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Abstract. There is still lack of clarity about the best manner in which
to handle numeric attributes when applying Bayesian network classi-
fiers. Discretization methods entail an unavoidable loss of information.
Nonetheless, a number of studies have shown that appropriate discretiza-
tion can outperform straightforward use of common, but often unrealistic
parametric distribution (e.g. Gaussian). Previous studies have shown the
Averaged One-Dependence Estimators (AODE) classifier and its variant
Hybrid AODE (HAODE, which deals with numeric and discrete vari-
ables) to be robust towards the discretization method applied. However,
all the discretization techniques taken into account so far formed non-
overlapping intervals for a numeric attribute. We argue that the idea
of non-disjoint discretization, already justified in Naive Bayes classifiers,
can also be profitably extended to AODE and HAODE, albeit with some
variations; and our experimental results seem to support this hypothesis,
specially for the latter.

Keywords: AODE, HAODE, Non-Disjoint Discretization, Bayesian
Classifiers.

1 Introduction

So far, the AODE classifier [1] has arisen as one of the most attractive alter-
native to naive Bayes (NB), as it has proved to be significantly better in terms
of error reduction compared to many others semi-naive techniques, maintain-
ing under control its time and space complexity in training and classification
time [2]. Nevertheless, as most of the techniques based on Bayesian networks,
a multinomial probability distribution is assumed. This gives rise to difficulties
in the context of continuous variables, as there is a need to infer joint proba-
bility distributions, and this is difficult in the absence of very large quantities
of data. Two different ways to tackle this issue for AODE were studied in [3],
that led to the Gaussian AODE classifier, where Conditional Gaussian networks
were used to deal with datasets containing exclusively numeric attributes; and
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the Hybrid AODE classifier (HAODE), that resorted to the use of discretization
only for the numeric values in the parents. However, these approaches also have
their limitations, since the Gaussian assumption may be simply unrealistic. And
discretization becomes a good alternative.

In this respect, we can find studies where the robustness of AODE and
HAODE toward the discretization method is analyzed [4]. The conclusions in
this work indicate that although the discretization method indeed matters when
studying a particular dataset, it does not seem to be decisive when the aim is
to compare a group of semi-naive Bayesian classifiers over a standard group of
datasets. Nevertheless, only disjoint discretization techniques have been taken
into account in that study. In [5], a novel non-disjoint discretization technique
(NDD) is presented to cope with numeric attributes in NB by forming over-
lapping intervals. NDD forms overlapping intervals for a continuous attribute,
always locating a value toward the middle of an interval to obtain more reliable
probability estimations. Its use is based on the insight that while it is neces-
sary to use a single discretization of each variable while classifying an instance,
different discretizations can be applied when classifying different instances.

The results show a clear improvement in NB over other disjoint discretization
methods, and we believe, that these results could also duplicate in AODE and
HAODE, albeit with some modifications to the disjoint discretization method
proposed. Compared to NB, AODE and HAODE could suffer more from creating
a large number of intervals (from a variance increase), since their conditional
probability tables (CPTs) are formed by the combination of a couple of attributes
(the class and the parent). It is credible that NDD could help us to alleviate this
problem by allowing larger intervals to be formed without greatly increasing
the bias.

Hence, the main contributions of this paper are the following: to begin with,
we redefine the original approach of NDD discretization for its use in AODE
and HAODE, describing the corresponding modifications (Section 5). Further-
more, a new weighting system is included with the aim to decrease discretization
bias. In Section 6, an experimental study compares the application of these joint
discretization techniques in AODE and HAODE with the use of a traditional dis-
joint discretization method: equal frequency discretization (EFD)1. This study
includes comparisons in terms of accuracy, but mainly focuses in results detail-
ing bias and variance discretization records, as well as the combined error from
both measures.

The rest of the paper is divided as follows: Section 2 and 3 introduces AODE
and HAODE classifiers. Section 4 explains the main differences between disjoint
and joint discretizations and finally, Section 7 provides our main conclusions
from the study.

1 As we will see below, this selection has not been made at random, but equal frequency
division with 5 bins has shown to be the most beneficial for AODE [4].
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2 AODE

AODE [1] is considered an improvement over NB and an interesting alternative to
other attempts such as Lazy Bayesian Rules (LBR) [6] and Super-Parent TAN
(SP-TAN) [7], since they offer similar error values, but AODE is significantly
more efficient at classification time compared with the first one and at training
time compared with the second one. In order to maintain efficiency, AODE is
restricted to exclusively use 1-dependence estimators. Specifically, AODE can be
considered as an ensemble of SPODEs (Superparent One-Dependence Estima-
tors), because every attribute depends on the class and another shared attribute,
designated as super-parent.

AODE computes the average of the n possible SPODE classifiers (one for
each attribute in the database) and hence, the MAP (maximum a posteriori)
hypothesis is as follows:

cMAP = argmaxc∈ΩC

⎛
⎝

n∑
j=1,N(xj)>q

p(c, xj)

n∏
i=1,i�=j

p(xi|c, xj)

⎞
⎠ , (1)

where xi, xj are the label of the predictive attributes and c the class label. The
condition N(xj) > q is used as a threshold to avoid making predictions from
attributes with few observations. In our experiments this q value has been set
to 1, which is the default value in the data mining tool WEKA [8].

At training time, AODE has a O(mn2) time complexity, where m is the num-
ber of training examples; whereas the space complexity is O(k(nv)2), where v
is the average number of values per attribute and k the number of classes. The
resulting time complexity at classification time is O(kn2), while the space com-
plexity is O(k(nv)2).

3 HAODE

NB can deal with hybrid (discrete and numeric variables) datasets by means of
Gaussian and multinomial distributions. On the contrary, this is not possible for
AODE, as a numeric variable (super-parent) cannot be the parent of a discrete
variable. This is the reason why AODE can only be applied after discretizing
numeric variables. HAODE [3] restricts the use of discretization to only the
variable which acts as super-parent in every model, keeping it numeric when it
is playing the role of child. Thus, multinomial distributions are estimated for
discrete variables and the super-parent, together with one univariate Gaussian
distribution (one for each configuration in the Cartesian product between the
class and the super-parent) for each numeric variable which acts as child.

Classification is performed according to the following equation then:

cMAP = argmaxc∈ΩC

(
n∑

j=1,N(xj)>m

p(xj , c)

n∏
i=1∧i�=j

N (xi : μi(c, xj), σ
2
i (c, xj))

)
, (2)
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where μi(c, xj) and σ2
i (c, xj) are the mean and variance of Xi conditioned to

the values c for the class and xj for Xj. N (xi : . , .) is the resulting value of the
normal density function of xi with the corresponding mean and variance.

HAODE presents the same time complexity as AODE, but achieves a slight
reduction in spatial complexity because HAODE requires only two parameters
(mean and variance) for Gaussian distributions, independently of the number of
states in which this variable has been discretized when it acts as super-parent.

4 Disjoint vs. Non-Disjoint Discretization

Formally, given the numeric attribute values xi, xj ∈ R, any disjoint discretiza-
tion method would create a unique interval (a, b] � xi and (d, e] � xj for every
value so that AODE’s statistics, p(Xj = xj , C = c) and p(Xi = xi|C = c,Xj =
xj) would be estimated by

p(Xj = xj , C = c) ≈ p(d < Xj ≤ e, C = c) (3)

p(Xi = xi|C = c,Xj = xj) ≈ p(a < Xi ≤ b|C = c, d < Xj ≤ e) (4)

In disjoint discretization techniques (EFD, equal width division, MDL, etc) every
numeric sample belongs to a single interval. I.e., considering xi < xj , if a �= d
(they do not fall in the same interval) then d ≥ b. This implies that for those
cases where the original numeric value falls around the center of the interval
assigned, we could expect more distinguishing information than when it falls
near one of the boundaries of the interval.

In contrast, NDD creates bins that overlap. So long as a single bin is used con-
sistently when classifying a single object, it does not matter whether inconsistent
bins are used when classifying different objects.

4.1 Equal Frequency Discretization

EFD is an unsupervised technique where the values are ordered and divided
into b disjoint bins so that each one contains approximately the same number of
training instances.

Therefore, every bin contains m/b instances with adjacent values, where m is
the total number of samples. This type of discretization method provides bins
containing equal numbers of examples and hence the variance of the estimates
formed from the bins should be more stable than alternatives. As a group of
values with identical values must be placed in the same bin, it is not always
possible to generate b intervals with exactly the same number of values.

Time complexity for this technique is O(m logm) as it is necessary to perform
an ordering of the data.

4.2 Non-Disjoint Discretization

NDD is also an unsupervised technique that forms t atomic intervals B0 =
[a′1, b′1], B1 = (a′2, b′2], . . . , Bt = (a′t, b′t] (where b′i = a′i+1, ∀i), with equal fre-
quency. In its definition for NB [5], one operational interval or label is formed
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then for each set of three consecutive atomic intervals, such that the rth (1 ≤
r ≤ t − 2) interval (ar, br] satisfies ar = a′r and br = b′r+2. Each numeric value
x is assigned to interval (a′i−1, b

′
i+1] where i is the index of the atomic interval

(a′i, b
′
i] such that a′i < x ≤ b′i, except when i = 1 in which it is assigned to

interval (a′1, b
′
3] and when i = t that it is assigned to interval (a′t−2, b

′
t]. Here t

and the number of instances per atomic interval are selected proportionally to
the number of training instances, following the idea of Proportional k-Interval
Discretization [9].

NDD is dominated by sorting as well, and hence, its complexity is also
O(m logm).

5 NDD Adapted to AODE and HAODE

By dividing the ranges of numeric attributes into overlapping intervals in AODE
and HAODE, we not only intend to reduce discretization bias [10] by always
locating a value toward the middle of an interval and, in general, creating a
larger number of intervals; but also maintaining discretization variance, since the
number of samples from which the CPTs will be estimated should be similar.

Intuitively, discretization resulting in large interval numbers tends to have low
bias (any given interval is less likely to include a decision boundary of the original
numeric attribute). Discretization resulting in intervals with a large number of
instances tends to have low variance (as the probability estimations are more
stable and reliable). The problem is that supposing there is a fixed dataset
size, the larger the number of intervals, the smaller the number of instances per
interval is.

The application of NDD to AODE involves discretizing the whole dataset
into non-disjoint intervals before training the classifier, whereas in the case of
HAODE, just the cases where a numeric attribute plays the role of super-parent
will be discretized.

However, and for the reasons that we detail next, some changes are introduced
to the original definition of NDD as specified in Yang and Webb’s paper [5]:

1. A threshold is considered to mark the minimum frequency from which an
atomic interval will not be merged with its neighbours. This should prevent
us from increasing bias when sufficient samples are already provided. See
Figure 1 for an example on interval formation having each atomic interval
frequency into account. Since it is possible the presence of multiple instances
with the same value, the number of final samples per atomic attribute may
vary, and it usually does2.

2. In the original definition of NDD, the interval size is equal to the interval
number (≈ √

m) with the aim to give equal importance to discretization bias
and discretization variance reduction. Even though it provides very good
results for NB, it is not the case for AODE or HAODE, where in general, a

2 The way in which this is handled is the same for NDD and EF5, check WEKA’s
equal frequency discretization method for more details.



156 A.M. Mart́ınez et al.

−∞ ∞0 1 2 3

30 2920 100 50

B0

B1

B1

B2

B2

B3

B3

B4

B4

L0

L0

L1

L1

L2

L2

L3

L3

B0,

Fig. 1. Example of NDD division, the minimum frequency to merge atomic intervals
into a single label (L) is equal to 100. Labels selected when classifying samples belonging
to atomic bins B0, B1, B2, B3 and B4 are indicated at the bottom right corner.

smaller number of intervals is desired because it is necessary to estimate the
probability of an interval on one attribute conditioned by both an interval
on another attribute and the class, whereas in NB it is necessary only to
estimate the probability of an interval given the class. Previous experiments
have shown that Proportional Discretization (PD), tailored to NB, where a
number of

√
m instances is selected, is not generally beneficial for AODE [4].

3. When the number of cut-points is lower than 3, then equal frequency dis-
cretization will be kept.

4. Weighting importance: note that by using NDD as defined above, there are
some numeric samples that fall within two or three labels. Given a numeric
sample xi discretized by NDD into the labels L1 = (a′1, b′1], L2 = (a′2, b′2]
and L3 = (a′3, b

′
3] in training time; L2 would be the final label assigned to

another sample xj ∈ R, xj = xi in classification time. The contribution of
L2 to the CPT will be greater (it is given more importance when training)
than the contribution provided by the other two bins. This is carried out by
the use of weights. There exist several forms in which these weights could be
distributed, in this first approach we have adopted the simplest one (apart
from uniform distribution, being equivalent to non-weighting). Since a single
sample can be allocated at most in three atomic bins, the weight distribution
could be set as 0.75 for the centred label and the rest equally divided into
the other labels (if there is more than one)3. In AODE, the combination of
weights when both the parent and the child involved in a CPT come from
a joint discretization is carried out by multiplying its corresponding weights
(so that the sum remains equal to one).

Figure 2 shows an example for a training instance I with two numeric
attributes: X0 and X1. This instance is discretized using the NDD proce-
dure indicated in Section 5, obtaining INDD. Hence, the value 3.5 for X0

falls within three labels: L0, L1 and L2 (specifically centred in L1, that
is why it is given the highest weight), whereas the value 2 for X1 falls

3 Further experiments have been carried out by slightly altering the weight assignment
obtaining very similar results. This study has been performed using 3 atomic bins
per interval, and we believe that this result may not be extrapolated to any higher
odd number.
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I = {X0 = 3.5, X1 = 2, C = c1} INDD = {X0 = (L0, L1, L2), X1 = (L′
0, L

′
1), C = c1}

NDD

L0 : w0 = 0.125

L1 : w1 = 0.75

L2 : w2 = 0.125

L′
0 : w′

0 = 0.25

L′
1 : w′

1 = 0.75

When updating p(X0|X1,C):

• {L0, L
′
0, c1} w = w0 ∗ w′

0 = 0.125 ∗ 0.25
• {L0, L

′
1, c1} w = w0 ∗ w′

1 = 0.125 ∗ 0.75
• {L1, L

′
0, c1} w = w1 ∗ w′

0 = 0.75 ∗ 0.25
• {L1, L

′
1, c1} w = w1 ∗ w′

1 = 0.75 ∗ 0.75
• {L2, L

′
0, c1} w = w2 ∗ w′

0 = 0.125 ∗ 0.25
• {L2, L

′
1, c1} w = w2 ∗ w′

1 = 0.125 ∗ 0.75

∑
w = 1

When classifying I:

I ′NDD = {X0 = L1 X1 = L′
1, C = ?}

Fig. 2. Example on how weighted NDD works in AODE: first of all, the instance is
discretized using NDD and weights are assigned to every label. When training, instance
I would contribute to the CPT for X0 given X1 and C as shown in the left hand side. If
classifying I , only the main labels (so that the sample is in the center) are considered.

within labels L′
0 and L′

1 (centred in L′
1 in this case). These weights are

then used to indicate the contribution of each pair of values when updat-
ing the CPTs4. When the same instance I were to be classified (the class
is missing), then I ′NDD would be used, where the centred labels for both
attributes are considered. Then the MAP equation would be the following:

argmaxc∈ΩC

(∑n
j=1,N(xj)>q p(c, L

∗
j)
∏n

i=1,i�=j p(L
∗
i |c, L∗

j )
)
, where L∗

j , is the

centred label for Xj ; and L∗
i , the centred label for Xi.

As NDD is dominated by sorting, no increase in the complexity is induced.

6 Experiments

We run our experiments on 28 datasets from the UCI machine learning repos-
itory [11] and KDD archive [12], listed in Table 1. As in [5], this experimental
suite comprises 3 parts. The first part is composed of all the UCI datasets used
by [13] when publishing the entropy minimization heuristic discretization. The
second part is composed of all the datasets with numeric attributes used by [14]
for studying NB classification. The third part is composed of larger datasets
employed in [9].

To begin with, we have pre-processed the datasets using an unsupervised filter
to replace all the missing values with the modes and means from the existing
data in the corresponding column, and another one to remove useless attributes
that do not vary at all or whose variation percentage is lower than 99%5. This is

4 Note that in a multinomial distribution, the combination of values from an instance
to be incorporated in a CPT contribute with a unit, whereas here we consider the
contribution of the weight for each label (that always sums to one for each instance).

5 These two filters have been applied with the default settings provided by WEKA.
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Table 1. Main characteristics of the datasets: number of predictive numeric variables
(n), number of predictive discrete variables (d), number of classes (k) and number of
instances (m)

Id Datasets n d k m Id Datasets n d k m

1 labor-negotiations 8 8 2 57 15 annealing 6 32 6 898
2 echocardiogram 5 1 2 74 16 german 7 13 2 1000
3 iris 4 0 3 150 17 multiple-features 3 3 10 2000
4 hepatitis 6 13 2 155 18 hypothyroid 7 18 2 2163
5 wine-recognition 13 0 3 178 19 satimage 36 0 6 6435
6 sonar 60 0 2 208 20 musk 166 0 2 6598
7 glass-identification 9 0 3 214 21 pioneer-mobile-robot 29 7 57 9150
8 heart-disease 7 6 2 270 22 handwritten-digits 16 0 10 10992
9 liver-disorders 6 0 2 345 23 sign-language 8 0 3 12546

10 ionosphere 34 0 2 351 24 letter-recognition 16 0 26 20000
11 horse-colic 7 14 2 368 25 adult 6 8 2 48842
12 credit-screening 6 9 2 690 26 impums.la.99 20 40 13 88443
13 prima-indians-diabetes 8 0 2 768 27 census-income 8 33 2 299285
14 vehicle 18 0 4 846 28 forest-covertype 10 44 7 581012

in order to make the group of datasets uniform and suitable for all the classifiers
considered in the comparison.

In order to evaluate the experimental results we use two methods: accuracy
(for the sake of comparison with previous works and to facilitate the frame to
reproduce experiments) and error in terms of bias and variance according to
[15], using five times 2-fold cross validation (5x2cv). 5x2cv entails a reasonable
trade-off between precision and execution time of the experiments, providing a
better partition for the posterior statistical analysis, as in addition, the degree
of overlapping between the different folds is lower [16]. The bias-variance decom-
position has been performed using the sub-sampled cross-validation procedure
as specified by [17]. The global error obtained by this procedure is the sum of
the bias and variance results.

The discretization technique selected as the basis for comparison is EFD with
5 bins (EF5), as it has shown to provide slightly better results compared to other
methods [4] such as Minimum Description Length [13], equal width discretization
or equal frequency discretization with a different number of bins.

As advanced in section 4, the labels formed in NDD will comprise at most
3 atomic bins6. To provide a fair comparison with EF5, the initial number of
atomic bins considered is 15. This means that the labels created (groups of three
atomic bins) will be of approximately the same average size as the bins for EF5.
The minimum frequency from which an atomic interval will not be merged with
its neighbours will be 100 (approximately 30 per atomic bin7).

6 In theory any odd number would be acceptable (the larger the better to allocate a
sample in the middle of an interval), but for simplicity we take 3 as in [5].

7 The figure 30 has been selected motivated by the 30-sample rule-of-thumb very re-
current in statistics. Still, further experiments were carried out with different values;
although the results were not significantly different, the best values were obtained
with 30 and 33.3.
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Table 2. Results in terms of accuracy±sample standard deviation obtained for
AODE and HAODE using EF5, NDD and NDDw

AODE HAODE
Id EF5 NDD NDDw EF5 NDD NDDw

1 93.3333±3.88 •94.3860±4.49 •94.0351±5.35 90.8772±8.59 •91.2281±9.76 •91.2281±9.48
2 68.9189±4.81 •72.9730±4.77 •72.1622±7.10 74.3243±4.64 72.9730±5.41 •76.7568±5.44
3 92.9333±2.74 •93.8667±2.20 •93.0667±1.97 95.8667±1.83 •96.0000±2.08 95.4667±1.80
4 82.1935±2.81 •82.9677±3.86 •82.4516±3.54 83.2258±2.23 82.0645±3.23 82.7097±3.09
5 96.4045±1.28 •96.8539±1.66 ◦96.4045±1.48 98.0899±0.93 ◦98.0899±0.76 97.8652±0.98
6 81.4423±3.63 •81.6346±4.19 80.7692±4.03 82.7885±3.91 82.5000±3.76 •84.6154±3.74
7 68.1308±5.07 •68.5047±4.06 •70.2804±3.76 69.1589±4.13 •69.5327±4.83 •70.0000±4.77
8 81.4815±2.42 •83.4815±2.59 •81.7037±1.60 81.0370±1.95 •81.5556±1.96 ◦81.0370±2.84
9 60.3478±3.47 •65.1014±3.46 •63.5942±2.76 62.0290±3.56 59.5942±3.81 61.1014±3.40

10 91.3390±2.19 89.4017±2.55 90.3134±2.42 92.2507±2.33 •92.7066±1.68 •92.4217±1.37
11 79.5652±1.23 •80.1087±1.94 •80.7609±1.18 65.6522±4.65 •66.3043±4.42 •66.4674±3.95
12 86.4638±1.23 •86.5797±0.95 •86.5507±1.18 80.7826±1.16 •80.0870±0.88 80.0870±1.14
13 75.2083±1.78 •75.5208±1.33 74.1927±1.65 75.6250±0.90 75.2344±0.94 75.0260±1.08
14 69.2199±1.14 68.3215±1.39 67.9433±1.58 73.3806±2.05 •73.5225±2.13 72.2695±2.25
15 87.9955±1.77 86.3474±1.65 •90.0668±1.07 82.9176±1.61 81.9822±2.81 82.5167±2.64
16 74.1600±1.08 •74.3800±0.93 •74.3400±1.19 73.7400±1.27 •74.7800±1.16 •74.1800±1.10
17 66.2600±1.22 •68.1700±1.26 •68.3600±1.31 69.1800±1.37 •69.9400±1.68 •70.6800±1.60
18 97.3000±0.21 •98.1979±0.27 •98.2548±0.22 98.1284±0.23 •98.3181±0.26 •98.3307±0.33
19 87.4219±0.57 •88.4444±0.40 •88.4444±0.40 83.9254±0.98 •85.9176±0.79 •85.9176±0.78
20 85.2743±0.85 •93.2404±0.32 •93.2555±0.30 83.5920±1.09 •87.5750±0.71 •87.5720±0.71
21 90.5268±0.47 •93.5432±0.86 •93.5016±0.87 89.1607±0.86 •94.3607±0.67 •94.3497±0.67
22 97.0287±0.17 96.8013±0.32 96.8013±0.32 97.1634±0.33 •97.6638±0.21 •97.6638±0.21
23 71.3678±0.70 •73.2680±0.51 •73.2855±0.51 66.3399±1.01 •67.1433±0.86 •67.1242±0.88
24 83.4580±0.21 •85.4120±0.37 •85.4720±0.37 84.5250±0.21 •88.1870±0.32 •88.2030±0.32
25 83.9347±0.25 •84.1677±0.29 •84.2771±0.29 84.0830±0.31 •83.9237±0.37 83.9892±0.35
26 92.3890±0.08 92.3854±0.08 •92.3928±0.08 87.0904±0.44 •87.7243±0.58 •87.7017±0.57
27 92.1766±0.09 •92.4165±0.07 •92.4171±0.07 93.4646±0.11 •93.6628±0.09 •93.6666±0.09
28 71.3988±0.11 •73.9682±0.09 •73.9682±0.09 69.9027±0.13 •70.8710±0.09 •70.8710±0.09

Av. 82.4169±1.62 •85.5873±1.67 •83.5381±1.67 81.7251±1.89 •82.2658±2.01 •82.4935±1.99

Table 2 shows the accuracy results obtained for AODE and HAODE us-
ing EF5, NDD and NDDw; along with the sample standard deviation for each
dataset. The bullet next to certain outputs (in NDD and NDDw) indicates that
the corresponding result improves the output provided when EF5 is used. The
circle, in turn, indicates a draw. These results lead us to think that the use of
NDD or NDDw is competitive over EF5 (and by extension, other traditional
disjoint discretization techniques), especially for the former. Nevertheless, stan-
dard deviation is, on average, higher for NDD and NDDw compared to EF5,
this indicates that the latter is more robust with respect to the income data,
although the values provided in terms of accuracy are lower, in spite of that.

Table 3 shows the number of datasets for which discretizing with NDD ob-
tained better, equal or worse performance compared to using equal frequency
with 5 bins. These records are complemented by the results from the Wilcoxon
signed-rank tests [18], which compare every pair of algorithms considering the
whole group of datasets. The first two columns depict the records when the sam-
ples are not weighted (i.e. weighted uniformly) according to the atomic bin to
which they belong. In this case, NDD in AODE and HAODE is better at im-
proving accuracy and global error. The improvement is clear also as far as bias is
concerned for HAODE and variance for AODE. However, this advantage is not
as clear in terms of bias in AODE and variance in HAODE, although they still
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Table 3. Comparisons in terms of win-draw-lose records and Wilcoxon tests

non-weighted weighted
w-t-l

Wilcoxon
AODE HAODE AODE HAODE

NDD vs EF5 NDD vs EF5 NDDw vs EF5 NDDw vs EF5

Accuracy
23-0-5

< 0.05
21-1-6

< 0.05
22-1-5

< 0.05
18-2-8

< 0.05

Bias
14-3-11

0.2395
21-1-6

< 0.05
15-3-10

< 0.1(0.06)
22-0-6

< 0.05

Variance
18-2-8

< 0.05
14-4-10

0.3621
13-2-13

0.6
10-0-14

0.863

Error
21-1-6

< 0.05
19-3-6

< 0.05
16-3-9

< 0.05
18-1-9

< 0.05

Table 4. Average results in terms of accuracy/bias/variance/error (best value in bold)

AODE HAODE
EF5 NDD EF5 NDD

Accuracy 82.4169 83.5873 81.7251 82.2658
Bias 0.1298 0.1250 0.1348 0.1275
Variance 0.0395 0.0355 0.0440 0.0435
Error 0.1737 0.1643 0.1836 0.1758

provide better records compared to EF5, no statistical difference is found. If we
consider the weighted version of NDD, the results are slightly better in terms
of bias (specially for AODE), at the expense of variance and overall worsening.
Hence, from now on in the paper, we will just consider non-weighted NDD, al-
though it is important to observe that the increase in variance may have less
effect on error when larger data are provided.

Table 4 displays the average results in terms of accuracy, bias, variance and
error obtained for the different classifiers, where NDD outperforms in every pair-
to-pair comparison.

Note that execution time comparisons would show no interest information,
since differences are minimum (same complexity order).

Hence, in the light of these results one question arises: why does NDD seems
to improve more pronouncedly AODE’s variance and HAODE’s bias compared
to applying equal frequency? The difference between the two classifiers lies in
the “double use” (in parents and children nodes) of NDD in AODE, which seems
to help in reducing variance at the expense of a bias sacrifice.

In this study, even though there is a slight improvement of HAODE over
AODE (16-0-12 in terms of accuracy, see Table 2), this is not as striking as in
the original study in 2009 [3], and this difference even shifts to 13-1-14 when
NDD is applied. We believe this fact might be motivated by two reasons:

– HAODE aims to avoid information loss by resorting to the use of discretiza-
tion only when necessary for the super-parents. However, that implies that
Gaussian distributions are assumed in some cases, which can be a handicap
if the real distributions in data are not Gaussians.

– In general, we should prefer high-bias, low-variance classifiers when the data
are sparse; and low-bias, high-variance classifiers when data are numerous.
Since we are now dealing with larger datasets, we could also deduce that
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HAODE is more robust in small ones and AODE in larger ones, unless the
normality condition is satisfied.

7 Conclusions

In this paper, we have studied the impact of applying NDD to AODE and
HAODE compared to traditional disjoint discretization techniques. In this study
we have chosen equal frequency division to represent the latter, as it was shown
previously to provide better results among the most common disjoint discretiza-
tion methods (EF, equal width division, MDL, etc).

We have introduced some modifications to the original definition of NDD [5]
in order to fit into AODE and HAODE’s context, as a smaller number of bins
is usually desired compared to NB to avoid increasing variance. Furthermore, a
new weighting system has been introduced at the counting process in order to
increase the importance given to the bins created by NDD where samples are
placed in the middle; which provided better results in terms of bias but worse
overall records.

The results have been analyzed in terms of accuracy, bias, variance and global
error obtaining the following conclusions:

– In general terms, an overall improvement is found for the two classifiers
(AODE and HAODE) when NDD is used. Statistical differences according
to the Wilcoxon test are found for both classifiers as far as accuracy and
global error (sum of bias and variance) is concerned.

– The analysis on error descomposition in terms of bias and variance displays
better results at all times when using NDD, being this improvement more
marked for HAODE in terms of bias, and AODE in terms of variance.

The most important conclusion though, is the fact that whereas some of the most
common disjoint discretization techniques have failed to demonstrate consistent
improvement relative to alternatives, non-disjoint discretization demonstrates
better win/draw/loss records and significant overall improvement. Still, we plan
to extend the experimental part to a test bed of high dimensional datasets in
order to corroborate these conclusions.

Moreover, we believe that the positive results observed in AODE are a good
motivation to think that the beneficial properties of NDD will be strengthen
when applied to Aggregating n-dependence estimators (AnDE) [19], for values
of n greater or equal to 2 (since when n = 1 it is equivalent to AODE).

One drawback of NDD is that it requires the user to select additional parame-
ters apart from the number of bins to form (such as in equal frequency division),
also the number of atomic bins per operational interval and the minimum fre-
quency per interval must be chosen.
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