From Non-adaptive to Adaptive
Pseudorandom Functions

Itay Berman and Iftach Haitner*

School of Computer Science, Tel Aviv University
itayberm@post.tau.ac.il, iftachh@cs.tau.ac.il

Abstract. Unlike the standard notion of pseudorandom functions
(PRF), a non-adaptive PRF is only required to be indistinguishable from
random in the eyes of a non-adaptive distinguisher (i.e., one that pre-
pares its oracle calls in advance). A recent line of research has studied the
possibility of a direct construction of adaptive PRFs from non-adaptive
ones, where direct means that the constructed adaptive PRF uses only
few (ideally, constant number of) calls to the underlying non-adaptive
PRF. Unfortunately, this study has only yielded negative results, show-
ing that “natural” such constructions are unlikely to exist (e.g., Myers
[EUROCRYPT ’04], [Pietrzak [CRYPTO ’05, EUROCRYPT ’06]).

We give an affirmative answer to the above question, presenting a
direct construction of adaptive PRF's from non-adaptive ones. Our con-
struction is extremely simple, a composition of the non-adaptive PRF
with an appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser,
and Micali |[11], cannot be distinguished from a family of ¢ruly random functions
by an efficient distinguisher who is given an oracle access to a random member
of the family. PRFs have an extremely important role in cryptography, allowing
parties, which share a common secret key, to send secure messages, identify them-
selves and to authenticate messages |10, [13]. In addition, they have many other
applications, essentially in any setting that requires random function provided
as black-box |2, 13, 16, [, [14, [18]. Different PRF constructions are known in the
literature, whose security is based on different hardness assumption. Construc-
tions relevant to this work are those based on the existence of pseudorandom
generators [11] (and thus on the existence of one-way functions |12]), and on,
the so called, synthesizers [17].

In this work we study the question of constructing (adaptive) PRFs from
non-adaptive PRFs. The latter primitive is a (weaker) variant of the standard
PRF we mentioned above, whose security is only guaranteed to hold against
non-adaptive distinguishers (i.e., ones that “write” all their queries before the

* Research supported by Check Point Institute for Information Security and BSF grant
2010196.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 357 2012.
© International Association for Cryptologic Research 2012

358 I. Berman and I. Haitner

first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom
generator or as a synthesizer, |11, [17] tell us how to construct (adaptive) PRF
from a non-adaptive one. In both of these constructions, however, the resulting
(adaptive) PRF makes ©(n) calls to the underlying non-adaptive PRF (where
n being the input length of the functions)E

A recent line of work has tried to figure out whether more efficient reductions
from adaptive to non-adaptive PRF’s are likely to exist. In a sequence of works
116,119,120, 5], it was shown that several “natural” approaches (e.g., composition
or XORing members of the non-adaptive family with itself) are unlikely to work.
See more in Section [L.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate
pairwise independent hash function, yields an adaptive PRF. To state our result
more formally, we use the following definitions: a function family F is T =
T(n)-adaptive PRF, if no distinguisher of running time at most T, can tell a
random member of F from a random function with advantage larger than 1/7T'.
The family F is T-non-adaptive PRF, if the above is only guarantee to hold
against non-adaptive distinguishers. Given two function families F; and Fs, we
let Fy o Fy [resp., F1 €D Fa] be the function family whose members are all pairs
(f,g) € F1 X Fa, and the action (f, g)(z) is defined as f(g(x)) [resp., f(z)®g(z)].
We prove the following statements (see Section [for the formal statements).

Theorem 1 (Informal). Let F be a (p(n)-T(n))-non-adaptive PRF, where
p € poly is function of the evaluating time of F, and let H be an efficient
pairwise-independent function family mapping strings of length n to [T'(n)](0,13»,
where [T]go,13» is the first T' elements (in lexicographic order) of {0,1}". Then

FoHisa (%/T(n)/Q) -adaptive PRF.

For instance, assuming that F is a (p(n) - 2°*)-non-adaptive PRF and that H
maps strings of length n to [2°"];o 13, Theorem [1 yields that FoH is a (2 e _1)-
adaptive PRF.

Theorem [1 is only useful, however, for polynomial-time computable T’s (in
this case, the family H assumed by the theorem exists, see Section Iﬁ) Un-
fortunately, in the important case where F is only assumed to be polynomially
secure non-adaptive PRF, no useful polynomial-time computable T is guaran-
teed to exists

We suggest two different solutions for handling polynomially secure PRFs.
In Section 4 we observe (following Bellare |1]) that a polynomially secure non-
adaptive PRF is a T-non-adaptive PRF for some T € n“(). Since this T can

! We remark that if one is only interested in polynomial security (i.e., no adaptive
pPT distinguishes with more than negligible probability), then w(logn) calls are
sufficient (cf., |8, Sec. 3.8.4, Exe. 30]).

2 Clearly F is p-non-adaptive PRF for any p € poly, but applying Theorem El with
T € poly, does not yield a polynomially secure adaptive PRF.

From Non-adaptive to Adaptive Pseudorandom Functions 359

be assumed without loss of generality to be a power of two, Theorem [1 yields a
non-uniform (uses n-bit advice) polynomially secure adaptive PRF, that makes
a single call to the underlying non-adaptive PRF. Our second solution is to use
the following “combiner”, to construct a (uniform) adaptively secure PRF, which
makes w(1) parallel calls to the underlying non-adaptive PRF.

Corollary 1 (Informal). Let F be a polynomially secure non-adaptive PRF,
let H = {Hn}tnen be an efficient pairwise-independent length-preserving function
family and let k(n) € w(1) be polynomial-time computable function.

Forn € N andi € [n], let ' be the function family ", = {ﬁ h € H}, where
h(z) = 0""||h(z)1,..i (| stands for string concatenation). Then the ensemble

— |i-logn]

{@ie[k(n)] (]—'n oHn,)}neN is a polynomially secure adaptive PRF.

1.2 Proof Idea

To prove Theorem [we first show that F o H is indistinguishable from IT o H,
where IT being the set of all functions from {0,1}" to {0,1}*(™) (letting £(n)
be F’s output length), and then conclude the proof by showing that IT o H is
indistinguishable from IT.

F o H Is indistinguishable from I o H. Let D be (a possibly adaptive) al-
gorithm of running time 7'(n), which distinguishes F o H from IT o H with
advantage €(n). We use D to build a non-adaptive distinguisher D of running
time p(n) - T'(n), which distinguishes F from IT with advantage ¢(n). Given
an oracle access to a function ¢, the distinguisher 6¢(1”) first queries ¢ on
all the elements of [T'(n)]¢,13». Next it chooses at uniform h € H, and uses
the stored answers to its queries, to emulate D?°"(17).

Since D runs in time p(n) - T(n), for some large enough p € poly, makes
non-adaptive queries, and distinguishes F from IT with advantage £(n), the
assumed security of F yields that e(n) < p(n).lT(n).

Il o H Is indistinguishable from I7. We prove that IT o H is statistically in-
distinguishable from II. Namely, even an unbounded distinguisher (that
makes bounded number of calls) cannot distinguish between the families.
The idea of the proof is fairly simple. Let D be an s-query algorithm trying
to distinguish between IT o H and II. We first note that the distinguish-
ing advantage of D is bounded by its probability of finding a collision in a
random ¢ € IT o H (in case no collision occurs, ¢’s output is uniform). We
next argue that in order to find a collision in ¢, the distinguisher D gains
nothing from being adaptive. Indeed, assuming that D found no collision
until the i’th call, then it has only learned that h does not collide on these
first ¢ queries. Therefore, a random (or even a constant) query as the (i +1)
call, has the same chance to yield a collision, as any other query has. Hence,
we assume without loss of generality that D is non-adaptive, and use the
pairwise independence of H to conclude that D’s probability in finding a
collision, and thus its distinguishing advantage, is bounded by s(n)?/T(n).

360 I. Berman and I. Haitner

Combining the above two observations, we conclude that an adaptive dis-
tinguisher whose running time is bounded by é{’/T(n), cannot distinguish
F oH from IT (i.e., from a random function) with an advantage better than

2
T(;();)M n p(n)lT(n) <2/{/T(n). Namely, FoH is a ({’/T(n)/2)-adaptive PRF.

1.3 Related Work

Maurer and Pietrzak |15] were the first to consider the question of building
adaptive PRF's from non-adaptive ones. They showed that in the information
theoretic model, a self composition of a non-adaptive PRF does yield an adaptive
PRFH

In contrast, the situation in the computational model (which we consider here)
seems very different: Myers [16] proved that it is impossible to reprove the result
of [15] via fully-black-box reductions. Pietrzak [19] showed that under the Deci-
sional Diffie-Hellman (DDH) assumption, composition does not imply adaptive
security. Where in [20] he showed that the existence of non-adaptive PRFs whose
composition is not adaptively secure, yields that key-agreement protocol exists.
Finally, Cho et al. [5] generalized |20] by proving that composition of two non-
adaptive PRFs is not adaptively secure, iff (uniform transcript) key agreement
protocol exists. We mention that |16, [19, 5], and in a sense also [15], hold also
with respect to XORing of the non-adaptive families.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ‘||” denote string con-
catenation. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. For an integer ¢, we let [t] = {1,...,t¢}, and
for a set S C {0,1}* with |S| > ¢, we let [t]s be the first ¢ elements (in in-
creasing lexicographic order) of S. A function p: N — [0, 1] is negligible, denoted
p(n) = neg(n), if u(n) = n=“M). We let poly denote the set all polynomials, and
let PPT denote the set of probabilistic algorithms (i.e., Turing machines) that
run in strictly polynomial time.

Given a random variable X, we write X (x) to denote Pr[X = z], and write
x + X to indicate that z is selected according to X. Similarly, given a fi-
nite set S, we let s < S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and () over
a finite set U, denoted as SD(P,Q), is defined as maxscy |P(S) — Q(S)| =

2 Lueu [P(w) — Qu)].

3 Specifically, assuming that the non-adaptive PRF is (Q, ¢)-non-adaptively secure, no
@-query non-adaptive algorithm distinguishes it from random with advantage larger
than e, then the resulting PRF is (Q,£(1 4 In !))-adaptively secure.

From Non-adaptive to Adaptive Pseudorandom Functions 361

2.2 Ensemble of Function Families

Let F = {F,: Dy, — Ry }nen stands for an ensemble of function families, where
each f € F, has domain D,, and its range contained in R,,. Such ensemble is
length preserving, if D, = R,, = {0,1}™ for every n.

Definition 1 (efficient function family ensembles). A function family en-
semble F = {F, }nen is efficient, if the following hold:

Samplable. F is samplable in polynomial-time: there exists a PPT that given
1", outputs (the description of) a uniform element in F,.

Efficient. There exists a polynomial-time algorithm that given x € {0,1}"™ and
(a description of) f € Fyn, outputs f(x).

Operating on Function Families

Definition 2 (composition of function families). Let F' = {F}: DL —
Rltnen and F? = {F2: D2 — RZ},en be two ensembles of function families
with RL C D2 for every n. We define the composition of F! with F? as F? o
F' ={F20 FL: D} = R2},en, where F2 o Fr = {(f2, f1) € F2 x FL}, and
(f2, 1)) == fo(fr(2)).

Definition 3 (XOR of function families). Let F' = {F.: DL — R} }nen
and F? = {F2: D2 — R2}.en be two ensembles of function families with
RLR2 C {0,1}4) for every n. We define the XOR of F' with F? as
FPRF ={F2DFL: DND? s {0, 1} M}, cn, where F2 @ F: = {(f2, f1) €
Fa x Fats and (f2, f1)(2) = fo(z) © fi().

Pairwise Independent Hashing

Definition 4 (pairwise independent families). A function family H =
{h: D~ R} is pairwise independent (with respect to D and R), if

1

Procylh(z1) = y1 A h(z2) = y2] = R

for every distinct x1,x2 € D and every y1,y2 € R.

For every ¢ € poly, the existence of efficient pairwise-independent family en-
sembles mapping strings of length n to strings of length ¢(n) is well known
([]). In this paper we use efficient pairwise-independent function family en-
sembles mapping strings of length n to the set [T'(n)];o,13», where T'(n) < 2"
and is without loss of generality a power of twol Let H be an efficient length-
preserving, pairwise-independent function family ensemble and assume that
t(n) := logT(n) is polynomial-time computable. Then the function family
H= {’;fl; ={h':heHH,h(x)= O”_t(”)||h(x)1w’t(n)}}, is an efficient pairwise-
independent function family ensemble, mapping strings of length n to the set
T()] 0.y

4 For our applications, see Section E, we can always consider T"(n) = gUoe(T(m)]
which only causes us a factor of two loss in the resulting security.

362 I. Berman and I. Haitner

Pseudorandom Functions

Definition 5 (pseudorandom functions). An efficient function family en-
semble F = {Fp: {0,1}" = {0,1}*(M}, cn is a (T(n),e(n))-adaptive PRF, if for
every oracle-aided algorithm (distinguisher) D of running time T'(n) and large
enough n, it holds that

[Pryez,[DY(1") = 1] = Prrcp, [DT(1") = 1]] < &(n),

where IT,, is the set of all functions from {0,1}" to {0, 1}*(™). If we limit D above
to be non-adaptive (i.e., it has to write all his oracle calls before making the first
call), then F is called (T'(n),e(n))-non-adaptive PRF.

The ensemble F is a t-adaptive PRF, if it is a (t,1/t)-adaptive PRF according
to the above definition. It is polynomially secure adaptive PRE (for short, adaptive
PRF), if it is a p-adaptive PRF for every p € poly. Finally, it is super-polynomial
secure adaptive PRF, if it T-adaptive PRF for some T(n) € n“® . The same
conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Section ¥
we prove that the converse is also true: a polynomially secure PRF is also super-
polynomial secure PRF.

3 Owur Construction

In this section we present the main contribution of this paper — a direct con-
struction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 2 (restatement of Theorem E]) Let T be a polynomial-time com-
putable integer function, let H = {Hn: {0,1}" = [T'(n)]10,13»} be an efficient
pairwise independent function family ensemble, and let F = {F,: {0,1}" —
{0,134} be a (p(n) - T(n),e(n))-non-adaptive PRF, where p € poly is
determined by the computation time of T, F and H. Then FoH is a
2

(s(n)@(n) + ‘;E?Yz))—adaptz’ve PRF for every s(n) < T(n).

Theorem [2 yields the following simpler statement.

Corollary 2. Let T, p and H be as in Theorem[d. Assuming F is a (p(n)T(n))-

non-adaptive PRF, then F o H is a (3/T(n)/2)-adaptive PRF.

Proof. Applying Theorem [with respect to s(n) = {/T(n)/2 and e(n) =
p(n)lT(n), yields that FoH is a (s(n)7 p(n)lT(n) + ‘;E?Y)Lj)—adaptive PRF. Since

p(n)lT(n) < QS%H) and ‘;E?Yz; < 23%n)7 it follows that F o H is a (s,1/s)-adaptive
. U

To prove Theorem E, we use the (non efficient) function family ensemble IT o H,
where IT = II, (i.e., the ensemble of all functions from {0,1}" to {0,1}¢), and
£ = {(n) is the output length of F. We first show that F o H is computationally
indistinguishable from IT o H, and complete the proof showing that IT o H is
statistically indistinguishable from I7.

From Non-adaptive to Adaptive Pseudorandom Functions 363

3.1 F oH Is Computationally Indistinguishable From IT o H

Lemma 1. Let T, F and H be as in Theorem [4. Then for every oracle-aided
distinguisher D of running time T', there exists a non-adaptive oracle-aided dis-
tinguisher D of running time p(n) - T'(n), for some p € poly (determined by the
computation time of T, F and H), with

|Prye 7, [DY(1") = 1] — Prge 11, [DY(1") = 1]| =
Pryc 5,0, [DY(1") = 1] = Prye 7,0, [D/(17) = 1]

for every n € N, where IT,, is the set of all functions from {0,1}" to {0,1}™).

In particular, the pseudorandomness of F yields that F o H is computationally
indistinguishable from the ensemble {II,, o H,, }nen by an adaptive distinguisher
of running time 7.

Proof. The distinguisher D is defined as follows:
Algorithm 3 (f))

Input: 1".
Oracle: a function ¢ over {0,1}™.

1. Compute ¢(x) for every x € [T(n)]10,13n-

2. Set g = ¢ o h, where h is uniformly chosen in H,.

3. Emulate DI(1™): answer a query x to ¢ made by D with g(x), using the
information obtained in Step [

Note that D makes T (n) non-adaptive queries to ¢, and it can be implemented
to run in time p(n)T(n), for large enough p € poly. We conclude the proof by
observing that in case ¢ is uniformly drawn from J,,, the emulation of D done
in D? is identical to a random execution of DY with g + F, o H,. Similarly,
in case ¢ is uniformly drawn from II,, the emulation is identical to a random
execution of D™ with « « II,,. O

3.2 II o H Is Statistically Indistinguishable From IT

The following lemma is commonly used for proving the security of hash based
MAGCs (cf., [9, Proposition 6.3.6]), yet for completeness we give it a full proof
below.

Lemma 2. Let n,T be integers with T < 2", and let H be a pairwise-
independent function family mapping string of length n to [T]go,13». Let D be
an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries),
then

|Pr g o [DY = 1] — Pro g [D™ = 1]| < s%/T,

where IT is the set of all functions from {0,1}" to {0,1}* (for some £ € N).

364 I. Berman and I. Haitner

Proof. We assume for simplicity that D is deterministic (the reduction to the
randomized case is standard) and makes exactly s valid (i.e., inside {0,1}")
distinct queries, and let 2 = ({0, 1}¢)*. Consider the following random process:

Algorithm 4

1. Emulate D, while answering the i’th query q; with a uniformly chosen a; €
{0,1}*.

Set q=(q1,...,9s) and a = (a1,...,as).

2. Choose h + H.

3. Emulate D again, while answering the i’th query ¢, with a}, = a; (the same
a; from Step[), if h(q;) ¢ {h(q})}jefi—1), and with a; = aj, if h(q;) = h(q})
for some j € [i — 1].

Setq¢' =(¢},...,q.) and o’ = (a},...,d).

Let A, Q, A’, Q' and H be the (jointly distributed) random variables induced by
the values of ¢, a, ¢/, a’ and h respectively, in a random execution of the above
process. It is not hard to verify that A is distributed the same as the oracle
answers in a random execution of D™ with 7w < II, and that A’ is distributed
the same as the oracle answers in a random execution of DY with g <— IT o H.
Hence, for proving Lemma E, it suffices to bound the statistical distance between
A and A’

Let Coll be the event that H(Q;) = H(Q;) for some i # j € [s]. Since the
queries and answers in both emulations of Algorithm [are the same until a
collision with respect to H occurs, it follows that

Pr[A # A’] < Pr[Col]] (1)

On the other hand, since H is chosen after @ is set, the pairwise independent
of H yields that

Pr[Coll] < s*/T, (2)
and therefore Pr[A # A'] < s2?/T. It follows that Pr[4A € O] < Pr[A’ € C]+s2/T
for every C' C (2, yielding that SD(A, A’) < s%/T. O
3.3 Putting It Together

We are now finally ready to prove Theorem M.

Proof (of Theorem 4). Let D be an oracle-aided algo-

rithm of running time s with s(n) < T(n). Lemma
yields that |Prg<—]-"n0?-[n [Dg(ln) = 1] — Prg<—Hno7-Ln [Dgéln) = 1]| <
e(n) for large enough n, where Lemma yields that

[Prgeir,0m, [D(17) = 1] = Prrep, [D7(1") = 1]] < s(n)?/T(n)
for every m € N. Hence, the triangle inequality yields that
[Prge 7,01, [DY(1") = 1] = Prrcp, [DT(1") = 1]| < e(n) + s(n)?/T(n) for
large enough n, as requested. O

From Non-adaptive to Adaptive Pseudorandom Functions 365

3.4 Handling Polynomial Security

CorollaryE is only useful when the security of the underlying non-adaptive PRF
(i.e., T is efficiently computable (or when considering non-uniform PRF con-
structions, see Section |E|) In this section we show how to handle the important
case of polynomially secure non-adaptive PRF. We use the following “combiner”.

Definition 6. Let H be a function family into {0,1}". Fori € [n], let H' be the
function family H' = {h: h € H}, where h(z) = 0" ¢||h(x)1, ..

)

Corollary 3. Let F be a T(n)-non-adaptive PRF, let H be an efficient length-
preserving pairwise-independent function family ensemble, and let Z(n) C [n] be
polynomial-time computable (in n) index set. Dgﬁne the function family ensemble

G = {Gn}nen, where G,, = ®ieI(n) (Fn o 77[:11)
There ezists q € poly such that G is a (e/Qt(")/Q)—adaptive PRF, for every
polynomial-time computable integer function t, with t(n) € I(n) and 21" <

T(n)/q(n).

Before proving the corollary, let us first use it for constructing adaptive PRF
from non-adaptive polynomially secure one.

Corollary 4 (restatement of Corollary E|) Let F be a polynomially secure
non-adaptive PRF, let H be an efficient pairwise-independent length-preserving

function family ensemble and let k(n) € w(1) be polynomial-time computable
— li-logn|

function. Then G := {@; ¢ (fn oHn
adaptive PRF.

)}nEN s polynomially secure

Proof. Let I(n) := {|logn],|2-logn]...,|k(n)-logn|}. Applying Corollary [
with respect to F, H, Z and t(n) = |c¢-logn], where ¢ € N, yields that G is a
O(3/n¢)-adaptive PRF. It follows that G is p-adaptive PRF for every p € poly.
Namely, G is polynomially secure adaptive PRF.]

Remark 1 (unknown security). Corollary [is also useful when the security of
F is “not known” in the construction time. Taking Z(n) = {1,2,4,...,2llsn]}
(resulting in logn calls to F) and assuming that F is found to be T'(n)-non-
adaptive PRF for some polynomial-time computable T, the resulting PRF is
guaranteed to be O({/T(n))-adaptive PRF (neglecting polynomial factors).

Proof (of Corollary E) It is easy to see that G is efficient, so it is left to argue for
its security. Let g(n) = ¢’(n)p(n), where p is as in the statement of Corollary E,
and ¢’ € poly to be determined later. Let ¢ be a polynomial-time computable

integer function with ¢(n) € Z(n) and 21" < T(n)/q(n). It follows that H! =
—~t(n
{Hn ()}nEN is an efficient pairwise-independent function family ensemble, and

Corollary [yields that F o H! is a (%/q’(n)2t(”)/2) -adaptive PRF.

366 I. Berman and I. Haitner

Assume towards a contradiction that there exists an oracle-aided distinguisher
D that runs in time 7"(n) = V24 /2 and

[Prgec,[D?(1") = 1] = Prrcpr, [D7(17) = 1]| > 1/T"(n) 3)

for infinitely many n’s. We use the following distinguisher for breaking the pseu-
dorandomness of F o H*:

Algorithm 5 (6)

Input: 1”.
Oracle: a function ¢ over {0,1}™.

1. For every i € I(n)\ {t(n)}, choose g+ Fno ’;‘T[;z

2. Set g:= @ D,z 1m)} 9'-
3. Emulate DI(1™).

Note that D can be implemented to run in time |Z(n)| - (n) - T'(n) for some r €
poly, which is smaller than \3/q’(n)2t(”)/2 for large enough ¢’. Also note that in

case ¢ is uniformly distributed over II,,, then g (selected by 5¢(1”)) is uniformly

—~t
distributed in IT,,, where in case ¢ is uniformly distributed in F,, o H,, (n), then

g is uniformly distributed in G,,. It follows that

~

D7) = 1] = Precp, [B7(1") = 1]| =
[Pryeq, [D/(1") = 1] = Prec, [D7(1") = 1]| - (4)

‘Pr%(mqt)
for every n € N. In particular, Equation (E) yields that

2 2
> >
V/2t(n) Q/q’(n)Qt(”)

[Pry pogin [B(1") = 1] = Precr, [B7(17) = 1)
for infinitely many n’s, in contradiction to the pseudorandomness of F o H we
proved above. ([

Acknowledgment. We are very grateful to Omer Reingold for very useful
discussions, and for challenging the second author with this research question a
long while ago.

References

1. Bellare, M.: A note on negligible functions. Journal of Cryptology, 271-284 (2002)

2. Bellare, M., Goldwasser, S.: New Paradigms for Digital Signatures and Message
Authentication Based on Non-interactive Zero Knowledge Proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194-211. Springer, Heidelberg (1990)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

4

From Non-adaptive to Adaptive Pseudorandom Functions 367

Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225-244 (1994)

Carter, L.J., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences, 143-154 (1979)

Cho, C., Lee, C.-K., Ostrovsky, R.: Equivalence of Uniform Key Agreement and
Composition Insecurity. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
447-464. Springer, Heidelberg (2010)

Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on
Information Theory 46(3), 893-910 (2000)

Goldreich, O.: Towards a Theory of Software Protection. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 426-439. Springer, Heidelberg (1987)
Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2001)

Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

Goldreich, O., Goldwasser, S., Micali, S.: On the Cryptographic Applications of
Random Functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 276-288. Springer, Heidelberg (1985)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM, 792-807 (1986)

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. STAM Journal on Computing, 1364-1396 (1999)
Luby, M.: Pseudorandomness and cryptographic applications. Princeton computer
science notes. Princeton University Press (1996) ISBN 978-0-691-02546-9

Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. STAM Journal on Computing

Maurer, U.M., Pietrzak, K.: Composition of Random Systems: When Two Weak
Make One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410-427.
Springer, Heidelberg (2004)

Myers, S.: Black-Box Composition Does Not Imply Adaptive Security. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189-206.
Springer, Heidelberg (2004)

Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of psuedo-random functions. In: Proceedings of the 36th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 170-181 (1995)

Ostrovsky, R.: An Efficient Software Protection Scheme. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 610-611. Springer, Heidelberg (1990)
Pietrzak, K.: Composition Does Not Imply Adaptive Security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55-65. Springer, Heidelberg (2005)
Pietrzak, K.: Composition Implies Adaptive Security in Minicrypt. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328—-338. Springer, Heidelberg
(2006)

From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial se-
curity: any PPT trying to break the primitive has only negligible success proba-
bility. Bellare |1]] showed that for any polynomially secure primitive there exists
a single negligible function p, such that no PPT can break the primitive with

368 I. Berman and I. Haitner

probability larger than p. Here we take his approach a step further, showing that
for a polynomially secure primitive there exists a super-polynomial function 7',
such that no adversary of running time 7" breaks the primitive with probability
larger than 1/7.

In the following we identify algorithms with their string description. In par-
ticular, when considering algorithm A, we mean the algorithm defined by the
string A (according to some canonical representation). We prove the following
result.

Theorem 6. Let v: {0,1}* x N [0,1] be a function with the following prop-
erties: 1) v(A,n) < 1/p(n) for every oracle-aided PPT A, p € poly and large
enough n; and 2) if the distributions induced by random ezecutions of Af (x) and
B/ (z) are the same for any input x € {0,1}" and function f (each distribution
describes the algorithm’s output and oracle queries), then v(A,n) = v(B,n).

Then there exists an integer function T'(n) € n®W) such that following holds:
for any algorithm A of running time at most T'(n), it holds that v(A,n) < 1/T(n)
for large enough n.

Remark 2 (Applications). Let f be a polynomially secure OWF (i.e.,
Pr[A(f(Uy,)) € f~Y(f(Un))] = neg(n) for any PPT A). Applying Theorem [d with
v(A,n) == Pr[A(f(U,)) € f~1(f(U,))] (where if A expects to get an oracle, pro-
vide him with the constant function ¢(z) = 1), yields that f is super-polynomial
secure OWF (i.e., exists T(n) € n“(1) such that Pr[A(f(U,)) € £~ (f(Un))] <
1/T(n) for any algorithm of running time 7" and large enough n).

Similarly, for a polynomially secure PRF F = {F, }nen (see Definition 5), ap-
plying Theorem|d with v(A,n) = ‘Prﬂ_}-n [AF (1) = 1] = Prpep, [AT(17) = 1]|7
where IT,, is the set of all functions with the same domain/range as F,,, yields
that F is super-polynomial secure PRF.

Proof (of Theorem) Given a probabilistic algorithm A and an integer i, let A;
denote the variant of A that on input of length n, halts after n’ steps (hence,
A; is a PPT). Let S; be the first 4 strings in {0, 1}*, according to some canonical
order, viewed as descriptions of i algorithms. Let Z(n) = {i € [n]: VA € S;,k >
n: v(Ai, k) < 1/k'} U {1}, let t(n) = maxZ(n) and T(n) = n*(™).

Let A be an algorithm of running time 7'(n), and let ia be the first integer
such that A € S;,. In Claim [7] we prove that ¢(n) € w(1), hence it follows that
t(n) > ia for any large enough n. For any such n, the definition of ¢ guarantees
that v(Ay(,),n) < 1/n!™ =1/T(n). Since A is of running time 7'(n), the second
property of v yields that v(A,n) = v(Ayy),n), and therefore v(A,n) < 1/T'(n).

O

Claim 7. It holds that ¢(n) € w(1).

Proof. Fix i € N. For each A € §;, let na be the first integer such that v(A;,n) <
1/n® for every n > na (note that such na exists by the first property of v), and
let n; = max{na: A € S;}. It follows that v(A;,n) < 1/n® for every n > n; and
A € S;, and therefore t(n;) > i. O

	From Non-adaptive to Adaptive
Pseudorandom Functions
	Introduction
	Our Result
	Proof Idea
	Related Work

	Preliminaries
	Notations
	Ensemble of Function Families

	Our Construction
	FH Is Computationally Indistinguishable From H
	H Is Statistically Indistinguishable From
	Putting It Together
	Handling Polynomial Security

	References
	From Polynomial to Super-Polynomial Security

