activities of their human occupants.

Development and deployment of such complex multi-agent systems is a chal-
lenging task. Large numbers of spatially distributed active entities characterised
by complex patterns of mutual interaction and feedback links give rise to dy-
namic, non-linear emergent behaviours which are very difficult to understand,
capture and, most importantly, control. We argue that because of the complexity
of the above-described types of applications, it is no longer possible to develop
such systems in a linear, top-down fashion, starting from a set of requirements
and proceeding to a fully developed solution. Instead, more evolutionary, itera-
tive methodologies are needed to successfully approach the problem of develop-
ment of complex multi-agent systems.

In this paper, we give a preliminary outline of the simulation-aided design
of multi-agent systems (SADMAS) approach, a development methodology rely-
ing in its core on the exploitation of a series of gradually refined and accurate
simulations for testing and evaluation of intermediary development versions of
the engineered application. In particular, we propose and argue in favour of us-
ing mixed-mode simulations in which the implemented application is evaluated
against a partly simulated environment. That is, some aspects of the test envi-
ronment are real parts of the target system while some remain simulated. Over
time, the extent of the simulation will be decreasing until the application fully
interacts with the target system itself. We argue that this approach helps to ac-
celerate the development of complex multi-agent applications, while at the same
time keeps risks and costs associated with destruction or loss of the tested assets
low. Our goal is not to give the ultimate answer to the problem of developing
complex systems, but rather to synthesise our past experiences with building
such systems and to initiate a discussion on the role simulations can play in
making engineering of such systems more efficient.

In the following section, we introduce the conceptual framework, the pro-
cesses of the SADMAS approach, and discuss the scope of its applicability. Sub-
sequently, Section 3 distills our past experiences with the early version of the
SADMAS approach. We put forward a set of methodological principles to be
respected during application development, in order to facilitate successful ap-
plication of the SADMAS methodology. Finally, in Section 4, we discuss tool
support for the SADMAS approach, in particular the core features an ideal
simulation platform facilitating the introduced methodological principles should
provide. Finally, sections 5 and 6 conclude the paper by a discussion of related
work and some final remarks.

Towards Simulation-Aided Design of Multi-Agent Systems 5

Throughout the paper, the discourse is accompanied by a running example
exemplifying the main principles of the SADMAS approach in a case-study ap-
plication in the air-traffic management domain developed in our research centre.
Before diving into the core of the paper, let us first introduce the case-study
problem.

1.1 Running Case Study: Free-Flight-Oriented Air Traffic Control

The ever-growing volume of air traffic is approaching the stage when the current
techniques for its management begin to constrain its further expansion. The main
limiting factor is congestion of the predefined, reserved flight corridors used by
air traffic controllers for long-distance routing of flights in the airspace. An addi-
tional grand challenge stems from the need to integrate autonomous unmanned
aerial assets with manned air traffic. Small unmanned aerial vehicles (UAVs) are
often used for tasks such as policing and emergency area surveillance, and need
to be able to operate near airports with heavy civilian air traffic. Current air
traffic management systems cannot efficiently support integration of such UAVs
and at the same time handle future higher traffic densities. Sophisticated, intel-
ligent technology is needed to enable further growth of the global, manned and
unmanned air traffic.

A promising solution concept is represented by the free-flight -oriented ap-
proach which suggests moving away from the current centralised traffic control
based on the predefined flight corridors towards decentralisation. In the extreme,
the free-flight air traffic control should be based on on-line negotiation schemes
and consequently moved on board of the (un-)manned aircrafts. This radical shift
is expected to provide a more efficient use of the available airspace and improve
support for dynamic flight trajectory re-planning, as well as collision avoidance.
Autonomous decision making in such scenarios is especially important in the
case of dynamic, partially unmanned operations in police and military settings.

As the running example for the following discourse, we will use AgentFly ap-
plication, an agent-based free-flight-oriented air traffic management and control
system developed in Agent Technology Centre of the Czech Technical Univer-
sity in Prague [17,13]. The aim of the project is to i) propose and implement
decentralised flight control algorithms, subsequently ii) evaluate them in an ex-
perimental planning system for civilian air traffic control simulating the real
traffic in the US National Airspace (NAS), and finally also iii) port and evalu-
ate the proposed control algorithms on board of real aircrafts of different types
(fixed-wing aeroplanes, as well helicopters).

2 Simulation-Aided Design of Multi-Agent Systems

At the core of the SADMAS approach lies the use of multi-agent simulations for
iterative application evaluation. Results of the evaluations subsequently serve as
a driver for further advancement of the process. In the following, we introduce
the core concepts of the approach, sketch the application development process
it induces and finally elaborate on conditions for its applicability.

6 M. Pěchouček, M. Jakob, and P. Novák

Fig. 1. Conceptual scheme of the SADMAS approach

2.1 Core Concepts

The SADMAS approach revolves around the following three multi-agent con-
cepts:

target system: a real-world system which should be controlled by means of
the developed multi-agent application;

multi-agent simulation: an agent-based simulation of the target system. In
general, the simulation can have different (a) level of abstraction (how much
is the target system simplified) and (b) scope of abstraction (which parts of
the target system are simplified);

multi-agent application: a decentralised, multi-agent software system
designed to control some (or all) aspects of the target system.

2.2 Development Process

One of the main problems of using simulations as an intermediate tool for testing
and evaluating of implemented application, which is nothing particularly novel
per se, is maintaining the relevance of the simulation with the target system.
In result, it might easily happen that while the implemented application runs
smoothly in the simulated environment, it breaks down upon its deployment in
the target system. We argue, that one of the main reasons for such failures is
the breaking of relevance when moving from the simulation to the target real-
world system. As an example of such a failure, consider a situation when in
the simulation of an air traffic management system developers assume perfect
communication links used in the multi-agent negotiation. Even though the as-
sumption is not unreasonable as such, the real reliability of communication links
could be e.g., 95%, the actual deployment of the application validated against
such a simulation could result in severe problems late in the deployment stages

Towards Simulation-Aided Design of Multi-Agent Systems 7

of the project. Since it is often extremely difficult, if not plainly impossible, to
detect all such misalignments right at the beginning of the project, the devel-
opment process should ensure that they are discovered as soon as possible in
early stages of the development process. The SADMAS approach is based on
incremental development of the application hand-in-hand with a series of ever
more accurate simulations it is evaluated against. On the top level, the overall
process of developing a multi-agent application using the SADMAS approach
consists of the following steps:

1. Collect the (multi-agent) application requirements, assuming it will control,
or interact with, the physical (multi-agent) system.

2. Repeat the following steps iteratively:
(a) Choose the appropriate simulation level of abstraction and application

feature coverage for the particular process iteration. The choice of the
appropriate level of abstraction of the application iteration directly re-
sults in determining which parts of the simulation will be replaced with
interfaces to the real-world target system.

(b) Building upon the simulation from the previous iteration of the pro-
cess, construct a refined multi-agent mixed-mode simulation (cf. Subsec-
tion 4.4) of the target system. The simulation should focus on the critical
features of the iteration, such as the nature of inter-agent interactions
and interaction with the environment so that it respects the chosen level
of abstraction of the process iteration.

(c) Based on the requirements collected in (1) design and develop the ap-
plication (multi-agent control mechanism) w.r.t. the chosen application
feature coverage.

(d) Test, debug and evaluate the application (or application variants) de-
veloped in (2c) on the multi-agent simulation constructed in the step
(2b).

(e) Iteratively repeat the steps (2c) and (2d) until sufficient level of appli-
cation reliability w.r.t. the chosen set of features on the chosen level of
abstraction is reached.

3. Once the simulation is either completely replaced with the physical target
system, or sufficiently tested, perform final evaluation and verification of
the application directly interacting with the target system and deploy the
application.

From some point on in the development process, the simulation refinement
should result in replacement of some aspects of the simulation with direct inter-
faces to the target system. With the advancing stage of the application devel-
opment, it is increasingly tested against relevant aspects the real-world target
system. The consecutive replacement of aspects of the simulation with interfaces
to the physical target system leads to subsequent refinements and adaptations
of the mixed-mode simulations eventually resulting in complete replacement of
the initial simulation of the target system with the system itself. By keeping the
tight alignment between the intermediate states of the system simulation and

8 M. Pěchouček, M. Jakob, and P. Novák

the application, the process ensures, resp. maintains relevance of the developed
application w.r.t. the target system and the chosen level of abstraction at the
process iteration.

In many cases, the implementation of the step (2c) will not lead to a straight-
forward process. Rather, in order to find the proper set of partial solutions to
cover the target feature set at the appropriate level of abstraction, the developer
will be often forced to implement several versions of the application. Only after
performing the evaluation step (2d), on the basis of the collected experimental
results the implementer is able to decide which solution version will be carried
to the next iteration of the process. Thus, the proposed approach is not strictly
linear, such as e.g., the waterfall model inspired processes.

Figure 2 visualises the iterative process described above and highlights the
role of mixed-mode simulation in the overall architecture. In order to ensure
that the application can be ported seamlessly through the series of ever more
accurate simulations without significant additional expenses, the design of the
multi-agent application has to meet several requirements which we expand upon
later in Section 3.

2.3 Scope of Applicability

In order for the SADMAS approach to be applicable to a particular problem
domain, it is critical to analyse the relationship of the target system vs. the
requirements on the developed application. In particular, the target system in
which the application will be deployed has to be of multi-agent nature and should
manifest some kind of emergent, collective behaviour on its own. Furthermore, we
assume that the developed application will be deployed in hardware and situated
in the target system. Due to its reliance on safe simulation-based evaluation, the
SADMAS approach is particularly suitable for applications in which at least one
of the following conditions hold

– the cost of an individual HW unit is high, and risk of a failure that may
result in loosing an asset is not negligible;

– application testing may result in undesirable, possibly harmful changes of the
environment, such as when the safety of material resources and/or humans
would be endangered;

– the cost of running the HW experiments is high and proportional to the
number of deployed assets; or finally

– the application operates in an environment which strongly influences the
behaviour of the application, i.e., it is difficult and/or costly to set up test
conditions so that all critical aspects of the application can be evaluated.

Example problem domains for target systems, potentially suitable for application
of the SADMAS methodology, include air traffic, public transport system, energy
grids including consumers and producers, or peer-to-peer file sharing network.
The possible developed applications in such domains include automated aircraft,
resp. vehicle flight planning and collision avoidance mechanisms, control and

Towards Simulation-Aided Design of Multi-Agent Systems 9

Fig. 2. Relations and processes between the components of the SADMAS approach

management mechanisms for negotiating electricity consumption and production
between entities on the smart grid.

The scope of simulations used as the intermediary testing platform would
typically differ between different stages of the development process. The devel-
opment may initially be done completely in an isolated simulation, while later its
parts would be replaced by the real-world system and eventually, in the ultimate
deployment setup, the application would solely interact directly with the target
system.

AgentFly case-study analysis: Let us analyse the AgentFly case-study using the
core concepts of the SADMAS approach. The target system is clearly the NAS air
traffic system and the related infrastructure. Let’s simplify the problem and con-
sider only unmanned aeroplanes. These assets usually operate in geographically
bounded environments containing various special-use air-zones, termed no-fly
zones. The operation of an aircraft is determined by i) the take-off location,
ii) the landing location and iii) set of time-space geographical waypoints, e.g.,
specifying a surveillance pattern. The multi-agent application comprises the set
of autopilot control algorithms on board of each asset. The application should
control the movements of a number of aircrafts along collision-free trajectories

10 M. Pěchouček, M. Jakob, and P. Novák

that pass through the specified geographical waypoints, while avoiding the no-fly
zones. The functionality of the application can be decomposed into two layers:

– individual planning layer aiming at planning a smooth 4-dimensional (space
and time) trajectory passing through the waypoints for the aircraft; and

– multi-agent planning layer aiming at collision avoidance of a set of aircrafts,
i.e., detecting potential future collision and using peer-to-peer negotiation in
order to determine the set of deconfliction manoeuvres.

The application further needs to fulfil a number of non-functional requirements,
in particular i) near-real-time responsiveness, ii) scalability to a very high number
of assets and iii) reliability. These requirements make it impossible to design the
application in isolation from the target system.

3 Design Considerations of the SADMAS Approach

The SADMAS application development process leads to several issues, which
should be considered and tackled early on in the development process. Below, we
introduce some of the most important ones. Concretely, we discuss the bottom-
up system evolution, an important stance to be adopted in the development
process. We continue with stressing the need to support elaboration tolerance
both of the application design, as well as the mixed-mode simulation used for
evaluation of the application iterations. Finally, we conclude with a set of issues
ensuring cross-platform portability of the application w.r.t. the target deploy-
ment infrastructure.

3.1 Bottom-Up System Evolution

Ideally, the SADMAS process will proceed from testing of the first application
prototype against a full environment simulation, through replacements of the
rudimentary and simpler interfaces to the physical target system, eventually to
replacement of the simulation with the target system itself. In consequence, the
design of both the application and the simulation cannot be based on a blueprint
resulting from a green-field-style top-down analytical procedure. The discussion
of the scope of applicability of the SADMAS process (Subsection 2.3) implies
that typically, the nature of the implemented application will be such that it is
being constructed into an existing target system, rather than being developed
from scratch including its environment. In result, the overall behaviour of the ap-
plication, together with the target system cannot be characterised in separation
and must be considered as a whole. As an example, consider the running example,
the AgentFly air traffic management system, which will be typically seamlessly
deployed into the already set up and strictly regulated airspace infrastructure.
From the point of view of a single agent within the system, an unmanned aircraft,
the behaviour of the other aircrafts is a part of the environment behaviour. How-
ever, these aircrafts are in fact components of the implemented application on
par with the agent in consideration. The iterative SADMAS process is based on

Towards Simulation-Aided Design of Multi-Agent Systems 11

tight coupling between the application and simulation development and stresses
growing accuracy of the simulation w.r.t. the target system. That is, it supports
the bottom-up approach to maintaining the relevance of the simulation to the
deployment environment by gradual replacement of ever more significant parts
of the simulation with the real-world APIs. Thus it provides a solid support for
the evolutionary application development principle.

In AgentFly: The planning and collision avoidance application in AgentFly has
been designed in an evolutionary manner respecting the bottom-up approach to
interaction with the environment. The principle objective was to delegate the
aircraft planning autonomy on board of the UAVs and thus minimise the role of
the centralised point of control. Several variants of the negotiation mechanism
used for collision avoidance have been developed (including the pair-wise and the
multi-party negotiation schemes) and evaluated on a high-fidelity simulation of
UAV flight and sensor behaviour. Experiments on a range of synthetic, as well as
real-world inspired scenarios provided empirical evidence that the simpler and
more robust pair-wise collision avoidance algorithms are sufficient even in the
most extreme cases.

3.2 Elaboration Tolerance

As a consequence of the SADMAS process, at any specific development itera-
tion, the application and simulation releases must be frozen and ideally further
iterations should not require change reverse, or backward modifications of the
features implemented in previously frozen releases. The strong emphasis of the
process on evolutionary development implies that already the initial application
design and layout provides sufficient flexibility w.r.t. future changes and adap-
tations. That is, more than with other application development methodologies,
SADMAS approach calls for strong emphasis on elaboration tolerance of both,
the design, as well as the actual implementations of the application and the
simulation. Paraphrasing the origin of the term in [12], a design is elaboration
tolerant to the extent that it is convenient to modify it to take into account new
phenomena or changed circumstances. In particular, transposed to multi-agent
application development domain, this leads to a requirement that the design
should be based on component-based practises with well-thought-of set of APIs,
that, ideally, do not change during the development process.

While nowadays the call for flexibility of software design is relatively obvi-
ous and straightforward (mostly due to maintenance reasons), often it is diffi-
cult to ensure the flexibility w.r.t. right kind of future modifications. Without
going deeper into this issue, we see a potential for methodological support assist-
ing multi-agent systems programmers and designers to understand the elabora-
tion tolerance implications on their designs in order to assist them to make the
right and informed decisions in the early stages of the application development
process.

12 M. Pěchouček, M. Jakob, and P. Novák

In AgentFly: The planning algorithms developed in AgentFly project [18] have
been designed so that they perform general, yet extremely efficient on-the-fly
planning in complex 4D space (spatio-temporal planning). While this design
decision did not break elaboration tolerance and kept options open w.r.t. the
potential uses of the algorithms in various types of aircrafts, at certain stage we
realised that the data structures used in planning algorithms were too closely
linked with the implemented planning algorithms tailored for Cartesian 3D co-
ordinates. At the point, when the systems needed to scale up to the level of US
National Airspace, there was a requirement to upgrade the planning algorithms
from Cartesian coordinates to GPS coordinate system, which however turned
out to be a major issue. Due to the efficiency requirements, elaboration toler-
ance have not been met and was not foreseen in this aspect of code development.
This design issue finally resulted in major implementation difficulties as large
portions of the already constructed application had to be modified accordingly.

3.3 Cross-Platform Portability and Deployment Issues

As a consequence of the gradual shift of the series of mixed-mode simulations
towards interfacing with the real-world target system, the SADMAS process also
dictates gradual transfer of the application from synthetic settings to deployment
on the target platform. In particular, e.g., in the air-traffic management domain
this means gradual porting of the core algorithms for collision avoidance from
synthetic personal computer environment to the actual hardware platform where
it will be finally deployed, i.e., the embedded computers running on board of
the target aircrafts. In order to ensure that such a gradual deployment of the
application to the real-world system is possible, several additional design and
implementation considerations should be respected.

Technically, the elaboration tolerant application development must be
supported from early stages on. The decisions include appropriate choices of
programming platforms, tools and supporting infrastructure so as to aim at
maximum cross-platform portability of the application, as well as the relevant
aspects of the mixed-mode simulation.

As far as the application design is concerned, we argue that in the multi-agent
systems context, the initial application design should strive for maximum decen-
tralisation of decision making of the application components, the agents. That
is, the multi-agent application logic has to be implemented so that it respects
the actual constraints and properties of the target system, such as bandwidth,
latency, etc.

In order to comply with general real-time properties of many real-world ap-
plication domains, full asynchronicity of the application components, the agents,
should be striven for whenever possible. Even though in general it is non-trivial
and even relatively difficult to implement and especially debug asynchronous sys-
tems, we argue, these difficulties must be overcome in order to be able to routinely
propose and implement elaboration tolerant multi-agent application designs. We
see a great potential in methodological guidelines and design patterns aiming at
assisting developers to work out fully asynchronous multi-agent systems.

Towards Simulation-Aided Design of Multi-Agent Systems 13

Finally, the design of the mixed-mode simulation must enable and facilitate
the iterative gradual replacement of individual modules with interfaces for inter-
action with the real-world system. It should ensure from the project beginning
on that the individual interfaces to the environment are clearly separated and
defined in a general way so that they closely correspond to the respective aspects
of the target real-world system. This clear separation and modularisation will
later in the process enable the gradual and piece-wise replacement of the API’s
to simulated modules with interfaces to the actual sensors and actuators of the
application to the target system.

Again, while each of the above considerations belongs to standard best prac-
tises of engineering of complex software systems, often they are not respected,
or difficult to consider in development utilising simulations. It is important to
consider in the earliest stages of application development the relevance of not
only the application design w.r.t. the target system, but also of the design of
the multi-agent simulation w.r.t. the target system. It is thus vital to keep a
strong separation between the design of the application w.r.t. the design and
implementation of the simulation itself. Only this way the developer can avoid
the situation when the implemented application works flawlessly when evalu-
ated against a complex simulation, however breaks down when finally deployed
to the target system. Often the primary problem lies not in the design of the
application itself, but in the level of abstraction assumed by the design of the
simulation which simplified some crucial aspect of the target system too far from
the real-world conditions.

In AgentFly: The main constraint in the design of the autonomous collision
avoidance system is the bandwidth and reliability of aircraft-to-ground commu-
nication links, which prevents deployment of a centralised solution. The collision
avoidance mechanism was therefore designed in a fully decentralised manner.
Although each negotiation is managed by a master plane, this plane is chosen
dynamically from within the collision pair and/or group. From the beginning,
the mechanisms was designed as fully asynchronous and its computational and
memory requirements were kept in line with the parameters of aeroplane’s on-
board computers. Altogether, these made the process of migrating the mecha-
nism from simulated aircrafts to real hardware UAV platforms relatively
straightforward.

4 Requirements on a SADMAS Platform

One of the key components of an ideal pragmatic SADMAS toolkit is a platform
for construction, calibration and execution of the series of mixed-mode simu-
lations used for evaluating the iterations of the developed application. In the
following, we discuss some of the properties such a platform should feature in
order to facilitate the SADMAS process.

14 M. Pěchouček, M. Jakob, and P. Novák

4.1 Adjustable Simulation Fidelity

The simulation has to accurately and reliably replicate those aspects of the
target system that are critical for the real-world operation of the developed
application. Key aspects that need to be modelled include computation and
communication capabilities of the target system, such as throughput limitations,
communication delays, and communication link failures. In the case of multi-
robot applications, interaction with the environment, i.e., sensors, actuators and
physics of the component on which the application is to be deployed, need to
be also modelled with sufficient fidelity, as it is done in robotic simulators (e.g.,
[11]).

High-fidelity simulations require high amount of resources, both at run-time
but also at the design time when a sufficiently detailed model of the target
system has to be designed, implemented and properly calibrated. The level of
abstraction chosen for the simulation should be balanced with i) the ability
to scale to the required size of the target systems and ii) obtain enough data
about the behaviour of the target system to facilitate precise calibration of the
simulation model. Depending on the focus of the application, the level of detail
required may vary for different aspects of the target system and/or different
parts of the simulation. Multi-scale simulation techniques [10] can be employed
for this purpose.

In AgentFly: The lesson learnt from AgentFly development was that the gran-
ularity of the simulation does not need to be defined a priori and that it is
rather important to decide upon the right level of fidelity for specific scenarios.
Low simulation granularity does not make it believable and would not facilitate
the application migration from the simulation environment to the final system.
On the other hand way too high fidelity may become a resource overkill (both
financially, as well as w.r.t. human resources involved). For the original AgentFly
simulation, the application was modelled as a collective of micro UAVs flying in
perfect conditions. At that stage, the development team was putting its focus
into the fidelity of the physical dynamic model of the flying asset. In later stages,
during AgentFly extension to support air traffic management in the US National
Airspace, the fidelity of the simulation had to be refined towards providing i) a
high precision aeroplane model based on the Total Energy Model of the BADA
(Base of Aircraft DAta) aeroplane performance standards (cf. [7]), ii) full mod-
els of the geographical environment including landing, take-off locations, no-fly
zones and special purpose air traffic sectors; and finally iii) full models of the
weather. The design of the home-developed simulation platform A-globe Simu-
lation [15] turned out to be flexible enough to accommodate the corresponding
adjustments of the simulation without major frictions.

4.2 Rich Environmental Modelling

The problem domains the SADMAS approach is suitable for usually concern
agents situated in and interacting with a real-world physical environment.

Towards Simulation-Aided Design of Multi-Agent Systems 15

Fig. 3. Left: rich environment model in Tactical-AgentFly simulation. Right: dynamic
partitioning of the environment in AgentFly simulation.

An ideal SADMAS simulation platform has to provide abstractions and run-
time support for simulating rich virtual environments. Depending on the type of
application, different modes of interaction with environment have to be accom-
modated, including perception (via sensors) and acting (via actuators) in the en-
vironment, possibly also agent mobility within the environment. Possibly, some
applications may require modelling of the environment dynamics itself (e.g.,
weather), and this might also need to be simulated with sufficient precision.

Rich environmental models are supported by robotic simulation platforms
and engines for simulating digital virtual worlds. However, most existing pop-
ular multi-agent-based simulation platforms (e.g., [5,20]), so far only focus at
highly abstracted environments (graphs, grids), though recently support for GIS
concepts has been added. Structurally complex environments involving object
such as buildings are still generally unsupported in general-purpose multi-agent-
based simulation platforms.

In AgentFly: Important part of air traffic simulation is a detailed modelling of
the landscape, the ground terrain and also weather, in particular wind. In the
simulation used for testing collaborative UAV-based surveillance control mecha-
nisms [13], we had to model urban terrain, sensors and both the physical, as well
as logical movement of ground units. Figure 3 provides a snapshot of the sim-
ulation visualisation involving the urban environment with a number of ground
agents and two UAVs collaboratively performing surveillance and tracking tasks
over the area.

4.3 Simulation Scalability

In many application domains, with the advancing SADMAS process iteration,
the size of the simulated target (sub-)system will significantly grow. To accom-
modate to the variable simulation size, an ideal SADMAS simulation platform
design should emphasise scalability. Both, in terms of growing number of en-
tities and components of the multi-agent application, as well as the increasing

16 M. Pěchouček, M. Jakob, and P. Novák

size and accuracy of the simulated environment. To support the scalability on
the simulation model level, the platform should therefore also support scalability
w.r.t. the growing number computational resources.

The multi-agent-based approach to simulation provides natural decomposi-
tion of the computation process. However, there are two main factors that may
prevent scalability of the simulation. Firstly, it is the super-linear growth in
communication requirements between agents with their growing number, and
secondly, naive employment of the centralised environment simulation design.
The first factor is application-specific and closely linked to the way individual
agents in the target system interact with each other during their operation;
there are no universal techniques by which the problem can be generally ad-
dressed. The bottleneck represented by the centralised environment simulation
design could be eliminated by distribution of fragments of the simulation, i.e.,
partitioning the environment into a number of zones which are each hosted on
a separate computational core. Distributed agent-based simulations are a rela-
tively new concept and platform support for them is relatively limited. We can
distinguish between two types of distribution: i) agents only and ii) agents and
environment distribution. The latter is more complex because it requires par-
titioning the environment state and correctly synchronising it across multiple
machines.

In AgentFly: As a part of the collaboration with the FAA (US Federal Aviation
Administration), it was requested to model the entire US National Air Space
traffic comprising of approximately 75,000 flights a day. Due to high-fidelity of
the simulation required (cf. the above subsections), simulating such a number
of flights turned out to be impossible on a single machine. A fully distributed
simulation was therefore developed, where both the application logic and simu-
lation of the environment was distributed. In the latter case, this was achieved
by dynamically partitioning the environment into a number zones. The Figure 3
depicts the dynamic fragmentation of the environment where each zone was ded-
icated to a single host computer. With the growing number of simulated aircrafts
in the airspace, the environment was re-fragmenting and re-distributing in order
to ensure load-balancing of the entire distributed simulation among the hosts of
the computational cluster running it.

4.4 Mixed-Mode Support

Mixed-mode simulation, the core element of the SADMAS approach, denotes a
simulation with a capability to replace part of the simulation by the respective
physical component whose state, its sensory inputs and actuator outputs, are
reflected back into the simulation using a phantom simulated entity. Mixed-mode
simulation enables a series of intermediate steps in the validation of the developed
application, between a fully simulation-based evaluation and evaluation on a fully
deployed application. In a mixed-mode simulation, parts of the application logic
can be tested on a real hardware platform in situations which involve multiple
entities (e.g., an autonomous car driving through a congested city), without the

Towards Simulation-Aided Design of Multi-Agent Systems 17

Fig. 4. AgentFly UAV hardware platforms. Left, Procerus fixed-wing aircraft with the
development toolkit; Right, LinkQuad vertical take-off and landing quad-rotor aircraft.

need to have all the entities physically available. The latter could be either too
costly, or potentially dangerous either for the assets involved, or the deployed
environment itself.

Mixed-mode simulation might be the only way to evaluate the developed
application (prior to a full-scale deployment) in scenarios where the target system
is beyond our control and cannot be easily used for evaluation, such as e.g., in
urban traffic or human crowds. A fundamental requirement that mixed-mode
execution thus imposes on the simulation platform is the ability of the simulation
to run in, at least, real-time (one wall-clock second corresponds to one simulation
second). The agent-based tools and platforms would need to support various
levels of state synchronisation so that an easy plug-and-play, resp. replace-and-
forget functionality is provided.

In AgentFly: AgentFly has been successfully tested on physical hardware plat-
form, Unicorn UAV test platform by Procerus Technologies [19] and we are
currently working on porting the relevant application fragments to the Linksys
LinkQuad vertical take-off and landing aircraft (cf. Figure 4). We already per-
formed a series of successful experiments with AgentFly planning algorithms
running on the platforms and we are currently adapting the AgentFly simula-
tion platform to be able to accommodate a mixed-mode simulation with several
physical flying assets (2 Unicorn UAVs and 1 LinkQuad aircrafts).

The second AgentFly mixed-mode line of evaluation is w.r.t. the large-scale
air-traffic management systems of the US National Airspace. There we are work-
ing towards mixed-mode mixed-mode simulations of the domain populated with
a number of computational models of the controllers, with several controllers
instantiated with real human air traffic controllers provided by FAA.

4.5 Evaluation Modes

The SADMAS process is in its heart evaluation-driven. It dictates advancement
to the next development process iteration only when the actual release performs

18 M. Pěchouček, M. Jakob, and P. Novák

sufficiently well against the current choice of implemented features and level
of abstraction embodied in the iteration of the mixed-mode simulation. Differ-
ent modes in which the simulation is used result in several different simulation
execution modes which should be supported by an ideal SADMAS simulation
platform:

single instance mode: the goal is to execute a single simulation run in a min-
imum time. This requirement arises whenever the simulation is used during
interactive development and testing of the application. In this case, minimi-
sation of simulation time improves the productivity of the programmer.

batch mode: the goal is to execute a batch of simulation runs as fast as possi-
ble. This need arises when performing extensive simulation-based evaluations
which involve simulating the system in different configurations.

real-time mode: the goal is to execute the simulation in real-time. This final
requirement arises when performing mixed-mode simulation against the real-
world target system.

If a single host is incapable of running the simulation sufficiently fast, the only
way to perform the single instance and real-time modes is by distributing the
simulation over multiple machines. We discuss the system distribution above, in
Subsection 4.3.

As long as a single simulation instance can fit into a memory of a single
machine, the batch-mode evaluation is often best performed by not distributing
the simulation run, but fitting as many, possibly smaller-scale, simulation runs
on a single host. Our experience shows, that such a setup generally leads to lower
overheads, while we were still able to retrieve reasonable experimental data from
the batch-mode simulations; though this might not hold universally.

In AgentFly: The actual development and debugging of AgentFly relied on the
single-instance execution mode. The need for batch-mode evaluation arose and
became prominent in testing efficiency of the developed collision avoidance meth-
ods. The capability of the multi-agent application has been tested on a series
of super-conflict scenarios in which a number of aircrafts are set to collide in
a single space point. In these scenarios, various aspects of the application per-
formance were tested, such as i) total length of the flight trajectory, ii) flight
safety expressed in the number of near misses, iii) bandwidth requirement or iv)
total computational time. For such experimental setups involving real hardware
assets, the possibility of employing mixed-mode simulations is crucial in order
to minimise the potential risks of the project.

5 Discussion and Related Work

Some of the issues raised in the Section 3 on application design considerations
have been addressed in the field of agent-based software engineering. Example
methodologies include Adelfe [3], a methodology for the design of adaptive soft-
ware situated in unpredictable environments. Gaia [21], general methodology

Towards Simulation-Aided Design of Multi-Agent Systems 19

that supports both the micro-level, agent structure, as well as the macro-level,
agent society and organisational aspects of agent development. Prometheus [14]
methodology provides hierarchical structuring mechanisms which allow design
to be performed at multiple levels of abstraction. Such mechanisms are crucial to
the pragmatics of large-scale complex systems development. Tropos [4] method-
ology puts major focus on agent-oriented requirements engineering perspective.

Though some of the agent-oriented software engineering methodologies pro-
vide support for evolutionary application development, they assume the testing
is done directly against the target environment. They do not explicitly support
simulation-based development cycle in which the testing of the developed multi-
agent application is first done on simulations of the target system. We argue, that
the here introduced methodology of Simulation-Aided Design of Multi-Agent
Systems is orthogonal to the existing methodological approaches and can be
relatively easily combined with them. While traditional multi-agent systems de-
velopment methodologies are to be applied to the overall application design, the
SADMAS approach rather guides developers through the intermediary develop-
ment life-cycle of the project and ensures that 1) the application is continuously
evaluated against relevant and sufficiently accurate simulated environments, and
as a consequence of this, 2) attention is paid to the relevance of the application
w.r.t. relevant aspects of the environment continuously throughout the applica-
tion life-cycle. Here we speak about both knowingly crucial issues and aspects
of the target system, as well as those which are potentially crucial, however not
easily recognised as such in the early phases of application development.

Although, to our knowledge, no general-purpose simulation-oriented agent-
based software-engineering methodologies exist, the SADMAS idea has been
partially applied in specific sub-domains. A good example is the Anthill frame-
work [1] for design, implementation and evaluation of peer-to-peer applications
based on ideas such as multi-agent and evolutionary programming. Besides the
air traffic domain referenced throughout the paper, some of the core ideas of the
SADMAS approach have also been employed in the general traffic and trans-
portation domains, e.g., for designing agent-based demand-responsive transport
coordination mechanism [8], for increasing maritime security [9] and for design-
ing multi-agent control of smart grids [16]. In none of the above cases, however,
the mixed-mode simulation technique has been used.

Regarding the relationship to general-purpose software engineering method-
ologies, to an extent, the SADMAS process is similar to Test-Driven Devel-
opment [2], although SADMAS comes with a significantly more complex test
evaluation mechanism employing a simulations. To an extent, the stress of the
SADMAS approach on frequent evaluation against more and more accurate sim-
ulation models of the target system integrates elements of continuous integra-
tion [6] approach.

Let us finish with a remark on the cost-effectiveness of the SADMAS approach.
At the first sight, the implementation of mixed-mode simulations increases the
overall cost of development due to introduction of an additional development
step which brings in rather non-trivial costs. The additional costs of mixed-mode

20 M. Pěchouček, M. Jakob, and P. Novák

simulation can be hardly expressed a priori and are very application domain
specific. However, we argue that in the cases when the risks involved throughout
the application development life-cycle are relatively high, the SADMAS approach
can significantly reduce the overall project risks, and safe costs in the face of
severe costs in the case of project failure due to either loss of physical assets, or
harm done to the target system possibly involving humans (cf. also Section 2.3).

6 Conclusions and Outlook

With the increasing size and complexity of environments and target systems
with which multi-agent applications have to interact, there is a growing need to
support incremental, evolutionary development processes. In particular, in the
context of engineering of large-scale complex and non-linear systems, where all
the consequences of individual design decisions are hard to predict a priori, there
is a need to rapidly evaluate the individual design and implementation decisions
without requiring full-scale deployment to the target real-world environment.
Such support can be provided by having a multi-agent-based simulation of the
target environment available and using it as a testbed during the development
of the application. With the advancing application development stages, mixed-
mode simulations should be used as an intermediate step between application
validation against pure simulation and full deployment to the target system.
The Simulation-Aided Design of Multi-Agent Systems approach proposed in this
paper builds on these ideas and in certain application domains has a potential to
significantly reduce risks involved and even speed up the development process.

References

1. Babaoglu, O., Meling, H., Montresor, A.: Anthill: A framework for the development
of agent-based peer-to-peer systems. In: International Conference on Distributed
Computing Systems (ICDCS), pp. 15–22 (2002)

2. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional
(November 2002)

3. Bernon, C., Gleizes, M.P., Peyruqueou, S., Picard, G.: ADELFE: A Methodology
for Adaptive Multi-agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zam-
bonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer,
Heidelberg (2003)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

5. Collier, N.: RePast: An extensible framework for agent simulation. Technical Re-
port 36, The University of Chicago, Social Science Research (2003)

6. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional (July 2007)

7. The European Organisation for the Safety of Air Navigation. EUROCONTROL
BADA (2011),
http://www.eurocontrol.int/eec/public/standard_page/proj_BADA.html

http://www.eurocontrol.int/eec/public/standard_page/proj_BADA.html

Towards Simulation-Aided Design of Multi-Agent Systems 21

8. Horn, M.E.T.: Multi-modal and demand-responsive passenger transport systems:
a modelling framework with embedded control systems. Transportation Research
Part A: Policy and Practice 36(2), 167–188 (2002)

9. Jakob, M., Vaněk, O., Urban, Š., Benda, P., Pěchouček, M.: Employing Agents to
Improve the Security of International Maritime Transport. In: Proceedings of the
6th workshop on Agents in Traffic and Transportation, ATT 2010 (May 2010)

10. Jakovljevic, G., Basch, D.: Implementing multiscale traffic simulators using agents.
In: 26th International Conference on Information Technology Interfaces, vol. 1, pp.
519–524 (June 2004)

11. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: Proceedings of the 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154
(September 2004)

12. McCarthy, J.: Elaboration tolerance (1999),
http://www-formal.stanford.edu/jmc/elaboration.html

13. Pavĺıček, D., Jakob, M., Semsch, E., Pěchouček, M.: Occlusion-aware multi-uav
surveillance of multiple urban areas. In: 6th Workshop on Agents in Traffic and
Transportation, ATT 2010 (2010)

14. Padgham, L., Winikoff, M.: Prometheus: A practical agent-oriented methodology.
Agent-Oriented Methodologies, 107–135 (2005)

15. Pěchouček, M., Šǐslák, D., Pavĺıček, D., Volf, P., Kopř́ıva, Š.: AGENTFLY: Dis-
tributed Simulation of Air Traffic Control Using Unmanned Aerial Vehicles. In:
Proceedings of 2nd Conference for Unmanned Aerial Systems, UAS (March 2010)

16. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a dis-
tributed smart grid: Design and implementation. In: IEEE/PES Power Systems
Conference and Exposition, PSCE 2009, pp. 1–8 (2009)

17. Šǐslák, D., Volf, P., Pěchouček, M.: Agent-Based Cooperative Decentralized
Airplane-Collision Avoidance. IEEE Transactions on Intelligent Transportation
Systems (99), 1–11 (2009)

18. Šǐslák, D., Volf, P., Pěchouček, M.: Agent-Based Cooperative Decentralized
Airplane-Collision Avoidance. IEEE Transactions on Intelligent Transportation
Systems (99), 1–11 (2010)

19. Procerus Technologies. Procerus Technologies: Fly Light with world’s smallest UAV
Autopilot (2011), http://procerusuav.com/

20. Wilensky, U.: Netlogo. Technical report, Center for Connected Learning and
Computer-Based Modeling, Northwestern University (1999),
http://ccl.northwestern.edu/netlogo/

21. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

http://www-formal.stanford.edu/jmc/elaboration.html
http://procerusuav.com/
http://ccl.northwestern.edu/netlogo/

Part II

Reasoning

Reinforcement Learning as Heuristic

for Action-Rule Preferences

Joost Broekens, Koen Hindriks, and Pascal Wiggers

Man-Machine Interaction department (MMI)
Delft University of Technology

Abstract. A common action selection mechanism used in agent-oriented
programming is to base action selection on a set of rules. Since rules need
not be mutually exclusive, agents are often underspecified. This means
that the decision-making of such agents leaves room for multiple choices
of actions. Underspecification implies there is potential for improvement
or optimalization of the agent’s behavior. Such optimalization, however, is
not always naturally coded using BDI-like agent concepts. In this
paper, we propose an approach to exploit this potential for improvement
using reinforcement learning. This approach is based on learning rule pri-
orities to solve the rule-selection problem, and we show that using this
approach the behavior of an agent is significantly improved. Key here is
the use of a state representation that combines the set of rules of the agent
with a domain-independent heuristic based on the number of active goals.
Our experiments show that this provides a useful generic base for learning
while avoiding the state-explosion problem or overfitting.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents.

General terms: Agent programming languages; Robotics; AI; Method-
ologies and Languages.

Keywords: Agent-oriented programming, rule preferences, reinforce-
ment learning.

1 Introduction

Agent platforms, whether agent programming languages or architectures, that
are rule-based and use rules to generate the actions that an agent performs intro-
duce the problem of how to select rules that generate the most effective choice
of action. Such agent programming languages and architectures are based on
concepts such as rules, beliefs, and goals to generate agent behavior. Here, rules
specify the agent’s behavior. A planning or reasoning engine tries to resolve all
rules by matching the conditions and actions with the current mental state of the
agent. Multiple instantiations of each rule can therefore be possible. An agent
can select any one of these instantiations, resulting in a particular action. So,

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 25–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 J. Broekens, K. Hindriks, and P. Wiggers

the rule-selection problem is analogous to but different from the action-selection
problem [13]. Rule selection is about which uninstantiated rule to choose; action
selection, in the context of rule-based agent frameworks, is about which instan-
tiated rule to chose. In this paper, when we refer to rule we mean uninstantiated
rule, i.e, rules that still contain free variables.

Rule-based agent languages or architectures typically underspecify the behav-
ior of an agent, leaving room for multiple choices of actions. The reason is that
multiple rules are applicable in a particular situation and, as a result, multiple
actions may be selected by the agent to perform next. In practice, it is often
hard to specify rule conditions that are mutually exclusive. Moreover, doing so
is undesirable as the BDI concepts used to develop agents often are not the most
suitable for optimizing agent behavior. An alternative approach is to optimize
agent behavior based on learning techniques.

In this paper we address the following question: how to automatically priori-
tize rules in such a way that the prioritization reflects the utility of a rule given
a certain goal. Our aim is a generic approach to learning such preferences, that
can be integrated in rule-based agent languages or architectures. The overall
goal is twofold; to optimize the agent’s behavior given a predefined set of rules
by an agent programmer, and to help agent programmers to gain insight into
the rule preferences and use these to further specify the agent program. As such,
we focus on a useful heuristic for rule preferences. We have chosen reinforcement
learning (RL) as heuristic as it can cope with delayed rewards and state depen-
dency. These are important aspects in agent behavior as getting to a goal state
typically involves a chain of multiple actions, and rules can have different utility
depending on the state of the agent/environment.

We present experimental evidence that reinforcement learning can be used
to learn rule priorities that can subsequently be used for rule selection. This
heuristic for rule priorities works very well, and results in sometimes optimal
agent behavior. We demonstrate this with a set of experiments using the Goal
agent programming language [5]. Key in our approach is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. Our state representation is as abstract as
possible while still being a useful base for learning. We take this approach for
two main reasons: (1) we aim for a generic learning mechanism; RL should be
a useful addition to all programs, and the programmer should not be bothered
by the state representation or state-space explosions; (2) an abstract state helps
generalization of the learning result as a concrete state representation runs the
risk of over fitting on a particular problem instance.

It is important to immediately explain one aspect of our approach that is dif-
ferent from the usual setup for reinforcement learning. In reinforcement learning
it is common to learn the action that has to be selected from a set of possible
actions. In our approach, however, we will apply reinforcement learning to select
an uninstantiated rule from a set of rules in an agent program. An uninstantiated
rule (called action rule in Goal, see also Listing 1) is a generic rule defined by
the agent programmer.

Reinforcement Learning as Heuristic for Action-Rule Preferences 27

if goal(tower([X|T])), not(bel(T=[])) then move(X,table)

is an example of such a rule. We refer to an instantiated rule as a completely
resolved (grounded) version of an action rule generated by the reasoning engine
responsible for matching rules to the agent’s current state. This also means that
the action in an instantiated rule may be selected for execution, as the conditions
of the rule have been verified by the engine.

if goal(tower([a,b])), not(bel([b]=[])) then move(a,table)

is an example of an instantiated rule and the action move(a,table) is the corre-
sponding action that may be selected. One instantiated rule thus is the equivalent
of one action (as it is completely filled in). Many different instantiated rules may
be derived from one and the same program rule, depending on the state. An
uninstantiated rule is more generic as it defines many possible actions. We focus
on learning preferences for uninstantiated rules.

The paper is organized as follows. Section 2 discusses some related work and
discusses how our approach differs from earlier work. In Section 3 we briefly
introduce the agent language Goal and use it to illustrate the rule selection
problem. Section 4 presents our approach to this problem based on reinforce-
ment learning and presents an extension of Goal with a reinforcement learning
mechanism. In Section 5 experimental results are presented that show the effec-
tiveness of this mechanism. Finally, Section 6 concludes the paper and discusses
future work.

2 Related Work

There is almost no work on incorporating learning mechanisms into agent pro-
gramming. More generally, BDI agents typically lack learning capabilities to
modify their behavior [1], although several related approaches do exist.

With regards to related work, several studies attempt to learn rule sets that
produce a policy for solving a problem in a particular domain. Key in these
approaches is that the rules themselves are learned, or more specific, rule in-
stantiations are generated and evaluated with respect to a utility function. The
best performing rule instantiations are kept and result in a policy for the agent.
The evaluation mechanism can be different, for example genetic programming [9]
or supervised machine learning [7]. In any case, the main difference is that our
approach tries to learn rule preferences, i.e., a priority for pre-existing rules given
that multiple rules can be active, while the previously mentioned approaches try
to learn rule instantiations that solve a problem.

Other studies attempt to learn rule preferences like we do. However, these
approaches are based on learning preferences for instantiated rules [10][4], not
preferences for the uninstantiated, generic, rules. Further, the state used for
learning is often represented in a much more detailed way [10][4]. Finally, as the
state representation strongly depends on the environment, the use of learning
mechanisms often involves effort and understanding of the programmer [10].

28 J. Broekens, K. Hindriks, and P. Wiggers

Reinforcement learning has recently been added to cognitive architectures
such as Soar [8] and Act-R [2]. In various respects these cognitive architectures
are related to agent programming and architectures. They use similar concepts
to generate behavior, using mental constructs such as knowledge, beliefs and
goals, are also based on an sense-plan-act cycle, and generate behavior using
these mental constructs as input for a reasoning- or planning-based interpreter.
Most importantly, cognitive architectures typically are rule-based, and therefore
also need to solve the rule (and action) selection problem. For example, Soar-
RL has been explicitly used to study action selection in the context of RL [6].
Soar-RL [10] is the approach that comes closest to ours in the sense that it uses
a similar reinforcement learning mechanism (Sarsa) to learn rule preferences.
As explained above, the key difference is that we attempt to learn uninstan-
tiated rule preferences, while Soar-RL learns preferences for instantiated rules
[10]. Another key difference is that we use an abstract rule-activity based state
representation complemented with a ‘goals left to fulfill’ counter, as explained
in section 4.2.

Finally, [1] present a learning technique based on decision trees to learn the
context conditions of plan rules. The focus of their work is to make agents
adaptive in order to avoid failures. Learning a context condition refers to learning
when to select a particular plan/action, while learning a rule preference refers to
attaching a value to a particular plan/action. Our work is thus complementary in
the sense that we do not learn context conditions, but instead propose a learning
mechanism that is able to guide the rule selection mechanism itself.

3 The Agent Language GOAL

In this Section we briefly present the agent programming language Goal and use
it to illustrate the rule selection problem in agent languages and architectures.
For a more extensive discussion of Goal we refer the reader to [5]. The approach
to the rule selection problem introduced in this paper is not specific to Goal and
may be applied to other similar BDI-based platforms. As our approach involves
a domain-independent heuristic based on counting the number of goals that need
to be achieved, the language Goal is however particularly suitable to illustrate
the approach as declarative goals are a key concept in the language.

Goal, for Goal-Oriented Agent Language, is a programming language for pro-
gramming rational agents. Goal agents derive their choice of action from their
beliefs and goals. A Goal agent program consists of five sections: (1) a knowl-
edge section, called the knowledge base, (2) a set of beliefs, collectively called
the belief base, (3) a set of declarative goals, called the goal base, (4) a program
section which consists of a set of action rules, and (5) an action specification
section that consists of a specification of the pre- and postconditions of actions
of the agent. Listing 1 presents an example Goal agent that manipulates blocks
on a table.

The knowledge, beliefs and goals of a GOAL agent are represented using a
knowledge representation language. Together, these make up the mental state of

Reinforcement Learning as Heuristic for Action-Rule Preferences 29

Table 1. Agent for Solving a Blocks World Problem

1 main stackBuilder {
2 knowledge{
3 block(a), block(b), block(c).
4 clear(table).
5 clear(X) :- block(X), not(on(Y,X)).
6 tower([X]) :- on(X,table).
7 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
8 }
9 beliefs{

10 on(a,table), on(b,table), on(c,a).
11 }
12 goals{
13 on(a,b), on(b,c), on(c,table).
14 }
15 program{
16 if goal(tower([X|T])),
17 bel((T=[Y|T1], tower(T)); (T=[], Y=table))
18 then move(X,Y).
19 if goal(tower([X|T])), not(bel(T=[]))
20 then move(X,table).
21 }
22 actionspec{
23 move(X,Y) {
24 pre{ clear(X), clear(Y), on(X,Z) }
25 post{ not(on(X,Z)), on(X,Y) }
26 }
27 }
28 }

an agent. Here, we use Prolog to represent mental states. An agent’s knowledge
represents general conceptual and domain knowledge, and does not change. An
example is the definition of the concept tower in Listing 1. In contrast, the beliefs
of an agent represent the current state of affairs in the environment of an agent.
By performing actions and possibly by events in the environment, the environ-
ment changes, and it is up to the agent to make sure its beliefs stay up to date.
Finally, the goals of an agent represent what the agent wants the environment to
be like. For example, the agent of Listing 1 wants to realise a state where block
a is on top of block b. Goals are to be interpreted as achievement goals, that is
as a goal the agent wants to achieve at some future moment in time and does
not believe to be the case yet. This requirement is implemented by imposing a
rationality constraint such that any goal in the goal base must not believed to
be the case. Upon achieving the complete goal, an agent will drop the goal. The
agent in Listing 1 will drop the goal on(a,b), on(b,c), on(c,table) if this
configuration of blocks has been achieved, and only if the complete configuration
has been achieved. Note that if only one of these elements has been achieved,
that element will not be a goal to be achieved anymore (called an a-goal), so
the program will not consider the element as an active goal, but the overall goal
on(a,b), on(b,c), on(c,table) is still in the active goal base.

As Goal agents derive their choice of action from their knowledge, beliefs and
goals, they need a way to inspect their mental state. Goal agents do so by means
of mental state conditions. Mental state conditions are Boolean combinations

30 J. Broekens, K. Hindriks, and P. Wiggers

of so-called basic mental atoms of the form bel(φ) or goal(φ). For example,
bel(tower([c,a])) is a mental state condition which is true in the initial mental
state specified in the agent program of Listing 1.

A Goal agent uses so-called action rules to generate possible actions it may
select for execution. This provides for a rule-based action selection mechanism,
where rules are of the form if ψ then a(t) with ψ a mental state condition and
a(t) an action. A mental state condition part of an action rule thus determines
the states in which the action a(t) may be executed. Action rules are located in
the program section of a Goal agent. The first action rule in this section of our
example agent generates so-called constructive moves, whereas the second rule
generates actions to move a misplaced block to the table. Informally, the first
rule reads as follows: if the agent wants to construct a tower with X on top of
a tower that has Y on top and the agent believes that the tower with Y on top
already exists, or believes Y should be equal to the table, then it may consider
moving X on top of Y; in this case the move would put the block Y in position,
and it will never have to be moved again. The second rule reads as follows: if the
agent finds that a block is misplaced, i.e. believes it to be in a position that does
not match the (achievement) goal condition, then it may consider moving the
block to the table. These rules code a strategy for solving blocks world problems
that can be proven to always achieve a goal configuration. As such, they already
specify a correct strategy for solving blocks world problems. However, they do
not necessarily determine a unique choice of action. For example, the agent in
Listing 1 may either move block d on top of block b using the first action rule,
or move the same block to the table using the second action rule. In such a
case, a Goal agent will nondeterministically select either of these actions. It is
important for our purposes to note here that the choice of rule is at stake here,
and not a particular instantiation of a rule. Moreover, as in the blocks world it is
a good strategy to prefer making constructive moves rather than other types of
moves, the behavior of the agent can be improved by preferring the application
of the first rule over the second whenever both are applicable. It is exactly this
type of preference that we aim to learn automatically.

Finally, to complete our discussion of Goal agents, actions are specified in the
action specification section of such an agent using a STRIPS-like specification.
When the preconditions of the action are true, the action is executed and the
agent updates its beliefs (and subsequently its goals) based on the postcondition.
Details can be found in [5].

As illustrated by our simple example agent for the blocks world, rule-based
agent programs or architectures may leave room for applying multiple rules,
and, as a consequence, for selecting multiple actions for execution. Rule-based
agents thus typically are underspecified. Such underspecification is perfectly fine,
as long as the agent achieves its goals, but may also indicate there is room for
improvement of the agent’s behavior (though not necessarily so). The problem
of optimizing the behavior of a rule-based agent thus can be summarized as fol-
lows, and consists of two components: First, solving a particular task efficiently
depends on using the appropriate rule to produce actions (the rule selection

Reinforcement Learning as Heuristic for Action-Rule Preferences 31

problem) and, second, to select one of these actions for execution (the action
selection problem). The latter problem is actually identical to selecting an in-
stantiated rule where all variables have been grounded, as instantiated rules
that are applicable yield unique actions that may be executed. Uninstantiated
rules only yield action templates that need to be instantiated before they can be
executed.

In this paper we explore a generic and fully automated approach to this opti-
mization problem based on learning, and we propose to use reinforcement learn-
ing. Although reinforcement learning is typically applied to solve the action
selection problem, here instead we propose to use this learning technique to
(partially) solve the rule selection problem. The reason is that we want to in-
corporate a generic learning technique into a rule-based agent that does not
require domain-specific knowledge to be inserted by a programmer. As we will
show below, applying learning to the rule selection problem in combination with
a domain-independent heuristic based on the number of goals still to be achieved
provides just such a mechanism.

4 Learning to Solve the Rule Selection Problem

In this Section, we first briefly review some of the basic concepts of reinforcement
learning, and then introduce our approach to the rule selection problem based
on learning and discuss how we apply reinforcement learning to this problem.
We use the agent language Goal to illustrate and motivate our choices.

4.1 Reinforcement Learning

Reinforcement Learning is a mechanism that enables machines to learn solutions
to problems based on experience. The main idea is that by specifying what to
learn, RL will figure out how to do it. An approach based on reinforcement
learning assumes there is an environment with a set of possible states, S, a
reward function R(S) that defines the reward the agent receives for each state
in the environment, and a set of actions A that enable to effect changes to the
environment (or an agent in that environment) and move the environment from
one state to another according to the state transition function T (S, A) → S.
An RL mechanism then learns a value function, V (S, A), that maps actions in
states to values of those actions in that state. It does so by propagating back
the reinforcement (reward) received in later states to earlier states and actions,
called value propagation. RL should do this in such a way that the result of always
picking the action with the highest value will lead to the best solution to the
problem (the best sequence of actions to solve the problem is the sequence with
the highest cumulative reward). Therefore, RL is especially suited for problems
in which the solution follows only after a sequence of actions and in which the
information available for learning takes the form of a reward (e.g. pass/fail or
some utility value).

In order for RL to learn a good value function, it must explore the state space
sufficiently, by more or less randomly selecting actions. Exploration is needed to

32 J. Broekens, K. Hindriks, and P. Wiggers

gather a representative sample of interactions so that the transition function T
(in case the model of the world is not known) and the reward function R can be
learned. Based on T and R, the value function V is calculated. After sufficient
exploration, the learning agent switches to an exploitation scheme. Now the value
function is used to select the action with highest predicted cumulative reward
(the action with the highest V (s, a)). For more information on RL see [12].

4.2 GOAL-RL

The idea is to use RL to learn values for the rules in an agent program or archi-
tecture, so that a priority of rules can be given at any point during the execution
of the agent. Here, we use Goal to illustrate and implement these ideas, and we
call this RL-enabled version Goal-RL. The basic idea of our contribution is that
the Goal interpreter determines which rules are applicable in a state, while RL
learns what the values for applying these same rules are in that state. Goal will
then again be responsible for using these values in the context of rule selection.
Various selection mechanisms may be used, e.g., selecting the best rule greedy,
or selecting a rule based on a Boltzmann distribution, etc. This setup combines
the strengths of a qualitative, logic-based agent platform such as Goal with the
strengths of a learning mechanism such as reinforcement learning.

State representation. RL needs a state representation for learning. Unfortu-
nately, using the agent’s mental state or the world state, as is typically done
in RL, quickly leads to intractably large state spaces and makes the solutions
(if they can be learned at all) domain and even problem-instance specific. Still,
our goal is to create a domain-independent mechanism that takes the burden of
finding a good rule selection mechanism away from the programmer.

We propose the following approach. Instead of starting to train with a state
representation that is as close as possible to the actual agent state, and make that
representation more abstract in case of state explosion problems, as is common
in RL, we start with a representation that is very abstract, while still being
meaningful and specific enough to be useful for learning rule preferences. The
benefits of this choice are twofold. First, a trained RL model based on such an
abstract state and action representations is potentially more suitable for reuse
in different domains and problem instances (learning transfer). Second, by using
an abstract state our approach is less vulnerable to large state-spaces and the
state-space explosion problem, and, consequently, will learn faster.

The state representation we propose is composed of the following two ele-
ments. First, our state representation contains the set of rule-activation pairs
itself (i.e. the list of rules and whether a rule is applicable or not). However,
for many environments this representation does not contain enough information
for the RL algorithm to learn a good value function. Essentially, what is miss-
ing is information that guides the RL algorithm towards the end goal. A state
representation that only keeps track of the set of rules that are and are not ap-
plicable does not contain any information about the approriateness of rules in a
particular situation. We add such information by including a second element in

Reinforcement Learning as Heuristic for Action-Rule Preferences 33

the state representation: a version of a well-known progress heuristic used also
in planning. The heuristic, which is easily implemented in an agent language or
architecture that keeps track of the goals of an agent explicitly, is to count the
number of subgoals that still need to be achieved. This is a particularly easy
way to compute the so-called sum cost heuristic introduced in [3]. Due to its
simplicity this heuristic causes almost no overhead in the learning algorithm.
This heuristic information is in fact a number that is added to the state used by
the reinforcement learning mechanism in order to guide the learning. Adding a
heuristic like this will keep the mechanism domain independent, but gives useful
information to the RL mechanism to differentiate between states.

Even with this heuristic many states differentiated by the agent itself are
conflated in the limited number of states used by the reinforcement learner.
Such a state space reduction will sometimes prevent the algorithm from finding
optimal solutions (as many RL mechanisms, including the one we use, assume
a Markovian state transition). Explicitly adding active goals to the state space
is difficult, as these goals are instantiated goals and therefore problem-instance
specific, resulting in the need for retraining the RL model for every new problem
instance of a particular type of problem (e.g., for each possible instance of the
blocks world). Perhaps the abstract (uninstantiated) goals could be used. We feel
state representation is definitely an issue for further research. It should be noted,
though, that we are not aiming for a perfect learning approach that is always
able to find optimal solutions. Instead, we aim for an approach that provides two
benefits: it is generic and therefore poses no burden on the programmer, and the
approach is able to provide a significant improvement of the agent’s behavior,
even though this may still not be optimal (optimal being the smallest number of
steps possible to solve a problem). The approach to learn rule preferences thus
should result in significantly better behavior than that generated by agents that
do not learn rule preferences. In the remainder of this paper, we will study and
demonstrate how well the domain-independent approach is able to improve the
behavior of agents acting in different domains.

In more detail, the approach introduced here consists of the following ele-
ments. A state s is a combination of the number of subgoals the agent still has
to achieve and the set of rule states. A rule state is either 0, 1 or 2, where 0
means the rule is not active, 1 means there is an instantiation of the rule in which
the rule’s preconditions are true and 2 means there is an instantiation in which
also the preconditions for the action the rule proposes are true meaning the rule
fires. For example, if a program has a list of 3 rules, of which the last two in the
program fire while the agent still has 4 subgoals to achieve, the state equals to
s = 022 : 4. An action is represented by a hash based on the rule (in our case sim-
ply the index of the rule in the program list; so the action uses the same hash as
the rule in the rule-activation pairs used for the state). For example, if the agent
would execute an action coming from the first rule in the list, the action equals
to a = 0, indicating that the agent has picked the first rule for action generation.
In our setup, the reward function R is simple. It defines a reward r = 1 when all
goals are met (the goal list is empty) and r = 0 otherwise. The current and next

34 J. Broekens, K. Hindriks, and P. Wiggers

state-action pairs (s, a) and (s′, a′) are used together with the received reward
r′ as input for the value function V . A transition function T is learned based
on the observed state-action pairs (s, a) and (s′, a′). The transition function is
used to update the value function according to standard RL assumptions, with
one exception: the value for a state-action pair (s, a) is updated according to the
probabilistically correct estimate of the occurance of (s′, a′), not the maximum.
In order to construct the probabilities, the agent counts state occurrences, N(s),
and uses this count in a standard weighting mechanism. Values of states are
updated as follows:

RL(s, a)← RL(s, a) + α · (r −RL(s, a)) (1)

V (s, a)← RL(s, a) + γ ·
∑

i

V (sai , ai)
N(sai , ai)∑
j N(saj , aj)

(2)

So, a state-action pair (s, a) has a learned reward RL(s, a) and a value V (s, a)
that incorporates predicted future reward. RL(s, a) converges to the reward
function R(s, a) with a speed proportional to the learning rate α (set to 1 in our
experiments). V (s, a) is updated based on RL(s, a) and the weighted average
over the values of the next state-action pairs reachable by action a1...i (with
a discount factor of γ, set to 0.9 in our experiments). So, we use a standard
model-based RL approach [12], with an update function comparable to Sarsa
[11].

5 Experiments

In order to assess if rule preferences can be learned using RL with a state rep-
resentation as described, we have conducted a series of experiments. The goal
of these experiments was to find out the sensitivity of our mechanism with re-
spect to (a) the problem domain (we tested two different domains), (b) different
problem instantiations within a domain (e.g. random problems), (c) rules used
in the agent program (different rule sets fire differently and thus result in both
a different state representation and different agent behavior), (d) different goals
(a different goal implies a different reward function because R(s) = 1 only when
all goals are met).

In total we tested 8 different setups. Five setups are in an environment called
the blocks world, in which the agent has to construct a goal state consisting of a
predefined set of stacks of numbered blocks from a start state following standard
physics rules (block cannot be removed from underneath other blocks). The agent
can grab a block from and drop a block at a particular stack. In principle, it can
build infinitely many stacks (the table has no bounds). The agent program lists
two rules.

Three setups were in the logistics domain in which the agent has to deliver
two orders each consisting of two different packages to two clients at different
locations. In total there are three locations, with all packages at the starting

Reinforcement Learning as Heuristic for Action-Rule Preferences 35

location and each client at a different location. A location can be reached directly
in one action. The agent can load and unload a package as well as goto a different
location. The agent program lists five rules.

5.1 Setup

Each experiment consisted of a classic learning experiment in which a training
phase of 250 trials (random rule selection) was followed by a exploitation phase
of 30 trials (greedy rule selection based on learned values). Such a separation
between exploration and exploitation is typical for RL experiments, although
online (exploitation during exploration) can also be used. However, online learn-
ing has additional issues (such as how to balance exploration/exploitation) that
we do not want to address in this paper. For each experiment we present a bar
graph showing the average number of actions needed to solve the problem dur-
ing the training phase (reflecting the goal agent as it would perform on average
without learning ability) and during the exploitation phase (reflecting the so-
lution including the trained rule preferences). As a measure of optimality we
also show the minimum number of actions needed in one trial to get to a goal
state as observed during the first 250 trials (which is the optimal score as it
equals the minimum number of steps to reach a solution, except in Figure 3 as
explained later). This number is shown in the bar graphs as reference number
for the optimality of the learned solution.

5.2 Blocks World Experiments

Five experiments were done using the blocks world. As described in section 3,
there are two rules for the GOAL agent, one rule designed to correctly stack
blocks on goal stacks (constructive rule) and the other designed to put ill-placed
blocks on the table (deconstructive move). Given these two rules, it is easy to
see (and prove) that given a choice between the constructive and deconstructive
move, the constructive move is always as good as the deconstructive one. It
involves putting blocks at their correct position. These blocks do not need to
be touched anymore. A deconstructive move involves freeing underlying blocks.
This might be necessary to solve the problem, but the removed blocks might
also need to be moved again from the table to their correct place at a goal stack.

The first experiment is a test, constructed to find out if the GOAL-RL agent
can learn the correct rule preferences for a fundamental three-blocks problem. In
this problem, three blocks need to be put on one stack starting with C, BA (B
on top of A) ending with the goal stack ABC (A on B on C). The agent should
learn a preference for the constructive move (a move putting a block on another
block, in our case B > C), as this allows a solution of the problem in two moves
(B > C and A > BC), while the deconstructive move (a move putting a block
on the table, in our case B > Table) needs three (B > Table then B > C and
A > BC). Indeed, the agent learns this preference, as shown in Figure 1.

The reward in the last experiment comes rather quickly, and the state tran-
sitions are provably Markovian, so the positive learning result presented here

36 J. Broekens, K. Hindriks, and P. Wiggers

is not surprising. In the second experiment, we tested if a reward given at a
later stage together with a more complex state-space would also give similar re-
sults. We constructed a problem of which it is clear that constructive moves are
better than deconstructive moves: the inverse-tower problem. Here, the agent is
to inverse a tower IHGFEDCBA to ABCDEFGHI. Obviously, constructive
moves are to be preferred as they build a correct tower, while deconstructive
moves only delay building the tower. The rules used by the agent are the same
as in the previous experiment. As can be seen in Figure 1, the GOAL-RL agent
is able to learn the correct rule preferences and thereby produce the optimal
solution.

As one of the reasons for choosing an abstract state representation is to find
out if this helps learning a solution to multiple problem instances with a problem
domain, not just the one trained for, we set up a third experiment based on tower
building problem in which the starting configuration is random. This means
that at each trial the agent is confronted with a different starting configuration
but always has ABCDEFGHI as goal stack. Being able to learn the correct
preferences for the rules in this case involves coping with a large amount of
environment states that are mapped to a much smaller amount of rule-based
states. We have kept the goal static to be able to interpret the result. If the
goal is to build a high tower, constructive moves should be clearly preferred over
deconstructive ones. Therefore we know that in this experiment the constructive
move is clearly favorite and the learning mechanism should be able to learn this.
As shown in Figure 2 the agent can indeed learn to generalize over the training
samples and learn rule preferences. Note that if we would have taken a state
representation more directly based on the actual world (e.g., the current blocks
configuration), this generalization is difficult as each new configuration is a new
state, and in RL unseen states cannot be used to predict values (unless a RL
mechanism is used that uses some form of state feature extraction). Therefore,
this result that shows that our approach is able to optimize rule selection in a
generic way.

Up until now, the two rules of the agent are relatively smart. Each rule helps
solving the problem, i.e., each rule moves forward towards the goal, as even the
deconstructive rule never removes a block from a goal stack. In the next experi-
ment we changed the deconstructive move to one that always enables the agent
to remove a block form any stack. This results in a dumb tower building agent
as it can deconstruct correct towers. For this agent to learn correct preferences,
it needs to cope with much longer action sequences before the goal is reached
as well as many cycles in the state transitions (e.g., when the agent undoes a
constructive move). As shown in Figure 2, left and middle, the agent can learn
the correct rule preferences and converge to the optimal solution. This is an
important result as it shows that the mechanism can cope with different rule
sets solving the same problem, as well as optimize agent behavior given a rule
set that is clearly sub-optimal (the dumb deconstructive move).

In our last experiment with the blocks world, we evaluated whether the learn-
ing mechanism is sensitive to the goal itself. It is based on the inverse tower

Reinforcement Learning as Heuristic for Action-Rule Preferences 37

problem, with one variation: instead of having one high tower as goal, we now
have three short towers ABC, DEF, GHI as goal stacks as well as a random
starting configuration. This variation thus de-emphasizes the merit of construc-
tive moves for the following reason. In order to solve the problem from any
random starting configuration, the agent also has to cope with those situations
in which one or two long towers are present at the start. These towers need
to be deconstructed. As such, even though constructive moves are never worse
than deconstructive moves, deconstructive moves become relatively more valu-
able. As shown in Figure 2, right, the agent still improves the agent behavior
significantly, but is not able to always learn the optimal solution. As such our
learning approach provides a useful heuristic for rule preferences. The decrease
in learning effectiveness is due to the abstractness of the state representation. In
the previous experiments, the agent’s RL mechanisms could know where it was
building the tower, as the number of active subgoals (incorrectly placed blocks)
decreases with each well-placed block. In this experiment, however, the number
of active subgoals does not map to the environment state in the same fashion
(all three towers contribute to this number, but it is impossible to deduce the
environment state based on the number of subgoals: e.g., the number 6 does not
reflect that tower one and two are build and we are busy with tower three). This
means that there is more state-overloading in the last experiment, more risk at
non Markovian state transitions, hence the RL mechanism will perform worse.

Fig. 1. Left: three-block test. Right: inverse tower.

5.3 Logistics Domain Experiments

In this set of three experiments we test the behavior of our mechanism in a
different domain. The domain is called the logistics domain. As explained above,
this domain involves a truck that needs to distribute from a central location two
different orders containing two different items to two clients, making it a total
of four items to be delivered. A truck can move between three locations (client
1, client 2 and the distribution center). The agent has two goals: deliver order
1, and deliver order 2. It can pick up and drop an item. When two items are
delivered, a subgoal is reached. The agent has five rules, two of which handle
pickup, one handles dropping, 1 handles moving to a client, and one handles
moving to the distribution center.

38 J. Broekens, K. Hindriks, and P. Wiggers

Fig. 2. Left: random start tower. Middle: random start tower dumb. Right random
start 3 towers.

In the first experiment, we tested if the agent can learn useful preferences in
this domain. As Figure 3, left and middle, shows, it can. This suggests that our
results are not specific to a single domain.

In the second experiment, we modified the rule that controls moving to clients
such that it also allows the truck to move to clients when empty (the dumb
delivery truck). This mirrors the dumb tower builder in the blocksworld as it
significantly increases the average path to the goal state and it introduces much
more variation in the observed states (more random moves). As shown in Figure
3, left and middle, the agent can also learn rule preferences that enable it to
converge to the optimal solution. We would like to note that the average learning
result is better than the minimum result observed during exploration. This shows
that the learned rule preferences perform a strategy that is better than any
solution tried in the 250 exploration trials. In other words, learning based on rule-
based representations can generalize to a better solution than observed during
training.

In the last experiment we manipulated a last important factor: the reward
function R(s). In the previous two experiments, the agent was positively rein-
forced when the last item had been delivered. In this experiment, the agent is
reinforced when it returns to the distribution center after having delivered the
last item. As shown in Figure 3, right, this results in a suboptimal strategy,
although still far better a strategy than the standard GOAL agent. This shows
that the mechanism is influenced by the moment the reward is given, even if
from a logical point of view this should not matter. The reason for this is sim-
ple (and resembles the one proposed for the slightly worse performance in the
last blocksworld experiment). Due to our abstract state representation, the RL
mechanism of the agent cannot differentiate between a state in which it just
returned to the distribution center after delivering the last item of the last or-
der versus the first item of the last order. This means that both environment
states are mapped to the same RL state. This RL state receives a reward, and
therefore returning to the distribution center gets rewarded. As such, the agent
emphasizes returning to the distribution center and learns the suboptimal solu-
tion in which it picks up an item and brings it to the client as soon as possible
in order to get to the center ASAP because that is where the reward is. The
best strategy is of course to pick both items for a client and then move to the

Reinforcement Learning as Heuristic for Action-Rule Preferences 39

client. However, as the RL mechanism cannot differentiate between two impor-
tant states, it cannot learn this solution. This clearly shows a drawback of a too
abstract state representation. However, the drawback is relative, as the agent
still performs much better than the standard GOAL agent, showing that even
in this case our mechanism is useful as a rule preference heuristic.

Fig. 3. Left: delivery world. Middle: delivery world dumb. Right: delivery world ma-
nipulated R(s).

6 Conclusion

In this paper we have focused on the question of how to automatically prioritize
rules in an agent program. We have proposed an approach to exploit the potential
for improvement in rule-selection using reinforcement learning. This approach
is based on learning state-dependent rule priorities to solve the rule-selection
problem, and we have shown that using this approach the behavior of an agent
is significantly improved. We demonstrate this with a set of experiments using
the GOAL agent programming language, extended with a reinforcement learning
mechanism. Key in our approach, called GOAL-RL, is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. This state representation, though very
abstract, still provides a useful base for learning. Moreover, this approach has
two important benefits: (1) it provides for a generic learning mechanism; RL
should be a useful addition to all programs, and the programmer should not be
bothered by the state representation or state-space explosions; (2) an abstract
state helps generalizing the learning result as a concrete state representation runs
the risk of over fitting on a particular problem instance. One of the advantages
is that it does not involve the agent programmer or the need to think about
state representations, models, rewards and learning mechanisms. In the cases
explored in our experiments the approach often finds rule preferences that result
in optimal problem solving behavior. In some case the resulting behavior is not
optimal, but is still significantly better than the non-learning agent.

Given that we have implemented a very generic, heuristic approach there is
still room for further improvement. Two topics are particularly interesting for
future research. First, we want to investigate whether adding other domain-
independent features and making the state space in this sense more specific may
improve the learning even more. Second, we want to investigate whether the use

40 J. Broekens, K. Hindriks, and P. Wiggers

of different learning mechanisms that are better able to cope with non Markovian
worlds and state overloading such as methods based on a partially observable
Markov assumption (POMDP) will improve the performance.

Acknowledgments. This research is supported by the Dutch Technology Foun-
dation STW, applied science division of NWO and the Technology Program of
the Ministry of Economic Affairs. It is part of the Pocket Negotiator project
with grant number VICI-project 08075.

References

1. Airiau, S., Padham, L., Sardina, S., Sen, S.: Enhancing adaptation in bdi agents
using learning techniques. International Journal of Agent Technologies and Sys-
tems 1(2), 1–18 (2009)

2. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erl-
baum, Mahwah (1998)

3. Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism
for planning. In: Proceedings of AAAI 1997, pp. 714–719 (1997)

4. Deroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine
Learning 43(1), 7–52 (2001)

5. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-Agent Pro-
gramming: Languages, Tools and Applications, ch. 4, pp. 119–157. Springer, Hei-
delberg (2009)

6. Hogewoning, E., Broekens, J., Eggermont, J., Bovenkamp, E.G.P.: Strategies for
Affect-Controlled Action-Selection in Soar-RL. In: Mira, J., Álvarez, J.R. (eds.)
IWINAC 2007. LNCS, vol. 4528, pp. 501–510. Springer, Heidelberg (2007)

7. Khardon, R.: Learning action strategies for planning domains. Artificial Intelli-
gence 113, 125–148 (1999)

8. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelli-
gence. Artif. Intell. 33(1), 1–64 (1987)

9. Levine, J., Humphreys, D.: Learning Action Strategies for Planning Domains Us-
ing Genetic Programming. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne,
D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer,
J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003,
EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003.
LNCS, vol. 2611, pp. 684–695. Springer, Heidelberg (2003)

10. Nason, S., Laird, J.E.: Soar-rl: integrating reinforcement learning with soar. Cog-
nitive Systems Research 6(1), 51–59 (2005)

11. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems.
Technical report, Cambridge University Engineering Department (1994)

12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

13. Tyrrell, T.: Computational Mechanisms for Action Selection. Phd, University of
Edinburgh (1993)

Towards Reasoning with Partial Goal

Satisfaction in Intelligent Agents

M. Birna van Riemsdijk1 and Neil Yorke-Smith2,3

1 EEMCS, Delft University of Technology, Delft, The Netherlands
m.b.vanriemsdijk@tudelft.nl

2 SRI International, Menlo Park, CA, USA
3 American University of Beirut, Lebanon

nysmith@aub.edu.lb

Abstract. A model of agency that supposes goals are either achieved
fully or not achieved at all can be a poor approximation of scenarios aris-
ing from the real world. In real domains of application, goals are achieved
over time. At any point, a goal has reached a certain level of satisfac-
tion, from nothing to full (completely achieved). This paper presents an
abstract framework that can be taken as a basis for representing partial
goal satisfaction in an intelligent agent. The richer representation enables
agents to reason about partial satisfaction of the goals they are pursu-
ing or that they are considering. In contrast to prior work on partial
satisfaction in the agents literature which investigates partiality from a
logical perspective, we propose a higher-level framework based on metric
functions that represent, among other things, the progress that has been
made towards achieving a goal. We present an example to illustrate the
kinds of reasoning enabled on the basis of our framework for partial goal
satisfaction.

Categories and subject descriptors: I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents.

General terms: Design; Theory.

Keywords: goal reasoning, partial satisfaction, agent programming.

1 Introduction and Motivation

We begin from the observation that existing cognitive agent programming frame-
works (e.g., [35,4,10])—i.e., programming frameworks in which agents are en-
dowed with high-level mental attitudes such as beliefs and goals—take a ‘boolean’
perspective on goals: unless achieved completely, the agents have failed to achieve
them. Following Zhou et al. [37], we argue that many scenarios would benefit
from a more flexible framework in which agents can reason about partial goal
satisfaction. As others have recognized, it is important that agents can be pro-
grammed with this reasoning ability, because often it is not possible for an agent
to achieve a goal completely, in the context of all its commitments situated in

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 41–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

42 M.B. van Riemsdijk and N. Yorke-Smith

the resource-bounded real world. A notion of partiality allows to express that
only part of the goal is achieved, and it facilitates, among other possibilities,
changing goals such that only a part has to be achieved.

While prior work proposes a logic-based characterization of partiality, in this
paper we aim for a general framework for partial goal satisfaction that also allows
quantitative notions of partiality. In particular, we propose a framework based
on metric functions that represent, among other things, the progress that has
been made towards achieving a goal. Agents rescuing civilians from a dangerous
area, for example, may have cleared none, some, or all of the area. Progress may
be expressed in terms of different kinds of metrics, such as utility, or in terms of a
logical characterization. This richer representation enables an agent or group of
agents to reason about partial satisfaction of the goals they are pursuing or that
they are considering. The more sophisticated behaviour that can result not only
reflects the behaviour expected in real scenarios, but can enable a greater total
level of goal achievement. For example, an agent might realize that it cannot
completely clear a sub-area and inform teammates of the situation; in turn, they
adjust their behaviour appropriately, e.g., by coming to assist.

This paper aims to further establish partial goal satisfaction as an important
topic of research, and to provide a step towards a metric-based approach that
also allows for quantitative notions of partial achievement. We discuss related
work and give an example scenario (Sections 2 and 3). Then, we develop an
abstract framework for partial goal satisfaction and identify progress appraisal
(the capability of an agent to assess how far along it is in achieving a goal [6])
and goal adaptation (the modification of a goal [20,27,37]) as the basic types
of reasoning that the framework should support (Sections 4 and 5). We sketch
how reasoning using partial goal satisfaction may be embedded into a concrete
computational framework using the example scenario (Section 6).

Although we provide an abstract framework rather than a concrete proposal
on how to embed partial goal satisfaction in cognitive agent programming frame-
works, we believe the proposed framework forms an important step towards this
aim by identifying the main ingredients that we believe should be part of a
framework for partial goal satisfaction. Through this, we lay foundations for fu-
ture work, which will address the important technical challenges that have to
be faced to concretize the framework and render it suitable for programming a
cognitive agent.

2 Background and Related Work

Before introducing a framework for partial goal satisfaction, we survey the sur-
rounding literature. In this section, we discuss several areas of research that are
related to partial goal satisfaction.

Goal representation. In cognitive agent programming, the concept of a goal
has received increasing attention in the past years. Different goal types have been
distinguished (see, e.g., [34,2] for a discussion), including achievement goals and

Towards Reasoning with Partial Goal Satisfaction 43

maintenance goals. The former, which have received the most attention in the
literature, form the focus of this paper. In the literature, the focus of research
has been on declarative goals, i.e. goals that represent properties of states (goals-
to-be) [35,4,10]. We take the same perspective in this paper.

Achievement goals in logic-based cognitive agent programming languages are
often represented as a logical formula, expressing a property of the state of the
multi-agent system that the agent should try to achieve [35,36,4,34,10]. The
agent considers the goal to be achieved, if it believes a state has been reached in
which the formula is satisfied, according to the semantics of the logic employed.
This logic-based approach can induce a binary way of thinking about goals, in
which the goal is either achieved or not achieved. While we do not reject that
point of view, we suggest in this paper that a framework in which levels of goal
satisfaction can be represented enables several useful kinds of reasoning.

Partial achievement. The concept of partial achievement of a goal appears
in limited extents in the literature. Whereas goals in agent frameworks and
programming languages are not customarily defined to allow for partial satisfac-
tion, philosophically, Holton argues for the existence of “partial intentions” [13],
a concept spanning both desires and goals.

In the foundational work of Rao and Georgeff [23] an intention (goal) is
dropped if it is achieved, not desired, or now believed by the agent to be impos-
sible. Singh [29] drops a goal if another more important task arises. In these and
works that followed them, goal achievement remains a boolean concept.

Haddawy and Hanks made an early study [9], in which a function from propo-
sitions to a real number represents the degree of satisfaction of a goal. Indeed,
various authors have associated goals with a utility, priority, or preference, in
the agents literature (e.g., [15,11,18], among others) and in the AI planning lit-
erature (e.g., [5]), although usually for the purpose of deciding which goals to
prioritize or which subset to pursue, or which plan or action to select.

Zhou and Chen adopt instead a logical approach, defining a semantics for
partial implication of desirable propositions from a symbolic point of view [36].
Zhou et al. [37] investigate partial goal satisfaction on the basis of this logical
semantics, viewing a goal as achieved when a (possibly disjunctive) proposition
is achieved according to the logic. They examine in particular application of
different notions of partial implication to goal modification in the context of belief
change. Although recognizing its value, we do not approach partial satisfaction
viewing goals as logical formulas to be achieved. We discuss the relationship
between the approaches later.

While van der Hoek et al. [33] explore a related concept, in their logical
analysis of BDI intention revision, we aim for more a fine-grained and broader
concept. Morley et al. [21] investigate dynamic computation of resource estimates
as a partially-complete goal is executed. Again, the representation of a generic
concept of partial achievement is not the focus of their work.

Partial plans and goal/plan adaptation. There is a fair amount of work
on reasoning with partial plans, for instance in plan formation or negotiation

44 M.B. van Riemsdijk and N. Yorke-Smith

(e.g., [20,7,17]), as well as in the AI planning literature (e.g., [30]). In the area
of multi-agent planning and negotiation, researchers have examined inter-agent
communication (e.g., about problems in goal achievement). Kamar et al., for
instance, investigate helpful assistance of teammates in pursuit of a plan that
could be partially complete [17], and Kamali et al. [16], for instance, investigate
information timing. Goal adaptation has received less attention than the concept
of goal or plan selection (e.g., [20]), or plan adaptation, the benefits of which are
well established [22].

3 Example Scenario

In this section, we illustrate by means of an extended example the benefits that
a framework for partial goal satisfaction may bring. The scenario is from the
domain of crisis management. An accident has occurred in a chemical plant and
hazardous chemicals have leaked into the area. The emergency response team
must prevent anyone from entering the vicinity of the plant, and evacuate those
who are currently in the area. A team of agents will execute a joint plan according
to their training. Securing the area is done by setting up road blocks on the three
main roads leading to the plant; the third road block can be installed in one of
two different places. The two houses within a 3 km radius of the plant must be
evacuated. The forest within the range of the chemical leak must be searched
and any people brought to safety.

Fig. 1 depicts a goal-plan tree (GPT) [32,3,21] for the emergency response
team in the scenario. A goal-plan tree consists of alternating layers of goal nodes
and plan nodes. Goals are depicted in rounded boxes, and plans in square boxes.
Goals descending from a plan node are conjunctive: all must be achieved for the
plan to be successful. An OR node indicates disjunctive subgoals: achievement
of any one renders the plan successful. Thus, the plan EstablishRoadblocks is
successful when goals rb1 and rb2 and at least one of rb3a and rb3b are achieved.
Primitive actions (leaf goal nodes) are depicted in italicized rounded boxes. The
numerical attributes on leaf nodes will be discussed later.

This scenario would benefit from agents being able to reason with partial goal
satisfaction. A basic type of reasoning is progress appraisal [6]. Progress appraisal
is the capability of an agent to assess how far along it is in achieving a goal, i.e.,
which part of a goal it has already achieved. In the scenario, for example, it
may be important for the commander to keep headquarters up-to-date on her
progress in setting up the road blocks.

Another, more advanced, type of reasoning with partial goal satisfaction is
goal negotiation, which has been identified as a key challenge for agents research
[19]. Assume, for example, that the team does not have enough members to
secure the area and evacuate the forest. The commander may engage in goal
negotiation with headquarters, to try to adapt the publicSafety goal so only the
part that is achievable for the team will have to be pursued. Note that the ability
to do goal adaptation is thus necessary in order to engage in goal negotiation. The
commander suggests to set up only road blocks 2 and 3. However, neglecting road

Towards Reasoning with Partial Goal Satisfaction 45

Fig. 1. Goal-plan tree for the scenario

block 1 is not an option according to headquarters, since people may (re-)enter
the area, which would lead to a hazardous situation and further evacuation
duties. The latter decision is based on an analysis of the importance of achieving
the various subgoals. The commander agrees with headquarters that another
team will be sent to set up road block 1. Both goal negotiation and adaptation
thus require agents to reason about the parts of which a goal is composed.

These kinds of reasoning may occur not only before a goal is adopted, but
also during pursuit of a goal. For example, the commander may notice that
searching the forest is taking more time than expected, and the team will not be
able to search the entire forest before darkness sets in. Rather than abandoning
evacuateForest entirely because the goal cannot be achieved completely, the team
can perform an inferior search of it and achieve it only partially. A decision of
whether this is acceptable, or whether it would be better to abandon the forest
altogether, depends on an analysis the gains made by achieving the goal only
partially—which in this case might be substantial since any person brought to
safety is an accomplishment.

This paper provides a high-level framework for partial goal satisfaction that
allows a quantitative instantiation, aimed at enabling the kinds of reasoning such
as discussed above. After introducing the framework, we mention several other
kinds of reasoning that benefit from such a framework for partial satisfaction.

46 M.B. van Riemsdijk and N. Yorke-Smith

4 Abstract Framework for Partial Goal Satisfaction

In this section, we define a new and abstract notion of goal, that allows the
expression of partial satisfaction (Section 4.1). We define notions that are fun-
damental to frameworks for goals, namely achievement and achievability, for our
new notion of goal (Section 4.2), and relate the new definition to the usual binary
definition of goal (Section 4.3).

4.1 Goal Template and Goal Instance

At the heart of conceptualizing partial goal satisfaction is identifying how to de-
fine partiality. For this, it is essential to define when a goal is achieved (satisfied
completely): we cannot define partiality without knowing what complete satis-
faction means. In pursuit of our interest in a quantitative framework, moreover,
one needs a metric in terms of which (complete) satisfaction is expressed. This
metric will be endowed with a partial ordering, to allow an agent to determine
whether a goal is getting closer to completion. We call such a metric the progress
metric of a goal, and denote it as a set A with partial order ≤.1

A goal specifies a minimum value amin ∈ A (called the completion value) that
should be reached in order to consider the goal to have been completely satisfied.
For example, the progress metric for the goal evacuateForest might be defined in
terms of time, where complete satisfaction is achieved when the forest has been
searched for two hours (until it gets dark); or the metric may be defined of a
(boolean) proposition such as isSearched(forest); or it may be defined in terms
of the number of subgoals achieved (e.g., searching tracks 1–3), where complete
satisfaction means that all tracks have been searched, etc.

Two notes are in order. First, a minimum value is specified since we define
achievement as the agent reaching at least this level of satisfaction (see below
for details). In some cases the agent may exceed the completion value, never
exactly attaining it—for example, if six people are estimated to be in the forest,
but really there are seven, and if the last two are found together as a pair, then
the attained progress metric value may jump from five to seven.

Second, we may wish to mandate that the partial order ≤ is total w.r.t. the
completion value amin , i.e., that any value a ∈ A can be compared with amin

according to ≤. This ensures that, if the agent can appraise the current attained
value of the progress metric, then it can compare that value with amin and
conclude whether or not the goal has been achieved. In our examples, ≤ will
typically be a total order, which automatically ensures amin is comparable with
all other values of A.

One may consider a wide range of domain-independent metrics, such as time
(where A may be a set of dates and times with associated order), utility (where
A may be the real numbers with the usual ordering), number of subgoals, be-
sides domain-dependent metrics such as number of road blocks or number
of people brought to safety (where A is the natural numbers). Besides
1 Combinations of metrics might be considered, but for simplicity, here we assume

quantities such as progress are defined in terms of a single metric.

Towards Reasoning with Partial Goal Satisfaction 47

the metric chosen as the progress metric, the agent (or designer) might have
interest in others: e.g., progress may be defined in terms of tracks searched, but
time taken could be an additional relevant factor in the team’s decisions. An
avenue for future exploration is the relation between domain-independent and
domain-dependent metrics.

Progress appraisal. As seen earlier, a fundamental reasoning concerning par-
tial goal satisfaction is progress appraisal. An agent should thus be able to deter-
mine in a given situation where it is with respect to a progress metric (A,≤). For
example, if time is the metric, the agent needs to be able to determine how long
it has spent so far. In the case of time, the computation from the current state
to the time spent is relatively direct, assuming agents have access to a clock and
have recorded the start time. The computation may be more involved for other
metrics. In the case of utility, for example, more computation might be needed
to determine the current appraised value of utility in terms of other, measurable
quantities (i.e., other metrics besides the progress metric). However, in all cases,
an agent should be able to determine, given its beliefs about the current state,
at least an estimation of the value of the progress metric for a goal.

Formally, for a goal with progress metric (A,≤), we require an agent to have
for each goal a progress appraisal function φ : S → A, where S is the set of states
(i.e., world state and multi-agent system state), that associates states with the
(achieved) value of the progress metric in these states. In addition, in order to
allow determination of whether the completion value amin ∈ A is reachable given
the current state, we normally require the agent to have a progress upper bound
function φ̂ : S ×M → A that takes a state s ∈ S, and the means m ∈ M that
will be used for pursuing the goal, and yields (an estimation of) the maximum
value in A reachable from state s with means m.

The upper bound will enable reasoning about the achievability of a goal. The
function is called an upper bound function because we expect that in practice
it will be difficult to calculate exactly which value in A might be reached from
a certain state with a certain means. It is more practical to calculate an upper
bound on the attainable value. For example, for time remaining for the forest
paths yet to be searched, it may not be possible to precisely compute how many
more people will be found—due for instance to the uneven progress along the
trails, the movement of the civilians, and the fading daylight—but a reasonable
upper estimate is the total number of people thought to be in the vicinity.

Given such an upper bound (for the current state with the means that are to
be used to achieve the goal), the agent knows that it will not be possible to fully
achieve a goal if the completion value of the goal exceeds its upper bound. Note,
on the contrary, that the completion value being below the upper bound is no
guarantee that the goal will be fully achieved. In a more conservative approach,
a lower bound may be computed expressing the minimum achievable value in
A, in which case the agent would know that the goal is fully achievable if the
completion value is below the lower bound. As a further development, a combi-
nation of upper bound and lower bound may be used in the agent’s reasoning.
For simplicity, in this paper we consider only the upper bound function.

48 M.B. van Riemsdijk and N. Yorke-Smith

In the abstract framework, we do not further detail the content of the set
of possible means M . The content of M will depend on the domain and the
concrete agent (programming) framework that is used. Typically, we envisage
that M will contain a description of plans and/or resources that can be used to
pursue the goal. Section 6 contains an example in which we use the goal-plan
tree to represent means.

Goal template. The functions φ and φ̂ now allow us to define a goal template.
The intuition is that each type of goal, such as secureArea or evacuateForest,
has an associated template. On the basis of a goal template, goal instances can
be created.

Definition 1 (goal template). Consider a multi-agent system (MAS) for
which the set of possible states is defined as S. Let A be a nonempty set with a
partial ordering ≤ (the progress metric), and let M be a set representing means
that can be used for achieving a goal. A goal template T is then defined as a
tuple 〈A, M, φ : S → A, φ̂ : S × M → A〉, where φ is the progress appraisal
function, and φ̂ is the progress upper bound function.

This notion of goal template may be simplified to consist of only A and φ,
if φ̂ cannot be provided in a certain case, i.e., when no sensible upper bound
can be specified for a goal. Alternatively, it may be extended in various ways.
First, the goal template itself may be parameterized to account for variants of
the template. For example, depending on the area that has to be secured, the
number of road blocks that have to be set up will differ, and this may influence
the definition of φ and φ̂. Second, one may want to define a goal template for
a single goal based on different progress metrics, allowing the agent to choose a
progress metric depending on circumstances. We can capture this most simply
by having two separate goal templates. Formally relating these templates (for
instance by making them siblings in a hierarchy of goal types) is an extension of
our basic framework. For reasons of simplicity and space, we leave the pursuit
of these extensions for future work.

In order to simplify definition and computation of φ and φ̂, these functions
may yield estimated values for progress appraisal and the upper bound. In en-
vironments that are not fully observable or that are open or dynamic, the agent
may not be able to compute precisely the functions. However, an agent must
be mindful of the potential adverse effects of estimation. In over-estimation of
φ̂ or under-estimation of φ, the agent would try to achieve a goal even though
it may be impossible to fully satisfy it, or it is already completely satisfied. On
the other hand, in under-estimation of φ̂ or over-estimation of φ the agent would
stop too soon.

While φ and φ̂ may thus yield estimated values, intuitively the agent should
estimate the progress upper bound in a state s ∈ S with means m to be at least
the current achieved satisfaction in that state. We call this coherency of a goal
template, and formally define it as ∀s ∈ S, m ∈M : φ̂(s, m) ≥ φ(s).

Towards Reasoning with Partial Goal Satisfaction 49

To illustrate Def. 1, consider the goal secureArea of the example scenario.
In the scenario, the main resource (leaving aside time) is the number of police
officers P = {0, . . . , 10}. We base the progress metric for the goal on the number
of subgoals achieved, modulated by how well they are achieved. Namely, the
progress metric models the quality of achievement of each roadblock subgoal rbi.

Example 1. The goal template for secureArea is: Tsa = 〈R, P, φsa, φ̂sa〉. Thus,
the progress metric is A = R with its standard ≤ ordering. Arbitrarily, we
define φsa(s) to be 20 if all subgoals have been fully achieved in s (assuming
the agent can determine this in each state s), which means that road blocks
have been set up and at least one police officer guards each road block, 10 if all
road blocks have been set up but not all of them have at least one officer, and 0
otherwise. Let the means consist of p, the number of officers allocated. We define
φ̂sa(s, p) to be 20 iff the plan EstablishRoadblocks can be executed in s and it
is executed with at least 6 police officers, i.e., p ≥ 6, 10 if 1 ≤ p < 6 and the
plan can be executed successfully, and 0 otherwise. Computation of the upper
bound thus requires determining whether EstablishRoadblocks can be executed
successfully. This may be done by checking simply the precondition of the plan,
or by performing planning or lookahead (compare [3,12]).

A goal template specifies the progress appraisal and progress upper bound func-
tions. As already addressed above, the definition of a concrete goal includes the
specification of the completion value for the goal to specify when it is com-
pletely satisfied. In addition, the agent should determine the means that will be
allocated for pursuing the goal. The completion value and means, defined with
respect to a goal template, together form a goal instance of this template.

Definition 2 (goal instance). Let T = 〈A, M, φ : S → A, φ̂ : S ×M → A〉
be a goal template. A goal instance of T is specified as (amin , m) : T , where
amin ∈ A is the completion value, and m ∈ M specifies the means that will be
used for achieving the instance.

Example 2. In the scenario, one goal instance of the goal template Tsa for se-
cureArea is gsa = (20, 6) : Tsa, expressing that the commander would like to
achieve a progress metric value of 20 with no more than six police officers.

4.2 Achievement and Unachievability

Any goal framework needs a definition of when a goal is achieved. Using our
notion of goal instance, we can easily define when a goal is achieved, i.e., com-
pletely satisfied, in a certain state s ∈ S, namely, when the appraised value of
the progress metric in s is at least the completion value. Moreover, logic-based
frameworks for goals incorporate a notion of goal consistency by nature, namely
logical consistency. Goal consistency is related to goal unachievability, since in-
consistent goals are by definition not reachable. In our framework we define a
notion of unachievability on the basis of the completion value of the goal instance
and the progress upper bound function.

50 M.B. van Riemsdijk and N. Yorke-Smith

We will assume that each progress metric (A,≤) has a bottom element⊥A ∈ A
for which ∀a ∈ A with a �= ⊥A, we have ⊥A < a. The bottom element represents
a ‘zero’ achievement level. When a goal instance g is created in a state s, it may
start partially completed, i.e., φ(s) > ⊥A. For example, the road block on road
1 may already be in place, when an instance of secureArea is created, because
the road was closed for construction.

Definition 3 (goal achievement and unachievability). Let T = 〈A, M, φ :
S → A, φ̂ : S×M → A〉 be a goal template, let (amin , m) : T be an instance of T ,
and let s ∈ S be the current state. The goal instance (amin , m) : T is completely
unachieved iff φ(s) = ⊥A, (completely) achieved (or satisfied) iff φ(s) ≥ amin ,
and partially achieved otherwise, i.e., iff ⊥A < φ(s) < amin .2 The goal instance
is unachievable using m (or simply unachievable, where the context is clear) if
φ̂(s, m) < amin .

For example, the goal instance gsa of Example 2 above is achieved if all road
blocks have been set up and each remains guarded by at least one police officer
(since in that case the achieved φsa value is 20). It not unachievable in any state
s ∈ S since six police officers are allocated for achieving the instance, whence
the progress upper bound is 20, equalling the completion value. If less than six
officers were allocated, the goal instance would be unachievable since then the
agent could maximally attain a φsa value of 10.

It is important to be clear that goals which are not unachievable according to
the above definition are not necessarily achievable. The reason is that φ̂ provides
an upper bound on the achievable value of the progress metric, i.e., the actual
reachable value may be lower. Therefore, even if the completion value is below the
progress upper bound, the goal may still be unachievable. This is similar to the
logic-based notion of unachievability, where a goal is by definition unachievable
if it is inconsistent, but not every consistent goal is achievable.

4.3 Binary Goal Achievement

We now discuss how our framework relates to logic-based frameworks for (achieve-
ment) goals. In the latter, as noted in Section 2, the success condition of a goal
is usually defined as a logical formula ψ, which is achieved in a state s ∈ S
if the agent believes ψ to hold in that state. We show how our definition for
partial goal achievement can be instantiated such that it yields the usual binary
definition of goal. We abstract from means M .

Definition 4 (binary goal instance). Let ψ be a logical formula, for which
the truth value can be determined in any MAS state s ∈ S (where s |= ψ denotes
that ψ holds in s). Let A = {false, true} with true > false. Let M = {ε} where
ε is a dummy element. Let φ(s) = true if s |= ψ and false otherwise, and let
φ̂(s, ε) = true if ψ �|= ⊥ and false otherwise. Let Tbin(ψ) = 〈A, M, φ, φ̂〉. Then we
define a binary goal instance ψ = (true, ε) : Tbin(ψ).

2 In this definition we take advantage of amin being comparable to all elements of A.

Towards Reasoning with Partial Goal Satisfaction 51

Proposition 1 (correspondence). The instantiation of the partial goal frame-
work as specified in Def. 4, corresponds to the binary definition of goal (Section 2)
with respect to achievement and consistency (no unachievability).

Proof. We have to show that achievement and consistency hold in the binary
definition of goal, iff achievement and no unachievability hold in the instantiated
partial definition of goal. The goal ψ is achieved in the partial case in some state
s iff φ(s) ≥ amin , i.e., iff φ(s) ≥ true, i.e., iff φ(s) = true, i.e., if s |= ψ. This
is exactly the definition of achievement in the binary case. The goal ψ is not
unachievable in the partial case iff φ̂(s, ε) ≥ amin , i.e., iff φ̂(s, ε) = true, which is
precisely the case iff ψ is consistent. �

We envisage an instantiation of our framework with the logic-based characteri-
zation of partiality of Zhou et al. [37], where in particular the ordering relation of
the progress metric will have to be defined. That is, consider a semantics of par-
tial implication and an alphabet of atoms. Intuitively, we must specify a metric
on a set such as propositions over the alphabet, that gives rise to a partial order
of the propositions w.r.t. the semantics of implication. Making this instantiation
precise will be future research. Indeed, the role of partial implication in connec-
tion with subgoals and plans—which we account for in our framework through
the computation of metrics in the GPT—has already been noted as a research
topic [37].

The instantiation of our framework with a binary goal definition illustrates
that progress metrics need not be numeric. However, if the progress metric A
is numeric, the agent can compute how far it is in achieving a goal as a ra-
tio with the completion value. That is, if T is a goal template with progress
appraisal function φ : S → A and g = (amin, m) : T is a goal instance of T ,
and if quotients in A are defined (e.g., if A = R), then a measure of progress
of goal instance g when the agent is in state s is the ratio φ(s)

amin
. This metric of

% complete corresponds to the intuitive notion of progress as the percentage
of the completion value attained.

5 Goal Adaptation

The previous section outlined an abstract framework for partial goal satisfac-
tion. We have taken progress appraisal as the most basic form of reasoning that
such a framework should support. In the motivating scenario, we argued that
the framework should support more advanced kinds of reasoning, such as goal
negotiation. In this section, we highlight a type of reasoning that we suggest
underlies many of these more advanced kinds of reasoning, namely reasoning
about goal adaptation. Given a goal instance g = (amin, m) : T where T is a goal
template, we define goal adaptation as modifying amin or m (or both). Note that
modifying the plan for g is included in the scope of modifying m.

The reasoning question is how to determine which goals to adapt and how to
adapt them. While this is a question that we cannot fully answer here, we analyze
the kinds of adaptation and possible reasons for adapting. One important factor

52 M.B. van Riemsdijk and N. Yorke-Smith

that may influence the decision on how, and particularly when, to adapt is the
evolution of the agent’s beliefs. This aspect is a focus of prior works [26,37].
Another important factor is the consideration of a cost/benefit analysis. We
develop our basic framework to support this kind of reasoning.

5.1 Reasons for and Uses of Adaptation

We begin by distinguishing internal and external reasons for goal adaptation.
By internal reasons for we mean those that arise from issues with respect to the
goal itself, while external reasons are those that arise from other factors.

More specifically, we see unachievability as a main internal reason for goal
adaptation. If a goal instance g is unachievable, it means that its completion
value cannot be attained from the current state with the means that are cur-
rently allocated. The options without a concept of partial satisfaction are to
drop/abort g, to attempt a different plan for g (if possible), to suspend g until it
becomes achievable (for example, waiting for more officers to arrive), or to abort
or suspend another goal in favour of g [31].

In our framework, more options are available since the goal instance can be
adapted to make it achievable by lowering the completion value, which we call
goal weakening, as well as by the alternative of choosing different means that
do allow the achievement of the current completion value, e.g., by investing
additional resources.3 Depending on the circumstances, the latter may not always
be possible. For example, if the goal is to evacuate people from their houses but
it is physically not possible to get to these houses, e.g., because of flooding, it
does not matter whether the officers devote more time or personnel.

Several external reasons may lead to goal adaptation. First, a goal instance g
may in itself be achievable, but (collective) unachievability of other goal instances
may be a reason for adapting g. That is, in practice an agent has only limited
resources and it has to choose how it will invest them to achieve a set of current
and future goal instances [1,32]. For example, the agent may decide that another
goal instance is more important and needs resources, leading to adaptation of
the means of g.

Another external reason is consideration of a new candidate goal instance
g′, i.e., goal adoption. Partial satisfaction allows an agent to consider adapting
an existing goal instance, or adopting the new instance g′ in a weakened form.
Third, an agent might be requested by another agent to increase the completion
value of a goal instance, which we call goal strengthening. For example, the team
leader may decide that more time should be spent searching the forest.

Together, progress appraisal and goal adaptation form a basis for higher-
level reasoning tasks. We have already discussed goal negotiation (Section 3),
goal adoption, and avoiding and resolving goal achievement conflict. We now
briefly discuss several other kinds of reasoning. First, in order to coordinate their

3 Note that the latter is (at least in part) also supported by frameworks where alter-
native plans can be chosen to reach a goal. However, in our framework it is naturally
incorporated as part of goal adaptation.

Towards Reasoning with Partial Goal Satisfaction 53

actions, agents should communicate about how far they are in achieving certain
goals [8,20,17]. Progress appraisal provides a principled approach. Second, an
agent might realize it cannot achieve a goal completely. Allowing itself to weaken
a goal, it can delegate part of the goal to other agents. Similarly, delegation may
be another option for an agent finding it has achievement difficulties. Related,
third, is reasoning about other agents and their ability to complete tasks. For
example, one agent realizing that another agent is unlikely to fully complete its
task(s), irrespective of whether the other agent has acknowledged this.

5.2 Cost/Benefit Analysis

When deciding which goals to adapt and how, we suggest that a cost/benefit
analysis can be an important consideration (see also, e.g., [1,25]). For example, it
will usually not be sensible to stop pursuit of the goal if only a small amount of
resources still have to be invested to achieve its completion value, in particular
if abandoning before full completion yields zero utility. On the other hand, if
an agent has obtained much utility from a goal instance g, compared to that
expected when the progress metric of g reaches the completion value, and if much
more effort would have to be invested to fully achieve g, it may be sensible to stop
pursuit of the goal if resources are needed elsewhere. These kinds of cost/benefit
analyses to obtain an optimal division of resources over goals essentially form an
optimization problem. While it is beyond the scope of this paper to investigate
how optimization techniques can be applied in this context, we do analyze how
our framework supports it.

In order to do a cost/benefit analysis, one needs to know how much it would
cost to achieve a certain benefit. The benefit obtained through achieving a goal
can be derived in our framework by means of the progress appraisal function. If
the progress metric represents benefit, such as utility, the benefit the agent will
obtain when achieving a goal completely, is the difference between the completion
value and the value of the progress metric in the current state. That is, for a
goal instance (amin, m) : T where T = 〈A, M, φ : S → A, φ̂ : S ×M → A〉, the
benefit is Δa = amin − φ(snow), where snow is the current state. Note that Δa
can only be calculated if difference (−) is defined on A.

In order to calculate the cost associated with obtaining amin, we need to
introduce another function κ : S ×M × S → C, where C is a set representing
cost and κ(s, m, s′) = c means that the cost of going from state s with means
m to state s′ is estimated to be c. Then we can calculate the estimated minimal
cost to move from the current state snow to a completion state, i.e., a state s′

where φ(s′) ≥ amin, with means m as min{κ(snow, m, s′) | φ(s′) ≥ amin}. In
practice, there will be a very large, possibly even infinite, number of completion
states. It will therefore not be practical to calculate this function directly. Rather,
we expect that the agent will estimate the costs of getting from the current
state to some completion state, since usually only those parts of the state that
have something to do with the state being a completion state are relevant for
calculating costs. Projection into possible future states consists of a body of work
in its own right, e.g., [24,14,12].

54 M.B. van Riemsdijk and N. Yorke-Smith

Above, we assumed that the progress metric A represents the benefit obtained
by achieving the goal. Depending on the context, progress may also be measured
in terms of costs—e.g., time—rather than benefit. In that case, we thus have that
A = C. Then we can define κ as κ(snow, m, s′) = φ(s′) − φ(snow), i.e., the cost
that is to be invested is simply the difference between the desired value of A
(namely φ(s′)), since A are now the costs, and the current value of A, namely
φ(snow). Since progress is then measured in terms of costs rather than in terms
of benefits, we cannot do a cost/benefit analysis. In this case, the analysis would
thus be based only on minimizing costs.

6 Towards an Embedding within a Goal Framework

In this section, we sketch how our metric-based framework for partial goal sat-
isfaction can be applied to a concrete goal representation framework, namely
the GPT as introduced earlier. This is a step towards rendering the capabilities
within a cognitive agent programming framework. An attraction of the GPT is
its representation of goals, subgoals, and plans—which is pertinent for reasoning
about the means and the progress in execution of a goal—combined with the
annotation of and aggregation of quantities on the tree nodes—which we will
use for computation of metrics. Fig. 1 depicted a goal-plan tree for the evacu-
ation scenario. The goal and action nodes correspond to goal instances in our
framework; the tree structure gives the plan aspect of their means.

For the reasons just given, we posit that the concept of partially satisfied goals
fits naturally into this kind of representation framework for goals. Specifically,
we augment annotations of tree nodes to include metrics about goal (and, where
relevant, plan) satisfaction. In the simplest case, this comprises annotating each
goal node with values from its progress metric A, as we will explain. The %
complete metric allows normalization of the values.

Progress appraisal. Inference over the tree structure computes and updates
metrics by propagation upwards from descendant nodes, in a similar fashion as
resource estimates and other information are propagated [3,28]. For example,
the current value of % complete of a parent plan node may be aggregated
from the values of its child goal nodes. Metrics are aggregated according to their
nature and the type of the node. For example, by default, a conjunctive plan
node will aggregate % complete as the arithmetic mean of the children’s values,
while a disjunctive plan node will aggregate it as the maximum of their values.
Mechanisms for aggregation have been explored in the cited literature. Since the
algorithms are already parameterizable according to the nature of the quantity
(in our case, the metric) and the type of the node, we refrain from reiterating
them here.

The computation is to be made dynamically as the current situation evolves
[21,17]. We assume agents can assess the progress of leaf nodes. For instance, the
police officers should believe they know when they have finished clearing a house
(and the team thus achieves so achieve the utility depicted on each leaf node).

Towards Reasoning with Partial Goal Satisfaction 55

Hence, there are two types of metric values attributed onto nodes. The first
type are static, initial, a priori values before execution (as depicted in Fig. 1).
These static values will typically capture expected, estimated, or required values,
such as the utility expected upon full satisfaction of a goal, and the resources
expected to achieve this. The second type of metric values are dynamic estimates
computed during execution, such as the utility achieved so far from a goal. For
the progress metric of each goal instance g, the static value corresponds to the
completion value amin of g, while the dynamic value corresponds to the appraised
value φg(snow).4

6.1 Reasoning in the Example Scenario

The response team commander is given the goal publicSafety by her superiors.
The doctrinal plan, SecureAndClearArea, involves the two subgoals, secureArea
and evacuatePeople; they may be achieved concurrently, although the team must
be mindful that the public may (re-)enter the incident area until it is secured.

Goal templates, metrics, and goal instances. Including herself, the com-
mander has 10 police officers in her team. We model this resource as the set P =
{0, . . . , 10} ⊂ N. The commander must decide how to allocate her officers be-
tween the two subgoal instantiations, i.e., secureArea(p) and evacuatePeople(10−
p), where p is the number of agents assigned to the first subgoal.

secureArea. Recall from Example 1 that the goal template for secureArea is
Tsa = 〈R, P, φsa, φ̂sa〉, where the progress metric for Tsa is the achievement of
its subgoals. The utility metric of Tsa can be seen from Fig. 1 to be usa =
5 ∗ (# achieved subgoals). For example, if either goal rb1 or goal rb2 is achieved
(but not both), then usa = 5; if both are achieved, then usa = 10.

Since usa is not the progress metric of the goal template secureArea, it does
not define progress of instance of this goal template. Nonetheless, usa may be
of interest to the police team as a measure of progress, even though this metric
does not define the progress (according to police doctrine) nor therefore the
completion of the goal.

publicSafety. By contrast to secureArea, the progress metric of the initial goal
publicSafety in the scenario is defined in terms of utility. Its goal template is
Tps = 〈R, P, uΣ , ûΣ〉 where uΣ specifies the cumulative utility from the subgoals
in the current plan for a goal instance of Tps. This progress metric is computed
in the obvious manner by recursively transversing the subtree below the goal
instance, summing up the current utility estimates for each goal node. Likewise,
the progress upper bound function, ûΣ, can be computed by a recursive descent
4 An agent may be capable of directly computing the value of a metric at a (non-leaf)

node. In that case, if the reasoning is consistent and the static values on leaf notes are
reliable estimates, then the directly-computed and aggregated values should agree.
Where they do not, the agent may resolve the conflict according to which of the two
computations it believes is most reliable.

56 M.B. van Riemsdijk and N. Yorke-Smith

through the GPT. An a priori estimate can be computed, based on the upper
bounds of the static, a priori utility attributions on leaf nodes [32,3,28]. For
example, an a priori upper bound on using the plan EstablishRoadblocks, re-
laxing resource considerations, is 4 + 4 + max(2, 5) = 13. Tighter bounds can be
obtained by considering resource limitations and the resulting goal interaction
and plan scheduling [32,28], should the agent so choose.

evacuatePeople. The goal template for evacuatePeople is: Tep = 〈R, P, uΣ , ûΣ〉.
Note the same progress metric is specified for this template as for publicSafety.

Goal adoption. The police commander and her team are tasked with the initial
goal publicSafety; its goal instance is (40, 10) : Tps.5 The team of 10, including
the commander, has too few officers to meet the expected requirements for the
full completion of the three roadblock actions (rbi) and the two house-clearance
actions (hi), let alone the forest. That is, the goal instance is unachievable (i.e.,
ûΣ < amin), as can be seen to be the case by examination of the GPT.

Negotiation, delegation, and requesting help. At first, the commander
considers allocating six officers for secureArea and weakening the evacuatePeople
goal by omitting the evacuateForest subgoal. This is unacceptable to incident
control. After further negotiation, control agrees to send urgently a second team
to perform rb1. The commander thus allocates four officers for secureArea. Hence,
the goal instances are (20, 4) : Tsa and (25, 6) : Tep.6 Two officers will search each
house; when done, they will join the forest search. The commander selects rb3a
over rb3b because it is expected to be quicker to achieve. As officers complete
the roadblocks, those who do not need to remain on guard are instructed to
join the officers searching the forest. The team will gain what utility it can from
performing actions t1, t2, and t3 in that order.

Thus, with the second team fulfilling rb1, then the plan EstablishRoadblocks
for goal secureArea can be achieved, and so a progress metric value of 20 will be
attained. When all three forest tracks have (eventually) been searched, then plan
SearchAndEvacuate for goal evacuateForest will render a progress metric value
of 10 for evacuateForest, leading to a progress metric value of 8 + 7 + 10 for goal
evacuatePeople. This forward projection from the current state thus indicates
that both goals are fully achievable by the augmented team.

Appraisal and sharing information. As the evacuation proceeds, updated
metric values are computed on the leaf nodes of the GPT and aggregated to par-
ent nodes. This provides a situational assessment for the commander. Searching

5 The completion value is 40 because full completion of the instance of secureArea will
have utility 5 ∗ 3 = 15, and full completion of the instance of evacuatePeople will
have utility at least 25, based on the static GPT annotations.

6 For Tsa, the completion value is defined as 20 (Example 1). For Tep, the completion
value is the sum of the utility of the children, i.e., 8 + 7 + (4 + 3 + 3) according to
the static GPT annotations, as noted earlier.

Towards Reasoning with Partial Goal Satisfaction 57

house 2 is taking longer than anticipated, because a forced entry proves neces-
sary. Should the two officers continue with h2, or join those searching the forest?
Utility of 4 is estimated achieved from h2 after 25 minutes have elapsed. The
original estimate of utility for completion of the goal was 7; but this was only
an a priori estimate based on typical experience. The commander appraises that
the rate of achieving utility for the goal is outweighed by the resources employed
for it, and so calls off the officers from house 2.

This extract from the scenario illustrates the more sophisticated reasoning
enabled by and founded on a metric-based notion of partial goal satisfaction
that is embedded into a concrete computational framework for the metrics.

7 Conclusion and Next Steps

The contribution of this line of work stems from the recognition of the need for
a concept of partial goal satisfaction in cognitive agent frameworks, manifest
in terms of the proposal of an abstract framework for partial goal satisfaction
that identifies the main necessary ingredients for reasoning based on partial goal
satisfaction. Our objective is a representation of partial satisfaction integrated
into a reasoning framework, and allowing for a quantitative instantiation, in
order that cognitive agent programming frameworks might be enhanced. The
benefit of the topic and our approach is more sophisticated reasoning about
goals, impacting reasoning about selection, adoption, and pursuit; goal progress
appraisal; goal interaction; and inter-agent communication and collaboration.

Although we have indicated how our framework may be concretized in the
context of GPTs, more work is needed to flesh out the details and investigate
how advanced types of reasoning can be built on top of this basis and integrated
into a programming framework. The modifications necessary to the semantics of
an agent programming language such as Goal [10] must be established. Goal,
like several other agent programming languages, has a logic-based definition of
goals, and it has reasoning rules to determine which actions to execute, based on
the agent’s beliefs and goals. Modifying the language to include the possibility
to reason about partial goal satisfaction will likely involve providing a new no-
tion of goal, analogous to the one proposed in this paper. The progress appraisal
function can be defined on the agent’s belief base. Defining the progress upper
bound function and possibly cost and benefit functions will be more involved;
annotations of the program text analogous to the suggested annotations of the
GPT may be useful to compute these functions. It will also have to be investi-
gated how action selection is influenced by this new notion of goal, i.e., whether
the existing mechanism can in essence be used, or whether other mechanisms are
required. Finally, it will have to be investigated whether more advanced types of
reasoning such as goal negotiation can be programmed in Goal, or whether ad-
ditional reasoning mechanisms have to be introduced. In particular, cost/benefit
analyses seem to require such additional mechanisms.

Alongside embedding our framework in a cognitive agent programming lan-
guage, to be investigated is how the various functions of our framework can be

58 M.B. van Riemsdijk and N. Yorke-Smith

defined in real-world cases. The importance of approximate reasoning is high-
lighted, as we anticipate the challenges of defining functions that will yield, for
instance, exact and tight progress upper bounds. Existing work on, e.g., reason-
ing about resources is expected to be useful in this context [32,25]. Moreover,
while our framework provides the basis for reasoning about goal adaptation, we
have not sought to provide (optimization) algorithms that allow the agent to
decide how to adapt, weighing costs and benefits. This is an important area for
future research, with just one relevant aspect being how to estimate cost and
benefit projection into the future. Lastly, possible extensions to the framework
are ripe for investigation, such as a logical instantiation with reasoning between
goal outcomes, following Zhou et al. [37], inclusion of parameters in goal tem-
plates, and relation of templates in a hierarchy.

Acknowledgments. We thank David Martin and the participants of the Pro-
MAS’10 workshop for discussions, and the reviewers for their comments.

References

1. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 14, 349–355 (1988)

2. Braubach, L., Pokahr, A.: Representing Long-Term and Interest BDI Goals. In:
Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919,
pp. 201–218. Springer, Heidelberg (2010)

3. Clement, B.J., Durfee, E.H., Barrett, A.C.: Abstract reasoning for planning and
coordination. JAIR 28, 453–515 (2007)

4. Dastani, M.: 2APL: A practical agent programming language. JAAMAS 16(3),
214–248 (2008)

5. Do, M.B., Benton, J., van den Briel, M., Kambhampati, S.: Planning with goal
utility dependencies. In: Proc. of IJCAI 2007 (2007)

6. Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., Bunch, L.: Progress
Appraisal as a Challenging Element of Coordination in Human and Machine Joint
Activity. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW
2007. LNCS (LNAI), vol. 4995, pp. 124–141. Springer, Heidelberg (2008)

7. Grosz, B.J., Hunsberger, L.: The dynamics of intention in collaborative activity.
Cognitive Systems Research 7(2-3), 259–272 (2006)

8. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86(2), 269–357 (1996)

9. Haddawy, P., Hanks, S.: Representations for decision theoretic planning: Utility
functions for deadline goals. In: Proc. of KR 1992 (1992)

10. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-Agent Program-
ming: Languages, Tools and Applications. Springer, Berlin (2009)

11. Hindriks, K.V., Jonker, C.M., Pasman, W.: Exploring Heuristic Action Selection
in Agent Programming. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS
2008. LNCS, vol. 5442, pp. 24–39. Springer, Heidelberg (2009)

12. Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with
temporally extended goals. In: Proc. of AAMAS 2009 (2009)

13. Holton, R.: Partial belief, partial intention. Mind 117, 27–58 (2008)

Towards Reasoning with Partial Goal Satisfaction 59

14. Hu, Y.: Temporally-expressive planning as constraint satisfaction problems. In:
Proc. of ICAPS 2007 (2007)

15. Huang, Z., Bell, J.: Dynamic goal hierarchies. In: Proc. of the 1997 AAAI Spring
Symp. on Qualitative Preferences in Deliberation and Practical Reasoning (1997)

16. Kamali, K., Fan, X., Yen, J.: Towards a theory for multiparty proactive commu-
nication in agent teams. Intl. J. of Cooperative Info. Systems 16(2) (2007)

17. Kamar, E., Gal, Y., Grosz, B.J.: Incorporating helpful behavior into collaborative
planning. In: Proc. of AAMAS 2009 (2009)

18. Khan, S.M., Lespérance, Y.: A logical framework for prioritized goal change. In:
Proc. of AAMAS 2010 (2010)

19. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten chal-
lenges for making automation a “team player” in joint human-agent activity. IEEE
Intelligent Systems 19(6), 91–95 (2004)

20. Lesser, V., et al.: Evolution of the GPGP/TAEMS Domain-Independent Coordi-
nation Framework. JAAMAS 9(1), 87–143 (2004)

21. Morley, D., Myers, K.L., Yorke-Smith, N.: Continuous refinement of agent resource
estimates. In: Proc. of AAMAS 2006 (2006)

22. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and em-
pirical analysis. Artificial Intelligence 76(1-2), 427–454 (1995)

23. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proc. of
KR 1991 (1991)

24. Reiter, R.: The projection problem in the situation calculus. In: Proc. of AIPS
1992 (1992)

25. Schut, M., Wooldridge, M., Parsons, S.: The theory and practice of intention re-
consideration. JETAI 16(4), 261–293 (2004)

26. Shapiro, S., Brewka, G.: Dynamic interactions between goals and beliefs. In: Proc.
of IJCAI 2007 (2007)

27. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goal change. In: Proc. of IJCAI 2005
(2005)

28. Shaw, P.H., Farwer, B., Bordini, R.H.: Theoretical and experimental results on the
goal-plan tree problem. In: Proc. of AAMAS 2008 (2008)

29. Singh, M.P.: A critical examination of use Cohen-Levesque theory of intentions.
In: Proc. of ECAI 1992 (1992)

30. Smith, D.E.: Choosing objectives in over-subscription planning. In: Proc. of ICAPS
2004 (2004)

31. Thangarajah, J., Harland, J., Morley, D.N., Yorke-Smith, N.: Suspending and re-
suming tasks in BDI agents. In: Proc. of AAMAS 2008 (2008)

32. Thangarajah, J., Winikoff, M., Padgham, L., Fischer, K.: Avoiding resource con-
flicts in intelligent agents. In: Proc. of ECAI 2002 (2002)

33. van der Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention
revision. Synthese 155(2), 265–290 (2007)

34. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: A unifying
framework. In: Proc. of AAMAS 2008 (2008)

35. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: Proc. of KR 2002 (2002)

36. Zhou, Y., Chen, X.: Partial implication semantics for desirable propositions. In:
Proc. of KR 2004 (2004)

37. Zhou, Y., van der Torre, L., Zhang, Y.: Partial goal satisfaction and goal change:
Weak and strong partial implication, logical properties, complexity. In: Proc. of
AAMAS 2008 (2008)

Part III

Programming Languages

Evaluating Agent-Oriented Programs:

Towards Multi-paradigm Metrics

Howell R. Jordan and Rem Collier

Lero @ University College Dublin, Ireland

Abstract. Metrics are increasingly seen as important tools for soft-
ware engineering and quantitative research, but little attention has so
far been devoted to metrics for agent programming languages. This pa-
per presents the first steps towards multi-paradigm structural metrics,
which can be applied seamlessly to both agents and the object-oriented
environments in which they are situated - thus enabling the designs of
complete multi-agent systems to be quantitatively evaluated. Concrete
paradigm-independent metrics for coupling and cohesion are proposed,
and their use is demonstrated on an example Jason program, written in
AgentSpeak and Java.1

Categories and subject descriptors: D.2.8 [Software Engineer-
ing]: Metrics—Product Metrics; I.2.5 [Artificial Intelligence]: Pro-
gramming Languages and Software.

General terms: Measurement, Design, Languages.

Keywords: Design metrics, structural metrics, agent programming
languages.

1 Introduction

Software design metrics, or structural metrics, are an important part of the pro-
fessional software engineer’s toolkit. Beyond their traditional roles in managerial
oversight, metrics are increasingly used in iterative development processes to
quickly highlight areas which may be vulnerable to defects or resistant to future
change [22]. Metrics for object-oriented programming are well-established, and
automated collection tools for the best-known metrics suites [10][23] are available
for several popular object-oriented programming languages (OOPL).

Agent orientation is an emerging paradigm for software construction, in which
software is composed of autonomous, proactive agents situated in some envi-
ronment. Like other high-level software abstractions - such as components and
aspects - agents complement, rather than replace, existing object technology.
Agent-oriented software is often implemented using objects, for example by

1 An earlier version of this paper was presented at the 8th International Workshop on
PROgramming Multi-Agent Systems (PROMAS 2010).

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 63–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 H.R. Jordan and R. Collier

building directly on the popular JADE platform [5], in which case it can be
evaluated directly using existing metrics (see for example [15]).

Many researchers have argued that the benefits of agent orientation are best
realised using a dedicated agent programming language (APL), thus “fixing the
state of the modules to consist of components such as beliefs, capabilities, and
decisions, each of which enjoys a precisely defined syntax” [33]. However, the
performance cost of agents is much greater than that of passive objects, and
attempting to write an industrial-strength ‘pure agent’ program has become a
recognised pitfall of agent-oriented software development [40]. Many of the cur-
rent generation of agent programming languages [7] resolve this dilemma by
deferring the environment implementation [39] and any lower-level agent pro-
cessing activities to object technologies such as Java.

If software designs are to be evaluated quantitatively, consistently, and com-
parably across the APL-OOPL divide, there is a clear need for a single metrics
suite that is applicable to both domains. But let’s not stop there. Inspired by re-
cent research which integrates agents with software components [13], we expect
the path towards wider adoption of agent programming languages to be through
their integration with other paradigms. In this paper, we present the first steps
towards a metrics suite which could, in principle, be used to evaluate software
designs expressed in many different text-based programming languages.

The structure of this paper is as follows. In the next section, we discuss how the
application of structural metrics to agent programming languages could benefit
both practice and research. Section 3 outlines some of the wide literature of
related work, and section 4 introduces an example Jason program. In section 5
we propose two structural metrics for agent programming, and apply them to
the motivating example. Finally, we conclude by offering some tentative advice
to the creators of agent programming languages, and some suggestions for future
work in this area.

2 Why Metrics?

Metrics are used in software engineering to measure the quality of a software pro-
cess or product. This paper focuses on the product. A software product consists
of many linked artifacts, such as code, tests, and documentation; here the fo-
cus is specifically on the product’s design, and the design information contained
implicitly in its source code.

2.1 Measures of Product Quality

Software product quality is typically defined as a combination of factors, char-
acteristics, or attributes [19] [16]. The primary quality factors are often given
as functionality, reliability, usability, efficiency, maintainability, and portability.
These factors are usually structured as a hierarchy, whereby each primary factor
is itself defined as a combination of subfactors.

Evaluating Agent-Oriented Programs 65

The depth and complexity of this hierarchy presents a measurement chal-
lenge. For a quantity to be measurable it must first be completely defined; un-
fortunately, there is no universally-agreed definition of software quality. The
relative influence of quality attributes is also highly sensitive to context. For
example, in mission-critical applications, reliability is obviously dominant; yet
in others, reliability need be no better than ‘good enough’, and other quality
attributes assume greater importance [3]. Attempts to combine multiple met-
rics into a general-purpose quality measure are therefore fraught with difficulty,
and most software product metrics aim to measure a single, specific quality
attribute [20].

Maintainability metrics are an important general software engineering topic
[27]. However, in this paper, the focus is on maintainability as an interesting
potential benefit of agent oriented software engineering. Agent programming
is thought to aid the design and development of complex software, chiefly by
enabling the developer to take full advantage of the intentional stance [33]; but
little is currently known about the effects of agent orientation on maintainability.

Maintainability consists of at least three major subfactors: algorithmic com-
plexity, structural or design complexity, and size2. Efforts to define multi-
paradigm size and algorithmic complexity measures are already well advanced
(see section 3), and the rest of this paper will focus on structural metrics. Struc-
tural complexity is itself a compound attribute, and among its subfactors, cou-
pling and cohesion are thought to be dominant [12].

We take the view that structural metrics essentially predict how difficult it will
be to modify a system in future; and thus they indirectly predict the likelihood of
bugs, both in the present and in the immediate aftermath of any future change. In
object-oriented systems, this view is supported by a large body of experimental
evidence [35]. If the same is true for agents, the development of structural metrics
for agent programming languages will help professional software engineers to
deliver agent-oriented software of higher quality.

2.2 Tools for Software Research

Aside from their importance to professional software engineers, product metrics
have an important role to play in software research.

Metrics can be used as powerful tools for technology comparison, as demon-
strated by Garcia et al. [15]. The research method employed in this study is based
on the ‘Goal Question Metric’ approach [4] and can be summarised roughly as
follows: implement functionally-identical solutions to a given problem using two
2 The algorithms, structure, and size of a program may be very different when it is

running, due to optimisations applied during compilation, and dynamic language
features such as plan passing and runtime class loading. However, these changes
are usually transparent to the programmer, and therefore have little effect on soft-
ware maintenance except when debugging. Similarly, our maintainability perspective
leads us to ignore other runtime issues such as the frequency of message exchanges,
although from a performance perspective (for example in areas such as compiler and
platform development) these would be important topics.

66 H.R. Jordan and R. Collier

or more different technologies; then compare those solutions using a suitable
metric. If suitable multi-paradigm metrics were available, this method could be
employed much more widely.

Studies of the above type could also help facilitate adoption of agent tech-
nologies by industry. It is widely thought that agent technologies provide greater
benefits when used in certain application areas, but little experimental data is
currently available to support these opinions. We argue that, given more quan-
titative evidence of the maintainability of agent oriented solutions, some of the
business risks of agent adoption would be mitigated.

Finally, we hope that a focus on maintainability metrics - and on the related
topics of software evolution, refactoring, coupling, and cohesion - will lead to in-
novations in agent programming language design. In section 6, some additions to
the AgentSpeak language that might improve the maintainability of AgentSpeak
code are tentatively suggested, based on experiences gained in this study.

3 Related Work

Aside from the large literature on object oriented metrics [16], structural met-
rics have been proposed for rule-based programs [29], concurrent logic programs
[41], and knowledge based systems [21]. More recently, several metrics suites for
aspect-oriented programming have also been devised [25]. In contrast, we know
of only one APL-specific metrics suite, for the GOAL language [37]; it is based
on usage counts of language constructs, and is therefore specialised to its target
language.

Multi-paradigm metrics is a comparatively recent field of study. An auto-
mated method for measuring the relative information content of any two digital
artifacts, based on Kolmogorov complexity, is proposed by Arbuckle [2]. The
Normalised Compression Distance (NCD) metric estimates the difference in in-
formation content between successive versions A and B of the same program,
and thus could provide insight into the retrospective maintainability of A.

Sipos et al. have proposed a multi-paradigm metric for algorithmic (as opposed
to structural) complexity [34]. This metric is directly related to the number of
independent paths through a given program, and high values therefore have
negative implications for program testability. Given the importance of testing
(and automated testing in particular) to refactoring and software evolution, we
believe this metric is complimentary to ours.

Allen et al. model a program as a hypergraph, from which metrics for pro-
gram size, algorithmic complexity, and coupling, can be derived [1]. Each metric
is defined in detail using arguments from information theory; but no paradigm-
independent method for extracting the hypergraph model from source code is
offered. The hypergraph model is also insensitive to the strength and direction-
ality of connections between nodes.

The PIMETA approach [8] leads to multi-paradigm structural metrics like
ours, but it is restricted by several practical difficulties. PIMETA requires a
detailed meta-model to be instantiated for each evaluation, and as the authors

Evaluating Agent-Oriented Programs 67

note, for many real programs the resulting models are large and difficult to
visualise. No precise definition of coupling between PIMETA abstractions is
offered, with coupling apparently defined on a case-by-case basis; it is therefore
not clear how the meta-model instantiation process might be automated.

The ‘separation of concerns’ metrics suite of Sant’Anna et al. [32] is also,
in part, applicable to agent programming languages. Though it is intended for
use in the component-based and aspect-oriented paradigms, some of its metrics
(Concern Diffusion over Architectural Components, Component-level Interlacing
Between Concerns, Afferent Coupling Between Components, Efferent Coupling
Between Components, and Lack of Concern-based Cohesion) could also be ap-
plied to agents. However the automated collection of these measures would be
problematic, since the concepts of ‘architectural concerns’ and ‘coupling between
components’ are not precisely defined. The remaining metrics in the suite make
use of abstractions not defined for agents, such as distinct interfaces and opera-
tions.

4 Motivating Example

In this section, the need for multi-paradigm software maintainability metrics is
illustrated with a simple example. The example is based on a grid environment
of 16 × 8 squares, implemented in Java, and inspired by the ‘vacuum world’ of
Russell and Norvig [31, p.133]. The grid is populated by four cleaning robots,
and initially contains 32 pieces of ‘dust’. The environment interface allows each
vacuum cleaner to move north, south, east, and west; to sense its immediate
surroundings with a small field of vision; and to clean its current square. The
simulation is further enriched by 8 fixed obstacles, and realistic robot movement.
Within this environment, the robots must clean the grid of dust, as quickly as
possible.

Without excluding other technologies, the problem points towards an agent-
oriented solution: the environment is dynamic, with partial, local visibility; and
its four independent robots suggest at least four concurrent processes. In this
example, the agent-oriented code to control the robots is written in Jason, an
implementation of the AgentSpeak agent programming language.

Complete source code for the example can be downloaded from
http://www.agentfactory.com.

4.1 Solution Architecture

The example solution consists of two types of agent: ‘vacAgent’ and ‘bossAgent’.
Four instances of vacAgent directly control each of the four vacuum robots. Only
one bossAgent is instantiated, and is not situated in the environment; instead,
it receives reports from the other agents about the world’s state, from which it
builds a mental map of the environment, and directs the exploration and cleaning
activities of the vacAgents. For simplicity, the environment is considered as a
third-party library with a stable interface - in other words, the actuators and

http://www.agentfactory.com

68 H.R. Jordan and R. Collier

perceptors are not part of the system under discussion, and are guaranteed not to
change. Each vacAgent relies on object-oriented ‘internal actions’ to implement
some of its functionality, as shown in Figure 1.

Fig. 1. Outline architecture of an example Jason program, showing AgentSpeak agents
with Java internal actions

4.2 Preliminary Evaluation

The example is just one of many possible designs that would solve the given
problem. The rest of this paper is motivated by asking the question: how main-
tainable is the example design? Existing object-oriented metrics could of course
be applied to the internal actions; but these metrics would not capture any in-
formation about the design of the agents themselves, the links between those
agents, or the links between agents and their internal actions.

The design could also be evaluated using one of the paradigm-independent
techniques discussed in section 3. However, these structural metrics must be
collected manually, which is impractical for large designs and rapid iterative
development processes, and likely to result in errors. To address these short-
comings, we aim to develop a metrics suite for agent programs which operates
directly on source code and is amenable to automation.

5 Paradigm-Independent Metrics

It is highly desirable that any new metrics should be validated experimentally
[20], which is beyond the scope of the current study. Consequently, this paper
proposes no original metrics; instead, the well-validated Coupling Between Ob-
ject Classes (CBO) and Lack of Cohesion Of Methods (LCOM) measures [10]
are generalized, returning to the earlier notion of ‘coupling between abstractions’
[24] and its cohesiveness equivalent. The generalization process described in this
section is outlined as follows:

Evaluating Agent-Oriented Programs 69

1. Generalize from OO classes, fields, and methods, to abstractions and ele-
ments, based on mereological principles [36].

2. Devise an automatable method for discovering the graph of dependencies
between elements, using a simple theory of software change.

3. Derive paradigm-independent equivalents of CBO and LCOM as functions
of the element dependency graph.

The terminology of Buckley et al. [9] is used throughout this section when dis-
cussing software change.

5.1 Software as Aggregation Hierarchies

Many programming languages facilitate high-level design, understanding, and
reuse by means of abstraction, supported by dedicated language constructs. Dur-
ing the development process, these abstractions are realized as program source
code, then processed (for example, by compiling) to form an executable; the term
‘element’ is adopted here to mean a named, realized abstraction3. For example,
the abstractions supported in Jason include Java classes, Java methods, and
AgentSpeak agents; and the standard Java platform provides many ready-made
elements such as java.util.ArrayList and java.lang.System.out.println.

Elements are often composed of other elements to form an aggregation hier-
archy, and a mereological approach is therefore appropriate [36]. Let E denote
the set of all elements in the system under discussion s; E is the universe of dis-
course in the treatment that follows. In analogy with conventional mereological
notation, let the binary predicate M represent direct aggregation between two
elements; Mxy =⇒ element x is an immediate member of element y. M has
the following properties:

¬Mxx (M irreflexive) (1)

Mxy =⇒ �z(Mxz ∧Mzy) (M nontransitive) (2)

Mxy =⇒ ¬Myx (M antisymmetric) (3)

M describes relations between adjacent layers of a formal, stratified hierarchy
such as a software system. However, M is inconvenient when describing relations
between non-adjacent layers. To this end, a more general aggregation relation
P can be defined, based on M , but compatible with ground mereology [38];

3 A ‘name’ can be defined as a string, chosen by the programmer, that has no semantic
effect on the program’s functionality. Anonymously-realized abstractions, such as
Java inner classes, are not ‘elements’ in the current model; as will be shown in
section 5.2, this is a necessary model feature. If necessary, qualifying annotations can
be used to distinguish between different elements with the same name, for example
if a Java method is overloaded; the format of these annotations should be chosen to
suit the current language, and is not prescribed here.

70 H.R. Jordan and R. Collier

Pxy =⇒ element x is a part of element y. P is a transitive closure of M , and
has the following properties:

Mxy =⇒ Pxy (4)

Pxx (P reflexive) (5)

Pxy ∧ Pyz =⇒ Pxz (P transitive) (6)

Since every element in E forms some part of s, ∀e ∈ E(Pes).
Closely following Vaishnavi et al. [36], classes, methods, and fields can now be

generalized to mereological ‘levels’, using the above theory base. First, define an
‘atomic’ element as one which aggregates no other elements, and V0 as the set
of atomic elements in E. Then recursively partition E into levels V0..Vn, such
that all the members of each level share similar aggregation responsibilities:

V0 ≡ {x : �y(Myx)} (7)

Vn ≡ {x �∈
⋃

V0..Vn−1 : ∃y ∈ Vn−1(Myx)} (8)

Applying this model to a system s yields a stratified aggregation hierarchy, which
is an acyclic digraphM = (E, M) with s as root; from M, an analogous graph
P = (E, P) can also be derived using equations (4) and (6). A sample of the
graphM and its associated levels, for the example Jason program, is shown in
figure 2; for convenience the element names are prefixed to indicate their source
language (Java j or AgentSpeak as) and abstraction type (package k, class c,

Fig. 2. Part of the element aggregation graph M, for an example Jason program. An
arrow from x to y indicates that Mxy. Note that all the information required for this
graph was found in, and could easily be automatically extracted from, the program’s
source code.

Evaluating Agent-Oriented Programs 71

field f , method m, agent a, rule r, belief b, goal g, or plan p). The assignment of
all agents and classes to the same level accords with the widely-held view that
agents are specializations of objects [33].

An interesting practical issue was encountered while compiling this aggrega-
tion graph. AgentSpeak agents can pass beliefs, goals, and plans to other agents,
without prior declaration; in the example, two of the vacAgent’s possible beliefs
(‘cleaning’ and ‘target’) are given to it by the bossAgent. This lack of explicit
declaration makes it difficult to manually determine the full set of an agent’s
possible beliefs.

5.2 Discovering Dependencies by Refactoring

Changes to software artifacts sometimes have widespread ripple effects, or
‘change impacts’, on other parts of the program. Successful software will prob-
ably undergo many changes during its lifetime; ideally, a suite of structural
maintainability metrics would predict, given an existing software design, how
much effort and risk will be incurred in making those changes. While acknowl-
edging that changes to software may be radical and unanticipated, this paper
focuses on incremental, evolutionary changes to existing source code, such as the
modification of existing program features.

The difficulty of evolving existing code might ideally be estimated by per-
forming example code changes, that are considered representative of the most
likely feature modifications. However, for all but the most trivial programs, the
list of plausible feature modifications would be vast. Even if program behaviour
modifications are excluded, the list of all possible refactorings [14] is considered
infinite [28].

Instead of attempting to define a set of representative changes, we propose that
useful insight into the scope of any change impacts, and hence the ‘evolvability’ of
a code segment, could be gained by repeatedly applying a very simple refactoring.
Keeping our goal of paradigm-independence in mind, we suggest that just one
refactoring is applicable to all conceivable text-based programming languages:
the ‘rename’ refactoring [14, p.273]. This refactoring has the appealing property
that it is a semantics-preserving change with no structural effects, which leads
to two benefits: for most programming languages it can be easily automated;
and the number of distinct modifications required to accommodate a rename
refactoring could be said to represent the minimum ripple effect of modifications
to that element.

Let D denote a binary predicate representing an explicit structural depen-
dency between two program elements; Dxy =⇒ element x directly depends on
element y. The following general method can be used to discover the dependen-
cies present within a program s:

1. Create a backup copy of the program code s.
2. For each element e in E:

(a) Rename e, carefully avoiding new names which are used elsewhere in the
program, or have special meaning in the current programming language.

72 H.R. Jordan and R. Collier

(b) By text replacement only, modify the minimum set Xe of other elements,
Xe ⊆ E, so that the program’s original external behaviour is exactly
restored.

(c) Record the dependency represented by each modified element4: ∀x ∈
Xe(Dxe).

(d) Revert all changes to s, by restoring from the backup copy.

Applying this method yields a dependency graph D = (E, D), where D is the
union of all the discovered dependency relations; a sample of the graph D for
the example Jason program is shown in figure 3.

Fig. 3. Part of the element dependency graph D, for an example Jason program. An
arrow from x to y indicates that Dxy.

Figure 3 illustrates dependencies

1. within a single agent;
2. within an agent and between two agents;
3. between an internal action and the agent that uses it;
4. within an internal action and between two internal actions.

Of particular interest is the result of the rename operation on the RandomLeft-
Right class. Two plans within the vacAgent refer to this internal action, and
therefore required modification; however, as those plans were not named, they
did not meet our definition of an element, and the resulting dependencies were
therefore credited to the vacAgent itself. This illustrates a simple benefit of nam-
ing AgentSpeak plans: naming allows the location of modification points to be
more precisely specified. The TowardsLeftRight class depends on RandomLeft-
Right by use of the ‘extends’ Java keyword; thus the object-specific concept of
inheritance has been captured in a paradigm-independent way.

5.3 Coupling Between Elements (CBE)

Background. The definition of CBO states that “an object is coupled to an-
other object if one of them acts on the other”. Action is defined as the methods of
one class accessing or modifying the methods or instance variables of the other.
CBO for a class is then a count of the number of other classes to which that
class is coupled, implying that a class cannot be coupled to itself [10].
4 An adjacency matrix is ideal for keeping track of dependencies as they are discovered.

Evaluating Agent-Oriented Programs 73

Definition. CBO can be generalized to CBE as follows. An element x ∈ V1 is
coupled to another element y ∈ V1, y �= x, if any direct dependencies Dij ∨Dji
exist between any of their parts Pix ∧ Pjy. CBE for x is then a count of the
number of other elements in V1 to which x is coupled:

CBE(x) =

{
| {y ∈ V1/x : ∃i, j(Pix ∧ Pjy ∧ (Dij ∨Dji))} | x ∈ V1

undefined x /∈ V1

(9)

Domain and range. CBE maps from level 1 elements to the natural numbers:

CBE : V1 → {n ∈ N : n < |V1|} (10)

Software engineering viewpoint. CBE(x) estimates the ripple effects of
modifying x, combined with the sensitivity of x to changes elsewhere in the
software system. A low value, CBE(x) � 1, generally indicates a maintainable
design, while a high value, CBE(x)� 1, predicts future maintenance difficulties.
CBE(x) = 0 implies that x has no explicit dependencies to or from the rest of
the system; therefore either |V1| = 1, or x is isolated.

5.4 Lack of Cohesion of Elements (LCE)

Background. The intent of LCOM is to measure the similarity of methods in a
class, by comparing the sets of instance variables used by each method. However,
the two published definitions of LCOM differ significantly [23]: the first is a count
of the number of disjoint instance variable sets, the second is based on counts
of pairwise comparisons of instance variable sets. Neither version is sensitive
to dependencies between methods, thus a method which does not directly use
the instance variables of its class, but instead accesses them by invoking other
local methods, is counted as incohesive. The second definition also has another
unappealing property: the pairwise combinations of methods in a class varies as
m(m − 1)/2, where m is the number of methods, causing this variant to scale
exponentially as incohesive methods are added. We therefore choose the first
version as the basis of LCE.

Definition. Let L denote a binary predicate representing transitive, undirected
local dependency between two elements; Lxy =⇒ element x has local depen-
dencies with element y. Formally we define L as follows:

(Dxy ∨Dyx) ∧ (∃z(Mxz ∧Myz)) =⇒ Lxy (11)

Lxx (L reflexive) (12)

Lxy ∧ Lyz =⇒ Lxz (L transitive) (13)

74 H.R. Jordan and R. Collier

LCE for an element x is then a count of the number of sets S, where each S
is the largest possible set such that all elements of S are locally interdependent
members of x:

LCE(x) =| {S : ∀i, j ∈ S(Lij ∧Mix ∧Mjx ∧ �k /∈ S(Mkx ∧ Lik))} | (14)

Domain and range. LCE maps from elements to the natural numbers:

LCE : E → {n ∈ N : n < |E|} (15)

Software engineering viewpoint. LCE(x) = 1 when all the members of
x are locally interdependent; in other words, all members of x use each other
in some way, and x is maximally cohesive. LCE(x) > 1 suggests a possible
design problem: x could easily be divided into LCE(x) separate elements. From
equations 12 and 7, LCE(x) = 0 =⇒ x ∈ V0, and therefore x has no structure
which is representable in the current model.

5.5 Results

The values of CBE and LCE for all the level 1 elements (classes and agents) in
the example Jason program are shown in table 1.

Table 1. Values of the paradigm-independent metrics CBE and LCE for level 1 ele-
ments in an example Jason program. CBE is an estimate of the connectedness of the
given element. LCE is an estimate of the number of unrelated parts present in the
given element. For both metrics, values closer to 1 are usually better.

Level 1 element CBE LCE

vacAgent 5 3

bossAgent 1 2

GridMath 1 3

RandomLeftRight 2 1

TowardsLeftRight 2 1

DirectionToXY 2 1

XYToDirection 1 1

The full benefit of metrics is difficult to demonstrate using only a small ex-
ample; metrics are most useful when comparing similar programs, or evaluating
parts of a large software design. However, the results for CBE closely match
the connections shown in figure 1, thus illustrating how important architectural
features can be captured quantitatively with this metric. Had no architectural
descriptions been available, this information would have been invaluable.

Evaluating Agent-Oriented Programs 75

The results for LCE are also of interest. GridMath has an LCE value of three,
indicating that its three methods have little in common, and it could easily be
split into three separate classes. Likewise, the LCE value for bossAgent reveals
that it has two separate responsibilities, one for target allocation and the other
for location tracking. In the case of vacAgent, its apparently separate parts are
all connected via common control of an entity in the environment, illustrating
that metric values should always be interpreted carefully.

6 Conclusions

Metrics are increasingly seen as valuable tools which help researchers to com-
pare technologies, and software engineers to understand where future problems
may arise. Agent programs written in languages such as Jason are often inher-
ently multi-paradigm, with substantial functionality deferred to object-oriented
elements. In order to evaluate and compare such programs, a multi-paradigm
metrics suite is needed.

In this paper, paradigm-independent coupling and cohesion metrics CBE and
LCE were proposed, and their application demonstrated on an example Jason
program. The theoretical validity of these metrics as predictors of maintainability
rests on the hypothesis that the ‘rename’ refactoring is representative of general
software maintenance - which is currently unproven. However, the Chidamber
and Kemerer (CK) metrics CBO and LCOM, from which they are generalized,
are both well-validated and theoretically grounded. Validation of CBE and LCE
would require a large dataset of Jason programs, and access to Jason program-
ming experts, neither of which was available at the time of writing; independent
experimental validation is therefore left for future work.

While deriving the proposed metrics, a number of issues relating to AgentS-
peak programming were uncovered. The need to discover and locate dependen-
cies in software is not limited to toolmakers; human programmers must do the
same when trying to comprehend any unfamiliar code. We therefore make the
following suggestions:

1. Plan naming is optional in AgentSpeak. We advocate that plans should be
named where possible, arguing that it helps to precisely locate dependencies
and other code issues.

2. Explicit declaration of beliefs and goals in AgentSpeak would make it easier
to determine an agent’s possible mental states. A similar feature is already
provided in the Agent Factory AFAPL2 agent programming language by an
‘ontology’ construct [11].

Though our perspective is one of maintainability measurement rather than agent
decomposition and re-use, these suggestions are compatible with recent work on
agent programming language modularity [26] [17].

Our next steps will be to automate the collection of the CBE and LCE met-
rics, and validate their use experimentally. To evaluate the generality of the
‘multi-paradigm’ claim, the applicability of the underlying model to other pro-
gramming languages should also be investigated. A preliminary examination of

76 H.R. Jordan and R. Collier

the structure and syntax of GOAL [18] programs suggests that the model is
compatible, and that its application might raise some interesting issues. The
abstractions available in GOAL include predicates, terms, actions, and macros,
but the realizations of these abstractions are typically short, with many elements
being completely defined within one line of code. Thus GOAL programs tend to
contain more elements than their AgentSpeak equivalents, which could lead to
dramatic differences in CBE and LCE values when comparing the two languages.

The CBE and LCE metrics reflect only a small proportion of the dependency
information gathered. Could any other useful predictors of maintainability be
devised from it? A large body of literature exists on the relative contributions
of different dependency types to coupling and cohesion [16]. A second debate
concerns the issue of whether metrics for software maintainability should be
applied at a coarse [30] or fine [6] level of granularity. We speculate that the rel-
ative locations of dependencies may also be important; intuitively, two multiply-
interdependent abstractions will require less future maintenance effort if those
dependencies are closely co-located. New multi-paradigm metrics based on our
dependency data could shed light on these issues. If links between these met-
rics and real-world maintainability can be established, this may in turn lead to
new recommendations for multi-paradigm programming practices and language
design.

Instead of devising new metrics, one interesting alternative would be to pro-
vide a flexible means of visualising and summarising the raw dependency data.
Such a tool could allow engineers and researchers to focus on the dependency
types appropriate to the current context, and aggregate results at an abstraction
level of their choosing.

Acknowledgements. We would like to thank Jim Buckley, Mike Hinchey, Re-
becca Yates, and the anonymous reviewers, who made many insightful sugges-
tions. This work was supported, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero - the Irish Software Engineering Research Centre.

References

1. Allen, E.B., Gottipati, S., Govindarajan, R.: Measuring size, complexity, and cou-
pling of hypergraph abstractions of software: an information-theory approach. Soft-
ware Quality Journal 15(2), 179–212 (2007)

2. Arbuckle, T.: Measure Software - and its Evolution - Using Information Content.
In: Proceedings of the Joint International and Annual ERCIM Workshops on Prin-
ciples of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops,
pp. 129–134. ACM (2009)

3. Bach, J.: Good enough quality: Beyond the buzzword. Computer 30(8), 96–98
(1997)

4. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.
Encyclopedia of Software Engineering 1, 528–532 (1994)

5. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. Springer, Heidelberg (2008)

Evaluating Agent-Oriented Programs 77

6. Binkley, A.B., Schach, S.R.: Validation of the coupling dependency metric as a pre-
dictor of run-time failures and maintenance measures. In: Proceedings of the 20th
International Conference on Software Engineering, pp. 452–455. IEEE Computer
Society, Washington, DC (1998)

7. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and
platforms for multi-agent systems. Special Issue: Hot Topics in European Agent
Research II Guest Editors: Andrea Omicini 30, 33–44 (2006)

8. Bryton, S., e Abreu, F.B.: Towards Paradigm-Independent Software Assessment.
In: Proc. of QUATIC 2007 (2007)

9. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of
software change. Journal of Software Maintenance and Evolution 17(5), 309–332
(2005)

10. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

11. Collier, R.W., O’Hare, G.M.P.: Modelling and Programming with Commitment
Rules in Agent Factory. In: Handbook of Research on Emerging Rule-Based Lan-
guages and Technologies: Open Solutions and Approaches (2009)

12. Darcy, D.P., Kemerer, C.F., Slaughter, S.A., Tomayko, J.E.: The structural com-
plexity of software: an experimental test. IEEE Transactions on Software Engi-
neering 31(11), 982–995 (2005)

13. Dragone, M., Lillis, D., Collier, R., O’Hare, G.M.P.: SoSAA: a framework for in-
tegrating components & agents. In: Proceedings of the 2009 ACM Symposium on
Applied Computing, pp. 722–728. ACM, New York (2009)

14. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional (1999)

15. Garcia, A., Sant’Anna, C., Chavez, C., da Silva, V.T., de Lucena, C.J.P., von
Staa, A.: Separation of Concerns in Multi-agent Systems: An Empirical Study.
In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P.S.C. (eds.)
SELMAS 2003. LNCS, vol. 2940, pp. 49–72. Springer, Heidelberg (2004)

16. Henderson-Sellers, B.: Object-oriented metrics: measures of complexity. Prentice-
Hall, Inc., Upper Saddle River (1996)

17. Hindriks, K.: Modules as Policy-Based Intentions: Modular Agent Programming
in GOAL. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M.
(eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 156–171. Springer, Heidelberg
(2008)

18. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Program-
ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

19. Kitchenham, B., Pfleeger, S.L.: Software quality: The elusive target. IEEE Soft-
ware 13(1), 12–21 (1996)

20. Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a framework for software mea-
surement validation. IEEE Transactions on Software Engineering 21(12), 929–944
(1995)

21. Kramer, S., Kaindl, H.: Coupling and cohesion metrics for knowledge-based systems
using frames and rules. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 13(3), 332–358 (2004)

22. Lanza, M., Marinescu, R., Ducasse, S.: Object-oriented metrics in practice: us-
ing software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer-Verlag New York Inc., New York (2006)

78 H.R. Jordan and R. Collier

23. Li, W.: Another metric suite for object-oriented programming. The Journal of
Systems & Software 44(2), 155–162 (1998)

24. Lieberherr, K., Holland, I., Riel, A.: Object-oriented programming: an objective
sense of style. ACM SIGPLAN Notices 23(11), 323–334 (1988)

25. Lopez-Herrejon, R.E., Apel, S.: Measuring and Characterizing Crosscutting in
Aspect-Based Programs: Basic Metrics and Case Studies. In: Dwyer, M.B., Lopes,
A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 423–437. Springer, Heidelberg (2007)

26. Madden, N., Logan, B.: Modularity and Compositionality in Jason. In: Braubach,
L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 237–
253. Springer, Heidelberg (2010)

27. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings
of the 4th International Workshop on Principles of Software Evolution, pp. 83–86.
ACM, New York (2001)

28. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings
with graph transformations. Journal of Software Maintenance and Evolution 17(4),
247–276 (2005)

29. O’Neal, M.B., Edwards, W.R.: Complexity measures for rule-based programs.
IEEE Transactions on Knowledge and Data Engineering 6(5), 669–680 (1994)

30. Ramil, J.F., Lehman, M.M.: Metrics of software evolution as effort predictors - a
case study. In: Proc. Int. Conf. Software Maintenance, pp. 163–172 (2000)

31. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall
(2009)

32. SantAnna, C., Figueiredo, E., Garcia, A., Lucena, C.: On the Modularity Assess-
ment of Software Architectures: Do my architectural concerns count? In: Proc.
International Workshop on Aspects in Architecture Descriptions (AARCH 2007),
AOSD, vol. 7, Citeseer (2007)

33. Shoham, Y.: Agent-oriented programming. Artificial intelligence 60(1), 51–92
(1993)

34. Sipos, A., Pataki, N., Porkoláb, Z.: On Multiparadigm Software Complexity Met-
rics. In: MaCS 2006 6th Joint Conference on Mathematics and Computer Science,
p. 85 (2006)

35. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-
oriented design complexity: implications for software defects. IEEE Transactions
on Software Engineering 29(4), 297–310 (2003)

36. Vaishnavi, V.K., Purao, S., Liegle, J.: Object-oriented product metrics: A generic
framework. Information Sciences 177(2), 587–606 (2007)

37. van Riemsdijk, M.B., Hindriks, K.V.: An Empirical Study of Agent Programs: A
Dynamic Blocks World Case Study in GOAL. In: Yang, J.-J., Yokoo, M., Ito, T.,
Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 200–215. Springer,
Heidelberg (2009)

38. Varzi, A.: Mereology. Stanford Encyclopedia of Philosophy (2009),
http://plato.stanford.edu/entries/mereology/ (cited January 17, 2011)

39. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

40. Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In: Pro-
ceedings of the Second International Conference on Autonomous Agents, pp. 385–
391. ACM, New York (1998)

41. Zhao, J., Cheng, J., Ushijima, K.: A Metrics Suite for Concurrent Logic Programs.
In: Proc. 2nd Euromicro Working Conference on Software Maintenance and Reengi-
neering, pp. 172–178, Citeseer (1998)

http://plato.stanford.edu/entries/mereology/

Atomic Intentions in Jason+

Daniel Kiss, Neil Madden, and Brian Logan

School of Computer Science
University of Nottingham, UK
bsl@cs.nott.ac.uk

Abstract. We consider interactions between atomic intentions and plan failures
in the Jason BDI-based agent programming language. Atomic intentions allow
the agent developer to control the execution of intentions in situations where a
sequence of actions must be executed ‘atomically’ in order to ensure the success
of a plan. However, while atomic intentions in Jason enforce mutual exclusion,
they are not atomic operations in the sense understood in conventional program-
ming or in databases, and failure of an atomic plan can leave the agent’s belief
and plan bases in an inconsistent state. In this paper we present a new approach to
atomic intentions which provides a transactional ‘all-or-nothing’ semantics, and
describe its implementation in a new version of Jason, Jason+. We argue that
Jason+ offers a more predictable semantics for atomic plans in the face of plan
failure and can reduce the load on the agent developer by automating simple cases
of failure handing, leading to the development of more robust agent programs.

1 Introduction

Jason [1] is a Java-based interpreter for an extended version of AgentSpeak(L). AgentS-
peak(L) is a high-level agent-oriented programming language [2] which incorporates
ideas from the BDI (belief-desire-intention) model of agency. Since it was first intro-
duced in [3], Jason has evolved into a rich platform for the development of multi-agent
systems. It has many sophisticated features to facilitate the development of complex
agent-based systems, including control over the scheduling of intentions, support for
plan exchange between agents, and facilities for handling plan failures. In this paper,
we investigate some of the interactions between these features (which are also found
in other BDI-based agent programming languages), and highlight some of the potential
problems that can arise from their interaction.

We focus on a key feature of Jason, atomic intentions, and how these interact with
Jason’s facilities for handling plan failures. Atomic intentions allow the agent developer
to control the execution of intentions in situations where a sequence of actions must be
executed ‘atomically’ in order to ensure the success of a plan. However, while atomic
intentions enforce mutual exclusion, they are not atomic operations in the sense under-
stood in conventional programming or in databases. In particular, we show that failure
of an atomic plan can leave the agent’s belief and plan bases in an inconsistent state,
and further that the existing failure handling mechanisms implemented in Jason make
it hard to recover from such failures.

To overcome these problems we have developed Jason+, an extension of the Jason
agent programming language which adopts a transactional approach to atomic plans.

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 79–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 D. Kiss, N. Madden, and B. Logan

If an action in a Jason+ atomic plan fails, the whole atomic plan fails and the agent’s
belief and plan bases and event list are left in the state they were before the execution
of the atomic plan. However if an atomic plan succeeds, all updates to the agent’s belief
and plan bases made by the atomic plan are visible to any subsequent actions in the
intention containing the atomic plan and to actions in other intentions, and all events
generated by the atomic plan are added to the event list. Jason+ also implements a ver-
sion of the module system described in [4] which is used to encapsulate dynamically
loaded plans. With the exception of minor changes required by the module system, the
syntax of Jason+ is backwards compatible with the current release of Jason. We be-
lieve that the extensions implemented in Jason+ offer a more predictable semantics for
atomic plans in the face of plan failure and can reduce the load on the agent developer
by automating simple cases of failure handing, leading to the development of more
robust agent programs.1

The remainder of this paper is structured as follows. In the next section we briefly
summarise the syntax and semantics of Jason. In section 3 we motivate the need for
atomic intentions, and highlight some of the problems of the current implementation
of atomic intentions in Jason. In section 4 we present a new approach to atomic inten-
tions which provides a transactional ‘all-or-nothing’ semantics, and describe its imple-
mentation in a new version of Jason, Jason+. In section 5 we briefly discuss how our
approach could be generalised to other BDI-based agent programming languages, and
outline plans for future work.

2 Jason

Jason is loosely based on the logic programming paradigm, but with an operational
semantics based on plan execution in response to events and beliefs rather than SLD
resolution as in Prolog.

A Jason agent is specified in terms of beliefs, goals and plans. An agent’s beliefs
represent its information about its environment, e.g., sensory input, information about
other agents, etc. Beliefs are represented as ground atomic formulas. For example, the
agent may believe that John is a customer: customer(John). A goal is a state the
agent wishes to bring about or a query to be evaluated. An achievement goal, written
!g(t1, . . . , tn) where ti, . . . , tn are terms, specifies that the agent wishes to achieve a
state in which g(t1, . . . , tn) is a true belief. A test goal, written ?g(t1, . . . , tn), specifies
that the agent wishes to determine if g(t1, . . . , tn) is a true belief. For example, an agent
may have a goal !order(widget, 10) to process a purchase order for 10 widgets.
(As in Prolog, constants are written in lower case and variables in upper case, and all
negations must be ground when evaluated.) Jason extends AgentSpeak(L) with support
for more complex beliefs, default and strong negation, and arbitrary internal actions
implemented in Java. The belief base of AgentSpeak(L) consists simply of a set of
ground literals, whereas Jason supports a sizeable subset of Prolog for the belief base,
including universally-quantified rules (Horn clauses).

Changes in the agent’s beliefs or the acquisition of new achievement goals give rise
to events. An addition event, denoted by +, indicates the addition of a belief or an

1 Jason+ is available at http://code.google.com/p/jasonp.

http://code.google.com/p/jasonp

Atomic Intentions in Jason+ 81

achievement goal. A deletion event, denoted by −, indicates the retraction of a belief
or goal. Plans specify sequences of actions and subgoals an agent can use to achieve its
goals or respond to events (changes in its beliefs and goals). The head of a plan consists
of a triggering event which specifies the kind of event the plan can be used to respond
to, and a belief context which specifies the beliefs that must be true for the plan to be
applicable. The body of a plan specifies a sequence of actions and (sub)goals to respond
to the triggering event. Actions are the basic operations an agent can perform to change
its environment (or its internal state) in order to achieve its goals. Plans may also con-
tain achievement and test (sub)goals. Achievement subgoals allow an agent to choose a
course of action as part of a larger plan on the basis of its current beliefs. An achieve-
ment subgoal!g(t1, . . . , tn) gives rise to a internal goal addition event +!g(t1, . . . , tn)
which may in turn trigger subplans at the next execution cycle. Test goals are evaluated
against the agent’s belief base, possibly binding variables in the plan.2 For example, an
agent which forms part of an e-Commerce application might use the simple plan shown
if Figure 1 to processes orders.

/* Initial stock */
stock(widget, 1).

@processOrder
+!order(Item, Num)[source(Customer)] <-

?stock(Item, Stock); /* test plan */
Num <= Stock; /* test plan */
-+stock(Item, Stock - Num); /* modify stock */
+purchased(Customer, Item, Num);
!dispatch(Customer, Item, Num).

Fig. 1. Example Jason plan

The current stock level of items is stored as a ground fact in the belief base. The
plan checks that there is sufficient stock to process the order, updates the agent’s beliefs
to reflect the reduced stock level and record the customer’s order and then generates a
subgoal to dispatch the order to the customer.

At each reasoning cycle, Jason first processes any events and updates the agent’s be-
lief base. The interpreter then selects a single event to process and matches it against the
plan library to select one or more plans to handle the event. Of these plans, a single plan
is then selected to become an intention. Finally, one of the currently active intentions is
selected and the next step in that intention is executed, before the cycle repeats.

Jason has been extended in a variety of ways, for example, to support decision theo-
retic scheduling of intentions [5]. Of particular interest here is the support provided in
core Jason for cooperative plan exchange as described in [6,7]. In the cooperative BDI
paradigm, agents can retrieve plans from other agents. Such plans can be dynamically
loaded into the agent’s plan base to extend its capabilities at run time. For example, the

2 In the interests of brevity, we have slightly simplified the presentation of Jason syntax and
semantics.

82 D. Kiss, N. Madden, and B. Logan

Jason interpreter can be configured to invoke the user-defined selectOption func-
tion when the set of relevant and applicable plans for an event is empty. Internal actions
are also provided to allow plans to be added and removed from the agent’s plan base at
run time. These facilities can be used to implement the kind of plan exchange described
in [7].

3 Atomic Intentions

The basic Jason execution strategy allows an agent to pursue multiple goals at the same
time, e.g., an agent can respond to an urgent, short-duration task while engaged in a
long-term task, and such flexibility is a key characteristic of an agent-oriented approach
to software development. However it can increase the risk that actions in different plans
will interfere with each other. For example, if an agent has an intention containing a
“go right” action and another intention containing a “go left” action, their interleaved
execution may result in the agent returning to its original location. (The default Jason
intention selection function implements a form of ‘round robin’ scheduling: each inten-
tion is selected in turn and a single step of that intention is executed, resulting in fully-
interleaved execution of plans.) More generally, the successful execution of an action
in a plan (and ultimately achievement of the agent’s goals) typically requires that pre-
conditions established by actions earlier in the plan continue to hold when the action is
eventually executed. This can be difficult or impossible to guarantee with unconstrained
interleaving of agent plans. For example, the example Jason plan shown if Figure 1 may
result in incorrect behaviour. If two orders for a widget arrive at about the same time, an
agent using the default Jason intention selection function may attempt to dispatch the
same widget to both customers. Such race conditions are well known in multi-threaded
conventional programs, and it is not surprising that agent programming languages that
support the parallel execution of intentions should face similar challenges.

It is therefore important that the agent developer can control which intentions are
selected for execution. For example, there may be situations where a sequence of actions
must be executed ‘atomically’ in order to ensure the success of a plan. Jason allows
such control to be exercised in two ways: by over-riding the default intention selection
function and by use of atomic plan annotations (both are optional). In what follows,
we focus on atomic annotations, as these provide built-in support for atomic execution
of intentions.

3.1 Atomic Plans in Jason

An atomic plan annotation indicates that a plan should be executed ‘atomically’. If
an intention containing a plan with an atomic annotation is selected for execution by
the agent’s intention selection function, it will continue to be selected for execution in
subsequent execution cycles until the plan completes. In effect, an atomic annotation
over-rides the normal operation of the event and intention selection functions during the
execution of the atomic plan, and guarantees that the execution of actions in other inten-
tions will not be interleaved with the steps of an atomic plan. (Note that unlike mutual
exclusion in conventional programming languages, e.g., synchronized methods in

Atomic Intentions in Jason+ 83

Java, an atomic plan in Jason is mutually exclusive with all other intentions, not just
those containing atomic plans.) For example, adding an atomic annotation to the ex-
ample order processing plan above ensures that all of its actions are run to completion
before another intention is selected, and so avoid the possibility of attempting to dis-
patch the same item twice.

@processOrder[atomic]
+!order(Item, Num)[source(Customer)] <-

?stock(Item, Stock); /* test plan */
Num <= Stock; /* test plan */
-+stock(Item, Stock - Num); /* modify stock */
+purchased(Customer, Item, Num);
!dispatch(Customer, Item, Num).

Fig. 2. Example Jason atomic plan

While atomic annotations are essential for many applications, they have to be used
with care to maintain the reactivity of the agent, as the agent is unable to respond to
external events during the execution of an atomic plan. However of greater interest here
is the way in which atomic annotations interact with plan failure. While the atomic
annotation ensures mutual exclusion (no other intention can interfere with the execution
of an atomic plan), atomic plans in Jason are not atomic operations in the sense under-
stood in conventional programming or in databases. In conventional programming, an
‘atomic’ action is effectively uninterruptible—any intermediate states which arise dur-
ing the execution of an atomic operation are not visible to other processes even if the
operation fails. In contrast, intermediate, possibly inconsistent, states resulting from the
execution of a Jason atomic plan may be visible to other intentions if the plan fails.

3.2 Failure of Atomic Plans

In the open environments characteristic of MAS applications, it is impossible to guar-
antee that an agent’s actions will always be successful. Of the six types of formulas
which can appear in Jason plans (internal and external actions, achievement and test
goals, expressions and mental notes), five can fail. Only mental notes are guaranteed to
succeed. When a step in a plan fails, the plan itself is said to have failed. For example,
the example plan in Figure 2 can fail either because there is insufficient stock to process
the order, or if attempting to achieve the dispatch goal fails.

Jason provides support for dealing with plan failures in the form of failure handling
plans. Failure handling plans allow the developer to ‘clean up’ following a plan failure,
e.g., by specifying that the agent should perform additional actions to ‘undo’ the effects
of internal or external actions performed prior to the failure of a plan. When a plan π
in an intention i fails, the Jason interpreter searches for a goal g in i that has a relevant
failure handling plan. If one is found, the intention is suspended and a goal deletion
event −!g is added to the event list. If no failure handling plan is found, the intention
containing π is dropped. Execution of the agent then continues. If a goal deletion event

84 D. Kiss, N. Madden, and B. Logan

was generated it may be selected at a future cycle and trigger a failure handling plan.
If the failure handling plan is applicable in the current context, it is pushed onto the
intention i, on top of the failed plan π, and i is unsuspended. This allows the failure
handling to plan to inspect the current state of the failed plan (using Jason internal
actions) and take appropriate recovery steps depending on which external actions were
executed prior to failure. For example if the order processing plan fails because there
is insufficient stock to process the order, a failure handling plan could send a message
to the customer to this effect, and perhaps suggest a similar alternative item that is in
stock.

In the case of plans with an atomic annotation, this basic scheme is extended in
two ways. First, if the plan which gives rise to a goal deletion event−!g has an atomic
annotation, the intention retains the atomic property and will be scheduled at the next
reasoning cycle. Second, the event selection function is over-ridden (including any user
customisations) to ensure that the goal deletion event−!g is processed at the next cycle.
In effect, the failure handling plan extends the critical section created by the failed
atomic plan π, allowing recovery actions to be performed before any other intention is
scheduled.

While this scheme allows (atomic) recovery from the failure of an atomic plan, it
suffers from a number of disadvantages. First, and most obviously, it requires that the
agent developer anticipate possible failures and write appropriate failure handling plans.
For external and internal actions which have complex side effects that must be undone
for recovery to be possible this is inevitable. However undoing changes made to the
agent’s belief and plan base as a result of plan execution should not require programmer
intervention if the plan fails. Such automated reversion of the belief and plan bases is
currently not supported in Jason.

Perhaps more surprising, given the current architecture of Jason, it can be difficult
for the agent developer to cleanly undo the effects of belief or plan base changes in a
failure handling plan. For example, if the dispatch goal in the processOrder plan
cannot be achieved, e.g., because it is impossible to deliver the item to the customer’s
delivery address, or because delivery is handled by an external organisation/agent which
rejects the delivery request, the changes to the agent’s beliefs to reflect the reduced
level of stock and the customer’s purchase of the item should be reverted. However,
simply reverting the belief changes in a failure handling plan does not remove any
belief change events resulting from belief changes made by the failed plan. Moreover,
belief deletions and additions made by a failure handling plan result in additional belief
change events which may in turn give rise to additional intentions when the atomic
failure handling plan finishes execution. (Even using the internal actions provided by
Jason which directly manipulate the agent’s Java state, there is no obvious way to avoid
this.) As a result, if an atomic plan fails, any intermediate, potentially inconsistent,
belief changes are visible to other intentions. Such belief changes may in turn give
rise to new intentions, and attempting to restore consistency to the belief base may
compound the problem by generating yet more intentions.

Similarly in Coo-AgentSpeak(L) [7], the acquisitionPolicy, which deter-
mines whether a retrieved plan is added to or replaces any existing plan for the plan’s
triggering event, is applied immediately on successful completion of the retrieved plan.

Atomic Intentions in Jason+ 85

If such changes to the plan base occur within the scope of an atomic plan, there is no
easy way that they can be undone, as there is no record of the previous state of the plan
base.

The cause of these problems is a failure to ensure that changes to the agent’s belief
and plan bases and event list are only visible to the rest of the agent if the plan succeeds.

4 A New Approach to Atomic Intentions

We argue that changes to an agent’s state resulting from execution of an atomic plan
should have a transactional ‘all or nothing’ semantics. If an action in an atomic plan
fails, the whole atomic plan should fail and the agent’s belief and plan bases and event
list should be in the state they were before the execution of the atomic plan. However if
an action in an atomic plan succeeds, any updates to the agent’s belief and plan bases
resulting from the action should be visible to subsequent actions in the atomic plan. If
all the steps in an atomic plan succeed, all updates to the agent’s belief and plan bases
made by the atomic plan should be visible to any subsequent actions in the intention
containing the atomic plan and to actions in other intentions, and all events generated
by the atomic plan should be added to the event list. We believe that automating failure
handling in this way can significantly reduce the load on the agent developer when writ-
ing atomic plans, particularly as the facilities available in Jason for reverting changes
to the agent’s belief and plan bases and event list are difficult to use and/or incomplete.

In the remainder of the paper we describe the changes we made to Jason to support
such a transactional model of atomic plans in Jason+. The syntax of plans in Jason+

is backwards compatible with the current release of Jason: in particular, the syntax of
the existing atomic annotation is unchanged, only its semantics differs. We stress that
the automated support provided by Jason+ for handling plan failure in atomic plans is
restricted to changes to the agent’s belief base, plan library and event queue. As noted
above, in general, it is difficult or impossible to automatically revert actions performed
in the environment or arbitrary changes to the agent’s state (e.g., through sequences of
‘compensation actions’ applied in reverse order). Any effects of external and internal
actions that must be undone on plan failure must be anticipated by the programmer and
coded as failure handling plans as at present.

4.1 Delta State

To provide a transactional semantics for atomic plans, we must be able to restore the
state of the agent that existed at the beginning of the execution of an intention containing
an atomic plan in case the plan fails, and to commit the changes in the case in which
the intention succeeds. This corresponds to the atomicity property of the traditional
database ‘ACID’ guarantees (isolation is not an issue, as atomic intentions in Jason
execute with mutual exclusion with respect to all other intentions; consistency is the
concern of the belief update function; and durability can be achieved using the Jason
persistent belief base).

86 D. Kiss, N. Madden, and B. Logan

A number of approaches can be taken to achieve atomicity. One approach would
be to make a copy of the whole state of the agent (belief-base, plan-library and event
queue) at the beginning of the execution of an atomic plan. Changes to the agent’s state
by actions within the atomic plan are made as normal. If the atomic plan succeeds, the
copy of the agent’s state is discarded. Conversely, if the plan fails, the state of the agent
is restored from the copy. An alternative is to instead store a log of the belief updates
performed by the atomic intention, and then revert them (and only them) on plan fail-
ure.3 Depending on the size of the belief base and the number of belief updates made
by an atomic plan, recording only the belief update actions may require less space than
keeping a copy of the belief base. However care is required to ensure correct behaviour.
For example, it is important to ensure that any belief change events resulting from the
execution of an atomic plan are removed from the event queue on plan failure. A further
variation would be to create a copy of the belief base, plan library and event queue at
the start of the intention (as in the first approach), and make changes only to the copy.
On success, these changes can be merged back into the main belief base, or otherwise
discarded. This provides very strong atomicity and isolation guarantees (correspond-
ing to full ‘snapshot’ isolation), but clearly comes at a high price in terms of memory
overhead and complexity.

These difficulties can be overcome by maintaining a delta state of the agent to store
uncommitted changes, and by querying the combination of the normal and delta state
during the execution of an atomic plan. The delta state consists of three components:
a delta belief base, a delta plan base, and a delta event list. We describe each of these
in turn below.

4.2 Delta Belief Base

The delta belief base records changes to the belief base of the agent made by actions
in an atomic plan. The delta belief base is initially empty. When a new atomic plan
starts executing, the agent registers that it should use the delta belief-base instead of
the normal belief-base to apply changes to its beliefs resulting from the atomic plan. If
the atomic plan completes successfully, the delta belief base is merged with the normal
belief-base of the agent and then cleared. If the atomic plan fails, the contents of the
delta belief base are discarded, leaving the normal belief-base untouched.

The delta belief base consists of a list of belief additions (the add list) and a list of
belief deletions (the delete list). If a new belief is added as a mental note in an atomic
plan, it is simply appended to the add list of the delta belief base. Similarly, if an existing
belief is deleted it is appended to the delete list. If an existing belief is modified, e.g.,
through the addition, deletion or modification of an annotation, the existing belief is
appended to the delete list and and the modified version is appended to the add list
of the delta belief base. The add and delete lists treat updates in the same way as the
normal belief base, i.e., addition and deletion are done according to the normal rules
of Jason. For example, if b(a)[p] is in the add list, then adding the belief b(a)[q]

3 Simply recording (but not applying) changes to the agent’s state made by an atomic plan can
result in unacceptable performance for belief queries, when uncommitted updates are queried
during execution of the plan.

Atomic Intentions in Jason+ 87

simply adds the new annotation q to the existing belief b(a) resulting in b(a)[p,q].
Similarly for deletion: if the add list contains on b(a)[p,q,r], deleting b(a)[q]
results in b(a)[p,r], but if the add list contains b(a)[q], deleting b(a)[p,q]
results in the complete removal of b(a)[q] from the add list.

To determine whether a literal is a logical consequence of the combined belief and
delta belief bases, the Jason logicalConsequencemethod is over-ridden to iterate
over both the belief base and the delta belief base. Whenever a query is made on the
belief base, the beliefs in the delta belief base add list are first checked, and then those
beliefs in the belief base which do not occur in the delete list of the delta belief base.
The situation is complicated by the fact that, as in Prolog, the order of beliefs in the
belief base is significant. For example, newly added beliefs are returned before any
existing beliefs with the same functor, and a belief deletion containing a variable, such
as -b(X), deletes only the first matching belief: any other beliefs matching b(X)
remain in the belief base. It is therefore important that the order in which beliefs are
returned from the merge of the belief base and delta belief base is the same as if the
updates had been applied to the belief base. To ensure this, beliefs which occur in both
the add and delete lists of the delta belief base (i.e., modified beliefs) are returned at the
position in the sequence occupied by the belief ‘deleted’ from in the belief base.

If execution of the atomic plan completes successfully, the changes in the delta belief
base are applied to the agent’s belief base. As above, updates are applied in order to
ensure that the order of entries in the belief base is maintained. If the atomic plan fails,
the contents of the delta belief base are simply discarded.

Below, we sketch the Jason+ algorithms for adding and deleting beliefs and checking
whether a belief (pattern) is present in the belief base.4

Algorithm 1. Add a belief b with annotation a to the belief base
procedure ADD-BELIEF((b,a))

if (b, a′) ∈ belief -base ∧ (b, a′) �∈ delete-list then
delete-list ← delete-list ∪ {(b, a′)}
add -list ← add -list ∪ {copy((b, a′))}

add -list ← add -list + (b, a)

Algorithm 1 first checks if the new belief is in the original belief base and has not
already been deleted. If so, it marks the original belief as deleted, and adds a copy of the
original belief to the add list. It then merges the new belief into the add list (indicated by
+). This ensures that a belief is either in the add list or among the non-deleted beliefs
of the original belief-base, but not both.

Algorithm 2 first checks the add list (as new elements are checked first) for a match-
ing belief, and if a matching belief is found (indicated by =m) applies deletion accord-
ing to Jason’s belief update rules (which either results in the removal of an annotation
or the complete removal of the belief). The search has to be sequential as we are looking
for a pattern and not an exact belief. If no belief matching the pattern is found in the

4 Note that, in the interests of brevity, we do not show how the order of beliefs is maintained and
also omit some optimisations.

88 D. Kiss, N. Madden, and B. Logan

Algorithm 2. Delete the first belief matching the belief pattern p with annotation a from
the belief base

procedure DELETE-BELIEF((p,a))
for all (b, a′) ∈ add -list do

if b =m p then
add -list ← add -list − (b, a)
return

for all (b, a′) ∈ belief -base do
if b =m p ∧ (b, a′) �∈ delete-list then

delete-list ← delete-list ∪ {(b, a′)}
add -list ← add -list ∪ {copy((b, a′))}
add -list ← add -list − (b, a)
return

add list, it looks for a matching belief amongst the non-deleted elements of the original
belief base. If a matching belief is found, then, as in Algorithm 1 we mark the belief as
deleted, put a copy in the add list, and then apply deletion according to Jason’s belief
update rules.

Algorithm 3. Return the first belief matching the belief pattern p with annotation a in
the belief base

function GET-BELIEF((p,a))
for all (b, a′) ∈ add -list do

if b =m p ∧ a′ =m a then
return (b, a′)

for all (b, a′) ∈ belief -base do
if b =m p ∧ a′ =m a ∧ (b, a′) �∈ delete-list then

return (b, a′)

return not-found

Algorithm 3 first checks the add list for a belief matching the pattern. If none is
found in the add list, it looks for it amongst the non-deleted elements of the original
belief base. Again, the search has to be sequential as we are looking for a pattern and
not an exact belief.

4.3 Delta Plan Base

To support retrieval of external plans at run time, e.g., from another agent via plan
exchange or from a library of plans, Jason+ also incorporates a delta plan base. The
delta plan base functions in an analogous way to the delta belief base. When an intention
containing an atomic plan is initially selected, the delta plan base is initialised and
the agent registers that it should use the delta plan base to apply changes instead of
the normal plan base. Plans which are dynamically loaded or modified as a result of
actions in the atomic plan are held in the delta plan base. If the atomic plan succeeds,
these plan changes are permanently merged with the agent’s plan base and the delta

Atomic Intentions in Jason+ 89

plan base cleared. However if the atomic plan fails, the contents of the delta plan base
are discarded.

Jason+ implements a version of the module system described in [4]. Changes to
the agent’s plan base therefore involve the addition of new modules (containing one or
more plans) and/or the modification of plans in an existing module. Below, we briefly
describe the functionality of the module system necessary to understand the delta plan
base.

Jason+ Modules

A Jason+ module is an encapsulated subset of the functionality of an agent consisting
of:

1. a local belief base, containing any beliefs that are private to the module;
2. a plan library, implementing the functionality of the module;
3. a local event queue for belief and goal update events that are local to the module;
4. a list of exported belief and goal predicates;
5. a unique identifier (URI) and a ‘short’ name for the module;

Each module defines an XML-like namespace [8] identified by a URI which acts as a
prefix for all beliefs and goals defined in the module. Agents can therefore be composed
from existing modules without the risk of name clashes.

Modules control the visibility of predicates they define by exporting. Each module
contains zero or more export directives, which specify the predicate symbols that are
visible outside the module. Each export directive is of the form

{export predicateNameA/arity, predicateNameB/arity, ...}

where predicateNameA/arity,predicateNameB/arity etc. are the functor
names and arities of the predicates exported from the module. In the case of predicates
of no arguments, the /0 can be omitted. Also, for convenience, the wildcard character ?
can be used in place of both the predicate name and arity, and will match any predicate
name and arity respectively. For example {export foo/?}will export all predicates
with the functor foo of any arity. Predicates which are not exported from a module are
considered implementation details of the module and are not visible outside the mod-
ule. Each module therefore effectively defines its own local belief base containing its
non-exported beliefs, and any belief additions or revisions of non-exported beliefs by
plans in a module are applied to its private belief base. For example, a module encap-
sulating the order processing plan shown in Figure 2 might export the purchased/3
predicate, but not stock/2. The encapsulation provided by modules also applies to
events arising from belief and goal addition and deletion (so-called ‘internal events’).
Each module effectively has a private event queue, and events arising from changes to
non-exported beliefs or goals are added only to that module’s event queue. Events aris-
ing from changes to the agent’s main belief or goal base (i.e., from exported beliefs or
goals) are visible to all modules, as in the current Jason implementation.

Agents (and modules) access the functionality of a module by importing the module.
Each Jason+ source file may contain zero or more import directives. Each import

90 D. Kiss, N. Madden, and B. Logan

directive specifies the URI of a module and a local or ‘short’ name that can be used
within the source file in place of the full URI.5 The URI specifies the location of the
file containing the source code of the module, and in the current implementation can
be a relative or absolute path on the local file system, or a URL. The URI forms the
module’s fully qualified name, which is prefixed to every term in the module when the
code in the module is parsed. The short name expands into the full URI reference for
the imported module, and can be used to conveniently refer to the exported beliefs and
goals of an imported module in the code of the importing module.6 For example, the
import directive

{import order = http://example.com/orderProc.aslm}

imports the module with URI http://example.com/orderProc.aslm and de-
fines the short name order, allowing predicates exported by the module to be referred
to using, e.g., order::purchased(Customer, Item, Num) (which expands
to http://example.com/orderProc.aslm::purchased(Customer,
Item, Num)). Goals defined in the module can be accessed in a similar fashion, e.g.,
!order::invoice(Customer, Item, Num). A null short name is taken to re-
fer to predicates defined in the agent itself. For example, the term ::customer(X)
in code for a module refers to the belief customer(X) defined in the agent. The
standard Jason internal actions (e.g., .send), reserved terms used in annotations (e.g.,
source), operators, strings, numbers and the literals true and false are not pre-
fixed with the module URI and are visible in all modules.

Each module may therefore access the beliefs, goals and events defined in the agent.
Plans within a module can respond to events that occur either within that module, events
exported from an imported module, or evens in the agent event queue. Likewise, the
context of a plan can refer to belief predicates that are private to the module in which
that plan is defined, beliefs exported from an imported module, or beliefs defined in
the agent. As noted above, only those predicates which are exported by a module can
be accessed by a module that imports it: attempting to access a predicate which is not
exported (using either the short or fully qualified name of the module as a prefix) re-
sults in a parse error. Multiple modules can import the same module, but the import
directive ensures that the module is only loaded once. Each agent therefore contains
a single copy of an imported module. References to a module are shared between all
modules that import it. Different modules can therefore communicate with each other
through the exported beliefs and goals of a shared module or the beliefs and goals
defined in the agent itself. For example, the order processing plan(s) and their associ-
ated beliefs may be encapsulated in a http://example.com/orderProc.aslm
module which exports the order/3 and purchased/3 predicates and imports a
module containing plans which handle dispatch of purchased items which in turn ex-
ports the dispatch/3 predicate (see Figure 3).

5 The URI parameter is optional. If it is omitted, it defaults to a file with the same name as the
short name plus the the standard .aslm extension in the same directory as the agent.

6 Short names are also used by the Jason+ mind inspector when displaying code during debug-
ging.

Atomic Intentions in Jason+ 91

{export order/3, purchased/3}
{import delivery = http://example.com/dispatchProc.aslm}

/* Initial stock */
stock(widget, 1).

@processOrder[atomic]
+!order(Item, Num)[source(Customer)] : stock(Item, Stock) <-

Num <= Stock;
-+stock(Item, Stock - Num);
+purchased(Customer, Item, Num);
!delivery::dispatch(Customer, Item, Num).

Fig. 3. Example Jason+ module

Dynamically Importing Modules

Plans (modules) may be dynamically loaded at run time using the .import internal
action. The .import action takes as argument the URI of the module to be loaded, and,
optionally, a short name to be used for debugging. The specified file or URL is located,
read and parsed. After the module’s source file is successfully parsed and prefixed with
the module’s unique identifier, the contents of the module (beliefs, goals and plans)
are dynamically added to the agent’s belief and plan bases, and the appropriate events
generated. Once the import finishes, execution of the plan continues. If an .import
action fails, e.g., if the file could not be located or read, the import is aborted and
a Jason+ action execution failure is generated. This allows failure handling plans to
dynamically handle module load failures.

The .import action can be used directly in plans or its underlying Java implemen-
tation can be used to redefine the selectOption function as in Coo-AgentSpeak(L)
[7]. Using modules for plan retrieval and exchange eliminates the risk of namespace
clashes inherent in the Coo-AgentSpeak(L) model, leading to more robust multiagent
systems. Exchanging URIs rather than providing the source of plans in TellHow mes-
sages, is a departure from the Coo-AgentSpeak(L) model. However we would argue that
it is consistent with a more “modular” approach to agent design, which makes greater
use of pre-existing library code.

Dynamic Importing and the Delta Plan Base

Dynamically loading modules or modifying plans in an atomic plan makes use of the
delta belief and plan bases and the delta event list:

1. each of the initial beliefs listed in the module are added to the agent’s delta belief-
base and a belief addition event is added to the delta event list for each belief;

2. a new goal achievement event is generated as new focus for each of the initial goals
listed in the module and added to the delta event list; and

3. each plan defined in the module is added to the agent’s delta plan base.

92 D. Kiss, N. Madden, and B. Logan

As with the delta belief base, the delta plan base consists of a list of plan additions (the
add list) and a list of plan deletions (the delete list). New plans are simply appended to
the add list in the same way as plans are added to the normal plan base. The addition
of a plan with the same label as that of an existing plan in the plan base is interpreted
as a modification of that plan. The plan currently in the agent’s plan base is copied to
the delete list of the delta plan base and the modified version of the plan (including any
modified plan annotations) is appended to the add list. Any subsequent modification of
the plan replaces the version of the plan in the add list. If a plan in the agent’s plan base
is deleted (e.g., using the internal action .remove plan), it is added to the delete
list. The deletion of a plan which was added during the execution of an atomic plan
removes the deleted plan from the add list. Deleting a modified plan causes the modified
version to be removed from the add list and the original, unmodified, plan to be removed
from the delete list.

Plan retrieval is handled in a similar way to queries of the belief and delta belief
bases. First the plan base is checked for applicable plans, ignoring any plans which
appear in the delete list of the delta plan base, and then the add list of the delta plan
base is checked for applicable plans. As with beliefs, care is required to ensure that the
order in which plans are returned is the same as would be the case if the updates had
actually been applied to the agent’s plan base. Plans which occur in both the add and
delete lists of the delta plan base (i.e., modified plans) are returned at the position in the
sequence occupied by the plan ‘deleted’ from in the plan base.

The delta plan base supports the same Jason+ transition system events as the delta
belief base. If the atomic plan completes successfully, the delta plan base is merged with
the normal plan base and then cleared. To merge the contents of the delta plan base with
the normal plan base, the delete list is used to achieve the same ordering of plans that
would have been produced during the execution of a non-atomic intention. Those plans
in the normal plan base which have been modified are replaced with the copy stored in
the add list of the delta plan base. At the same time, plans which have been removed
are also deleted from the normal plan base. Any newly added plans are then inserted
either at the beginning or the end of the plan base, as appropriate. If execution of an
atomic plan containing an .import (or .remove plan) action fails, either while
executing the imported plan or subsequently, the contents of the delta plan base are
discarded. Note that this partially pre-empts the role of the acquisitionPolicy
in [6,7] as implemented in Coo-AgentSpeak(L). It could be argued that we should not
discard a retrieved plan if failure was not attributable to that plan. However the approach
adopted here is consistent with our transactional view of atomic intentions. If the atomic
plan succeeds, then the acquisitionPolicy is applied, which may result in the
retrieved plan being permanently added to the agent’s plan base, or discarded.

4.4 Delta Event List

The delta event list contains internal belief change events generated by updates to the
delta belief base. The delta event list also contains all internal goal change events gen-
erated by the atomic plan which could result in the creation of a new intention (denoted
by !!g achievement goals in Jason). Goal addition events corresponding to subgoals of
the atomic plan are added to the event list in the normal way.

Atomic Intentions in Jason+ 93

If execution of the atomic plan completes successfully, the changes in the delta event
list are applied to the agent’s event list. If the atomic plan fails, the contents of the delta
event list are simply discarded.

5 Conclusion

Most BDI-based agent programming languages support parallel execution of intentions,
either as their default execution strategy, or as an option. Several languages also provide
some form of ‘atomic’ construct. For example, in addition to the atomic plan anno-
tation in Jason [1] considered here, 2APL [9] has a ‘non-interleaving operator’ which
prohibits arbitrary interleaving of plans. Likewise, some form of ‘failure handling’ fa-
cility can be found in most mature BDI-based agent languages and platforms. For ex-
ample, 2APL [9,10] provides plan revision rules which can be applied to revise plans
whose executions have failed, JACK [11] and SPARK [12] provide failure methods
and/or meta-procedures which are triggered when plan execution fails, and in [13,14]
features are proposed for aborting and suspending tasks in the context of the CAN ab-
stract agent programming language. Taken independently, such features can simplify
the development of more robust agents. However, to the best of our knowledge, how
these features (should) interact has received little attention in the literature.

In this paper we have presented Jason+, an extension to the Jason agent program-
ming language which adopts a transactional approach to atomic plans. If an action in
a Jason+ atomic plan fails, the whole atomic plan fails and the agent’s belief and plan
bases and event list are left in the state they were before the execution of the atomic
plan. However if an atomic plan succeeds, all updates to the agent’s belief and plan
bases made by the atomic plan are visible to any subsequent actions in the intention
containing the atomic plan and to actions in other intentions, and all events generated
by the atomic plan are added to the event list. Jason+, also implements a version of
the module system described in [4] which is used to encapsulate retrieved plans. With
the exception of minor changes required by the module system, the syntax of Jason+ is
backwards compatible with the current release of Jason.

We have argued that the extensions implemented in Jason+ offer a more predictable
semantics for atomic plans in the face of plan failure and can reduce the load on the
agent developer by automating simple cases of failure handing, leading to the devel-
opment of more robust agent programs. In many applications, atomic plans tend to be
short and generate only a relatively small number of belief and plan updates. In such
cases, the impact of the extensions on the performance of the Jason interpreter is mini-
mal. For simple atomic plans consisting of fewer than 10 non-recursive actions, the run
time memory usage of Jason+ is approximately 0.25% greater on average than for an
equivalent implementation in Jason, and the CPU overhead is approximately 1.5% on
average.7

While our approach has been developed in the context of Jason, we believe that the
transactional approach to atomic intentions adopted by Jason+ can be usefully applied
to other BDI-based agent programming languages. More generally, our work raises
interesting questions about the ways in which universal programming problems such

7 The tests were run on a 2.33 GHz PC with 6 GB of memory.

94 D. Kiss, N. Madden, and B. Logan

as atomicity, synchronisation and modularity should be addressed in a BDI context.
For example, to what extent should the parallel execution of intentions share state? We
believe deeper consideration of these issues offers a fruitful avenue for future research,
and is necessary for BDI-based agent programming languages to develop into robust
software development platforms.

In the current implementation of Jason+, nested atomic actions (when an atomic
plan spawns another atomic plan via sub-goal) reuse the existing delta state. This is
reasonable in situations where the failure of a sub-plan ultimately results in the failure
of the parent/root atomic intention. However in many cases it is possible to recover from
the failure of a sub-plan, and in future work we plan to extend our current approach to
allow nesting of delta belief bases. Another, related area of future work, is to extend
our approach to atomic intentions in Jason+ to allow support for transactional plans
and intentions. For example, this could be implemented by associating a different delta
belief and plan base with each intention that contains a plan with a trans annotation.
In those cases where external actions in plans do not interfere, we believe such an
approach would provide the advantages of the cleaner approach to plan failure found in
Jason+ atomic plans while avoiding the problem of lack of responsiveness inherent in
the use of the atomic construct.

Acknowledgements. We would like to thank Rafael Bordini and Jomi Fred Hübner for
helpful discussions on the current implementation of Jason.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons Ltd. (2007)

2. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:
Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

3. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-Oriented Pro-
gramming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

4. Madden, N., Logan, B.: Modularity and Compositionality in Jason. In: Braubach, L., Briot,
J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS (LNAI), vol. 5919, pp. 237–253. Springer,
Heidelberg (2010)

5. Bordini, R., Bazzan, A.L.C., de Jannone, R.O., Basso, D.M., Vicari, R.M., Lesser, V.R.:
AgentSpeak(XL): efficient intention selection in BDI agents via decision-theoretic task
scheduling. In: Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002), pp. 1294–1302. ACM Press, New York (2002)

6. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity. In: Leite,
J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp.
109–134. Springer, Heidelberg (2004), doi:10.1007/978-3-540-25932-9 7

7. Ancona, D., Mascardi, V., Hubner, J.F., Bordini, R.H.: Coo-AgentSpeak: Cooperation in
AgentSpeak through plan exchange. In: Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 696–705. IEEE
Computer Society, Washington, DC (2004)

Atomic Intentions in Jason+ 95

8. Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML 1.0, 2nd edn. Technical
report, W3C (2006),
http://www.w3.org/TR/2006/REC-xml-names-20060816

9. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16, 214–248 (2008)

10. Dastani, M., Meyer, J.J.C.: A Practical Agent Programming Language. In: Dastani, M.M.,
El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI),
vol. 4908, pp. 107–123. Springer, Heidelberg (2008)

11. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents - components
for intelligent agents in Java. AgentLink Newsletter (2), 2–5 (1992)

12. Morley, D., Myers, K.: The SPARK agent framework. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004),
pp. 714–721. IEEE Computer Society, Washington, DC (2004)

13. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Aborting tasks in BDI agents. In:
Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2007), Honolulu, HI, pp. 8–15 (May 2007)

14. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Suspending and resuming tasks in
BDI agents. In: Proceedings of the Seventh International Conference on Autonomous Agents
and Multi Agent Systems (AAMAS 2008), Estoril, Portugal, pp. 405–412 (May 2008)

http://www.w3.org/TR/2006/REC-xml-names-20060816

Software Support for Organised Adaptation

Hugo Carr1, Alexander Artikis2,1, and Jeremy Pitt1

1 Electrical & Electronic Engineering Department,
Imperial College London, SW7 2BT

2 Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”, Athens 15310

Abstract. Emergence is a powerful mechanism for coordination of hun-
dreds of uniform agents with limited reasoning capacity. These structures
are in contrast to open systems of heterogeneous agents in which a pop-
ulation’s conception of global goals and the plan of how to achieve said
goals may differ between agents. To reconcile these conflicts, agents re-
quire a means of contextualising past and proposed system change in
terms of their local model of utility. Metric spaces allow designers to
map system change to a set of functions describing different aspects of
adaptation (temporal delay, physical cost etc.), giving agents the means
to self-organise through compromise and introspection with respect to a
set of conventional rules, as opposed to linear adherence to local com-
putations with respect to physical rules or environmental constraints.
In this paper we present a new multi-agent programming environment,
PreSage-MS , a rapid prototyping and animation tool designed to facil-
itate experiments in organised adaptation of metric spaces of ‘sophisti-
cated’ agent teams.

Keywords: Agent-oriented programming, organised adaptation,
dynamic specification, temporal logic.

1 Introduction

Emergent systems and evolutionary computing (eg. swarm intelligence [13] and
stigmergy [11]) often operate on teams comprising hundreds of agents with hard-
wired internal specifications. Such arrangements are in contrast to open systems
comprising smaller populations of heterogeneous agents between which local per-
ceptions of global goals may differ. To resolve such conflicts, these systems benefit
from more sophisticated soft-wired participants with complex interactive abil-
ities (e.g. BDI agents [12]), allowing agents to engage with one another and
converge on optimal system policy. This discursive model can be complemented
with metric spaces [2], allowing agents to contextualise past and present policy
adaptation, and giving them the means to arrive at a global goal compromise or
Nash equilibrium through organised adaptation.

Organised adaptation, as opposed to emergent behaviour, is the conscious,
deliberate and targeted adaptation of a specification and/or configuration of a

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 96–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Software Support for Organised Adaptation 97

multi-agent system, in response to systemic requirements or environmental con-
ditions. Emergent behaviour produces unintended or unknown global outcomes
derived from hard-wired local computations, with respect to the environment
and/or physical rules. Instead, we are concerned with the introspective applica-
tion of soft-wired local computations, with respect to the environment, physical
rules and conventional rules (what some philosophers of language would call
‘constitutive rules’), to produce intended and coordinated global outcomes.

The complexity of modern software systems demands that organised adap-
tation be an on-line mechanism, that proceeds without human intervention or
supervision (cf. autonomic computing [14]); in other words, to make the me-
chanics for organised adaptation available to software agents at run-time. In
this paper we present a new multi-agent programming environment, PreSage-
MS, which converges the multi-agent programming environment PreSage [16]
with the analytic tool of [1]. The result is a rapid prototyping and animation
tool designed to facilitate experiments with organised adaptation of dynamic
specifications at run-time, for ‘sophisticated’ agents (i.e. agents with complex
reasoning capability wrt. adaptation, goals, other agents, etc.).

In this paper, we present the PreSage-MS system architecture and func-
tionality, and give a walkthrough of system design. Accordingly, this paper is
organised as follows. The next section outlines how a dynamic specification can
be defined, and pre-existing tools for evaluating such specifications. Section 3
describes the architecture of, and functionality supported by, the new system. A
walkthrough of experimental design in PreSage-MS is given in Section 4. We
conclude with a discussion of the current, related and future work; in particular
we discuss the role of institutional agents in the migration from design-time tools
for human users to run-time services for software agents.

2 Background Work

In this section, we present the background to the current work. First we discuss
dynamic protocol specifications, then we present two existing software tools used
for experimenting with different aspects of dynamic protocols. This is the basis
for the system description of PreSage-MS in Section 3, which is a convergence
and enhancement of both these tools.

2.1 Dynamic Protocol Specification

Consider the two following examples:
Example 1: Resource-sharing protocol: There is a set of agents S, a subset of

which occupies the role of subjects who are entitled to access a resource, and a
designated agent in S occupying the role of chair. The subjects are empowered
to request access to the resource, the chair is empowered to grant or revoke
access. The protocol stipulates that one or more subjects request access to the
resource, the chair grants access to only one; that agent uses the resource until
it is released it or access is revoked, and the cycle repeats.

98 H. Carr, A. Artikis, and J. Pitt

Fig. 1. A k-level Infrastructure for Dynamic Specifications

Example 2: Voting protocol: There is a set of agents S, a subset of which
occupy the role of voters who are entitled to vote, and a designated agent in S
occupying the role of returning officer, who declares the result of a vote. The
protocol stipulates that the officer calls for a ballot on a specific motion, the
voters cast their votes (express their preference), the officer counts the votes and
declares the result according to the standing rules.

In both examples, there are values which may be changed, even during their
animation. Consider these protocols in terms of a normative specification, in the
first example, agents may occupy different sets of roles, the rules by which access
is granted, the period until the chair has permission to revoke access, etc., may
all be changed. Similarly, in the second example, role assignment again is muta-
ble, and there are many parameters to a vote: single or multiple winner, standing
rules for winner determination (plurality, run-off, borda count, etc.), votes re-
quired to be quorate, and so on. In the context of open systems, adaptation of
the normative rules in these examples cannot be treated as a system-wide fac-
torisation of code, since the way in which participants comply with specification
changes isn’t known in advance.

One key aspect of organised adaptation is the implementation of dynamic
specifications, which allow agents to alter the rules of a protocol P , even during
the protocol execution. P is considered an ‘object’ protocol, if at any point in
time the participants may start a ‘meta’ protocol in order to decide whether
the object protocol rules should be modified to P ′ (say). Moreover, the partici-
pants of the meta-protocol may initiate a meta-meta-protocol to decide whether
to modify the rules of the meta-protocol, and so on. Figure 1 shows an infras-
tructure for dynamic resource-sharing protocols, that is, the object protocol is
a resource-sharing protocol, and every {meta+}-protocol is (some type of) a
voting protocol. We briefly demonstrate an Event Calculus implementation of
meta-argumentation in Section 4.2, in which an object protocol is assigned a
set of degrees of freedom which are adapted according to the consensus of the
system population.

Apart from object and meta protocols, the infrastructure for dynamic speci-
fications includes ‘transition’ protocols (again, see Figure 1) that is, procedures

Software Support for Organised Adaptation 99

that express, among other things, the conditions under which an agent may
validly initiate a meta-protocol, the roles that each meta-protocol participant
will occupy, and the ways in which an object protocol is modified as a result of
the meta-protocol interactions.

2.2 System Support for Adaptive Specifications

Adaptive Behaviour. PreSage is a simulation platform for agent animation
and rapid prototyping of societies of agents. It offers a multi agent systems
programmer a flexible and generic set of Java classes, interfaces and tools with
which key aspects of agent societies can be designed and simulated.

To develop a prototype in PreSage, it is necessary to define agent participant
types: this can be done by extending the abstract class supplied with standard
environment (to guarantee compatibility with the simulation calls and provide
core functionality like message handling etc.) or by defining a new class. The
PreSage environment is in fact neutral with respect to the internal architecture
of its agents: thus agents can be of arbitrary complexity. Agents can then either
be animated (i.e. a ‘sophisticated’ agent with complex reasoning capability is
actually embedded in an artificial environment) or simulated (complex behaviour
is approximated by simulation rather than actually computed).

Then the network properties and physical world are defined, using or extend-
ing the given base classes. Finally, additional plugins can be written for visu-
alisation, connection to other components (e.g. a database for logging results,
etc.), or generation of exogeneous events.

We have used PreSage for initial experiments in organised adaptation. We set
up a simple iterated ‘tragedy of the commons’ scenario, with partial knowledge,
no central control, and self-interested agents, and allowed the agents two votes:
one for whom to allocate resources, and one to decide how many votes should
be received in order to be allocated resources. The idea was that co-operative
agents should manage the system by voting ‘fairly’. Initial experiments showed
that ‘responsible’ agents performed better than selfish or cautious ones (indeed
approximated the outcomes achieved with a ‘benevolent dictator’) [6], and that
social networking (gossiping) algorithms can be used on an individual and group
basis to protect the system from self-interested behaviour [7].

Metric Space Analysis. Given an adaptable specification, the protocol rules
and parameters that may be modified at run-time are called Degrees of Freedom
(DoF). Each DoF can take one value from a specific set of possible values; we
map each of the possible values onto a rank order. A specification with m DoFs
can then be represented as an m-tuple, where each tuple element defines the rank
order of the value for the corresponding DoF. The set S of all possible tuples is
given by all the possible instantiations of every DoF with the rank order of each
of its possible values. Clearly there are:

|v1| × |v2| × . . .× |vm|

100 H. Carr, A. Artikis, and J. Pitt

members of this set, where |vi| is the maximum rank value of the ith DoF
vi(1 ≤ i ≤ m) can take. This set is the basis of a metric space M =< S, d > if
we define a metric d on the set which defines a ‘distance’ between any pair of
set members (subject to the usual constraints [18]).

We can use this representation of an m-dimensional specification as a metric
space by measuring the ‘distance’ between members of the set, or rather, spec-
ification points in the metric space. A designer can then define an adaptable
specification with its degrees of freedom, and additional constraints on run-time
modification. For example, the designer could specify a ‘desired’ specification
point, and proposed modifications could be evaluated on the ‘distances’ of the
proposed specification point from the ‘current’ point and the ‘desired point. The
designer could also specify that some points are ‘forbidden’, if for example they
were normatively inconsistent [2].

The metric space representation was the basis of automated support for
design-time analysis of a dynamic protocol specification, that is, an off-line,
static analysis of a protocol that could be adapted at run-time [18]. This tool
allowed the designer to analyse a narrative of events (actions taken by agents to
modify the specification) and determine, at each time point, the distance to the
desired specification point for a range of different metrics (euclidean, manhattan,
weighted manhattan, etc.) This allowed the designer to evaluate comparatively
the effects of different metrics on different instances of a dynamic specification.

3 PreSage-MS
Both of the tools described in the previous section are useful for investigating
certain aspects of organised adaptation but are ultimately limited. PreSage al-
lowed mixed agent strategies and populations, but the agents did not have an
explicit representation of metric spaces; while the second tool is restricted to
a retrospective, design-time analysis of a given narrative of events. Ultimately,
we want to perform an introspective, run-time analysis as the narrative unfolds.
Therefore, we have developed a new system, PreSage-MS, which retains and in-
tegrates the agent-level granularity of PreSage with the metric space analysis of
[2], but extends both by equipping the agents themselves with the functionality
to represent and reason about metric spaces and specification points.

In this section, we present the architecture and functionality of the PreSage-
MS programming environment.

3.1 PreSage-MS Architecture

The core PreSage System is conceptually composed of three layers: the base
simulation layer, the services layer, and the instances layer.

The base simulation layer performs parameter initialisation, manages the sim-
ulation execution, and provides generic functions to higher level modules and
classes. PreSage uses a multi-agent discrete-time-driven simulation model. In
this model, each loop of the simulator control thread equates to a time-slice

Software Support for Organised Adaptation 101

of the simulated multi-agent system. In each time-slice, the agent participants
are given a turn to perform physical and communicative actions, the state of
the network(s) and physical world is updated, scripted events are executed, and
plugins perform their specified operations.

The services layer provides the skeleton models that designers use to imple-
ment a simulation. The agents and their environment are implemented through
the provided interfaces, simulating network(s), and a physical world. The man-
agers handle scripted events and other user plugins as well as providing a dedi-
cated Event Calculus tool to improve latency in rule unification.

The third layer comprises the user-specified instances of these components.
PreSage-MS extends PreSage by implementing the Event Calculus (EC)

[15] as a universal language for communication and specification. Using the EC,
the agents can establish a narrative of speech acts, whose consequences can be
calculated as a normative state; ie. the set of permissions, powers and obligations
of agents according to which roles they occupy. These norms can be derived by
unifying the narrative with the object and meta-level rules can also be written
in the EC.

To integrate the EC with PreSage, we have implemented a new manager
at the interface level which handles the EC requests and keeps track of the
EC fluents. A fluent is a value which varies over time, so the EC manager keeps
track of its current value to prevent unnecessary queries to the temporal calculus
engine. This manager uses JPL, an interface to Prolog from Java, by keeping a
Prolog implementation of the EC and the implementation specific rules.

At the instance level, we have included

– An environment in which agents may navigate a centrally managed metric
space

– An extendable agent which can send and interpret EC messages
– An EC plugin which displays the object and meta level protocol read by the

EC manager, and the fluents which ‘hold’ at the current time point.
– A metric space plugin which allows a system designer to rank the DoF values

and alter the metric space of the system
– An environmental state plugin which gives a designer the opportunity to

map a set of analogue inputs to a finite set of system states.

The plugins act as run-time services for participants, providing live information
about the EC fluents, the metric space and the state of the environment.

The final architecture of PreSage-MS is illustrated in Figure 2. Next, we will
look at the functionality of the PreSage extensions in more detail.

3.2 Agents and Environment

Simulation design in PreSage-MS has been divided into the environment, and
the agents which act therein. At its simplest, an environment may act only as
a communication link between the agents, but it is often convenient to keep a
central representation of the object and meta-level rules. For example, when de-
signing systems which have dynamic specifications, it is usually desirable to have

102 H. Carr, A. Artikis, and J. Pitt

Interfaces & Abstract Classes Managers

Agent World Plugins
Event

Calculus
Event Script

-
A

g
en

ts
 a

w
a
re

 o
f

 -
 R

o
le

 -
 N

o
rm

s

-
N

o
rm

-G
o
v
er

n
ed

 W
o
rl

d

 -
 M

et
a
 L

ev
el

 R
u
le

s

 -
 O

b
je

ct
 L

ev
el

 R
u
le

s

-
E

v
en

t
C

a
lc

u
lu

s
P

lu
g
in

-
M

et
ri

c
S
p
a
ce

 P
lu

g
in

-
S
im

u
la

ti
o
n
 l
o
g

-
A

ct
iv

a
te

/
D

ea
ct

iv
a
te

 a
g
en

ts

-
E

ff
ec

t
p
h
y
si

ca
l
a
ct

io
n
s

-
F
lu

en
t

m
a
n
a
g
er

-
N

o
rm

 m
a
n
a
g
er

Fig. 2. Architecture of the PreSage-MS system

an environment which includes the system’s specification space and a register
for global system values. This serves as a central reference for newly registered
agents, and ensures that there is no confusion about where in the metric space
the system lies.

Environments in PreSage-MS go further than the basic message passing
paradigm and handle actions made by agents by broadcasting the appropriate
speech act to the agents affected. These speech acts are similarly sent to the
Event Calculus manager to update the narrative (ie. the action history). The
EC Manager maintains the metric space and object level rules in Prolog, and
with a minimal number of queries, sends back the new set of norms effected by
the speech act. In order for agents in PreSage-MS can understand messages
from the environment, we have tools for parsing event calculus messages and
a set of fluent and norm handlers which are invoked when an update message
relating to a fluent or norm is received from the environment.

3.3 Event Calculus Manager

The event calculus manager acts as a buffer between PreSage-MS and the
declarative implementation of the Event Calculus (Figure 3). The EC derives
the norms at a timepoint T by unifying the history of speech acts with the
predicates describing the rules of the system. However, as the action history
increases the computation time becomes prohibitively slow. The EC manager
has therefore been optimised to reduce the number of queries to the Prolog
knowledgebase by implementing a caching mechanism to bound the size of the
action history.

Software Support for Organised Adaptation 103

holdsAt(

pow(Chair) :-

 status = ballotOpen)

 Te3 is T1 + 5.

pow(Voter) :-

 status = ballot

Speaker

Environment

Listeners

EC Manager

S
p
ee

ch
 A

ct

S
p
eech

 A
ct /

 N
o
rm

a
tiv

e C
o
n
seq

u
en

ces

JPL

Meta Level:

Metric Space

Object Level:

Interaction Rules

Fig. 3. The relationship between the Agents of a system, the environment and the
event calculus specification of the object and meta-level rules. Calls to the Prolog
implementation of the event calculus, through the JPL library, are minimised by the
EC Manager.

We have included an interface to the event calculus manager, which monitors
the current states of the event calculus fluents and norms. This front end receives
updates from the manager with respect to speech acts and their consequences.
Agents who for whatever reason are not able to receive messages from the envi-
ronment, can register with this service to check that their local representation
of system norms is consistent. Designers may also use this inspector to view the
history of all fluent and norm changes throughout the life cycle of the system.

3.4 Metric Space Plugin

The metric space plugin in Figure 4 represents an extension of the analytic tool
in [1]. The plugin implements much of the same functionality as the original, but
includes a graphical visualisation of the metric space based on a selected metric;
run-time services to supply participants metric space specific information in real
time; and a generalisation of the ranking process for DoF values.

As demonstrated in section 2.2, DoFs can be ranked using a one dimensional
number for each of the DoF values. We have generalised this model by ranking
each value with a more general fixed size vector.

In a specification of m DoFs, each DoF still takes one value from specific set
of possible values but we map each of the possible values onto the domain Rnk

where 0 ≤ k < m. Rank order no longer exists, as the relationship between
the DoF values becomes more sophisticated and vectors cannot be compared in
terms of higher versus lower. However, a metric space is still formed provided
that the metrics used within the vectors are the same as those for the space
which they form.

The metric space visualisation draws a graph of specification points based
on a selected metric (Euclidean, Manhattan etc.) and threshold distance. This
threshold represents the furthest distance value that an edge can take between
two specification points, and may be used to represent several things. For

104 H. Carr, A. Artikis, and J. Pitt

example, it may relate to the furthest distance that an agent may travel away
from the current point. This may be due to the cost of adaptation being too
high, or an attempt to limit the volatility of the system by making incremental
changes. This results in an agent having to choose the shortest path along the
edges of the graph to reach a desired specification point.

Fig. 4. Interface to the metric space: The degrees of freedom of the metric space are
resized and ranked in the lefthand column. The bottom panel selects which metric the
system is using to form the space, and the graph is drawn according to the threshold
value which represents the maximum value that an edge may take.

3.5 Environmental State Plugin

The Environmental State Plugin has been written to allow designers to minimise
the frequency of adaptation by mapping the analogue global inputs onto a set
of finite states. A system is then able to remain at a specification point until
an environmental state change occurs. Once such a change has been triggered
the system may start to decide whether this fluctuation warrants an adaptation.
For example, if there is a cost associated with the adaptation it is prudent to
ensure that a state change is not the result of noise and represents a permanent
system shift; if not the system will be frequently retracting potentially expensive
updates to the specification.

The Environmental State Plugin interacts with the environment by periodi-
cally taking a measure of the global inputs of a system; as defined by the system
designer. These analogue global inputs are divided along a number line over
which a cross-product may be performed to form the set of states. It is then
based on these environmental states that the system can be trained with the

Software Support for Organised Adaptation 105

utilities of each specification point. It is the utility of a point under a perceived
environmental state that will drive adaptation and act as the vehicle a designer
uses to motivate policy change.

4 PreSage Experimental Design

System designers operate PreSage-MS in three inter-related stages: Agent de-
sign, protocol design and metric space design. On completion of these stages,
experiments exploring the metric space can be designed.

A system lifecycle begins offline with the Java and Prolog implementation of
the agents and protocol. The designer goes on to choose how the agents are to
reason about the DoFs by formulating a metric space which represents a set of
measurements agents may use to compare different specifications. The metric
can be defined in conjunction with further permissions, powers and obligations
which constrain how the system may adapt.

To demonstrate the experimental design in PreSage-MS we have provided a
walkthrough of the resource allocation example outlined in section 2 with four
object level DoFs and a static meta level protocol. Based on this architecture
we outline a set of experiments which we intend to address investigating when
agents should adapt.

4.1 Agent Design

The agent design process results in a test population which recreates the con-
ditions of an open system. Agents, along with their EC handlers, are designed
offline in Java with extendable PreSage-MS interfaces. They must then be en-
dowed with the capacities required to approximate independent decision making.
At the most basic level agents require a complete set of norm and fluent han-
dlers for the parts of the protocol which they are involved in. For example in the
resource allocation scenario we have a set of basic speech acts which all agents
must be able to interpret (openSession, callForProposals, propose). A propose
handler must be able to read the proposal made by an agent and store the offer
and request for use during the voting protocol:
protected class ProposeHappensHandler extends HappensHandler {

public void handle (ProposeHappens happens) {
St r i ng [] arguments = happens . getArguments () ;
r e que s t s . put (arguments [0] , new In t e ge r (arguments [1])) ;
o f f e r s . put (arguments [0] , new In t e ge r (arguments [2])) ;
t o t a lReque s t s+=In t ege r . pa r s e In t (arguments [1]) ;

}
}

Agents require the means to reason about the dynamic protocol, this may re-
quire specific knowledge about the protocol. There are however, general ways of
navigating a specification space which can be used in conjunction with machine
learning techniques and heuristics to find optimal points.

106 H. Carr, A. Artikis, and J. Pitt

4.2 Protocol Design

The logical implementation of the resource allocation protocol is developed of-
fline in Prolog using the programming environment included in the Event Cal-
culus plugin.

Consider the voting protocol (Section 2.1), which begins with participants
offering resources to be centrally pooled and allocated by the chair of the session.
These offers may or may not be verified for authenticity before allocating the
resources according to either a vote between the participants of the system, or
a random selection by the chair. It is important at this stage of design that the
protocol is implemented in such a way that ensures a linear computational cost
is incurred. PreSage-MS offers a basic caching instrument in which the Event
Calculus fluents representing the actions of the system are retracted from the
knowledgebase when no longer needed (See Figures 5 and 6).

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Simulation Cycle

T
im

e
(m

s)

Two Agents
Four Agents
Six Agents
Eight Agents
Ten Agents

Fig. 5. A graph showing, for an increasing number of agents, the execution time of the
system in terms of the simulation cycles without the caching optimisation outlined in
PreSage-MS

To form a dynamic protocol, we extend the static Event Calculus specification
of the voting protocol with four degrees of freedom:

– MinimumRequired - Places a limit on the least amount of resources that an
agent must offer each time cycle in order to participate in the allocation.

– OfferAudit - Whether we verify the authenticity of the resource offers made
by participants before the distribution. This is important if there is an ele-
ment of agents which misrepresent their contributions.

Software Support for Organised Adaptation 107

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

4

Simulation Cycle

T
im

e
(m

s)

Two Agents
Four Agents
Six Agents
Eight Agents
Ten Agents

Fig. 6. A graph showing, for an increasing number of agents, the execution time of
the system in terms of the simulation cycles with the caching optimisation outlined in
PreSage-MS

– AllocationMethod - Whether we submit the allocation to a plurality vote, or
if the chair simply assigns resources randomly to participants.

– VotingRights - This DoF is only valid if a vote occurs in the first place and
refers to how long agents must have been members of the system, before
they are granted voting rights.

dofs = {votingRights , allocationMethod ,minRequired , offerAudit}

votingRights = {trialVote, defaultVote},
offerAudit = {auditOffers ,noAudit},

allocationMethod = {plurality, random},
minRequired = {minOffer ,noMin}.

By selecting a value for each DoF, we form a complete specification instance
which is referred to as a specification point (SP). Here each DoF can take one
of two values, resulting in sixteen possible SPs. If we consider the specification
as a state transition system, these points represent all possible states and the
adaptations correspond to the transitions between them.

These DoFs must be defined in conjunction with the event calculus implemen-
tation of the object level protocol. We present the predicates from the resource
allocation example representing how the allocationMethod degree of freedom is
implemented. The following can be translated directly into Prolog and represents

108 H. Carr, A. Artikis, and J. Pitt

the part of the protocol where the chair is permitted to distribute the pooled
resources. R1a refers to a plurality distribution, R1b random allocation. The
conditions in bold refer to which of the DoF values is currently active, to ensure
that the correct rule is used.

R1a : holdsAt(permission(Chair , distribute(Chair ,Agent)) = true,T) : −
holdsAt(roleof (Chair , chair) = true,T),
selectPluralityResult(Result),
holdsAt(ballot = closed),
holdsAt(dof(votingProtocol) = plurality, T).

R1b : holdsAt(permission(Chair , distribute(Chair ,Agent)) = true,T) : −
holdsAt(roleof (Chair , chair) = true,T),
selectRandom(Result),
holdsAt(ballot = closed),
holdsAt(dof(votingProtocol) = random, T).

The meta level protocol is defined alongside the object protocol in the EC and
can be invoked at any time by the agents to initiate a discussion about which
DoFs to change in the next session. Note that we have not included any DoFs at
this level as we would need another discussion protocol at the meta-meta level
to adapt it.

4.3 Metric Space Design

Once the DoFs and their respective values have been set for the protocol a
system designer can move from the Event Calculus Plugin to the Metric Space
Plugin where the DoF values can be formed into a specification space. Given
the set of specification points T determined by the number and value-ranges of
the DoFs, a metric space on this set is defined by a distance function d such for
any x, y, z ∈ T , d obeys symmetry (d(x, y) = d(y, x)), identity of indiscernibles
(d(x, y) = 0 ↔ x = y), and the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)),
from which it follows that for all x and y, d(x, y) ≥ 0.

To use the PreSage-MS plug-in, the programmer must assign the DoF values,
and encode the function d. The topology of the space is therefore determined by
the values and d, which are dependent on what the distance between specification
points actually represents. If, for example, the distance was a simple similarity
measure, we could assign DoF values as follows:

AllocationMethod : {plurality, random} → {0, 1}
VotingRights : {defaultVote, trialVote} → {0, 1}

AuditOffers : {offerAudit ,noAudit} → {0, 1}
MinimumRequired : {minOffer ,noMin} → {0, 1}

Software Support for Organised Adaptation 109

and a metric d1 simply implemented as the hamming distance between points
represented as strings in (0|1)4, or the Manhattan distance between cells in a
Karnaugh map of the points.

Alternatively, we could define the metric space to represent the cost of imple-
menting a (move to a) new specification point. If, in order to change to the new
SP, a DoF value must be changed, we define a cost to remove the current value
and a further cost to install the new value. Each value must therefore have a
cost of installation orthogonal to the cost of removal (resp. installation) of the
alternative DoF value. To preserve symmetry, let us assume the cost to install a
value to be the same as that to remove it.

Then we could assign values as follows (based on an estimate of the number of
lines of code and predicates that have to be changed from the previous section):

AllocationMethod : {plurality, random} → {(0.5, 0), (0, 0.6)}
VotingRights : {defaultVote, trialVote} → {(0.4, 0), (0, 0.9165)}

AuditOffers : {offerAudit ,noAudit} → {(1, 0), (0, 2)}
MinimumRequired : {minOffer ,noMin} → {(1, 0), (0, 1)}

The two specification points in Figure 4 can therefore be encoded as follows:

(random, offerAudit , trialVote,noMin)

(
︷ ︸︸ ︷
0, 0.6,

︷ ︸︸ ︷
1, 0,

︷ ︸︸ ︷
0, 0.9165,

︷ ︸︸ ︷
0, 1)

(plurality, offerAudit , trialVote,noMin)

(
︷ ︸︸ ︷
0.5, 0,

︷ ︸︸ ︷
1, 0,

︷ ︸︸ ︷
0, 0.9165,

︷ ︸︸ ︷
0, 1)

y
1

x1

y
2

x2

y
3

x3

y
4

x40.9165

0.40.5

0.6

1

2

1

1
uninstall Random

in
st

a
ll
 P

lu
ra

li
ty

0.6 + 0.5 = 1.1 + + +0 0 0

Fig. 7. The distance between the specification points (trialVote, offerAudit, random,
noMin) and (trialVote, offerAudit, plurality, noMin). Note that we are only changing
the allocationMethod degree of freedom from random to plurality.

Then we need to define a metric d2 on this space which is the summation
of the manhattan distances moved in each of the four dimensions (illustrated
in Figure 7). Since we have assigned a cost of 0.5 to implement or remove a

110 H. Carr, A. Artikis, and J. Pitt

plurality allocation method and a cost of 0.6 to implement or remove a random
allocation method, then to move from one method to the other the complete
removal and installation cost is 0.5 + 0.6 = 1.1. Similarly to change the voting
rights DoF costs 0.4 + 0.9165 = 1.3165.

Figure 4 shows the formulated metric space given this configuration. The dis-
tance between the current specification point (the square node) and the selected
circular node in bold is 1.1. This is because the current specification point uses
a plurality allocation method and the other vertex is identical except for the
random allocation method.

4.4 Experimental Design and Example

Once the protocol specifications are given and the metric space functions de-
fined, a programmer can experiment with effect of the metric on this space for
organised adaptation under different agent populations. Given the experimental
arrangement described in this paper, we intend to investigate when a system
should adapt. Agents performing adaptation must be capable of trading off the
costs of adaptation versus the expected benefit. This requires that agents can
take two measurements: the average utility per timecycle of a specification point
under a particular environmental state and an estimate of the amount of time
the system will remain in that state. If the cost to adapt consistently outweighs
the incentives then the participants must know to refrain from adaptation.

To begin this process we must first limit the environmental measurements
to a finite state space using the environmental state plugin. For the resource
allocation scenario we have chosen four environmental states, based on the supply
and demand of resources and the proportion of agents in the system behaving
selfishly:

Env1: Supply > Demand, 25% agents behaving selfishly
Env2: Supply < Demand, 25% agents behaving selfishly
Env3: Supply > Demand, 50% agents behaving selfishly
Env4: Supply < Demand, 50% agents behaving selfishly

We can then run non-adaptive simulations for each environmental state under
each of the twelve specification points to get the expected utilities:

⎛
⎜⎜⎝

sp1 sp2 . . . sp16
env1 μ1,1 μ1,2 . . . μ1,16

env2 μ2,1 μ2,2 . . . μ2,16

env3 μ3,1 μ3,2 . . . μ3,16

env4 μ4,1 μ4,2 . . . μ4,16

⎞
⎟⎟⎠

If we assume that the utility is only dependent on the current state we can
calculate the total expected benefit by estimating the time the system will remain
in an environmental state. For the preliminary experiments we can take a simple

Software Support for Organised Adaptation 111

geometric distribution of rate λ to predict the number of timecycles between
state changes. The expected utility of sp1 in under env1 then becomes:

Eenv1(sp1) =
μ1,1

λ

Given these values we can form a decision function based by subtracting the cost
to change specification points from the total expected utility. This cost may be
calculated from the second metric space formulated in section 4.3. It is based
on this decision function that we can look at how different metrics contribute
towards better cost benefit ratios.

Consider a system in which there is a small amount of noise in the environmen-
tal readings. If a system detects an environmental state change the adaptation
process may result in an expensive and unnecessary shift to a new specification
point. One means of limiting the cost associated with this noise is to enforce
a threshold such that a system can only choose specification points which are
within a given radius of the current point.

Figure 8 outlines the results of a preliminary examination of a thresholded
metric in a closed system given different noise probabilities. When the system
has no noise a high threshold performs better allowing the system to move to the
optimal point immediately; a low threshold in contrast adapts over the course
of several iterations and incurs a higher cost. When a small amount of noise is
introduced however (probability of noise in a timecycle = 0.05) the results are
reversed. This can be attributed to a reduced noise cost as the system does not
immediately make a potentially expensive adaptation, only to have to retract it
in the following timecycle.

5 Discussion and Related Research

PreSage-MS is proving useful for experimenting with dynamic specifications in
terms of the three parameters: agent internals, protocol and DoF specification,
and metric space design. However, it has also thrown into relief a number of
inter-linked issues concerning organised adaption, namely:

– the role of institutional agents and the migration from design-time tools to
run-time services;

– the animation of organised and organisational adaptation in linear time; and
– the relationship between formal models of norm change and compliance per-

vasion amongst the affected population of agents.

We briefly consider these issues here.
Open systems, following Hewitt [10], assume independently developed sub-

systems without global objects or objectives, but with a commonly understood
communication language. However, it is possible to relax the assumption that
there are no global objects, and consider the status of the EC plug-in and the
Metric Space plug-in. These plug-ins are providing computationally-intensive
services; they are also computing a global state (the set of norms and normative

112 H. Carr, A. Artikis, and J. Pitt

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Cycle

C
os

t B
en

ef
it

R
at

io

noise = 0.00, threshold = 2

noise = 0.00, threshold = 1

noise = 0.05, threshold = 2

noise = 0.05, threshold = 2

Fig. 8. A graph showing the benefit to cost ratio for different noise probabilities of a
metric space in which movement is constrained by a maximum threshold distance

positions, and the current/desired specification points). In these cases, we may
wrap such services in institutional agents of the kind envisaged by Lopez et al
[4]. As such, this move represents a step in the migration from design-time tools
for human users to run-time services for software agents.

Sophisticated teams of agents ruled by a declarative representation of global
law do not always execute in linear time (as shown in Section 4.2). PreSage-MS
attempts to address this by including a basic caching function, but this can only
be applied to a subset of dynamic protocols wherein historical actions may be
ignored past a certain point. Dynamic protocols of organisational adaptation
however, may fall outside of this definition, for example in non-trivial societies
of institutional agents.

Consider systems comprising ‘large’ teams of sophisticated agents: the ques-
tion then is whether it is possible (necessary, desirable) to have a single flat
hierarchy, or whether some kind of structure is required, e.g. [9]. In organisa-
tional adaptation, it is needed to extend a dynamic specification to the creation,
modification and deletion of roles, and the creation, remit, modification and dele-
tion of sub-structures (in the way that human institutions are often structured
into departments, committees, etc.) This opens up an inquiry into the scale and
effective size of ‘sophisticated’ agent teams, and whether some form of Dunbar’s
number can be derived for agents (i.e. a computational rather than a cognitive
limit on the size of a stable group).

Many other issues are raised by stable groups in organisational adaptation,
which includes the impact of an underlying social network on the ‘observable’ in-
stitutional structure (cf. [3]). This includes: how an arbitrary collection of agents

Software Support for Organised Adaptation 113

can self-organise into an organisational structure; how an arbitrary collection of
agents can self-organise its social network (which is structurally distinct from the
organisational structure); and, what is the interplay between the explicit formal
organisation and the implicit social network.

6 Further Work

PreSage-MS divides the motivation to adapt into two sub-questions: Where
to move in the specification space and When to move there. Choosing where
to move to in a specification space takes into consideration the expected utility
of the point weighed against the cost to perform the adaptation. In order to
verify the preliminary Matlab investigation outlined in Figure 8 we intend to
implement the threshold metric of Section 4.4 in PreSage-MS and run a series of
simulations subject to varying noise levels to demonstrate the effect of different
metric thresholds.

One key limitation of metric spaces is that given the implementation of the
system, the costs associated with adaptation may not conform to the constraints
of the geometry, e.g. the adaptive cost is not always symmetric between two
specifications. To address this, we intend to look at more general representation
of policy change in which cost of adaptation depends not only on the ordered pair
of specification points, but environmental state change as well. Using this, we
intend to construct a framework upon which agents can calculate the expected
utility of an adaptation strategy, without having to verify the result empirically.

The consideration of social networks as a parameter influencing adaption
raises further concerns with respect to the relationship between formal mod-
els of norm change and compliance pervasion amongst the affected population
of agents. There is a growing body of work on formal models of explicit norm
change in legal systems [8]. A particular question for future research is how to use
PreSage-MS to experiment with modifiable legal systems and synthetic micro-
populations of agents and the interaction between the two: i.e. how does (‘top
down’) norm change impact population behaviour, and how does population
behaviour influence (‘bottom up’) changes to norms.

Quality of Service (QoS) in distributed systems of agents is of particular
concern in mission critical applications (eg. Wade [5] and Multimedia Network
Support Platforms [17]), in the sense of predicting the system trajectory and
guaranteeing that a system remains within an ‘adaptive envelope’. As a future
avenue of research, we intend to look at to what extent QoS can be maintained
in open systems, in which a subset of participants may be non-compliant and
guarantees are worth only as much as the trust that is placed in them.

7 Summary and Conclusions

The system represents a novel design framework for open systems performing
organisational adaptation. The rules and protocols are entirely specified in the
Event Calculus providing foreign agents with a transparent description of how

114 H. Carr, A. Artikis, and J. Pitt

the system functions and as such can decide whether their interests will be served.
Metric Spaces are used in conjunction with a variety of plugins to manage which
aspects of the system may be adapted in order to prevent an adaptation which
could irreparably harm the system. It is in this way that we ensure the level
of control required by a system designer while at the same time maintaining a
publicly accessible specification.

PreSage-MS is an extended agent programming environment which offers a
flexible and open solution to implementing organised adaptation in multi agent
systems using dynamic specifications. We intend to explore the question of when
to adapt in the context of a self adapting resource allocation scenario in which
the agents stockpile and allocate a shared resource. Periodically the system will
need to adapt to deal with invasions by a selfish population who try to divert
the flow of resources to themselves. We intend to explore adaptation strategies
in specification spaces, which trade off the cost of making an adaptation versus
the benefit of moving to a different specification point.

Acknowledgements. The first author is supported by a UK EPSRC stu-
dentship. The authors are grateful for the reviewers’ comments on earlier versions
of this paper.

References

1. Apostolou, M., Artikis, A.: Evaluating dynamic protocols for open agent systems.
In: AAMAS 2009: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems, pp. 1419–1420 (May 2009)

2. Artikis, A.: Dynamic protocols for open agent systems. In: AAMAS 2009: Proceed-
ings of the 8th International Conference on Autonomous Agents and Multiagent
Systems, pp. 97–104 (2009)

3. Ashworth, M., Carley, K.: Who you know vs. what you know: The impact of social
position and knowledge on team performance. Journal of Mathematical Sociol-
ogy 30, 43–75 (2006)

4. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Adaptation of Autonomic
Electronic Institutions Through Norms and Institutional Agents. In: O’Hare,
G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI),
vol. 4457, pp. 300–319. Springer, Heidelberg (2007)

5. Caire, G., Gotta, D., Banzi, M.: Wade: a software platform to develop mission crit-
ical applications exploiting agents and workflows. In: AAMAS 2008: Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems: Industrial Track, pp. 29–36 (2008)

6. Carr, H., Pitt, J.: Adaptation of voting rules in agent societies. In: OA-
MAS@AAMAS 2008: Proceedings from the AAMAS Workshop on Organised
Adaptation in Multi-Agent Systems, pp. 36–53 (2008)

7. Carr, H., Pitt, J., Artikis, A.: Peer Pressure as a Driver of Adaptation in Agent
Societies. In: Artikis, A., Picard, G., Vercouter, L. (eds.) ESAW 2008. LNCS,
vol. 5485, pp. 191–207. Springer, Heidelberg (2009)

Software Support for Organised Adaptation 115

8. Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., Sartor, G.: Variants of
temporal defeasible logics for modelling norm modifications. In: ICAIL 2007: Pro-
ceedings of the 11th International Conference on Artificial Intelligence and Law,
pp. 155–159 (June 2007)

9. Guessoum, Z., Ziane, M., Faci, N.: Monitoring and organizational-level adaptation
of multi-agent systems. In: AAMAS 2004: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 514–
521 (July 2004)

10. Hewitt, C.: Offices are open systems. ACM TOIS: ACM Transactions on Informa-
tion Systems 4(3), 271–287 (1986)

11. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective
robotics. Artificial Life 5(2), 173–202 (1999)

12. Jarvis, B., Jarvis, D., Jain, L.: Teams in multi-agent systems. International Feder-
ation for Information Processing (Springer) 228, 1–10 (2007)

13. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Springer, Heidelberg
(2001)

14. Kephart, J.: Research challenges of autonomic computing. In: ICSE 2005: Proceed-
ings of the 27th International Conference on Software Engineering, pp. 15–22 (May
2005)

15. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95 (1986)

16. Neville, B., Pitt, J.: PRESAGE: A Programming Environment for the Simulation
of Agent Societies. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008.
LNCS, vol. 5442, pp. 88–103. Springer, Heidelberg (2009)

17. Pitt, J., Venkataram, P., Mamdani, A.: Qos management in manets using norm-
governed agent societies

18. Searcóid, M.Ó.: Metric Spaces. Springer, Heidelberg (2006)

Part IV

Environments

Action and Perception

in Agent Programming Languages:
From Exogenous to Endogenous Environments

Alessandro Ricci, Andrea Santi, and Michele Piunti

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,a.santi,michele.piunti}@unibo.it

Abstract. The action and perception models adopted by state-of-
the-art agent programming languages – in the context of Multi-Agent
System (MAS) programming – have been conceived mainly to work
with exogenous environments, i.e. physical or computational environ-
ments completely external to the MAS and then out of MAS design and
programming. In this paper we discuss the limits of adopting such mod-
els when endogenous environments are considered, i.e. computational
environments – often referred also as application environments – that
are designed and programmed by MAS developers as a first-class ab-
straction to encapsulate functionalities useful for agent individual and
cooperative activities. In the paper we describe an action and percep-
tion model for agent programming languages specifically conceived to
be effective for endogenous environments and we discuss its evaluation
using CArtAgO environment technology. On the agent side, we focus our
attention on programming languages based on the BDI (Belief-Desire-
Intention) model, taking Jason, 2APL and GOAL as reference case studies.

Keywords: Environment programming, Action and perception, Agent
Programming Languages, CArtAgO.

1 Introduction

A large body of Multi-Agent System (MAS) literature has remarked the role
that the notion of environment can play as first-class abstraction to design and
develop MAS [22]. The environment in this case – also referred as application
environment, or virtual/software environment – is exploited as a suitable place
where to encapsulate functionalities and mechanisms that agents can exploit at
runtime to do their tasks, in particular to support their communication, coor-
dination and organisation [13,12,22]. By adopting such a perspective, the en-
vironment becomes an orthogonal design and programming dimension for MAS
developers with respect to the agent one [15]. Accordingly, several models, archi-
tectures and technologies have been proposed for environment design and engi-
neering, either general-purpose or to solve specific application problems [23,24].
Among the others, the CArtAgO framework [15,16,17] – which will be considered

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 119–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

120 A. Ricci, A. Santi, and M. Piunti

in this paper – introduced a general-purpose computational and programming
model for engineering environments based on the notion of artifact, as defined
by the A&A meta-model [11].

Even if orthogonal to the agent dimension, artifact-based environments and
CArtAgO have been conceived especially for being integrated with agent pro-
gramming languages (APL) and frameworks based on high-level model of agency
such as the BDI (Belief-Desire-Intention) one. Examples of APL based on the
BDI model are Jason [1], 2APL [3], GOAL [7], AF-APL [18]. These agent pro-
gramming languages have already an explicit notion of environment, which is
the classical one as defined in Artificial Intelligence literature [19]: the envi-
ronment is the external context – either physical or computational/software –
where agents and MAS are situated, source of the agents’ percepts and target
of agents’ actions. In this case the environment is not part of MAS design and
development, it is not a first-class abstraction meant to be exploited to encap-
sulate functionalities. In order to avoid ambiguities, in this paper we refer to
this notion of environment as exogenous, while we use the term endogenous to
refer to the former ones (i.e. application/computational/virtual/software envi-
ronments)1. Almost every APL includes some kind of API to define the interface
to exogenous environments, and often provides also an API – typically Object-
Oriented – to develop simulated environments conceived for doing tests.

Given this context, in this paper we focus on some issues that arise when sit-
uating intelligent/BDI agents within endogenous environments. For conceptual
and practical reasons, we want to frame agents interaction within endogenous en-
vironment still in terms of actions and perceptions, like it happens for exogenous
environments. However, in this paper we show that the classic action and percep-
tion models/architectures adopted in state-of-the-art APL – devised for dealing
with exogenous environments – are not fully adequate to work with endogenous
environments. We show that this has a negative impact on agent programming,
in particular on the development of software agents and multi-agent programs
that need to work with endogenous environments. In Section 2 we describe such
weaknesses in details, focussing in particular on agent programming languages
based on the BDI model—even if the remarks provided in the section would
apply more generally to any APL or framework based on the classic abstract
architecture for intelligent agents [25].

Then, in Section 3 we introduce an action/perception model that extends the
classic one adopted by APL so as to fully exploit the features provided by endoge-
nous environments. To evaluate the model, we implemented it in the CArtAgO
framework and in the bridge integrating CArtAgO with Jason: in Section 4 we
describe the model at work with some examples involving Jason agents working
inside artifact-based environments.

Several works in agent environment literature tackle the problem of defining
proper action models for endogenous environments – a brief account of these is
reported in related works (Section 5). However, to authors’ knowledge this is the
first work to focus on how such models can be effectively integrated with agent

1 Endogenous because they are actually part of the MAS, not external.

Action and Perception in Agent Programming Languages 121

programming languages, in particular with those based on BDI-like models, and,
in particular, on finding out the most suitable action and perception model to
make endogenous environments exploitation by intelligent agents (and agent
programmers) straightforward and effective.

2 Action and Perception in Agent Programming
Languages

In this section we analyze and discuss the action and perception model and
related architectures adopted in current agent programming languages, focussing
in particular on those based on BDI-like model. Jason, 2APL and GOAL are taken
as reference case studies, since (a) they provide a good spectrum of the different
approaches that can be adopted to implement the BDI conceptual model, (b)
they provide an explicit programming interface to the environment.

By referring to existing formalisations, these languages follow the abstract ref-
erence architecture for intelligent agents and the agent reasoning cycle reported
by Wooldridge in [25]. Essentially, it can be sumarised as a sense-plan-act (SPA)
cycle where the agent repeatedly (i) observes the environment and updates its
beliefs, (ii) uses practical reasoning to deliberate what intention achieve and how,
and (iii) executes a step of a proper plan for fulfilling the selected intention. The
environment (software or hardware) here is fully exogenous.

Moving from formal models to concrete architectures and implementations,
current APL adopt richer approaches and semantics, which are explicitly oriented
toward the integration with some kind of programmable environments, to be
developed to create simulated environments, typically using an Object-Oriented
language such as Java. A comprehensive survey of the environment interface
models adopted by mainstream APL and the API for interacting with them can
be found in the Environment Interface Standard (EIS) initiative [9]: here we
focus on the semantics underlying the action and perception model.

2.1 The Action Model

In the abstract architecture, the action chosen by agent’s action selection func-
tion is dispatched to effectors which will eventually execute it (act stage, or
execute command in the practical reasoning cycle) and the reasoning cycle can
start again (sense stage). Actions are considered as options in agents repertoire
which can be translated by moves enabled by the environment. The success or
failure of the action executed by effectors is meant to be determined by an agent
by analyzing the percepts that will eventually be observed from the environment.
From the execution model point of view, action execution is modelled then as
an atomic event, which corresponds to dispatching the action to effectors. This
semantics is the basic one adopted by almost all APLs formal models. Not sur-
prisingly, concrete implementations of APLs adopt more complex solutions than
the one just presented. Examples follow.

122 A. Ricci, A. Santi, and M. Piunti

In AgentSpeak(L) and Jason operational semantics [1], action execution is
modelled by a transition inserting the action selected by previous stages of the
agent cycle into a particular set of actions, i.e. a set of actions to be performed
in the environment. The formal model does not provide any further informa-
tion: the selected action is scheduled to be executed – sooner or later – by other
components (i.e. effectors) of the agent architecture [1]. Actually, in the concrete
architecture and implementation of the Jason interpreter2, the action execution
model is more articulated and expressive than the one described in the opera-
tional semantics. Action execution is done by calling a special method of the Java
class representing the environment—the action to be performed is a parameter
of this method. As a key aspect, the method is executed asynchronously with
respect to the agent cycle: current agent intention – i.e. the plan in execution –
is suspended until the action execution is terminated, so the agent can carry on
other plans and react to percepts. So, in practice, the action execution model is
not atomic. The environment method can return – as action feedback – a boolean
value, indicating if the requested action has been executed at all. A false value
means it was not, so the plan fails. A true value means that the action has been
executed (accepted), however it does not mean that the expected changes will
necessarily take place ([1], p. 50).

Also GOAL adopts the basic action semantics found in the abstract practi-
cal reasoning agent cycle, so executing the actions atomically and establishing
their outcomes only by sensing the environment. Analogously to Jason, action
execution is done by calling a special execute-action method of the Java class
representing the environment, with the action to be performed as a parameter
of this method. As reported in [9], in GOAL invoking the execute-action method
might have three outcomes: either the return value true indicating success, false
indicating that the action has not been recognised, or an exception indicating
that the action has failed. In this case the meaning of success is more subtle:
it triggers the application of the action post-conditions that can be specified in
the agent program, to update the belief base. In the examples described in [7]
– the blocks-world in particular – such updates seem to refer not simply to an
action (e.g. move) that has been recognised by the environment, but to an ac-
tion whose execution has been fully executed with success and the environment
has been changed accordingly. This action semantics appears a natural choice
when exogenous environments are considered. However, it is not the most effec-
tive semantics when considering endogenous environments. In the following we
describe two main drawbacks.

The first one is that, both conceptually and formally, by treating actions as
events3, it is not possible to implement concurrent actions – where for con-
current here we mean actions whose execution overlaps in time – so having a
temporal extension. For endogenous environments this is a quite strong limita-
tion, since concurrent actions make it possible to naturally implement effective

2 http://jason.sourceforge.net
3 here we consider a strict notion of event, as something happening at a specific point

in time, with no duration.

http://jason.sourceforge.net

Action and Perception in Agent Programming Languages 123

synchronisation and coordination mechanisms. As a main example, let’s consider
the use of endogenous environments to implement the tuple space coordination
model [5], providing out, in, rd primitives as defined by the Linda language – re-
spectively inserting a tuple in the space, associatively removing/reading a tuple
from the space. The key synchronisation mechanism is that the execution of in
or rd suspends the invoking process until a tuple matching the specified template
is found or has been inserted by an out in the space. In an agent perspective, we
would model such primitives directly as actions that the environment provides
to agent to coordinate, in which the execution of an in suspends current agent
plan – not the agent execution itself, which must go on with the execution cycle
– until, for instance, a tuple is inserted by another agent executing an out. By
treating actions as events, this is not possible and one is forced to change the
semantics of the in action, for instance assuming that the successful execution
of the action represents just the act of making the request, not the fact that a
tuple has been removed.

The second related drawback concerns, more generally, the success/failure
semantics of actions. Endogenous environments are explicitly designed and pro-
grammed by MAS developers to support agent activities; so, it is natural to
devise a stronger semantics for action execution where – for instance – action
success, and so the success of the execute-action method if we consider the en-
vironment interface model adopted by Jason4 and GOAL, means not only that
the action has been accepted or recognised by the environment, but that it has
completed and its effects and changes took place. This makes the exploitation of
endogenous environment more straightforward and agent programs simpler and
more efficient. As a simple example, let us consider an endogenous environment
providing to agents functionalities to work with the local file system, so, for in-
stance, a make-directory action with the obvious meaning: it would be natural
to define the action success/failure semantics such that the successful execution
of the action by the environment would imply that the specified directory has
been created. By strictly adopting the classic action model, this is not possible:
in principle, to know that the action succeeded an agent (programmer) would
need to check for percepts reporting a state of the environment in which the new
directory is available. This is burdensome, both from a programming point of
view and for the runtime performance of the agent program.

Among the languages, 2APL apparently adopts a stronger semantics for ac-
tion success and failure with respect to the classical one, not only at the imple-
mentation level but also in the formal model, explicitly assuming to work with
computational environments, represented by Java objects. In the formal model,
an external action is modeled as an atomic transition involving changes in the
configuration of both the agent and the environment [3]. Action execution is
done by calling methods of the Java class(es) representing the environment(s),
which directly implement the actions behaviour. Following [9], executing an
action-method in 2APL can have two outcomes: either a return-value (an object)

4 Actually Jason makes it possible to implement a different semantics by customizing
some part of the agent architecture.

124 A. Ricci, A. Santi, and M. Piunti

Fig. 1. (left) 2APL example for an agent blocked on a long term activity. (right) A
simple 2APL environment in Java.

indicating success is returned, that might be non-trivial (e.g. list of percepts in
the case of an sense-action) or terminate with an exception indicating action-
failure. In this case success means that the action completed with success—and
so the effects of the action execution took place, exhibiting then a stronger se-
mantics with respect to Jason and GOAL. However, analogously to Jason and
GOAL formal model, action execution is modelled and finally implemented as
an atomic transition (so an event) coupling the agent and the environment.
This means that by executing an action, the agent cycle is blocked until the
completion of the action with success or failure occurs, and this can have some
drawbacks for agent reactivity.

We clarify the point with an example shown in Fig. 1, a 2APL program com-
posed by two agents, Tom and Alice, interacting in the same environment, repre-
sented by the TestEnv Java class (only Tom’s source code is shown). The actions
provided by the environment – i.e. the methods implemented by the class – are
compute, which is meant to execute a long-term computation returning finally
a result – and update, which is meant to update the state of the environment
generating percepts—that are events in the case of 2APL. To achieve its goal, the
agent Tom must perform the compute action; however Tom is also interested to
perceive events generated by the environment to react accordingly—in this case
simply printing to output the percepts. Alice simply acts on the environment
performing an update, so generating percepts that are relevant also for Tom.
However Tom is not able to react to percepts generated by the environment
until the compute action has completed. So if one want to save agent reactivity,
it cannot perform long-term actions, or rather: every long term action must be
implemented in terms of multiple sub-actions.

Action and Perception in Agent Programming Languages 125

2.2 The Perception Model

In the abstract intelligent agent architecture [25], agent perception is modeled
by a see function: E → Per. This function encapsulates agent’s ability to obtain
information from the environment E in which it is situated. The output produced
by this function is a percept Per, which typically contains information about
the actual state of the environment. Percepts are then elaborated by the agent
through appropriate belief-update/revision functions, to keep its mental state
consistent with the actual state of the environment. This model is adopted both
in Jason and GOAL.

A GOAL agent implements a simple SPA cycle in which (i) it receives percepts
from the environment (containing the whole state of interest) through its per-
ceptual interface and (ii) it updates its mental state through the percept rules
included by the agent programmer to specify how the agent belief base should be
updated when certain percepts are received (see [7] for more details). In Jason,
at each cycle an agent perceives the actual state of the environment and updates
its mental state, in particular automatically removing/updating/adding beliefs
related to percepts. Actually this is the default behaviour of the belief-update
and belief-revision function: the highly customizable architecture of the Jason
interpreter allows for changing this semantics, customizing both the perceive
stage (implementing the see function) and the belief update/revision stage.

So both in the case of GOAL and Jason, percepts represent actual information
regarding the environment—typically a snapshot of the environment state which
is observable to the agent. Actually, this is the natural choice when considering
exogenous environments. However, it suffers of some problems that are partic-
ularly important when applying the approach to endogenous environments. A
first problem concerns the possibility for an agent of losing (not perceiving) en-
vironment states that could be relevant for agent reasoning and course of action.
This can occur because of environment dynamics, related to internal processes
and also actions performed by other agents, changing asynchronously the envi-
ronment multiple times between two subsequent perceive stages.

We clarify the problem with a simple example written in Jason, shown in
Fig. 2. The example includes a simple endogenous environment that provides
a generic shared resource bounded by capacity limit, i.e. the resource can be
used concurrently only by a limited number of agents. Then, a set of worker

agents – with a cardinality greater than the resource capacity – cyclically try to
use the resource, first attempting to acquire it by means of an acquire resource

action, then using it and finally releasing it by means of a release resource ac-
tion, making it available for further usages. The single kind of percept generated
by environment – max use(N) – represent the actual number of times that the
resource reaches its max capacity—so it starts from zero and is incremented
each time the limit is achieved. The scenario is completed by an observer agent,
whose goal is to observe the shared resource and to output a message each time
max use changes. The agent monitors the number of times the resource reached
its max capacity and, also, does a check for detecting lost states, by execut-
ing the check state lost plan each time it perceives a new value for the max

126 A. Ricci, A. Santi, and M. Piunti

Fig. 2. (left) Jason source code of the worker and observer agents. (right) Java imple-
mentation of the resource environment where the workers and observer are situated.
(bottom) A screenshot of the Jason console during a run of a MAS composed by three
workers and an observer.

use – represented by the belief-update event related to max use(N). The
check state lost plan checks if the difference between the current observed
max use occurrence and the previous one (stored by the observer into the
last occurence belief) is greater than one unit. If so, it means that some max use

percepts have been lost and a message is printed in standard output. By running
the example it is possible to verify that the observer loses states (Fig. 2 shows
a screenshot) and that the frequency of the losses increases with the number of
worker agents concurrently working in the same environment.

A second problem is that retrieving perceptual information at each cycle re-
garding the current observable state of the environment can be computationally
expensive, in particular when considering non-naive environments, being either
centralised or, worst, distributed. Then, given the list of percepts representing

Action and Perception in Agent Programming Languages 127

the current state, the belief update must be updated accordingly: in the case of
a direct mapping between beliefs and environment state as in the case of Jason
adopting the default belief-update and belief-revision semantics, this typically
involves iterating both through the list of percepts and the whole belief-base to
remove old beliefs and to add new ones.

Differently from Jason, 2APL models percepts as events. This in principle
makes it possible to avoid the previous problem—as will be shown in next sec-
tion. However in 2APL – analogously to GOAL – in order to keep track of the
observable state of the environment in terms of beliefs, the programmer is forced
to explicitly define the rules that specify how to change the belief-base when a
percept is detected. This is an important capability when dealing with exogenous
environments, but when adopting endogenous environments – in particular com-
plex ones – this can become burdensome. Being specifically designed by MAS
engineers, endogenous environments allow for stronger assumption on the rela-
tionships between percepts generated by the environment and related beliefs.
Such assumption can be used then to define a mapping percepts-beliefs to be
applied by default by the architecture: this allows for both avoiding the burden
to the agent programmers of specifying the percept rules on the one side, and
automatically keeping consistency between the actual state of the environment
and the belief base on the other side.

3 An Effective Interaction Model for Endogenous
Environments

In this section we describe a model for actions and perceptions to be adopted in
APL so as to fully exploit the features provided by endogenous environments,
solving the drawbacks shown in previous section. Here we describe the main con-
cepts and (informal) semantics, which will be shown in practice in next section
using the new version of the CArtAgO framework.

3.1 Action Side

As mentioned in the previous sections, endogenous environments allow for a
stronger semantics for action success/failure, which finally simplifies agent pro-
gramming and make multi-agent programs more efficient. In an endogenous en-
vironment, the success (or failure) of an action on the agent side can be directly
related to the successful (or failed) completion of an operation or process ex-
ecuted on the environment side as a consequence of the agent action request.
So, differently from exogenous environments where action success or failure can
be established by an agent only by interpreting the percepts generated by the
environment after the action execution, in endogenous environments action suc-
cess/failure can be represented by an explicit action completion event generated
by the environment, thereby an explicit information related to operation execu-
tion completion (with success or failure). Accordingly, from the APL point of
view, the execution of an action does not mean that the action has been simply

128 A. Ricci, A. Santi, and M. Piunti

accepted or recognised by the environment, but that the related environment
operation has been executed up to completion. This promotes a perspective in
which the set of actions are conceived as part of a usage contract provided by the
environment, including both the effects that can be assumed with action com-
pletion and the action feedbacks, including further information related to action
success or failure. Action feedbacks are an effective way to represent results com-
puted by the action – so information which are not suitably modelled as effects
over the environment: a simple example is given by actions performing just pure
calculation, providing some kind of output given an input. The notion of usage
contract introduced here is similar to the notion of contract adopted in Object-
Oriented programming languages to represent the set of services or features that
an object is meant to provide, being an instance of a class implementing some
kind of interface [10].

By assuming this semantics, agent programs become – generally speaking –
simpler, more compact and efficient. Action completion events are meant to be
automatically processed by the agent architecture, in order to – for instance
– reactivate the suspended plan where the action was executed, without the
burden for the agent programmer to manage such percepts by hand. Also, the
usage contract makes it simpler for agents to reason about the state of the
environment: agents can appraise step by step their course of actions and, by
completing an action, an agent is sure that the effects possibly specified for the
action in its specification took place.

From the action execution model point of view, this approach promotes an
action-as-a-process semantics, where actions are not modeled as single atomic
events but as processes – i.e. a sequence of events – that can be long-term, whose
completion is notified by action completion events. When adopted in APL, this
semantics have two main benefits: First, it makes it possible to effectively pro-
gram agents that execute (long-term) actions without hampering their reactiv-
ity (see the example using 2APL in Section 2): the action-as-process semantics
makes it possible then for an agent to start the execution of action and then
go on perceiving, reacting to percepts that are generated by the action itself or
other actions, possibly carrying on other activities by choosing other actions to
execute. Second, the action-as-process semantics makes it possible to implement
concurrent actions and then effective coordination mechanisms simply based on
action synchronisation, designing environments which provide operations for that
purpose. This because the action completion event of an action performed by a
certain agent can be generated as a consequence of the execution of the action(s)
of other agents in the same environment. As remarked in Section 2, this is not
possible with an action-as-event semantics. The coordination semantics in this
case is encapsulated in the the environment providing the operations. Recalling
the example of tuple spaces and Linda, blocking actions like in or read can be im-
plemented quite straightforwardly by adopting an action-as-process semantics.
In particular, an in action can start its execution before the execution of an out
action and complete after the out’s completion. A concrete example about this
will be given in next section, using CArtAgO.

Action and Perception in Agent Programming Languages 129

3.2 Perception Side

On the perception side, we argue that modeling percepts as events – carrying on
information about changes occurred in the endogenous environment – is more
effective and efficient than modeling percepts as facts about the actual state
of the environment itself, as in the case of exogenous environments. At a first
glance this makes it possible to solve a main problem that has been described
in Section 2, i.e. the possibility for agents not to perceive environment states
– so loosing relevant environment configurations – due to the different update
frequencies of agent perceptive activities and environment internal processes.
Referring to the abstract model mentioned in Section 2, the set of percepts
returned by the see function represents a list of changes occurred in the envi-
ronment during the last agent execution cycle and which are relevant for the
observing agent. Accordingly, the next function can update the current internal
state of the agent with respect to the whole set of changes occurred inside the
environment, thus eventually reconstructing all the intermediate states that the
environment assumed between a couple of see activities.

Then, to support the automated reconstruction of such states it is useful
to identify the basic set of possible kinds of event that can occur inside an
endogenous environment: (i) an observable part of the environment has changed;
(ii) an observable part of the environment has been added or removed; (iii)
a signal has been generated to acknowledge agents with some information. In
the latter case, signals represent observable events explicitly generated by the
environment – as designed by the environment programmer – to carry on some
data which can be purposefully processed by agents observing that part of the
environment.

By explicitly defining a model to represent environment observable parts – for
instance observable properties, in the case of artifact-based environments used in
next section – it is possible then at the agent architecture level to automatically
reconstruct a consistent snapshot of the current observable state of the environ-
ment by processing a list of events updating the previous snapshot. In the APL
considered here this means introducing in the basic architecture a support for (i)
representing the observable part of the endogenous environments as beliefs, and
(ii) automatically updating such beliefs as soon as such events are processed.
In this perspective, there is no more the need for an agent programmer to ex-
plicitly define belief updates function (such as in 2APL) or percept rules and
post-condition in action specification: the belief base is automatically updated
reflecting the perceived/reconstructed state of the observed environment.

Actually, due to concurrency and distribution, the correct and efficient recon-
struction of the observable state of the environment from the individual agent
architecture perspective is an issue, both from the theoretical and practical point
of view. First, by working with multi-agent systems, we must assume that multi-
ple agents can concurrently work in the same environment and then events gen-
erated concern concurrent processes; Second, environments can be distributed,
which means that it is not feasible to consider the availability of a total order
among the distributed events.

130 A. Ricci, A. Santi, and M. Piunti

In order to cope with these two aspects, first it is useful to conceive a dis-
tributed endogenous environment as a set of non-distributed sub-environments,
eventually connected, and assume that each sub-environment defines a spatial-
temporal locality. For each sub-environment it is feasible then to assume that (i)
a local logical notion of time can be defined, and (ii) observable events occur-
ring the in the sub-environment can be totally ordered using logical timestamps,
even if they are generated by concurrent processes. Given this assumption, agents
perceive chains of events, which are totally ordered if the source is a single sub-
environment, partially ordered if more sub-environments are involved. Then,
some modularisation strategy should be considered for structuring individual
sub-environments, so as to (i) allow multiple agents to work concurrently to
different parts of the overall structure, promoting as far as possible decentralisa-
tion and parallelism; (ii) make it possible to easily change structure at runtime,
eventually changing/extending dynamically the set of actions available, so to
better support openness, adaptation, etc.

4 Evaluation Using CArtAgO

The idea presented in previous section has been implemented in the new ver-
sion of CArtAgO [16], a platform for developing endogenous environments in
multi-agent systems. Before discussing in detail some examples evaluating the
new action/perception model, a brief description of CArtAgO follows – a com-
plete description is outside the scope of this paper, the interested reader can
find it here [15,16]. CArtAgO makes it possible to design and program endoge-
nous distributed environments as set of workspaces – playing the roles of sub-
environments – where agents can share and use artifacts, which are the basic
first-class abstraction used to modularise (sub-)environments.

Artifacts are, on the one side, designed and programmed by MAS developers
– a Java API is provided to this end; on the other side, they are instantiated,
used, composed by agents at runtime, representing first-class resources and tools
of their world. To be used, an artifact provides a usage interface containing a set
of operations that agents can execute to get some functionality. To be perceived,
an artifact can have one or multiple observable properties, as data items that can
be perceived by agents as environment state variables, whose value can change
dynamically because of operation execution. Operations are computational pro-
cesses occurring inside the artifact, possibly changing the observable properties
and generating observable events, as environment signals that can be relevant
for agents using/observing the artifact.

By integrating CArtAgO with existing APL, agents written in different agent
programming languages can cooperatively work inside the same workspaces,
sharing and co-using the same artifacts [14]. The new action and perception
model described in this paper essentially improves the way in which agents can
exploit artifact-based environments. In the remainder of the section we will con-
sider as APL Jason, whose platform5 provides flexible API that made it possible
5 Available at http://jason.sourceforge.net

http://jason.sourceforge.net

Action and Perception in Agent Programming Languages 131

to adapt quite straightforwardly the agent architecture to implement the new
action and perception semantics.

4.1 The Action Model at Work

Following the new model, artifacts’ operations now represent directly the reper-
toire of the (external) actions available to the agent situated in an artifact-based
environment. So, by performing an action act(P) where P are action parameters,
a corresponding operation op(P) provided by some artifact currently available
in the workspace is executed—where act and op match. Then, the action suc-
ceeds or fails when (if) the corresponding operation has completed with success
or failure. Action feedbacks eventually resulting from action execution are made
available to the agent performing the action (operation) as output parameters of
the action itself. Then, by executing an action the agent plan (activity) including
such action is suspended until the corresponding operation has completed, i.e.
the action has completed. In the meanwhile, the agent control cycle can go on,
making it possible for the agent to get percepts and select and perform other
actions. So, by adopting this semantics the use of artifact-based environments
by agents becomes more agile and agent programs more concise.

As a simple example, Fig. 3 shows a Jason agent working in a workspace con-
taining some artifacts, in particular: an instance of Calc artifact, an instance of
SharedData artifact, one of Stream and one Console. Calc provides an operation
compute which does a long term computation returning finally a result as feed-
back. SharedData has a value observable property and provides an operation,
update, to update such value. Stream has an operation generate which results in
the generation of a stream of observable events (signals in this case) which can
be perceived by agents focussing the artifact. Finally Console (whose source code
is not reported) provides an operation println to print messages on standard
output.

At a first glance, the agent sees the workspace as an environment providing
four kind of external actions: compute, update, generate and println, and an
observable property value(X), besides the specific artifacts where the operations
and observable properties are stored. Accordingly, in main plan plan, which is
triggered by a new work todo goal, the agent interacts with the environment
directly performing compute and then println to show the computed result on
standard output6. By triggering the execution of compute – which is carried
on asynchronously in the environment – my plan is suspended until the action
has completed, reporting the result as feedback (second parameter). Even if
this plan is suspended, the agent is free to carry on other plans and react to
percepts. In the example the agent – by executing a focus at the beginning of

6 Actually, to avoid ambiguities when performing actions in the case of multi-
ple instances of artifacts providing operations with the same names, it is possi-
ble to specify the artifact target of the action by means of proper annotations,
such as the artifact name.: the annotated action becomes compute(X,Result) [

artifact name("calc")].

132 A. Ricci, A. Santi, and M. Piunti

// agent A code

@main_plan
+!work_todo(X,Y) : true
 <- lookupArtifact("shared_data",ArtId);
 focus(ArtId);
 compute(X,Result);
 println(Result);
 +sum(0);
 focus("stream");
 generate(Y);
 ?sum(S);
 println(S).

+value(X)
 <- println(X).

+new_number(V) : sum(S)
 <- -+sum(S+V).

compute

calc

update

value

shared_data

generate

stream

my_workpace

agent A

println

console

// artifacts code

class Calc extends Artifact {
 ...
 @OPERATION void compute(double x,
 OpFeedbackParam<Double> res){
 double result = longTermCalc(x);
 res.set(result);
 }
 private long longTermCalc(double x){...}
}

class SharedData extends Artifact {
 void init(){
 defineObsProperty("value",0);
 }
 @OPERATION void update(int v){
 getObsProperty("value").updateValue(v);
 }
}

class Stream extends Artifact {
 ...
 @OPERATION void generate(int n){
 for (int i = 0; i < n; i++){
 int v = compute_next();
 signal("new_number",v);
 }
 }
 private int compute_next(){...}
}

agents B

Fig. 3. A Jason agent executing some actions to exploit the functionalities of the arti-
facts of a workspace, reacting to percepts related to the environment observable state
and events

the plan7 – is observing the shared data artifact, whose observable properties
(value) are mapped then onto the agent belief base. So, as soon as the value of
the property changes (because some other agents perform an update), the belief
is automatically updated and a new belief update event is generated, triggering
a plan that simply prints (by exploiting the console) the value on standard
output. Finally, after using the calc artifact, the agent uses the stream artifact
by doing a generate. Then, by observing the stream, the agent processes the
events generated by the artifact – by updating a belief related to the sum of the
values generated by the stream – before the generate action completes. After
the action completion, the agent then prints on standard output the final sum.

7 focus is a basic primitive of CArtAgO which makes it possible for an agent to select
the parts (artifacts) of the workspace to be aware of, perceiving their observable
properties and events.

Action and Perception in Agent Programming Languages 133

// agent using the Rendez-Vous

@meeting_plan
+!meet_altogether
 <- println("before meeting altogether.");
 meet;
 println("after meeting altogether.");

class RendezVous extends Artifact {

 int num;

 void init(int numPart){
 num = numPart;
 }

 @OPERATION void meet(){
 num--;

await("allReady");
 }

 @GUARD boolean allReady(){
 return num == 0;
 }
}

Fig. 4. (left) Snipped of a plan of Jason agent to achieve a meeting point with other
agents, exploiting a RendezVous artifact; (right) Source code of the RendezVous artifact

So, by mapping external actions onto artifact operations, we obtain quite
compact and readable agent programs, fully preserving agent reactivity; also,
we have a further important outcome about openness and dynamism: the set
of external actions available to an agent is dynamic, it depends on the current
shape of the environment – the actual set of artifacts available in workspaces –
and it can be then extended or specialised by agents themselves creating new
artifacts or replacing existing ones.

The effectiveness of the action model for implementing coordination mecha-
nisms – which was a second main outcome remarked in Section 3 – should be
clear from the example shown in Fig. 4. The example shows a RendezVous artifact
which can be used by N agents to achieve a synchronisation point and an agent
plan meeting plan in which the artifact is used. From the agent point of view, this
is done by simply performing a single meet action, which is mapped onto the re-
lated operation of the artifact. The artifact is programmed so that the operation
completes with success only when N agents have executed the same operation.

4.2 Exploiting the Perception Model

By applying the new perception model, percepts received by an agent who is
focussing an artifact are events that concern signals and observable properties
updates: such events are used then to automatically update the beliefs in the
belief-base of the agent. By adopting this model we have the guarantee that no
states are lost for an agent who is observing the environment (or a part of it).
Here we show this in practice by revisiting the shared resource example used in
Section 2. In particular the objective of the example is the same, as well as the
source code of the agents, but in this case the environment is implemented in
CArtAgO by an artifact called ResourceArtifact8 . The artifact – whose source

8 The example is included in CArtAgO 2.0 distribution, available at
http://cartago.sourceforge.net

http://cartago.sourceforge.net

134 A. Ricci, A. Santi, and M. Piunti

// Resource Artifact implemented in CArtAgO

public class ResArtifact extends Artifact {

 int resourceUse = 0;
 int maxResourceUse;

 void init(){
 defineObsProperty("max_use",0);
 maxResourceUse = 3;
 }

 @OPERATION void acquire_resource(){
 if(resourceUse == maxResourceUse){
 failed("error");
 } else{
 resourceUse++;
 if (resourceUse == maxResourceUse){
 ObsProperty prop = getObsProperty("max_use");
 prop.updateValue(prop.intValue() + 1);
 }
 }
 }

 @OPERATION void release_resource(){
 if(resourceUse == 0) {
 failed("error");
 } else {
 resourceUse--;
 }
 }
}

// worker source code

times(100).

!run_worker.
+!run_worker : times(X) & X \== 0
 <- acquire_resource;
 !use_resource;
 release_resource;
 -+times(X-1);
 !!run_worker.

-!run_worker : true
 <- .wait(10); !!run_worker.

// Observer agent source code

last_occurrence(0).
!setup.

+!setup : true
 <- makeArtifact("res","ResArtifact",Id);
 focus(Id).

@my_plan [atomic]
+max_use(Occurrence) : last_occurrence(N)
 <- println("New max usage perceived: ",
 Occurrence);
 !check_state_lost(Occurrence, N);
 -+last_occurrence(Occurrence).

+!check_state_lost(Current,Local): true
 <- X = Local + 1;
 if (Current > X){
 .print("State(s) lost! from ",
 Local," to ",Current)
 }.

Fig. 5. The resource environment example introduced in Section 2 implemented here
by means of a ResourceArtifact. The source code of the workers and of the observer
(on the right) is almost the same.

code is reported in Fig. 5 – provides the same functionalities of the Jason environ-
ment developed in the previous example. In this case, the underlying perception
model ensures that every change to the max use observable property is perceived
by the observer agent, which, differently from the one in Section 2, never prints
to standard output any log message about the loss of states. It is worth noting
that the source code of both the worker and the observer agent is almost the
same used in the previous example, with minor differences, such as the explicit
creation of the ResourceArtifact by the observer agent.

5 Related Works

The definition of action and perception models and architectures in agent-based
systems has been tackled in many contexts, from cognitive science to Multi-
Agent Based Simulations, with different characterisations and objectives. Here
we restrict the discussion to related works in MAS programming and agent-based
software engineering, which is the reference scope of the paper.

In this context, several works can be found in literature about environments
for multi-agent systems (see [23,24] for comprehensive surveys), some of them
explicitly focussing on action and perception. A main related work is the formal
model of situated MAS proposed by Weyns and Holvoet [20], who introduced

Action and Perception in Agent Programming Languages 135

a reference architecture for designing environments in multi-agent systems [21].
This work is based and extends the influences and reactions action model pro-
posed by Ferber and Müller in [4]. In that model, influences come from inside the
agents and are attempts to modify the course of events in the world. Reactions,
which result in state changes, are produced by the environment by combining
influences of all agents, given the local state of the environment and the laws of
the world. This distinction between the products of the agents behavior and the
reaction of the environment provides a way to handle simultaneous activity in
the MAS. The influences and reactions action model has been implemented in
the MadKit multi-agent platform [6].

In the formal model of situated MAS proposed by Weyns and Holvoet, the
definition of an influence includes the specification of an operation that is pro-
vided by the application environment and that can be invoked by the agents.
The action model is expressive enough to model simultaneous actions and syn-
chronisation among agents acting/perceiving in the same locality: so agents can
synchronise with other agents within their perceptual range. On the perception
side, the formal model includes a form of active sensing: an agent can actively
sense the environment to obtain a percept (i.e., a representation of its vicin-
ity), possibly specifying foci to select what to perceive, an agent can perform an
influence in the environment (i.e., attempt to modify the state of affairs in the
environment), and it can exchange messages with other agents. So many similar-
ities hold between Weyns and Holvoet’s model and the action/perception model
described in Section 3 and adopted in CArtAgO: for instance, the notion of ac-
tion/operation as defined in CArtAgO is quite similar to the notion of influences
as defined above. Another one is the possibility for agents to select which parts
of the environment to focus, even specifying filters. Besides similarities, some
important differences are there. A main one concerns the kind of modularisa-
tion adopted, which – indirectly – impacts also on the action/perception model.
Weyns and Holvoet adopt an architectural point of view, describing the architec-
ture of the environment decomposed into layers and modules corresponding to
functional blocks. No specific computational or programming model is specified
to define and program environment computational behaviour. This is – instead –
a main point in A&A and CArtAgO, in which modularisation is framed in terms
of artifacts, as first-class designing and programming abstractions, functioning
as runtime modules composing the environment. Each artifact defines a set of
actions (operations) that an agent can use to work with it. Also, it defines the
set of observable properties that can be perceived by agents focussing on it.
So the repertoire of agents’ actions and possible perception of an agent is dy-
namic, depending on the set of artifacts available in the environment. A second
main difference concerns the integration with agent programming languages and
cognitive agent architectures. Related works described above do not tackle this
point – because out of their aims – and typically do not consider any specific
agent architecture or programming language. Conversely, the action/perception
model proposed in this paper has been formulated by considering not only the
environment side, but also the agent side, so as to find out an approach which

136 A. Ricci, A. Santi, and M. Piunti

would make as straightforward and effective as possible the use of environments
by intelligent agents and related programming languages.

A similar perspective is adopted in GOLEM [2], a logic-based framework
which shares many features with CArtAgO. The framework allows for repre-
senting agent environments declaratively and adopting a cognitive model for
programming situated agents, based on the KGP model of agency [8]. The envi-
ronment is represented as a composite structure that evolves over time, including
two main classes of entities – agents and objects, similar to artifacts – organised
in containers, similar to workspaces. Interactions between these entities inside
a container are specified in term of events whose occurrence is governed by a
set of physical laws specifying the possible evolutions of the agent environment,
including how these evolutions are perceived by agents and affect objects and
other agents in the environment. A key point of the approach is the notion of
affordances, representing the external states of objects that can be perceived
by cognitive agents so as to interact with them. This notion is quite similar
to the notion of artifact’s usage interface and observable properties, in particu-
lar. Also this framework was inspired by the influence-reaction model by Ferber
and Müller and its extensions as the work of Weyns and Holvoet, in particular
influences are represented as attempts of events and reactions as environment
notifications. Differently from previous related works, GOLEM explicitly deals
with the agent and environment programming dimension, as in our case, and
considers a cognitive model of agency (KGP), so the perspective is very similar
to the one adopted in CArtAgO and in this work. Said this, two main differ-
ences can be remarked between GOLEM’s action/perception model and ours’.
The first one is that in GOLEM action execution is modelled as an event, being
represented by an attempt. In our case, instead, action execution is modelled as
a process, being mapped onto artifacts’ operations, including a start event and
a completion event. The benefits of this choice have been discussed in the paper.
The second main difference concerns the perception model, in particular passive
perception. In GOLEM this accounts for notifying events to interested agents’
sensors, and – according to what described in [2] – no automated mapping be-
tween such events and the knowledge component of a KGP agent is provided. In
our proposal, we model percepts as events as in GOLEM, and, furthermore, we
map at runtime observable properties provided by the artifacts observed by an
agent into agents’ beliefs. As discussed in the paper, we believe that this is a key
feature to improve agent programming, making agent programs more compact,
readable and elegant.

Another related work is the EIS (Environment Interface Standard) initia-
tive [9], already mentioned in the paper, whose aim is to define a standard
interface to allow agents developed using different programming languages to
share the same environment, typically exogenous, independently of the specific
model and technology adopted for it.

Finally, this paper is naturally related to previous works on CArtAgO [16,17]
and environment programming in general [15]: the new contribution with respect
to such existing work is an in-depth elaboration of the specific aspect concerning

Action and Perception in Agent Programming Languages 137

the action and perception model, and the definition of a new improved approach
that has been implemented in the new version of the framework.

6 Conclusion

As remarked by the EIS initiative [9], the definition of a general-purpose and
standard environment interface is a relevant issue of current APL. This is even
more important when developing multi-agent programs that aims at exploiting
endogenous environments, as first-class abstraction to encapsulate functionali-
ties. Accordingly, in this paper we discussed the main features of an action and
perception model that effectively exploits key properties of endogenous environ-
ments, simplifying agent and environment programming.

Then, we evaluated the approach by implementing it in the new version of
CArtAgO, which aims at providing a general-purpose and standard model to
conceive, design and program endogenous environments in MAS. In order to
achieve this objective, future works include: (i) the evaluation of the approach
using other APL besides Jason, starting from GOAL and 2APL; (ii) analyzing how
the semantics devised in this model and the one proposed in the EIS initiative [9]
can be suitably integrated; (iii) a formalisation of the model and the analysis of
its impact on existing agent programming language formalisations.

References

1. Bordini, R., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

2. Bromuri, S., Stathis, K.: Situating Cognitive Agents in GOLEM. In: Weyns, D.,
Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049,
pp. 115–134. Springer, Heidelberg (2008)

3. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

4. Ferber, J., Müller, J.-P.: Influences and reaction: a model of situated multi-agent
systems. In: Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS 1996).
AAAI (1996)

5. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

6. Gutknecht, O., Ferber, J.: The MADKIT agent platform architecture. In: Agents
Workshop on Infrastructure for Multi-Agent Systems, pp. 48–55 (2000)

7. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., et al.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications, vol. 2,
pp. 3–37. Springer, Heidelberg (2009)

8. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of
agency. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
ECAI 2004, pp. 33–37 (2004)

9. Behrens, T.M., Hindriks, K.V., Bordini, R.H., Braubach, L., Dastani, M., Dix,
J., Hübner, J.F., Pokahr, A.: An interface for agent-environment interaction. In:
Programming Multi-Agent Systems 2010 (2010) (this volume)

10. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)

138 A. Ricci, A. Santi, and M. Piunti

11. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3) (December 2008)

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: AAMAS 2004,
vol. 1, pp. 286–293. ACM, New York (2004)

13. Platon, E., Mamei, M., Sabouret, N., Honiden, S., Parunak, H.V.D.: Mechanisms
for environments in multi-agent systems: Survey and opportunities. Autonomous
Agents and Multi-Agent Systems 14(1), 31–47 (2007)

14. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating
Artifact-Based Environments with Heterogeneous Agent-Programming Platforms.
In: AAMAS 2008, pp. 225–232 (2008)

15. Ricci, A., Piunti, M., Viroli, M.: Environment Programming in Multi-Agent Sys-
tems – An Artifact-Based Perspective. Autonomous Agents and Multi-Agent Sys-
tems (June 2010), doi:10.1007/s10458-010-9140-7

16. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming with
cartago. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming: Languages, Tools and Applications. Springer, Heidel-
berg (2009)

17. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A Framework for Prototyping Artifact-
Based Environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

18. Ross, R.J., Collier, R., O’Hare, G.M.P.: AF-APL – Bridging Principles and Prac-
tice in Agent Oriented Languages. In: Bordini, R.H., Dastani, M.M., Dix, J., El
Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 66–88.
Springer, Heidelberg (2005)

19. Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach. Prentice Hall
(2003)

20. Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundam.
Inf. 63(2-3), 125–158 (2004)

21. Weyns, D., Holvoet, T.: A Reference Architecture for Situated Multiagent Systems.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS
(LNAI), vol. 4389, pp. 1–40. Springer, Heidelberg (2007)

22. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-
agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

23. Weyns, D., Parunak, H.V.D. (eds.): Autonomous Agents and Multi-Agent Sys-
tems, vol. 14(1). Springer, Heidelberg (2007); Special Issue on Environments for
multiagent systems

24. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Envi-
ronments for Multiagent Systems State-of-the-Art and Research Challenges. In:
Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI),
vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

25. Wooldridge, M.: Intelligent Agents. In: An Introduction to Multi-Agent Systems.
John Wiley & Sons, Ltd. (2009)

An Interface for Agent-Environment Interaction

Tristan Behrens1, Koen V. Hindriks2, Rafael H. Bordini3, Lars Braubach4,
Mehdi Dastani5, Jürgen Dix1,�, Jomi F. Hübner6, and Alexander Pokahr4

1 Clausthal University of Technology, Germany
{behrens,dix}@in.tu-clausthal.de

2 Delft University of Technology, The Netherlands
k.v.hindriks@tudelft.nl

3 Federal University of Rio Grande do Sul, Brazil
r.bordini@inf.ufrgs.br

4 Hamburg University, Germany
{braubach,pokahr}@informatik.uni-hamburg.de

5 Utrecht University, Utrecht, The Netherlands
mehdi@cs.uu.nl

6 Federal University of Santa Catarina, Brazil
jomi@das.ufsc.br

Abstract. Agents act and perceive in shared environments where they
are situated. Although there are many environments for agents – rang-
ing from testbeds to commercial applications – such environments have
not been widely used because of the difficulty of interfacing agents with
those environments. A more generic approach for connecting agents to
environments would be beneficial for several reasons. It would facilitate
reuse, comparison, the development of truly heterogeneous agent sys-
tems, and increase our understanding of the issues involved in the design
of agent-environment interaction. To this end, we have designed and de-
veloped a generic environment interface standard. Our design has been
guided by existing agent programming platforms. These platforms are
not only suitable for developing agents but also already provide some
support for connecting agents to environments. The interface standard
itself is generic, however, and does not commit to any specific platform
features. The interface proposal has been implemented and evaluated in
a number of agent platforms. We aim at a de facto standard that might
become an actual standard in the near future.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents; I.6.3 [Simulation
and Modeling]: Applications; I.6.7 [Simulation Support Systems]:
Environments.

General terms: Standardization.

� This work was partly funded by the NTH School for IT Ecosystems. NTH
(Niedersächsische Technische Hochschule) is a joint university consisting of Technis-
che Universität Braunschweig, Technische Universität Clausthal, and Leibniz Uni-
versität Hannover.

R. Collier, J. Dix, and P. Novák (Eds.): ProMAS 2010, LNAI 6599, pp. 139–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 T. Behrens et al.

Keywords: Agent development techniques, tools and environments, and
Case studies and implemented systems.

1 Introduction

Agents are situated in environments in which they perceive and act. From an
engineering point of view, an issue that repeatedly has to be dealt with is how to
connect agents to environments. Sometimes this issue is (partially) solved by the
physical sensors and actuators provided (e.g. in the case of a robot). But even if
sensor and actuator specifications are available, the design and implementation of
the interaction between the agents and the environment still require substantial
effort. This is due in part to the fact that each environment is different but
also because the platforms to build agents provide different support for agent-
environment interaction.

By now, there exist many interesting environments which range from spe-
cialized testbeds for agent systems to industrial applications based on agent
technology. In each of these applications, the interaction between agents and
environments has to be addressed. This is particularly true in application areas
for agent technology such as multi-agent based simulation and the use of agents
in (serious) gaming [12,20,21]. In the former, agents need to be connected to
computational models of real-world scenarios whereas in the latter agents are
used to control virtual characters that are part of a game. The design of agent-
environment interaction raises many interesting issues such as who is in control of
particular features of the system and what would be the right level of abstraction
of the interface that supports the interaction. Technically, there are also many
challenges as witnessed by [11] who discuss an interface for connecting agents to
the game Unreal Tournament 2004. This gaming environment has been identi-
fied as a potentially interesting testbed for multi-agent systems [6]. But without
a suitable, generic interface that supports flexible agent-environment interaction
such a testbed is unlikely to be widely used.

The availability of many interesting environments for applying agents does
not mean that they are easily accessed by agents that are built using different
platforms. To the contrary, in practice, it is often the case that agent developers
rebuild very similar environments such as grid-like environments from scratch
(one well-known toy example is the Wumpus environment [26] of which many
implementations exist). Apart from the duplicate work of developing these envi-
ronments, this also means that dedicated interfaces for agent-environment inter-
action are built: this makes it difficult to reuse existing environments. Instead,
it would be much better to work with an environment interface standard which
provides all the required functionality for connecting agents to an environment in
a standardized way. If environments were developed using such a standard, they
could be exchanged freely between agent platforms that support the standard
and thus would make already existing environments widely available.

An Interface for Agent-Environment Interaction 141

In this paper, we propose an environment interface standard that facilitates
the sharing and easy exchange of environments for agents. Such a standard will
facilitate the reuse of environments between agent platforms; it will support the
easy distribution of environments such as the Multi-Agent Contest [15], Unreal
Tournament,and many others. There are, however, many other benefits. An en-
vironment interface standard will provide a standardized and general approach
for designing agent-environment interaction: this is important for the compar-
ison of agent platforms as it would ensure that the same interface is used by
each platform. Moreover, a generic interface will support the development of
truly heterogeneous MAS, consisting of agents from several platforms. From a
more abstract point of view, the design of an interface standard will also increase
insight and conceptual understanding of agent-environment interaction.

Our approach is to design an interface that is as generic as possible, and that
facilitates reuse as much as possible from existing interfaces. Clearly, there is
a trade-off between these two goals. Our strategy for designing a generic envi-
ronment interface is (1) to start with what is currently “out there” in existing
platforms, and (2) to try to merge this into a generic interface which is sufficiently
close to these approaches. As agent-oriented programming platforms seem par-
ticularly suitable for developing agents, we have chosen to use four of the more
well-known agent programming languages (APLs) as our starting point. The
advantage of this choice is that each of these languages to some extent have al-
ready solved the problem of agent-environment interaction even though in ways
more or less specific to the language. As a consequence, a second advantage is
that it may be easier to adapt such platforms to the new interface standard,
and we can evaluate the interface proposal by implementing it in these agent
languages. The design outlined in this paper fits for current APLs and we are
confident that our interface would also be suitable for other agent platforms.
We have incorporated the same functionality as has been used to connect the
selected APLs to environments in the past and improved upon those interfaces.
Our current experience has shown that EIS eases the issue of connecting APLs
to environments, when it comes both to time as well as structure, showing that
standardization helped here.

The paper is organized as follows. The design of an environment interface re-
quires a meta model of environments, agents, and agent platforms. In Section 2,
the principles and requirements such a meta-model should satisfy are identified
and the basic components of the model, their interrelations, and the functional-
ities provided are described. The meta model is used in Section 3 to define the
proposed environment interface standard, the main contribution of this paper.
Section 4 discusses related work and Section 5 evaluates the proposed standard.

2 Principles and Meta-model

2.1 Principles

Two of the main motivations for introducing a generic environment interface are
to facilitate the easy exchange of environments between agent platforms and to

142 T. Behrens et al.

gain a more thorough understanding of the issues related to agent-environment
interaction. The environment interface should allow for: (1) wrapping already
existing environments, (2) creating new environments by connecting already ex-
isting applications, and (3) creating new environments from scratch. To this end,
in this section we discuss and present requirements such an interface should sat-
isfy. We do so by introducing various principles the interface should adhere to. We
have analyzed the agent-environment support provided by four well-known agent
programming languages: 2APL [14], GOAL [17], Jadex [9], and Jason [10].
Based on the principles, we then present a meta-model for an agent-environment
interface that is able to provide at least the support for agent-environment in-
teraction already provided by existing agent platforms (Section 2.2).

In order to guide the design of the interface, and to ensure that the inter-
face meets our objectives, we have identified a number of principles we believe
a generic environment interface should meet. First, as we aim for a generic in-
terface, the interface should impose as few restrictions on agent platforms and
environments as possible. More specifically, we believe that an environment in-
terface should not impose: (1) scheduling restrictions on the execution of actions
(actions can be scheduled by the agent platform and/or by the environment), (2)
restrictions on agent communication or organization structure (communication
facilities may be provided by the agent platform as well as by the environment),
(3) restrictions on what is controlled in an environment or how this control is im-
plemented except for the fact that control is established by an agent performing
actions , and (4) restrictions on how various components of the model should
be implemented; for example, the interface should allow for different types of
agent-environment connection (e.g. TCP/IP, RMI, JNI).

Second, as the interface is aimed at facilitating comparison of agent platforms,
a strict separation of concerns is advocated: the interface should not make any
assumptions about either the agent platform or the environments such platforms
are connected to, except for the type of connection that is established and as-
sociated functionalities. In our meta-model, this will be represented by a clear
distinction between agents and what we call controllable entities (i.e. “agents’
bodies situated in the environment”). Technically, this means the environment
interface must abstract from all implementation details concerning both agents
as well as environment objects. Instead, the environment interface may only
store identifiers to agents and entities and should administrate which agents
are associated with which entities (i.e. “who controls which body”). This level
of abstraction is required to ensure that no additional implementation effort is
required once the agent platform has been adapted.

Finally, as a more technical requirement, the interface should support porta-
bility, i.e., the easy exchange of environments from one agent platform to another.
As most agent platforms are implemented using Java it is at least possible to
provide this kind of functionality for such platforms if certain fixed policies are
adopted for initialising an environment.

An Interface for Agent-Environment Interaction 143

2.2 Meta-model

We have identified five components that are part of the meta-model on which
we base the design of the proposed environment interface. This meta-model is
illustrated in Fig. 1, and includes an environment model, an environment inter-
face that consists of an environment management system and an environment
interface component, an agent platform and agents.

APL Side Environment Side

Environment
Management

System

Platform

Agents

Environment
Interface

Environment
Model

Fig. 1. The components of our environment meta-model. The platform and the agents
are on the APL side. The environment management system is in between. The specific
environment model is on the environment side. A specific environment model combined
with the environment interface, yields a specific environment interface.

Our environment model assumes the presence of a specific kind of entity. [7]
defines an entity as “any object or component that requires explicit representa-
tion in the model.” In the context of agent-environment interaction, the entities
that we are interested in may be controlled by an agent. This means that the
behavior generated by the entity can be controlled by an agent if the agent is
properly connected to the entity. It is the task of the interface to establish such
a connection. Entities in an environment that can be so controlled are called
controllable entities.

Controllable entities facilitate the connection between the agents running on
an agent platform and an environment by providing identifiers, effecting ca-
pabilities, and sensory capabilities to agents. An agent’s identifier allows the
environment to send percepts or events to agents by means of the interface.
Moreover, the effecting and sensory capabilities specified by controllable entities
allow the environment to contextualize an agent’s action repertoire, the actions’

144 T. Behrens et al.

effects, and which part of the environment can be sensed, thus establishing the
situatedness of the agents.

The objective of defining an environment interface standard is to provide a
generic approach for connecting agents to environments. Agents may refer to
almost any kind of software entity but the stance taken here is that agents are
able to perform actions in the environment, sense the state of the environment
and process such sensorial input, and receive and process events that are gener-
ated by the environment. We use the following very generic definition taken from
[26] that includes precisely these two aspects: An agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that
environment through effectors. We do not intend to restrict our proposal to any
specific kind of agent program, although we are primarily motivated by existing
agent-oriented programming languages.

An agent platform is the infrastructure that facilitates the instantiation and
execution of individual agents. It is also assumed to facilitate connecting agents
with environments and associating agents to controllable entities by means of
the environment interface functionality. Other than that, nothing else is assumed
about an agent platform.

The environment interface consists of two components: the agent-environment
interaction component and the environment management component. The
agent-environment interaction component manages the mapping and interaction
between individual agents and the agent platform on one hand, and the environ-
ment and controllable entities on the other hand. The interaction between an
agent platform and the agent-environment interaction component allows agents
to act in an environment, sense its state, and receive events from it. We allow
two ways of sensing: (1) active sensing through specific sense actions, and (2)
passive sensing through a generic sense action embedded in the control cycle of
the agents. Using the agent-environment interaction component, the platform
can process different types of actions by calling different methods of this com-
ponent and possibly wait for the return values which are subsequently passed
on to the platform. The values returned can be either success/failure notifica-
tions or sense information if actions were (passive or active) sense actions. The
environment interface can also interact with a platform by sending an event to
a specified agent. The platform is then responsible to pass the event on to the
specified agent (e.g., by adding the event to the agent’s event base).

3 A Generic Environment Interface

In this section, we explain our ideas for a generic environment interface. First,
we define an interface intermediate language that facilitates data-exchange (per-
cepts, actions, events) between different components. Second, we assume a func-
tional point-of-view of the interface architecture. The interface provides functions
for:

1. attaching, detaching, and notifying observers (software design pattern);
2. registering and unregistering agents;

An Interface for Agent-Environment Interaction 145

3. adding and removing entities;
4. managing the agents-entities-relation;
5. performing actions and retrieving percepts; and
6. managing the environment.

3.1 Motivating Example: Multi-Agent Contest

The Multi-Agent Programming Contest (MAPC) 2010 tournament consists of a
series of simulations. In each simulation (see Fig. 2) two teams of agents compete
in a grid-like world. There are virtual cowboys that can be controlled by agents.
Agents have access to incomplete information, because the cowboys have a fixed
sensor-range. Acting means moving a cowboy to a neighboring cell on the grid.
There are no further actions. The environment contains obstacles: some cells
can be blocked and thus are unreachable. The grid is also populated by virtual
cows, that behave according to a simple flocking-algorithm. To win a simulation,
an agent team has to herd more cows, and take them to their own corral, than
the opponent team. The simulation proceeds through discrete time steps. In
each step, agents can perceive, have a fixed amount of time to deliberate, and
are then allowed to act. After a number of steps the simulation is finished. The
tournament is run by the MASSim-server, which schedules and runs simulations.

Fig. 2. A screen-shot of a simulation from MAPC 2010. Cowboys (red and blue circles)
should scare cows (brown ellipses) into the corrals (red and blue rectangles). In this
environment, acting is moving the cowboys, and perceiving is getting information about
which objects are contained in each cowboy’s square of visibility.

146 T. Behrens et al.

Agents are supposed to connect to the server as clients. Communication between
clients and server is facilitated by exchanging XML-messages via the TCP/IP
protocol.

We have given a very informal but adequate description of the environment-
model. The environment is discrete in space (grid-world) and time (step-wise
evolution). Platforms can interface with the MASSim-server by adhering to the
defined communication-protocol. This has to be done for every platform, in a
way specific to that platform. This is the case because, as we have observed,
every platform has a specific way of connecting to environments. Every platform
would have to use that connection-mechanism, parse XML-messages to evaluate
the percepts, and generate XML-messages for performing actions. Now, assuming
that a platform would be EIS-compatible, you only have to go through the trouble
of connecting to the MASSim-server once and create a specific environment-
interface.

3.2 Interface Intermediate Language

An important design decision has been to define, as part of the environment
interface, a convention for representing actions and percepts. This convention is
called the interface intermediate language (IIL), and supports the exchange of
percepts and actions from/to environments. A conventional representation for
actions and percepts is required to be able to meet the second principle aimed at
facilitating comparison of platforms and the fourth principle that aims at easy
exchange of environments and portability. To meet these principles, the interface
should be agnostic to any implementation details of either agent platform or
environment; this can be achieved by an abstract intermediate language. The
convention proposed here, however, imposes almost no restrictions (which is in
line with our first principle of generality).

The language consists of: (1) data containers (e.g. actions and percepts), and
(2) parameters for those containers. Parameters are identifiers and numerals
(both represent constant values), functions over parameters, and lists of param-
eters. Data containers are: actions that are performed by agents, results of such
actions, and percepts that are received by agents.

Syntactically each element of the IIL is an abstract syntax-tree (AST). Fig. 3
shows the relationship of the IIL-elements. Internally, each such element is stored
as a tree of Java-Objects with the following structure:

– An DataContainer is either an Action or a Percept.
– An Action consists of (1) a string name that denotes the action’s name,

(2) an ordered collection parameters, containing instances of Parameter,
representing the parameters of the action, and (3) an integer timeStamp
encoding the exact time the action-object has been created.

– An Percept consists of (1) a string name that denotes the percepts’s name,
(2) an ordered collection parameters, containing instances of Parameter,
representing the parameters of the percept, and (3) an integer timeStamp
encoding the exact time the percept-object has been created.

An Interface for Agent-Environment Interaction 147

– A Parameter is either a Numeral, a Identifier, a ParameterList, or a
Function.

– A Numeral encapsulates a number value.
– An Identifier encapsulates a string value.

IILElement

DataContainer

Parameter

Action

Percept

Identifier

Numeral

ParameterList

Function

Fig. 3. The inheritance relation of the IIL-elements. Actions and percepts are data-
containers. Each data-container consists of a name and an ordered collection of param-
eters.

For the sake of readability each IIL-element can be printed either in a prolog-like
or in a XML-notation. Note however, that these string representations are not
supposed to be used on either the platform-side or the environment-side. They
are for reading purposes only.

Example 1 (a simple action with two atomic parameters). Assuming the exis-
tence of an entity that is capable of moving in a grid-like world, consider that
this entity’s action-repertoire includes an move-action that moves the entity to
a position [X, Y]. This is the Prolog-like representation of such an action:

moveTo(2,3)

The action’s name-field is moveTo. There are two parameters 2 and 3. Both of
the Identifier-type.

This is the XML-representation of the action:

<action name="moveTo">
<actionParameter> <number value="2"/> </actionParameter>
<actionParameter> <number value="3"/> </actionParameter>

</action>
�

148 T. Behrens et al.

Example 2 (another action using functions and a list). Consider now that the
same entity is capable of performing a more complex action, that is following a
path consisting of a sequence of positions at a given speed..

followPath([pos(1,1),pos(2,1)],speed(10.0))

The action’s first parameter [pos(1,1),pos(2,1)] is a ParameterList. The
list’s elements are both instances of Function. Considering pos(1,1), the func-
tion name is pos, both parameters are instances of Numeral. The second param-
eter of the action is a function, too.

Here is the XML-representation of the action:

<action name="followPath"><actionParameter>
<parameterList>

<function name="pos">
<number value="1"/>
<number value="1"/>

</function>
<function name="pos">
<number value="2"/>
<number value="1"/>

</function>
</parameterList>

</actionParameter>
<actionParameter>
<function name="speed"><number value="10.0"/></function>

</actionParameter>
</action>

�

We do not need an explicit example for percepts, because syntactically percepts
and actions are almost equivalent.

At this point, we have introduced the syntax of the IIL, and elaborated on
it a bit by considering some examples. Now, we have to look at the semantics.
The semantics of an action and/or a percept depends on the specific environ-
ment. Again, EIS does not make any assumptions here, except for the syntactical
requirements.

After some experiments, a certain but trivial problem became evident. Some
environments (e.g. UT 2004) provide identifiers that might be interpreted as
variables on the platform side, thus rendering every IIL-expression that contains
such identifiers unusable by the platform, causing errors that are difficult to deal
with. To solve the problem we need to assume that none of the IIL-expressions
that are distributed by a specific environment-interface contains interpreters that
might be interpreted as variables.

3.3 Functional Point-of-View

What exactly is the correspondence between an environment-interface and the
components (platform, agents, etc.)? We allow for a two-way connection via

An Interface for Agent-Environment Interaction 149

interactions that are performed by the components and notifications that are
performed by the environment-interface.

Interactions are facilitated by function calls to the environment-interface that
can yield a return value. For notifications we employ the observer design pattern
(call-back methods, known as listeners in Java). The observer pattern defines
that a subject maintains a list of observers. The subject informs the observers
of any state change by calling one of their methods. The observer pattern is
usually employed when a state-change in one object requires changes in another
one. This is the reason why we made that choice. The subject in the observer
pattern usually provides functionality for attaching and detaching observers, and
for notifying all attached observers. The observer, on the other hand, defines an
updating interface to receive update notifications from the subject.

We allow for both interactions and notifications, because this approach is the
least restrictive one. This clearly corresponds to the notions of polling (an agent
performs an action to query the state of the environment) and interrupts (the
environment sends percepts to the agents as in the AgentContest example).

Agents and Entities: We make three assumptions: (1) there is a set of agents on
the agent platform side (we do not know anything about them), (2) there is a
set of controllable entities on the environments side (again we do not know any-
thing about them), and (3) agents can control entities through the environment-
interface. An important design decision that we had to make is to store in the
environment-interface only identifiers to the agents, identifiers to the entities,
and a mapping between these two sets. The reason for that decision is, as men-
tioned before, that we do not assume anything about the agent platform side
or the environment side. Fig. 4 shows the agents-entities relation. The agents
live on the agent platform side, they are known by the environment-interface
through their identifiers. The entities live on the environment-side, and they
are also known by their identifiers. The agents-entities relation is stored as a
mapping between both sets of identifiers. In the AgentContest, each cowboy is a
controllable entity. Cows are entities as well but they are not controllable. Each
agent can control only a single cowboy.

In general, we allow the agents-entities relation to be arbitrary. For example,
we also allow for one agent to be associated with several entities. This would
be useful when using the agents&artifacts meta-model [23] to provide means
for agent-coordination through the environment. An artifact would be an entity
that can be controlled by several agents. Agents would perceive the state of the
artifact and can act so as to change it.

Attaching, Detaching, and Notifying Observers: There are two directions for
exchanging data between components and environment interfaces. One is via
environment observers, which inform observers about changes in the environ-
ment or the environment interface. The second is via agent observers, which
send percepts to agents. In order to facilitate sending events (i.e. percepts as no-
tifications and environment events), the interface provides functions that allow
for attaching and detaching observers, and for notifying components connected

150 T. Behrens et al.

Environment Interface

Agent-Platform Side Environment Side

Agent

Agent

Agent

Id

Id

Id

Id

Id

Id

Id

Fig. 4. The agents-entities relation. We distinguish between agents, which are platform-
properties, and controllable entities, which are environmental properties. Agents have
access to the entities effecting and sensory capabilities. In general the agents-entities-
relation, depends on the specific environment-interface.

via observers. Listeners are useful when connecting to the AgentContest envi-
ronment, since it is the simulator that actively provides agents with percepts.

Registering and Unregistering Agents: This step is the first to facilitate the inter-
action between agents and environments and establishing the agents’ situated-
ness. It is necessary for the internal connection between agents and entities. The
interface provides two methods: one for registering (registerAgent), and one
for unregistering an agent (unregisterAgent). We note that the agents them-
selves are not registered to the interface; instead, identifiers as representatives
are stored and managed. We note that only identifiers representing the agents
are stored and managed by the interface.

Adding and Removing entities: Entities are added and removed in a similar
fashion to agents. Again identifiers representing entities are stored instead of
the entities themselves. There are two methods: the first (addEntity) adds, and
the second one (deleteEntity) removes an entity. Again this is necessary to
facilitate the connection between agents and entities. Once an entity is added
or removed, any observing components (platform and/or agents depending on
the design of the platform) are notified about the respective events. This is done
in order to allow components to react to changes in the set of entities in an
appropriate manner.

An Interface for Agent-Environment Interaction 151

Managing the Agents-Entities Relation: Associating an agent with one or several
entities is the second and final step of establishing the situatedness of agents
by connecting them to entities that provide effectory and sensorial capabilities.
The agents-entities relation is manipulated by means of three methods. The
first method (called associateEntity) associates an agent with an entity, the
second one (freeEntity) frees an entity from the relation, and the third one
(freeAgent), frees an agent. This can be done by the interface internally and
by other components that have access to it as well. Restrictions on the structure
of the relation can be established by the interface. In the AgentContest, for
example, one agent is supposed to control at most one virtual cowboy.

Performing Actions and Retrieving Percepts: The agents-entities relation is a
connection between agents and the sensors and effectors of the associated enti-
ties. We establish two directions of information flow. Each direction corresponds
to a typical step in common agent deliberation cycles. We have facilitated the
management of the two directions of flow by following a unified approach whereby
two methods are provided by the interface. The first one (performAction) allows
an agent to act in the environment through the effectors of its associated enti-
ties. The second method (getAllPercepts) allows an agent to sense the state of
the environment through the sensors of the associated entities. In the “cows and
cowboys” scenario, nine actions are available. One for connecting to the server
at a given IP address with valid username and password, and the other eight
for moving the cowboy in each possible direction. The method getAllPercepts
retrieves the last percept sent by the server.

Managing the Environment: Although different environments provide different
support to manage the initialization, configuration, and execution of the envi-
ronment itself, it is useful to include support for environment management in the
environment interface. This allows agent platforms to provide this functionality
by means of the interfaces that come with these platforms and relate environment
functionality with similar functionality offered by the platform. For example, it
is often useful to be able to “freeze” a running MAS simultaneously with the
environment to which the MAS is connected by means of pause functionalities
provided by the platform and the environment. As there is no common func-
tionality supported by each and every environment, we have chosen to provide
support for environment management by introducing a convention for labeling
a set of environment commands and environment events. The commands that
are part of the proposed environment management convention include starting,
pausing, initializing, resetting, and killing the environment.

3.4 Implementation Details

The goal of developing an environment interface standard is to facilitate the easy
exchange of environments. The interface would reduce the implementation effort
of connecting agent platforms to environments. Of course, the effort of connecting
to the environment through an environment interface should not substantially

152 T. Behrens et al.

increase the effort needed for directly connecting agents to an environment.
Below, we report on the experience we gained with adapting four agent platforms
so that they support the environment interface as well as the experience gained
with two environments that were adapted to support the environment interface.

In order to create an environment interface for a given environment, dedicated
code that is specific to the environment is necessary. To that end, a particular
Java interface has to be implemented. That interface enforces the functional con-
tract introduced in subsection 3.3. Alternatively, the developer can inherit from
a class that contains a default implementation for all of the contract’s methods.
Whatever path the developers follow, they need to establish a connection to the
environment.

Supported Agent Platforms. To evaluate the ease of use and generality of
the developed EIS concepts and components, we have connected four different
APLs to example environments developed with the EIS. For 2APL, GOAL,
Jadex, and Jason, a connection has been established with less than one day of
coding effort each.

2APL proved to be compatible with EIS. In order to establish a connection a
two-way converter for the interface intermediate language had to be developed.
Furthermore, the environment loading mechanism of 2APL had to be replaced
with the environment-interface loading mechanism provided by EIS. Percepts
sent by EIS using the observer functionality are translated into 2APL events and
handed over to the event-handling mechanism of the interpreter. Finally, special
external actions have been added to facilitate the manipulation of the agents-
entities relationship: (1) retrieving all entities, (2) retrieving all free entities, (3)
associating with one or several entities, and (4) disassociating with one or several
entities.

The original environment interface of GOAL did not fit with everything pro-
vided by the environment interface. It nevertheless proved quite easy to con-
nect the interface to GOAL as most functionality provided by the interface is
straightforwardly matched to that provided by the GOAL agent platform. Sim-
ilar to 2APL, a two-way converter for the interface intermediate language had
to be developed with little effort required. There were no percepts as notifica-
tions (like events in 2APL), prior to the adaptation to EIS. GOAL only allowed
for retrieving all percepts in a distinct step of the deliberation cycle. Percepts
as notifications are now collected and processed together in the step where all
percepts are processed. Also, the MAS file specification of GOAL has been ex-
tended. Now one can use launch rules to connect specific agents with specific
entities. This allows for instantiating agents even during runtime.

For connecting Jadex agents to EIS, it is sufficient to make all agents of one
application aware of the concrete EIS object, implementing the current environ-
ment. In order to do this in a systematic way, the Jadex concept of space was
used. A space may represent an arbitrary underlying structure of a MAS that
is known by all agents. To support the EIS, a special EISSpace has been pro-
vided, which implements the required interfacing code for connecting to an EIS-
based environment. Therefore, the participation in such an environment can now

An Interface for Agent-Environment Interaction 153

simply be specified in the Jadex application descriptor (“.application.xml”).
When such a defined application is started, the initial agents as well as the EIS
environment will be created. Agents can then access EIS by fetching the corre-
sponding space from their application context and use the EIS Java API directly
for, e.g., performing actions or retrieving percepts.

Jason’s integration with EIS was straightforward since almost all concepts
used in the EIS are also available in Jason. The integration consists essentially
of: (1) the conversion of data types, and (2) the development of a class that
adapts EIS environments to Jason environments. In regards to (1), all EIS data
types have an equivalent in Jason. Although some data types in Jason (e.g.,
Strings) do not have a corresponding type in EIS, they can be translated to EIS
identifiers. In regards to (2), the adaptor is a normal Jason Environment class
extension that delegates perception and action to the EIS. The adaptor class is
also responsible for registering the agents with the EIS as they join a Jason
multi-agent system and wake them up when the environment changes (using the
observer mechanism available in EIS). From all the concepts used in EIS, only
that of “entities” is not supported by Jason as all actions and perceptions are
relative to an agent and the overall environment rather than a particular entity
therein. For sensing, the chosen solution was to add annotations to percepts that
indicate the entity of origin. For actions, in case the agent is associated with
exactly one entity, the action is simply dispatched to that entity. Otherwise, a
special action that receives the relevant entity as a parameter must be used.

Implemented Environments. The environment interface comes with several
very simple examples of environments for illustrative purposes. These examples
are mainly provided for clarifying some of the basic concepts related to the
interface. We briefly discuss here two EIS-enabled environments, that may be
used by any agent platform that supports EIS.

The elevator environment is a good example of an environment that was not
built specifically with agents in mind, and is available from [1]. The environment
is a simulator of arbitrary multi-elevator environments where the elevators are
the controllable entities and the people using the elevators are controlled by the
simulator. It comes with a graphical user interface (GUI) and a set of tools for
statistical analysis. The environment had been originally adapted for the GOAL
platform. The additional effort required to re-interface that environment to EIS
was very little. The main issue was the event handling related to the initial
creation of elevators, a functionality provided and supported by the environment
interface which required some additional effort for adapting the environment to
provide such events. The environment provides actions that take time (durative
actions) instead of discrete one-step actions, which illustrates that the interface
does not impose any restrictions on the types of actions that are supported.
Similarly, elevators only perceive certain events but not, for example, whether
buttons are pressed in other elevators. The percept handling related to this
was easily established, illustrating the ease with which to implement a partially
observable environment. We have successfully used the elevator environment
with GOAL and 2APL.

154 T. Behrens et al.

Connecting to the MASSim-server turned out to be easy. As already men-
tioned, the entities in the AgentContest-environment are cowboys that herd
cows. From the implementation point-of-view each connection to an entity is a
TCP/IP connection. Acting is facilitated by wrapping the respective action into
an XML-message and sending it to the server. Perceiving is done by receiving
XML-messages from the server and notifying possible agent-listeners. Further-
more, for the sake of convenience, percepts are stored internally for a possible
active retrieval. Much effort had to be invested in mappings from the interface
intermediate language to the XML-protocol of the AgentContest and vice versa.
We have shown that the interface does indeed not pose any restrictions on the
connection between itself and environments.

Finally, it is worth mentioning that an interface to Unreal Tournament 2004
[18] is under developmentGrown out of the need for a more extensive evalua-
tion of the application of logic-based BDI agents to challenging, dynamic, and
potentially real-time environments, this EIS interface might help putting agent
programming platforms to the test.

Evaluation Summary. The relative ease with which the interface has been
connected to four agent platforms and various environments already indicates
that the interface has been designed at the right abstraction level for agent-
environment interaction. The four agent platforms differ in various dimensions,
regarding, for example, the functionality provided for handling percepts and ac-
tions (is the platform more logic-oriented or Java-based?) and how environments
were connected to these platforms before using the interface. The environment
interface nevertheless could be connected to each of the platforms easily, thus
providing evidence of its generality and as well. Of course, we need more agent
platforms to use the environment interface, and we have invited other platform
developers to do so, but we do not expect this will pose any fundamental new
issues. Initial experience with various environments has also shown that little to
no restrictions are imposed on the types of environments that can be connected
to an agent platform using the interface. The interface, for example, can support
both real-time or turn-based environments, as well as environments that differ in
other respects. Although we have mainly discussed software environments, there
is no principled restriction imposed by EIS that would make it only applicable
to such environments. It has been shown already in the past that it is possible
to connect agent platforms to embedded platforms such as robots. EIS just pro-
vides another, more principled approach for doing so. In fact, it is planned to
use EIS to connect to a robotic platform in the near future.

4 Related Work

The EIS was designed as a building block for an agent application, providing a
standardized way of interfacing the agents with environmental components. In
the context of agent applications, at least the following forms of environments can
be distinguished: (1) environments in agent-based simulation models, (2) virtual

An Interface for Agent-Environment Interaction 155

environments such as testbeds or computer games, (3) real application compo-
nents such as enterprise information systems, and (4) coordination infrastructures.

Agent-based simulation models can be used for performing experiments
and analyzing the obtained result data. Agent simulation toolkits are specifically
designed for this purpose and often employ custom agent models (e.g. simple task-
based agents) and a proprietary form of defining the environment behavior. Usu-
ally, there is a tight coupling between agents and the environment that is designed
to support these toolkit-specific models. Therefore, simulation toolkits are closed
in the sense that they do not support (and are not meant to) connecting external
agents to simulated environments or simulated agents to external environments.

The specialized architecture Koko [27] provides a reusable and extensible en-
vironment, aiming at an enhanced user experience by linking independent ap-
plications. With our work we neither focus on human interaction with agents or
the environment, nor are we exclusively interested in multiplayer and/or social
games. We see these only as a single class of test-cases out of many ones.

Agent programming testbeds and contests, such as TAC, [5], RoboCup, [4]
and the Multi Agent Contest [3], are specifically designed to offer open inter-
faces for connecting different types of agents to the provided test environment.
Moreover, some network-based computer games with remote playing capabili-
ties (e.g. Unreal Tournament) offer interfaces for controlling entities in the game
environment which have been adapted to connect to software agents instead of
human players [11]. All of these interfaces are quite specific with regards to the
testbed or game they were created for, and therefore agent platform developers
have to repeat the implementation effort of connecting their agents to each of
these interfaces.

To connect agents to an environment composed of real application compo-
nents, different options are available. Application-centered approaches would
directly use available component interfaces or domain specific standards (such
as HL7 in the healthcare domain) for the connection. Depending on the severity
of the “impedance mismatch” between the component interface and the agent
platform, this can become quite laborious and additionally has to be repeated for
each platform and each application. Agent-centered approaches try to “agentify”
the environment components, leading to a more seamless and straightforward
connection. For example WSIG (Jade) [2] is an infrastructure that allows agents
to interact with web services as if they were agents and vice-versa.

One well known approach for coordinating agents is by using blackboard ap-
proaches, which offer agents a possibility to decouple their interactions in terms
of time and potential receivers. Besides passive blackboards acting as informa-
tion stores only, also more advanced tuple spaces such as ReSeCT [22] have been
devised with which one can also capture domain logic in terms of rules. The Open
Agent Architecture (OAA) [13] is another form of coordination environment, in
which the cooperation among agents and also humans is facilitated by automatic
task delegation and execution. In contrast to EIS, these approaches focus on in-
formation exchange and problem solving and do not tackle the question of how
environments could be generically interfaced.

156 T. Behrens et al.

Organizational or institutional approaches such as Islander [16] and Moise [19]
regulate agent behavior at high-level allowing designers and/or agents to define,
monitor, and enforce certain kinds of organizational constraints (e.g. norms and
group membership). The latest platform for Moise is founded on the notion of
organizational environment where agents can perceive and act on their organi-
zation. This kind of environment can also contain artifacts specially developed
to enforce some norms (e.g. a surgical room’s door that forbids agents to enter
if they do not play the role of doctor). Other approaches affect more directly
agent behavior, for example biologically inspired approaches such as pheromone-
based techniques to guide agent movement. While these approaches make use
of the notion of environment, they are quite domain specific and do not allow
for arbitrary environment development. In contrast, the A&A model [23] has
been proposed as a generic paradigm for modeling environments. In the A&A
paradigm, an application is composed of agents as well as so called artifacts.
While the model makes no restricting assumptions with respect to the agents,
the interface and operation of an artifact is intentionally quite rigidly defined.
An implementation of the A&A model is available in form of the distributed
middleware infrastructure CArtAgO [25].

We see EIS not as a competitor, but rather as a desirable complement to
the above mentioned approaches. For example, one possible use of the EIS stan-
dard is reducing the required implementation effort for connecting agent to, say,
virtual environments, as once an EIS-based interface has been developed for a
contest or game, it can easily be reused by different agent platforms. Unlike
FIPA-compliant approaches such as the WSIG, the focus of the EIS is providing
a lean interface, i.e., when FIPA-compliant communication is not necessary, the
EIS allows achieving similar openness and portability with much less effort. In
particular, we see much potential in a combination of EIS and CArtAgO. Cur-
rently, there are specific bridges available for connecting agent platforms such
as Jadex, Jason and 2APL to CArtAgO [24]. Implementing an EIS bridge for
CArtAgO could lead to a universal implementation that could be used to con-
nect CArtAgO to any agent platform (if it is already EIS-enabled). In general,
the EIS standard will facilitate connecting any agent platform to all sorts of
environments (A&A based as well as others).

5 Conclusion

The design and implementation of our proposal for an environment interface
standard (see [8] for a more detailed exposition and more technical details) is
motivated by the fact that it has been difficult to connect arbitrary agent plat-
forms to many of the available environments. The design of the interface provides
additional insight into the general problem of agent-environment interaction. At
a conceptual level, the development of the environment interface has yielded
insight, for example, into some of the distinguishing features of existing agent
platforms. For example, where some platforms expect events initiated by the en-
vironment other platforms are based on a polling model for retrieving percepts.

An Interface for Agent-Environment Interaction 157

The initial results of applying the interface to various agent platforms and
environments have been very encouraging: they demonstrate the generality and
usability of our interface. The environment interface standard allows the porta-
bility and reuse of application and testing environments across existing and newly
developed agent platforms. Furthermore, it provides a basis for heterogeneous
agent applications composed of agents implemented in different agent platforms.
The experience so far has also shown that connecting to and using the interface
requires minimal effort and can be implemented easily.

Although the environment interface proposed here provides a solid basis for
agent-environment interaction, there are some topics that require additional
work. One of these topics involves the environment management system which
has only been partly supported by most agent platforms; it facilitates combina-
tions of agent platform and environment functionalities such as combined reset-
ting of MAS and environment, but this requires additional investigation. We also
need to gain more experience with the dynamic addition and removal of entities
and the handling of such events by platforms. Related to the previous point,
there is the issue of managing various types of entities. For example, how can
the interface be extended to support the identification of these different types?
Finally, we need to get more agent platforms, including platforms from multi-
agent based simulation and other areas, involved and support the environment
interface to establish our proposal as a genuine (de facto) standard.

References

1. Elevator simulator homepage, http://sourceforge.net/projects/elevatorsim/
2. Java Agent Development Framework homepage, http://jade.tilab.com/
3. Multi Agent Contest homepage, http://www.multiagentcontest.org/
4. RoboCup homepage, http://www.robocup.org/
5. Trading Agent Competition homepage, http://www.sics.se/tac/
6. Adobbati, R., Marshall, A., Scholer, A., Tejada, S., Kaminka, G., Schaffer, S.,

Sollitto, C.: Gamebots: A 3d virtual world test-bed for multi-agent research. In:
Proceedings of the 2nd International Workshop on Infrastructure for Agents, MAS,
and Scalable MAS (2001)

7. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-
tion. Prentice Hall (2009)

8. Behrens, T.M., Dix, J., Hindriks, K.V.: Towards an environment interface standard
for agent-oriented programming. Technical Report IfI-09-09, Clausthal University
of Technology (September 2009)

9. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley & Sons
(2007)

10. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI-agent system combining
middleware and reasoning. In: Unland, R., Klusch, M., Calisti, M. (eds.) Software
Agent-Based Applications, Platforms and Development Kits (2005)

11. Burkert, O., Kadlec, R., Gemrot, J., Bda, M., Havlcek, J., Drfler, M., Brom, C.:
Towards fast prototyping of IVAs behavior: Pogamut 2. In: Proceedings of 7th
International Conference on Inteligent Virtual Humans (2007)

http://sourceforge.net/projects/elevatorsim/
http://jade.tilab.com/
http://www.multiagentcontest.org/
http://www.robocup.org/
http://www.sics.se/tac/

158 T. Behrens et al.

12. Buro, M.: Call for AI Research in RTS Games. In: AAAI 2004 AI in Games Work-
shop (2004)

13. Cheyer, A., Martin, D.: The open agent architecture. Journal of Autonomous
Agents and Multi-Agent Systems 4(1), 143–148 (2001)

14. Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

15. Dastani, M.M., Dix, J., Novák, P.: Agent Contest Competition: 3rd Edition. In:
Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS
2007. LNCS (LNAI), vol. 4908, pp. 221–240. Springer, Heidelberg (2008)

16. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor.
In: AAMAS 2002: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1045–1052. ACM, New York (2002)

17. Hindriks, K.V., Roberti, T.: GOAL as a Planning Formalism. In: Braubach, L.,
van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp.
29–40. Springer, Heidelberg (2009)

18. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraaijenbrink, N.,
Pasman, W., de Rijk, L.: Unreal GOAL bots. In: Preproceedings of the AAMAS
2010 Workshop on Agents for Games and Simulations (2010) (to appear)

19. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisa-
tions with organisational artifacts and agents: giving the organisational power back
to the agents. Journal of Autonomous Agents and Multi-Agent Systems (2009)

20. Mili, R.Z., Steiner, R.: Modeling Agent-Environment Interactions in Adaptive
MAS. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS
(LNAI), vol. 5049, pp. 135–147. Springer, Heidelberg (2008)

21. Müller, J.: Towards a Formal Semantics of Event-Based Multi-Agent Simulations.
In: David, N., Sichman, J.S. (eds.) MAPS 2008. LNCS (LNAI), vol. 5269, pp.
110–126. Springer, Heidelberg (2009)

22. Omicini, A.: Formal ReSpecT in the A&A Perspective. Electronic Notes of Theo-
retical Computer Science 175(2), 97–117 (2007)

23. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

24. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating
artifact-based environments with heterogeneous agent-programming platforms. In:
7th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pp. 225–232. IFAAMAS (2008)

25. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A Framework for Prototyping Artifact-
Based Environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

26. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall (2003)

27. Sollenberger, D., Singh, M.: Architecture for Affective Social Games. In: Dignum,
F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and
Simulations. LNCS, vol. 5920, pp. 79–94. Springer, Heidelberg (2009)

Author Index

Artikis, Alexander 96

Behrens, Tristan 139
Bordini, Rafael H. 139
Braubach, Lars 139
Broekens, Joost 25

Carr, Hugo 96
Collier, Rem 63

Dastani, Mehdi 139
Dix, Jürgen 139

Hindriks, Koen V. 25, 139
Hübner, Jomi F. 139

Jakob, Michal 3
Jordan, Howell R. 63

Kiss, Daniel 79

Logan, Brian 79

Madden, Neil 79

Novák, Peter 3

Pěchouček, Michal 3
Pitt, Jeremy 96
Piunti, Michele 119
Pokahr, Alexander 139

Ricci, Alessandro 119

Santi, Andrea 119

van Riemsdijk, M. Birna 41

Wiggers, Pascal 25

Yorke-Smith, Neil 41

	Title
	Preface
	Organization
	Table of Contents
	Part I: Invited Paper

	Towards Simulation-Aided Design of Multi-Agent Systems

	Introduction
	Running Case Study: Free-Flight-Oriented Air Traffic Control

	Simulation-Aided Design of Multi-Agent Systems
	Core Concepts
	Development Process
	Scope of Applicability

	Design Considerations of the SADMAS Approach
	Bottom-Up System Evolution
	Elaboration Tolerance
	Cross-Platform Portability and Deployment Issues

	Requirements on a SADMAS Platform
	Adjustable Simulation Fidelity
	Rich Environmental Modelling
	Simulation Scalability
	Mixed-Mode Support
	Evaluation Modes

	Discussion and Related Work
	Conclusions and Outlook
	References

	Part II: Reasoning

	Reinforcement Learning as Heuristic for Action-Rule Preferences

	Introduction
	Related Work
	The Agent Language GOAL
	Learning to Solve the Rule Selection Problem
	Reinforcement Learning
	GOAL-RL

	Experiments
	Setup
	Blocks World Experiments
	Logistics Domain Experiments

	Conclusion
	References

	Towards Reasoning with Partial Goal Satisfaction in Intelligent Agents

	Introduction and Motivation
	Background and Related Work
	Example Scenario
	Abstract Framework for Partial Goal Satisfaction
	Goal Template and Goal Instance
	Achievement and Unachievability
	Binary Goal Achievement

	Goal Adaptation
	Reasons for and Uses of Adaptation
	Cost/Benefit Analysis

	Towards an Embedding within a Goal Framework
	Reasoning in the Example Scenario

	Conclusion and Next Steps
	References

	Part III: Programming Languages

	Evaluating Agent-Oriented Programs: Towards Multi-paradigm Metrics

	Introduction
	Why Metrics?
	Measures of Product Quality
	Tools for Software Research

	Related Work
	Motivating Example
	Solution Architecture
	Preliminary Evaluation

	Paradigm-Independent Metrics
	Software as Aggregation Hierarchies
	Discovering Dependencies by Refactoring
	Coupling Between Elements (CBE)
	Lack of Cohesion of Elements (LCE)
	Results

	Conclusions
	References

	Atomic Intentions in Jason

	Introduction
	Jason
	Atomic Intentions
	Atomic Plans in Jason
	Failure of Atomic Plans

	A New Approach to Atomic Intentions
	Delta State
	Delta Belief Base
	Delta Plan Base
	Delta Event List

	Conclusion
	References

	Software Support for Organised Adaptation
	Introduction
	Background Work
	Dynamic Protocol Specification
	System Support for Adaptive Specifications

	PreSage-MS
	PreSage-MS Architecture
	Agents and Environment
	Event Calculus Manager
	Metric Space Plugin
	Environmental State Plugin

	PreSage Experimental Design
	Agent Design
	Protocol Design
	Metric Space Design
	Experimental Design and Example

	Discussion and Related Research
	Further Work
	Summary and Conclusions
	References

	Part IV: Environments

	Action and Perception in Agent Programming Languages: From Exogenous to Endogenous Environments

	Introduction
	Action and Perception in Agent Programming Languages
	The Action Model
	The Perception Model

	An Effective Interaction Model for Endogenous Environments
	Action Side
	Perception Side

	Evaluation Using CArtAgO
	The Action Model at Work
	Exploiting the Perception Model

	Related Works
	Conclusion
	References

	An Interface for Agent-Environment Interaction
	Introduction
	Principles and Meta-model
	Principles
	Meta-model

	A Generic Environment Interface
	Motivating Example: Multi-Agent Contest
	Interface Intermediate Language
	Functional Point-of-View
	Implementation Details

	Related Work
	Conclusion
	References

	Author Index

