
E. Corchado et al. (Eds.): HAIS 2012, Part II, LNCS 7209, pp. 89–96, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Self-Organizing Maps versus Growing Neural Gas
in Detecting Data Outliers for Security Applications

Zorana Banković, David Fraga, Juan Carlos Vallejo, and José M. Moya

ETSI Telecomunicación, Univ. Politécnica de Madrid,
Av. Complutense 30, 28040 Madrid, Spain

{zorana,dfraga,jcvallejo,josem}@die.upm.es

Abstract. Our previous work has demonstrated that clustering-based outlier de-
tection approach offers numerous advantages for detecting attacks in Wireless
Sensor Networks, above all adaptability and the possibility to detect unknown
attacks. In this work we provide a comparison of Self-organizing maps (SOM)
and Growing Neural Gas (GNG) used for this purpose. Our results reveal that
GNG is superior to SOM when it comes to the level of presence of anomalous
data during the training, as GNG is capable of detecting the attack even with
small portion of normal data during the training, while SOM need the majority
of the training data to be normal in order to detect it. On the other hand, after
both being trained with normal data, SOM performs somewhat better as the at-
tack becomes more aggressive, i.e. it exhibits higher detection rate, although
both are capable of detecting the attack in each case.

Keywords: Self-organizing maps, growing neural gas, outliers, wireless sensor
networks.

1 Introduction

In our previous work [1] we have demonstrated that clustering-based outlier detection
approach offers numerous advantages for detecting attacks in Wireless Sensor Net-
works (WSN), such as high adaptability, flexibility, possibility to detect unknown
attacks, no restrictions on training data, etc. Regarding clustering, the possibilities are
to deploy techniques such as k-means, k-NN, but also the topology-preserving com-
petitive methods, such as Self-organizing maps (SOM) [2], or Growing Neural Gas
(GNG) [3].

The topology preserving techniques are very convenient for our application, since
one of the main parameters that reveal the presence of outliers is the average distance
of a cluster to its closest neighbors. In the case of topology preserving techniques it is
very well known which the closest clusters are, thus making the calculation of the
mentioned parameter straightforward. Furthermore, the fact that both techniques use
exponentially decaying learning rate makes them less susceptible to the issue of poor
initialization. As k-means suffers from this problem, their advantage to it is obvious.
On the other hand, k-NN has been discarded from the start due to its high memory

90 Z. Banković et al.

consumption also during the testing process, which is unacceptable in resource li-
mited environments such as WSNs.

SOM and GNG mainly differ in the fact that the size of SOM is fixed from the
start, while the size of GNG grows during the training. Fixed size can be a limitation,
as it is not possible to know the optimal number of clusters from the start. In order to
overcome this issue in the case of SOM, we have deployed genetic algorithm (GA)
that in essence searches for the optimal clustering. However, GA consumes lots of
resources, which limits its application in WSNs. For this reason, we have imple-
mented GNG in order to overcome the issues of both SOM and GA.

The rest of the work is organized as follows. Section 2 provides some basic infor-
mation on the previous work in WSN security. Section 3 gives more detail to the de-
scription of the problem and on the implemented algorithms, while Section 4 provides
experimental evaluation. Finally, conclusions are drawn in Section 5.

2 Previous Work

Recently few solutions that deploy machine learning techniques appeared [7], [10].
Among these solutions we can also find a few anomaly based solutions [8], [9], [11]
that claim of having the possibility to detect unknown attacks. They uphold the idea
that machine learning techniques offer higher level of flexibility and adaptability to
the changes of the environment, as retraining can be done automatically.

However, the feature sets they deploy mostly include those features that capture
the properties of known attacks, i.e. those that are known to change under the influ-
ence of an attacker, or are known to be weak spots. This is their major deficiency, as
relying on these features only the known attacks or their variations can be detected.
Furthermore, it assumes that an attacker can exploit only the known vulnerabilities,
but general experience is that vulnerability is detected after being exploited by an
adversary. Some of them assume that the feature sets can be expanded [7], yet this has
to be done through a human intervention.

Thus, regarding previous work on WSN security, we can say that the main defi-
ciencies of the known solutions are: the scope of attacks they can detect is limited and
their adaptation has to be performed through human interaction. Thus, our aim is to
provide a machine learning based solution that does not suffer from these issues, i.e. a
solution that would be capable of detecting wide range of attacks, including the pre-
viously unseen ones, which would also be adaptable automatically.

3 Problem Definition

In order to provide uninterrupted network operation in WSNs, core network protocols
(aggregation, routing and time synchronization) have to be secured. Regarding
the attacks on the aggregation protocol, we assume that they demonstrate themselves
in skewed aggregated values, which can be the result of either a number of
skewed sensed values, or a compromised aggregated node. The assumption is very

 Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers 91

reasonable, having in mind that the main objective of these attacks is to provide
wrong picture of the observed phenomenon.

On the other hand, in time critical systems it is mandatory to receive information
within certain time window. If the attacker manages to introduce delays or desyn-
chronize clock signal in various nodes, the received critical information will not be up
to date, which can destabilize the system. Also, if the received information is not up
to date, the aggregated value will be skewed, as it will also be out of date. For these
reasons, and given the existing redundancy in WSNs, we believe that these attacks
can be detected as temporal and/or spatial inconsistencies of sensed values.

Regarding attacks on routing protocols [4], we assume that they will introduce new
and different paths than those that have been seen before. Here we have attacks whose
main objective is to compromise the routing protocol, and they usually do it by spoofing
or altering the data stored in the routing tables of the nodes. Thus, the resulting routing
paths will be different from those used in a normal situation. In the case of wormhole
for example, two nodes that are not within each other’s radio range result in consecutive
routing hops in routing paths, which is not possible in a normal situation. From these
examples we can see that the assumption about the attacks resulting in routing paths
different from those that appear in normal situation is reasonable. Thus, in this case we
want to detect temporal inconsistencies in paths used by each node.

3.1 Feature Extraction and Formation of Model

Following the idea of temporal and/or spatial inconsistency in the presence of attack-
ers, we want to provide the model of the data that would capture these properties and
allow us to deploy machine learning.

For the case of sensed values, we follow the idea presented in our previous work
[1] based on extracted n-grams and their frequencies within different time windows.
For the purpose of illustration, we will give a short example for a sensor that detects
presence. Let the sensor give the following output during the time window of size 20:
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0. If we fix the n-gram size on 3, we extract all
the sequences of size 3 each time moving one position forward. In this way we can
observe the following sequences and the number of their occurrences within the time
window: 111 – occurs 6 times, 110 – 2, 100 – 2, 000 – 6, 001 – 1, 011 – 1. Thus, we
can assign them the following sequences: 111 – 0.33, 110 – 0.11, 100 – 0.11, 000 –
0.33, 001 – 0.05, 011 – 0.05. In our model, the sequences are the features and their
frequencies are the corresponding feature values. Thus, the sum of the feature values
is always equal to 1. This characterization is performed in predefined moments of
time and takes the established amount of previous data, e.g. we can perform the cha-
racterization after every 20 time periods based on previous 40 values.

In a similar fashion, we form features for spatial characterization. The first step is
to establish vicinities of nodes that historically have been giving consistent informa-
tion. In this way, an n-gram for spatial characterization in a moment of time is made
of the sensor outputs from that very moment. For example, if sensors S1, S2, S3 that
belong to the same group each give the following output: 1 1 1 0 during four time

92 Z. Banković et al.

epochs, we characterize them with the following set of n-grams (each n-gram contains
at the first position the value of S1, the value of S2 at the second and the value of S3
at the third at a certain time epoch): 111 – occurs 3 times, 000 – occurs once, thus the
feature value of each n-gram is: 111 – 0.75, 000 – 0.25, i.e. the frequencies within the
observed period of time.

The same principle is followed for characterizing routes that a node has been using
to send its sensed data to the sink. Each routing hop adds its ID to the message that is
further forwarded, so the sink gets the information about the routing path together
with the message. Each sensor has its own model and each feature, i.e. n-gram in the
model consists of a predefined number of successive hops used in routing information
coming from the node. For example, if during the characterization time, the node has
used the following paths for routing its data to the sink: A-B-C-S – 3 times, A-D-E-F-
S – 2 times, A-B-E-F-S – 1 time (A – the node that is sending the data, B, C, … -
other nodes in the network, S- sink), we can characterize the routing with the follow-
ing n-grams (n=3): ABC, BCS, ADE, DEF, EFS, ABE and BEF. In all of the routes,
the n-gram ABC occurs 3 times, BCS – 3, ADE – 2, DEF - 2, EFS – 3, ABE – 1, BEF
– 1. The total number of n-grams is 15, so dividing the values given above with 15,
we get the frequencies of each n-gram which are the values that we assign to out fea-
tures, i.e. n-grams.

It is important to notice that the extracted feature vectors will not be of the same
size, so we are not able to use standard distance functions. For this reason, we calcu-
late distance using the approach presented in [5], which calculates distance between
sequences.

3.2 Attack Detection

We treat attacks as data outliers and deploy clustering techniques. There are two poss-
ible approaches for detecting outliers using clustering techniques [6] depending on the
following two possibilities: detecting outlying clusters or detecting outlying data that
belong to non-outlying clusters.

The important points necessary for the understanding of the principle is the dep-
loyed distance function [5], which is equivalent to Manhattan distance after making
the following assumption: the feature that does not exist in the first vector while exists
in the second (and vice versa) actually exists with the value equal to 0, since we can
say that it occurs with 0 frequency. In this way, we get two vectors of the same size
and the distance between the centre and an input is between 0 (when they are formed
of the same features with the same feature values) and 2 (when the features with the
values greater than 0 are completely different). In the same way, if the set of the fea-
tures of one is the subset of the feature set of the other, the distance will be between 0
and 1.

In during the testing, different n-grams occur in an input, that can happen when the
node starts sending data significantly different than before or starts using different
routes to send the data, the distance, which is the QE value defined previously,
between it and its corresponding centre will be greater than 1. This can serve as

 Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers 93

evidence of abnormal activities happening in the node or in its routing paths. It is also
a typical case when the training is performed with clean data.

3.3 Recovery from Attacks

Every sensor node is being examined by agents that execute clustering algorithms and
reside on nodes in its vicinity and listen to its communication. The agents are trained
separately. The system of agents is coupled with a reputation system where each node
has its reputation value that basically reflects the level of confidence that others have
in it based on its previous behavior. In our proposal, the output of an agent affects on
the reputation system in the way that it assigns lower reputation to the nodes where it
detects abnormal activities and vice versa. We further advocate avoiding any kind of
interaction with the low-reputation nodes: to discard any data or request coming from
these nodes or to avoid taking them as a routing hop. In this way, compromised nodes
remain isolated from the network and have no role in its further performance.

In this work the reputation is calculated in the following way. For the reasons ex-
plained in the previous chapter, the value (rep) for updating overall reputation based
on QE is calculated in the following way:

1 if (QE<1) rep = 1; 2 else rep=1-QE/2;

There are two functions for updating the overall reputation of the node, depending
whether the current reputation is below or above the established threshold that distin-
guishes normal and anomalous behavior. If the current reputation is above the thre-
shold and the node starts behaving suspiciously, its reputation will fall quickly. On the
other hand, if the reputation is lower than the established threshold, and the node
starts behaving properly, it will need to behave properly for some time until it reaches
the threshold in order to “redeem” itself. In order to achieve this, we use the function
x+log(1.2*x) because it provides what we want to accomplish: if x is higher than 0.5,
the output rises quickly, so the reputation rises; if x is around 0.5, the output is around
0, so the reputation will not change its value significantly; if x is smaller than 0.4, the
output falls below 0. Finally, the reputation is updated in the following way:

1 if (last_reputation[node]>threshold)

2 new_reputation[node]=last_reputation[node]+rep+log(1.2*rep);

3 else

4 new_reputation[node]=last_reputation[node]+0.05*(rep+log(1.2*rep));

If the final value falls out from the [0, 1] range, it is rounded to 0 if it is lower than 0
or to 1 in the opposite case.

However, if during the testing of temporal coherence, we get normal data different
from those that the clustering algorithms saw during the training, it is possible to get
high QE value as well. On the other hand, the spatial coherence should not detect any
anomalies. Thus, the final reputation will fall only if both spatial and temporal algo-
rithms detect anomalies. This is implemented in the following way:

94 Z. Banković et al.

1 if (value_rep < threshold)

2 { if (space_rep < threshold) result = value_rep;

3 else result = 1 - value_rep; }

4 else result = value_rep;

where value_rep is the reputation assigned by the algorithms for temporal characte-
rization and space_rep is the reputation assigned by the algorithms for spatial cha-
racterization.

Concerning the detection of routing protocol anomalies, the explained approach
can tell us if there is something suspicious in routing paths of a certain node. Yet, it
order to find out the nodes that are the origin of the attack, we need to add one more
step. In the second step, if the reputation of the routes calculated in the previous step
is lower then the established threshold, the hops that participated in bad routes will be
added to the global list of bad nodes, or if they already exist, the number of their ap-
pearance in bad routes is increased. The similar principle is performed for the correct
nodes. For each node, let the number of its appearances in bad routes be nBad and the
number of its appearances in good routes be nGood. Finally, if nGood is greater than
nBad, the node keeps its reputation value, and in the opposite case, it is assigned the
following reputation value: nGood / (nGood + nBad). In this way, as the bad node
spreads its malicious behavior, its reputation will gradually decrease.

3.4 Developed Techniques

Both SOM [2] and GNG [3] algorithm follow the standard steps. The only problem-
specific point is the centre, i.e. node representation and updating. Each centre is im-
plemented as a collection whose size can be changed on the fly and whose elements
are the n-grams defined in the previous text with assigned occurrence or frequency.
The adjustment of nodes (that belong to the map area to be adjusted) is performed in
the following way:

• If an n-gram of the input instance v(t) exists in the node, its φ(x) is modified ac-
cording to the centre update[2, 3];

• If an n-gram of the instance v(t) does not exist in the cluster centre, the n-gram is
added to the centre with occurrence equal to 1.

4 Experimental Evaluation

The proposed algorithm has been tested on the reputation systems simulator devel-
oped by our research group and designed using the C++ programming language. The
network consists of a number of distributed nodes. The reputation can be calculated in
various ways, which are the implementation of the class ReputationServer. The time
in the simulator is measured in time ticks, where one tick is equivalent to one sensing
period in WSNs. In this work the algorithms have been tested in the presence of the
Sybil attack[4], where the compromised node pretends to have multiple IDs, either
false, i.e. fabricated, or impersonated from other legitimate nodes, i.e. stolen IDs. The
attacker can affect on many aspects of network (aggregation, routing, etc.).

 Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers 95

In the following experiments we will present the performance of the approach in
various scenarios, varying the attack strength (Fig. 1) while training with clean data,
and varying the starting point of the attack (Fig. 2) while keeping the attack strength.
There will be two typical situations: in the first case the attack will start after the end
of training, so the training will be performed with “clean” data, while in the second
case we will have the situations where the training data contains the traces of attacks
as well. The scenario is based on 200 entities that can take one of the possible 2000
positions.

Fig. 1. Detection and false positive rate vs. attack strength

We can observe from Fig. 1 that GNG exhibits higher detection rate than SOM
when they deal with the attack of lower strengths (up to 30% of nodes attacked),
while for the stronger attacks SOM is clearly the winner. This is probably the result of
performing the training with clean data, during which GNG results in having fewer
clusters than SOM, thus not being able to detect more subtle differences. On the other
hand, when training with a mixture of clean and unclean data, GNG results in having
more clusters, thus in this case it is the one being capable of detecting more subtle
differences. This is demonstrated in Fig. 2, where we can observe that SOM is capa-
ble of isolating the attack if down to 60% of data during the training is normal, while
GNG goes down to 5%. Also, the time of isolating the attack of GNG is much lower
than the isolation time of SOM. Thus, in this case GNG is clearly the winner.

Fig. 2. Detection and isolation times vs. % of normal data during the training

96 Z. Banković et al.

5 Conclusions

In this work we have provided the comparison of SOM and GNG algorithms for clus-
tering-based detection of outliers in its application for security of WSNs. Our results
reveal that GNG is superior to SOM when it comes to the level of presence of ano-
malous data during the training, as GNG is capable of detecting the attack even with
small portion of normal data during the training (down to 5%), while SOM need the
majority of the training data to be normal (down to 60%) in order to be able to detect
it. On the other hand, after both being trained with normal data, SOM performs
somewhat better as the attack becomes more aggressive, i.e. it exhibits higher detec-
tion rate, although both are capable of detecting the attack in each case.

Thus, based on the presented results, in a general (unknown) case GNG would be
more appropriate. However, a combination of both techniques could improve the
performances of GNG in certain scenarios. For this reason, in the future we will dedi-
cate our efforts towards obtaining such combination.

Acknowledgments. This work was funded by the Spanish Ministry of Science and
Innovation, under Research Grant AMILCAR TEC2009-14595-C02-01.

References

1. Banković, Z., Moya, J.M., Araujo, A., Fraga, D., Vallejo, J.C., de Goyeneche, J.M.: Dis-
tributed Intrusion Detection System for WSNs based on a Reputation System coupled with
Kernel Self-Organizing Maps. Int. Comp. Aided Design 17(2), 87–102 (2010)

2. Haykin, S.: Neural networks - A comprehensive foundation, 2nd edn. Prentice-Hall (1999)
3. Fritzke, B.: Growing Neural Gas Network Learns Topologies. In: Tesauro, G., Touretzky,

D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp.
625–632. MIT Press, Cambridge (1995)

4. Roosta, T.G.: Attacks and Defenses on Ubiquitous Sensor Networks, Ph. D. Dissertation.
University of California at Berkeley (2008)

5. Rieck, K., Laskov, P.: Linear Time Computation of Similarity for Sequential Data. J.
Mach. Learn. Res. 9, 23–48

6. Muñoz, A., Muruzábal, J.: Self-Organizing Maps for Outlier Detection. Neurocomputing
18(1-3), 33–60 (1998)

7. Krontiris, I., Giannetsos, T., Dimitriou, T.: LIDeA: A Distributed Lightweight Intrusion
Detection Architecture for Sensor Networks. In: 4th International Conference on Security
and Privacy for Communication Networks. ACM (2008)

8. Onat, I., Miri, A.: A Real-Time Node-Based Traffic Anomaly Detection Algorithm for
Wireless Sensor Networks. In: Systems Communications, pp. 422–427. IEEE Press (2005)

9. Kaplantzis, S., Shilton, A., Mani, N.: Sekercioglu, Y.A.:Detecting Selective Forwarding
Attacks in WSNs using Support Vector Machines. In: Proc. Conf. Int. Sensors, Sensor
Networks and Inf., pp. 335–340. IEEE Press (2007)

10. Wallenta, C., Kim, J., Bentley, P.J., Hailes, S.: Detecting Interest Cache Poisoning in Sen-
sor Networks using an Artificial Immune Algorithm. Appl. Intell. 32, 1–26 (2010)

11. Loo, C.E., Ng, M.Y., Leckie, C., Palaniswami, M.: Intrusion Detection for Routing At-
tacks in Sensor Networks. Int. J. of Dist. Sens. Net. 2(4), 313–332 (2006)

	Self-Organizing Maps versus Growing Neural Gasin Detecting Data Outliers for Security Applications
	Introduction
	Previous Work
	Problem Definition
	Feature Extraction and Formation of Model
	Attack Detection
	Recovery from Attacks
	Developed Techniques

	Experimental Evaluation
	Conclusions
	References

