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Abstract. Simple decision trees enable obtaining simple logical rules with a lim-
ited accuracy in regression tasks. Neural networks as highly non-linear systems
can map much more complex shapes and thus can obtain higher prediction accu-
racy in regression problems, that is however at the cost of the poor comprehensi-
bility of the decision process. We present a hybrid system which incorporates the
features of both a regression tree and a neural network. This system allowed for
achieving high prediction accuracy supported by comprehensive logical rules for
the practical problem of temperature prediction in electric arc furnace at one of
the steelwors.
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1 Introduction

There are some differences between extracting logical rules for classification and for
regression tasks. A good strategy in data mining for the classification task is to extract
simplest crisp logical rules first, because they provide hyper-rectangular decision bor-
ders in the feature space and that kind of rules are easy to understand. In the regression
tasks also simple logical rules are preferred, however the issue is more complex because
of the continuous output space. Several approaches to that issue have been attempted
so far, including simple decision trees, which really provide hyper-rectangular decision
borders, but which are frequently not the most accurate solution. Also rule extraction
from standard multilayer perceptrons was performed, which frequently provides quite
a good approximation, but the extracted logical rules can be of very high complexity
and difficult to understand by experts in a given domain. In order to address this issue
we tried two approaches: to improve the accuracy of a decision tree and to improve the
comprehensibility of rules extracted from a neural network. Although hybrid methods
can obtain very good accuracy [1,2], the customers are not always happy with them,
because of the level of knowledge required to understand the systems. Thus, each of the
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solutions was aimed to be used as the only one kind of prediction model, because this
homogeneity is more preferred by our customers. The purpose of the methodology we
present in this paper is to achieve both goals; high accuracy and low rule complexity as
far as possible by using only a single neural network-based model.

This section outlines the problems associated with neural network-based rule ex-
traction for regression tasks and the problems connected with temperature control in
electric arc steel-making. In the Methodology section we present our system and in
the Experimental Evaluation section we compare it to some other systems on the two
metallurgical datasets that can be obtained from [3] and on two datasets from the UCI
repository [4,5].

1.1 Neural Network-Based Rule Extraction for Regression Problems

In our paper presented at the previous HAIS conference [6] we considered optimization
of regression tree parameters. Although the logical rules were very clear and allowed
for a better understanding of the process, we were able to obtain much higher accuracy
for the same task using an ensemble of neural networks with evolutionary optimization
[8]. Thus, for the practical purposes, where the system had to be used in production
environment in the metallurgical industry, we decided to use a committee of several
models. In our current approach we want to simplify this committee by introducing a
new regression and rule extraction model based on a specially designed and specially
trained neural network.

Most of the research concerns rule extraction for classification tasks, which is much
easier. So far only a few approaches to rule extraction from neural networks for regres-
sion tasks have been described in the literature.

Setiono et. al. [9] and Wang et. al. [10] proposed an approach where each rule in the
extracted rule set corresponds to a subregion of the input space. The nonlinear activation
function (hyperbolic tangent or logistic sigmoid) of each hidden neuron is approximated
locally by a three-piece linear function based on least squares estimation and then the
regression rules are generated. Although in our experiments the accuracy of the rules
obtained from that approach was only little below the accuracy of the underlying neural
network, the complexity of the rules, when applied to our data was too high to allow
understanding them quickly (in the time range below 1 minute, which is the time, the
electric arc operator has to make decisions about how to further continue the process).

Kazumi [11] proposed a method where each regression rule is expressed as a pair
of a logical formula on the conditional part over nominal variables and a polynomial
equation on the action part over numeric variables. The proposed extraction method first
generates one such regression rule for each training sample, then utilizes the k-means
algorithm to generate a much smaller set of rules having more general conditions, where
the number of distinct polynomial equations is determined through cross-validation.
Finally, this method invokes decision tree induction to form logical formulae of nominal
conditions as conditional parts of the final regression rules.

Markowska and Mularczyk [12] proposed o methodology based on two hierarchical
evolutionary algorithms with multiobjective Pareto optimization. The lower level algo-
rithm searches for rules that are optimized by the upper level algorithm. The conclusion
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of the rule takes the form of a tree, where non-terminal nodes contain functions and
operators and leaves contain identifiers of attributes and numeric constants.

1.2 Temperature Control in the Electric Arc Furnace

In the electric arc furnace the steel scrap is melted using the electric arc to generate
most of the heat. Additional heat is obtained from gas that is inserted and burnt in the
furnace. The optimal temperature of the melted steel that is to be tapped out from the
furnace is about 1900K, however it must be kept at proper temperature enough long so
that all the solid metal gets melted. If the heating lasts too long, unnecessary time and
energy is wasted and additional wear of the furnace is caused. Modern EAFs have the
melt times of 30 minutes, older ones up to one hour.

The temperature is measured a few times during every melt by special lances with
thermocouple that are inserted into the liquid steel. Every measurement takes about one
minute and in this time the arc has to be turn off and the process suspended. Waste of
time and energy for three or even more measurements is thus quite significant. There
are many problems with the continuous measurement of the steel temperature. The
temperatures are very high and the radiant heat and the electro-magnetic radiation from
the furnace creates major problems for the measuring equipment.

Therefore there was a need to build a temperature prediction system that would allow
us to limit the number of temperature measurements and thus shorten the EAF process
to make it more economical. We previously built a system based on a single regression
model [6], as a part of the whole intelligent system for steel production optimization
[14]. However, as our recent experiments showed, a significant improvement can be
obtained with a committee of regression models. But on the other hand using complex
committees of hybrid regression models made the extraction of simple comprehensive
rules unrealistic in practice.

2 Methodology

2.1 Data Preprocessing

The presence of outliers and wrong data may dramatically reduce generalization abil-
ities and limit the convergence of training process of any learning algorithm. Proper
data preprocessing is helpful not only to deal with outliers but also to achieve variable
sensitivity of the model in different ranges of input variables. First we standardize the
data before the training, according to the following formula:

xstd =
x− x̄

σ
σ =

√
√
√
√1

k

k∑

i=1

(x− x̄)
2 (1)

and then we transform the data be the hyperbolic tangent function

y2 =
1− exp (−β · y + θ)

1 + exp (−β · y + θ)
(2)
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where y is the output value before the transformation and y2 - after. In practical prob-
lems, it is frequently desired to obtain a model with higher sensitivity in the intervals
with more dense data (as it was in our case) or in other intervals of special interests.
To address his issue, we transfer the data through a hyperbolic tangent function. The
other advantage of the transformation is the automatic reduction of the outliers’ influ-
ence on the model. Because if the complexity of our data and lot of error in particular
value measurements, before the values were recorded into the database it is very diffi-
cult to properly apply known outliers removal methods, such as ENN or other. For that
reason we do not do not reject the outliers [13], but rather reduce their influence on
the final model, because it is frequently not clear whether a given value is already an
outlier or wrong value or is still correct. The hyperbolic tangent transformation allows
for a smooth reduction of the outliers, because no matter how big the value is, after
the transformation it will never be grater than one or smaller than minus one. however,
in the case of multimodal data distribution the data should be first divided into several
single-mode distribution datasets.

2.2 Network Construction

The neural network is based on a 3-layer MLP architecture. There are two kind of net-
works used in parallel. At the beginning of the training neurons implement hyperbolic
tangent transfer functions, then in the rule-based network the transfer functions are grad-
ually changed to step functions, while in the classical network they remain unchanged.
The rule-based network requires discrete input data. If the data is continuous, what is
frequently the case in regression tasks, it must be discretized prior to the training.

We tried using equi-distance and equal-number bins during the discretization. How-
ever, it turns out, that the best results can be achieved if the continuous attributes are
discretized taking into account not only the input but also the output value. That pre-
vents grouping into one bin the attribute values which correspond to a quite different
output values and prevents making a split in the points for which output value does
not differ. For that reason we use a decision tree as described in [6] for which there is
only one input - the attribute under consideration. The decision tree divides the input
attribute into bins in such a way, which minimizes the variance of each node. The divi-
sion is performed so long as the predefined stopping criteria are met: the variance of the
output value in the node, minimum number of vectors inn the node and maximum tree
depth (For more details see [6]). In practice, with the metallurgical datasets on average
the number of continuous feature bins (corresponding to the number of the tree leaves)
was 4 to 16.

In the network for rule extraction a separate input neuron for each discretized feature
value is used. Thus the number of all input neurons equals the sum of all distinct values
for all features. The input values are 1 if the feature has the value represented by this
neuron and 0 otherwise.

In practice we use a separate network for each output value bin. One hidden neuron
per each output bin is created at the beginning. The second hidden neuron per each out-
put value bin is added, if the results with only one neuron are not satisfactory and then
the weights of the first neuron are frozen and only the newly added neuron is trained. If
the results are still unsatisfactory then the next hidden neuron is added. The number of
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Fig. 1. The system used for temperature prediction in the EAF process

hidden neurons per one output bin should equal the number of data clusters that corre-
spond to that output value bin. The first hidden neuron corresponds to the biggest cluster
and thus generates the most general rules, while the second hidden neuron generates the
rules for the second largest cluster and so on.

After the network is converted to step transfer function at the final part of the training,
each hidden layer neuron performs M-of-N operation, where frequently N=M and thus
the operation can be reduced to AND operation. The output neuron combines the partial
rules given by hidden neurons for a given output value bin (OR operation). The bias and
weights of output neurons are constant; bias = 0.5 each weight = 1, what implements
the OR operator.

2.3 Network Training

Only one network can be used for the whole training. That network would consist of
10 output neurons (if we assume, the output value is discretized into 10 bins), each
being responsible for a different bin of the output value. However, it is much easier to
train 10 separate networks, where each of them has only one output neuron and thus the
regression problem can be reduced to 10 classification problems with two classes only
(this bin and the rest). In the dataset we replace the value of the output with one of it is
within the current bin and with zero otherwise (in a similar way as the input values).
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We begin the training with hyperbolic tangent transfer functions at the hidden and
output layer neurons. In the final stage of the training the transfer functions are gradu-
ally converted to step functions in order to be able to extract simple logical rules from
the network. For that purpose a regularization tern t is added to the error function to
gradually force the network weights to take the values of -1, 0 or 1.

t = kw∗sum((w−1)(w+1)w)+kb∗sum((b−x+0.5)(b−x+1.5)...(b+x−0.5)(b+x+0.5))
(3)

where the first part of the equation regularizes the weight values and the second part the
biases and x is the number of attributes in the discretized dataset.

From certain point of the training we begin gradually increasing the transfer function
slopes as long until we practically obtain step transfer functions, which enables simple
extraction of logical rules.

In parallel we use another ("classical") network, which is trained on continuous val-
ues and for which we do not increase the slopes of transfer functions. That network is
trained only on those vectors, which have the output value within the current bin. From
this network we extract logical rules in a method similar to that proposed by Setiono
[9]. However, because we add the regularization term to the error function proportional
to the sum of the weight squares and we use only vectors from one output bin, we can
significantly simplify the system of equations used to extract the logical rules by assum-
ing that all the neurons operates only within the linear part of the hyperbolic transfer
function (-1,1). That can be achieved also, because the output value is 10 times less
differentiated within one bin than within the whole range.

Fig. 2. The single discrete network for rule extraction (for one output bin)

In this way we obtain two sets of neural networks with two different sets of rules. The
rules generated by the first set are simpler and frequently are sufficient for the expert.
If the experts wants to have more accurate rules, they can use the second model (which
generates more complex rules, but still much simpler as the approach presented in [9]).
In practice a good combination is to provide the expert with two sets of rules, the two
values predicted by the two networks and a final value, which we suggest to use

y = (y1 + 2 ∗ y2)/3 (4)

If several consecutive values of one feature have the same weights assigned at one
neuron, then the rule can easily be simplified by merging all the values into one bin.
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2.4 Network Test

At the test phase, the test vector is given as an input to all the 10 logical networks and
it is assigned to that output bin, which network’s output neuron sets its signal to 1. The
signals of all other networks’ output neurons should produce the value of -1 in response
to that vector. However, that is not always the case and sometimes may happen that the
networks responses don’t allow us to unambiguously assign the vector to one output
bin. In this cases we use a standard MLP network trained on the whole dataset. That
network predicts some output value of the vector and we assign it to the appropriate bin
according to that prediction.

3 Experimental Evaluation

3.1 Experimental Methodology

In this section we compare our method to a regression tree, to a forest of regression trees
[6], an MLP network, a hierarchical committee of MLP networks and to the MLP-based
method proposed by Setiono [9].

The single MLP neural network had the structure n− n− 1, where n is the number
of attributes and was trained with the VSS algorithm [16]. In the hierarchical MLP
Committee, the whole dataset was split into several clusters, as in the Mixture of Expert
approach, however there was a hierarchy of clusters, where the clusters of higher levels
contained the clusters of lower levels. Several neural networks were created and trained
for each cluster, using bagging to select the vectors. Then an evolutionary algorithm was
used to decide how a final decision of the committee must be evaluated based on the
test vector properties and on particular neural network responses [7]. The last compared
method was a method for extracting logical rules form an MLP network as described
in [9], where the sigmoid transfer functions were approximated by a three straight lines
and depending on the current point of the sigmoid a proper linear approximation was
used for rule generation. The decision tree and forest were constructed as described in
our paper presented at the previous HAIS conference [6].

We created software that implements all the methods in C#, Java and Delphi lan-
guages and made it available together with the datasets used in the experiments from
our web page at [3]. All the methods were run in a 10-fold crossvalidation.

3.2 Datasets

The datasets we used are: two datasets depicting the metallurgical problem; one of
them refers to the temperature prediction in the EAF process as described in the intro-
duction and one refers to predicting the amount of carbon to be added in the steel refine-
ment process. The next two datasets are the Crime and Concrete datasets from the UCI
Machine Learning Repository.

Concrete Compressive Strength. There are 8 input attributes (variables) in the dataset
reflecting the amount of particular substances in the concrete mixture, such as cement,
slag, water, etc. The task is to predict the concrete compressive strength. There are
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1030 instances in the dataset. The dataset is available from the UCI Machine Learning
Repository [4].

Communities and Crime. There are 127 input attributes in the data set, describing
various social, economical and criminal factors. The attribute to predict is per capita
violent crime. After removing the instances with missing attributes, 121 instances were
left. The dataset is available from the UCI Machine Learning Repository [5].

Steel-Carbon. The dataset comes from a real metallurgical process at the phase of
refining the melted steel in a ladle arc furnace to achieve desired steel properties. The
input variables represent various measured parameters, such as temperature, energy,
amount of particular elements in the steel etc. The amount of carbon that should be
added to the steel refinement process is the output variable. The data was standardized,
only 12 attributes were left from the original dataset with over 100 attributes and the
names of 12 input attributes were changed to x1 . . . x12. There are 1440 instances in the
dataset. The dataset is available from [3].

Steel-Temperature. The dataset comes from a real metallurgical process at the phase
of melting the steel scrap in the electric arc furnace. The input variables represent vari-
ous measured parameters, such as temperature, energy, amount of gases, etc. The tem-
perature of the liquid steel is the output variable. The data was standardized, only 14
attributes were left from the original dataset with over 100 attributes and the names of
14 input attributes were changed to x1 . . . x14. There are 7400 instances in the dataset.
The dataset is available from [3].

3.3 Experimental Results

In regression and classification problems, there is no single model which is best for all
datasets and models must be chosen for a given task. As it can be seen from
table 1, usually the lowest MSE for the large metallurgical datasets is obtained with
hierarchical MLP committee. For simple datasets, this model is too complex. However,
the purpose of the work was to create a model fitted for rule extraction for large and
complex datasets, especially in the application to temperature prediction in electric arc
furnace. Thus, it cannot be stated that a model with a lower MSE error is better, because
there are situation where a model that can provide simple rule is preferred over a model

Table 1. Experimental results; mean square error (MSE) and standard deviation in 10-fold cross-
validation

dataset
single tree discrete continues single single hierarchical
tree forest Split-MLP Split-MLP MLP (values) MLP (rules) MLP committee

Concrete
MSE 0.153 0.121 0.133 0.125 0.124 0.125 0.120

std. dev. 0.020 0.018 0.015 0.020 0.016 0.017 0.014

Crime
MSE 0.35 0.30 0.32 0.28 0.28 0.30 0.28

std. dev. 0.04 0.04 0.03 0.03 0.03 0.03 0.03

Steel-C
MSE 0.140 0.122 0.120 0.115 0.118 0.128 0.110

std. dev. 0.017 0.015 0.018 0.014 0.015 0.017 0.011

Steel-Temp
MSE 0.70 0.60 0.56 0.53 0.57 0.60 0.51

std. dev. 0.08 0.06 0.06 0.05 0.09 0.11 0.05
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with low prediction accuracy. In our method we tried to obtain the best possible balance
between the two.

3.4 Logical Rules

In this section we discuss the logical rules extracted from the steel-temperature dataset
for three methods: the regression tree, the method of Setiono and our method. Because
it would require about several pages to print out all the obtained rules, only some chosen
examples are presented.

In the Setiono’s method, first we have to calculate the position of signals on transfer
functions generated by the network as a response to a given vector and obtain the co-
efficients by which each input feature will be multiplied and then we obtain a rule for
each vector in the form:

y=0.297*x1+0.114*x2+0.018*x3+0.275*x4+0.077*x5-0.190*x6+...+0.197

The main problem is the coefficients are different depending on a given vector and they
can take a lot of different values, even more than 100 for our dataset. That makes the
rules too difficult to understand, especially in limited amount of time, as it is required
in the production environment.

The logical rules generated by our method are similar to the rules generated by a
regression tree. They are generated in a different way, but they have very similar form;
first we decide to what cluster a particular vector belongs (the number of cluster is
below 10) and then the final rule has the following form:

if (x1<0.207 and 0.334<x4<0.565) y=0.478*x3+0.232

The difference is that first the number of rule sets is below 10 and second that the rule
has the crisp part, which is easier to understand and a very short linear part, which in
first approximation maybe also replaced with a constant value.

4 Conclusions

The noticeable difference between a neural network and a decision tree is that the neural
network considers all the attributes at each training stage. An univariate decision tree
makes a choice of the most important attribute at every node according to some prede-
fined criteria. As a result the split points are not always chosen inn a globally optimal
way but in a way that is optimal for the current node and it is not guarantied that the
sum of local maxima gives a global maximum. The next issue with decision trees are
the predefined shapes of boundaries and the final mapping of leaves, even if done by
linear regression models do not cover smoothly all the output space.

For that reason we decided to build the model based on a neural network and to
overcome the neural network limitation of providing simple logical rules, especially for
regression tasks, we incorporated the split idea known from decision trees. The rules
generated by the model achieve only a little poorer accuracy than the best regression
model, which we were able to build (committee of MLP networks), while the rule com-
prehensibility is comparable to that of decision trees with a significantly higher accuracy
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at the same time. The system is currently being tested at the real technological data at
one of polish steelworks for the purpose of steel temperature prediction in the electric
arc furnace.
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