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Preface

TCC 2012, the 9th Theory of Cryptography Conference, was held in Taormina
(Sicily), Italy, during March 19–21, 2012. It was sponsored by the International
Association for Cryptologic Research (IACR). The General Chairs were Nelly
Fazio and Rosario Gennaro. The Local Arrangements Chair was Dario Catalano.

By the deadline of September 15, 2011, the Program Committee (PC) had re-
ceived 131 electronic submissions. As usual, the selection process was carried out
using a Web-based interface and consisted of three phases. In the review phase
each submission was assigned to at least three PC members for independent
review (six in the case of a PC member submission). In the discussion phase,
reviews pertaining to the same submission were compared and agreement on a
common view was reached where possible. Additional reviews were solicited as
needed. The perceived relative merits of all submissions were taken into con-
sideration as a basis for the selection phase. By the December 1 deadline for
notification of decisions, the PC had selected 36 submissions for (20-min.) pre-
sentation at the conference. Reviewer comments for all submissions were sent
out to their respective authors soon after. These proceedings contain the revised
versions of the 36 selected submissions, as received by January 3, 2012. These
revised versions were not subjected to further review by the PC and authors
bear full responsibility for contents.

The program also featured two invited (60-min.) talks. Jens Groth and Sergey
Yekhanin treated us to excellent surveys of Non-Interactive Zero-Knowledge and
Locally Decodable Codes, respectively. A Best Student Paper Award was shared
by Nir Bitansky and Omer Paneth for their paper “Point Obfuscation and 3-
round Zero-Knowledge” and by Anindya De for his paper “Lower Bounds in
Differential Privacy”. In addition, a traditional Rump Session was held, consist-
ing of (5-min.) research announcements. It was organized and chaired by Tal
Malkin. The organizers had this evening session well catered for with nice drinks
and snacks.

I thank the PC members for their hard work, as well as the external reviewers.
Oded Goldreich (TCC Steering Committee Chair) and Yuval Ishai (TCC 2011
Program Chair) provided quick and helpful advice upon my request as well as
answers to my questions, for which I am grateful. The PC used Shai Halevi’s ex-
cellent Web Submission and Review software to handle the submissions. Thanks
to Maarten Dijkema of CWI’s IT Support for running this software at our sys-
tem and for his unwavering assistance and thanks to Shai for rendering efficient
“customer service” to us. Also, thanks to Tal for running the Rump Session. The



VI Preface

organizers wish to express their gratitude to the TCC 2012 sponsors Alcatel-
Lucent Bell Labs, IBM Research and Microsoft Research for generous donations
that supported local organization in several ways, including student stipends. In
turn, I thank Nelly, Rosario and Dario for our pleasant collaboration. Finally,
thanks to all authors of submissions to TCC 2012.

January 2012 Ronald Cramer
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Benôıt Libert and Moti Yung

Round-Optimal Privacy-Preserving Protocols with Smooth Projective
Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Olivier Blazy, David Pointcheval, and Damien Vergnaud

On the Instantiability of Hash-and-Sign RSA Signatures . . . . . . . . . . . . . . 112
Yevgeniy Dodis, Iftach Haitner, and Aris Tentes

Beyond the Limitation of Prime-Order Bilinear Groups, and Round
Optimal Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Jae Hong Seo and Jung Hee Cheon

Zero-Knowledge and Security Models

On Efficient Zero-Knowledge PCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Yuval Ishai, Mohammad Mahmoody, and Amit Sahai

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Helger Lipmaa

Point Obfuscation and 3-Round Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . 190
Nir Bitansky and Omer Paneth



XII Table of Contents

Confidentiality and Integrity: A Constructive Perspective . . . . . . . . . . . . . 209
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Computing on Authenticated Data

Jae Hyun Ahn1, Dan Boneh2,�, Jan Camenisch3,��, Susan Hohenberger1,���,
Abhi Shelat4,†, and Brent Waters5,‡
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{arjuna,susan}@cs.jhu.edu

2 Stanford University
dabo@cs.stanford.edu

3 IBM Research – Zurich
jca@zurich.ibm.com

4 University of Virginia
abhi@cs.virginia.edu

5 University of Texas at Austin
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Abstract. In tandem with recent progress on computing on encrypted
data via fully homomorphic encryption, we present a framework for com-
puting on authenticated data via the notion of slightly homomorphic
signatures, or P -homomorphic signatures. With such signatures, it is
possible for a third party to derive a signature on the object m′ from a
signature of m as long as P (m,m′) = 1 for some predicate P which cap-
tures the “authenticatable relationship” between m′ and m. Moreover, a
derived signature on m′ reveals no extra information about the parent m.

Our definition is carefully formulated to provide one unified frame-
work for a variety of distinct concepts in this area, including arithmetic,
homomorphic, quotable, redactable, transitive signatures and more. It
includes being unable to distinguish a derived signature from a fresh
one even when given the original signature. The inability to link derived

� Supported by NSF, DARPA, and AFOSR. Applying to all authors, the views and
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Fellowship and a Google Faculty Research Award.
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Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under
contract FA8750-11-2-0211, and a Microsoft New Faculty Fellowship.

‡ Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-
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award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard
Foundation Fellowship.
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signatures to their original sources prevents some practical privacy and
linking attacks, which is a challenge not satisfied by most prior works.

Under this strong definition, we then provide generic constructions for
all univariate and closed predicates, and specific efficient constructions
for a broad class of natural predicates such as quoting, subsets, weighted
sums, averages, and Fourier transforms. To our knowledge, these are the
first efficient constructions for these predicates (excluding subsets) that
provably satisfy this strong security notion.

1 Introduction

In tandem with recent progress on computing any function on encrypted data,
e.g., [27,46,44], this work explores computing on unencrypted signed data. In the
past few years, several independent lines of research touched on this area:

– Quoting/redacting: [45,32,2,36,30,17,16,18] Given Alice’s signature on some
messagem anyone should be able to derive Alice’s signature on a subset ofm.
Quoting typically applies to signed text messages where one wants to derive
Alice’s signature on a substring ofm. Quoting can also apply to signed images
where one wants to derive a signature on a subregion of the image (say, a face
or an object) and to data structures where one wants to derive a signature of
a subset of the data structure such as a sub-tree of a tree.

– Arithmetic: [33,50,22,13,26,12,11,48] Given Alice’s signature on vectors
v1, . . . ,vk ∈ Fn

p anyone should be able to derive Alice’s signature on a vector
v in the linear span of v1, . . . ,vk. Arithmetic on signed data is motivated
by applications to secure network coding [25]. We show that these schemes
can be used to compute authenticated linear operations such as computing
an authenticated weighted sum of signed data and an authenticated Fourier
transform. As a practical consequence of this, we show that an untrusted
database storing signed data (e.g., employee salaries) can publish an authen-
ticated average of the data without leaking any other information about the
stored data. Recent constructions go beyond linear operations and support
low degree polynomial computations [11].

– Transitivity: [41,35,6,31,7,43,49,40] Given Alice’s signature on edges in a
graphG anyone should be able to derive Alice’s signature on a pair of vertices
(u, v) if and only if there is a path in G from u to v. The derived signature on
the pair (u, v) must be indistinguishable from a fresh signature on (u, v) had
Alice generated one herself [35]. This requirement ensures that the derived
signature on (u, v) reveals no information about the path from u to v used
to derive the signature.

In this paper, we put forth a general framework for computing on authenticated
data that encompasses these lines of research and much more. While prior defini-
tions mostly contained artifacts specific to the type of malleability they supported
and, thus, were hard to compare to one another, we generalize and strengthen
these disparate notions into a single definition. This definition can be instanti-
ated with any predicate, and we allow repeated computation on the signatures
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(e.g., it is possible to quote from a quoted signature.) During our study, we re-
alized that the “privacy” notions offered by many existing definitions are, in our
view, insufficient for some practical applications. We therefore require a stronger
(and seemingly a significantly more challenging to achieve) property called context
hiding. Under this definition, we provide two generic solutions for computing sig-
natures on any univariate, closed predicate; however, these generic constructions
are not efficient. We also present efficient constructions for three problems: quot-
ing substrings, a subset predicate, and a weighted average over data (which cap-
tures weighted sums and Fourier transforms). Our quoting substring construction
is novel and significantly more efficient than the generic solutions. It is detailed in
Section 4. For the problems of subsets and weighted averages, we show somewhat
surprising connections to respective existing solutions in attribute-based encryp-
tion and network coding signatures in Section 5.

1.1 Overview

A general framework. LetM be some message space and let 2M be its powerset.
Consider a predicate P : 2M ×M → {0, 1} mapping a set of messages and a
message to a bit. Loosely speaking we say that a signature scheme supports
computations with respect to P if the following holds:

LetM ⊂M be a set of messages and letm′ be a derived message, namely
m′ satisfies P (M,m′) = 1. Then there exists an efficient procedure that
can derive Alice’s signature on m′ from Alice’s independent signatures
on all of the messages in M .

For the quoting application, the predicate P is defined as P (M,m′) = 1 iff m′

is a quote from the set of messages M . Here we focus on quoting from a single
message m so that P is false whenever M contains more than one component1,
and thus use the notation P (m,m′) as shorthand for P ({m},m′). The predicate
P for arithmetic computations is defined in the full version [1] and essentially
says that P

(
(v1, . . . ,vk), v) is true whenever v is in the span of v1, . . . ,vk.

We emphasize that signature derivation can be iterative. For example, given
a message-signature pair (m,σ) from Alice, Bob can publish a derived message-
signature pair (m′, σ′) for an m′ where P (m,m′) holds. Charlie, using (m′, σ′),
may further derive a signature σ′′ on m′′. In the quoting application, Charlie is
quoting from a quote which is perfectly fine.

Security. We give a clean security definition that captures two properties: un-
forgeability and context hiding. We briefly discuss each in turn and give precise
definitions in the next section.

– Unforgeability captures the idea that an attacker may be given various de-
rived signatures (perhaps iteratively derived) on messages of his choice. The

1 We leave it for future work to construct systems for securely quoting from two
messages (or possibly more) as defined next.
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attacker should be unable to produce a signature on a message that is not
derivable from the set of signed messages at his possession. E.g., suppose
Alice generates (m,σ) and gives it to Bob who then publishes a derived sig-
nature (m′, σ′). Then an attacker given (m′, σ′) should be unable to produce
a signature on m or on any other message m′′ such that P (m′,m′′) = 0.

– Context hiding captures an important privacy property: a signature should
reveal nothing more than the message being signed. In particular, if a sig-
nature on m′ was derived from a signature on m, an attacker should not
learn anything about m other than what can be inferred from m′. This
should be true even if the original signature on m is revealed. For example,
a signed quote should not reveal anything about the message from which
it was quoted, including its length, the position of the quote, whether its
parent document is the same as another quote, whether it was derived from
a given signed message or generated freshly, etc.

Defining context hiding is an interesting and subtle task. In the next section,
we give a definition that captures a very strong privacy requirement. We discuss
earlier attempts at defining privacy following our definition in Section 2.3; while
many prior works use a similar sounding intuition as we give above, most contain
a fundamental difference to ours in their formalization.

We note that notions such as group or ring signatures [23,5,19,9,42] have
considered the problem of hiding the identity of a signer among a set of users.
Context hiding ensures privacy for the data rather than the signer. Our goal is
to hide the legacy of how a signature was created.

Efficiency. We require that the size of a signature, whether fresh or derived,
depend only on the size of the object being signed. This rules out solutions
where the signature grows with each derivation.

Generic Approaches. We begin with two generic constructions that can be inef-
ficient. They apply to closed, univariate predicates, namely predicates P (M,m′)
where M contains a single message (P is false when |M | > 1) and where if
P (a, b) = P (b, c) = 1 then P (a, c) = 1. The first construction uses any standard
signature scheme S where the signing algorithm is deterministic. (One can en-
force determinism using PRFs [28].) To sign a message m ∈ M, one uses S to
sign each message m′ such that P (m,m′) = 1. The signature consists of all these
signature components. To verify a signature form, one checks the signature com-
ponent corresponding to the message m. To derive a signature m′ from m, one
copies the signature components for all m′′ such that P (m′,m′′) = 1. Soundness
of the construction follows from the security of the underlying standard scheme
S and context hiding from the fact that signing in S is deterministic.

Unfortunately, these signatures may become large consisting up to |M| sig-
nature components — effecting both the signing time and signature size. Our
second generic construction alleviates the space burden by using an RSA accu-
mulator. The construction works in a similar brute force fashion where a sig-
nature on m is an accumulator value on all m′ such that P (m,m′) = 1. While
this produces short signatures, the time component of both verification and
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derivation are even worse than the first generic approach. Thus, these generic
approaches are too expensive for most interesting predicates. We detail these
generic approaches and proofs in the full version [1], where we also discuss a
generic construction using NIZK.

Our Quoting Construction. We turn to more efficient constructions. First, we
set out to construct a signature for quoting substrings2, which although concep-
tually simple is non-trivial to realize securely. As an efficiency baseline, we note
that the brute force generic construction of the quoting predicate would result in
n2 components for a signature on n characters. So any interesting construction
must perform more efficiently than this. We prove our construction selectively
secure.3 In addition, we give some potential future directions for achieving adap-
tive security and removing the use of random oracles.

Our construction uses bilinear groups to link different signature components
together securely, but in such a way that the context can be hidden by a re-
randomizing step in the derivation algorithm. A signature in our system on a
message of length n consists of n lgn group elements; intuitively organized as
lgn group elements assigned to each character. To derive a new signature on a
substring of � characters, one roughly removes the group elements not associ-
ated with the new substring and then re-randomizes the remaining part of the
signature. This results in a new signature of � lg � group elements. The technical
challenge consists in simultaneously allowing re-randomization and preserving
the “linking” between successive characters. In addition, there is a second op-
tion in our derive algorithm that allows for the derivation of a short signature
of lg � group elements; however the derive procedure cannot be applied again to
this short signature. Thus, we support quoting from quotes, and also provide a
compression option which produces a very short quote, but the price for this is
that it cannot be quoted from further.

Computing Signatures on Subsets and Weighted Averages. Our final two con-
tributions are schemes for deriving signatures on subsets and weighted averages
on signatures. Rather than create entirely new systems, we show connections to
existing Attribute-Based Encryption schemes and Network Coding Signatures.
We sketch those constructions in Section 5 and provide further details in [1].

Other Predicates. One can also imagine predicates P that support more complex
operations on signed messages. One natural set of examples are spreadsheet
operations such as median, standard deviation, and rounding on signed data
(satisfying unforgeability and context hiding). Other examples include graph
algorithms such as computing a signature on a perfect matching in a signed
bipartite graph.

2 A substring of x1 . . . xn is some xi . . . xj where i, j ∈ [1, n] and i ≤ j. We emphasize
that we are not considering subsequences. Thus, it is not possible, in this setting, to
extract a signature on “I like fish” from one on “I do not like fish”.

3 Following an analog of [20], selective security for signatures requires the attacker to
give the forgery message before seeing the verification key.
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2 Definitions

Definition 1 (Derived messages). Let M be a message space and let P :
2M × M → {0, 1} be a predicate from sets over M and a message in M
to a bit. We say that a message m′ is derivable from the set M ⊆ M if
P (M,m′) = 1. We denote by P ∗(M) the set of messages derivable from M by
repeated derivation. That is, let P 0(M) be the set of messages derivable from M
and for i > 0 let P i(M) be the set of messages derivable from P i−1(M). Then
P ∗(M) := ∪∞

i=0P
i(M).

We define the closure of P , denoted P ∗, as the predicate defined by P ∗(M,m)=
1 iff m ∈ P ∗(M).

A P -homomorphic signature scheme Π for message spaceM and predicate P is
a triple of PPT algorithms:

KeyGen(1λ): The key generation algorithm outputs a key pair (pk , sk). We
treat the secret key sk as a signature on the empty tuple ε ∈ M∗. We also
assume that pk is embedded in sk .

SignDerive(pk , ({σm}m∈M ,M),m′, w): The algorithm takes as input the public
key, a set of messagesM ⊆M and corresponding signatures {σm}m∈M , a derived
message m′ ∈ M, and possibly some auxiliary information w. It produces a
new signature σ′ or a special symbol ⊥ to represent failure. For complicated
predicates P , the auxiliary information w serves as a witness that P (M,m′) = 1.
To simplify the notation we often drop w as an explicit argument.

As shorthand we write Sign(sk ,m) := SignDerive(pk , (sk , ε),m, ·) to de-
note that any message can be derived when the original signature is the signing
key. For a set of messages M = {m1, . . . ,mk} ⊂ M∗ it is convenient to let
Sign(sk ,M) denote independently signing each of the k messages, namely:

Sign(sk ,M) :=
(
Sign(sk ,m1), . . . ,Sign(sk ,mk)

)
.

Verify(pk ,m, σ): Given a public key, message, and purported signature σ, the
algorithm returns 1 if the signature is valid and 0 otherwise.

We assume that testing m ∈ M can be done efficiently, and that Verify
returns 0 if m �∈ M.

Correctness. We require that for all key pairs (sk , pk) generated byKeyGen(1n)
and for all M ∈ M∗ and m′ ∈M we have:

– if P (M,m′) = 1 then SignDerive(pk , (Sign(sk ,M),M),m′) �= ⊥, and
– for all signature tuples {σm}m∈M such that σ′ ← SignDerive(pk ,

({σm}m∈M ,M),m′) �= ⊥, we have Verify(pk ,m′, σ′) = 1.

In particular, correctness implies that a signature generated by SignDerive can
be used as an input to SignDerive so that signatures can be further derived
from derived signatures, if allowed by P .
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Derivation efficiency. In many cases it is desirable that the size of a derived sig-
nature depend only on the size of the derived message. This rules out signatures
that expand as one iteratively calls SignDerive. All the constructions in this
paper are derivation efficient in this sense.

Definition 2 (Derivation-Efficient). A signature scheme is derivation-
efficient if there exists a polynomial p such that for all (pk , sk)← KeyGen(1λ),
set M ⊆ M∗, signatures {σm}m∈M ← Sign(sk ,M) and derived messages m′

where P (M,m′) = 1, we have |SignDerive(pk , {σm}m∈M ,M,m
′)| = p(λ, |m′|).

2.1 Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability
with respect to adaptive chosen-message attacks [29]. The definition captures
the idea that if the attacker is given a set of signed messages (either primary
or derived) then the only messages he can sign are derivations of the signed
messages he was given. This is defined using a game between a challenger and
an adversary A with respect to scheme Π over message space M.

— Game Unforg(Π,A, λ, P ):
Setup: The challenger runs KeyGen(1λ) to obtain (pk , sk) and sends pk to A.

The challenger maintains two sets T and Q that are initially empty.
Queries: Proceeding adaptively, the adversary issues the following queries to

the challenger:
– Sign(m∈M): the challenger generates a unique handle h, runs Sign(sk ,m)→
σ and places (h,m, σ) into a table T . It returns the handle h to the adversary.

– SignDerive(h = (h1, . . . , hk), m
′): the oracle retrieves the tuples (hi, σi,mi)

in T for i = 1, . . . , k, returning ⊥ if any of them do not exist. Let M :=
(m1, . . . ,mk) and {σm}m∈M := {σ1, . . . , σk}. If P (M,m′) holds, then the
oracle generates a new unique handle h′, runs SignDerive(pk , ({σm}m∈M ,
M),m′)→ σ′ and places (h′,m′, σ′) into T , and returns h′ to the adversary.

– Reveal(h): Returns the signature σ corresponding to handle h, and adds
(σ′,m′) to the set Q.

Output: Eventually, the adversary outputs a pair (σ′,m′). The output of the
game is 1 (i.e., the adversary wins the game) if:
– Verify(pk ,m′, σ′) = 1 and,
– let M ⊆ M be the set of messages in Q then P ∗(M,m′) = 0 where P ∗

is the closure of P from Definition 1.

Else, the output of the game is 0. Define ForgA as the probability that
Pr[Unforg(Π,A, λ, P ) = 1].

Interestingly, for some predicates it may be difficult to test if the adversary won
the game. For all the predicates we consider in this paper, this will be quite easy.

Definition 3 (Unforgeability). A P -homomorphic signature scheme Π is
unforgeable with respect to adaptive chosen-message attacks if for all PPT
adversaries A, the function ForgA is negligible in λ.
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A P -homomorphic signature scheme Π is selective unforgeable with respect
to adaptive chosen-message attacks if for all PPT adversaries A who begin the
above game by announcing the message m′ on which they will forge, ForgA is
negligible in λ.

Properties of the definition. By taking P to be the equality oracle, namely
P (x, y) = 1 iff x = y, we obtain the standard unforgeability requirement for
signatures.

Notice that Sign and SignDerive queries return handles, but do not return the
actual signatures. A system proven secure under this definition adequately rules
out the following attack: suppose (m,σ) is a message signature pair and (m′, σ′)
is a message-signature pair derived from it, namely σ′ = SignDerive(pk , σ,
m,m′). For example, suppose m′ is a quote from m. Then given (m′, σ′) it
should be difficult to produce a signature on m and indeed our definition treats
a signature on m as a valid forgery.

The unforgeability game imposes some constraints on P : (1) P must be
reflexive, i.e. P (m,m) = 1 for all m ∈ M, (2) P must be monotone, i.e.
P (M,m′)⇒ P (M ′,m′) whereM ⊆M ′. It is easy to see that predicates that do
not satisfy these requirements cannot be realized under Definition 3.

2.2 Security: Context Hiding (a.k.a., Privacy)

LetM be some set and let m′ be a derived message fromM (i.e., P (M,m′) = 1).
Context hiding captures the idea that a signature on m′ derived from signatures
onM should reveal no information aboutM beyond what is revealed by m′. For
example, in the case of quoting, a signature on a quote from m should reveal
nothing more about m: not the length of m, not the position of the quote in m,
etc. The same should hold even if the attacker is given signatures on multiple
quotes from m.

We put forth the following powerful statistical definition of context hiding
and discuss its implications following the definition. We were most easily able to
leverage a statistical definition for our proofs, although we also give an alternative
computational definition in the full version [1].

Definition 4 (Strong Context Hiding). Let M ⊆ M∗ and m′ ∈ M be
messages such that P (M,m′) = 1. Let (pk , sk) ← KeyGen(1λ) be a key pair.
A signature scheme (KeyGen,SignDerive, Verify) is strongly context hid-
ing (for predicate P ) if for all such triples ((pk , sk),M,m′), the following two
distributions are statistically close:{(

sk , {σm}m∈M ← Sign(sk ,M), Sign(sk ,m′)
)}

sk ,M,m′{(
sk , {σm}m∈M ← Sign(sk ,M), SignDerive(pk , ({σm}m∈M ,M),m′)

)}
sk ,M,m′

The distributions are taken over the coins of Sign and SignDerive. Without
loss of generality, we assume that pk can be computed from sk.
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The definition states that a derived signature on m′, from an honestly-generated
original signature, is statistically indistinguishable from a fresh signature on
m′. This implies that a derived signature on m′ is indistinguishable from a
signature generated independently ofM . Therefore, the derived signature cannot
(provably) reveal any information about M beyond what is revealed by m′. By
a simple hybrid argument the same holds even if the adversary is given multiple
derived signatures from M .

Moreover, Definition 4 requires that a derived signature look like a fresh signa-
ture even if the original signature onM is known. Hence, if for example someone
quotes from a signed recommendation letter and somehow the original signed
recommendation letter becomes public, it would be impossible to link the signed
quote to the original signed letter. The same holds even if the signing key sk is
leaked.

Thus, Definition 4 captures a broad range of privacy requirements for derived
signatures. Earlier work in this area [32,16,18,15] only considered weaker pri-
vacy requirements using more complex definitions. The simplicity and breadth
of Definition 4 is one of our key contributions.

Definition 4 uses statistical indistinguishability meaning that even an un-
bounded adversary cannot distinguish derived signatures from newly created
ones. In the full version [1], we give a definition using computational indistin-
guishability which is considerably more complex since the adversary needs to be
given signing oracles. In the unbounded case of Definition 4 the adversary can
simply recover a secret key sk from the public key and answer its own signature
queries which greatly simplifies the definition of context hiding. All the signature
schemes in this paper satisfy the statistical Definition 4.

As mentioned above, the context-hiding guarantee applies to all derivations
that begin with an honestly-generated signature. One might imagine a scenario
where a malicious signer creates a signature that passes the verification algo-
rithm, but contains a “watermark” that allows the signer to detect if other
signatures are derived from it. To prevent such attacks from malicious signers,
we could alter the definition so that indistinguishability holds for any derivative
that results from a signature that passed the verification algorithm.

A simpler approach to proving unforgeability. For systems that are strongly con-
text hiding, unforgeability follows from a simpler game than that of Section 2.1.
In particular, it suffices to just give the adversary the ability to obtain top level
signatures signed by sk . In the full version [1], we define this simpler unforge-
ability game and prove equivalence to Definition 3 using strong context hiding.

2.3 Related Work

Early work on quotable signatures [45,32,38,37,30,17,21,15] supports quoting
from a single document, but does not achieve the privacy or unforgeability prop-
erties we are aiming for. For example, if simple quoting of messages is all that is
desired, then the following folklore solution would suffice: simply sign the Merkle
hash of a document. A quote represents some sub-tree of the Merkle hash; so
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a quoter could include enough intermediate hash nodes along with the original
signature in any quote. A verifier could simply hash the quote, and then build
the Merkle hash tree using the computed hash and the intermediate hashes, and
compare with the original signature. Notice, however, that every quote in this
scheme reveals information about the original source document. In particular,
each quote reveals information about where in the document it appears. Thus,
this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work
on redacted signatures of Chang et al. [21] and Brzuska et al. [15] (see also Nac-
cache [39, p. 63] and Boneh-Freeman [12,11]4). However, there is a subtle, but
fundamental difference between their definition and the privacy notion we are
aiming for. In our formulation, a quoted signature should be indistinguishable
from a fresh signature, even when the distinguisher is given the original signa-
ture. (We capture this by an even stronger game where a derived signature is
distributed statistically close to a fresh signature.) In contrast, the definitions
of [21,15,12,11] do not provide the distinguisher with the original signature. Thus,
it may be possible to link a quoted document to its original source (and indeed
it is in the constructions of [21,15,12,11]), which can have negative privacy im-
plications. Overcoming such document linkage while maintaining unforgeability
is a real technical challenge. This requires moving beyond techniques that use
nonces to link parts of messages.

Indeed, in most prior constructions, such as [21,15], nonces are used to prevent
“mix-and-match” attacks (e.g., forming a “quote” using pieces of two different
messages.) Unfortunately, these nonces reveal the history of derivation, since they
cannot change during each derivation operation. Arguably, much of the technical
difficulty in our current work comes precisely from the effort to meet our definition
and hide the lineage. We introduce new techniques in this work which link pieces
together using randomness that can be re-randomized in controlled ways.

Another line of work studies computing on authenticated data by holders of
secret information. Examples include sanitizable signatures [38,2,36,18,16] that
allow a proxy to compute signatures on related messages, but requires the proxy
to have a secret key, and incremental signatures [4], where the signer can effi-
ciently make small edits to his signed data. In contrast, our proposal is more
along the lines of homomorphic encryption and Rivest’s vision [41], where anyone
can compute on the authenticated data.

4 As acknowledged in Section 2.2 of Boneh-Freeman [11], our definitional notion is
stronger than and predates the “weak context hiding” notion of [11]. Indeed, the fact
that [11] uses our framework lends support to its generality, and the fact that they
could not achieve our context hiding notion highlights its difficulty. Their “weak”
definition, which is equivalent to [15], only ensures privacy when the original sig-
natures remain hidden. In their system, signature derivation is deterministic and
therefore once the original signatures become public it is easy to tell where the
derived signature came from. Our signatures achieve full context hiding so that
derived signatures remain private no matter what information is revealed. This is
considerably harder and is not known how to do for the lattice-based signatures in
Boneh-Freeman.
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3 Preliminaries: Algebraic Settings

Bilinear Groups and the CDH Assumption. Let G and GT be groups of prime
order p. A bilinear map is an efficient mapping e : G× G → GT which is both:
(bilinear) for all g ∈ G and a, b← Zp, e(g

a, gb) = e(g, g)ab; and (non-degenerate)
if g generates G, then e(g, g) �= 1. We will focus on the Computational Diffie-
Hellman assumption in these groups.

Assumption 1 (CDH [24]). Let g generate a group G of prime order p ∈
Θ(2λ). For all PPT adversaries A, the following probability is negligible in λ:
Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 A Powers-of-2 Construction for Quoting Substrings

We now provide our main construction for quoting substrings in a text document.
It achieves the best time/space efficiency trade-off to our knowledge for this
problem. We will have two different types of signatures called Type I and Type
II, where a Type I signature can be quoted down to another Type I or Type
II signature. A Type II signature cannot be quoted any further, but will be a
shorter signature. The quoting algorithm will allow us to quote anything that is
a substring of the original message. We point out that the Type I, II signatures
of this system conform to the general framework given in Section 2. In particular,
we can view a messageM as a pair (t,m) ∈ {0, 1}, {0, 1}∗. The bit t will identify
the message as being Type I or Type II (assume t = 1 signifies Type I signatures)
and m will be the quoted substring. The predicate

P (M = (t,m),M ′ = (t′,m′)) =

{
1 if t = 1 and m′ is a substring of m;

0 otherwise.

The bit t′ will indicate whether the new message is Type I or II (i.e., whether
the system can quote further.) We note that this description allows an attacker
to distinguish between any Type I signature from any Type II signature since
the “type bit” of the messages will be different and thus they will technically
be two different messages even if the substring components are equal. For this
reason we will only need to prove context hiding between messages of Type I
or Type II, but not across types. In general, flipping the bit t will not result
in a valid signature of a different type on the same core message, because the
format will be wrong; however, moving from a Type I to a Type II on the same
core message is not considered a forgery since Type II signatures can be legally
derived from Type I.

For presentational clarity, we will split the description of our quoting algo-
rithm into two quoting algorithms for quoting to Type I and to Type II sig-
natures; likewise we will split the description of our verification algorithm into
two separate verification algorithms, one for each type of signature. The type of
signature used or created (i.e., bit t) will be implicit in the description.
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Fig. 1. The top diagram represents a signature on “abcdefghijklmn” with length N =
14. Each arrow corresponds to some group elements in the construction. Logically,
whenever the elements corresponding to an arrow are included in a quoted signature,
the characters underneath this arrow are included in the quoted message. The bold
path through the top diagram shows how to construct a Type II signature on “defgh”;
it is very short, but cannot be re-quoted. The gray box in this figure shows how to
construct a Type I signature on “cdefghi” of length � = 7; it includes all the arrows in
the lower figure and can be re-quoted. A technical challenge is to enforce that following
the arrows is the only way to form a valid signature. Details are below.

Notation:We use notationmi,j to denote the substring ofm of length j starting
at position i.

Intuition: We begin by giving some intuition. We design Type I signatures that
allow re-quoting and Type II signatures that cannot be further quoted, but are
ultra-short. For an original message of length n, our signature structure should
be able to accommodate starting at any position 1 ≤ i ≤ n and quoting any
length 1 ≤ � ≤ (n− i+ 1) substring.5

To (roughly) see how this works for a message of length n, visualize (n + 1)
columns with (�lg n + 2) rows as in Figure 1. The columns correspond to the
characters of the message, so if the 14-character message is “abcdefghijklmn”
then there are 15 columns, with a character in between each column. The rows

5 Technically, our predicate P (m,m′) will take the quote from the first occurrence
of substring m′ in m, but for the moment imagine that we allowed quoting from
anywhere in m.
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correspond to the numbers lgn down to 0, plus an extra row at the bottom.6

Each location in the matrix (except along the bottom-most row) contains one
or more out-going arrows. We’ll establish rules for when these arrows exist and
where each arrow ends shortly.

A Type II quote will trace a (lg n+1)-length path on these arrows through this
matrix starting in a row (with outgoing arrows) of the column that begins the
quote and ending in the lowest row of the first column after the quote ends. The
starting row corresponds to the largest power of two less than or equal to the
length of the desired quote. E.g., to quote “bcdef”, start in row 2 immediately
to the left of ‘b’ (because 22 = 4 is the largest power of two less than 5) and
end in row 0 immediately to the right of ’f’. Intuitively, taking an arrow over a
character includes it in the quote. A Type II quote on “defgh” is illustrated in
Figure 1.

A technical challenge is to make this a O(lg n)-length path rather than a O(n)-
length path. To do this, the key insight is to view the length of any possible quote
as the sum of powers of two and to allow arrows that correspond to covering the
quote in pieces of size corresponding to one operand of the sum at a time. Each
location (ic, ir) in the matrix (except the bottom-most row) contains:

– a “start” arrow: an arrow that goes down one row and over 2ir columns
ending in (ic + 2ir , ir − 1), if this end point is in the matrix. This adds all
characters from position ic to ic+2ir − 1 to the quoted substring; effectively
adding the largest power-of-two-length prefix of the quote characters. This
arrow indicates that the quote starts here. These are represented as Si,j , S̃i,j
pairs in our construction.

– a “one” arrow: operate similarly to start arrows and used to include charac-
ters after a start arrow includes the quote prefix. These are represented as
Ai,j , Ãi,j pairs in our construction.

– a “zero” arrow: an arrow that goes straight down one row ending in (ic, ir−
1). This does not add any characters to the quoted substring. These are

represented as Di,j , D̃i,j pairs in our construction.

A Type II quote always starts with a start arrow and then contains one and zero
arrows according to the binary representation of the length of the quote. In our
example of original message “abcdefghijklmn”, we have 15 columns and 5 rows.
We will logically divide our desired substring of “bcdef” (length 5 = 22 + 20 =
4+ 1) into its powers-of-two components “bcde”(length 4 = 22) and “f” (length
1 = 20). To form the Type II quote, we start in row 2 (since 4 = 22) of column
2 (to the left of ’b’) and take the start arrow (S2,2) to row 1 of column 7, take
the zero arrow (D7,1) to row 0 of column 7, and then take the one arrow (A7,0)
to the lowest row of column 8. The arrows “pass over” the characters “bcdef”.
Figure 1 illustrates this for quote “defgh”.

For a quote of length �, the elements on this O(lg �)-length path of arrows
form a very short Type II signature. For Type I signatures, we include all the

6 The lowest row is intentionally not assigned a number. The second lowest row is row
0. We do this so that row i can correspond to a jump of length 2i.
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elements corresponding to all arrows that make connections within the columns
corresponding to the quote. We illustrate this in Figure 1. This allows quoting
of quotes with a signature size of O(� lg �).

It is essential for security that the signature structure and data algorithm
enforce that the quoting algorithm be used and not allow an attacker to “splice”
together a quote from different parts of the signature. We realize this by adding
in random “chaining” variables. In order to cancel these out and get a well
formed Type II quote a user must intuitively follow the prescribed procedure
(i.e., following the arrows is the only way to form a valid quote.)

The Construction: We now describe our algorithms. While Sign is simply
a special case of the SignDerive algorithm, we will explicitly provide both
algorithms here for clarity purposes.

KeyGen(1λ) : The algorithm selects a bilinear group G of prime order p > 2λ

with generator g. Let L be the maximum message length supported and
denote n = �lg(L). Let H : {0, 1}∗ → G and Hs : {0, 1}∗ → G be the
description of two hash functions that we model as random oracles. Choose
random z0, . . . , zn−1, α ∈ Zp. The secret key is (z0, . . . , zn−1, α) and the
public key is:

PK = (H,Hs, g, g
z0, . . . , gzn−1, e(g, g)α).

Sign(sk ,M = (t,m) ∈ {0, 1} ×Σ�≤L) : If t = 1, signatures produced by this
algorithm are Type I as described below. If t = 0, the Type II signature can
be obtained by running this algorithm and then running the Quote-Type II
algorithm below to obtain a quote on the entire message. The message space
is treated as � ≤ L symbols from alphabet Σ.

Recall: we use notation mi,j to denote the substring of m of length j starting
at position i.

For i = 3 to �+1 and j = 0 to �lg(i−1)−1, choose random values xi,j ∈ Zp.
These will serve as our random “chaining” variables, and they should all
“cancel” each other out in our short Type II signatures. By definition, set
xi,−1 := 0 for all i = 1 to �+ 1.

A signature is comprised of the following values for i = 1 to � and j = 0 to
�lg(�− i+ 1), for randomly chosen values ri,j ∈ Zp:

[start arrow: start and include power j]

Si,j = g
αg−xi+2j,j−1Hs(mi,2j )ri,j , S̃i,j = g

ri,j

Together with the following values for i = 3 to � and j = 0 to min(�lg(i −
1)− 1, �lg(� − i+ 1)), for randomly chosen values r′i,j ∈ Zp:

[one arrow: include power j and decrease j]

Ai,j = g
xi,jg−x

i+2j,j−1H(mi,2j )r
′
i,j , Ãi,j = g

r′i,j
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Together with the following values for i = 3 to �+1 and j = 0 to �lg(i−1)−1,
for randomly chosen values r′′i,j ∈ Zp:

[zero arrow: decrease j]

Di,j = g
xi,jg−xi,j−1gzjr

′′
i,j , D̃i,j = g

r′′i,j

We provide an example of how to form Type II signatures from this con-
struction shortly. To see why our Ai,j and Di,j values start at i = 3, note
that Type II quotes at position i of length 20 = 1 symbol include only the
Si,0 value, where the x·,0−1 term is 0 by definition. Type II quotes at position
i of length 21 = 2 symbols include the Si,1 value plus an additional Di+2,0

term to cancel out the xi+2,0 value (leaving only xi+2,−1 = 0.) Quotes at
position i of length 21 + 1 = 3 symbols include the Si,1 value plus an addi-
tional Ai+2,0 term to cancel out the xi+2,0 value (leaving only xi+3,−1 = 0.)
Since we index strings from position 1, the first position to include an Ai,j

or Di,j value is i+ 2 = 3.
SignDerive(pk , σ,M = (t,m),M ′ = (t′,m′)) : If P (M,M ′)=0, output ⊥. Oth-

erwise, if t′ = 1, output Quote-Type I(PK, σ,m,m′); if t′ = 0, output Quote-
Type II(PK, σ,m,m′), where these algorithms are defined below.

Quote-Type I(pk , σ,m,m′) : The quote algorithm takes a Type I signature
and produces another Type I signature that maintains the ability to be
quoted again. Intuitively, this operation will simply find a substringm′ in m,
keep only the components associated with this substring and re-randomize
them all (both the xi,j and ri,j terms in every component.)
If m′ is not a substring of m, then output ⊥. Otherwise, let �′ = |m′|.
Determine the first index k at which substring m′ occurs in m. Parse σ as a
collection of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j values, exactly as would come from
Sign with � = |m|.
First, we choose re-randomization values (to re-randomize the xi,j terms of
σ.) For i = 2 to �′ + 1 and j = 0 to �lg(i − 1) − 1, choose random values
yi,j ∈ Zp. Set yi,−1 := 0 for all i = 1 to �′ + 1. Later, we will choose ti,j
values to re-randomize the ri,j terms of σ.

The quote signature σ′ is comprised of the following values:

For i = 1 to �′ and j = 0 to �lg(�′ − i + 1), for randomly chosen ti,j ∈ Zp:

S′
i,j = Si+k−1,j · g−yi+2j,j−1Hs(mi+k−1,2j )ti,j , S̃′

i,j = ˜Si+k−1,j · gti,j

Together with the following values for i = 3 to �′ and j = 0 to min(�lg(i −
1)− 1, �lg(�′ − i+ 1)), for randomly chosen t′i,j ∈ Zp:

A′
i,j = Ai+k−1,j · gyi,jg−y

i+2j,j−1H(mi+k−1,2j )t
′
i,j , Ã′

i,j =
˜Ai+k−1,j · gt

′
i,j

Together with the following values for i = 3 to �′ + 1 and j = 0 to �lg(i −
1)− 1, for randomly chosen t′′i,j ∈ Zp:

D′
i,j = Di+k−1,j · gyi,jg−yi,j−1gzjt

′′
i,j , D̃′

i,j = ˜Di+k−1,j · gt
′′
i,j
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Quote-Type II(pk , σ,m,m′) : The quote algorithm takes a Type I signature
and produces a Type II signature. If P (m,m′) �= 1, then output ⊥.
A quote is computed from one start value and logarithmically many sub-
sequent pieces depending on the bits of |m′|. All signature pieces must be
re-randomized to prevent content-hiding attacks.
Consider the length �′ written as a binary string. Let β′ be the largest index of
�′ = |m′| that is set to 1, where we start counting with zero as the least signifi-
cant bit. That is, set β′ = �lg(�′). Select random values v, vβ′−1, . . . , v0 ∈ Zp.
Set the start position as B := Sk,β′ and

k′ := k + 2β
′
. Then, from j = β′ − 1 down to 0, proceed as follows:

– If the jth bit of �′ is 1, set B := B ·Ak′,j ·H(mk′,2j )vj , set k′ := k′ +2j ,

and Zj := Ãk′,j · gvj ;

– If the jth bit of �′ is 0, set B := B ·Dk′,j · gzjvj and Zj := D̃k′,j · gvj .

To end, re-randomize as B := B ·Hs(mk,2β )v and S̃ := S̃k,β · gv; output the
quote as

σ′ = (B, S̃, Zβ−1, . . . , Z0)

Verify(pk ,M = (t,m), σ) : If t = 1, output Verify-Type I(pk ,m, σ). Otherwise,
output Verify-Type II(pk ,m, σ), where these algorithms are defined imme-
diately below.

Verify–Type I(pk ,m, σ) : Parse σ as the set of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j .
Let � = |m|.
Let Xi,j denote e(g, g)

xi,j . We can compute these values as follows. The value
Xi,−1 = 1, since for all i = 1 to �+1, xi,−1 = 0. For i = 3 to �+1 and j = 0 to
�lg(i−1)−1, we compute Xi,j in the following manner: Let I = i−2j+1 and

J = j + 1. Next, compute Xi,j =
(
e(g, g)α · e(Hs(mI,2J ), S̃I,J)

)
/ e(SI,J , g).

The verification accepts if and only if all of the following hold:
– for i = 3 to � and j = 0 to min(�lg(i− 1)− 1, �lg(� − i+ 1)),

e(Ai,j , g) = Xi,j/Xi+2j ,j−1 · e(H(mi,2j ), Ãi,j)

– and for i = 3 to �+1 and j = 0 to �lg(i−1)−1, e(Di,j , g) = Xi,j/Xi,j−1 ·
e(gzj , D̃i,j).

Verify-Type II(pk ,m, σ) : We give the verification algorithm for Type II sig-

natures. Parse σ as (B, S̃, Zβ−1, . . . , Z0). Let � = |m| and β be the index of
the highest bit of � that is set to 1. If σ does not include exactly β Zi values,
reject. Set C := 1 and k = 1. From j = β − 1 down to 0, proceed as follows:
– If the jth bit of � is 1, set C := C · e(H(mk,2j ), Zj) and k := k + 2j ;
– If the jth bit of � is 0, set C := C · e(gzj , Zj).

Accept if and only if e(B, g) = e(g, g)α · e(Hs(m1,2β ), S̃) · C.

Theorem 2 (Security under CDH). If the CDH assumption holds in G,
then the above quotable signature scheme is selectively quote unforgeable and
context-hiding in the random oracle model.

In the full version [1], we prove this theorem. We also discuss in detail the
efficiency of this construction, how to remove the random oracle, and how to
obtain full security.
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5 Subsets and Weighted Averages

For the problems of subsets and weighted averages, we show somewhat surpris-
ing connections to respective existing solutions in attribute-based encryption
and network coding signatures. We sketch these constructions here and provide
further details in the full version of this paper [1].

Briefly, our subset construction extends the concept of Naor [10] who observed
that every IBE scheme can be transformed into a standard signature scheme by
applying the IBE KeyGen algorithm as a signing algorithm. Here we show an
analog for known Ciphertext-Policy (CP) ABE schemes. The KeyGen algorithm
which generates a key for a set S of attributes can be used as a signing algorithm
for the set S. For known CP-ABE systems [8,34,47] it is straightforward to derive
a key for a subset S′ of S and to re-randomize the signature/key. To verify a
signature on S we can apply Naor’s signature-from-IBE idea and encrypt a
random message X to a policy that is an AND of all the attributes in S and
see if the signature can be used as an ABE key to decrypt to X . Signatures for
subsets have been previously considered in [31, §6.4], but without context hiding
requirements.

Next, we consider a construction for weighted averages, which captures Fourier
transforms and weighted sums. This is particularly interesting, because so far
we only constructed schemes for univariate predicates P . We can now give an
example where one computes on multiple signed messages. Let p be a prime, n
a positive integer, and T a set of tags. The message space M consists of pairs:

M := T × Fn
p

Now, define the predicate P as follows: P (ε,m) = 1 for all m ∈M and7

P

( (
(t1,v1), . . . , (tk,vk)

)
, (t,v)

)
= 1 ⇐⇒

{
t = t1 = · · · = tk, and
v ∈ span(v1, . . . ,vk)

Thus, given signatures on vectors v1, . . . ,vk grouped together by the tag t,
anyone can create a signature on a linear combination of these vectors. This can
be done iteratively so that given signed linear combinations, new signed linear
combinations can be created. Unforgeability means that if the adversary obtains
signatures on vectors v1, . . . ,vk for particular tag t ∈ T then he cannot create
a signature on a vector outside the linear span of v1, . . . ,vk.

Signature schemes for this predicate P are presented in [13,12,11,14,3] while
schemes over Z (rather than Fp) are presented in [26]. These schemes were origi-
nally designed to secure network coding where context hiding is not needed since
there are no privacy requirements for the sender (in fact, the sender is explicitly
transmitting all his data to the recipient). The question then is how to construct
a system for predicate P above that is both unforgeable and context hiding.
Fortunately, we observe that under the CDH assumption, the linearly homomor-
phic signature scheme, NCS1, due to Boneh, Freeman, Katz and Waters [13]

7 Recall, the signature on ε is the output the KeyGen algorithm.
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is unforgeable and context-hiding in the random oracle model, assuming tags
are generated independently at random by the unforgeability challenger when
responding to Sign queries.

Acknowledgments. We are grateful to the anonymous reviewers for their help-
ful comments.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096
(2011), http://eprint.iacr.org/

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

3. Attrapadung, N., Libert, B.: Homomorphic Network Coding Signatures in the Stan-
dard Model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

4. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography: The Case
of Hashing and Signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 216–233. Springer, Heidelberg (1994)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General As-
sumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

6. Bellare, M., Neven, G.: Transitive Signatures Based on Factoring and RSA. In:
Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Hei-
delberg (2002)

7. Bellare, M., Neven, G.: Transitive signatures: New schemes and proofs. IEEE
Transactions on Information Theory 51, 2133–2151 (2005)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

9. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3) (2003)

11. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011); Cryptology ePrint Archive, Report 2011/018

12. Boneh, D., Freeman, D.M.: Linearly Homomorphic Signatures over Binary Fields
and New Tools for Lattice-Based Signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011); Cryptology ePrint Archive, Report 2010/453

13. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a Linear Subspace: Signature
Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

14. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

http://eprint.iacr.org/


Computing on Authenticated Data 19

15. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable Signa-
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Abstract. Motivated by problems in secure multiparty computation
(MPC), we study a natural extension of identifiable secret sharing to
the case where an arbitrary number of players may be corrupted. An
identifiable secret sharing scheme is a secret sharing scheme in which the
reconstruction algorithm, after receiving shares from all players, either
outputs the correct secret or publicly identifies the set of all cheaters
(players who modified their original shares) with overwhelming success
probability. This property is impossible to achieve without an honest ma-
jority. Instead, we settle for having the reconstruction algorithm inform
each honest player of the correct set of cheaters. We show that this new
notion of secret sharing can be unconditionally realized in the presence
of arbitrarily many corrupted players. We demonstrate the usefulness
of this primitive by presenting several applications to MPC without an
honest majority.

– Complete primitives for MPC. We present the first unconditional con-
struction of a complete primitive for fully secure function evaluation
whose complexity does not grow with the complexity of the function
being evaluated. This can be used for realizing fully secure MPC
using small and stateless tamper-proof hardware. A previous com-
pleteness result of Gordon et al. (TCC 2010) required the use of
cryptographic signatures.

– Applications to partial fairness. We eliminate the use of cryptogra-
phy from the online phase of recent protocols for multiparty coin-
flipping and MPC with partial fairness (Beimel et al., Crypto 2010
and Crypto 2011). This is a corollary of a more general technique
for unconditionally upgrading security against fail-stop adversaries
with preprocessing to security against malicious adversaries.
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Finally, we complement our positive results by a negative result on iden-
tifying cheaters in unconditionally secure MPC. It is known that MPC
without an honest majority can be realized unconditionally in the OT-
hybrid model, provided that one settles for “security with abort” (Kilian,
1988). That is, the adversary can decide whether to abort the protocol
after learning the outputs of corrupted players. We show that such pro-
tocols cannot be strengthened so that all honest players agree on the
identity of a corrupted player in the event that the protocol aborts, even
if a broadcast primitive can be used. This is contrasted with the compu-
tational setting, in which this stronger notion of security can be realized
under standard cryptographic assumptions (Goldreich et al., 1987).

1 Introduction

Consider a scenario in which n mutually distrustful clients wish to distribute
a long computation. Instead of directly interacting with each other, they rely
on a trusted external stateless server. In each invocation, the server receives a
share of the current state of computation (and possibly an additional input)
from each client, and returns a share of the new state (and possibly an output)
to each client. This scenario may apply to distributing sensitive computations
using servers in the cloud, where requiring servers to maintain state information
between different invocations is undesirable for security reasons.

The question we ask is what form of secret sharing is suitable for distributing
the joint state between the clients. Naturally, we do not want to assume that
a majority of the clients are honest (this rules out fair [8] or unconditionally
secure [6] solutions that use direct interaction between the clients and do not
employ the server). Additively sharing the state fails in protecting the correctness
of the computation, allowing each client to change the global state without being
detected. A better solution is to use robust secret sharing that can detect cheating
(cf. [29,9] and references therein). When there are three or more clients, this too
has the disadvantage that it offers no strong deterrent against cheating: while
cheating does not go undetected, it disrupts the computation without identifying
a corrupted client. This motivates the use of identifiable secret sharing, where
a failure of the reconstruction algorithm results in identifying the clients who
modified their shares.

Identifiable secret sharing as above can be realized when a majority of the
clients are honest [22,20,7,24]. But without an honest majority, there is no way
for the server to tell apart cheaters from honest clients. Indeed, n/2 cheaters can
simulate a consistent sharing of an incorrect secret, which makes it impossible for
the server to tell which of the two sets of consistent shares is correct. However,
this does not rule out the alternative of allowing the server to inform each client
(with negligible error probability) which shares have been modified assuming
that this client is honest. We refer to this as locally-identifiable secret sharing
(LISS). Note that except with negligible probability, each honest client will agree
on which clients are corrupted and should be disqualified. Thus use of LISS to
share the state minimizes the incentive to cheat and allows the honest clients
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in the event of reconstruction failure to agree on a strict subset of the clients
that includes all honest clients. This subset has the option of restarting the
computation on their original inputs, using default values for the inputs of the
remaining clients, without losing in this process any of the honest clients.

Settling for computational security, LISS can be realized via the use of dig-
ital signatures: the sharing procedure distributes to all clients the same public
verification key vk, and gives to each client a signature of its additive share of
the secret using the corresponding secret key sk. Reconstruction proceeds by
letting each client send to the server its original share, vk, and the signature on
the share. The server can then identify definite cheaters as those who supply an
inconsistent triplet, and partition the remaining clients according to the value
of vk they provide. In fact, such a computationally secure LISS scheme was im-
plicitly used by Gordon et al. [13] in the context of defining a complete primitive
for MPC. The possibility of an unconditionally secure construction remained
open. This question is motivated not only by the goals of enhancing security
and eliminating assumptions, but also by the potential efficiency advantages
of information-theoretic techniques. This is especially significant in applications
(such as those discussed below) where the share generation process is distributed
between multiple players.

1.1 Our Results

Constructions. Our main result is an affirmative answer to the above question:
we present an unconditional construction of an n-out-of-n LISS scheme whose
security holds in the presence of an arbitrary number of corrupted players. More
generally, we show how to efficiently transform any secret sharing scheme into
one in which the reconstruction function reveals to every honest player of the
identity of all shares that have been tampered with. In particular, all honest
players agree on the same set of cheaters.

We also consider a weaker variant of LISS that we call unanimously identifiable
secret sharing (UISS) in which only the latter agreement property is required.
That is, if reconstruction fails, all honest players should agree on the same (non-
empty) set of cheaters. This weaker primitive is easier to construct. (In fact,
a construction of UISS is implicit in [25].) In contrast to LISS, however, UISS
does not guarantee that all cheaters are detected in the event that reconstruction
fails.

Applications. We present several applications of the above primitives in the
context of MPC without an honest majority. In the following, the term MPC
refers to the special case of secure function evaluation, namely MPC of non-
reactive (stateless) functionalities. We use poly and neg to represent polynomial
and negligible functions, respectively, and κ denote a statistical security param-
eter. While we mainly consider statistical security, our results are also useful in
the domain of computational security.

Complete primitives for MPC. It is well known that fully secure MPC
(with fairness and guaranteed output delivery) is impossible to achieve in general
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without an honest majority [8]. This naturally raises the question of finding a
minimal complete primitive that can be used to get around this limitation. Such
a primitive is defined by a (stateless) deterministic functionality g mapping n
inputs to n outputs, such that any n-party functionality f can be realized using
a trusted instance of g initialized between every tuple of players that can supply
input to it. The first such results characterized complete boolean primitives for
MPC with security against a passive adversary [21,19]. In the case of active
adversaries, Fitzi et al. [11] presented a complete primitive for fully secure MPC
whose computational complexity grows linearly with complexity of f . This left
open the question of finding a “simple” complete primitive, whose complexity
does not depend on the complexity of f . One such primitive was given by Gordon
et al. [13] using digital signatures. We use UISS to get an unconditional variant
of this result. In this variant, the complexity of g only grows with the output
length of f .

Theorem 1. There is a deterministic, polynomial-time computable functional-
ity g with input and output size poly(n, κ, β) such that any n-party function f
computed by a circuit of size σ and output length β can be realized with full
statistical security (and 2−κ simulation error) using poly(n, σ) calls to g.

This result has an interesting interpretation in the context of a recent line of
work on basing cryptography on tamper-proof hardware (see [17,15] and refer-
ences therein). In this line of work, several impossibility results in cryptography
(including UC security, unconditional security, software protection and obfusca-
tion) were circumvented by using tamper-proof hardware tokens. These works
spent efforts on minimizing the size of the tokens, employing stateless (rather
than stateful) tokens, and minimizing or eliminating cryptographic assumptions.
The above result can be viewed as achieving all these goals simultaneously in the
context of another major impossibility result: the impossibility of fully secure
MPC without an honest majority. It implies that a small and stateless token,
connected via secure channels to the n players, suffices to unconditionally real-
ize fully secure MPC. We note that connecting the same token to all players is
necessary, as implied by the results of Fitzi et al. [11].

We also present other variants of the previous completeness theorem which
rely on computational assumptions but still avoid the use of cryptography in-
side the primitive. These variants have the advantage of requiring only a small
number of calls to the primitive (independently of the complexity of f).

Applications to partial fairness. A recent line of works studies the extent
to which partial fairness can be achieved in MPC without an honest majority.
Partial fairness can be defined by restricting the simulation error to be small
(e.g., inverse polynomial) but not negligible [14]. We show that in partially fair
protocols of Beimel et al.[2,1] (extending previous two-party protocols of Moran
et al. [23] and Gordon and Katz [14]), the use of a digital signature scheme can be
replaced by a unanimously identifiable commitment scheme, a second primitive
we define that can be used as a substitute for LISS in certain applications. This
yields unconditional multiparty protocols for coin-flipping and MPC with partial



Identifying Cheaters without an Honest Majority 25

fairness in the preprocessing model, namely assuming that players have offline
access to correlated randomness. We note that trusted preprocessing does not
trivialize the problem, because the output needs to be unpredictable in the end
of the preprocessing phase. In fact, the negative results on achieving full fairness
apply to the preprocessing model as well. The preprocessing model does allow,
however, to eliminate the assumptions of secure channels and broadcast, which
can be implemented unconditionally in the preprocessing model [27].

The preprocessing phase can be realized either by a trusted offline dealer or via
a distributed protocol (possibly employing additional parties for unconditional
security). Even if one relies on a computationally secure protocol for distributing
the preprocessing phase, the protocols we get have the advantage of making only
a black-box use of the underlying cryptographic primitives, whereas the original
protocols from [2,1] make a non-black-box use of a one-way function.

In the case of coin-flipping, applying our primitive to the offline dealer protocol
from [2] implies the following:

Theorem 2. Assume preprocessing by a trusted off-line dealer. Fix constants n
and t such that t < 2n/3. Then, for any r, there is an r-round n-party uncon-
ditionally secure coin-tossing protocol over point-to-point channels tolerating up
to t malicious players with bias O(1/r).

Our results on MPC with partial fairness are obtained via a general technique
for unconditionally upgrading security against fail-stop adversaries to security
against malicious adversaries where the messages sent by the players are deter-
mined in the preprocessing stage.

A Negative Result. It is known that MPC without an honest majority can be
realized unconditionally in the OT-hybrid model, provided that one settles for
“security with abort” [18,16]. That is, the adversary can decide whether to abort
the protocol after learning the outputs of corrupted players but before the honest
players receive their output. We show that such protocols cannot be strengthened
so that all honest players agree on the identity of a corrupted player in the
event that the protocol aborts, even if a broadcast primitive and trusted access
to an arbitrary pairwise functionality is assumed. This is contrasted with the
computational setting, in which this stronger notion of security can be realized
under standard cryptographic assumptions [12]. Our negative result strengthens
a previous negative result from [11], which shows that pairwise functionalities
alone (without broadcast) are not sufficient in general for fully secure n-party
computation. For lack of space, the details of this result are deferred to the full
version.

2 Preliminaries

Our communication model allows for authenticated point to point and broadcast
channels unless specified otherwise. While we define our algorithms in terms of
finite sets (with fixed input size) and fixed error rate, they can be implemented
by uniform algorithms that are polynomial in the bit-length of the inputs, the
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number of players, and the statistical security parameter κ guaranteeing δ = 2−κ

error. The latter is the default convention whenever no value of δ is specified.
We only consider non-adaptive adversaries but our secret sharing definitions

and proofs can easily be extended to the adaptive case. We denote the n players
by P = {P1, P2, . . . Pn} and will often identify a player with its index. A collec-
tion of subsets A of P will be called monotone if for any B ∈ A, if B ⊆ C ⊆ P
then, C ∈ A. We let [n] denote the set {1, . . . , n}. We use x

$←− X to denote a
uniform choice of x from a set X .

2.1 Secret Sharing

We briefly describe our notation for standard secret sharing schemes. A secret
sharing scheme is defined by a pair of algorithms (Share,Rec), where Share is a
randomized algorithm mapping a secret from S to the share space

∏n
i=1 Si, and

Rec is a deterministic reconstruction algorithm mapping the shares of a qualified
set of players (along with the identity of this set) to a secret from S. We will refer
to S as the secret space and to Si as the share space of Pi. An access structure is
a monotone collection of player sets. We say that a secret sharing scheme realizes
an access structure A if sets in A can reconstruct the secret s and others can
learn nothing about it. Throughout this work we define secret sharing schemes
to have perfect correctness (authorized sets always correctly reconstruct the
secret) and perfect secrecy (the shares of unauthorized sets reveal no information
about the secret). For all additional security guarantees we assume the adversary
knows the secret that is being shared; even if the secret is compromised, the
adversary should not be able to cause the reconstruction algorithm to behave
undesirably (e.g. by outputting an incorrect secret or implicating an honest
player of cheating), except with small probability.

As usual, we consider a single adversary who may corrupt one or more play-
ers. We distinguish between passive and active corruptions using the following
terminology.

Definition 1. (Tampering) A corrupted player is said to have tampered with
its share if it provides to the reconstruction algorithm a share different than the
one assigned by the distribution algorithm. Such a share is called a tampered
share and such a player is called a cheater.

Identifiable Secret Sharing. An identifiable secret sharing scheme is a secret
sharing scheme in which the reconstruction algorithm can identify all cheaters in
the event that it fails to reconstruct the secret. The above guarantee should hold
except with some failure probability δ as long as there are at most t cheaters
for an additional parameter t. In our definition we assume that the tampering
is done by a single adversary who can observe the shares of a set C of up to t
corrupted players and based on this information decide on how to tamper with
their shares.
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Definition 2. (Identifiable Secret Sharing) A secret sharing scheme real-
izing A is (δ, t)-identifiable if for any (unbounded) adversary A and any s ∈ S,
the success probability of A in the following game is at most δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] such that |C| ≤ t and receives (sj)j∈C ;
3. A outputs (B, (s′j)j∈C∩B) where B ∈ A;
4. Out← Rec(B, (tj)j∈B) where tj = s

′
j if j ∈ C and tj = sj otherwise.

A succeeds if for some j ∈ C ∩B, s′j �= sj and Out �= (⊥, {Pi ∈ C ∩B : s′i �= si}).
The first work on identifiable secret sharing is due to McEliece and Sarwate

[22] who showed that Shamir’s k-threshold secret sharing scheme allows perfect
identification if k+2t players of which at most t are cheaters are involved in re-
construction. Several works consider various relaxations of identifiability [28,3,5]
which suffice for some applications but are not suitable for MPC with a dishon-
est majority. There is also substantial work on the efficiency of identifiable secret
sharing [20,24,7].

Identifiability is not possible with a dishonest majority for a simple reason:
If half of the participants are dishonest they can run the sharing algorithm
independently among themselves and return as their shares the output of the
second run of the algorithm. This strategy makes it impossible for Rec to identify
which half of the shares come from the first run of the Share algorithm and which
come from the second since they are run independently. This is captured by the
following theorem (see full version for proof):

Theorem 3. (No identifiability with a dishonest majority) For any t, n,
S,A with t ≥ n/2, |S| ≥ 2, A �= ∅, there is no (1/4, t)-identifiable secret sharing
scheme with secret space S and access structure A.

3 Locally Identifiable Secret Sharing

We now give our relaxation of identifiable secret sharing that can be realized
when arbitrarily many players may be corrupted. Informally, the guarantee we
require is that if the reconstruction fails, the reconstruction algorithm outputs
a tuple of players to each player Pi with the guarantee that if Pi is honest, the
tuple returned to Pi is precisely the players that tampered with their shares.
While this is equivalent to identifiability from the point of view of the honest
players, it allows us to circumvent the impossibility result of Theorem 3. Note
that we define LISS as being a special type of secret sharing scheme, so the usual
correctness and secrecy requirements should hold in addition to the requirements
detailed below.

Definition 3. (Lists) Throughout this paper when we refer to a list L we refer
to a subset of the players in the protocol (L ⊂ {P1, P2, . . . , Pn}).
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Definition 4. (LISS) A secret sharing scheme realizing A is locally δ-
identifiable if it satisfies the following requirements:

– Unanimity: For any adversary A and s ∈ S, the probability of A’s success
in the following game is at most δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] to corrupt and then receives (si : i ∈ C);
3. A outputs (B, (s′j)j∈C∩B) such that B ∈ A and B �⊂ C;
4. Out← Rec(B, (tj)j∈B) where tj = s

′
j if j ∈ C and tj = sj otherwise.

The adversary succeeds unless:

1. Reconstruction succeeds: Out = s or,
2. Each honest player’s list is the list of all cheaters: Out = (⊥, (Lj)j∈B)

where for all j ∈ B \ C, Lj = {Pi ∈ C ∩B : s′j �= sj}.
– The scheme has Predictable Failures (Definition 5).

We briefly motivate the requirement of Predictable Failures before defining it.
The problem to address is that the additional outputs Lj , or even the event of
not reconstructing the secret, may leak some information concerning the secret
unless a separate guarantee is made. This can cause a problem in applications
and therefore we must have a way to simulate the actions of Rec in the case
of tampering. Note that this is a new issue not present in identifiable secret
sharing: As the Rec function does not simply output a list of tampering players,
there are no a-priori guarantees concerning the lists corresponding to dishonest
players and therefore we must make requirements on them separately.

Definition 5. (Predictable Failures) A secret sharing scheme has δ-
Predictable Failures if there is an algorithm SRec such that for any adversary A
and s ∈ S, the probability of success in the following game is less than δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] to corrupt and receives (si)i∈C ;
3. A outputs (B, (s′j)j∈C∩B) such that B ∈ A and B �⊂ C;
4. SOut← SRec(C,B, (si)i∈C , (s

′
i)i∈C∩B);

5. Out← Rec(B, (tj)j∈B) where tj = s
′
j if j ∈ C and tj = sj otherwise.

A succeeds unless:

1. SRec correctly predicts success: SOut = Success and Out = s or,
2. SRec predicts the output of Rec: SOut = Out �= s.

3.1 Our Construction

Let (Sh,Rc) be a secret sharing scheme realizing access structure A with Sh :
S → Fn where F is a field. Let In×n and 0n×n denote the identity and all zero
matrix respectively. We use Fn×n to denote the set of all n × n matrices with
elements in F and GLn(F) to denote the set of all such invertible matrices. For
a matrix M we will use M(i, j) to denote the (i, j) entry of M . By default we
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assume vectors to be column vectors, we will use the notation aT when referring
to a row vector. We use the notation F∗ to denote F \ {0}.

Share(s):

1. Generate (t1, t2, . . . , tn)← Sh(s), ui, vi
$←− F∗ for all i ∈ [n];

2. Define C0 ∈ Fn×n as

{
C0(i, j) = u

j+1
i vi+1

j + uivj + 1 for i �= j;
C0(i, i) = ti for i ∈ [n].

3. Define C blockwise as:

(
C0 In×n

In×n 0n×n

)
;

4. Generate B
$←− GL2n(F) and define A = CB−1;

5. Label row i of A as aT
i and column j of B as bj ;

6. Return (si = (aT
i , bi, ui, vi))i∈[n].

Rec(D, (si = (aT
i , bi, ui, vi))i∈D) with D ∈ A, aT

i , bi ∈ F2n, ui, vi ∈ F∗:

1. If for all i �= j, aT
i bj = u

j+1
i vi+1

j + uivj + 1:

– Set aT
i bi = ti for all i ∈ B;

– Return Rc(D, ti : i ∈ D).
2. Else, for all i ∈ D set:

Li = {Pj : aT
i bj �= u

j+1
i vi+1

j + uivj + 1 or aT
j bi �= ui+1

j vj+1
i + ujvi + 1};

3. Return (⊥, (Li)i∈D.

Theorem 4. If δ > n2(n+1)/(|F| − 1), the scheme described above is a δ-LISS
scheme realizing A with secret space S and share space Si = F4n+2.

Corollary 1. Suppose there is a secret sharing scheme which realizes an n-party
access structure A with secret space S and share length β. Then, for any δ > 0
there is a δ-LISS with the same A and S whose share length is O(n log(n/δ)+nβ).

Outline of Security. A full proof of security is provided in the full version of
this paper but we provide a brief intuition in this section for self containment.
We first argue secrecy. Notice that the value ti is only used in generating the
row aT

i , therefore any set of players E �∈ A will have its shares generated using
only the ti values such that Pi ∈ E. The fact that the joint distribution of these
ti values do not depend on the underlying secret (due to the perfect secrecy of
(Sh, Rc)) implies secrecy.

Consider now an adversary that is attempting to tamper the share of some
Pi (and possibly others) - we will argue that any such attempt will cause the
check in Rec between Pi and any honest player Pj to fail with high proba-
bility. Assume that the adversary is tampering bi → b′i, vi → v′i with one of these
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values changed (a similar argument will hold if the adversary is tampering aT
i

or ui). There are then two cases, either b′i is in Span({bi}i∈T ) where T is the set
of corrupted players or it is linearly independent of these values. If b′i is linearly
independent it can be shown that aT

j b
′
i is essentially uniformly distributed over F

conditioned on the view of the adversary even after uj is fixed and therefore the
probability that reconstruction succeeds will be very low (showing this statement
is non-trivial).

On the other hand, consider the case where b′i ∈ Span({bk}k∈T ). Let b′i =∑
k∈T βkbk where βk ∈ F. Now, the check will succeed only if:

aT
j

∑
k∈T

βkbk = ui+1
j v′

j+1
i + ujv

′
i + 1⇔

∑
k∈T

βk(u
k+1
j vj+1

k + ujvk + 1) = ui+1
j v′

j+1
i + ujv

′
i + 1.

Similar to our argument of secrecy, the value uj is uniformly distributed condi-
tioned on every view of the adversary. Therefore, the check in Rec will succeed
only if the above equality is satisfied by a uniformly chosen uj ∈ F∗. This will
happen rarely unless the polynomials on the left and right of the equality (con-
sidered as a polynomial in uj) are equal. For this equality to hold, we must have
βk = 0 for all k �= i since otherwise vk �= 0 would make the polynomials different.
Next notice that we must have βi = 1 for the constant terms to match. Finally,
the ujvk term on the left implies that v′i = vi. Therefore, unless v

′
i = vi and

b′i = bi this equality will only occur with low probability, which implies that if
Pi tampers with either the vi or bi value, it will be detected and placed on Pj ’s
list with high probability for all honest Pj . A similar argument holds if either the
aT
i or ui value is tampered since the method of generation is equivalent to first

generating A ∈ GL2n(F) and setting B = A−1C since C is always invertible.
Notice that we have actually argued that a dishonest player who modifies his

share will be on the list of every honest player and symmetrically that all honest
players will be on the list of such a dishonest player with high probability. This
implies Predictable Failures since an adversary can easily tell which dishonest
players will be on a given dishonest player’s list from the shares it has, as well
as whether or not the honest players will be on his list depending on whether or
not the player modifier his share.

4 Relaxing Local Identifiability

In this section we define a new commitment primitive, unanimously identifiable
commitments that can be used as a leaner substitute for LISS in certain appli-
cations. Additionally, we note that this commitment primitive implies a weaker
variant of LISS (called unanimously identificable secret sharing) that can also be
used in our applications to MPC.
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4.1 Unanimously Identifiable Commitments

A unanimously identifiable commitment (UIC) scheme has a single player (called
the sender) committed to a value s ∈ S by having a trusted dealer send commit-
ments ci to all other players in the protocol and decommitment information d to
the sender such that any tampering of the d value will cause all honest players
to either reconstruct the original secret or fail reconstruction simultaneously. As
with standard commitments, (ci)i∈[n] should leak no information concerning s.

Definition 6. (Unanimously Identifiable Commitments) A δ-UIC
scheme consists of a randomized algorithm Offline and a deterministic algorithm
Decommit with the following syntax:

1. Offline: S → Cn×D. Takes as input a secret s ∈ S outputs n commitments
c1, c2, . . . , cn and decommitment information d.

2. Decommit: C × D → S ∪ {⊥}. Takes as input ci and the decommitment
information d and recreates the secret s or outputs ⊥ indicating failure.

Where the algorithms (Offline, Decommit) should satisfy:

– Completeness. For any s ∈ S, if Pr[Offline(s) = (c1, c2, . . . , cn, d)] > 0
then, Decommit(ci, d) = s for any i ∈ [n].

– Secrecy. The values c1, c2, . . . , cn reveal no information concerning s. For-
mally, for any c = (c1, c2, . . . , cn) and any s, s′ ∈ S, the probability that the
first n values of Offline(s) is c is equal to the probability that the first n
values of Offline(s′) is c.

We now present the final requirement placed on this primitive for use in our
applications. In the full version of this paper, we include further intuition to the
necessity of this condition but omit it here for space restrictions.

There exists simulatorsW1,W2 such that the two guarantees described below
hold with probability at least 1−δ for any A. Consider the following experiment:

1. The adversary, A outputs a set T ⊂ [n] ∪ {Q} of players to corrupt;
2. (c1, c2, . . . , cn, d)← Offline(s);
3. For all i ∈ T ∩ [n] send ci to the adversary, if Q ∈ T send d to the adversary;
4. If Q �∈ T , set dec = d; otherwise, dec is output by A.
5. For all i ∈ T ∩ [n], A outputs (c′i, i), fake commitment information for Pi.

The guarantees around this experiment are as follows:

– Binding with Agreement on Abort. Decommit(ci, dec) = s for all Pi
uncorrupted or Decommit(ci, dec) = ⊥ for all Pi uncorrupted.

– Simulatable Abort. Let V be the view of A at the end of 5., then:
1. If A corrupted Q:
W1(V ) correctly predicts if Decommit(ci, dec) =⊥ for all i ∈ [n].

2. Otherwise:
W2(V, c

′
i) correctly predicts if Decommit(c′i, d) =⊥ for each i ∈ T ∩ [n].
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4.2 A Unanimously Identifiable Commitment Scheme

Let F be a field. We now give a simple construction of a δ-UIC scheme with
S = F, C = Fn+2 and D = F2.

Offline(s) :

1. Generate P (X), a random n+1 degree polynomial over F such that P (0) = s;

2. For all i ∈ [n] generate xi
$←− F and let yi = P (xi);

3. Set ci = (xi, yi) and d = P (X). Return ((ci)i∈[n], d).

Decommit(ci = (xi, yi), d = P (X) of degree n + 1) : If P (xi) �= yi return ⊥.
Else, return P (0).

Theorem 5. Let |F| > (n+1)2δ−1 +1. The scheme described above is a δ-UIC
with S = F, C = Fn+2 and D = F2.

Related Concepts. In our applications, we mainly use UIC as a substitute
for digital signatures. There are some other unconditional notions that have also
been introduced for similar purposes (such pseudosignatures [26], distributed
commitments [10] and IC signatures [25]). While the construction itself is not
novel (for example, it is used in [25]), the property that all of the honest players
accept or reject the same commitment is crucial to our applications and differs
from the guarantees placed on the other primitives.

4.3 Unanimously Identifiable Secret Sharing

We note that unanimously identifiable commitments actually imply a weaker
notion of LISS which we call unanimously Identifiable Secret Sharing (UISS).
The security requirements for a UISS scheme are identical to the requirements
to LISS except that the requirement:

• Each honest player’s list is the list of all cheaters:

is replaced by the requirement:

• Each honest player’s list is the same subset of corrupted players:

Out = (Lj)j∈B where for all j, j′ ∈ B \ T, Lj ⊂ T and Lj = Lj′ .

All other requirements remain unchanged, including the requirement of pre-
dictable failures. Implementing UISS for access structure A using a UIC scheme
is straightforward by having each user commit to its share. Note that for most
applications, UISS can take the role of LISS, at the cost of not necessarily iden-
tifying all tampered shares if reconstruction fails.
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5 Applications

A secure multiparty computation (MPC) protocol allows a set of players to
compute a function evaluated on their individual inputs while revealing no in-
formation other than the output of the function. We assume familiarity with
(standalone) MPC throughout this section and refer the reader to [4] for formal
definitions.

5.1 Model of Computation

By default, we consider static, computationally unbounded adversaries who may
corrupt up to t of the n parties (t = n by default). We consider both active ad-
versaries, who may arbitrarily control the corrupted players, passive adversaries,
who can only observe the internal state of corrupted players, and fail stop ad-
versaries who behave like passive adversaries except that they make corrupted
players stop sending messages. Our network model is synchronous with point-
to-point channels and a broadcast channel.

The security of an MPC protocol with respect to an ideal functionality f is
defined by comparing a real world execution of the protocol to an ideal model
execution where a trusted party evaluates f . By default, we refer to statistical
security, where the statistical advantage of distinguishing between the real world
and the ideal model execution is bounded by 2−κ for a statistical security pa-
rameter κ. We will only consider the case of secure function evaluation, in which
f is stateless. We will mostly consider fully secure MPC in which the ideal model
adversary cannot prevent the trusted party from sending the outputs of f to the
honest players. Full security cannot be achieved even for simple functionalities
such as coin-flipping [8] without an honest majority or other assumptions we will
discuss. This impossibility holds even with trusted preprocessing; however, in the
latter model the assumptions of secure point-to-point channels and a broadcast
primitive are unnecessary as they can be implemented unconditionally [27].

5.2 Complete Primitives for MPC

An n-party functionality g is called a complete primitive for n-party MPC if it
is possible to securely realize any n-party functionality f in the g-hybrid model,
namely by using ideal calls to g. Here we consider security against an active
adversary who may corrupt an arbitrary number of players.

In prior works, such primitives either depend on the complexity of the func-
tion being evaluated [11] or rely on cryptographic assumptions [13]. It remained
open to construct an unconditionally complete primitive whose complexity is
independent of the complexity of the evaluated function f . In the following sec-
tion, we show how to construct such a primitive. Our contribution can be seen as
identifying a cryptographic LISS scheme implicitly present in the construction
of Gordon et al. [13] and replacing it with an unconditional construction. In fact,
it suffices for this purpose to rely on UISS rather than LISS. For simplicity, we
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assume that the functionality f being evaluated using g delivers the same output
to all players; the general case is handled similarly.

Unconditional Primitive. The first primitive we present is complete for sta-
tistically secure MPC and its complexity depends only on the output length of
the evaluated functionality f . We give an informal description of the primitive
in this version and defer further details to the full version. For expository pur-
poses, we will describe three separate primitives that make up the three modes
of operation for the complete primitive.

– FCR1
1 - Takes as input a bit from a player, runs an n-out-of-n UISS sharing

algorithm on this bit and distributes the shares amongst all players.
– FCR1

2 - Takes as input two n-tuples of shares from the UISS scheme. Inter-
nally, the primitive reconstructs the underlying secrets of each, evaluates the
NAND of the two secrets, and re-shares the output using the UISS scheme.
If reconstruction fails, the functionality will use the lists Lj output by the
UISS scheme to partition the players: If any player is on his own list, the
functionality declares this player is disqualified and his input is replaced by
a default value by all players. If not, the functionality outputs a partition of
the players: Pi and Pj remain in the same partition if Lj = Li.

– FCR1
3 - Takes as input β separate n-tuples of UISS shares, where β is an

output length parameter. The functionality either reconstructs each secret
and broadcasts all the reconstructed bits, or, if some reconstruction fails,
partitions the players as in the previous mode using the first instance of
failed reconstruction.

Note that while the first two primitives are randomized, they can be made deter-
ministic by using a standard reduction: the internal randomness can be securely
emulated by taking the XOR of shares contributed by the n players.

Using the above primitive, one can securely evaluate any boolean circuit C,
which consists of NAND gates and has β output bits, in the following way. The
players first use FCR1

1 to share each of their input bits. After this phase is
completed, for each gate in C the players use FCR1

2 to evaluate shares of the
value of each internal value in C. Finally, the players feed the shares of the
output values to FCR1

3 and receive the outputs of C.
Notice that any deviation from the above protocol will result in all honest

players identifying the same set of cheaters, and therefore their lists Li will be
identical. In this case, they are partitioned and the protocol is re-started with
default values substituted for the inputs of the corrupted players. Due to the
guarantees of the UISS scheme, the partitions can be simulated given only the
views of the corrupted players. Defining the three modes of operation as one
primitive that can be called on only some partition of the players requires some
additional technical steps to fit in with our model of one trusted primitive. In
addition to the players declaring which mode they are using, the primitive should
also take as input from each player the set of players this player still trusts (as
in [13]), we detail this in the full version of this paper.
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The above complete primitive yields the following theorem.

Theorem 6. There is a deterministic, polynomial-time computable functional-
ity g with input and output size poly(n, κ, β) such that any functionality f com-
puted by a circuit of size σ and output length β can be realized with full statistical
security (and 2−κ simulation error) using poly(n, σ) calls to g.

Reducing the Number of Calls. Our second primitive improves on efficiency
over the first by requiring fewer calls, but requires a preprocessing phase which
is implemented using an MPC with identifiability on aborts (in other words, if
the protocol fails then all honest players agree on the identity of a corrupted
player.) Settling for computational security, such a protocol can be based on the
existence of (two-party) oblivious transfer [12].

The protocol for f begins by the having the players run an MPC protocol as
above to compute UISS-shares of the output of f . In case the preliminary MPC
protocol fails, all players disqualify the player that caused the abort and restart
the protocol by using a default value as the input of disqualified players.

We now describe the second primitive which is used to complete the protocol.

– FCR2 takes as input an n-tuple of UISS shares for a β-bit secret and re-
constructs the secret. In case reconstruction succeeds the primitive returns
the reconstructed value to all players. If reconstruction fails, the primitive
outputs a partition of the players by the lists output by the UISS scheme as
in FCR1.

The protocol for f proceeds by repeatedly interleaving the preliminary (compu-
tational) MPC with calls to FCR2 until an output value is successfully recon-
structed by the latter. Each failure results in the honest players disqualifying at
least one corrupted player. As before, in each point of the protocol all honest
players agree on the identity of disqualified players.

Theorem 7. Suppose an oblivious transfer protocol exists with computational
security parameter λ. Then there is a deterministic, polynomial-time computable
n-party functionality g with input and output size poly(n, β, κ) such that any
polynomial-time computable f with output size β can be realized with full compu-
tational security, up to neg(λ)+2−κ simulation error, using at most n calls to g.

In the full version we give two variants on the above theorem that eliminate
the dependence on the output length at the price of increased complexity of the
MPC phase, and reduce the number of calls to 1 at the price of increasing the
complexity of the primitive exponentially in n.

5.3 Partial Fairness with Preprocessing

In this section we briefly sketch how the unanimously identifiable commitments
(UIC) primitive can be used with the partially fair MPC protocols of Beimel et al.
[2,1] to eliminate the assumption of cryptographic signatures in the preprocessing
model.
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Construction with an Off-Line Dealer. The MPC protocols from [2,1]
achieve unconditional security against fail-stop adversaries (with a non-negligible
error 1/p) given a trusted preprocessing phase in which a dealer sends some se-
cret information to each player. This information contains the messages each
player should send during the protocol, but the choice of which message is sent
may depend on the (public) identity of the players that aborted up to this point.
To upgrade the security of such a protocol to hold against active adversaries,
Beimel et al. rely on digital signatures to ensure that players do not deviate from
their designated messages. Our observation is that one could instead rely on the
UIC primitive by having the dealer give to the player who should send a message
the decommitment information for this message and to all other players the cor-
responding commitments. Then, if a corrupted player attempts to modify this
decommitment information, all honest players will recognize this simultaneously
and continue the execution as if this player had aborted.

Note that when considering general MPC in this model (rather than coin-
flipping), it may be useful to allow the preprocessing stage to depend on the
players’ inputs. We refer to such a preprocessing phase as input dependent pre-
processing. Since we require the outputs of the protocol to be unpredictable in
the end of the preprocessing phase,1 input dependent preprocessing cannot be
used to trivially solve the problem by simply delivering the outputs of f to the
players.

Theorem 8. Let P be an r-round protocol with input dependent preprocessing,
which realizes F with ε-security against fail-stop adversaries who can corrupt
up to t players. Furthermore, suppose that the online phase of P has the fol-
lowing structure: in each round, each player sends a subset of the messages it
had received in the preprocessing phase, where the identity of this subset can be
computed publicly from the pattern of aborts up to this round. Then, there is a
protocol P ′ with the same features of P except that it is (ε+2−κ)-secure against
active adversaries.

In the case of randomized functionalities with no inputs, the above theorem does
not require the preprocessing to depend on any inputs. In particular, applying
the above theorem to the coin-flipping protocol with preprocessing implicit in
the construction from [2], we get the following corollary.

Theorem 9. Assume preprocessing by a trusted off-line dealer. Fix constants n
and t such that t < 2n/3. Then, for any r, there is an r-round n-party uncon-
ditionally secure coin-flipping protocol over point-to-point channels tolerating up
to t malicious players with bias O(1/r).

In the full version we present a variant of our general UIC-based technique
which can make the preprocessing phase independent of the inputs. This variant
efficiently applies only when the number of players is constant and the input and
output domain of each player is polynomially bounded in the security parameter.

1 More precisely, security in the preprocessing model requires to simulate the adver-
sary’s view in the preprocessing phase before invoking the ideal functionality.
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Applying this variant to general MPC protocols with 1/p-security from [1], we
obtain the following theorem.

Theorem 10. Assume preprocessing by a trusted off-line dealer. Let n and t be
constants such that n/2 ≤ t < 2n/3 and F be a deterministic n-party function-
ality with input domain bounded by a polynomial d(κ) for each player. Then, for
any polynomial p(κ), there is a polynomial-time r-round 1/p secure protocol for

F which tolerates up to t corrupt players with r = pdn·2
t

.
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Abstract. Yao’s garbled-circuit approach enables constant-round secure
two-party computation of any function. In Yao’s original construction,
each gate in the circuit requires the parties to perform a constant num-
ber of encryptions/decryptions and to send/receive a constant number
of ciphertexts. Kolesnikov and Schneider (ICALP 2008) proposed an im-
provement that allows XOR gates to be evaluated “for free,” incurring
no cryptographic operations and zero communication. Their “free-XOR”
technique has proven very popular, and has been shown to improve per-
formance of garbled-circuit protocols by up to a factor of 4.

Kolesnikov and Schneider proved security of their approach in the
random oracle model, and claimed that (an unspecified variant of) cor-
relation robustness suffices; this claim has been repeated in subsequent
work, and similar ideas have since been used in other contexts. We show
that the free-XOR technique cannot be proven secure based on correla-
tion robustness alone; somewhat surprisingly, some form of circular se-
curity is also required. We propose an appropriate definition of security
for hash functions capturing the necessary requirements, and prove secu-
rity of the free-XOR approach when instantiated with any hash function
satisfying our definition.

Our results do not impact the security of the free-XOR technique in
practice, or imply an error in the free-XOR work, but instead pin down
the assumptions needed to prove security.

1 Introduction

Generic protocols for secure two-party computation have been known for over
25 years [35,13]. (By “generic” we mean that the protocol is constructed by
starting with a boolean or arithmetic circuit for the function of interest.) For
most of that time, generic secure two-party computation was viewed as being
only of theoretical interest; much effort was instead devoted to developing more
efficient, “tailored” protocols for specific functions of interest.

In recent years, however, a number of works have shown that generic protocols
for secure two-party computation may be much more attractive than previously
thought. This line of work was initiated by Fairplay [29], which gave an imple-
mentation of Yao’s garbled-circuit protocol [35] secure in the semi-honest setting.
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Subsequent works showed improvements in the scalability, efficiency, and usabil-
ity of garbled circuits [17,24,19,20], extended the garbled-circuit technique to
give implementations in the malicious setting [28,33,34], and explored alterna-
tives to the garbled-circuit approach [23,17,11,31].

As secure computation moves from theory to practice, even small improve-
ments can have a significant effect. (Three factor-of-2 improvements can reduce
the time from, say, 1 minute to under 8 seconds.) Indeed, several such improve-
ments have been proposed for the garbled-circuit approach: e.g., the point-and-
permute technique [29] that reduces the circuit evaluator’s work (per gate) from
four decryptions to one, or garbled-row reduction [30,33] that reduces the number
of ciphertexts transmitted per garbled gate from four to three.

It is in this spirit that Kolesnikov and Schneider introduced their very influ-
ential “free-XOR” approach [26] for improving the efficiency of garbled-circuit
constructions. (The free-XOR optimization is compatible with both the point-
and-permute technique and garbled-row reduction.) Yao’s original construction
requires a garbled gate for each boolean gate in the circuit of the function be-
ing computed. The free-XOR technique allows XOR gates in the underlying
circuit to be evaluated “for free,” without the need to construct a correspond-
ing garbled gate. (We defer the technical details to Section 2.2.) XOR gates in
the underlying circuit therefore incur no communication cost or cryptographic
operations. Because of this, as documented in [26,25,33], it is worth investing
the effort to minimize the number of non-XOR gates in the underlying circuit
(even if the total number of gates is increased); this results in roughly a 40%
overall efficiency improvement for “typical” circuits [33]. For some circuits (e.g.,
basic arithmetic operations, universal circuits) a factor-of-4 improvement is ob-
served [26,25]. Nowadays, all implementations of garbled-circuit protocols use
the free-XOR idea to improve performance [33,17,34,24,19,20].

1.1 Security of the Free-XOR Technique?

Given the popularity of the free-XOR technique, it is natural to ask what
are the necessary assumptions based on which it can be proven secure.1 The
free-XOR approach relies on a cryptographic hash function H . Kolesnikov and
Schneider [26] gave a proof of security for the free-XOR technique when H
is modeled as a random oracle, and claimed that (a variant of) correlation
robustness [21,14] would be sufficient; this claim has been repeated in sev-
eral subsequent works [33,3,7]. (Informally, correlation robustness implies that
H(k1⊕R), . . . , H(kt⊕R) are all pseudorandom, even given k1, . . . , kt, when R is
chosen at random. In the context of the free-XOR technique we must consider
hash functions taking two inputs. Formal definitions are given in Section 2.3.)
Correlation robustness is a relatively mild assumption, and has the advantage

1 It may be interesting to recall here that XOR gates are also “free” when using the
GMW approach to secure two-party computation [13]. In that setting, no additional
assumptions are needed.
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relative to the random-oracle model of being (potentially) falsifiable. Moreover,
correlation robustness is already required by existing protocols for oblivious-
transfer extension [21], which are used in current efficient implementations of
secure two-party computation.

Our Results. It is unclear exactly what variant of correlation robustness is
needed to prove security of the free-XOR approach, and Kolesnikov and Schnei-
der (as well as subsequent researchers relying on their result) have left this ques-
tion unanswered. We show here that the natural variant of correlation robustness
(for hash functions taking two inputs instead of one) is not sufficient. We de-
scribe where the obvious attempt to prove security fails, and moreover show
an explicit counterexample (in the random-oracle model) of a correlation-robust
hash function H for which the free-XOR approach is demonstrably insecure.

We observe that the difficulty is due to a previously unnoticed circularity
in the free-XOR construction: in essence, the issue is that H(k1⊕R) is used to
encrypt both k2 and k2⊕R. (The actual issue is more involved, and depends on
the details of the free-XOR approach; see Section 3.) We thus define a notion
of circular correlation robustness, and show that any hash function satisfying
this definition can be used to securely instantiate the free-XOR technique. Our
definition is falsifiable, and is still weaker than modeling H as a random oracle.
Our work can be viewed as following the line of research suggested in [10] whose
goal is to formalize, and show usefulness of, various concrete properties satisfied
by a random oracle.

Besides the original work of Kolesnikov and Schneider, our results also impact
security claims made in two other recent papers. Nielsen and Orlandi [32] use an
idea similar to that used in the free-XOR approach to construct a (new) protocol
for two-party computation secure against malicious adversaries. They, too, prove
security in the random-oracle model but claim that correlation robustness suf-
fices; their construction appears to have the same issues with circularity that the
free-XOR technique has. Applebaum et al. [3] define a notion of security against
passive related-key attacks for encryption schemes, and claim that encryption
schemes satisfying this notion can be used to securely instantiate the free-XOR
approach (see [3, Section 1.1.2]). However, their definition of related-key attacks
does not take into account any notion of circular security, which appears to be
necessary for the free-XOR technique to be sound. We conjecture that our new
definition of circular correlation robustness suffices to prove security in each of
the above works.

We do not claim that our work has any impact on the security of the free-
XOR technique (or the protocols of [32,3]) in practice; in most cases, protocol
implementors seem content to assume the random-oracle model anyway. Never-
theless, it is important to understand the precise assumptions needed to prove
these protocols secure. We also do not claim any explicit error in the work of
Kolesnikov and Schneider [26], as they only say that some variant of correlation
robustness should suffice. Our work pins down exactly what variant of correlation
robustness is necessary.
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1.2 Related Work

The notion of correlation robustness was introduced by Ishai et al. [21], and has
been used in several other works since then [16,22,32,33]. Applebaum et al. [3]
and Goyal et al. [14] further study the notion, explore various definitions, and
show connections to security against related-key attacks [5,12,4]. To the best of
our knowledge, none of the previous definitions of correlation robustness given
in the literature suffice to prove security of the free-XOR technique.

As mentioned above, we define a notion of security for hash functions that
blends correlation robustness and circular security. The latter notion, as well as
the more general notion of key-dependent-message security, has seen a significant
amount of attention recently [6,15,18,2,8,1,9].

1.3 Organization

We review Yao’s garbled-circuit construction, and the free-XOR modification of
it, in Section 2. In that section we also define a notion of correlation robust-
ness that is syntactically suitable for trying to prove security of the free-XOR
approach. In Section 3 we explain where a reductionist proof of security for the
free-XOR approach fails when trying to base security on correlation robustness
alone. We then demonstrate that no proof of security is possible by showing an
example of a correlation-robust hash function for which the free-XOR approach
is demonstrably insecure. This motivates our definition of a stronger notion of
security for hash functions in Section 4, one that we show suffices for proving
security of the free-XOR technique.

2 Preliminaries

2.1 Yao’s Garbled Circuit Construction

Yao’s garbled-circuit approach [35], in combination with any oblivious-transfer
protocol, yields a constant-round protocol for two-party computation
with security against semi-honest parties. We review only those aspects of the
construction needed to understand our results; for further details, we refer
to [26,27].

Fix a boolean circuit C known to both parties. (For simplicity, we assume
the circuit C outputs a single bit; the protocol can be easily extended to handle
multi-bit outputs.) One party, the garbled-circuit generator, prepares a garbled
version of the circuit as follows. First, two random keys w0

i , w
1
i are associated

with each wire i in the circuit; key w0
i corresponds to the value ‘0’ on wire i, while

w1
i corresponds to the value ‘1’. For each wire i, a random bit πi is also chosen;

key wb
i is assigned the label λbi = b⊕πi. For each gate g : {0, 1}2 → {0, 1} in the

circuit, with input wires i, j and output wire k, the circuit generator constructs a

“garbled gate” that will enable the other party to recover w
g(bi,bj)
k (and its label)



On the Security of the “Free-XOR” Technique 43

from wbi
i and w

bj
j (and their corresponding labels). The garbled gate consists of

the four ciphertexts:

Encg
w

πi
i ,w

πj
j

(
w
g(πi,πj)
k ‖g(πi, πj)⊕πk

)
(1)

Encg
w

πi
i ,w

1⊕πj
j

(
w
g(πi,1⊕πj)
k ‖g(πi, 1⊕πj)⊕πk

)
(2)

Encg
w

1⊕πi
i ,w

πj
j

(
w
g(1⊕πi,πj)
k ‖g(1⊕πi, πj)⊕πk

)
(3)

Encg
w

1⊕πi
i ,w

1⊕πj
j

(
w
g(1⊕πi,1⊕πj)
k ‖g(1⊕πi, 1⊕πj)⊕πk

)
, (4)

in that order. (In the above, we use Encgw,w′(·) to denote encryption under the
two keys w and w′ that may also depend on the gate number g. The exact
details of the encryption will be specified in the next section, but for concrete-
ness the reader can for now think of it as being instantiated by Encgw,w′(m) =
Encw(Encw′(m)) with the gate number being ignored. We use here the point-and-
permute technique so that the circuit evaluator only needs to decrypt a single
ciphertext per garbled gate.) To evaluate this garbled gate, the circuit evalu-

ator who holds wbi
i ‖λ

bi
i and w

bj
j ‖λ

bj
j uses those keys to decrypt the ciphertext

at position λbii , λ
bj
j of the above array; this will recover w

g(bi,bj)
k ‖λg(bi,bj)k , where

λ
g(bi,bj)
k = g(bi, bj)⊕πk as required.
Let i1, . . . , i� denote the input wires of the circuit. With garbled gates con-

structed as above for each gate of the circuit (and transmitted to the circuit
evaluator), we see that given keys wb1

i1
, . . . , wb�

i�
(and their corresponding labels)

for the input wires, the circuit evaluator can inductively compute a key (and its
label) for the output wire. The keys for input wires belonging to the circuit gen-
erator can simply be transmitted to the circuit evaluator along with the garbled
gates; the keys for input wires belonging to the circuit evaluator are obtained
by the circuit evaluator using oblivious transfer (OT). If the circuit generator
also sends πo for the output wire o, the circuit evaluator can obtain the correct
boolean output of the circuit on the given inputs.

The above thus defines a protocol for two-party computation in the OT-hybrid
model. If encryption is instantiated via Encgw,w′(m) = Encw(Encw′(m)) and Enc
is a CPA-secure symmetric-key encryption scheme, the protocol is secure against
semi-honest adversaries [35,27].

2.2 The Free-XOR Technique

Kolesnikov and Schneider [26] suggested that instead of choosing the keys w0
i , w

1
i

for each wire i independently at random, one could instead (1) choose a global
random value R, (2) choose w0

i uniformly and independently at random for every
wire i that is not the output of an XOR gate, and (3) set w1

i = w0
i⊕R. Each

such wire is also assigned a random bit πi as before. If k is the output wire
of an XOR gate with input wires i, j (whose keys have already been defined),
then the keys for wire k are set to be w0

k = w0
i⊕w0

j and w1
k = w0

k⊕R; also, πk
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is set to be πk = πi⊕πj . If keys are chosen this way, then for any XOR gate

as above the circuit evaluator holding wbi
i ‖λ

bi
i and w

bj
j ‖λ

bj
j can simply compute

w
bi⊕bj
k = wbi

i ⊕w
bj
j and λ

bi⊕bj
k = λbii ⊕λ

bj
j ; this is correct since wbi

i = w0
i⊕biR

(and similarly for w
bj
j ), where the notation biR evaluates to 0|R| if bi = 0 or to

R otherwise, and thus

wbi
i ⊕w

bj
j = w0

i⊕w0
j⊕(bi⊕bj)R = w0

k⊕(bi⊕bj)R = w
bi⊕bj
k

and
λbii ⊕λ

bj
j = (bi⊕πi)⊕(bj⊕πj) = (bi⊕bj)⊕πk = λ

bi⊕bj
k .

Note that by doing so, XOR gates incur no communication and require no cryp-
tographic operations by either party. For the remaining (non-XOR) gates in the
circuit, the circuit generator prepares garbled gates as in the previous section.

As previously, the above defines a protocol for secure two-party computa-
tion in the OT-hybrid model. Kolesnikov and Schneider suggest to implement
encryption using a cryptographic hash function H as follows:

Encgw,w′(m) = H(w‖w′‖g)⊕m.

When encryption is instantiated in this way, Kolesnikov and Schneider prove
security of their protocol, for semi-honest adversaries, when H is modeled as
a random oracle. They also claimed that security would hold if H satisfies
some “variant” of correlation robustness. While they did not specify precisely
what variant of correlation robustness is needed, a natural approach would be
that they require the (joint) pseudorandomness of H(w‖w′‖g), H(w⊕R‖w′‖g),
H(w‖w′⊕R‖g), H(w⊕R‖w′⊕R‖g) for w,w′, R chosen at random. We discuss
this issue further in the following section.

2.3 Correlation-Robust Hash Functions

As noted at the end of the previous section, Kolesnikov and Schneider claim
that some variant of correlation robustness would be sufficient to prove security
of the free-XOR construction. Let H = {Hn : {0, 1}�in(n) → {0, 1}�out(n)} be a
family of hash functions, where for simplicity we write H instead of Hn when
the security parameter n is understood. Correlation robustness was defined by
Ishai et al. [21] as follows:

Definition 1. H is correlation robust if for any polynomial p(·) and any non-
uniform polynomial-time distinguisher A, the following is negligible in the secu-
rity parameter n:∣∣∣∣Prw1,...,wp,R←{0,1}�in(n)

[
A
(
w1, . . . , wp, H(w1⊕R), . . . , H(wp⊕R)

)
= 1

]
− Prw1,...,wp←{0,1}�in(n),u1,...,up←{0,1}�out(n)

[
A
(
w1, . . . , wp, u1, . . . , up

)
= 1

]∣∣∣∣,
where p = p(n).
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In the context of the free-XOR technique as defined by Kolesnikov and Schnei-
der, an appropriate definition of correlation robustness needs to at least cap-

ture the security requirement (informally) that given any pair of keys wbi
i , w

bj
j

for some garbled gate constructed as in Equations (1)–(4), with Encgw,w′(m) =
H(w‖w′‖g)⊕m, it should be possible to decrypt only one row while the others
remain hidden. Since the hash function H now takes three inputs, the definition
of correlation robustness needs to be modified appropriately. Moreover, for the
free-XOR approach it appears necessary to allow wi to take on arbitrary values2

rather than being chosen uniformly and independently at random; roughly, this
is because in the free-XOR construction we have w0

k = w0
i⊕w0

j when k is the

output wire of an XOR gate with input wires i, j, and so w0
i , w

0
j , w

0
k are not

independent. We capture these requirements in the following definition.

Definition 2. H : {0, 1}3�in(n)→{0, 1}�out(n) is (weakly) 2-correlation robust if
for all polynomials p(·) the distribution ensemble

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R ← {0, 1}�in(n) :

H(w1⊕R‖w′
1‖1), H(w1‖w′

1⊕R‖1), H(w1⊕R‖w′
1⊕R‖1)

...
H(wp⊕R‖w′

p‖p),H(wp‖w′
p⊕R‖p),H(wp⊕R‖w′

p⊕R‖p)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

w1, . . . , wp ∈ {0, 1}�in(n)

w′
1, . . . , w

′
p ∈ {0, 1}�in(n)

is computationally indistinguishable from the uniform distribution over
{0, 1}3p·�out(n). (In both cases, p = p(n).)

Simplified to the case p = 1 with w1, w
′
1 chosen uniformly and independently

(and ignoring the last input to H), the definition requires that the values

H(w1⊕R‖w′
1), H(w1‖w′

1⊕R), H(w1⊕R‖w′
1⊕R)

be jointly pseudorandom even given w1, w
′
1. Note that this is equivalent to, say,

requiring that

H(w1‖w′
1), H(w1⊕R‖w′

1⊕R), H(w1‖w′
1⊕R)

be jointly pseudorandom given w1⊕R,w′
1, and thus may appear to capture the

requirements necessary for proving the free-XOR technique secure.
It will be more convenient to rephrase the above as an oracle-based definition,

and this also provides a point of departure for the definition we will propose in
Section 4. (In fact, the oracle-based definition we give is stronger than Defini-
tion 2 as it allows the adversary to adaptively choose wi, w

′
i based on previous

outputs of H . But see footnote 2.) Fixing some H , define oracles CorR(·, ·, ·) and
Rand(·, ·, ·) as follows:
2 We will show impossibility of proving security based on correlation robustness alone.
Thus, a stronger definition of correlation robustness only strengthens that result.
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– CorR(w,w
′, g): output H(w‖w′⊕R‖g), H(w⊕R‖w′‖g), and H(w⊕R‖w′⊕R‖g).

– Rand(w,w′, g): if this input was queried before then return the answer given
previously. Otherwise choose u← {0, 1}3·�out(n) and return u.

We now have the following definition:

Definition 3. H is 2-correlation robust if for all non-uniform polynomial-time
distinguishers A the following is negligible:∣∣∣Pr[R←{0, 1}�in(n) : ACorR(·)(1n) = 1]− Pr[ARand(·)(1n) = 1]

∣∣∣.
3 Insufficiency of Correlation Robustness

In this section, we show that 2-correlation robustness is not enough to prove
security of the free-XOR technique. We start by describing where the natural
attempt to prove security (following, e.g., the proof of [27]) fails. We then show
a construction (in the random-oracle model) of a hash function H that satisfies
Definition 3 but for which the free-XOR approach is demonstrably insecure when
instantiated using H .

3.1 Where the Reduction Fails

Consider the case where the circuit consists of just a single AND gate, with input
wires 1 and 2 (belonging to the circuit generator and evaluator, respectively)
and output wire 3. Say the circuit evaluator has input 0 and so receives key w0

2 ;
assume for concreteness that the circuit generator has input 0 as well and so the
circuit evaluator is also given key w0

1 . (The circuit evaluator will also be given
the corresponding labels, but these can be left implicit in what follows.) The
garbled gate consists of the values

H(w0
1‖w0

2‖1) ⊕ (w0
3‖0)

H(w0
1‖w0

2⊕R‖1) ⊕ (w0
3‖0)

H(w0
1⊕R‖w0

2‖1) ⊕ (w0
3‖0)

H(w0
1⊕R‖w0

2⊕R‖1) ⊕
(
(w0

3⊕R)‖1
)

in some permuted order, for some random value R unknown to the circuit evalua-
tor. (Recall that w1

i = w0
i⊕R for all i, by construction, when using the free-XOR

approach.) The evaluator will be able to decrypt the first row, above, to learn
the output; it should not, however, be able to learn any information about the
remaining three rows. (In particular, it should not learn whether the other party
had input 0 or 1.) The natural way to try to prove security of the above is to ar-
gue that the remaining rows are pseudorandom, by reduction to the 2-correlation
robustness of H . In the reduction, we would have an adversary A given access
to an oracle O that is either CorR (for a random R) or Rand. The adversary
A can choose random w0

1 , w
0
2 , and then query O(w0

1 , w
0
2 , 1) to obtain three val-

ues h1, h2, h3 that are either completely random or equal to H(w0
1‖w0

2⊕R‖1),
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H(w0
1⊕R‖w0

2‖1), and H(w0
1⊕R‖w0

2⊕R‖1). But A cannot complete the simula-
tion, since it has no way to compute values of the form

h1⊕(w0
3‖0), h2⊕(w0

3‖0), h3⊕
(
(w0

3⊕R)‖1
)

(since A does not know R) as would be necessary to simulate the remaining
three rows of the garbled gate in case O = CorR.

We show in the next section that this is not just a failure of this particular
proof approach, since we can construct a hash function H that satisfies Defini-
tion 3 yet for which the free-XOR methodology is demonstrably insecure when
instantiated using H .

3.2 A Counter-Example

For simplicity, we fix a value of the security parameter n. Assume further that the
last input to H (i.e., the gate index g) is represented using n bits. We construct
a pair of oracles H : {0, 1}3n → {0, 1}n+1 and Break : {0, 1}6n+3 → {0, 1}n such
that:

– H satisfies Definition 3, even if the distinguisher A is given oracle access to
both H and Break.

– The free-XOR methodology is demonstrably insecure when instantiated us-
ing H , against an adversary given oracle access to both H and Break.

Thus, we rule out a fully black-box reduction of the security of the free-XOR
technique to 2-correlation robustness.

Let H : {0, 1}3n → {0, 1}n+1 be a random function, and define Break as
follows:

Break(w‖w′‖g‖z1‖z2‖z3): If there exists r ∈ {0, 1}n such that

z1= H(w‖w′⊕r‖g), z2= H(w⊕r‖w′‖g), and z3= H(w⊕r‖w′⊕r‖g)⊕(r‖0),

then output r (if multiple values of r satisfy the above, take the lexico-
graphically smallest one); otherwise, output ⊥.

We now prove the above claims.

Lemma 1. H is 2-correlation robust, even when the distinguisher is given oracle
access to both H and Break.

Proof (Sketch). Fix a polynomial-time distinguisher A who is given access to
H,Break,O where either O = CorR (for random R ∈ {0, 1}n) or O = Rand.
Without loss of generality, we assume that A does not repeat queries to O.
When O = Rand, every query to O is answered with a string of length 3 · (n+1)
that is uniform and independent of A’s view. When O = CorR, every query
O(w,w′, g) is answered with a string of length 3 · (n + 1) that is uniform and
independent of A’s view unless one of the following is true:
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– A at some point queries O(w̃, w̃′, g) with w̃⊕w = R or w̃′⊕w′ = R (or both).
– A at some point queriesH(w̃‖w̃′‖g) with w̃⊕w = R or w̃′⊕w′ = R (or both).
– A at some point queries Break(w‖w′‖g‖z1‖z2‖z3) where it holds that R‖0 =
z3⊕H(w⊕R‖w′⊕R‖g).

Since R is chosen uniformly from {0, 1}n, the probability that A makes any
queries of the above form is negligible.

Lemma 2. The free-XOR construction, when instantiated using H, is not se-
cure against a semi-honest adversary (with oracle access to H and Break) who
corrupts the circuit evaluator.

Proof. We show that a semi-honest adversary can recover R with high probabil-
ity. Since a semi-honest adversary can (legitimately) recover one key per wire by
following the protocol, knowledge of R allows the adversary to recover both keys
for every wire in the circuit; thus, this suffices to show that the construction is
insecure.

Assume the first gate in the circuit is an AND gate with input wires 1
and 2 (belonging to the circuit generator and evaluator, respectively) and output
wire 3. Say the circuit evaluator has input 0 and so receives key w0

2 ; assume for
concreteness that the circuit generator has input 0 as well and so the circuit eval-
uator is also given key w0

1 . With constant probability we have π1 = π2 = π3 = 0,
and in that case the garbled gate consists of the values

c00 = H(w0
1‖w0

2‖1) ⊕ (w0
3‖0)

c01 = H(w0
1‖w0

2⊕R‖1) ⊕ (w0
3‖0)

c10 = H(w0
1⊕R‖w0

2‖1) ⊕ (w0
3‖0)

c11 = H(w0
1⊕R‖w0

2⊕R‖1) ⊕
(
(w0

3⊕R)‖1
)
.

The circuit evaluator can compute w0
3 from c00 (as directed by the protocol). It

then computes

z1 = c01⊕(w0
3‖0)

z2 = c10⊕(w0
3‖0)

z3 = c11⊕(w0
3‖1)

and queries Break(w0
1‖w0

2‖1‖z1‖z2‖z3). If the answer is some value R′ �=⊥ then
with overwhelming probability it holds that R′ = R. (Correctness of R can also
be verified by looking at a second garbled gate with known inputs.)

4 Proving Security of the Free-XOR Approach

The essence of the problem(s) described in the previous section is that there is
a previously unnoticed circularity in the free-XOR approach, since in the gen-
eral case both H(w1‖w2‖g)⊕w3 and H(w1⊕R‖w2⊕R‖g)⊕(w3⊕R) are revealed
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to the adversary. (Recall that R is the hidden secret here.) In this section, we
introduce a new security definition that explicitly takes this circularity into ac-
count, and show that this definition suffices to prove security of the free-XOR
approach.

Fix some function H : {0, 1}3�in(n) → {0, 1}�out(n). We define an oracle CircR
as follows:3

– CircR(w,w
′, g, b1, b2, b3) outputs H(w⊕b1R‖w′⊕b2R‖g)⊕b3R.

To see the connection with the previous definition (in the context of corre-
lation robustness), note that oracle CorR(w,w

′, g) defined previously outputs
CircR(w,w

′, g, 0, 1, 0), CircR(w,w
′, g, 1, 0, 0), and CircR(w,w

′, g, 1, 1, 0); i.e., b3
was fixed to 0 there. The possibility of b3 = 1 is exactly what models circu-
larity involving R.

Corresponding to the above we define an oracle Rand in a way analogous to
before:

– Rand(w,w′, g, b1, b2, b3): if this input was queried before then return the an-
swer given previously. Otherwise choose u← {0, 1}�out(n) and return u.

In our new definition of security for H , we are going to require that oracles CircR
(for random R) and Rand be indistinguishable. This cannot possibly be true,
however, unless we rule out some trivial queries that can be used to distinguish
them. Let O be the oracle to which a distinguisher is given access, where either
O = CircR orO = Rand. We must restrict the distinguisher as follows: (1) it is not
allowed to make any query of the form O(w,w′, g, 0, 0, b3) (since it can compute
H(w‖w′‖g) on its own) and (2) it is not allowed to query both O(w,w′, g, b1, b2, 0)
and O(w,w′, g, b1, b2, 1) for any values w,w′, g, b1, b2 (since that would allow it to
trivially recover R). We say that any distinguisher respecting these restrictions
makes legal queries.

With this in place we can now define our notion of circular 2-correlation
robustness.

Definition 4. H is circular 2-correlation robust if for any non-uniform
polynomial-time distinguisher A making legal queries to its oracle, the follow-
ing is negligible:∣∣∣Pr[R←{0, 1}�in(n) : ACircR(·)(1n) = 1]− Pr[ARand(·)(1n) = 1]

∣∣∣.
Next, we show that this notion of security suffices to prove security of the free-
XOR approach:

Theorem 1. Consider the protocol described in Section 2.2 for two-party com-
putation in the OT-hybrid model. If H as used there is circular 2-correlation
robust, then the resulting protocol is secure against a semi-honest adversary.

3 Here, we slightly abuse the notation bR so that it evaluates to 0�out(n) if b = 0 or
R‖0�out(n)−�in(n) otherwise.
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Proof. The case where the circuit generator is corrupted is trivial. Therefore, we
consider corruption of the circuit evaluator B. We describe a simulator who is
given the input of B and the output z ∈ {0, 1} of evaluating the function, and
must provide B with a simulated garbled circuit that is indistinguishable from
the actual one that would be sent during a real execution of the protocol. The
high-level idea is exactly the same as in [27]; the crucial difference is that we
reduce to circular 2-correlation robustness of H .

The simulator proceeds as follows:

1. For each wire i in the circuit that is not an output wire of an XOR gate,
choose wi ← {0, 1}n and λi ← {0, 1}.

2. For each wire k in the circuit that is the output wire of an XOR gate with
input wires i, j (for which wi, λi, wj , λj have already been defined), set wk =
wi⊕wj and λk = λi⊕λj .

3. For each non-XOR gate g in the circuit with input wires i, j and output
wire k, output the four ciphertexts c00, c01, c10, and c11 as the corresponding
garbled gate, where cλiλj = H(wi‖wj‖g)⊕(wk‖λk) and the remaining three
ciphertexts are uniform strings of length n+ 1.

4. For the output wire o, set πo = λo⊕z.

Say i1, . . . , i� are the input wires of the circuit belonging to the circuit gener-
ator, and j1, . . . , j�′ are the input wires belonging to the circuit evaluator. The
simulator gives to B the values wj1 , . . . , wj�′ (as if they came from the calls to
the OT functionality), and the simulated communication that includes (1) the
keys wi1 , . . . , wi� , (2) the garbled gate for each non-XOR gate in the circuit, and
(3) the value πo corresponding to the output wire.

We claim that the simulated view is indistinguishable from the real-world
execution of the protocol. Assume there is an adversary B who can distinguish
the two distributions when the inputs to the parties are x and y, respectively, and
the output is z. We show an adversary A who breaks the circular 2-correlation
robustness of H . Given access to an oracle O (that is either Circ or Rand),
adversary A does as follows:

1. For each wire i in the circuit that is not an output wire of an XOR gate,
choose wi←{0, 1}n and λi←{0, 1}.

2. For each wire k in the circuit that is the output wire of an XOR gate with
input wires i, j (for which wi, λi, wj , λj have already been defined), set wk =
wi⊕wj and λk = λi⊕λj .

3. For each wire i, let bi ∈ {0, 1} be the actual value on wire i; this can be
determined since A knows the actual input (x, y) to the circuit. Set wbi

i = wi,

πi = λi⊕bi, λ0i = πi, and λ
1
i = 1⊕πi (i.e., only w1−bi

i s are left undefined).

4. For each non-XOR gate g in the circuit with input wires i, j and output
wire k, output the four ciphertexts c00, c01, c10, and c11 as the corresponding
garbled gate, where these ciphertexts are constructed as follows:

– c
λ
bi
i λ

bj
j

= H(wbi
i ‖w

bj
j ‖g)⊕(w

bk
k ‖λ

bk
k ).
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– For (λβi

i , λ
βj

j ) ∈ {0, 1}2 with (βi, βj) �= (bi, bj), query

hβi,βj = O(wi, wj , g, βi⊕bi, βj⊕bj, g(βi, βj)⊕bk),

and set c
λ
βi
i λ

βj
j

= hβi,βj⊕(wbk
k ‖λ

g(βi,βj)
k ).

5. For the output wire o, set πo = λo⊕z (where z is the known output of the
circuit).

A gives to B the values wj1 , . . . , wj�′ (as if they came from the calls to the OT
functionality), and (1) the keys wi1 , . . . , wi� , (2) the garbled gate for each non-
XOR gate in the circuit, and (3) the value πo corresponding to the output wire.
Finally, A outputs whatever B outputs. It is easy to see that A makes legal
queries to its oracle. Furthermore, it is also easy to see that if O = Circ the view
of B is identically distributed to its view in the real execution of the protocol on
the given inputs, whereas if O = Rand the view of B is distributed identically to
the output of the simulator described previously. This completes the proof.

5 Conclusion

The free-XOR technique has been extremely influential, and it is currently used
in all implementations of the garbled-circuit technique because of the speedup
that it gives. It was previously known that this approach is secure in the random-
oracle model; it was also claimed that some variant of correlation robustness
would suffice to prove security, but the exact notion of correlation robustness
needed was left unspecified. In this work, we explore this question. We show that
the natural variant of correlation robustness (extended to handle hash functions
taking several inputs, rather than one input) is not sufficient, and identify a
previously unnoticed circularity in the free-XOR construction that causes the
difficulty. We are thus motivated to propose a new, stronger notion of correlation
robustness, and we prove that this notion suffices.

Several intriguing open questions remain. First, is there some variant of the
free-XOR approach that does not rely on any assumptions beyond CPA-secure
encryption (which is all that is needed to prove security of classical garbled-
circuit protocols in the OT-hybrid world)? Alternately, can our definition of
circular 2-correlation robustness be realized from standard cryptographic as-
sumptions?
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Abstract. We propose a 2-party UC-secure protocol that can compute
any function securely. The protocol requires only two messages, commu-
nication that is poly-logarithmic in the size of the circuit description of
the function, and the workload for one of the parties is also only poly-
logarithmic in the size of the circuit. This implies, for instance, delegat-
able computation that requires no expensive off-line phase and remains
secure even if the server learns whether the client accepts its results. To
achieve this, we define two new notions of extractable hash functions,
propose an instantiation based on the knowledge of exponent in an RSA
group, and build succinct zero-knowledge arguments in the CRS model.

1 Introduction

In the setting of secure two-party computation, two parties with private inputs
wish to jointly compute some function of their inputs while preserving certain
security properties like privacy, correctness and more. Despite the stringent re-
quirements of the standard simulation-based security definitions [GL90, Can00],
it has been shown that any probabilistic polynomial-time two-party functionality
can be computed securely against malicious adversaries [Yao86, GMW87, Gol04].
Following these feasibility results many constructions have been proposed to im-
prove the efficiency of the computation [IPS09, PSSW09, NO09, LP11, IKO+11].
A recent work by Gordon et al. [GKK+11] shows an approach using oblivious
RAM, with polylogarithmic amortized workload overhead. The best round com-
plexity is obtained by [IPS08, IKO+11] who show a single round protocol in
the non-interactive setting. For a general study of multiparty computation with
minimal round complexity, see [KK07, IKP10].

The communication complexity of these constructions depends heavily on the
size of the computed circuit. To the best of our knowledge, all works that try to
minimize the communication complexity do so for particular tasks of interests
such as private information retrieval (PIR) [KO97] or functions captured by
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branching programs and random access memory machines [NN01]. In all these
constructions, the parties do essentially the same amount of work, namely at least
the amount of work needed to evaluate the specified circuit. Such constructions
are appropriate for settings in which the parties are equally powerful, and offer
no solution for “asymmetric settings” in which one of the devices is strictly
(computationally) weaker than the other (e.g., smartcards, mobile devices). In
this paper we will be interested in solutions for such asymmetric settings, so we
want to minimize the workload for one of the parties.

For semi-honest attacks, fully homomorphic encryption [Gen09, BV11a] can
be used to design a simple one round protocol with sublinear communication
complexity. Here one party, say P1, sends its encrypted input to party P2, who
uses the homomorphic property to compute ciphertexts that contain the desired
output. These ciphertexts are sent to P1 who can decrypt and learn the result.
Obviously, this solution breaks down under malicious attacks. The obvious so-
lution is to have P2 give a non-interactive zero-knowledge proof (NIZK) that
his response is correct, but this will not solve our problem. Even though such a
proof can be made very short [Gro11], P1 would have to work as hard as P2 to
check the NIZK, and hence the computational complexity for both parties would
be linear in the circuit description of the function to compute. This does not fit
our scenario where we want to minimize the work for one party.

To reach our goal, one needs a protocol by which a prover can give a short
zero-knowledge argument for an NP statement, where the verifier only needs to
do a small amount of work. More precisely, the amount of work needed for the
verifier is polynomial in the security parameter and the size of the statement
but only poly-logarithmic in the time needed to check a witness in the standard
way. Such proofs or arguments are usually called succinct. The history of such
protocols starts with the work of Kilian [Kil92] who suggested the idea of having
the prover commit to a PCP for the statement in question using a Merkle hash
tree, and then have the verifier (obliviously) check selected bits from the PCP.
This protocol is succinct and zero-knowledge but requires several rounds and so
cannot be used towards our goal of a 2-message protocol. Subsequent work in this
direction has concentrated on protocols where only a succinct non-interactive
argument (and not zero-knowedge) is required. This is known as a SNARG.
Micali [Mic00] suggested one-message solution based on Kilian’s protocol and
the Fiat-Shamir heuristic. In [ABOR00] Aiello at al. suggested a two-message
protocol where the verifier accesses bits of the PCP via a private information
retrieval scheme (PIR). In such a scheme a client can retrieve an entry in a
database held by a server without the server learning which entry was accessed.
It seems intuitively appealing that if the prover does not know which bits of the
PCP the verifier is looking at, soundness of the PCP should imply soundness
of the overall argument. However, it was shown in [DLN+04] that this intuition
is not sound. Di Crescenzo and Lipmaa [CL08] suggested a solution where the
prover commits to a PCP using the root of a Merkle tree as in Kilian’s protocol,
but to prove security, they made a very strong type of extractability assumption
implying extraction of an entire PCP from the prover in one go.
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Our Contribution. Compared to the work on SNARGs just discussed, our work
makes two contributions: first, we show how to achieve simulation based privacy
also for the prover, even if the verifier is malicious. We need this since our goal
is UC-secure 2-party computation and we must have privacy for both parties,
even under malicious attacks. This is the reason we need a set-up assumption
allowing parties to give non-interactive zero-knowledge proofs of knowledge of
their inputs. Also, to get a zero-knowledge SNARG, we do not use the PCP+PIR
approach from earlier work for a general PIR, instead we build a PIR-like scheme
based on FHE, allowing the prover to compute NIZKs “inside the ciphertexts”.
Second, we suggest two notions of “extractable hash function” that are more
natural and milder than the assumption of Di Crescenzo and Lipmaa but still
allow succinct arguments.

Based on these techniques we present a two-party protocol in the common
reference string model that computes any PPT functionality f with UC security
against malicious adversaries. Our protocol is the first to additionally achieve
the following strong properties: Polylogarithmic communication complexity in
the size of the circuit C that computes f . One round complexity, i.e., a single
message in each direction. Polylogarithmic workload in the size of the circuit C
that computes f , for one of the parties. Our protocol is based on fully homo-
morphic encryption, non-interactive zero-knowledge proofs and the existence of
extractable hash functions. While the first two notions are fairly standard, we
explain in more detail the new notions of extractability:

The first extractability assumption (EHF1) considers a collision intractable
hash function H mapping into a small subset of a large domain and essentially
asserts that the only way to generate an element in Im(H) is to compute the
function on a given input. More precisely, we require that for every adversary
outputting a value h there exists an efficient extractor that (given the same
randomness) outputs a preimage of h, whenever h ∈ Im(H). We propose an in-
stantiation of EHF1-extractable and collision intractable hash functions based on
a knowledge of exponent assumption [Dam91] in Z∗

N , for N is an RSA modulus.
The second extractability assumption (EHF2) makes a weaker demand on

the hash function H : again we require that for each adversary outputting h,
there exists an extractor that tries to find a preimage. This time, however, the
extractor is allowed to fail even if h ∈ Im(H). The demand, however, is that
if the extractor fails, the adversary cannot find a preimage either, even if he
continues his computation with fresh randomness and auxiliary data that was
not known to the extractor.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor only
fails if it is impossible to find a preimage. The more interesting direction is
whether EHF2 implies EHF1. In the concurrent and independent work of Bitan-
sky et al. [BCCT11], they consider a variant of EHF1 where the hash function
has a stronger notion of collision intractability, so-called proximity collision re-
sistance. They then show that proximity EHF1 is equivalent to proximity EHF2
and furthermore existence of such functions is equivalent to the existence of
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non-interactive arguments of knowledge (SNARKs). Whether our EHF2 notion
implies EHF1 is an interesting open question.

Note that EHF2 is true in the random oracle model, where we let the random
oracle play the role of H . In this case it is easy to see that no matter how the
adversary produces a string h, there are only two cases: either h was output by
the random oracle or not. In the former case a preimage is easy to extract, in the
latter case no one can produce a preimage except with negligible probability. So
the extractor can safely fail in this case.

Finally, it is interesting to note that EHF2 opens the possibility to use many
more candidate hash functions, whereas previously only rather slow functions
based on number theoretic assumptions seemed to apply. This is because stan-
dard hash functions such as SHA (are thought to) behave similarly to a random
oracle, and such a function does not satisfy EHF1. However, using, e.g., the
random oracle preserving EMD transform from [BR06], one may get interesting
candidates for efficient functions satisfying EHF2.

We wish to warn the reader that extractability assumptions are regarded as
controversial by some; on the other hand such assumptions have recently been
studied quite intensively [BP04, CL08, Gro10, BCCT11, GLR11]. Moreover,
Gentry and Wichs [GW11] have recently shown that SNARGs cannot be shown
secure via a black-box reduction to a falsifiable assumption [Nao03]. Even more
to the point, as mentioned above, [BCCT11], shown that existence of SNARKs
imply existence of extractable hash functions. This suggests that non-standard
assumptions such as knowledge of exponent are necessary in this setting and
hence our construction is essentially tight. Finally, as we pointed out above, the
EHF2 assumption is true in the random oracle model and is implied only by the
fact that one must call the oracle to get a valid output. So we only use one of the
many “magic properties” that the random oracle model has, and this particular
one is in fact satisfied in the standard model, if our assumption holds. Therefore,
we believe that the assumption on extractable hash functions should be regarded
as much less controversial than using the random oracle model.

Applications. Variants of our construction is useful for various settings. We
briefly describe some of these applications here, for further details and additional
applications, see the full version of this paper [DFH11].

Non-Interactive Secure Computation. In the non-interactive setting a
receiver wishes to publish an encryption of its secret input x so that any other
sender, holding a secret input y, will be able to obliviously evaluate f(x, y)
and reveal it to the receiver. This problem is useful for many web applications in
which a server publishes its information and many clients respond back. A recent
work by Ishai et al. [IKO+11] presents the first general protocol in this model
with only black-box calls to a pseudorandom generator (PRG). In contrast, our
protocol makes non black-box use of the fully homomorphic encryption but only
requires polylogarithmic communication complexity.
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Delegatable Computation. In this setting, a computationally weak client
wishes to outsource its computation to a more powerful server, with the aim
that the server performs this computation privately and correctly. An important
requirement in this scenario is that the amount of work put by the client in order
to verify the correctness of the computation is substantially smaller than running
this computation by itself. It is also important that the overall amount of work
invested by the server grows linearly with the original computation. Lately, the
problem has received a lot of attention; see [AIK10, CKV10, GGP10, BGV11] for
just a few examples. Our construction implies delegatable computation and can
be simplified here because P1 (the client) is usually assumed to be honest, and
P2 (the server) does not contribute any input y to the computation. Therefore
we do not need a set-up assumption, and in contrast to earlier work, the scheme
requires no expensive off-line phase and remains secure even if the server learns
whether the client accepts its results.

Concurrent Related Work. In recent concurrent and independent work, Bi-
tanski et al [BCCT11] and Goldwasser et al. [GLR11] both define notions of
extractable hash function that are technically slightly different from our EHF1
notion, but similar in spirit. They each propose instantiations different from
ours. They then build SNARGs based on this assumption, and [BCCT11] also
build SNARGs that are in addition proofs of knowledge (SNARK’s), and show
the very interesting result that existence of SNARKs are equivalent to two no-
tions of extractable hash function similar to EHF1, respectively EHF2, known
as strong and weak proximity extractable hash functions.

Privacy for the prover is not considered in [GLR11]. In [BCCT11] zero-
knowledge SNARKs and secure computation based on this is shown in the CRS
model. They consider only stand-alone rather than UC security, on the other
hand they obtain a protocol whose communication complexity is independent of
the parties input. This can also be obtained from our construction using a simple
modification based on PCP’s of knowledge, but UC security would be lost.

2 Notations and Definitions

In this section, we review standard notations. Due to space constraints, we do
not give a definition of secure computation here, the definition and proof can
be found in [DFH11]. We denote the security parameter by n and adopt the
convention whereby a machine is said to run in polynomial-time if its number of
steps is polynomial in its security parameter. We use the standard definitions
of negligible functions and indistinguishability of families of random variables,
these can be found in the full version [DFH11]. For convenience, we use a single
security parameter for all our primitives and proofs. For an integer t, we denote
by [t] the set {1, . . . , t}, and by {0, 1}<t the set of all binary strings of length at
most t − 1. If X is a random variable then we write x ← X for the value that
the random variable takes when sampled according to the distribution of X . If
A is a probabilistic algorithm running on input z, then we write x ← A(z) for
the output of A when run on input z.
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2.1 Public Key Encryption Schemes

We specify the notion of public key encryption scheme. We use the standard
notion of semantic security and refer to the full version [DFH11] for a formal
definition.

Definition 1 (PKE). We say that ΠE = (KeyGen,Enc,Dec) is a public key
encryption scheme (PKE) if KeyGen,Enc,Dec are algorithms specified as follows.

– KeyGen, given a security parameter n (in unary), outputs keys (pk, sk), where
pk is a public key and sk is a secret key. We denote this by (pk, sk) ←
KeyGen(1n).

– Enc, given the public key pk and a plaintext message m, outputs a ciphertext
c encrypting m. We denote this by c ← Encpk(m); and when emphasizing
the randomness R used for encryption, we denote this by c← Encpk(m;R).

– Dec, given the secret key sk and a ciphertext c, outputs a plaintext message
m s.t. Decsk(Encpk(m)) = m.

2.2 Fully Homomorphic Encryption Schemes

We define fully homomorphic encryption and additional desired properties. We
will say that a bit string pk is a well-formed public key, if it can be generated as
output from the KeyGen algorithm on input the security parameter and a set of
random coins in the range specified for the key generation algorithm. Similarly,
a bit string c is a well-formed ciphertext if c = Encpk(m; r) for message m and
random coins r lies in the range specified for the encryption algorithm.

Definition 2 (FHE). We say that ΠE = (KeyGen,Enc,Dec,Eval) is a fully ho-
momorphic encryption scheme (FHE) if KeyGen,Enc,Dec are algorithms specified
as in Definition 1 and Eval is an algorithm specified as follows.

– Eval, given a well-formed public key pk, a boolean circuit C with fan-in of size
t and well-formed ciphertexts c1, . . . , c� encrypting m1, . . . ,m� respectively,
outputs a ciphertext c such that Decsk(c) = C(m1, . . . ,m�).

We further require the existence of a refresh algorithm Refresh so that for well-
formed pk, c1, ..., c�, the following distributions are statistically close,

{pk,Refreshpk(Evalpk(C, c1, . . . , c�))} ≡s {pk,Refreshpk(Encpk(C(m1, . . . ,m�)))}

Typically, Refresh would run Eval again on ciphertexts Evalpk(C, c1, . . . , c�), an
appropriately chosen encryption of zero and an addition gate. The idea is that
the randomness for the encryption of zero is chosen large enough to “drown”
the randomness coming from the original encryptions. We need that Refresh is
correct, in the sense that on input well-formed pk, c1, ..., c� as above, it outputs
with probability 1 a ciphertext that decrypts to C(m1, . . . ,m�). We also require
that ΠE is semantically secure. Finally, we note that we require compactness in
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the sense that the output of Eval is upper bounded by some fixed polynomial
regardless of C or the input length.

We note that our requirements on correctness of the Eval and Refresh algo-
rithms are stronger than what is usually assumed by existing schemes in the
literature: we want them to generate output of the expected form with probabil-
ity 1 whenever the input is well-formed, whereas other definitions only require
correct behavior on average over the distribution we expect the input to have.
We need the stronger requirement because we need Eval and Refresh to behave
correctly even on adversarially generated input where we cannot assume a partic-
ular distribution. All we can require is a ZK proof that the input is well formed.
However, the stronger requirement can be assumed for all FHE schemes we are
aware of [Gen09, vDGHV10, BV11a, BV11b]: typically, the key generation and
encryption involves choosing randomness according to a (discrete) Gaussian dis-
tribution. Using a standard tail inequality, we can assume that randomness with
the correct distribution is in some small range except with negligible probabil-
ity and define well-formed public keys and ciphertexts to be those that can be
produced using randomness that is in range. Since the probability of being out
of range is negligible, this will not affect the security of honestly generated ci-
phertext, on the other hand, the guaranteed bound on the randomness will give
us room to evaluate and refresh without creating incorrect results.

2.3 Efficient Probabilistic Checkable Proofs (PCP)

A PCP system Π = 〈Provpcp,Verpcp〉 for a language L consists of two PPT
algorithms: the prover Provpcp and the verifier Verpcp. The prover Provpcp takes
as input an instance x ∈ L and a witness w for x and computes a proof π of
length � := poly(|x|, |w|). The verifier Verpcp inputs a potential member x and
decides whether x ∈ L given oracle access to the proof oracle π. In this work, we
are interested in PCP systems where the verifier only has non-adaptive access
to the proof system. To model this, we define the PCP verifier Verpcp as a tuple

of algorithms (Ver1pcp,Ver
2
pcp): the first has no access to the PCP π and uses only

polylog(|x|) bits of randomness to compute t := O(1) positions specifying where
to read the PCP. The second machine, Ver2pcp, is deterministic and takes as input
the bit values of the PCP at these t positions. It outputs whether to accept or
reject π. We note that non-adaptivity is required as privacy of our protocol may
not hold in case of an adaptive corrupted verifier.

Formally, we require the following two properties to hold:

Definition 3 (PCP). A probabilistically checkable proof (PCP) system 〈Provpcp,
(Ver1pcp,Ver

2
pcp)〉 for a language L is a triple of (probabilistic) polynomial-time

machines, satisfying

– Completeness: If x ∈ L, π ← Provpcp(x,w) and (q1, . . . , qt)← Ver1pcp(x, �; r)

with qi ∈ [�], then Pr[Ver2pcp(x, π[q1], . . . , π[qt], q1, . . . , qt) = 1] = 1.
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– Soundness: If x /∈ L, then for all π we have

Pr[(q1, . . . , qt)← Ver1pcp(x, |π|; r) : Ver2pcp(x, π[q1], . . . , π[qt], q1, . . . , qt) = 1]

< negl(n),

for negligible function negl(·), probability taken over the verifier’s internal
coins.

Notice that standard definitions of PCP systems usually require the soundness
error to be smaller than 1/2. We get a negligible soundness error by amplification.

In this paper, we are interested in PCP’s for NP languages such that the
verifier accepts or rejects after using only polylog(|x|) bits of randomness and
accessing only O(1) bits of π. Moreover, we are interested in efficient protocols
and, hence, require that the (probabilistic) prover runs in poly(|x|, |w|) time.
PCP proof systems with efficient verifiers were introduced in the seminal work
of Babai, Fortnow, Levin and Szegedy [BFLS91]. More efficient candidates have
for instance been proposed in [PS94, AS98, BSS05, Din07]. Most PCP systems
require only a non-adaptive verifier and, hence satisfy our additional property
from above.

2.4 Collision Resistant Hashing and Merkle Trees

Let in the following {Hn}n∈N = {H : {0, 1}p(n) → {0, 1}p′(n)}n be a family of
hash functions, where p(·) and p′(·) are polynomials so that p′(n) ≤ p(n) for suf-
ficiently large n ∈ N. For a hash function H ← Hn a Merkle hash tree [Mer87] is
a data structure that allows to commit to � = 2d messages by a single hash value
h such that revealing any message requires only to reveal O(d) hash values. A
Merkle hash tree is represented by a binary tree of depth d where the � messages
m1, . . . ,m� are assigned to the leaves of the tree. The values that are assigned
to the internal nodes are computed using the underlying hash function H . The
single hash value h that commits to the � messages m1, . . . ,m� is assigned to
the root of the tree. To open the commitment to a message mi, one reveals mi

together with all the values assigned to nodes on the path from the root to mi,
and the values assigned to the siblings of these nodes. We denote the algorithm
of committing to � messages m1, . . . ,m� by h = Commit(m1, . . . ,m�) and the
opening of mi by (mi, path(i)) = Open(h, i). Verifying the opening of mi is car-
ried out by essentially recomputing the entire path bottom-up while comparing
the final outcome (i.e., the root) to the value given at the commitment phase.
For simplicity, we abuse notation and denote by path(i) both the values assigned
to the nodes in the path from the root to decommitted value mi, together with
the values assigned to their siblings.

The standard security property of a Merkle hash tree is collision resistance.
Intuitively, this says that it is infeasible to efficiently find a pair (x1, x2) so that
H(x1) = H(x2), where H ← Hn for sufficiently large n. One can show that
collision resistance of {Hn}n∈N carries over to the Merkle hashing. Formally,
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Definition 4 (Collision Resistance). A family of hash functions {Hn}n is
collision resistant if for all PPT adversaries A there exists a negligible function
negl such that for sufficiently large n ∈ N we have Pr[HashA,Hn(n) = 1] ≤ negl(n)
where game HashA,Hn(n) is defined as follows:

1. A hash function H is sampled H ← Hn.
2. The adversary A is given H and outputs x, x′.
3. The output of the game is 1 if and only if x �= x′ and H(x) = H(x′).

2.5 Non-interactive Zero-Knowledge Proofs

In the following we repeat the definition of non-interactive zero-knowledge proof.

Definition 5. A non-interactive zero-knowledge proof for a language L is a tuple
of three PPT algorithms 〈CRSGen,P ,V〉, such that the following properties are
satisfied:

Completeness: For every (x, ω) ∈ RL (for RL the witness relation of L)

Pr[crs← CRSGen(1n) : V(crs, x,P(crs, x, ω)) = 1] = 1.

Soundness: For every PPT algorithm A there exists a negligible function negl
such that for all x /∈ L

Pr[(x, π)← A(crs), crs← CRSGen(1n) : V(crs, x, π) = 1 ] ≤ negl(n).

Zero-Knowledge: there exists a PPT simulator S = (S1, S2) such that for all
(x, ω) ∈ RL the distributions (i) {P (crs, x, ω)} and (ii) {S2(crs, x, td)} are
computationally indistinguishable, where in (i) crs ← CRSGen(1n) and in
(ii) (crs, td)← S1(1

n).

2.6 Extractable Hash Functions

In this work, we are interested in hash functions that are extractable – so-called
extractable hash function (EHF). We provide two flavors of extractable hash
functions. The first extractability assumption (EHF1) considers a hash function
H mapping into a small subset of a large domain and essentially asserts that the
only way to generate an element in Im(H) is to compute the function on a given
input. More precisely, we require that for every adversary outputting a value
h there exists an efficient extractor that (given the same randomness) outputs
a preimage of h, whenever h ∈ Im(H). We propose later an instantiation of
EHF1-extractable and collision intractable hash functions based on a knowledge
of exponent assumption (Damg̊ard [Dam91]) in Z∗

N where N is an RSA modulus.
We continue with the formal assumption. For simplicity, we assume that the
algorithms below are keeping their state.
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Definition 6 (Extractable hash function 1 (EHF1)). Let A and E be PPT
algorithms then consider the following game:

– EHF1A,E,Hn(1
n, z).

H ← Hn

Repeat until A halts:

h ← A(1n,H, z;R)

z ← E(1n,H, z,R, h;R′)

If h ∈ Im(H) and H(z) �= h return 1, else reply A with z

Return 0

for R and R′ the randomness used by A and E respectively. Then the family
{Hn}n∈N satisfies the first extractability assumption (EHF1) if for every PPT
adversary A there exists a PPT extractor E such that for any sufficiently large
n ∈ N and any auxiliary information z ∈ {0, 1}∗

Pr[EHF1A,E,Hn(1
n, z) = 1] ≤ negl(n).

for a negligible function negl, the probability is over the randomness of the game.

In the above definition, we require that it should be feasible to verify that a
value h is in the image of H ; we call this function Im(H).

The second extractability assumption (EHF2) makes a weaker demand on
the hash function H : as before, we require that for each adversary outputting h,
there exists an extractor that tries to find a preimage. This time, however, the
extractor is allowed to fail even if h ∈ Im(H). Specifically, the demand is that
if the extractor fails, the adversary cannot output a preimage either. For this
definition not to be vacuous, one clearly needs that when the adversary tries to
“beat” the extractor, it is given randomness/auxiliary input that is not known
to the extractor. Otherwise the extractor could simulate the adversary and out-
put whatever the adversary does. To formalize this, we assume a probabilistic
algorithm G that outputs a pair (ζ, ζ′), sampled from some joint distribution. ζ
is given to both the adversary and the extractor, while ζ′ is only given to the
adversary later when she tries to “beat” the extractor. In our case, ζ is a pub-
lic key for an encryption scheme and ζ′ is its corresponding secret key. Notice
that our demand on G is weak as G does not depend on the choice of the hash
function.

Finally, we note that in [BCCT11] a simpler definition is considered, where
the adversary runs an arbitrary algorithm in the last stage of the game and
the extractor is required to work for any such algorithm. In particular, it must
work for an adversary that knows something not known to the extractor. This
is a much stronger demand that may exclude some potential constructions of
extractable hash functions.1

1 [BCCT11] also considers weaker variants. While the basic idea of EHF2 is a con-
tribution of this paper, the precise formulation was in part inspired by discussions
with the authors of [BCCT11].
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Definition 7 (Extractable hash function 2 (EHF2)). Let A and E be PPT
algorithms then consider the following game:

– EHF2A,G,E,Hn(1
n, z).

i = 0,H ← Hn, (ζ, ζ
′) ← G(1n)

Repeat until A halts:

i = i+ 1

hi ← A(1n,H, z, ζ;R)

zi ← E(1n,H, z,R, hi, ζ;R
′)

(zA1 , . . . , zAi ) ← A(1n,H, z,R, ζ′;R′′)

If ∃ 1 ≤ j ≤ i, s.t. H(zj) �= hj ∧H(zAj ) = hj return 1, else return 0

Then {Hn}n∈N satisfies the EHF2 assumption if for every PPT adversary A
and any PPT algorithm G there exists a PPT extractor E such that for any
sufficiently large n ∈ N and any auxiliary information z ∈ {0, 1}∗

Pr[EHF2A,G,E,Hn(1
n, z) = 1] ≤ negl(n).

for a negligible function negl, the probability is over the randomness of the game.

When we talk in the following of an extractable hash function, then we mean
that it satisfies the property given in Definition 7, i.e., any PPT adversary has
a negligible advantage in EHF2A,G,E,Hn .

Note that EHF2 is true in the random oracle model, where we let the random
oracle play the role of H . In this case it is easy to see that no matter how the
adversary produces a string h, there are only two cases: either h was output by
the random oracle or not. In the former case a preimage is easy to extract, in the
latter case no one can produce a preimage except with negligible probability. So
the extractor can safely fail in this case.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor only
fails if it is impossible to find a preimage.

2.7 The Knowledge of Exponent Assumption

The knowledge of exponent assumption proposed by Damg̊ard [Dam91] was pre-
viously used in designing 3-round zero-knowledge proofs [HT98], plaintext-aware
encryption [BP04, Den06] and more. It was originally defined with respect to
prime order groups; here we consider its variant for composite order groups.
Say N is a product of two safe primes p = 2p′ + 1 and q = 2q′ + 1. We con-
sider the group of so-called signed quadratic residues QR+

N . It consists of all
numbers in ZN with Jacobi symbol 1 in the interval [0, . . . , (N − 1)/2]. The
product of a, b ∈ QR+

N is defined to be ab mod N if ab mod N ≤ (N − 1)/2 and
N −ab mod N otherwise. QR+

N is isomorphic to the group of quadratic residues
mod N and so has order p′q′. Furthermore, it has the nice property that mem-
bership in QR+

N is easy to check. We let g, g′ be generators for QR+
N where

g′ = gx and x is picked at random from Z∗
p′q′ . Informally, the assumption says

that for any PPT algorithm A(N, g, g′) that outputs h, h′ such that h = gy and
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h′ = gxy there exists an extractor E such that (h, h′, y)← E(N, g, g′) with high
probability. We refer the reader to the full version for a formal definition of the
knowledge of exponent assumption in the group of signed quadratic residues.

Based on the knowledge of exponent assumption, we can construct an ex-
tractable hash function according to Definition 6. Moreover, under the factoring
assumption our construction is collision resistant. The public parameters of our
family of hash functions are a composite N which is the product of two safe
primes p = 2p′ + 1 and q = 2q′ + 1 and two generators g, h for QR+

N . For
some concrete N, p, q, g, h, we compute the hash function on some input z as
H(z) = (gz mod N, hz mod N). Collision resistance follows from factoring, since
for every z �= z′ such that H(z) = H(z′) it holds that p′q′ divides z − z′. More-
over, if one knows x such that h = gx mod N , then one can check membership of
a pair (a, b) in the image ofH by checking whether a ∈ QR+

N and ax mod N = b.
Finally we note that H is an EHF1, which follows from the knowledge of expo-
nent assumption.

3 Secure Two-Party Computation with Low
Communication

Consider two parties P1 with input x and P2 with input y, respectively, who wish
to jointly compute a function f(x, y). Without loss if generality we only consider
single-output functions and assume that only P1 learns the output f(x, y) (the
general case can be easily obtained from this special case [Gol04] but this requires
additional communication). We are interested in protocols that allow P1 and P2

to securely compute f(x, y) in the presence of malicious adversaries that follow
arbitrary behavior. Our proof of security guarantees the strongest notion of sim-
ulation based UC security [Can01] in the presence of static malicious adversaries.
Moreover, we require that our protocol achieves the following strong properties:
Polylogarithmic communication complexity in the circuit-size C that computes
f . One round complexity, i.e., a single message in each direction assuming an
appropriate trusted setup. In this work we prove our protocol in the common
reference string model. Polylogarithmic workload for P1 in the circuit-size C.

We introduce our main construction step-by-step. Our starting point is a
standard protocol secure against honest-but-curious adversaries for which party
P1 sends its encrypted input to party P2, who uses the homomorphic property
to compute ciphertexts that contain that the output of the specified circuit
when evaluated on P1’s (encrypted) input and his own private input. These
ciphtertexts are sent to P1 who can decrypt and learn the result. Obviously,
this solution completely breaks down against malicious attacks. So additional
cryptographic tools must be used in order to ensure correct behavior. We then
use this protocol as a building block in our main construction, adding new tools
to protect against an increasingly powerful adversary. Namely, we first show how
to prove security in the presence of a corrupted P2 and then prove simulation
based security for both corruption cases. For completeness, we formally describe
the standard protocol with security against honest-but-curious adversaries.
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3.1 Security against Honest-But-Curious Adversaries

We begin with a standard protocol with security in the face of honest-but-curious
adversaries. The main building block here is fully homomorphic encryptionΠE =
(KeyGen,Enc,Dec,Eval,Refresh).

Protocol 1 (Honest-but-curious adversaries)

– Inputs: Input x for party P1 and input y for party P2. A description of function
f for both.

– The protocol:

1. P1(x) generates a key pair (pkcomp, skcomp) ← KeyGen(1n) for a fully homomor-
phic encryption scheme, computes ex = Encpkcomp (x) and sends (pkcomp, ex) to
P2.

2. P2(y) computes d = Evalpkcomp(Cf , y, ex) and sends c = Refreshpkcomp(d) to P1.
3. P1 decrypts c and obtains the result of the computation f(x, y) = Decskcomp(c).

Security of P1 follows by the semantic security of ΠE. Similarly, security of P2

follows from the ability to refresh the ciphertext sent back to P1 so that it only
encrypts the outcome. It is easy to see that the communication complexity is
independent of the complexity of the circuit-size C that computes f , and only
depends on its inputs and outputs lengths, and the security parameter.

3.2 Security against a Malicious P1

We extend the above protocol and allow P1 to be malicious (if corrupted),
while P2 remains honest-but-curious. To this end, we use standard techniques
to achieve security in the malicious setting by relying on NIZK proof systems
〈CRSGen,P ,V〉 and an idealized setup. Specifically, we let P1 send two encryp-
tions encrypted under two different keys (one public key for which P1 knows the
secret key and the other public key is placed in the common reference string),
so that the same plaintext is encrypted. This enables the simulator to extract x
using the trapdoor of the common reference string. In addition to that, P1 must
prove that its public key, together with the ciphertexts, are well-formed. Note
that the statement proved below asserts that each ciphertext is produced from
a message and randomness of the expected range, so it is implicitly asserted
that these ciphertexts are well-formed. Nevertheless, we still need to prove well-
formness of pkcomp. This is essentially immediate when specifying the random
coins used to generate it as part of the witness, since all it takes is to verify
whether these coins are of the expected range. In order to formalize this proof
we define language L as follows.

L := {(ex, e′x, pkcomp, pkx) : ∃ (skcomp, rpk, rx, r
′
x, x) s.t. ex = Encpkcomp(x; rx)

∧ e′x = Encpkx(x; r
′
x) ∧ (pkcomp, skcomp)← KeyGen(1n, rpk)

∧ rpk yields a well formed pkcomp}.

This proof is utilized in Step 1b of Protocol 2. The complete protocol follows.
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Protocol 2 (Malicious P1)

– Setup: Generate keys (pkx, skx) ← KeyGen(1n). Set the common reference string
crs = (pkx, σ), where σ ← CRSGen(1n) is the common reference string used for
proving membership in L.

– Input: Input x for party P1 and input y for party P2. A description of function f
for both.

– The protocol:
1. First message computed by party P1.

(a) Setup. Generate a key pair (pkcomp, skcomp) ← KeyGen(1n) for a fully ho-
momorphic encryption scheme and compute ex = Encpkcomp (x).

(b) Proof of consistency. Compute e′x = Encpkx(x) and a NIZK proof πL

proving that pkcomp and ex are well-formed and that ex and e′x encrypt the
same plaintext x.

(c) The complete message. Send (ex, e
′
x, pkcomp, pkx, πL) to P2.

2. Second message computed by party P2.
(a) Verification of NIZK. Upon receiving message (ex, e

′
x, pkcomp, pkx, πL)

from P1, verify πL by running V((ex, e′x, pkcomp, pkx), πL). If it outputs 0,
then abort.

(b) Circuit evaluation. Compute d = Evalpkcomp (Cf , y, ex) for Cf a PPT
circuit computing f , and refresh the ciphertext to get c = Refreshpkcomp(d).

(c) The complete message. Send the result c to P1.
3. The output. P1 decrypts c and obtains the result of the computation f(x, y) =

Decskcomp (c).

Clearly, if both parties behave honestly P1 learns the correct output.

Theorem 8 (One-Sided Security). If ΠE = (KeyGen,Enc,Dec,Eval,Refresh)
is semantically secure and 〈CRSGen,P ,V〉 is a non-interactive zero-knowledge
proof, Protocol 2 securely evaluates f in the presence of malicious P1 and honest-
but-curious P2 with constant communication in the circuit-size for f .

Intuitively, security against malicious P1 follows from the soundness of proof πL.
A simulator S1 for an adversary corrupting P1 can be designed by first verifying
the proof πL. Next, S1 extracts the adversary’s input x′ using the secret key
skx. S1 sends x′ to the trusted party computing f and receives the outcome.
It then encrypts this value and sends it back to the adversary. Security against
corrupted P2 follows from the semantic security property of ΠE. Communication
complexity depends only on the input/output length of f .

3.3 Security against Malicious Adversaries

In this section we present our full protocol that protects against malicious ad-
versarial attacks. Our protocol uses Protocol 2 as a building block but adds
additional tools. This essentially amounts to a SNARG allowing P1 to verify the
correctness of the output issued by P2. More precisely:
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1. We first add a PCP system 〈Provpcp, (Ver1pcp,Ver2pcp)〉 (cf. Definition 3), used
by P2 for proving membership in the language L1. Formally, L1 is defined by

L1 := {(c, ex, pkcomp, ey, pky, f) :∃ (d, rd, ry, y) s.t. d = Evalpkcomp(Cf , y, ex)

∧ c = Refreshpkcomp(d; rd) ∧ ey = Encpky (y; ry)}.

Namely, the PCP shows that if one decrypts c it gets the desired result
f(x, y), where x is the plaintext contained in ex and y is the plaintext in ey.
This proof is utilized in Step 2c of Protocol 3. We recall that the statement
proved asserts that ey is produced from a message and randomness of the
expected range so it is implicitly asserted that ey is well-formed.

We further let P2 commit to this proof using a Merkle hash tree instan-
tiated with an extractable collision resistance hash function H : {0, 1}∗ →
{0, 1}τ (cf. Definition 7). The main problem with this is that hashing the
proof does not necessarily conceal it, unless a special hiding property is re-
quired form the underlying hash function. We fix that by hashing the com-
mitted PCP instead, and then prove that the values embedded within these
commitments correspond to a valid proof.

2. Furthermore, since the verifier must not see the queried bits from the proof
(due to privacy considerations), we consider an NP statement claiming that
if the PCP verifier Ver2pcp is run on Decskx(cq1), . . . ,Decskx(cqt), denoting
the ciphertexts encrypting (Γq1 , . . . , Γqt) – the openings for the PCP queries
(q1, . . . , qt), then it will accept. That is,

L2 :=
{
(zpcp, (q1, . . . , qt), (cq1 , . . . , cqt)) :

∃ (Γq1 , γq1 , . . . , Γqt , γqt , rpk) s.t.
(
∀i ∈ [t] : cqi = Encpky (Γqi ; γqi)

)
∧ Ver2pcp

(
zpcp, Γq1 , . . . , Γqt , q1, . . . , qt

)
= 1

}
for the instance zpcp ∈ L1. In our protocol, (q, cq1 , . . . , cqt) are all encrypted
under FHE with respect to public key pkpro, enabling P1 to verify this proof.

Note that the code of Ver2pcp is independent of the strategy followed by a
malicious P1. Furthermore, notice that the we do not explicitly need to
include checks of well-formedness for the ciphertext cq1 , . . . , cqt since these
are implied by the fact that the ciphertext are possible outputs on proper
inputs Γqi , γqi . This proof is utilized in Step 2f in Protocol 3. Importantly,
the number of queries asked by P1 is polylogarithmic in the PCP size (and
hence in the circuit-size that computes f).

The above implies that P1 has to provide encryptions of the queries q1, . . . , qt.
In order to ensure correctness of these queries, we add a non-interactive zero-
knowledge proof for which P1 proves that the queries were indeed sampled from
the correct range. This is formalized in Step 1c of Protocol 3 below.

An overview of our protocol. We summarize the discussion above. (1) At first,
P1 sends its input x encrypted under two distinct public keys together with
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the encrypted PCP queries and a proof of correct behavior. (2) P2 then replies
with ciphertexts that contain the output of the specified circuit, as generated
above. It then produces a PCP for this computation and commits to it using a
Merkle tree. Finally, P2 computes ciphertexts that contain the answers for the
PCP queries by opening the corresponding paths in the Merkle tree generated
above (note that this step is performed obliviously within the fully homomorphic
encryption scheme). P2 sends the computation of f(x, y) and answers to PCP
queries with a non-interactive zero-knowledge proof for correct computations.

Intuitively, the overall communication complexity depends on the number of
PCP queries, the answers to these queries and the overhead induced by the non-
interactive zero-knowledge proofs. Recall first that PCP systems are sound even
after observing only polylogarithmic bits of the proof. Moreover, each answer to
such a query requires providing the corresponding path in the hashed Merkle tree
of the PCP which includes logarithmic number of elements (in the proof’s size).
Finally, we utilize zero-knowledge proofs with communication that is polynomial
in the size of the witness. All these tools ensure that the overall communication
is polylogarithmic in the circuit’s size. We are now ready to present our protocol.

Protocol 3 (Malicious adversaries)

– Setup: Generate keys (pkx, skx) ← KeyGen(1n) and (pky, sky) ← KeyGen(1n).2

Set the common reference string crs = (pkx, pky , σ), where σ is a joint common
reference string used by P1 for proving membership in L and by P2 for proving
membership in L1 and L2. Pick an extractable collision-resistant hash function
H ← Hn for H : {0, 1}p(n) → {0, 1}p′(n).

– Input: Input x for party P1 and input y for party P2. A description of function f
for both.

– The protocol:
1. First message computed by party P1.

(a) Setup. Generate key pairs for a fully homomorphic encryption scheme
(pkcomp, skcomp) ← KeyGen(1n) and (pkpro, skpro) ← KeyGen(1n), and com-
pute ex = Encpkcomp(x).

(b) Proof of consistency. Compute e′x = Encpkx(x) and a NIZK proof πL

proving that pkpro, pkcomp, ex are well-formed and that ex and e′x encrypt
the same plaintext x.

(c) Queries for PCP. Sample t positions (q1, . . . , qt) ← Ver1pcp(zpcp, �) and
for each i encrypt them as bi = Encpkpro (qi). Moreover, for each i compute
a NIZK proof πi that qi lies in the correct range [�].

(d) The complete message. Send m1 :=((ex, e
′
x, pkcomp, pkpro, πL), (bi, πi)i∈[t])

to P2.

2. Second message computed by party P2.
(a) Verification of NIZK’s. Upon receiving message m1 from P1, verify πL

by running V((ex, e′x, pkcomp, pkx), πL). If it outputs 0, then abort.
(b) Circuit evaluation. Compute d = Evalpkcomp(Cf , y, ex) and refresh it to

get c = Refreshpkcomp (d; rd). Also, compute ey = Encpky (y; ry).

2 We note that these public keys do not have to be associated with the fully homo-
morphic encryption scheme. For convenience, we assume that they do in order to
avoid overload of parameters.
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(c) Compute PCP. Compute a PCP Γ = Provpcp(zpcp, ωpcp) of length � =
poly(n), where ωpcp := (d, rd, ry, y) forms an NP witness for the instance
zpcp := (c, ex, pkcomp, ey, pky , f) ∈ L1.

(d) Commit to PCP. For i ∈ [�] compute ciphertexts ci = Encpky (Γi; γi) and
compute the Merkle hash root using H, for h = Commit(c1, . . . , c�), where
for simplicity we let � be a power of 2.

(e) Answer PCP queries. Compute pqi = Encpkpro(path(qi); ρqi) for i ∈ [t]
by running Evalpkpro on input bi (sent by P1) and (c1, . . . , c�) (computed
above), where path(qi) = Open(h, i).

(f ) Proving correctness. Compute an encrypted proof cπL2
= Encpkpro(πL2)

for proving that (zpcp, (q1, . . . , qt), (cq1 , . . . , cqt)) ∈ L2. This is done by run-
ning Evalpkpro on input zpcp, (b1, . . . , bt), (c1, . . . , c�), (γ1, ..., γ�).

(g) The complete message. Send m2 := (c, ey , h, (pq1 , . . . , pqt), cπL2
) to P1.

Notice that cqi is part of path(qi) which is contained in pqi .
3. Verifying the second message m2. P1 decrypts c and obtains the result

of the computation f(x, y) = Decskcomp(c). For each i ∈ [t] it also decrypts
path(qi) = Decskpro (pqi) and verifies that path(qi) is correct with respect to the
root h. It then uses the leaves cq1 , . . . , cqt and πL2 = Decskpro(cπL2

) together
with the common reference string σ and verifies the correctness of πL2 . If all
these checks succeed, then it outputs f(x, y), otherwise it aborts.

Then we claim the following theorem, the proof can be found in [DFH11].

Theorem 9 (Main). Assuming that ΠE = (KeyGen,Enc,Dec,Eval,Refresh) is
semantically secure, 〈CRSGen,P ,V〉 is a non-interactive zero-knowledge proof,
〈Provpcp, (Ver1pcp,Ver2pcp)〉 is a PCP system, {Hn}n∈N is collision-resistant and
satisfies the EHF2 assumption, Protocol 3 evaluates f UC-securely against ma-
licious adversaries with polylogarithmic communication in the circuit-size of f .

We give a brief overview of our proof. We distinct two corruption cases. Let P1 be
controlled by an adversary A. In this case we face the difficulty of protecting the
privacy of P2, since revealing bits from Γ so that the PCP verifier will be able to
validate the proof is insecure. Loosely speaking, privacy follows due to hashing
the committed proof rather than the proof itself. Thus, secrecy is obtained from
the hiding property of the commitment scheme. Simulating A’s view requires
from the simulator to verify the correctness of the message m1 received from A
as the honest P2 would. Then it extracts A’s input, forwarding it to the trusted
party. Finally, upon receiving from the trusted party f(x, y), it encrypts this
value under pkcomp and sends it back to A. Now, since the simulator does not use
the real honest party’s input, y, it cannot construct a valid proof Γ and therefore
has to build the hash tree on commitments to the zero string. It further simulates
the NIZK proof for L2. Indistinguishability follows due to: (1) Zero-knowledge
property of the proof system of L2. (2) Semantic security of ΠE. (3) Refresh
algorithm of ΠE that produces a ciphertext indistinguishable from a ciphertext
that encrypts f(x, y) directly (without going through homomorphic evaluation).
(4) Soundness of the proof system of L.

We now consider the case where P2 is corrupt. Intuitively, security should
follow from semantic security of encryptions under pkpro, soundness of the PCP
and the fact that P2 is committed to a PCP string via sending the root of the
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Merkle tree: by soundness of the PCP, the only way P2 could cheat would be
to look at the encrypted PCP queries and adapt the PCP string it commits
to, to the specific queries that are asked. Supposedly, this is not possible by
semantic security. The technical difficulty, however, is that to have P2 help us
conclude anything on which queries have been encrypted in a given ciphertext
(to make a reduction to semantic security), we would need to see the responses
P2 sends back. Unfortunately, these are encrypted under the same key pkpro, and
if we want to do a reduction to semantic security, we cannot know skpro and so
cannot see the responses directly. This is solved by first observing that by the
extractability of the hash function, we can extract a Merkle tree T based on the
root of the tree sent by P2, and hence also a PCP string (we can assume we
know sky so we can decrypt the commitments containing PCP bits). We then
show that the encrypted paths path(qi) must be contained in T , or else we could
break extractability or collision resistance of Hn. So the responses we want to see
will be embedded in the tree we can extract. The reduction to semantic security
can therefore ask for an encryption of one of two sets of queries q0 or q1. It
shows the ciphertext to P2 and extracts a PCP string from the root sent by P2.
Then if qb leads to accept with the extracted PCP P1 would also accept in a
real execution, so we guess that qb was the encrypted plaintext.
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tion servers, were only proved secure against static corruptions. In the
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recently require interaction in the decryption phase. A specific method
(in composite order groups) for getting rid of interaction was recently
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This paper describes a general construction of adaptively secure ro-
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proof systems that can be seen as (threshold) hash proof systems with
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1 Introduction

Threshold cryptography [22,23,12] avoids single points of failure by splitting keys
into n > 1 shares which are held by servers in such a way that at least t out of
n servers should contribute to private key operations. In (t, n)-threshold cryp-
tosystems, an adversary breaking into up to t− 1 servers should not jeopardize
the security of the system.

Chosen-ciphertext security [45] (or IND-CCA for short) is widely recognized
as the standard security notion for public-key encryption. Securely distributing
the decryption procedure of CCA-secure public key schemes has proved to be
a challenging task. As discussed in, e.g., [49,25], the difficulty is that decryp-
tion servers should return their partial decryption results, called “decryption
shares”, before knowing whether the incoming ciphertext is valid or not and
partial decryptions of ill-formed ciphertexts may leak useful information to the
adversary.

The first solution to this problem was put forth by Shoup and Gennaro [49]
and it requires the random oracle model [5], notably to render valid cipher-
texts publicly recognizable. In the standard model, Canetti and Goldwasser [15]
gave a threshold variant of the Cramer-Shoup encryption scheme [16]. Unfor-
tunately, their scheme requires interaction among decryption servers to obtain
robustness (i.e., ensure that no coalition of t − 1 malicious servers can prevent
uncorrupted servers from successfully decrypting) as well as to render invalid
ciphertexts harmless. The approach of [15] consists in randomizing the decryp-
tion process in such a way that partial decryptions of invalid ciphertexts are
uniformly random and thus meaningless to the adversary. To avoid the need to
jointly generate randomizers at each decryption, shareholders can alternatively
store a large number (i.e., proportional to the expected number of decryptions)
of pre-shared secrets, which does not scale well. Cramer, Damg̊ard and Ishai
suggested [20] a method to generate randomizers without interaction but it is
only efficient for a small number of servers.

Other threshold variants of Cramer-Shoup were suggested [1,40] and Abe no-
tably showed [1] how to achieve optimal resilience (namely, guarantee robustness
as long as the adversary corrupts a minority of t < n/2 servers) in the Canetti-
Goldwasser system [15]. In the last decade, generic constructions of CCA-secure
threshold cryptosystems with static security were put forth [24,52].

Non-Interactive Schemes. As an application of the Canetti-Halevi-Katz
(CHK) paradigm [18], Boneh, Boyen and Halevi [8] came up with the first fully
non-interactive robust CCA-secure threshold cryptosystem with a security proof
in the standard model: in their scheme, decryption servers can generate their
decryption shares without any communication with other servers. Their scheme
takes advantage of bilinear maps to publicly check the validity of ciphertexts,
which considerably simplifies the task of proving security in the threshold set-
ting. In addition, the validity of decryption shares can be verified in the same
way, which provides robustness. Similar applications of the CHK methodology
to threshold cryptography were studied in [13,36].
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Recently, Wee [52] defined a framework allowing to construct non-interactive
threshold signatures and (chosen-ciphertext secure) threshold cryptosystems in
a static corruption model. He left as an open problem the extension of his frame-
work in the scenario of adaptive corruptions.

Adaptive Corruptions. Most threshold systems (including [49,15,24,25,8])
have been analyzed in a static corruption model, where the adversary chooses
which servers it wants to corrupt before the scheme is set up. Unfortunately,
adaptive adversaries – who can choose whom to corrupt at any time, as a function
of their entire view of the protocol execution – are known (see, e.g., [19]) to be
strictly stronger. As discussed in [15], properly dealing with adaptive corruptions
often comes at some substantial expense like a lower resilience. For example, the
Canetti-Goldwasser system can be proved robust and adaptively secure when
the threshold t is sufficiently small (typically, when t = O(n1/2)) but supporting
an optimal number of faulty servers is clearly preferable.

Assuming reliable erasures, Canetti et al. [14] devised adaptively secure pro-
tocols for the distributed generation of discrete-logarithm-based keys and DSA
signatures. Their techniques were re-used later on [3] in proactive [44] RSA sig-
natures. In 1999, Frankel, MacKenzie and Yung [26,27] independently showed
different methods to achieve adaptive security in the erasure-enabled setting.

Subsequently, Jarecki and Lysyanskaya [34] eliminated the need for erasures
and gave an adaptively secure variant of the Canetti-Goldwasser threshold cryp-
tosystem [15] which appeals to interactive zero-knowledge proofs but is designed
to remain secure in concurrent environments. Unfortunately, their scheme re-
quires a fair amount of interaction among decryption servers. Abe and Fehr [2]
showed how to dispense with zero-knowledge proofs in the Jarecki-Lysyanskaya
construction so as to prove it secure in (a variant of) the universal composability
framework but without completely eliminating interaction from the decryption
procedure. As in most threshold variants of Cramer-Shoup, hedging against in-
valid decryption queries requires an interactive (though off-line) randomness
generation phase for each ciphertext, unless many pre-shared secrets are stored.

Recently, the authors of this paper showed [39] an adaptively secure variant of
the Boneh-Boyen-Halevi construction [8] using groups of composite order and the
dual system encryption approach [50,38] that was initially applied to identity-
based encryption [48,10]. The scheme of [39] is based on a very specific use of the
Lewko-Waters techniques [38], which limits its applicability to composite order
groups and makes it hard to combine with existing adaptively secure distributed
key generation techniques. Also, the concrete security of this initial scheme is not
optimal as its security reduction is related to the number of decryption queries
made by the adversary. To solve these problems, we need a new approach and
different methods to analyze the security of schemes.

Our contribution. Motivated by an open question raised by Wee [52] and
the limitations of [39], we define a general framework for constructing robust,
adaptively secure and fully non-interactive threshold cryptosystems with chosen-
ciphertext security. Our goal is to have simple and practical client/server
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protocols, as advocated in [49][Section 2.5], and even avoid the off-line interac-
tive randomness generation stage which is usually needed in threshold versions
of Cramer-Shoup.

To this end, we also appeal to hash proof systems (HPS) [17] and take advan-
tage of the property that, in security reductions using the techniques of [16,17],
the simulator knows the private keys, which is convenient to answer adaptive
corruption queries. Indeed, when the reduction has to reveal the internal state
of dynamically-corrupted servers, it is not bound to a particular set of available
shares since it knows them all. At the same time, we depart from [15] in that the
validity of ciphertexts is made publicly verifiable – which eliminates the need
to randomize the decryption operation – using non-interactive proofs satisfying
some form of simulation-soundness [46]: in the security reduction, the simula-
tor should be able to generate a proof for a possibly false statement but the
adversary should be unable to do it on its own, even after having seen a fake
proof.

To this end, we define the notion of all-but-one perfectly sound threshold hash
proof systems that can be seen as (threshold) hash proof systems [17] with pub-
licly verifiable proofs (as opposed to designed-verifier proofs used in traditional
HPS [17]). More precisely, each proof is associated with a tag, in the same way
as ciphertexts are associated with tags in [41,36]. Real public parameters are in-
distinguishable from alternative parameters that are generated in an all-but-one
mode, which is only used in the security analysis. In the latter mode, non-
interactive proofs are perfectly sound on all tags, except for a single specific tag
where some trapdoor makes it possible to simulate proofs for false statements.
While our primitive bears similarities with Wee’s extractable hash proof systems
[51,52] (where hash proof systems are also associated with tags), it is different in
that no extractability property is required and proofs are always used as proofs
of membership.

Using all-but-one perfectly sound threshold hash proof systems, we generically
construct adaptively secure robust non-interactive threshold cryptosystems with
optimal resilience. An additional benefit of this approach is to provide a better
concrete security as the security proof requires a constant number of game tran-
sitions whereas, in [39], the number of games is proportional to the number of
decryption queries.

Then, we show three concrete instantiations using number theoretic assump-
tions in bilinear groups. The first one uses groups whose order is a product of
two primes (whereas three primes are needed in [39]). Our second and third
schemes rely on the Groth-Sahai proof systems [31] in their instantiations based
on the Decision Linear [9] and symmetric eXternal Diffie-Hellman assumptions
[47]. The latter two constructions operate over bilinear groups of prime order,
which allows for a significantly better efficiency than composite order groups (as
discussed in [28]) and makes them much easier to combine with known adaptively
secure discrete-log-based distributed key generation protocols. For example, in
the erasure-free setting, the protocols of [34,2] can be used so as to eliminate the
need for a trusted dealer at the same time as the reliance on reliable erasures.
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2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption

A non-interactive (t, n)-threshold encryption scheme is a set of algorithms with
these specifications.

Setup(λ, t, n): given a security parameter λ and integers t, n ∈ poly(λ) (with
1 ≤ t ≤ n) denoting the number of decryption servers n and the threshold t,
this algorithm outputs (PK,VK,SK), where PK is the public key, SK =
(SK1, . . . , SKn) is a vector of private-key shares andVK = (V K1, . . . , V Kn)
is a vector of verification keys. Decryption server i is given the private key
share (i, SKi). For each i ∈ {1, . . . , n}, the verification key V Ki will be used
to check the validity of decryption shares generated using SKi.

Encrypt(PK,M): is a randomized algorithm that, given a public key PK and
a plaintext M , outputs a ciphertext C.

Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKi, C): on input of a public key PK, a ciphertext C
and a private-key share (i, SKi), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK,C) = 0. Otherwise,
it outputs a decryption share μi = (i, μ̂i).

Share-Verify(PK, V Ki, C, μi): takes in PK, the verification key V Ki, a ci-
phertext C and a purported decryption share μi = (i, μ̂i). It outputs either
1 or 0. In the former case, μi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {μi}i∈S): given PK,VK, C and a subset S ⊂ {1, . . . , n}
of size t = |S| with decryption shares {μi}i∈S , this algorithm outputs either
a plaintext M or ⊥ if the set contains invalid decryption shares.

Chosen-ciphertext security. We use a game-based definition of chosen-
ciphertext security which is akin to the one of [49,8] with the difference that the
adversary can adaptively decide which parties it wants to corrupt.

Definition 1. A non-interactive (t, n)-Threshold Public Key Encryption scheme
is secure against chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive
corruptions if no PPT adversary has non-negligible advantage in this game:

1. The challenger runs Setup(λ, t, n) to obtain PK, a vector of private key
shares SK = (SK1, . . . , SKn) and verification keys VK = (V K1, . . . , V Kn).
It gives PK and VK to the adversary A and keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:

- Corruption query: A chooses i ∈ {1, . . . , n} and obtains SKi. No more
than t− 1 private key shares can be obtained by A in the whole game.

- Decryption query: A chooses an index i ∈ {1, . . . , n} and a ciphertext C.
The challenger replies with μi = Share-Decrypt(PK, i, SKi, C).

3. The adversary A chooses two equal-length messages M0,M1 and obtains
C� = Encrypt(PK,Mβ) for some random bit β R← {0, 1}.
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4. A makes further queries as in step 2 but is not allowed to make decryption
queries on C�.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage
is measured as the distance Adv(A) = |Pr[β′ = β]− 1

2 |.

Consistency. A (t, n)-Threshold Encryption scheme provides decryption con-
sistency if no PPT adversary has non-negligible advantage in a three-stage game
where stages 1 and 2 are identical to those of Definition 1 with the difference
that the adversary A is allowed to obtain all private key shares (alternatively,
A can directly obtain SK at the beginning of the game). In stage 3, A out-
puts a ciphertext C and two t-sets of decryption shares Γ = {μ1, . . . , μt} and
Γ ′ = {μ′1, . . . , μ′t}. The adversary A is declared successful if

1. Ciphertext-Verify(PK,C) = 1.
2. Γ and Γ ′ only consist of valid decryption shares.
3. Combine(PK,VK, C, Γ ) �= Combine(PK,VK, C, Γ ′).

We note that condition 1 prevents an adversary from trivially winning by out-
putting an invalid ciphertext, for which distinct sets of key shares may give
different results. This definition of consistency is identical to the one of [49,8]
with the difference that A can adaptively corrupt servers.

2.2 Hardness Assumptions in Composite Order Groups

In one occasion, we appeal to groups (G,GT ) of composite order N = p1p2,
where p1 and p2 are primes, with a bilinear map e : G×G→ GT (i.e., for which
e(ga, hb) = e(g, h)ab for any g, h ∈ G and a, b ∈ ZN ). In the notations hereafter,
for each i ∈ {1, 2}, Gpi stands for the subgroup of order pi in G.

Definition 2 ([11]). In a group G of composite order N , the Subgroup Deci-
sion (SD) problem is given (g ∈ Gp1 , h ∈ G) and η, to decide whether η ∈ Gp1

or η ∈R G. The Subgroup Decision assumption states that, for any PPT
distinguisher D, the SD problem is infeasible.

2.3 Assumptions in Prime Order Groups

We also use bilinear maps e : G × Ĝ → GT over groups of prime order p. We
will work in symmetric pairing configurations, where G = Ĝ, and sometimes in
asymmetric configurations, where G �= Ĝ.

In the symmetric setting (G,GT ), we rely on the following assumption.

Definition 3 ([9]). In a group G of prime order p, the Decision Linear
Problem (DLIN) is to distinguish the distributions (g, ga, gb, gac, gbd, gc+d) and
(g, ga, gb, gac, gbd, gz), with a, b, c, d, z R← Zp. The Decision Linear Assump-
tion is the intractability of DLIN for any PPT distinguisher D.
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The problem amounts to deciding if vectors �g1 = (ga, 1, g), �g2 = (1, gb, g) and
�g3 = (gac, gbd, gδ) are linearly dependent (i.e., if δ = c+ d) or not.

In asymmetric bilinear groups (G, Ĝ,GT ), we assume the hardness of the De-

cision Diffie-Hellman (DDH) problem in G and Ĝ. This implies the unavailabil-

ity of efficiently computable isomorphisms between Ĝ and G. This assumption
is called Symmetric eXternal Diffie-Hellman (SXDH) assumption. Given

vectors �u1 = (g, h), �u2 = (ga, hc) in G2 or Ĝ2, the SXDH assumption asserts the
infeasibility of deciding whether �u1 and �u2 are linearly dependent (i.e., whether
a = c mod p).

3 All-But-One Perfectly Sound Threshold Hash Proof
Systems

Let C, K and K′ be sets and let V ⊂ C be a subset. Let also R be a space where
random coins can be chosen. We mandate that V , K, K′ and R be of exponential
size in λ, where λ ∈ N is a security parameter. In addition, C, V and C\V should
be efficiently samplable and we also require the set K to form a group for some
binary operation, which is denoted by � hereafter.

An all-but-one perfectly sound threshold hash proof system for (C,V ,K,K′,R)
is a tuple of algorithms (SetupSound, SetupABO, Sample,Prove, SimProve,Verify,
PubEval, SharePrivEval, ShareEvalVerify,Combine) of efficient algorithms with the
following specifications.

SetupSound(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈
poly(λ), this algorithm outputs a public key pk, a vector of private key shares
(sk1, . . . , skn) and verification keys (vk1, . . . , vkn).

SetupABO(λ, t, n, tag�): takes as input a security parameter λ ∈ N, integers
t, n ∈ poly(λ) and a tag tag�. It outputs a public key pk, private key shares
(sk1, . . . , skn), the corresponding verification keys (vk1, . . . , vkn) as well as a
simulation trapdoor τ . It is important that τ be independent of {ski}ni=1.

Sample(pk): is a probabilistic algorithm that takes as input a public key pk. It
draws random coins r R← R and outputs an element Φ ∈ V along with the
random coins r that will serve as a witness explaining Φ as an element of V .

Prove(pk, tag, r, Φ): takes in a public key pk, a tag tag, an element Φ ∈ V and
the random coins r ∈ R that were used to sample Φ. It generates a non-
interactive proof πV that Φ ∈ V .

SimProve(pk, τ, tag, Φ): takes as input a public key pk and a simulation trapdoor
τ produced by SetupABO(λ, t, n, tag�), a tag tag and an element Φ ∈ C. If
tag �= tag�, the algorithm outputs ⊥. If tag = tag�, the algorithm produces
a simulated NIZK proof πV that Φ ∈ V .

Verify(pk, tag, Φ, πV): takes as input a public key pk, a tag tag, an element Φ ∈ C
and a purported proof πV . It outputs 1 if and only if πV is deemed as a valid
proof that Φ ∈ V ⊂ C.

PubEval(pk, r, Φ): takes as input a public key pk, an element Φ ∈ V and the
random coins r ∈R R such that (r, Φ) ← Sample(pk). It outputs a value
K ∈ K, which is called public evaluation of Φ.
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SharePrivEval(pk, ski, Φ): is a deterministic algorithm that takes in a public key
pk, a private key share ski and an element Φ ∈ C. It outputs a value Ki ∈
K′, called private evaluation share and a proof πKi that Ki was evaluated
correctly.

ShareEvalVerify(pk, vki, Φ,Ki, πKi): given a public key pk, a verification key
vki, an element Φ ∈ C, a private evaluation share Ki ∈ K′ and its proof πKi ,
this algorithm outputs 1 if πKi is considered as a valid proof of the correct
evaluation of Ki. Otherwise, it outputs 0.

Combine(pk, Φ, {(Ki, πKi)}i∈S): takes as input a public key pk, an element
Φ ∈ C and a set of t pairs {(Ki, πKi)}i∈S , where S ⊂ {1, . . . , n}, each
one of which consists of a private evaluation share Ki ∈ K′ and its proof
πKi . If ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 0 for some i ∈ S, it outputs ⊥.
Otherwise, it outputs a value K ∈ K.

We also define this algorithm which is implied by the above ones but will be
convenient to use.

PrivEval(pk, {ski}i∈S, Φ): given a public key pk, a set of private key shares
{ski}i∈S where S is an arbitrary t-subset of {1, . . . , n}, and an element Φ ∈ C,
this algorithm outputs the result of Combine(pk, Φ, {(Ki, πKi)}i∈S) where
(Ki, πKi)← SharePrivEval(pk, ski, Φ) for each i ∈ S.

The following properties are required from these algorithms and the sets
(C,V ,K,K′,R).

(Setup indistinguishability): For any integers (λ, t, n) with 1 ≤ t ≤ n and
any tag tag�, the output of SetupSound(λ, t, n) is computationally indistin-
guishable from the outputs (pk, {ski}ni=1, {vki}ni=1) of SetupABO(λ, t, n, tag

�).

(Correctness and Public Evaluability on V): For any (pk, {ski}ni=1,
{vki}ni=1) returned by SetupSound or SetupABO, if (r, Φ) R← Sample(pk) (and
thus Φ ∈ V), it holds that:
1. For any i ∈ {1, . . . , n}, if (Ki, πKi) ← SharePrivEval(pk, ski, Φ), the pri-

vate evaluation share Ki ∈ K′ is uniquely determined by (pk, vki) and Φ.
Moreover, the proof πKi satisfies ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 1.

2. For any t-subset S ⊂ {1, . . . , n}, combining the corresponding private
evaluation shares allows recomputing the public evaluation of Φ: namely,
PubEval(pk, r, Φ) = PrivEval(pk, {ski}i∈S , Φ).

(Universality): For any (pk, {ski}ni=1, {vki}ni=1) produced by SetupSound or
SetupABO and any Φ ∈ C\V , for any subset S̄ ⊂ {1, . . . , n} of size |S̄| = t−1,
the statistical distance

Δ[
(
pk, {vki}ni=1, {ski}i∈S̄ , Φ,PrivEval(pk, {ski}ti=1, Φ)

)
,(

pk, {vki}ni=1, {ski}i∈S̄ , Φ,K
)
],

where K R← K, should be negligible.
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(All-But-One Soundness): For all integers (λ, t, n) such that 1 ≤ t ≤ n, any
tag tag� and any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag

�),
these conditions are satisfied.

1. For any tag �= tag�, proofs are always perfectly sound. Namely, if a proof
πV satisfies Verify(pk, tag, Φ, πV ) = 1 for some Φ ∈ C, then it necessarily
holds that Φ ∈ V .

2. For any Φ ∈ C, the trapdoor τ allows generating as simulated a proof
πV ← SimProve(pk, τ, tag�, Φ) such that Verify(pk, tag�, Φ, πV ) = 1 (note
that πV is a proof for a false statement if Φ ∈ C\V). Moreover, if Φ ∈ V ,
the simulated proof πV should be perfectly indistinguishable from a real
proof (i.e., that would be generated by Prove using a witness r ∈ R of
the fact that Φ ∈ V).

(Simulatability of Share Proofs): For all (λ, t, n) with 1 ≤ t ≤ n, any tag
tag�, any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag�) and
any Φ ∈ C, the proofs πKi obtained as (Ki, πKi)← SharePrivEval(pk, ski, Φ)
should be simulatable using the trapdoor τ instead of {ski}ni=1. Using τ and
(pk, {vki}ni=1, Φ), an efficient algorithm S should be able to produce simulated
proofs πKi that are perfectly indistinguishable from real proofs.

(Consistency): For all (λ, t, n) with 1 ≤ t ≤ n, any output (pk, {(vki, ski)}ni=1) of
SetupSound(λ, t, n), given (pk, {(vki, ski)}ni=1), it should be computationally
infeasible to come up with a triple (tag, Φ, πV) as well as two distinct t-sets
Γ = {(Ki1 , πKi1

), . . . , (Kit , πKit
)} and Γ ′ = {(K ′

j1
, π′Kj1

), . . . , (K ′
jt
, π′Kjt

)},
with ik, jk ∈ {1, . . . , n} for each k ∈ {1, . . . , t}, such that the following
three conditions are satisfied: (i) Verify(pk, tag, Φ, πV) = 1; (ii) for each
k ∈ {1, . . . , t}, it holds that ShareEvalVerify(pk, vkik , Φ,Kik , πKik

) = 1 and
ShareEvalVerify(pk, vkjk , Φ,K

′
jk
, π′Kjk

) = 1; (iii) Γ and Γ ′ result in distinct

combinations: Combine(pk, Φ, Γ ) �= Combine(pk, Φ, Γ ′).

(Subset Membership Hardness): membership in C should be easy to check
but membership in V should not. Moreover, this should hold even if τ is
given. Namely, for all integers (λ, t, n) such that 1 ≤ t ≤ n, any tag tag�

and any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag
�), for any

PPT distinguisher D, it must hold that:

AdvSM(D) = |Pr[D(C,V , C1, τ) = 1|C1
R← C\V ]

− Pr[D(C,V , C0, τ) = 1|C0
R← V ]| ∈ negl(λ).

In the definition of the subset membership hardness property, the trapdoor τ
should not carry any side information helping the distinguisher. For this reason,
the latter receives τ as part of its input.
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4 Adaptively Secure Robust Non-interactive
CCA2-Secure Threshold Cryptosystems from
All-But-One Perfectly Sound Threshold Hash Proof
Systems

Let us assume sets (C,V ,K,K′,R) for whichwe have an all-but-one perfectly sound
threshold hash proof systemΠABO-THPS=(SetupSound, SetupABO, Sample, Prove,
SimProve,Verify,PubEval, SharePrivEval, ShareEvalVerify,Combine) that satisfies
the conditions specified in Section 3. We assume that messages are in K. The
generic construction of CCA2-secure threshold cryptosystem goes as follows.

Keygen(λ, t, n): given integers λ, t, n ∈ N, choose a one-time signature scheme
Σ = (Gen, Sig,Ver), generate (pk, {ski}ni=1, {vki}ni=1) ← SetupSound(λ, t, n)
and output (PK,SK,VK), where the vectors of private key shares and ver-
ification keys are defined as SK = (sk1, . . . , skn) and VK = (vk1, . . . , vkn),
respectively. The public key is PK = (pk, Σ).

Encrypt(M,PK): to encrypt a message M ∈ K using PK = (pk, Σ),

1. Generate a one-time signature key pair (SSK, SVK)← Σ.Gen(λ).
2. Choose r R← R, compute (r, Φ) ← Sample(pk, r) and blind the message

as C0 =M � PubEval(pk, r, Φ).
3. Generate a proof πV ← Prove(pk, SVK, r, Φ) that Φ ∈ V with respect to

the tag SVK.
4. Output C = (SVK, C0, Φ, πV , σ), where σ = Σ.Sig(SSK, (C0, Φ, πV )).

Ciphertext-Verify
(
PK,C

)
: parse the ciphertext C as C = (SVK, C0, Φ, πV , σ)

and PK as (pk, Σ). Return 1 if it holds that Σ.Ver
(
SVK, (C0, Φ, πV), σ

)
= 1

and Verify(pk, SVK, Φ, πV) = 1. Otherwise, return 0.

Share-Decrypt(SKi, C): given SKi = ski and C = (SVK, C0, Φ, πV , σ), re-
turn (i,⊥) if it turns out that Ciphertext-Verify

(
PK,C

)
= 0. Otherwise,

compute a pair (Ki, πKi)← SharePrivEval(pk, ski, Φ) and return μi = (i, μ̂i)
where μ̂i = (Ki, πKi).

Share-Verify
(
PK, V Ki, C, (i, μ̂i)

)
: parse C as (SVK, C0, Φ, πV , σ). If μ̂i = ⊥

or if μ̂i cannot be properly parsed as a pair (Ki, πKi), return 0. Otherwise,
return 1 if ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 1 and 0 otherwise.

Combine(PK,VK, C, {(i, μ̂i)}i∈S): parse C as (SVK, C0, Φ, πV , σ). Return ⊥
if there exists i ∈ S such that Share-Verify

(
PK,C, (i, μ̂i)

)
= 0 or if

Ciphertext-Verify
(
PK,C

)
= 0 . Otherwise, compute the combined value

K = Combine(pk, Φ, {(Ki, πKi)}i∈S) ∈ K, which unveils M = C0 �K−1.

We observe that there is no need to bind the one-time verification key SVK to
the ciphertext components (C0, Φ, πV) in any other way than by using it as a tag
to compute the non-interactive proof πV . Indeed, if the adversary attempts to
re-use parts (C�

0 , Φ
�, π�V) of the challenge ciphertext and simply replaces the one-

time verification key SVK� by a verification key SVK of its own, it will be forced
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to compute a proof πV that correspond to the same Φ� as in the challenge phase
but under the new tag SVK. Our security proof shows that this is infeasible
as long as ΠABO-THPS satisfies the properties of setup indistinguishability and
all-but-one soundness.

The consistency property of the threshold encryption scheme is trivially im-
plied by that of ΠABO-THPS and we focus on proving its IND-CCA security. In
the threshold setting, adaptive security is achieved by taking advantage of the
fact that, in security reductions using hash proof systems, the simulator typically
knows the private key and can thus answer adaptive queries at will. At the same
time, invalid ciphertexts are harmless as they are made publicly recognizable
due to the use of non-interactive proofs of validity: as long as these proofs are
perfectly sound in all decryption queries, the simulator is guaranteed not to leak
too much information about the particular private key it is using.

The main problem to solve is thus to make sure that only the simulator can
simulate a fake proof in the challenge phase and this is where the all-but-one
soundness property is handy.

Theorem 1. The above threshold cryptosystem is IND-CCA secure against adap-
tive corruptions assuming that: (i) ΠABO-THPS is an all-but-one perfectly sound
hash proof system; (ii) Σ is a strongly unforgeable one-time signature.

Proof. The proof is given in the full version of the paper. ��

5 Instantiations

5.1 Construction in Groups of Composite Order N = p1p2

The construction relies on a hash proof system in a group G of composite order
N = p1p2 and it is conceptually close to the one in [33] (notably because it builds
on a log p2-entropic hash proof system, as defined in [37]). The public key includes
group elements (g,X = gx) in the subgroup Gp1 of order p1 and the sets C and
V are defined to be G and Gp1 , respectively. The sampling algorithm returns

Φ = gr ∈ Gp1 for a random exponent r R← ZN , which allows publicly evaluating
H(Xr) = H(Φx) using a pairwise independent hash function H : G → {0, 1}�.
Since the public key is independent of x mod p2, for any Φ ∈ G that has a
non-trivial component of order p2, the “hash value” Φx has exactly log p2 bits
of min-entropy and the leftover hash lemma implies that H(Φx) is statistically
close to the uniform distribution in {0, 1}� when � is sufficiently small.

In order to turn the scheme into an all-but-one perfectly sound threshold
HPS, we need a mechanism that proves membership in the subgroup Gp1 and
guarantees the perfect soundness of proofs of membership for all tags tag ∈ ZN

such that tag �= tag�. To this end, we use additional public parameters (u, v) ∈
G2 and a tag-dependent group element utag · v will serve as a common reference
string to generate a non-interactive proof that Φ ∈ Gp1 . Membership in Gp1

can be non-interactively proved using a technique that can be traced back to
[30]. The proof consists of a group element πSD ∈ G satisfying the equality
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e(Φ, utag ·v) = e(g, πSD), which ensures that Φ ∈ Gp1 as long as utag ·v has a Gp2

component. In the public parameters produced by SetupABO, the value utag · v
thus has to be in G\Gp1 for any tag �= tag� in such a way that generating fake
proofs that Φ ∈ Gp1 is impossible. At the same time, utag

� · v should be in Gp1

so that fake proofs can be generated for tag�.

SetupSound(λ, t, n): choose a group G of composite order N = p1p2 for large
primes pi > 2l(λ) for each i ∈ {1, 2} and for some polynomial l : N → N.
Then, conduct the following steps

1. Pick g R← Gp1 , u, v
R← G, x R← ZN and set X = gx ∈ Gp1 .

2. Choose a random polynomial P [X ] ∈ ZN [X ] of degree t − 1 such that
P (0) = x. For each i ∈ {1, . . . , n}, compute Yi = g

P (i) ∈ Gp1 .

3. Select a pairwise independent hash function H : G → {0, 1}�, where
� ≤ l(λ) − 2λ. Note that the range K = {0, 1}� of H forms a group for
the bitwise exclusive OR operation � = ⊕.

4. Define private key shares (sk1, . . . , skn) as ski = P (i) ∈ ZN for each i = 1
to n. The vector (vk1, . . . , vkn) is defined as vki = Yi ∈ Gp1 for each i and
the public key consists of pk =

(
(G,GT ), N, g,X, u, v,H

)
. In addition,

we have (C,V ,K,K′,R) = (G,Gp1 , {0, 1}�,G,ZN ).

SetupABO(λ, t, n, tag�): is like SetupSound with the difference that, instead of
being chosen uniformly in G, v is defined as v = u−tag� · gα for some random
α R← ZN . The algorithm also outputs the simulation trapdoor τ = α ∈ ZN .

Sample(pk): parse the public key pk as
(
(G,GT ), N, g,X, u, v,H

)
. Choose r R←

ZN , compute Φ = gr ∈ Gp1 and output the pair (r, Φ) ∈ ZN ×Gp1 .

Prove(pk, tag, r, Φ): parse pk as
(
(G,GT ), N, g,X, u, v,H

)
and return ⊥ if Φ �=

gr. Otherwise, compute and return πSD = (utag · v)r.
SimProve(pk, τ, tag, Φ): return ⊥ if tag �= tag� or if Φ �∈ G. Otherwise, use the

simulation trapdoor τ = α ∈ ZN to compute and output πSD = Φα.

Verify(pk, tag, Φ, πSD): return 1 iff (Φ, πSD) ∈ G2 and e(Φ, utag · v) = e(g, πSD).
PubEval(pk, r, Φ): on input of the public key pk =

(
(G,GT ), N, g,X, u, v,H

)
,

return ⊥ if (r, Φ) �∈ ZN ×G. Otherwise, output K = H(Xr) ∈ {0, 1}�.
SharePrivEval(pk, ski, Φ): return ⊥ if Φ �∈ G. Otherwise, compute and return

(Ki, πKi), where Ki = Φ
ski = ΦP (i) and πKi = ε is simply the empty string.

ShareEvalVerify(pk, vki, Φ,Ki, πKi): if Ki �∈ G, vki �∈ G or πKi �= ε, return 0.
Otherwise, return 1 if e(g,Ki) = e(Φ, vki). In any other situation, return 0
(the proof πKi is ignored in this instantiation since, given key vki = Yi, the
private evaluation share Ki is directly verifiable).

Combine(pk, Φ, {(Ki, πKi)}i∈S): return ⊥ if there exists an index i ∈ S such
that ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 0. Otherwise, compute and output

K = H(
∏

i∈S K
Δi,S(0)
i ) = H(Φx) ∈ K.

Theorem 2. The above construction is an all-but-one perfectly sound threshold
hash proof system if the SD assumption holds in G. (The proof is given in the
full version of the paper).
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When the above all-but-one perfectly sound threshold hash proof system is
plugged into the generic construction of Section 4, the resulting threshold cryp-
tosystem bears resemblance with the scheme in [39], which makes use of groups
whose order is a product of three primes. However, it is more efficient and its
security proof is completely different as the dual system encryption approach
[50] is not used here.

5.2 Construction in Prime Order Groups

This sectionpresents anall-but-one thresholdhashproof systembasedon theDLIN
assumption in prime order bilinear groups. The public key comprises elements
(g, g1, g2, X1, X2) ∈ G5, whereX1 = gx1

1 · gz ,X2 = gx2
2 · gz and (x1, x2, z) are part

of the private key. The sets C and V ⊂ C consist of C = G3 and V = {(Φ1, Φ2, Φ3) =
(gθ11 , g

θ2
2 , g

θ1+θ2) | θ1, θ2 ∈ Zp}, respectively. For any Φ = (Φ1, Φ2, Φ3) ∈ V , the
public evaluation algorithm computesXθ1

1 ·Xθ2
2 , which can be privately evaluated

as Φx1
1 · Φx2

2 · Φz3.
As in the previous instantiation, we append to elements Φ ∈ V a non-interactive

proof of their membership of V (i.e., a proof that (g, g1, g2, Φ1, Φ2, Φ3) is a linear
tuple) and, in this case, the proof is obtained using the Groth-Sahai techniques.
However, we cannot simply combine them with a DLIN-based hash proof system
in the obvious way. The reason is that, using parameters produced by SetupABO
and under the special tag tag�, SimProve must be able to compute a fake non-
interactive proof of the statement Φ ∈ V for an element Φ �∈ V . At the same time,
we should make sure that, for any tag such that tag �= tag�, it will be impossible
to simulate such proofs. To solve this problem, we need a form of one-time sim-
ulation soundness [46] which can be possibly obtained from Groth’s simulation-
sound non-interactive proofs [29] or a more efficient variant suggested by Katz
and Vaikuntanathan [35]. However, the specific language that we consider allows
for even more efficient constructions: it is actually possible to build on the Groth-
Sahai proofs essentially without any loss of efficiency.

The solution is as follows. After having sampled a tuple Φ = (Φ1, Φ2, Φ3) ∈
V , the sampler generates his proof using a Groth-Sahai CRS that depends on
tag. Algorithm SetupABO produces parameters in the fashion of the all-but-
one technique [7]: the tag-based CRS is perfectly WI on the special tag tag�

(which allows generating NIZK proofs for this tag) and perfectly sound for any
other tag, which makes it impossible to convincingly prove false statements on
tags tag �= tag�. Malkin, Teranishi, Vahlis and Yung [42] used a similar idea
of message-dependent CRS in the context of signatures. A difference with [42]
is that we do not need to extract witnesses from adversarially-generated proofs
and only use them as proofs of membership.

Interestingly, the same technique can be applied to have a more efficient
simulation-sound proof of plaintext equality in the Naor-Yung-type [43] cryp-
tosystem in [35][Section 3.2.2]: the proof can be reduced from 60 to 22 group
elements and the ciphertext size is decreased by more than 50%.
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SetupSound(λ, t, n): Choose a group G of prime order p > 2λ with generators
g, g1, g2, f1, f2

R← G.

1. Choose x1, x2, z
R← Zp and set X1 = gx1

1 g
z, X2 = gx2

2 g
z. Define the

vectors �g1 = (g1, 1, g) and �g2 = (1, g2, g). Then, pick ξ1, ξ2
R← Zp and

define �g3 = �g1
ξ1 · �g2ξ2 .

2. Choose φ1, φ2
R← Zp and define vectors �f1 = (f1, 1, g), �f2 = (1, f2, g) and

�f3 = �f1
φ1 · �f2

φ2 · (1, 1, g).
3. Choose random polynomials P1[X ], P2[X ], P [X ] ∈ Zp[X ] of degree t− 1

such that P1(0) = x1, P2(0) = x2 and P (0) = z. For each i = 1 to n,

compute Yi,1 = g
P1(i)
1 gP (i), Yi,2 = g

P2(i)
2 gP (i).

4. Define shares SK = (sk1, . . . , skn) as ski = (P1(i), P2(i), P (i)) ∈ (Zp)
3

for each i ∈ {1, . . . , n}. Verification keysVK = (vk1, . . . , vkn) are defined
as vki = (Yi,1, Yi,2) ∈ G2 for each i ∈ {1, . . . , n} and the public key is

pk =
(
(G,GT ), g, �g1, �g2, �g3, �f1, �f2, �f3, X1, X2

)
.

As for the sets (C,K,K′,R), they are defined as C = G3, K = K′ = G

and R = (Zp)
2, respectively. The subset V ⊂ C consists of the language

(Φ1, Φ2, Φ3) ∈ G3 for which there exists θ1, θ2 ∈ Zp such that Φ1 = gθ11 ,

Φ2 = gθ22 and Φ3 = gθ1+θ2 .

SetupABO(λ, t, n, tag�): is like SetupSound with the following differences.

1. In step 1, �g3 is set as �g3 = �g1
ξ1 ·�g2ξ2 ·(1, 1, g)−tag� so that �g3 �∈ span(�g1, �g2).

2. In step 2, the vectors (�f1, �f2, �f3) are chosen so as to have �f3 = �f1
φ1 · �f2

φ2

.
3. The algorithm also outputs the trapdoor τ = (ξ1, ξ2, φ1, φ2) ∈ (Zp)

4.

Sample(pk): choose θ1, θ2
R← Zp, compute Φ = (Φ1, Φ2, Φ3) = (gθ11 , g

θ2
2 , g

θ1+θ2)
and output

(
(θ1, θ2), Φ

)
.

Prove
(
pk, tag, (θ1, θ2), Φ

)
: parse pk as

(
(G,GT ), g, �g1, �g2, �g3, �f1, �f2, �f3, X1, X2

)
.

Parse Φ as (Φ1, Φ2, Φ3). Define1 �gtag= �g3·(1, 1, g)tag and use gtag=(�g1, �g2, �gtag)
as a Groth-Sahai CRS to generate a NIZK proof that (g, g1, g2, Φ1, Φ2, Φ3) is

a linear tuple. More precisely, generate commitments �Cθ1 , �Cθ2 to exponents

θ1, θ2 ∈ Zp (in other words, compute �Cθi = �g
θi

tag · �g1ri · �g2si with ri, si
R← Zp

for each i ∈ {1, 2}) and a proof π(θ1,θ2) that they satisfy

Φ1 = gθ11 , Φ2 = gθ22 , Φ3 = gθ1+θ2 . (1)

The whole proof πLIN for (1) consists of �Cθ1 , �Cθ2 and π(θ1,θ2) (see the full
version of the paper for details about the generation of this proof) and
requires 12 elements of G.

SimProve(pk, τ, tag, Φ): parses pk as above, τ as (ξ1, ξ2, φ1, φ2) ∈ (Zp)
4 and Φ

as (Φ1, Φ2, Φ3) ∈ G3. If tag �= tag�, return ⊥. Otherwise, the commitments
�Cθ1 , �Cθ2 and the proof πLIN must be generated for the Groth-Sahai CRS

1 We assume that tags are non-zero. This can be enforced by having Prove and Verify
output ⊥ when tag = 0.
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gtag� = (�g1, �g2, �gtag�), where �gtag� = �g3 · (1, 1, g)tag
�

= �g1
ξ1 · �g2ξ2 , which is a

Groth-Sahai CRS for the witness indistinguishability setting.

1. Using the trapdoor (ξ1, ξ2), simulate proofs for multi-exponentiation
equations (see the full version of the paper for details as to how such

proofs can be simulated). That is, generate �Cθ1 , �Cθ2 as commitments to
0 and compute π(θ1,θ2) as a simulated proof that relations (1) hold.

2. Output πLIN = (�Cθ1 , �Cθ2 , π(θ1,θ2)) that consists of perfectly hiding com-
mitments and simulated NIZK proofs which, on the CRS (�g1, �g2, �gtag�),
are distributed as real proofs.

Verify(pk, tag, Φ, πLIN): parse pk and Φ as above. Also, parse the proof πLIN
as (�Cθ1 , �Cθ2 , π(θ1,θ2)) ∈ G12. Then, compute �gtag = �g3 · (1, 1, g)tag and use
gtag = (�g1, �g2, �gtag) as a Groth-Sahai CRS to verify πLIN. If the latter is
deemed as a valid proof for the relations (1), return 1. Otherwise, return 0.

PubEval
(
pk, (θ1, θ2), Φ

)
: parse pk and Φ as above. Return ⊥ if (Φ1, Φ2, Φ3) �=

(gθ11 , g
θ2
2 , g

θ1+θ2). Otherwise, compute and return K = Xθ1
1 ·Xθ2

2 ∈ K.
SharePrivEval(pk, ski, Φ): parse ski as (P1(i), P2(i), P (i)) ∈ (Zp)

3 and return ⊥
if Φ �∈ G3. Otherwise, return (Ki, πKi), where Ki = Φ

P1(i)
1 Φ

P2(i)
2 Φ

P (i)
3 ∈ K′

and πKi = (�CP1 , �CP2 , �CP , π
′
Ki

) ∈ G15 is a proof consisting of commitments
�CP1 , �CP2 , �CP to exponents P1(i), P2(i), P (i) ∈ Zp and a proof π′Ki

that these
satisfy the equations

Ki = Φ
P1(i)
1 · ΦP2(i)

2 · ΦP (i)
3 , Yi,1 = g

P1(i)
1 gP (i), Yi,2 = g

P2(i)
2 gP (i). (2)

The perfectly binding commitments �CP1 , �CP2 , �CP and the proof π′Ki
are gen-

erated using the vectors f = (�f1, �f2, �f3) as a Groth-Sahai CRS (in such a way

that �CP1 = �f3
P1(i) · �f1

rP1 · �f2
sP1 , for some rP1 , sP1

R← Zp, for example).

ShareEvalVerify(pk, vki, Φ,Ki, πKi): parse vki as (Yi,1, Yi,2) ∈ G2 and return ⊥
if (Ki, πKi) cannot be parsed as a tuple in G × G15. Otherwise, parse πKi

as πKi = (�CP1 , �CP2 , �CP , π
′
Ki

) ∈ G15 and return 1 if π′Ki
is a valid proof for

equations (2). In any other situation, return 0.

Combine(pk, Φ, {(Ki, πKi)}i∈S): return ⊥ if there is an index i ∈ S for which
ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 0. Otherwise, compute

K =
∏
i∈S
K

Δi,S(0)
i = Φx1

1 · Φx2
2 · Φz3 ∈ K.

Theorem 3. The above construction is an all-but-one perfectly sound threshold
hash proof system assuming that the DLIN assumption holds in G. (The proof
is given in the full version of the paper.)

The proof πLIN takes 6 group elements whereas �Cθ1 , �Cθ2 require 3 group ele-
ments each. If the scheme is instantiated using Groth’s one-time signature [29]
(which relies on the discrete logarithm assumption), SVK and σ demand 3 and 2
group elements, respectively. The whole ciphertext C thus consists of 21 group
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elements. Concretely, if each element has a representation of 512 bits, at the
128-bit security level, the ciphertext overhead amounts to 10240 bits.

From a computational standpoint, assuming that a multi-exponentiation with
two base elements has roughly the same cost as a single-base exponentiation, the
sender has to compute 19 exponentiations in G (we include the cost of generating
SVK which incurs three exponentiations in Groth’s one-time signature [29]). As
for the verifier’s workload, the validity of a ciphertext can be checked by com-
puting a product of 12 pairings (which is more efficient than naively evaluating
12 individual pairings) using batch verification techniques as in [6].

In the full version of the paper, we show an even more efficient instantiation
based on the Symmetric eXternal Diffie-Hellman assumption in prime order
groups: only 6 pairing evaluations suffice to check πV .

Acknowledgements. We thank the anonymous reviewers and Carla Ràfols for
useful comments.
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Abstract. In 2008, Groth and Sahai proposed a powerful suite of tech-
niques for constructing non-interactive zero-knowledge proofs in bilinear
groups. Their proof systems have found numerous applications, includ-
ing group signature schemes, anonymous voting, and anonymous creden-
tials. In this paper, we demonstrate that the notion of smooth projective
hash functions can be useful to design round-optimal privacy-preserving
interactive protocols. We show that this approach is suitable for design-
ing schemes that rely on standard security assumptions in the standard
model with a common-reference string and are more efficient than those
obtained using the Groth-Sahai methodology. As an illustration of our
design principle, we construct an efficient oblivious signature-based en-
velope scheme and a blind signature scheme, both round-optimal.

1 Introduction

In 2008, Groth and Sahai [22] proposed a way to produce efficient and practi-
cal non-interactive zero-knowledge and non-interactive witness-indistinguishable
proofs for (algebraic) statements related to groups equipped with a bilinear map.
They have been significantly studied in cryptography and used in a wide variety
of applications in recent years (e.g. group signature schemes [8, 9, 20] or blind
signatures [2, 5]). While avoiding expensive NP-reductions, these proof systems
still lack in practicality and it is desirable to provide more efficient tools.

Smooth projective hash functions (SPHF) were introduced by Cramer and
Shoup [13] for constructing encryption schemes. A projective hashing family is
a family of hash functions that can be evaluated in two ways: using the (se-
cret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on
a special subset of its domain. Such a family is deemed smooth if the value of
the hash function on any point outside the special subset is independent of the
projected key. If it is hard to distinguish elements of the special subset from non-
elements, then this primitive can be seen as special type of zero-knowledge proof
system for membership in the special subset. The notion of SPHF has found
applications in various contexts in cryptography (e.g. [18, 26, 1]). We present
some other applications with privacy-preserving primitives that were already
inherently interactive.
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Applications: Our two applications areOblivious Signature-Based Envelope [27]
and Blind Signatures [12].

Oblivious Signature-Based Envelope (OSBE) were introduced in [27]. It can
be viewed as a nice way to ease the asymmetrical aspect of several authentica-
tion protocols. Alice is a member of an organization and possesses a certificate
produced by an authority attesting she is in this organization. Bob wants to
send a private message P to members of this organization. However due to the
sensitive nature of the organization, Alice does not want to give Bob neither her
certificate nor a proof she belongs to the organization. OSBE lets Bob sends an
obfuscated version of this message P to Alice, in such a way that Alice will be
able to find P if and only if Alice is in the required organization. In the pro-
cess, Bob cannot decide whether Alice does really belong to the organization.
They are part of a growing field of protocols, around automated trust negotia-
tion, which also include Secret Handshakes [3], Password-based Authenticated
Key-Exchange [19], and Hidden Credentials [10]. Those schemes are all closely
related, so due to space constraints, we are going to focus on OSBE (as if you
tweak two of them, you can produce any of the other protocols [11]).

Blind signatures were introduced by Chaum [12] for electronic cash in order
to prevent the bank from linking a coin to its spender: they allow a user to
obtain a signature on a message such that the signer cannot relate the resulting
message/signature pair to the execution of the signing protocol. In [15], Fischlin
gave a generic construction of round-optimal blind signatures in the common-
reference string (CRS) model: the signing protocol consists of one message from
the user to the signer and one response by the signer. The first practical instan-
tiation of round-optimal blind signatures in the standard model was proposed
in [2] but it relies on non-standard computational assumptions. We proposed, re-
cently only [5], the most efficient realizations of round-optimal blind signatures
in the common-reference string model under classical assumptions. But these
schemes still use the Groth-Sahai proof systems.

Contributions: Our first contribution is to clarify and increase the security
requirements of an OSBE scheme. The main improvement residing in some pro-
tection for both the sender and the receiver against the Certification Authority.
The OSBE notion echoes directly to the idea of SPHF if we consider the language
L defined by encryption of valid signatures, which is hard to distinguish under
the security of the encryption schemes. We show how to build, from a SPHF
on this language, an OSBE scheme in the standard model with a CRS. And we
prove the security of our construction in regards of the security of the commit-
ment (the ciphertext), the signature and the SPHF scheme. We then show how
to build a simple and efficient OSBE scheme relying on a classical assumption,
DLin. An asymmetrical version is available in the full version [6]. To build those
schemes, we use SPHF in a new way, avoiding the need of costly Groth-Sahai
proofs when an interaction is inherently needed in the primitive. Our method
does not add any other interaction, and so supplement smoothly those proofs.

To show the efficiency of the method, and the ease of application, we then
adapt two Blind Signature schemes proposed in [5]. Our approach fits perfectly
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and decreases significantly the communicational complexity of the schemes (it
is divided by more than three in one construction). Moreover one scheme relies
on a weakened security assumptions: the XDH assumption instead of the SXDH
assumption and permits to use more bilinear group settings (namely, Type-II
and Type-III bilinear groups [16] instead of only Type-III bilinear groups for the
construction presented in [5]).

2 Definitions

In this section, we briefly recall the notations and the security notions of the
basic primitives we will use in the rest of the paper, and namely public key
encryption, signature and smooth projective hash functions (SPHF), using the
Gennaro-Lindell [18] extension. More details are available in the full version [6].
In a second part, we recall and enhance the security model of oblivious signature-
based envelope protocols [27].

2.1 Notations

Encryption Scheme. A (public-key) encryption scheme is defined by four algo-
rithms: param← ESetup(1k), (ek, dk)← EKeyGen(param), c← Encrypt(ek,m; r),
and m← Decrypt(dk, c). We will need the classical notion of IND-CPA security.
More precisely, we will use commitment schemes (as in [1]), which should be
hiding (indistinguishability) and binding (one opening only), with the additional
extractability property. The latter property thus needs an extracting algorithm
that corresponds to the decryption algorithm. Hence the notation with encryp-
tion schemes.

Signature Scheme. A signature scheme is defined by four algorithms: param ←
SSetup(1k), (vk, sk) ← SKeyGen(param), σ ← Sign(sk,m; s), and Verif(vk,m, σ).
We will need the classical notion of EUF-CMA security.

Smooth Projective Hash Function. An SPHF system [13] on a language L is
defined by five algorithms: SPHFSetup(1k) that generates the global parameters,
HashKG(L, param) that generates a hashing key hk, ProjKG(hk, (L, param),W )
that derives the projection key hp, possibly depending on the word W [18, 1].
Then, Hash(hk, (L, param),W ) and ProjHash(hp, (L, param),W,w) outputs the
hash value, either from the hashing key, or from the projection key and the
witness. The correctness of the scheme assures that ifW is indeed in L with w as
a witness, then the two ways to compute the hash value give the same result. The
security of a SPHF is defined through two different notions, the smoothness and
the pseudo-randomness properties: The smoothness property guarantees that if
W �∈ L, then the hash value is statistically random (statistically indistinguishable
from a random element). The pseudo-randomness guarantees that even for a
word W ∈ L, but without the knowledge of a witness w, then the hash value is
random (computationally indistinguishable from a random element). Abdalla et
al. [1] explained how to combine SPHF to deal with conjunctions and disjunctions
of the languages.
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2.2 Oblivious Signature-Based Envelope

We now define an OSBE protocol, where a sender S wants to send a private
message P ∈ {0, 1}� to a recipient R in possession of a certificate/signature on
a message M .

Definition 1 (Oblivious Signature-Based Envelope). An OSBE scheme
is defined by four algorithms (OSBESetup,OSBEKeyGen,OSBESign,OSBEVerif),
and one interactive protocol OSBEProtocol〈S,R〉:

– OSBESetup(1k), where k is the security parameter, generates the global pa-
rameters param;

– OSBEKeyGen(param) generates the keys (vk, sk) of the certification authority;
– OSBESign(sk,m) produces a signature σ on the input message m, under the

signing key sk;
– OSBEVerif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the

public key vk; it outputs 1 if the signature is valid, and 0 otherwise.
– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 between the sender S with the pri-

vate message P , and the recipient R with a certificate σ. If σ is a valid
signature under vk on the common message M , then R receives P , other-
wise it receives nothing. In any case, S does not learn anything.

Such an OSBE scheme should be (the three last properties are additional —or
stronger— security properties from the original definitions [27]):

– correct : the protocol actually allows R to learn P , whenever σ is a valid
signature on M under vk;

– oblivious : the sender should not be able to distinguish whetherR uses a valid
signature σ on M under vk as input. More precisely, if R0 knows and uses
a valid signature σ and R1 does not use such a valid signature, the sender
cannot distinguish an interaction with R0 from an interaction with R1;

– (weakly) semantically secure: the recipient learns nothing about S input P if
it does not use a valid signature σ onM under vk as input. More precisely, if
S0 owns P0 and S1 owns P1, the recipient that does not use a valid signature
cannot distinguish an interaction with S0 from an interaction with S1;

– semantically secure (denoted sem): the above indistinguishability should hold
even if the receiver has seen several interactions 〈S(vk,M, P ),R(vk,M, σ)〉
with valid signatures, and the same sender’s input P ;

– escrow free (denoted esc): the authority (owner of the signing key sk), playing
as the sender or just eavesdropping, is unable to distinguish whether R used
a valid signature σ on M under vk as input. This notion supersedes the
above oblivious property, since this is basically oblivious w.r.t. the authority,
without any restriction.

– semantically secure w.r.t. the authority (denoted sem∗): after the interaction,
the authority (owner of the signing key sk) learns nothing about P .

We insist that the escrow-free property (esc) is stronger than the oblivious prop-
erty, hence we will consider the former only. However, the semantic security
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Expesc−b
OSBE,A(k) [Escrow Free property]

1. param ← OSBESetup(1k)
2. vk ← A(INIT : param)
3. (M,σ) ← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. OSBEProtocol〈A, Rec∗(vk,M, σ, b)〉
5. b′ ← A(GUESS : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem
∗−b

OSBE,A(k) [Semantic security w.r.t. the authority]

1. param ← OSBESetup(1k)
2. vk ← A(INIT : param)
3. (M,σ, P0, P1) ← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. transcript ← OSBEProtocol〈Send(vk,M, Pb), Rec

∗(vk,M, σ, 0〉
5. b′ ← A(GUESS : transcript, Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem−b
OSBE,A(k) [Semantic Security]

1. param ← OSBESetup(1k)
2. (vk, sk) ← OSBEKeyGen(param)
3. (M,P0, P1) ← A(FIND : vk, Sign∗(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
4. OSBEProtocol〈Send(vk,M, Pb),A〉
5. b′ ← A(GUESS : Sign(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
6. IF M ∈ SM RETURN 0 ELSE RETURN b′

Fig. 1. Security Games for OSBE

w.r.t. the authority (sem∗) is independent from the basic semantic security (sem)
since in the latter the adversary interacts with the sender whereas in the for-
mer the adversary (who generated the signing keys) has only passive access to
a challenge transcript.

These security notions can be formalized by the security games presented on
Figure 1, where the adversary keeps some internal state between the various calls
INIT, FIND and GUESS. They make use of the oracles described below, and the
advantages of the adversary are, for all the security notions,

Adv∗OSBE,A(k) = Pr[Exp∗−1
OSBE,A(k) = 1]− Pr[Exp∗−0

OSBE,A(k) = 1]

Adv∗OSBE(k, t) = max
A≤t

Adv∗OSBE,A(k).

– Sign(vk,m): This oracle outputs a valid signature on m under the signing
key sk associated to vk (where the pair (vk, sk) has been outputted by the
OSBEKeyGen algorithm);

– Sign∗(vk,m): This oracle first queries Sign(vk,m). It additionally stores the
query m to the list SM;

– Send(vk,m, P ): This oracle emulates the sender with private input P , and
thus may consist of multiple interactions;

– Rec(vk,m, b): This oracle emulates the recipient either with a valid signature
σ on m under the verification key vk (obtained from the signing oracle Sign)
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if b = 0 (as the above R0), or with a random string if b = 1 (as the above
R1). This oracle is available when the signing key has been generated by
OSBEKeyGen only;

– Rec∗(vk,m, σ, b): This oracle does as above, with a valid signature σ provided
by the adversary. If b = 0, it emulates the recipient playing with σ; if b = 1,
it emulates the recipient playing with a random string;

– Exec(vk,m, P ): This oracle outputs the transcript of an honest execution
between a sender with private input P and the recipient with a valid signa-
ture σ on m under the verification key vk (obtained from the signing oracle
Sign). It basically activates the Send(vk,m, P ) and Rec(vk,m, 0) oracles.

– Exec∗(vk,m, σ, P ): This oracle outputs the transcript of an honest execution
between a sender with private input P and the recipient with a valid signa-
ture σ (provided by the adversary). It basically activates the Send(vk,m, P )
and Rec∗(vk,m, σ, 0) oracles.

Remark 2. The OSBE schemes proposed in [27] do not satisfy the semantic
security w.r.t. the authority. This is obvious for the generic construction based
on identity-based encryption which consists in only one flow of communication
(since a scheme that achieves the strong security notions requires at least two
flows). This is also true (to a lesser extent) for the RSA-based construction: for
any third party, the semantic security relies (in the random oracle model) on the
CDH assumption in a 2048-bit RSA group; but for the authority, it can be broken
by solving two 1024-bit discrete logarithm problems. This task is much simpler
in particular if the authority generates the RSA modulus N = pq dishonestly
(e.g. with p − 1 and q − 1 smooth). In order to make the scheme secure in our
strong model, one needs (at least) to double the size of the RSA modulus and to
make sure that the authority has selected and correctly employed a truly random
seed in the generation of the RSA key pair [25].

3 An Efficient OSBE Scheme

In this section, we present a high-level instantiation of OSBE with the previous
primitives as black boxes. Thereafter, we provide a specific instantiation with
linear ciphertexts. The overall security then relies on the DLin assumption, a
quite standard assumption in the standard model. Its efficiency is of the same
order of magnitude than the construction based on identity-based encryption [27]
(that only achieves weaker security notions) and better than the RSA-based
scheme which provides similar security guarantees (in the random oracle model).

3.1 High-Level Instantiation

We assume we have an encryption scheme E , a signature scheme S and a SPHF
system onto a set G. We additionally use a key derivation function KDF to
derive a pseudo-random bit-string K ∈ {0, 1}� from a pseudo-random element v
in G. One can use the Leftover-Hash Lemma [23], with a random seed defined
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in param during the global setup, to extract the entropy from v, then followed
by a pseudo-random generator to get a long enough bit-string. Many uses of
the same seed in the Leftover-Hash-Lemma just leads to a security loss linear
in the number of extractions. We describe an oblivious signature-based envelope
system OSBE , to send a private message P ∈ {0, 1}�:

– OSBESetup(1k), where k is the security parameter:
• it first generates the global parameters for the signature scheme (using
SSetup), the encryption scheme (using ESetup), and the SPHF system
(using SPHFSetup);

• it then generates the public key ek of the encryption scheme (using
EKeyGen, while the decryption key will not be used);

The output param consists of all the individual param and the encryption
key ek;

– OSBEKeyGen(param) runs SKeyGen(param) to generate a pair (vk, sk) of
verification-signing keys;

– The OSBESign and OSBEVerif algorithms are exactly Sign and Verif from
the signature scheme;

– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉: In the following, L = L(vk,M) will
describe the language of the ciphertexts under the above encryption key ek
of a valid signature of the input message M under the input verification key
vk (hence vk and M as inputs, while param contains ek).
• R generates and sends c = Encrypt(ek, σ; r);
• S computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v =
Hash(hk, (L, param), c), and Q = P ⊕ KDF(v); S sends hp, Q to R;

• R computes v′ = ProjHash(hp, (L, param), c, r) and P ′ = Q ⊕ KDF(v′).

3.2 Security Properties

Theorem 3 (Correct). OSBE is sound.

Proof. Under the correctness of the SPHF system, v′ = v, and thus P ′ = (P ⊕
KDF(v))⊕ KDF(v′) = P .

Theorem 4 (Escrow-Free). OSBE is escrow-free if the encryption scheme
E is semantically secure: AdvescOSBE(k, t) ≤ AdvindE (k, t′) with t′ ≈ t.

Proof. Let us assume A is an adversary against the escrow-free property of our
scheme: The malicious adversary A is able to tell the difference between an
interaction with R0 (who knows and uses a valid signature) and R1 (who does
not use a valid signature), with advantage ε.

We now build an adversary B against the semantic security of the encryption
scheme E :

– B is first given the parameters for E and an encryption key ek;
– B emulates OSBESetup: it runs SSetup and SPHFSetup by itself. For the

encryption scheme E , the parameters and the key have already been provided
by the challenger of the encryption security game;



Round-Optimal Privacy-Preserving Protocols with SPHF 101

– A provides the verification key vk;
– B has to simulate all the oracles:

• Send(vk,M, P ), for a message M and a private input P : upon receiving
c, one computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c),
v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v). One sends back
(hp, Q);

• Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs
c = Encrypt(ek, σ; r);

• Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c, that is
provided to Send(vk,M, P ), to generate (hp, Q).

– At some point, A outputs a message M and a valid signature σ, and B has
to simulate Rec∗(vk,M, σ, b): B sets σ0 ← σ and sets σ1 as a random string.
It sends (σ0, σ1) to the challenger of the semantic security of the encryption
scheme and gets back c, an encryption of σβ , for a random unknown bit β.
It outputs c;

– B provides again access to the above oracles, and A outputs a bit b′, that B
forwards as its guess β′ for the β involved in the semantic security game for
E .

Note that the above simulation perfectly emulates Expesc−β
OSBE,A(k) (since basically

b is β, and b′ is β′):

ε = AdvescOSBE,A(k) = AdvindE,B(k) ≤ AdvindE (k, t).

Theorem 5 (Semantically Secure). OSBE is semantically secure if the
signature is unforgeable, the SPHF is smooth and the encryption scheme is
semantically secure (and under the pseudo-randomness of the KDF):

AdvsemOSBE(k, t)≤qU AdvindE (k, t′)+2 SucceufS (k, qS , t
′′)+2Advsmooth

SPHF(k)with t
′, t′′≈ t.

In the above formula, qU denotes the number of interactions the adversary has
with the sender, and qS the number of signing queries the adversary asked.

Proof. Let us assume A is an adversary against the semantic security of our
scheme: The malicious adversary A is able to tell the difference between an
interaction with S0 (who owns P0) and S1 (who owns P1), with advantage ε. We
start from this initial security game, and make slight modifications to bound ε.

Game G0. Let us emulate this security game:

– B emulates the initialization of the system: it runs OSBESetup by itself, and
then OSBEKeyGen to generate (vk, sk);

– B has to simulate all the oracles:
• Sign(vk,M) and Sign∗(vk,M): it runs the corresponding algorithm by
itself;

• Send(vk,M, P ), for a message M and a private input P : upon receiving
c, one computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c),
v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v). One sends back
(hp, Q);
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• Rec(vk,M, 0), for a message M : B asks for a valid signature σ on M ,
computes and outputs c = Encrypt(ek, σ; r);

• Exec(vk,M, P ): one simply first runs Rec(vk,M, 0) to generate c, that is
provided to Send(vk,M, P ), to generate (hp, Q).

– At some point, A outputs a messageM and two inputs (P0, P1) to distinguish
the sender, and B call back the above Send(vk,M, Pb) simulation to interact
with A;

– B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
0
[b′ = 1|b = 1]− Pr

G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game Gβ1 . This game involves the semantic security of the encryption scheme: B
is already provided the parameters and the encryption key ek by the challenger
of the semantic security of the encryption scheme, hence the initialization is
slightly modified. In addition, B randomly chooses the bit b, and modifies the
Rec oracle simulation:

– Rec(vk,M, 0), for a message M : B asks for a valid signature σ0 on M , and
sets σ1 as a random string, computes and outputs c = Encrypt(ek, σb; r).

Since B knows b, it finally outputs β′ = (b′ = b).
Note that G0

1 is exactly G0, and the distance between G0
1 and G1

1 relies on the
Left-or-Right security of the encryption scheme, which can be shown equivalent
to the semantic security, with a lost linear in the number of encryption queries,
which is actually the number qU of interactions with a user (the sender in this
case), due to the hybrid argument [4]:

qU × AdvindE (k) ≥ Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]

= Pr[b′ = b|β = 0]− Pr[b′ = b|β = 1]

= (2× Pr
G0
1

[b′ = b]− 1)− (2× Pr
G1
1

[b′ = b]− 1)

As a consequence: ε ≤ qU × AdvindE (k) + (2× PrG1
1
[b′ = b]− 1).

Game G2. This game involves the unforgeability of the signature scheme: B is
already provided the parameters and the verification vk for the signature scheme,
together with access to the signing oracle (note that all the signing queries Sign∗

asked by the adversary in the FIND stage, i.e., before the challenge interaction
with Send(vk,M, Pb), are stored in SM). The simulator B generates itself all the
other parameters and keys, an namely the encryption key ek, together with the
associated decryption key dk. For the Rec oracle simulation, B keeps the random
version (as in G1

1). In the challenge interaction with Send(vk,M, Pb), one stops
the simulation and makes the adversary win if it uses a valid signature on a
message M �∈ SM:
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– Send(vk,M, Pb), during the challenge interaction: upon receiving c, if M �∈
SM, it first decrypts c to get the input signature σ. If σ is a valid signature,
one stops the game, sets b′ = b and outputs b′. If the signature is in not
valid, the simulation remains unchanged;

– Rec(vk,M, 0), for a message M : B sets σ as a random string, computes and
outputs c = Encrypt(ek, σ; r).

Because of the abort in the case of a valid signature on a new message, we know
that the adversary cannot use such a valid signature in the challenge. So, sinceM
should not be in SM, the signature will be invalid. Actually, the unique difference
from the previous game G1

1 is the abort in case of valid signature on a new
message in the challenge phase, which probability is bounded by SucceufS (k, qS).
Using Shoup’s Lemma [29]:

Pr
G1
1

[b′ = b]− Pr
G2

[b′ = b] ≤ SucceufS (k, qS).

As a consequence: ε ≤ qU ×AdvindE (k)+2×SucceufS (k, qS)+(2×PrG2 [b
′ = b]−1).

Game G3. The last game involves the smoothness of the SPHF: The unique
difference is in the computation of v in Send simulation, in the challenge phase
only: B chooses a random v ∈ G. Due to the statistical randomness of v in
the previous game, in case the signature is not valid (a word that is not in the
language), this game is statistically indistinguishable from the previous one:

Pr
G2

[b′ = b]− Pr
G3

[b′ = b] ≤ Advsmooth
SPHF(k).

Since Pb is now masked by a truly random value, no information leaks on b:
PrG3 [b

′ = b] = 1/2.

Theorem 6. OSBE is semantically secure w.r.t. the authority if the SPHF
is pseudo-random (and under the pseudo-randomness of the KDF):

Advsem
∗

OSBE(k, t) ≤ 2× AdvprSPHF(k, t).

Proof. Let us assume A is an adversary against the semantic security w.r.t. the
authority: The malicious adversary A is able to tell the difference between an
eavesdropped interaction with S0 (who owns P0) and S1 (who owns P1), with ad-
vantage ε. We start from this initial security game, and make slight modifications
to bound ε.

Game G0. Let us emulate this security game:

– B emulates the initialization of the system: it runs OSBESetup by itself;
– A provides the verification key vk;
– B has to simulate all the oracles:

• Send(vk,M, P ), for a message M and a private input P : upon receiving
c, one computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c),
v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v). One sends back
(hp, Q);
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• Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs
c = Encrypt(ek, σ; r);

• Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c, that is
provided to Send(vk,M, P ), to generate (hp, Q).

– At some point, A outputs a message M with a valid signature σ, and
two inputs (P0, P1) to distinguish the sender, and B call back the above
Send(vk,M, Pb) and Rec∗(vk,M, σ, 0) simulations to interact together and
output the transcript (c; hp, Q);

– B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1. This game involves the pseudo-randomness of the SPHF: The unique
difference is in the computation of v in Send simulation of the eavesdropped
interaction, and so for the transcript: B chooses a random v ∈ G and computes
Q = Pb ⊕ KDF(v). Due to the pseudo-randomness of v in the previous game,
since A does not know the random coins r used to encrypt σ, this game is
computationally indistinguishable from the previous one.

Pr
G1

[b′ = b]− Pr
G0

[b′ = b] ≤ AdvprSPHF (k, t).

Since Pb is now masked by a truly random value v, no information leaks on b:
PrG1 [b

′ = b] = 1/2.

3.3 Our Efficient OSBE Instantiation

Our first construction combines the linear encryption scheme [7], the Waters
signature scheme [30] and a SPHF on linear ciphertexts [13,28]. It thus relies on
classical assumptions: CDH for the unforgeability of signatures and DLin for the
semantic security of the encryption scheme. The formal definitions are recalled
in the full version [6].

Basic Primitives. Given an encrypted Waters signature from the recipient,
the sender is able to compute a projection key, and a hash corresponding to the
expected signature, and send to the recipient the projection key and the product
between the expected hash and the message P . If the recipient was honest (a
correct ciphertext), it is able to compute the hash thanks to the projection key,
and so to find P , in the other case it does not learn anything.

We briefly sketch the basic building blocks: linear encryption, Waters signa-
ture and the SPHF for linear tuples.

All these primitives work in a pairing-friendly environment (p,G, g,GT , e),
where e : G×G→ GT is an admissible bilinear map, for two groups G and GT ,
of prime order p, generated by g and gt = e(g, g) respectively.
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Waters Signatures. The public parameters are a generator h
$← G and a vector

u = (u0, . . . , uk)
$← Gk+1, which defines the Waters hash of a message M =

(M1, . . . ,Mk) ∈ {0, 1}k as F(M) = u0
∏k

i=1 u
Mi

i . The public verification key is

vk = gz, which corresponding secret signing key is sk = hz, for a random z
$← Zp.

The signature on a message M ∈ {0, 1}k is σ =
(
σ1 = sk · F(M)s, σ2 = gs

)
,

for some random s
$← Zp. It can be verified by checking e(g, σ1) = e(vk, h) ·

e(F(M), σ2). This signature scheme is unforgeable under the CDH assumption.

Linear Encryption. The secret key dk is a pair of random scalars (y1, y2) and
the public key is ek = (Y1 = gy1, Y2 = gy2). One encrypts a message M ∈ G

as c =
(
c1 = Y r1

1 , c2 = Y r2
2 , c3 = gr1+r2 · M

)
, for random scalars r1, r2

$←
Zp. To decrypt, one computes M = c3/(c

1/y1

1 c
1/y2

2 ). This encryption scheme is
semantically secure under the DLin assumption.

DLin-compatible Smooth-Projective Hash Function. This is actually a weaker
variant of [28]. The language L consists of the linear tuples w.r.t. a basis (u, v, g).
For a linear encryption key ek = (Y1, Y2), a ciphertext C = (c1, c2, c3) is an
encryption of the message M if (c1, c2, c3/M) is a linear tuple w.r.t. the basis
(Y1, Y2, g). The language Lin(ek,M) consists of these ciphertexts. An SPHF for
this language can be:

HashKG(Lin(ek,M)) = hk = (x1, x2, x3)
$← Z3

p

Hash(hk; Lin(ek,M), C) = cx1
1 c

x2
2 (c3/M)x3

ProjKG(hk; Lin(ek,M), C) = hp = (Y x1
1 gx3, Y x2

2 gx3)

ProjHash(hp; Lin(ek,M), C; r) = hpr11 hpr22

This function is defined for linear tuples in G, but it could work in any group,
since it does not make use of pairings. And namely, we use it below in GT .

Smooth-Projective Hash Function for Linear Encryption of Valid Waters Signa-
tures. We will consider a slightly more complex language: the ciphertexts under
ek of a valid signature of M under vk. A given ciphertext C = (c1, c2, c3, σ2)
contains a valid signature of M if and only if (c1, c2, c3) actually encrypts σ1
such that (σ1, σ2) is a valid Waters signature on M . The latter means

(C1 = e(c1, g), C2 = e(c2, g), C3 = e(c3, g)/(e(h, vk) · e(F(M), σ2))

is a linear tuple in basis (U = e(Y1, g), V = e(Y2, g), gt = e(g, g)) in GT . Since
the basis consists of 3 elements of the form e(·, g), the projected key can be
compacted in G. We thus consider the language WLin(ek, vk,M) that contains
these quadruples (c1, c2, c3, σ2), and its SPHF:

HashKG(WLin(ek, vk,M)) = hk = (x1, x2, x3)
$← Z3

p

Hash(hk;WLin(ek, vk,M), C) =

e(c1, g)
x1e(c2, g)

x2(e(c3, g)/(e(h, vk)e(F(M), σ2)))
x3

ProjKG(hk;WLin(ek, vk,M), C) = hp = (ekx1
1 g

x3 , ekx2
2 g

x3)

ProjHash(hp;WLin(ek, vk,M), C; r) = e(hpr11 hpr22 , g)



106 O. Blazy, D. Pointcheval, and D. Vergnaud

Instantiation. We now define our OSBE protocol, where a sender S wants to
send a private message P ∈ {0, 1}� to a recipient R in possession of a Waters
signature on a message M .

– OSBESetup(1k), where k is the security parameter, defines a pairing-friendly

environment (p,G, g,GT , e), the public parameters h
$← G, an encryption

key ek = (Y1 = gy1 , Y2 = gy2), where (y1, y2)
$← Z2

p, and u = (u0, . . . , uk)
$←

Gk+1 for the Waters signature. All these elements constitute the string
param;

– OSBEKeyGen(param), the authority generates a pair of keys (vk = gz, sk =

hz) for a random scalar z
$← Zp;

– OSBESign(sk,M) produces a signature σ = (hzF(M)s, gs);

– OSBEVerif(vk,M, σ) checks if e(σ1, g) = e(σ2,F(M)) · e(h, vk).
– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 runs as follows:

• R chooses random r1, r2
$← Zp and sends a linear encryption of σ:

C = (c1 = ekr11 , c2 = ekr22 , c3 = gr1+r2 · σ1, σ2)
• S chooses random x1, x2, x3

$← Z3
p and computes:

∗ HashKG(WLin(ek, vk,M)) = hk = (x1, x2, x3);
∗ Hash(hk;WLin(ek, vk,M), C) = v =
e(c1, g)

x1e(c2, g)
x2(e(c3, g)/(e(h, vk)e(F(M), σ2)))

x3 ;
∗ ProjKG(hk;WLin(ek, vk,M), C) = hp = (ekx1

1 g
x3 , ekx2

2 g
x3).

• S then sends (hp, Q = P ⊕ KDF(v)) to R;

• R computes v′ = e(hpr11 hpr22 , g) and P
′ = Q⊕ KDF(v′).

An asymmetric instantiation can be found in the full version [6].

3.4 Security and Efficiency

We now provide a security analysis of this scheme. This instantiation differs, from
the high-level instantiation presented before, in the ciphertext C of the signature
σ = (σ1, σ2). The second half of the signature indeed remains in clear. It thus
does not guarantee the semantic security on the signature used in the cipher-
text. However, granted Waters signature randomizability, one can re-randomize
the signature each time, and thus provide a totally new σ2: it does not leak
any information about the original signature. The first part of the ciphertext
(c1, c2, c3) does not leak any additional information under the DLin assumption.
As a consequence, the global ciphertext guarantees the semantic security of the
original signature if a new re-randomized signature is encrypted each time. We
can now apply the high-level construction security, and all the assumptions hold
under the DLin one:

Theorem 7. Our OSBE scheme is secure (i.e., escrow-free, semantically se-
cure, and semantically secure w.r.t. the authority) under the DLin assumption
(and the pseudo-random generator in the KDF).
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Our proposed scheme needs one communication for R and one for S, so it is
round-optimal. Communication also consists of few elements, R sends 4 group
elements, and S answers with 2 group elements only and an �-bit string for the
masked P ∈ {0, 1}�. As explained in Remark 2, this has to be compared with
the RSA-based scheme from [27] which requires 2 elements in RSA groups (with
double-length modulus). For a 128-bit security level, using standard Type-I bilin-
ear groups implementation [16], we obtain a 62.5% improvement1 in communica-
tion complexity over the RSA-based scheme proposed in the original paper [27].

While reducing the communication cost of the scheme, we have improved
its security and it now fits the proposed applications. In [27], such schemes
were proposed for applications where someone wants to transmit a confidential
information to an agent belonging to a specific agency. However the agent does
not want to give away his signature. As they do not consider eavesdropping and
replay in their semantic security nothing prevents an adversary to replay a part
of a previous interaction to impersonate a CIA agent (to recall their example).
In practice, an additional secure communication channel, such as with SSL, was
required in their security model, hence increasing the communication cost: our
protocol is secure by itself.

4 An Efficient Blind Signature

4.1 Definitions

A more formal definition of blind signatures is provided in the full version [6],
but we briefly recall it in this section: A blind signature scheme BS is defined
by a setup algorithm BSSetup(1k) that generates the global parameters param,
and key generation algorithm BSKeyGen(param) that outputs a pair (vk, sk), and
interactive protocol BSProtocol〈S(sk),U(vk,m)〉 which provides U with a signa-
ture on m, and a verification algorithm BSVerif(vk,m, σ) that checks its validity.
The security of a blind signature scheme is defined through the unforgeability
and blindness properties: An adversary against the unforgeability tries to gen-
erate qs +1 valid message-signature pairs after at most qs complete interactions
with the honest signer; The blindness condition states that a malicious signer
should be unable to decide which of two messages m0,m1 has been signed first
in two executions with an honest user.

4.2 Our Instantiation

We now present a new way to obtain a blind signature scheme in the standard
model under classical assumptions with a common-reference string. This is an
improvement over [5]. We are going to use the same building blocks as before,
so linear encryption, Waters signatures and a SPHF on linear ciphertexts. More
elaborated languages will be required, but just conjunctions and disjunctions of

1 The improvement is even more important for the scheme described in the full version
where the size drops down to 3/16-th.
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classical languages, as done in [1] (see the full version [6]), hence the efficient
construction. Our blind signature scheme is defined by:

– BSSetup(1k), generates a pairing-friendly system (p,G, g,GT , e) and an en-
cryption key ek = (u, v, g) ∈ G3. It also chooses at random h ∈ G and
generators u = (ui)i∈[[1,�]] ∈ G� for the Waters function. It outputs the
global parameters param = (p,G, g,GT , e, ek, h,u);

– BSKeyGen(param) picks at random a secret key sk = x and computes the
verification key vk = gx;

– BSProtocol〈S(sk),U(vk,m)〉 runs as follows, where U wants to get a signature
on M
• U computes the bit-per-bit encryption ofM by encrypting each uMi

i in bi,

∀i ∈ [[1, �]], bi = Encrypt(ek, uMi

i ; (ri,1, ri,2)) = (uri,1 , vri,2 , gri,1+ri,2uMi

i ).
Then writing r1 =

∑
ri,1 and r2 =

∑
ri,2, he computes the encryption

c of vkr1+r2 with Encrypt(ek, vkr1+r2 ; (s1, s2)) = (us1 , vs2 , gs1+s2vkr1+r2).
U then sends (c, (bi));

• On input of these ciphertexts, the algorithm S computes the correspond-
ing SPHF, considering the language L of valid ciphertexts. This is the
conjunction of several languages :
1. One checking that each bi encrypts a bit in basis ui: in BLin(ek, ui);
2. One considering (d1, d2, c1, c2, c3), that checks if (c1, c2, c3) encrypts

an element d3 such that (d1, d2, d3) is a linear tuple in basis (u, v, vk):
in ELin(ek, vk), where d1 =

∏
i bi,1 and d2 =

∏
i bi,2.

• S computes the corresponding Hash-value v, extracts K = KDF(v) ∈
Zp, generates the blinded signature (σ′′1 = hxδs, σ′2 = gs), where δ =
u0
∏

i bi,3 = F(M)gr1+r2 , and sends (hp, Q = σ′′1 × gK , σ′2);
• Upon receiving (hp, Q, σ′2), using its witnesses and hp, U computes the
ProjHash-value v′, extracts K ′ = KDF(v′) and unmasks σ′′1 = Q× g−K′

.
Thanks to the knowledge of r1 and r2, it can compute σ′1 = σ′′1 ×
(σ′2)

−r1−r2 . Note that if v′ = v, then σ′1 = hxF(M)s, which together
with σ′2 = gs is a valid Waters signature on M . It can thereafter re-
randomize the final signature σ = (σ′1 · F(M)s

′
, σ′2 · gs

′
).

– BSVerif(vk,M, σ), checks whether e(σ1, g) = e(h, vk) · e(F(M), σ2).

The idea is to remove any kind of proof of knowledge in the protocol, which was
the main concern in [5], and use instead a SPHF. This way, we obtain a protocol
where the user first sends 3�+6 group elements for the ciphertext, and receives
back 5�+4 elements for the projection key and 2 group elements for the blinded
signature. So 8�+12 group elements are used in total. This has to be compared
to 9�+24 in [5]. We both reduce the linear and the constant parts in the number
of group elements involved while relying on the same hypotheses. And the final
result is still a standard Waters signature.

Remark 8. In [17], Garg el al. proposed the first round-optimal blind signature
scheme in the standard model, without CRS. In order to remove the CRS, their
scheme makes use of ZAPs [14] and is quite inefficient. Moreover, its security
relies on a stronger assumption (namely, sub-exponential hardness of one-to-one
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one-way functions). A natural idea is to replace the CRS in our scheme with
Groth-Ostrovsky-Sahai ZAP [21] based on the DLin assumption. This change
would only double the communication complexity, but we do not know how
to prove the security of the resulting scheme2. It remains a tantalizing open
problem to design an efficient round-optimal blind signature in the standard
model without CRS.

4.3 Security

In blind signatures, one expects two kinds of security properties:

– blindness, preventing the signer to be able to recognize which message was
signed during a specific interaction. Due to Waters re-randomizability and
linear encryption, this property is guaranteed in our scheme under the DLin
assumption;

– unforgeability, guaranteeing the user will not be able to output more signed
messages than the number of actual interactions. In this scheme, granted the
extractability of the encryption (the simulator can know the decryption key)
one can show that the user cannot provide a signature on a message different
from the ones it asked to be blindly signed. Hence, the unforgeability relies
on the Waters unforgeability, that is the CDH assumption.

Theorem 9. Our blind signature scheme is blind3 under the DLin assumption
(and the pseudo-randomness of the KDF) and unforgeable under the CDH as-
sumption.

A full proof can be found in the full version [6].
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17. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round Optimal Blind Sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011)

18. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key
Exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003), http://eprint.iacr.org/2003/032.ps.gz

19. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. ACM Transactions on Information and System Security 9(2), 181–234
(2006)

http://eprint.iacr.org/2003/032.ps.gz


Round-Optimal Privacy-Preserving Protocols with SPHF 111

20. Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

21. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

22. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

23. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

24. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-Secure Blind Signatures
Without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

25. Juels, A., Guajardo, J.: RSA Key Generation with Verifiable Randomness. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer,
Heidelberg (2002)

26. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

27. Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: 22nd ACM
Symposium Annual on Principles of Distributed Computing, pp. 182–189. ACM
Press (July 2003)

28. Shacham, H.: A Cramer-Shoup encryption scheme from the Linear Assumption
and from progressively weaker Linear variants. Cryptology ePrint Archive, Report
2007/074 (February 2007), http://eprint.iacr.org/

29. Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (2002)
30. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:

Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/


On the Instantiability of Hash-and-Sign RSA

Signatures

Yevgeniy Dodis1, Iftach Haitner2,�, and Aris Tentes1

1 Department of Computer Science, New York University
{dodis,tentes}@cs.nyu.edu

2 School of Computer Science, Tel Aviv University
iftachh@cs.tau.ac.il

Abstract. The hash-and-sign RSA signature is one of the most elegant
and well known signatures schemes, extensively used in a wide variety
of cryptographic applications. Unfortunately, the only existing analysis
of this popular signature scheme is in the random oracle model, where
the resulting idealized signature is known as the RSA Full Domain Hash
signature scheme (RSA-FDH). In fact, prior work has shown several
“uninstantiability” results for various abstractions of RSA-FDH, where
the RSA function was replaced by a family of trapdoor random permu-
tations, or the hash function instantiating the random oracle could not
be keyed. These abstractions, however, do not allow the reduction and
the hash function instantiation to use the algebraic properties of RSA

function, such as the multiplicative group structure of Z∗
n. In contrast,

the multiplicative property of theRSA function is critically used in many
standard model analyses of various RSA-based schemes.

Motivated by closing this gap, we consider the setting where the
RSA function representation is generic (i.e., black-box) but multiplica-
tive, whereas the hash function itself is in the standard model, and can
be keyed and exploit the multiplicative properties of the RSA function.
This setting abstracts all known techniques for designing provably se-
cure RSA-based signatures in the standard model, and aims to address
the main limitations of prior uninstantiability results. Unfortunately, we
show that it is still impossible to reduce the security of RSA-FDH to
any natural assumption even in our model. Thus, our result suggests
that in order to prove the security of a given instantiation of RSA-FDH,
one should use a non-black box security proof, or use specific properties
of the RSA group that are not captured by its multiplicative structure
alone. We complement our negative result with a positive result, showing
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1 Introduction

Bellare and Rogaway, [3], introduced the random oracle (RO) model, as a
“paradigm for designing efficient protocols”. When following this paradigm,
one first builds a provably secure scheme assuming that an access to a ran-
dom function is given, and (possibly) assuming some “standard” hardness as-
sumption (e.g., factoring is hard). Then it instantiates the scheme by replacing
the random function with some concrete “hash function” (e.g., SHA-1). The
intuition underlying this paradigm is that a successful attack on the resulting
scheme should indicate (unexpected) weaknesses of the hash function used. This
paradigm (also known as the random oracle heuristic) has led to several highly ef-
ficient and widely used in practice constructions, such as the RSA Full Domain
Hash signature scheme (RSA-FDH) [3] and RSA Optimal Asymmetric En-
cryption Padding scheme (RSA-OAEP) [4]. Typically, however, little is known
about the provable security of such popular schemes in the standard model. In
particular, it is unknown whether we can reduce their security to some “natural”
assumption.

In this work we revisit this question once again, focusing, in particular, on
the instantiability of the RSA hash-and-sign signatures. The RSA signature [31]
is one of the most elegant and well known signatures schemes. It is extensively
used in a wide variety of applications, and serves as the basis of several existing
standards such as PKCS #1 [32]. In its “textbook” form, the signature σ of the
messagem is simply σ = md mod n, which can be verified by checking if σe ≡ m
mod n, where e is the public RSA exponent, and d = e−1 mod φ(n). Of course,
the textbook variant is completely insecure, as any σ is a valid signature of
some message m = σe mod n. The traditional fix, known as RSA hash-and-sign
signature, is to hash the message m before signing it using some “appropriate”
hash function h (i.e., σ = h(m)d mod n). The key question is how to instantiate
this function h?

Bellare and Rogaway, [3], showed that in the random oracle model, where h is
modeled as a truly random function (freely available to all the parties including
the adversary), the resulting RSA hash-and-sign signature (which they called
RSA Full Domain Hash, for short, RSA-FDH) is secure assuming that the
(standard) RSA assumption holds. When considering an actual instantiation
of h, though, a moment’s reflection shows that all known security notions for
hash functions, such as collision-resistance or pseudorandomness, do not appear
to help. In fact, even more “esoteric” notions, such as perfect one-way hash
functions or verifiable random functions [5], are not sufficient either. On the
other hand, no significant attacks on RSA-FDH signatures are known when h
is instantiated using popular “cryptographic hash functions”, such as SHA-1.
This gave rise to the following important question, which is the main focus of
this paper.

Is there an instantiation of RSA-FDH signature scheme (namely, of the
hash function h) that can be proven secure under a natural assumption
in the standard model?
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Of course, for any concrete hash function, one can “reduce” the security of RSA-
FDH signatures to that of RSA-FDH signatures, which is not very useful. So it
is important that the assumption used to argue the security of the scheme should
be considerably simpler than the chosen message attack on RSA signatures. The
best case scenario would be a reduction to the one-wayness of the RSA function
(i.e., the standard “RSA assumption”), which is indeed what happened in the
idealistic RO model. Unfortunately, we seem to be very far from this goal. In
fact, several works, which we survey next, showed various arguments suggesting
that no such reduction is likely to exist.

Existing Impossibility Results. It is well known that in the general case
the random oracle heuristic is false. Specifically, there exist schemes secure in
the random oracle model that cannot be instantiated by any concrete hash func-
tion [8,7,26,18,2]. Most counter-examples of this kind, however, are rather ar-
tificial, and do not shed much light on the security of concrete schemes used
in practice. The work that seems most relevant to the focus of this paper is
those of [12] and [27] described below (whereas other related work is discussed
in Section 1.3).

Dodis et.al., [12], considered a generalization of RSA-FDH signatures, known
as (general) Full Domain Hash (FDH) signatures. In such signatures, the signer
has access to an arbitrary trapdoor permutation f , and sets σ = f−1(h(m)).1

The main result of [12] rules out proving the security of an instantiation FDH,
by reducing it to the one-wayness of f (or more generally, to any assumption
on f that is satisfied by a random trapdoor permutation). Their result, how-
ever, does not capture reductions that use additional assumptions about f . In
particular, it seems likely that if a proof of security of some instantiation of
RSA-FDH does exist, then it would use the algebraic properties of the RSA

function. To demonstrate this point, we present (see Section 1.1) an instantia-
tion of RSA-FDH under the standard RSA assumption, that is secure as long
as the number of signing queries is a-priori bounded.2 Our reduction is black
box, and critically uses the algebraic properties of Z∗

n. (Indeed, [12] showed that
even one-time security of general FDH signatures cannot be black-box reduced
to the one-wayness of the trapdoor permutation.) In addition, the “RSA-based”
signatures [16,10,22], which can be proven secure in the standard model (but,
alas, no longer have the simple syntax of the RSA signature), critically use
the algebraic properties of the RSA function. Finally, even in the random or-
acle model, tighter security bounds are sometimes achieved using the algebraic
properties of RSA (cf., [9], as compared to the generic proofs from trapdoor
permutations [3,13]).

More recently, Paillier, [27], looked at the question of instantiating RSA-FDH

using a fixed hash function (as opposed to a keyed family), and showed that no
such instantiation can be black-box reduced to the traditional RSA assumption,

1 As in the case of RSA-FDH signatures, FDH signatures are known to be secure
when the hash function is modeled as a truly random function [3].

2 With a different motivation, the same result was independently obtained by [21].
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assuming the so called “RSA non-malleability” assumption. Informally, this as-
sumption states that calling the RSA inverter on arbitrary “permitted” inputs
(n′, e′) �= (n, e) does not help in breaking the instance (n, e). We remark that, as
observed by Paillier in [27], this assumption is false for various reasonable interpre-
tations of “permitted” tuples (n′, e′). More significantly, although the restriction
to a fixed hash function h is consistentwith the existing use in practice, froma theo-
retical perspective this assumption is somewhat restrictive. For example, while the
result of [27] rules out proving even one-time security of RSA-FDH, our positive
result (see Section 1.1) circumvents this impossibility result by using a keyed hash
family.

1.1 Our Results

Our main result is a new negative result regarding the instantiability of RSA-
FDH, which addresses some of the limitations of the previous negative results
of [12,27]. To motivate this result, we start by describing our already mentioned
positive result.

Theorem 1 (Informal). Under the standard RSA assumption, for every poly-
nomial t there exists an instantiation of RSA-FDH that is existentially unforge-
able against t(k) signing queries (where k is the security parameter). Further-
more, the reduction treats the group Z∗

n and the potential adversary in a black-box
way.

The claimed construction is fully described in the full version [], but here we
highlight some of its features. First, the result on works for bounded values of t,
since the constructed hash function description length, is polynomial (quadratic)
in the number of signing queries. Second, our construction uses a keyed family
of hash functions (which is needed to overcome the impossibility result of [27]).
Third, the hash function depends on the RSA modulus n and critically uses the
multiplicative structure of the RSA function (which is needed to overcome one
of the impossibility result of [12]). Finally, our reduction does not use any other
properties of the RSA function besides its multiplicative homomorphism over
Z∗
n. Formally, this means that the reduction works given only oracle access to

the multiplication and the inversion operations of Z∗
n.

We now turn to our main, negative result, which can be informally stated as
follows:

Theorem 2 (Informal). It is impossible to reduce the security of an instantia-
tion of RSA-FDH to a “natural” assumption (and in particular to the hardness
of RSA), provided that (1) the reduction treats the potential adversary in a
black-box way; (2) the public exponent e used by the scheme is prime with non-
negligible probability; (3) the instantiation only “uses the multiplicative properties
of Z∗

n”, and should “relativize” to any group isomorphic to Z∗
n.

We now explain this result in more detail. First, our result holds even if the hash
function h is allowed to be keyed, and, moreover, to depend on the RSA modulus
n (which was used in our positive result). More significantly, we allow both the
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hash function and the hypothetical security reduction R to use the multiplicative
structure of Z∗

n. Finally, we not only rule out reductions to the standard RSA

assumption, but also to other non-interactive “RSA-type” assumptions, such as
the “strong RSA assumption”.

However, our result also has three limitations, (1)-(3). First, and least impor-
tant, is the assumption that the reduction must treat the adversary in a black-box
way. This limitation is met by most existing reductions, and also quite standard
in most black-box impossibility results. Technically, it means that the reduction
should work given oracle access to any (even inefficient) attacker breaking the
security of RSA-FDH. Second, and more significant, is the fact that our current
proof relies on the fact that the instantiation will use a prime exponent e (at
least with non-negligible probability). Although this limitation appears to be an
odd artifact of our specific proof technique, and also seems to be met by most
known RSA instantiations, it does leave a possibility for a secure RSA-FDH

instantiation always using some composite exponent e. Finally, and most signif-
icantly, we assume that the reduction “treats the multiplicative RSA group Z∗

n

in a black-box manner”. This is formalized (see Section 2) using the notion of
generic groups [33,25,23]. Informally, though, it means that nothing is assumed
about a group element, apart from what was revealed through the performed
group operations (i.e., multiplication, inverse and equality check). In particular,
an algorithm that treats Z∗

n in a black-box way should perform equally well given
oracle access to any group isomorphic to Z∗

n (without knowing the isomorphism).
With this intuition in mind, we can interpret Theorem 2 as an indication that

in order to prove the security of a given instantiation of RSA-FDH, one should
use a non-black box security proof, or use properties of the RSA group, that
are not captured by the generic group abstraction. To the best of our knowledge,
all known positive results on building “RSA-type” signatures — including our
new positive result in Theorem 1, the standard model constructions of [16,10,22],
and the random-oracle based analysis of [3,9] — treat Z∗

n as a black-box, and
only use its multiplicative structure. Thus, although still restrictive, our result
rules out all known techniques for proving the security of RSA-based signatures,
which was not the case for the previous results of [12,27]. Still, the restriction of
the reduction to only use the multiplicative structure of Z∗

n is quite significant,
which raises the question if this restriction could be relaxed.

Removing Generic Groups? Unfortunately, removing (or even relaxing) the
above mentioned restriction appears to be very challenging. Intuitively, with our
current techniques (see more below) we must be able to construct an algorithm
Forger which, given any (family of) hash function(s) h, should be able to (1) break
the RSA-FDH instantiation using this h, and, yet, (2) do so by only forging the
signature which the reduction R must already “know” (so that Forger never
helps R compute something which R does not know to begin with, potentially
helping R to break some hardness assumption). In particular, satisfying conflict-
ing properties (1) and (2) seems to require some kind of “reverse-engineering”
(or “de-obfuscation”) techniques on h which seem to be completely beyond our
current capabilities, without placing any restriction on the reductions we allow.
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Indeed, the introduction of the generic group model was precisely the step which
(a) allowed our forger to “reverse engineer” the given hash function h (so as to
provably satisfy properties (1)-(2) above), and, yet, (b) allowed the reduction to
use the algebraic properties of Z∗

n.

1.2 Our Technique

On a very high level, our proof follows the approach of [12] used to prove that
there exists no fully black-box reduction from (general) FDH signature schemes
to the one-wayness of random functions. [12] defined an oracle Forger relative
to which no FDH signature scheme is secure, yet Forger does not help inverting
a random function. In more detail, on input (h, {σi}i∈[t]), Forger checks that
(1) {σi} are valid signatures for the messages 1, . . . , t (i.e., f(σi) = h(i) for every
i ∈ [t], where f is the random function), (2) the evaluation of h(1), . . . , h(t)
does not query f on any element of {σi}, and (3) t is at least equal to |h|
– the description size of h. If positive, Forger returns the signature of 0 (i.e.,
f−1(h(0))).

It is clear that Forger can be used to break the existential security of any FDH

scheme: the attacker uses Sign, the signer of the scheme, to compute {σi}i∈[t] for
some t ≥ |h|, and then calls Forger on (h, {σi}), where we assume without loss of
generality that condition (2) above holds with respect to this query (otherwise,
faking a signature without Forger is easy). On the other hand, [12] showed that
an efficient algorithm (with oracle access to f , but not to Sign) cannot provide
all these signatures. Thus, Forger is useless in these settings, and in particular a
black-box reduction (i.e., algorithm) cannot make use of Forger for inverting a
random function, proving the main result of [12].

Intuitively, Forger is useless for an algorithm with no access to Sign, for the
following reason. Fix some efficient oracle-aided algorithm R and let {0, 1}n be
the domain of the random function f . Since a random function is one way,
the only elements that R can invert are those elements it previously received
as answers to its f -queries. Hence (since f is random), R only knows how to
invert random elements inside {0, 1}n. Since it takes at least t bits to describe t
random elements in {0, 1}n (actually, it takes tn bits) and since the evaluation
of h(1), . . . , h(t) does not query f on elements inside {σi}i∈[t], there must exist
h(i) ∈ {h(1), . . . , h(t)} that R does not know how to invert, and thus cannot
provide a valid signature for the message i.

Moving to our setting, we focus for concreteness on fully black-box reductions
fromRSA-FDH to the hardness of RSA (i.e., such reductions use the multiplica-
tive RSA group Z∗

n and the adversary in a black-box way). The blackboxness in
the RSA group tells us that such a reduction should work with respect to any
group isomorphic to Z∗

n. In particular, it should work well with respect to the
group π(Z∗

n), obtained by renaming the elements of Z∗
n according to a random

permutation π over Z∗
n (i.e., a · b is defined as π(π−1(a) · π−1(b) mod n)).

Given the above understanding, the first attempt would be to define Forger
analogously to that of [12]. Namely, on input (n, e, h, {σi}i∈[t]), Forger checks
that (1) σei ≡ h(i) for every i ∈ [t], (2) the evaluation of h(1), . . . , h(t) does
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not compute σi for some i ∈ [t], and (3) t ≥ |h|. If positive, Forger returns the
signature of 0 (i.e., h(0)d, for d = e−1 mod φ(n), where all group operations are
over the group π(Z∗

n).
We would like to argue that if π is chosen at random, then the only way to

make a non-aborting query to Forger is via using Sign, the signer of the scheme.
It would then follow that Forger is useless for an algorithm R that has no access
to Sign (and in particular to a black-box reduction). It turns out, however, that
in our settings such R can make non aborting calls to Forger. The issue is that
unlike in the setting of [12], R can make use of the algebraic structure of Z∗

n to
construct a non-aborting query to Forger. For instance, R can compute {je}j∈[�],
and assuming some reasonable mapping M from [t = �2] to {j · k}j,k∈[�], let
h(i) = M(i)e mod n and σi = M(i). Since the evaluation of h(1), . . . , h(t) does
not query an element of {σi}i∈[t]), it follows that (n, e, h, {σi}i∈[t]) is a non-
aborting query.3 Alternatively, if R can break the RSA assumption over π(Z∗

n)
(say, if it knows the factorization of n), then it can set h(i) = i and compute
σi = h(i)

d (using the factorization of n to compute d).
Fortunately, we manage to prove that a non-aborting query of R is either

“degenerated” (as in the first example) or indicates that R knows the factor-
ization of n. To handle the first case, we change Forger to identify and abort
on degenerated queries. Where we also show that it is easy to forge a signature
with respect to a degenerated h (i.e., h that is part of a degenerated query),
even without the help of Forger. Namely, we show that there is no secure RSA-
FDH scheme relative to the modified Forger. We then show that with respect
to this modified Forger, one can efficiently extract the factorization of n from an
algorithm that produces a non-aborting query. It follows that for any efficient
algorithm R with oracle access to Forger, there exists an efficient algorithm, with
no access to Forger, that emulates RForger well. In other words, we prove that
Forger is useless for the class of efficient algorithms with no oracle access to Sign.

Proving the above intuition is the main challenge of this work, and we achieve
that using a novel adaptation of the Gennaro-Trevisan, [17], short description
paradigm, described below, to the generic groups realm.4

The Gennaro-Trevisan [17] Short Description Paradigm and Its Adap-
tion to Generic Groups. Loosely, [17] shows that an efficient algorithm that
inverts a random function too well, can be used to give a too short description for
a random function (and thus cannot exist). This elegant approach has turned
to be an extremely powerful approach for proving impossibility results in the
random functions realm, which typically imply black-box impossibility results
for one-way functions/permutations based constructions. While the Gennaro-
Trevisan paradigm (from now on, the GT paradigm) has several extensions (e.g.,
[15,35,19,20,30]), all are given in the random functions realm.

3 Note that to describe h it suffices to describe the set {je}j∈[�]. Thus |h| ∈ O(� log n),
which is smaller than t for large enough �.

4 A side benefit of this proof technique, is an alternative proof to the equivalence of
RSA and factoring over generic groups, firstly proven by Aggarwal and Maurer, [1]
(the latter, however, also proves it over “generic rings”).
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We would like to apply a similar approach for arguing that an algorithm that
makes a non-aborting query to Forger, can be either used to factor n, or to
“compress” the random permutation π (which defines the group π(Z∗

n)). Since
compressing π is impossible, it follows that a non-aborting query of such an
algorithm can be used to factor n. Hence, such queries can be answered efficiently,
yielding the existence of an efficient emulator (without access to Forger) for any
efficient algorithm.5

Extending the GT paradigm to our settings involves many complications. The
main part of the GT paradigm is using the (hypothetical) attacker to reconstruct
a random function using (too) short advice. This reconstruction involves emulat-
ing the attacker, where the key point is to do this without “wasting information”:
any bit used to emulate, should give a bit of information about the (random)
function. Doing the latter is quite easy for random functions; the answer to any
query of the attacker gives the same amount of information about the function
(i.e., the info that it maps the query input to the provided output). The only sub-
tlety is that there are repeated queries (which are clearly wasteful), but handling
such queries is easy: simply keep track of the query history on the emulation.

In our setting, however, things get much more complicated. To begin with,
there might be non-repeating queries whose answers yield very little informa-
tion about the random group π(Z∗

n) (and therefore about π). For instance, for
some n’s there are only four possible answers for the query aφ(n)/4 over π(Z∗

n).
Thus, roughly speaking, the answer for this query contains only two bits of in-
formation about π. More generally, it appears that one can create much more
intricate examples; e.g., when the answer to the query follows a very complicated
distribution, based on the answers given so far.

An even more challenging task is proving the dichotomy that a non-aborting
query can either be used to (efficiently) factor n, or implies a (too) short de-
scription of π. Handling the above challenges requires an intimate understanding
of the algebraic structure of the group Z∗

n, in particular of the set of solutions
for linear equations over this group, and critically uses the fact that factoring is
solvable in sub-exponential time [11,34].

1.3 Other Related Work

We briefly mention other known results concerning the uninstantiability of pop-
ular signature and encryption schemes that can be proven secure in the random
oracle model. Paillier and Vergnaud, [28], showed that many popular discrete
log based signatures (including ElGamal, DSA and Schnorr) cannot be reduced
to the discrete log assumption in the standard model, using the so called “alge-
braic” reductions. (Similar results also hold for related GQ signatures under the
RSA assumption.) Although technically incomparable to our “generic group”
modeling, conceptually such reductions are related to our assumption that the

5 In addition, since non-aborting queries are easy to generate assuming that RSA

is easy over π(Z∗
n), the above would immediately yield that RSA is equivalent to

factoring over (random) π(Z∗
n), and thus over generic groups.
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reduction can only use the multiplicative structure of a given group. Indeed,
in both cases the “meta-reduction” can eventually figure out the multiplicative
relations used be the reduction R in its queries to the attacker. The main dif-
ference applies in the way the reduction can prepare its queries to the attacker.
While the generic group modeling allows the reduction R to use some “hidden
values” related to the assumption that R is trying to break, “algebraic” reduc-
tion do not allow this flexibility. Thus, much of the technical difficulties in the
generic group modeling (e.g., extracting the hidden representations computed
by the reduction “on the side”) are somewhat trivialized when restricted to “al-
gebraic” reductions. Additionally, the results of [28] are specific to reductions
from a concrete assumption (e.g., discrete log), and are conditional on another
assumption (e.g., “one-more” discrete log). In contrast, our results are uncon-
ditional and rule out all starting assumptions, but only in the generic group
model.

Finally, in the realm of factoring/RSA-based CCA encryption, Paillier and
Villar, [29] and Brown et.al., [6], showed uninstantiability results analogous to
already-mentioned RSA signature result of [27].

Paper Organization

In Section 2 we formally define RSA-FDH and its security in the generic group
model and the type of reductions we rule out. Our main result, regarding the
impossibility of existentially unforgeable RSA-FDH against unbounded number
of signing queries, is proven in Section 3. However, the proof of our main technical
lemma using the GT short description paradigm is omitted and can be found in
the full version [14].

2 RSA-FDH in the Generic Group Model

In the following we first formally define what we mean by generic group model,
then extend the standard definitions of RSA-FDH to this model and finally
define weakly black-box proofs of security.

2.1 The Generic Group Model

There are different ways to interpret what it means to “treat the multiplicative
RSA group Z∗

n in a black-box way” (see Theorem 2). In the generic algorithm
model due to Maurer, [23], “generic” algorithms do not have a direct access to
the group elements, but rather to a “black box” containing each element. The
only operations allowed with these boxes, are the group operations (inverse and
multiplication) and comparing two boxes for equality. The formulation we have
chosen here, which we simply call the generic group model, is somewhat less
abstract. An algorithm in our model has an oracle access to a group isomorphic to
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Z∗
n (specifically, the group resulting by renaming the elements of Z∗

n according to
some random permutation), through which it can perform the group operations.
Unlike the generic algorithm model, however, in our model algorithms we do
have access to the representation of the group elements and can manipulate
them.

Since any algorithm that “works well” in the generic algorithm model (e.g.,
breaks the RSA assumption) implies an algorithm that works equally well in
our model with respect to any group isomorphic to Z∗

n, an impossibility result
in our model implies a similar result in the model of Maurer, [23]. Namely, our
model can be viewed as a model for proving impossibility results in the generic
algorithm model.

We formally define our model as follows: for n ∈ N, let Πφ(n) be the set of all
permutations from Z∗

n to Z∗
n. For π ∈ Πφ(n), we denote with π(Z∗

n) the group
induced by the group Z∗

n where each element of Z∗
n is renamed according to

π. More specifically, the group operations over π(Z∗
n) are defined as follows: the

inverse of a ∈ Z∗
n is π((π−1(a))−1 mod n) and the (group) product of a, b ∈ π(Z∗

n)
is π(π−1(a) · π−1(b) mod n). By Π(Z∗

n) we denote the multiset of all groups
π(Z∗

n), where G = {G = {Gn : Gn ∈ Π(Z∗
n)}n∈N} (i.e., G consists of sets of

groups, where each set contains a group of Π(Z∗
n) for every n ∈ N).

Abusing notation, we view G ∈ G as an oracle that given as input n ∈ N and
one [resp., two elements] of Gn (i.e., of Z∗

n), returns the group inverse [resp.,
the group product] of the element (if the oracle G is given as input an element
outside Gn, it returns ⊥), and let Gn(·) = G(n, ·). Given a sequence of group
operations (e.g., a · b−1), we sometimes add the term [Gn], to indicate that
the operations are done with respect to the group Gn. In the following, abusing
notation again, we will write G ← G, where this sampling is not well defined
because G is an infinite set. However, we can assume lazy sampling, namely for
every query which contains a new n, Gn is sampled uniformly at random from
Π(Z∗

n) (which is a finite set).

2.2 RSA-FDH Signature Schemes in the Generic Group Model

RSA-FDH signature schemes over G ∈ G is defined as follows:

Definition 1 (RSA-FDH signature scheme in the generic group
model). An RSA-FDH signature scheme ΣG in the generic group model, con-
sists of the following triplet of oracle-aided ppt ’s (KeyGen, Sign,Verify):

– Given oracle access to G ∈ G and input 1k, KeyGenG outputs a “public key”
(n, e, h), where n ∈ N is a product of two primes, e ∈ Z∗

φ(n) and h is a (hash)
function, represented as an oracle-aided circuit mapping values into Z∗

n, and
a “secret key” d = e−1 mod φ(n).

– Given oracle access to G ∈ G, input n ∈ N, d ∈ Z∗
φ(n), a circuit h mapping

values into Z∗
n and a “message” m in the domain of h, SignG outputs the

“signature” hG(m)d [Gn].
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– Given oracle access to G ∈ G, input n ∈ N, e ∈ Z∗
φ(n), a circuit h mapping

values into Z∗
n, a “message” m in the domain of h and σ ∈ Z∗

n, VerifyG

outputs one iff σe ≡ hG(m) [Gn].

For G ∈ G, we let ΣG be the instantiation of ΣG with G.

Security Definition. The following definition realizes the security of bounded
and unbounded existential unforgeability under chosen message attack of an
RSA-FDH signature in the generic group model, analogously to that of the
standard model.

Definition 2 (security of RSA-FDH signature in the generic group
model). An oracle-aided algorithm F breaks the security of an RSA-FDH

signature scheme ΣG = (KeyGen, Sign,Verify), if

PrG←G,(sk,pk)←KeyGenG(1k)[(m,σ)← FG,SignG(sk,pk,·)(pk) :

VerifyG(σ,m, pk) = 1 ∧ Sign was not queried on m] > neg(k)

A signature scheme ΣG is EU-CMA-secure, if no (oracle-aided) ppt breaks its
security, where ΣG is t-EU-CMA-secure, if no ppt breaks its security when
restricted to query Sign at most t(k) times.

2.3 Weakly Black-Box Proofs of Security

Since we would like to rule out an EU-CMA-secure scheme, we ask the security
proof of the scheme to be realized via a “black-box reduction” (as discussed
in the introduction, we have very little chance to rule out a general proof of
security). On the other hand, we consider a very weak form of such a reduction
(which strengthens our main impossibility result).

Definition 3 (weakly black-box proof of security of RSA-FDH). An
RSA-FDH signature scheme ΣG = (KeyGen, Sign,Verify) in the generic group
model has a weakly black-box proof of security based on an assumption X, if there
exists an oracle-aided ppt R such that if X is true, then the following holds: let
F be a (possibly unbounded) adversary that breaks the security of ΣG (see Def-
inition 2), then for any ppt Emul there exists a polynomial-length distribution
ensemble D = {Dk}k∈N such that

SD

(
(x,RG,FG

(1k, x)), (x,EmulG(1k, x))
)
G←G,x←Dk

> neg(k).6

Remark 1 (A black-box proof implies a weakly black-box proof). Assuming that
X is true, the above intuitively asks that a security breach of ΣG implies that a

6 Note that F is an adversary which expects oracle access to Sign and R can control
the responses of these queries of F . The same does not hold for the queries of F
to G.
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(slightly) non-trivial task can be performed. Specifically, an efficient oracle-aided
algorithm can use a breaker of the scheme (in a black-box way) to sample some
unsamplable distribution. Note that this is a very modest demand and indeed,
it is implied by most black-box proofs of security one can think of.

Consider for instance a proof of security R that black-box reduces the security
of a scheme ΣG to an assumption X, say to the hardness of factoring. It follows

that given any adversary F to ΣG, the algorithm RG,FG

factors integers too

well. Assume without loss of generality that RG,FG

(x), if succeeds, outputs the
factorization of the integer x, let Dk be the distribution that outputs an integer
x = pq, for two randomly chosen k-bits prime, and consider the distribution ξk =

(x,RG,FG

(1k, x))G←G,x←Dk
it induces. Now if factoring is hard, then there is no

efficient Emul such that (x,EmulG(1k, x))G←G,x←Dk
is (even computationally)

close to ξk. Namely, there is no weakly black-box proof of security for ΣG based
on factoring.

Now if factoring is hard, then there is no efficient Emul such that
(x,EmulG(1k, x))G←G,x←Dk

is (even computational) close to ξk. Namely, there
is no weakly black-box proof of security for ΣG based on factoring.7

3 There Exists No RSA-FDH with a Weakly Black-Box
Proof

In this section we prove the main result of this paper.

Theorem 3 (Theorem 2, restated). Let ΣG = (KeyGen, Sign,Verify)
be an RSA-FDH signature scheme in the generic group model in which
PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] > neg(k). If ΣG has a weakly black-box proof of
security based on (an assumption) X, then X is false.

The proof of Theorem 3 immediately follows from the next lemma:

Lemma 1. Let ΣG be as in Theorem 3, then there exist a family of oracles
Forger = {ForgerG}G∈G and oracle-aided ppt’s F and Emul, such that the fol-
lowing hold:

1. For every G ∈ G, FG,ForgerG breaks the security of ΣG.
2. For any oracle-aided ppt A and polynomial-length distribution ensemble D =
{Dk}k∈N:

SD

(
(x,AG,ForgerG(1k, x)), (x,EmulG(1k, x, desc(A)))

)
G←G,x←Dk

= neg(k),

where desc(A) denotes the description of the Turing Machine A.

Before proving Lemma 1, let us first use it for proving Theorem 3.

7 Note that there nothing specific to the hardness of factoring in the above discussion,
but rather it seems to be generic to “any” hardness assumption (e.g., strong RSA).
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Proof (of Theorem 3). Let ΣG be an RSA-FDH scheme with
PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] > neg(k). Assume that ΣG has a weakly
black-box proof of security based on (an assumption) X and let R be the
algorithm guaranteed by this proof. Let Emul be the algorithm guaranteed by
Lemma 1 with respect to ΣG . Lemma 1 yields that

SD

(
(x, R̃G,ForgerG(1k, x)), (x,EmulG(1k, x, desc(R̃))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D = {Dk}, where

R̃G,ForgerG(·) = RG,F ForgerG (·). Letting F̃G(·) = FG,ForgerG(·) and EmulGR(·) =
EmulG(·, desc(R̃)), it follows that

SD

(
(x,RG,F̃G

(1k, x)), (x,EmulGR(1
k, x))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D, yielding that X is false.

The rest of this section is devoted for proving Lemma 1. We find it more con-
venient, however, to prove a variant of Lemma 1 in which the emulator should
work for any (polynomial-size) family of circuits. Namely, we prove the follow-
ing lemma (in the following statement we only focus on the part that changed
comparing to the original statement):

Lemma 2 (non uniform variant of Lemma 1)

2. The following holds for any (no input) polynomial-size family of oracle-aided
circuits {Ck}k∈N:

SD

(
C

G,ForgerG
k ,EmulG(1k, desc(Ck))

)
G←G

= neg(k),

where C
G,ForgerG
k denotes the output of Ck given access to G and ForgerG,

and desc(Ck) denotes the description of Ck.

It is easy to see that the non-uniform lemma above yields the uniform Lemma 1.
In Section 3.1 we define the family of oracles Forger and the efficient algorithm
F that uses Forger to break any RSA-FDH scheme, in Section 3.3 we define the
emulator Emul, where in Section 3.4 we put things together to prove Lemma 2.

3.1 The Forger

Recall (see Section 1.2) that Forger has to abort on “degenerated queries” —
essentially those queries that are easy to produce over any group in Π(Z∗

n). To
determine whether a query (n, e, h, {σi}i∈[t]) is degenerated, we measure the com-
plexity of the values {h(i)}i∈[t],

8 as a function of the group queries done through

8 We actually mean {hG(i)}i∈[t], but for notational convenience we will sometimes
omit the superscript G from h.
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their evaluations. Since the actual representation of these values is meaningless,
we only focus on their representation as functions of the “hardwired terms” —
the values used in the evaluation of {h(i)} that first appear as an input to a group
oracle call. Note that any group element used in the evaluation of {h(i)}, can be
expressed using (only) these hardwired terms. To formally carry the above dis-
cussion, we describe the evaluation of {h(i)} as a computation over the following
group.

Definition 4 (The group Symb). The elements of Symb are equivalence
classes over the set of all finite strings “ua1

1 , · · · , u
ak

k ”, where the ui’s are in N

and the ai’s are in Z. The strings c = “ua1
1 ·...·uak

k ” and c′ = “u′1
a′
1 ·...·u′k′

a′
k′ ” are

in the same equivalence class, if for every w ∈ N it holds that
∑

i∈[k] : ui=w ai =∑
i∈[k′] : u′

i=w a
′
i. We identify a group element of Symb, with any string of its

equivalence class. The unit element of Symb is the class identified by the empty
string ε (or by “21 ·2−1” etc), where c ·c′ is the equivalence class identified by the
string “c ·c′” and finally c−1 is the class identified by the string “u−a1

1 · ... ·u−ak

k ”.

We naturally identify an element “ua1
1 · ... · uak

k ” ∈ Symb with an element of
a given group V that contains {ui}i∈[k], by identifying it with the result of

the sequence of operations it induces over V (i.e., “u1 · u−1
2 ” with respect to

V = Z∗
n, is identified with u1 · u−1

2 mod n). To avoid confusion over which
group a sequence of operations is taken, we typically suffix the sequence with
the term [V ], indicating that it is done over the group V . It is clear that for
any two strings u and u′ that identify the same element of Symb (i.e., belong to
the same equivalence class), it holds that u ≡ u′ [V ] for any Abelian group V
containing u and u′.

Next we use the above terminology to syntactically describe the computation
of an oracle-aided circuit C, where we start by defining the hardwired terms deter-
mined by C’s computation. To simplify notations, we assume that a circuit evalu-
ates its gates one-by-one, and that its description determines this evaluation order.

Definition 5 (hardwired terms). Let C be an oracle-aided circuit, G ∈ G
and n ∈ N. The terms of C with respect to Gn, denoted TermsC,G,n, are those
values that appear either as input or as the answers to non-bottom queries of
C to Gn (i.e., Gn returns a non-bottom value). The hardwired terms of C with
respect to Gn, denoted HardWiredC,G,n are those element inside TermsC,G,n that
first appear as inputs to non-bottom queries to Gn. Finally, the answer terms
are those terms that appear as answers to non-bottom queries (might intersect
HardWiredC,G,n). We assume that the elements of each of the above sets are
ordered according to the evaluation order.

We next use the syntax of the group Symb, to present any term as an expression
of the hardwired terms.

Definition 6 (canonical form). Let C, G and n be as in Definition 5. The
canonical form of u ∈ TermsC,G,n with respect to (C,G, n), denoted CanC,G,n(u),
is recursively defined as follows:
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– if u ∈ HardWiredC,G,n, let CanC,G,n(u) be the element “u1” ∈ Symb.

– If u first appears as an output of a query Gn(u
′, u′′), let CanC,G,n(u) =

CanC,G,n(u
′) · CanC,G,n(u

′′) [Symb].

– Similarly, if u first appears as an output of Gn(u
′), we let CanC,G,n(u) =

CanC,G,n(u
′)−1 [Symb].

Let {vi}i∈[�] = HardWiredC,G,n. Note that the canonical form of any
u ∈ TermsC,G,n with respect to (C,G, n), can be uniquely written as∏

i∈[�] v
ai

i [Symb], where ai might be non zero, only if the hardwired term vi

appears before u does (in the evaluation order of CG). Finally, the canonical
forms of a set of terms, with respect to (C,G, n), is compactly represented using
the following matrix.

Definition 7 (canonical-form matrix). Let C, G and n be as in Definition 5,
let {vi}i∈[�] = HardWiredC,G,n and let W = {ui}i∈[t] ⊆ TermsC,G,n. The matrix
MG,n,C(W) ∈ Zt×� is defined as {aij}i∈[t],j∈[�], assuming that CanC,G,n(ui) =∏

j∈[�] v
aij

j [Symb] for every i ∈ [t].

We actually care for the rank of the canonical-form matrix of the terms output
by a circuit C, which shows if there exists an output term which can be expressed
as a product of powers of the other output terms. This would imply that if we
know the e-th roots of the latter then we can compute the e-th root of the former.
Jumping forward, we will exploit this property of the canonical-form matrix to
see if a query is degenerated.

We are finally ready to define ForgerG.

Algorithm 4 (ForgerG)
Input: q = (n, e, h, {σi}i∈[t]), where n, e and {σi}i∈[t] are integers, and h is an
oracle-aided circuit.

Operation:

1. If e /∈ P, |h| (= |desc(h)|) > t or for some i ∈ [t] hG(i) /∈ Z∗
n or

hG(i)�≡σei [Gn], return ⊥.
2. Let M = MG,n,H({h(i)}i∈[t]) according to Definition 7, where H is the

oracle-aided circuit that first evaluates hG(1), . . . , hG(t) and then queries Gn

on the answers (say asking for their inverses).

If rankeM < t, return ⊥.
3. Return (hG(0))d [Gn], where d = e

−1 mod φ(n).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, ForgerG first checks that {σi}i∈[t] are valid signatures for the messages
{1, . . . , t} (with respect to G and the public key (n, e, h)) and that forging a
signature for this public key is not easy (reflected by rankeM = t). If satisfied,
ForgerG forges a signature for 0.

Below we describe the ppt F that uses ForgerG for breaking the security
of ΣG.
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3.2 The Breaker F

The strategy of the algorithm F that uses Forger for breaking the security of
ΣG is simple: on input (n, e, h) it would like to use Forger on (n, e, h, {σi =
SignG(n, e, i)}i∈[t]) to forge the signature of 0. It might be the case, however,
that Forger returns bottom on such input. Hence, F first checks by himself
(without using Sign or Forger) whether Forger will return bottom on this input.
If positive, it uses a straightforward approach (see below) for forging a message
k ∈ [t], without using Forger at all.

Algorithm 5 (F )
Input: pk = (n, e, h)
Oracles: G ∈ Gn, SignG(sk, pk, ·) and ForgerG.
Operation:

1. Let t = |h| and let M = MG,n,H({hG(i)}i∈[t]) according to Definition 7,
where H is as in Algorithm 4 (with respect to this h and t).

2. If ranke(M) = t, return ForgerG(n, e, h, {SignG(sk, pk, i)}i∈[t]).
Otherwise,
(a) Using Gaussian Elimination find k ∈ [t] and a set {λi ∈ [e]}i∈[t]\{k},

such that for every j ∈ [�] it holds that Mkj ≡
∑

i∈[t]\{k} λi ·Mij mod e.

(b) Let γ =
∏

j∈[�] v
(Mkj−

∑
i∈[t]\{k} λi·Mij)/e

j [Gn], where {vi}i∈[�] =

HardWiredH,G,n (see Definition 5).

(c) For every i ∈ [t] \ {k}, let σi = SignG(sk, pk, i) (≡ hG(i)d [Gn]).
(d) Return σk = γ ·

∏
i∈[t]\{k} σ

λi

i [Gn].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following lemma is immediate, but its proof is omitted and can be found
in the full version of this paper [14].

Lemma 3. For every G ∈ G, FG,ForgerG breaks the security of ΣG.

3.3 The Emulator

Our task is to emulate a family of circuits {Ck} with oracle access to G ∈ G
and ForgerG, using only oracle access to G. We assume without loss of generality
that |Ck| ≥ k (otherwise we emulate a padded version of this family) and omit
k from the input parameter list of the emulator. We also assume without loss of
generality that before calling ForgerG on input (n, e, h, {σi}i∈[t]), Ck first query
G on {σi} (otherwise, we will emulate the circuit C′

k that does so).

Given a circuit C, EmulG(desc(C)) emulates the execution of a circuit
CG,ForgerG by forwarding the G-calls to G, and answering the ForgerG-calls us-
ing the following method: let q = (n, e, h, {σi}i∈[t]) be a query that C makes to
ForgerG, Emul first checks whether ForgerG returns bottom on this call (which
it can do efficiently), and if positive returns bottom to C as well. Otherwise,
Emul uses the query q and the description of C to factor n, and then uses this
factorization to answer the query efficiently.
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The interesting question is how can Emul use such a pair (C, q) to factor n ef-
ficiently? Let H andMH =MG,n,H({h(i)}i∈[t]) as computed by ForgerG(q), and

let M (H;C) = MG,n,(H;C)({σi}i∈[t]) ∈ Zt×�′ , where the circuit (H ;C) first eval-
uates H and then C.9 Namely, MH represents the canonical form of {h(i)}i∈[t]

induced by the (stand alone) computation of H , where M (H;C) represents the
canonical form of the “signatures” {σi}i∈[t] induced by the computation of
(H ;C). Since (H ;C) first starts by computing H , it follows that every hard-
wired term u ∈ HardWiredH,G,n ∩HardWired(H;C),G,n has the same index with
respect to both ordered sets HardWiredH,G,n and HardWired(H;C),G,n. Hence,
the promise that σei ≡ h(i) [Gn] for every i ∈ [t], yields the following with
respect to {vi}i∈[�′] = HardWired(H;C),G,n :∏

j∈[�]

v
MH

ij

j ≡
∏
j∈[�′]

(v
M

(H;C)
ij

j )e [Gn],

for every i ∈ [t]. Since Gn is selected at random, (at least intuitively) C could
have satisfied the above equations only if they hold regardless of the choice of
Gn. Namely, it is the case that∑

j∈[�]

MH
ij ≡ e ·

∑
j∈[�′]

M
(H;C)
ij mod φ(n) (1)

for every i ∈ [t]. On the other hand, the assumption that ForgerG(q) �=⊥ yields
that rankeM

H = t. Therefore, Equation (1) is “far” from being satisfied modulo
e. In our proof we show how to use this inconsistency to find a multiple of φ(n),
and thus to factor n.

The following description of Emul realizes the above discussion. We start by
recalling the following known factoring algorithms. The first one is useful for
small n’s (for which the above discussion does not hold), and the second one
factors arbitrary larger n, given a multiple of φ(n) as an advice.

Theorem 6 (factoring small numbers, [11,34]). There exists a procedure

Sef that on input n ∈ N, runs in time 2O(
√
logn log logn) and factors n with con-

stant probability.

Lemma 4 (factoring using multiple of φ(n)). We say that z = (z1, z2) ∈
Z×N is a factoring advice for n ∈ N, if z

�logn
1 ·

∏
p∈P: p<z2

p�logn is a non-zero
multiple of φ(n).

There exists a procedure Factor that on input (n, z1, z2), runs in time
poly(z2) · poly(log |nz1|), and factors n with constant probability, assuming that
z = (z1, z2) is a factoring advice for n.

Proof. We use the following known algorithm due to Miller, [24].

Theorem 7 (Miller’s algorithm [24,34]). There exists a procedure that on
input n ∈ N and μ ∈ Z, runs in time poly(log |nμ|), and if μ is a non-zero
multiple of φ(n), it factors n with constant probability.

9 Recall that we allow circuits to have a predetermined evaluating order.
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By definition μ = z
�logn
1 ·

∏
p∈P: p<z2

p�logn is a non-zero multiple of φ(n). Thus,
Miller’s algorithm on input (n, μ), runs in time poly(log |nμ|) = poly(z2·log |nz1|)
and factors n with constant probability. Finally, note that μ is easily computable
in time poly(z2, logn).

We are now finally ready to define Emul.

Algorithm 8 (Emul)
Input: The description of an oracle-aided circuit C.
Oracle: G ∈ G.
Operation:
Emulate CG while on every query q = (n, e, h, {σi}i∈[t]) to ForgerG, return the
following value to C:

1. If ForgerG would return ⊥ on q, return ⊥ as well (and continue to the next
query). Else,

2. Try to factor n by doing the following for |C| times:

If n ≤ |C|
log |C|

log log |C| , execute Sef(n).
Otherwise, execute Factor(n, det(QC,G,q), |C|4), where QC,G,q is according to
Definition 8.

3. If factoring of n is successful, return hG(0)d [Gn], where d = e−1

mod φ(n).
Otherwise, abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The matrix QC,G,q is defined as follows:

Definition 8 (query matrix). Let C be an oracle-aided circuit, G ∈ G and
let q = (n, e, h, {σi}i∈[t]) be the query asked by CG,ForgerG to ForgerG. The matrix
QC,G,q ∈ Zt×t is defined as follows:

1. If ForgerG(q) =⊥, set QC,G,q = 0t×t.
Otherwise:

2. Let MH = MG,n,H({h(i)}i∈[t]) according to Definition 7, where H is as in
Algorithm 4 with respect to this h and t. (Since ForgerG(q) �=⊥, the matrix
MH is well defined and of rank t.)

3. Let I ⊆ [�] be the first subset of size t (from hereafter we assume some
arbitrary order on such sets) with ranke(M

H
I ) = t.10

4. Let M (H;C) ∈ Zt×�′ be the matrix MG,n,(H;C)({σi}i∈[t]) according to Defini-
tion 7, where (H ;C) is the circuit that first evaluates H and then evaluates
C.

5. Set QC,G,q =M
H
I − e ·M (H;C)

I .

Note that in the code of Emul if Sef is called, and thus n is small, then it runs
in time poly(|C|). In addition, the running time of Factor, if called, is also in
poly(|C|). Thus, Emul runs in polynomial time.

10 Remember that MH
I ∈ Zt×t is the restriction of MH to the columns in I.
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Moreover, it is clear that the only case where the output of EmulG(desc(C))
differs from the output of CG is when the former aborts. This means that for
some query of C to Forger, the latter would not return ⊥, but either (1) Sef
failed, or (2) z was a factoring advice but Factor failed, or (3) z was not a
factoring advice for n. As the first two cases happen with negligible probability
(by Theorem 6 and Lemma 4), we only have to prove that the latter happens
with negligible probability.

This is formally done in the following lemma, whose proof (done via the ”short
description paradigm”) can be found in the full version of this paper [14].

Lemma 5. A query q = (n, ·) to Forger made by CG∈G,ForgerG is unexpected, if

– ForgerG(q) �=⊥,
– n > |C|

log |C|
log log |C| , and

– (det(QC,G,q), |C|4) is not a factoring advice for n, where QC,G,q is according
to Definition 8.

The following holds for any oracle-aided circuit C:

PrG←G [C
G,ForgerG asks Forger an unexpected query] ≤ δ(|C|),

where δ(|C|) = 2− log2 |C|.

3.4 Putting It Together

Proof (of Lemma 2). Lemma 3 yields that FG,ForgerG breaks the security of ΣG

with respect to every G ∈ G, so it is left to prove that EmulG(Ck) emulates

C
G,ForgerG
k well.
Recall that |Ck| ∈ poly(k), and that we assume without loss of generality that

|Ck| ≥ k. Theorem 6 and Lemma 4 yield that Emul(Ck) answers all “expected”
queries of Ck to Forger with probability 1 − |Ck| · 2−Ω(k) = 1 − neg(k), where
Lemma 5 yields that Ck asks unexpected queries with only negligible probability
over the choice of G ∈ G. Hence, with save but negligible probability, EmulG(Ck)

emulates C
G,ForgerG
k correctly.
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Abstract. At Eurocrypt 2010, Freeman proposed a transformation from
pairing-based schemes in composite-order bilinear groups to equivalent
ones in prime-order bilinear groups. His transformation can be applied
to pairing-based cryptosystems exploiting only one of two properties of
composite-order bilinear groups: cancelling and projecting. At Asiacrypt
2010, Meiklejohn, Shacham, and Freeman showed that prime-order bilin-
ear groups according to Freeman’s construction cannot have two prop-
erties simultaneously except negligible probability and, as an instance
of implausible conversion, proposed a (partially) blind signature scheme
whose security proof exploits both the cancelling and projecting proper-
ties of composite-order bilinear groups.

In this paper, we invalidate their evidence by presenting a security
proof of the prime-order version of their blind signature scheme. Our
security proof follows a different strategy and exploits only the projecting
property. Instead of the cancelling property, a new property, that we call
translating, on prime-order bilinear groups plays an important role in
the security proof, whose existence was not known in composite-order
bilinear groups. With this proof, we obtain a 2-move (i.e., round optimal)
(partially) blind signature scheme (without random oracle) based on the
decisional linear assumption in the common reference string model, which
is of independent interest.

As the second contribution of this paper, we construct prime-order
bilinear groups that possess both the cancelling and projecting properties
at the same time by considering more general base groups. That is, we

take a rank n Zp-submodule of Zn2

p , instead of Zn
p , to be a base group

G, and consider the projections into its rank 1 submodules. We show
that the subgroup decision assumption on this base group G holds in
the generic bilinear group model for n = 2, and provide an efficient
membership-checking algorithm to G, which was trivial in the previous
setting. Consequently, it is still open whether there exists a cryptosystem
on composite-order bilinear groups that cannot be constructed on prime-
order bilinear groups.

1 Introduction

Since Boneh, Goh, and Nissim [10] introduced composite-order bilinear groups in
2005, they have been used to solve many challenging problems in cryptography.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 133–150, 2012.
c© International Association for Cryptologic Research 2012
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Cryptographic systems using composite-order bilinear groups mostly utilize one
of two properties, called cancelling and projecting, which Freeman [17] identified.
(Though Freeman named two properties recently, these properties were already
used before.) The security of almost all crypto systems using composite-order
bilinear groups is based on the subgroup decision assumption, introduced by
Boneh, Goh, and Nissim [10], or its variants.

Recently, some literature has aimed at constructing mathematical structures
using prime-order bilinear groups with properties similar to (or richer than)
composite-order bilinear groups [33,24,17,19]. In particular, Freeman [17] pro-
posed two product groups of prime-order bilinear groups with separately defined
bilinear maps. He showed that two proposed product groups satisfy the sub-
group decision assumption (in the sense that given g, it is infeasible to determine
whether g is in a subgroup or the whole product group), and each product group
with a bilinear map satisfies cancelling and projecting, respectively. One direct
benefit of this approach is efficiency improvements of group operations and pair-
ing computations. Loosely speaking, in bilinear groups of composite order, the
group order N must be infeasible to factor so that group operations and pairing
computations are less efficient than those of bilinear groups of prime order for
the same security level. See [17,19] for detailed efficiency comparison between
composite-order groups and prime-order groups.

On the other hand, Meiklejohn, Shacham, and Freeman [30] gave a negative re-
sult, that is, an evidence of the limitation of constructing in some class of bilinear
groups with both the cancelling and projecting properties, which is constructed
on prime-order bilinear groups. To impart meaning to their result, they also pro-
posed a round optimal blind signature scheme in composite-order bilinear groups
whose security proof exploits both the cancelling and projecting properties of the
composite-order bilinear group.1 Their round optimal blind signature scheme is
of independent interest since it is the first practical scheme of this type based on
static assumptions (not based on q-type assumptions) in the common reference
stringmodel. They left two open questions: (1) whether the instantiation in prime-
order groups of their round optimal blind signature scheme is provably secure or
insecure, and (2) whether their limitation result can be applied to a wider class of
bilinear groups constructed from prime-order groups.

In this paper, we answer both questions. We propose a (partially) blind sig-
nature scheme in a prime-order bilinear group setting. The proposed scheme can
be considered as an adapted version of the scheme in [30] to the prime-order
group setting. However, we prove the one-more unforgeability of the proposed
scheme by using a completely different strategy from [30]. Our proof does not
require the cancelling property, and instead we use another property, that we
call translating, on prime order groups. Informally, the translating property is
that given g1, g

a
1 ∈ G1, g2 ∈ G2, where G1 and G2 are distinct subgroups of

G, there exists a map T outputting ga2 . The translating property is used, in

1 The scheme in [30] itself does not use cancelling and projecting. Only the proof of
security uses both cancelling and projecting properties. Thus, the authors do not rule
out the existence of different proof strategy.
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an essential way, to prove the one-more unforgeability of the proposed scheme.
With this proof, we obtain a round optimal (partially) blind signature scheme
(without relying on the random oracle heuristic) based on the decisional linear
assumption in the common reference string model, which is of independent in-
terest. Our blind signature scheme is more efficient than [30]. For example, our
scheme has a shorter signature size (six elements in the prime-order group vs.
two elements in the composite-order group). Moreover, the security of our blind
signature scheme does not rely on the factoring assumption. (The blindness of
the signature scheme in [30] based on the subgroup hiding assumption, which
requires that the factorization of group order N is infeasible.)

As the second contribution, we show that there exists a more general class of
bilinear groups than Meiklejohn, Shacham, and Freeman considered, and some
of theses can be both cancelling and projecting. That is, we take a rank n Zp-

submodule of Zn2

p , instead of Zn
p , to be a base group G, and consider the projec-

tions into its rank 1 submodules. In this case, we should carefully consider group
membership tests of a subgroup. We provide an efficient membership-checking
algorithm to G, which was trivial in the previous setting, and we show that the
subgroup decision assumption on this base group G holds in the generic bilinear
group model for n = 2. Consequently, it is still open as to whether there exists
a cryptosystem on composite-order bilinear groups that cannot be constructed
on prime-order bilinear groups.

We note that although we construct a structure satisfying both cancelling and
projecting, our construction can not be applied directly to the scheme in [30]
to transform it to prime-order setting. The proof of [30] uses a property of
composite-order group such that two subgroups’ order are relatively prime, and
our construction does not support such property so that we could not apply our
construction to the round optimal blind signature scheme in [30].

Related Work: Blind Signatures. Since Chaum [11,12] introduced
the concept of blind signatures in 1982, it has been studied extensively
[6,1,7,8,16,28,31,25,5,18,4,2,21,30,3,20] because of its numerous applications,
such as electronic voting [13] and electronic cash [14]. Blind signatures are in-
teractive protocols between a user and a signer. In blind signatures, informally,
the user can obtain a signature (signed by the signer) on a message (chosen by
the user) without revealing the message to the signer that is signed during the
protocol; that is, the signer learns nothing about the message after finishing the
protocol.

In particular, round optimal (i.e., 2-move) blind signature schemes have re-
ceived attention since the round complexity is an important measurement of
efficiency in the computer network, and round optimal blind signature schemes
directly imply that they are concurrently secure. In the random oracle
model, there are elegant round optimal blind signatures by Chaum [12] and
Boldyreva [8]. Without relying on the random oracle heuristic, there is an ap-
proach using general NIZKs for NP, and its security depends on the assumption
that a common reference string exists [16,5]. Very recently, Garg et al. proposed
the first round optimal blind signature in the standard model (without random
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oracle and a setup assumption such as a common reference string) [20]. These
approaches without random oracle, however, are not as efficient as an approach,
in which we are interested, using a bilinear map [9,10].

In recent years several efficient round optimal blind signatures [18,4,2,30,3] have
been proposed in the common reference string model, using a bilinear map, by
combining signature schemes with efficient NIWI proofs [23,22,24]. These ap-
proaches using a bilinear map either rely on q-type dynamic assumptions [18,4,2,3]
or working on the composite-order group [30]. Though there is an analysis of a
family of q-type dynamic assumptions by Cheon [15], the security of q-type as-
sumptions still remains obscure. (q-type assumptions used in the above schemes
hold in the generic groupmodel [35] and these can be strong evidence for believing
such assumptions. However, we believe that as the next step, constructing schemes
without relying on such strong assumptions is an encouraging research approach.)
In [30], a round optimal blind signature scheme based on static assumptions (not
on q-type assumptions) using composite-order groups is proposed.

2 Notations and Definitions

Throughout this paper, we use notation ⊕ for the internal direct product: for
an abelian group G, we write G = G1 ⊕ G2 when G1 and G2 are subgroups of
G and G1 ∩G2 = {1G} for the identity 1G of G. In this case, every element g in
G can be uniquely written by g = g1 · g2 for some g1 ∈ G1 and g2 ∈ G2, where
· is a group operation in G, and will be omitted sometimes. We use notation

x
$← A. If A is a group G, then it means that an element x is randomly chosen

from G, and if A is an algorithm, then it means that A outputs x. [i, j] denotes
a set of integers {i, · · · , j}. We denote an abelian group generated by g1, · · · , gn
by 〈g1, · · · , gn〉.

We give formal definitions of bilinear group generators, and properties and
cryptographic assumptions defined on the bilinear group.

Definition 1. We say that G(·, ·) is a bilinear group generator if it takes as
input a security parameter λ and a positive integer n ≥ 1, and it outputs a tuple

(G,Gi, H,Hi, Gt, e, σ| i ∈ [1, n])
$← G(λ, n), where G, H, Gt are finite abelian

groups, Gi and Hi are cyclic subgroups of G and H of same order, respectively,
such that G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi, and e : G × H → Gt is a non-
degenerate bilinear map, that is, it satisfies

Bilinearity: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2)
for g1, g2 ∈ G and h1, h2 ∈ H,

Non-degeneracy: for g ∈ G, if e(g, h) = 1 for any h ∈ H, then g = 1,
for h ∈ H, if e(g, h) = 1 for any g ∈ G, then h = 1,

and σ is additional information for group membership-check. Moreover, we as-
sume that group operations, random samplings, and membership-checks in each
group, and computation of e can be efficiently performed (i.e. polynomial-time
in λ).
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We do not exclude the case that G = H . When G = H , we say that G is a
symmetric bilinear group generator.

Definition 2. We say that an algorithm G1 is a bilinear group generator of
prime order if G1(λ) = G(λ, 1), and G1 outputs groups G,G1, H,H1, Gt of prime
order p and a map e. Then, G = G1, H = H1. We denote the three distinct
groups G,H,Gt by G,H,Gt, respectively, and a bilinear map e by ê.

Now, we provide definitions of two properties, called cancelling and projecting,
which are introduced by Freeman [17].

Definition 3. A bilinear group generator G is cancelling if e(gi, hj) = 1t when-
ever gi ∈ Gi, hj ∈ Hj, and i �= j, where 1t is the identity of Gt.

Definition 4. A bilinear group generator G is projecting if there exist subgroups
G′ ⊂ G, H ′ ⊂ H, and G′

t ⊂ Gt, and non-trivial2 homomorphisms π : G → G,
π̄ : H → H, and πt : Gt → Gt such that

1. G′ ⊂ ker(π), H ′ ⊂ ker(π̄), and G′
t ⊂ ker(πt).

2. πt(e(g, h)) = e(π(g), π̄(h)) for ∀g ∈ G and ∀h ∈ H.

If G is a symmetric bilinear group generator, that is, G = H, then set G′ = H ′

and π = π̄.

To prove the security of the proposed blind signature scheme, we need
two widely-known assumptions, the Computational Diffie-Hellman assump-
tion, and k-Linear assumption which is introduced by Hofheinz and Kiltz and
Shacham [26,34], in the bilinear group setting.

Definition 5. Let G1 be a bilinear group generator of prime order. We define the
advantage of an algorithm A in solving Computational Diffie-Hellman (CDH)
problem in G, denoted by AdvCDHPG

A,G1
, is to be

Pr
[
A(G,H,Gt, e, g, g

a, gb)→ gab : (G,H,Gt, e)
$← G1, g $← G, a, b,

$← Zp

]
.

We say that G satisfies Computational Diffie-Hellman (CDH) assumption in G
if for any PPT algorithm A, AdvCDHPG

A,G1
is a negligible function of λ.

Definition 6. Let G1 be a bilinear group generator of prime order and k ≥ 1.
We define the advantage of an algorithm A in solving the k-Linear problem in
G, denoted by Advk-LinG

A,G1
, is to be

∣∣∣Pr [A(G,H,Gt, e, g, ui, u
ai

i , g
b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui $← G, h

$← H, ai
$← Zp for i ∈ [1, k], b

$← Zp

]
−Pr

[
A(G,H,Gt, e, g, ui, u

ai

i , g
b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui $← G, h

$← H, ai
$← Zp for i ∈ [1, k], b=

∑
i∈[1,k] ai

]∣∣∣.
2 The non-triviality does not appear in the original definition [17]. Without this, how-
ever, every bilinear group can be projecting by using the trivial homomorphisms.
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Then, we say that G satisfies the k-Linear assumption in G if for any PPT
algorithm A, the advantage of A Advk-LinG

A,G1
is a negligible function of λ.

We can analogously define the CDH assumption and the k-Linear assumption in
H . The 1-Linear assumption in G is the DDH assumption in G and the 2-Linear
assumption in G is the decisional linear assumption in G.

Next, we provide the definition of the subgroup decision assumption, adapted
from [17] to fit our purpose.

Definition 7. Let G be a bilinear group generator. We define the advantage
of an algorithm A in solving the (n, k)-subgroup decision problem on the left,
denoted by AdvSDAL

A,G , is to be∣∣∣Pr [A(G,G′, H,H ′, Gt, e, σ, g)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H

′ := ⊕i∈[1,k]Hi, g
$← G

]
−Pr

[
A(G,G′, H,H ′, Gt, e, σ, g

′)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H

′ := ⊕i∈[1,k], g
′ $← G′

]∣∣∣.
We say that G satisfies the (n, k)-subgroup decision assumption on the left if for
any PPT algorithm A, its advantage AdvSDAL

A,G is a negligible function in λ.

We analogously define the (n, k)-subgroup decision assumption on the right.

Definition 8. We say that a bilinear group generator G(·, ·) satisfies the (n, k)-
subgroup decision assumption if G(·, n) satisfies both the (n, k)-subgroup decision
assumptions on the left and on the right.

We will often omit (n, k) term, if it is clear in the context.

3 Round-Optimal Blind Signature in Prime-Order Group

3.1 Symmetric Bilinear Group with Projecting Pairing

We construct a symmetric bilinear group generator with the projecting property.
(The symmetric bilinear groups mean that G = H , and Gi = Hi in our definition
of bilinear groups.) We borrow some notations from Freeman’s paper [17]. Let G
be a group, g, g1, · · · , gn be elements in G, −→α = (a1, · · · , an) be a vector in Zn

p ,

and M = (mij) be an n× n matrix. We denote g
−→α := (ga1 , · · · , gan) ∈ Gn and

(g1, · · · , gn)M := (
∏

i∈[1,n] g
mi1

i , · · · ,
∏

i∈[1,n] g
min

i ). We can see that (g
−→α )M =

g(
−→αM). We newly define some notations useful to explain product groups. Let

G = ⊕i∈[1,n]Gi and H = ⊕j∈[1,n]Hj , where Gi and Hj are cyclic groups of same
order. Let e(Gi, Hj) be a set {e(gi, hj)|gi ∈ Gi, hj ∈ Hj}; hence e(Gi, Hj) is a
cyclic group since Gi and Hj are cyclic groups. In particular, when Gi and Hj

have prime order p, e(Gi, Hj) is a cyclic group of order p or 1.
Now, we construct a symmetric bilinear group generator GSP (λ, 3), which

is a generalization of Groth and Sahai’s instantiation based on the decisional
linear assumption [24], and is also a symmetric version of Freeman’s asymmetric
bilinear group generator with the projecting property [17].
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1. G1(λ) $→ (p,G,Gt, ê).

2. Set G = G3, Gt = G9
t .

3. Choose linearly independent vectors −→x 1,
−→x 2,

−→x 3 ∈ Z3
p, and set G1 = 〈g−→x 1〉,

G2 = 〈g−→x 2〉 and G3 = 〈g−→x 3〉. Then, G = G1 ⊕G2 ⊕G3.

4. Define a map e : G×G→ Gt by

= e((g1, g2, g3), (h1, h2, h3))

(
ê(g1, h1)

1/2, ê(g1, h2)
1/2, ê(g1, h3)

1/2, ê(g2, h1)
1/2, ê(g2, h2)

1/2, ê(g2, h3)
1/2,

ê(g3, h1)
1/2, ê(g3, h2)

1/2, ê(g3, h3)
1/2
)

·
(
ê(g1, h1)

1/2, ê(g2, h1)
1/2, ê(g3, h1)

1/2, ê(g1, h2)
1/2, ê(g2, h2)

1/2, ê(g3, h2)
1/2,

ê(g1, h3)
1/2, ê(g2, h3)

1/2, ê(g3, h3)
1/2
)
.

Then, e(g
−→x , g

−→y ) = ê(g, g)1/2(
−→x⊗−→y )+1/2(−→y ⊗−→x ), where ⊗ is a tensor product

(Kronecker product) of two 3-dimensions vectors.

5. For i ∈ [1, 3], define maps πi : G→ G and πt,i : Gt → Gt by

πi(g) = g
M−1UiM and πt,i(gt) = g

(M−1UiM)⊗(M−1UiM)
t , respectively,

where M is a 3 × 3 matrix having −→x i as its i-th row, Ui is a 3 × 3 matrix
with 1 in the (i, i) entry and zeroes elsewhere, and ⊗ is a tensor product
of matrices: For �1 × �2 matrix A = (ai,j) and �3 × �4 matrix B = (bi,j),
A ⊗ B is a �1�3 × �2�4 matrix whose (i, j)-th block is equal to ai,jB, where
we consider A ⊗ B as �1 × �2 blocks. Then, πi is a projection such that for
g1 ∈ G1, g2 ∈ G2, g3 ∈ G3, πi(g1g2g3) is equal to gi.

6. Output (p,G,G1, G2, G3, Gt, e, π1, π2, π3, πt,1, πt,2, πt,3).

We provide a useful lemma to understand the structure of the image of e.

Lemma 1. The image of e generated by GSP is equal to ⊕1≤i≤j≤3e(Gi, Gj),
and each e(Gi, Gj)’s order is p.

We provide the proof of Lemma 1 in the full version of this paper. Non-
degeneracy of e is directly coming from the lemma 1. (That is, e(g, h) �= 1t
for any non-identity elements g, h ∈ G. If not, the image is not equal to
⊕1≤i≤j≤3e(Gi, Gj).) The bilinear property of e can be easily checked from the
bilinear property of the tensor product. Further, GSP satisfies the projecting
property: Let G′ = G2 ⊕ G3, G

′
t = ⊕2≤i≤j≤3e(Gi, Gj), π = π1, and πt = πt,1,

where G′, G′
t, π, and πt are defined in the definition 4. Then, G′ ⊂ ker(π) and

G′
t ⊂ ker(πt), and e, π, πt satisfy the following commutative property.

πt(e(g
−→x , g

−→y )) = e(π(g
−→x ), π(g

−→y )).
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We can check this commutative property as follows:

πt(e(g
−→x , g

−→y ))

= πt,1(e(g
−→x , g

−→y ))

= πt,1(ê(g, g)
1/2(−→x⊗−→y )+1/2(−→y ⊗−→x ))

= (ê(g, g)1/2(
−→x⊗−→y )+1/2(−→y ⊗−→x ))(M

−1UiM)⊗(M−1UiM)

= ê(g, g)1/2(
−→x⊗−→y )((M−1UiM)⊗(M−1UiM))+1/2(−→y ⊗−→x )((M−1UiM)⊗(M−1UiM))

= ê(g, g)1/2(
−→xM−1UiM)⊗(−→y M−1UiM)+1/2(−→y M−1UiM)⊗(−→xM−1UiM)

= e(g(
−→xM−1UiM), g(

−→y M−1UiM))

= e((g
−→x )M

−1UiM , (g
−→y )M

−1UiM )

= e(π1(g
−→x ), π1(g

−→y )) = e(π(g
−→x ), π(g

−→y )).

The fifth equality comes from the property of the tensor product such as (A ⊗
B)(C ⊗D) = (AC)⊗ (BD), where A and B are matrices having � columns and
C and D are matrices having � rows for some �. (We can consider a vector as a
matrix having one row.)

In contrast to the composite order bilinear group, our product group of prime
order group has an additional property, we name translating and define as follow.

Definition 9. A bilinear group generator G is (i, j)-translating if there exists
efficiently computable (that is, polynomial time in λ) maps Ti,j : G2

i ×Gj → Gj

defined by (gi, g
a
i , gj) !→ gaj and T̄i,j : H2

i ×Hj → Hj defined by (hi, h
a
i , hj) !→ haj

for an integer a ∈ Z. If G is a symmetric bilinear group generator, then set
T̄i,j = Ti,j.
We show that the above GSP construction satisfies translating property.

Theorem 1. GSP (λ, 3) satisfies translating property for all i, j ∈ [1, 3].

Proof. We first construct T3,1. Given ga3 and a 3× 3 matrix M defined as in the
description of GSP , we can compute ga1 without knowing a as follows:

(ga3 )
M−1

= ((g
−→x 3)a)M

−1

= (ga
−→e 3M )M

−1

= ga
−→e 3 = (1, 1, ga),

(ga, 1, 1)M = (ga
−→e 1)M = ga

−→x 1 = ga1 ,

where −→e i is the canonical i-th vector in Z3
p, for example, −→e 1 = (1, 0, 0). We can

construct other Ti,j analogously. �

Moreover, GSP satisfies (3, 2)-subgroup decision assumption when the un-
derlying group generator G1 satisfies the decisional linear assumption.

Lemma 2. If G1 satisfies the decisional linear assumption, then GSP satisfies
the (3, 2)-subgroup decision assumption.

We relegate the proof of Lemma 2 in the full version of this paper.

Remark 1. Note that GSP does not satisfy the cancelling property since e(Gi, Gj)
is not equal to {1t} for i �= j (Lemma 1).
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3.2 Construction

The abstract of our scheme looks very similar to the Meiklejohn et al.’s con-
struction in the composite order bilinear group [30]. We slightly changed the
Meiklejohn et al.’s construction to adapt in the prime order bilinear group set-
ting.

(Partially) blind signature schemes in the common reference model consist of
five (interactive) algorithms: Setup, KeyGen, User, Signer, and Verify. We provide
the formal definition of (partially) blind signature schemes, and concurrently
security, in the full version of this paper. We follow the security definition of [30],
which is slightly stronger than [6], by allowing the adversary to choose the public
key in the blindness definition. As a definition of the blind signature, [30] is
modified from [27]; (1) it strengthens the blindness game to allow the adversary
to generate the public key, and (2) it weakens the one-more unforgeability game
to require that the messages (instead of pairs of message and signature) must
all be distinct.3

The proposed partially blind signature scheme for a message space M =
{0, 1}m is as follows.4:

• Setup(λ): GSP (λ, 3) $→ (p,G,G1, G2, G3, Gt, e, πi, πt,i). Choose g, u
′, u1, · · · ,

um, v1 · · · , vm $← G, h1
$← G1 and h2

$← G2. Define

CRS = (p,G,Gt, e, g, u
′, u1, · · · , um, v1, · · · , vm, h1, h2).

• KeyGen(CRS): Choose g′ $← G. Set A = e(g, g′). The public key is PK = {A},
and the secret key is SK = {g′}.

• User(CRS, PK, info,Msg): Let info be anm0 bits string andMsg be anm−
m0 bit string. We write info bitwise as b0 · · · bm0 and Msg as bm0+1 · · · bm.

For i ∈ [m0 + 1,m], pick random integers ti,1, ti,2, si,1, si,2, ri, r
′
i

$← Zp, and
compute

ci = (ui)
bih

ti,1
1 h

ti,2
2 , di = (vi)

bih
si,1
1 h

si,2
2 ,

θi,1 = u
bisi,1
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

bisi,2
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,2h−ri

1 ,

θi,3 = u
(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

Let
−→
θ i = (θi,1, · · · , θi,4), and send req = {(ci, di,

−→
θ i)}i∈[m0+1,m] to the

signer and save state = {(ti,1, ti,2)}i∈[m0+1,m].

• Signer(CRS, SK, info, req): Write req = {(ci, di,
−→
θ i)}i∈[m0+1,m] and info =

b1 · · · bm0 . For each i ∈ [m0 + 1,m], verify ci is a commitment of 0 or 1 by
checking that

e(ci, div
−1
i )

?
= e(h1, θi,1)e(h2, θi,2) and e(ciu

−1
i , di)

?
= e(h1, θi,3)e(h2, θi,4).

3 This weakened definition is necessary if the output signature can be re-randomized.
[30]’s partially blind signature and ours are in the case.

4 For large message spaces, we can use a collision resistance hash function first.
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If for some i the above equation does not hold, abort the protocol and output
⊥. Otherwise, compute

c =

⎛⎝u′ ∏
i∈[1,m0]

ubii

⎞⎠⎛⎝ ∏
i∈[m0+1,m]

ci

⎞⎠ ,
choose a random integer r

$← Zp, compute

K1 = g′cr, K2 = g
−r, K3,1 = h

−r
1 , K3,2 = h

−r
2 ,

send (K1,K2,K3,1,K3,2) to the user, and output success and info.
• User(state, (K1,K2,K3,1,K3,2)): Write state = {(ti,1, ti,2)}i∈[m0+1,m]. Check

that
e(K3,1, g)

?
= e(K2, h1) and e(K3,2, g)

?
= e(K2, h2).

If one of two above equations is fail to hold, then abort the protocol and
output ⊥. Otherwise, unblind the signature by computing

S1 = K1 · (
∏

i∈[m0+1,m]

K
ti,1
3,1 K

ti,2
3,2 ) and S2 = K2.

Check the validity of the signature (S1, S2) by running Verify. If it outputs
accept, then go to the next step. Otherwise, abort the protocol and output

⊥. Finally re-randomize the signature by picking a random s
$← Zp and

computing

S′
1 = S1 · (u′

∏
i∈[1,m]

ubii )
s and S′

2 = S2 · g−s.

Output the signature sig = (S′
1, S

′
2), info, and success.

• Verify(CRS, PK, info,Msg, sig): Write PK = {A}, info = b1 · · · bm0 ,
Msg = bm0 · · · bm, and sig = (S1, S2). Check that

e(S1, g) · e(S2, u′
∏

i∈[1,m]

ubii )
?
= A.

If the above equality holds, then output accept. Otherwise, output fail.

In the first procedure of the user, ci and di are GS-commitment to bi, and
−→
θ i

is GS-proof that bi satisfies the equation bi(bi − 1) = 0 so that bi = 0 or bi = 1.

More precisely, when bi and b
′
i are openings of ci and di, respectively,

−→
θ i is a

proof that bi(b
′
i − 1) = 0 and (b′i − 1)bi = 0. Then, (bi = 0 or b′i = 1)

∧
(bi = 1 or

b′i = 0) so that bi = b′i = 0 or bi = b′i = 1. We provide three theorems to prove
the security of the proposed (partially) blind signature scheme.

Theorem 2. The above blind signature is correct.

Theorem 3. If G1 satisfies the decisional linear assumption, then the above
blind signature satisfies blindness.
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The proof of Theorem 2 and 3 are similar to the previous ones [30]. We provide
the proof in the full version of this paper.

Theorem 4. If G1 satisfies the the CDH assumption, then the above blind sig-
nature is one-more unforgeable.

Due to space constraints, we leave the proof of Theorem 4 to the full version of
this paper. Instead, we briefly explain our idea to prove the one-more unforge-
ability, and the reason why we cannot apply the Meiklejohn et al. proof strategy
to the proposed scheme. At the end of the interaction, the user obtains a Waters-
signature, which is existentially unforgeable based on the CDH assumption. If
the user obtains only a Waters signature, then the proposed scheme is, loosely
speaking, also one-more unforgeable. However, the user obtains not only a Wa-
ters signature (of the form g′(u

∏
i∈[1,m] u

bi
i )

r and g−r for message b1 · · · bm), but
also some additional information, that is, it eventually gets

g′(u
∏

i∈[1,m]

ubii )
r(

∏
i∈[m0+1,m]

h
ti,1
1 h

ti,2
2 )r, g−r, h−r

1 , and h−r
2

for some (unknown and uniformly distributed) r ∈ Zp, and ti,1, ti,2, and bi cho-

sen by itself. Therefore, we should show that h−r
1 , h−r

2 , and (
∏

i∈[m0,m] h
ti,1
1 h

ti,2
2 )r

will not be helpful for the user to break the one-more unforgeability. In [30], a
pairing e satisfies the cancelling property, and orders of subgroups are relatively
prime so that each part contained in each subgroup in a signature scheme is
independent. [30] essentially utilized this independence. If, in our scheme, the
G1 ⊕G2 part and G3 part were independent, the user could not obtain any ad-
ditional information about the part in G3 from the above information. (Since all
information other than a Waters signature, which the user gets at the end of the
protocol, is related to h1 and h2, which are elements in G1⊕G2, this information
will not be helpful for forging the Waters signature in the G3 part.) Hence, the
one-more unforgeability of the scheme can be reduced to the existential unforge-
ability of the Waters signature (in G3 in the case of our scheme). However, we
cannot apply this Meiklejohn et al. proof strategy to our scheme since our bilin-
ear map e does not have the cancelling property and each subgroup has the same
order p. Instead, we prove the one-more unforgeability using a completely differ-
ent strategy. Our simulation basically follows the simulation for the existential
unforgeability of the Waters signature, and at the same time simulates directly
additional information h−r

1 , h−r
2 , and (

∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r. It seems hard to

simulate (
∏

i∈[m0+1,m] h
ti,1
1 h

ti,2
2 )r since ti,1 and ti,2 are chosen by the user and r

is usually not known to the simulator during the simulation. (r is usually of the
form Ra + S for some unknown a and constants R and S, where a is given by
the form ga.) We circumvent this obstacle by using the projecting property and
the translating property mentioned in section 3.1. To simulate this additional
information, the simulator first extracts the message, that is, recovers b1 · · · bm
by computing logπ1(ui)π1(ci) = bi, and second computes πj(ci/u

bi
i ) = h

ti,j
j and

if bi = 0,

{
π3(θ

−1
i,1 ) = π3(vi)

ti,1

π3(θ
−1
i,2 ) = π3(vi)

ti,2 ,
if bi = 1,

{
π3(θi,3) = π3(vi)

ti,1

π3(θi,4) = π3(vi)
ti,2 .
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Though π3(vi)
ti,j is contained in G3, we can change it to be of the form

h
ati,j
j for some unknown a by using the translating property mentioned in

section 3.1 when vi contains a in the exponent. The simulator can generate
(
∏

i∈[m0+1,m] h
ti,1
1 h

ti,2
2 )r by using h

ti,j
j and h

ati,j
j .

Remark 2. The decisional linear assumption implies the CDH assumption. (The
decisional linear assumption implies the computational linear assumption, and
the computational linear assumption implies the CDH assumption. Reductions
are quite straightforward.)

Remark 3. In the user’s first procedure, the GS-commitment and proof appear
to have redundant parts. It would be more natural to change them to

ci= (ui)
bih

ti,1
1 h

ti,2
2 , θi,1 = (u2bi−1

i h
ti,1
1 h

ti,2
2 )ti,1hri2 , θi,2 = (u2bi−1

i h
ti,1
1 h

ti,2
2 )ti,2h−ri

1 ,

and it can be verified by e(ci, ciu
−1
i )

?
= e(h1, θi,1)e(h2, θi,2). This commitment

and proof is GS commitment and proof for bi ∈ {0, 1}. However, we note that
in this case, we could not prove the one-more unforgeability based on the CDH
assumption. We only proved the one-more unforgeability based on the decisional
linear assumption and augmented CDH assumption. (Augmented CDH assump-

tion roughly says that given g, ga, gb, ga
2

, it is infeasible to compute gab.) To

avoid requiring ga
2

, in the simulation, that is, to prove the one-more unforge-
ability based on the CDH assumption, we modified the commitment and the
proof to the current form.

4 Bilinear Group: Both Cancelling and Projecting

4.1 Interpreting Limitation Result in [30]

In [30], the authors consider the cases that the bilinear group generator G(λ, n)
is defined as follows:

1. (p,G,H,Gt, ê)
$← G1(λ)

2. G = Gn, H = Gn, and Gt = Gm
t for some positive integer m.

3. a bilinear map e : G×G→ Gt is defined by

e((g1, · · · , gn), (h1, · · · , hn)) = (· · · , e((g1, · · · , gn), (h1, · · · , hn))(�), · · · )
= (· · · ,

∏
i,j∈[1,n] ê(gi, hj)

e
(�)
ij , · · · ),

where e
(�)
ij ∈ Zp for all i, j ∈ [1, n] and � ∈ [1,m].

The authors showed that e can be both the cancelling and projecting only with
negligible probability when e is defined as the above. In the above G construction,
to generate a rank n Zp-module,G is defined asGn. In the proof for the limitation
result ([30, Proposition 6.4 and Theorem 6.5]), the authors used, in an essential
way, the fact that a rank n Zp-module is of the form Gn.
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We can, however, also define, in a different way, a rank n Zp-module G.

First generate a rank n′(> n) Zp-module G̃, and then define G as a rank n

Zp-submodule of G̃. For example, define G̃ = G4 and

G = 〈(ga1 , gb1 , gc1 , gd1), (ga2 , gb2 , gc2 , gd2), (ga3 , gb3 , gc3 , gd3)〉,

where {(ai, bi, ci, di)}i∈[1,3] is a set of linearly independent vectors in Z4
p. Then, G

is a rank 3 Zp-submodule of a rank 4 Zp-module G̃. This example is not included
in the case of the above G construction. In this example, we should argue about
the membership check of G since any group should be easy to check for its
membership to be used for cryptographic applications. If there is no additional
information, the membership check of G is infeasible since it is equivalent to
the decisional 3-linear problem. However, we should not rule out this case when
some additional information for membership check is given. Our construction is
exactly such a case.

4.2 Our Construction

First, we give an instructive intuition of our construction. To construct a bilinear
group generator with projecting, we should consider the order of image of a
bilinear map, which should be larger than prime p.5 We start from a bilinear
group generator with the cancelling property [17]. We consider n different bilinear
group generators (of rank n) with cancelling property. Let G(i) = ⊕j∈[1,n]Gij

(rank n Zp-module), H(i) = ⊕j∈[1,n]Hij (rank n Zp-module) and ēi (bilinear
map) be the output of i-th bilinear group generator. Let Gij = 〈gij〉 that is a
rank 1 Zp-submodule of a rank n Zp-module. Let Gj be 〈(g1j , · · · , gnj)〉, which
is a rank 1 Zp-submodule of a rank n2 Zp-module (n direct product of n Zp-
modules). Define Hj similarly, and define G = ⊕j∈[1,n]Gj and H = ⊕j∈[1,n]Hj .

We define a map e by using bilinear maps ēi defined over each G(i) × H(i) as
follows:

e((g1, · · · , gn), (h1, · · · , hn)) = (ē1(g1, h1), · · · , ēn(gn, hn)),

where gi ∈ G(i) and hi ∈ H(i). This construction also satisfies the cancelling
property. If we can control the basis of the image of e so that the order of image
is not prime p, then we may obtain the projecting property.

For vectors Γ = (−→α 1, · · · ,−→α n) = (α11, · · · , αnn) and Λ = (
−→
β 1, · · · ,

−→
β n) =

(β11, · · · , βnn) ∈ Zn2

p , and a group element g ∈ G, we define a notation Γ ◦Λ :=

(−→α 1 ·
−→
β 1, · · · ,−→α n ·

−→
β n) ∈ Zn

p , where
−→α j ’s and

−→
β j ’s are vectors in Zn

p , and
−→α j ·

−→
β j =

∑
�∈[1,n] αj�βj�. Now, we describe our construction GCP .

1. Take a security parameter and a positive integer n as inputs, run G1, and
obtain (p,G,H,Gt, ê).

2. Choose generators g and h at random from G and H, respectively.

5 If the image of a bilinear map is prime p, it cannot satisfy projecting property [30].
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3. Choose X1, · · · , Xn and D from GLn(Zp) at random. Define Di ∈Matn(Zp)
be a diagonal matrix having D’s i-th column vector as its diagonal. Define
Yi by Di(X

−1
i )t.

4. Let
−→
ψ ij be the i-th row of Xj and

−→
φ ij be the i-th row of Yj . Let

Ψi = (
−→
ψ i1, · · · ,

−→
ψ in) and Φi = (

−→
φ i1, · · · ,

−→
φ in). Then, define Gi by a cyclic

subgroup in Gn2

generated by 〈gΨi〉, and define Hi by a cyclic group in Hn2

generated by 〈hΦi〉.
5. Define G and H by the internal direct product of Gi’s and Hi’s, respectively.

That is, G = ⊕i∈[1,n]Gi ⊂ Gn2

, and H = ⊕i∈[1,n]Hi ⊂ Hn2

. Define Gt by
Gn

t .
6. Define a map e : G×H → Gt as follows:

e(gΓ , hΛ) := (
∏

�∈[1,n]

ê(gα1� , hβ1�), · · · ,
∏

�∈[1,n]

ê(gαn� , hβn�)) = ê(g, h)Γ◦Λ,

for any Γ = (α11, · · · , αnn) and Λ = (β11, · · · , βnn).
7. Take a basis of 〈Ψ1, · · · , Ψn〉⊥ at random, say {Ψ̂1, · · · , Ψ̂n2−n}, and take a

basis of 〈Φ1, · · · , Φn〉⊥ at random, say {Φ̂1, · · · , Φ̂n2−n}, where the notation
〈Γ1, · · · , Γn〉⊥ means a set of all orthogonal vectors to 〈Γ1, · · · , Γn〉. Define

σ := (ê, {hΨ̂1 , · · · , hΨ̂n2−n}, {gΦ̂1, · · · , gΦ̂n2−n}).

8. Output (G,G1, · · · , Gn, H,H1, · · · , Hn, Gt, e, σ).

In the description of GCP each Gi and Hi is defined to be rank 1, as Zp-

submodules of Gn2

, and for i �= j, Gi ∩ Gj = Hi ∩Hj = {1
Gn2}, where 1

Gn2 is

the identity of Gn2

. Therefore, in the step 5, G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi

are well-defined and rank n Zp-submodules of Gn2

.

4.3 Cancelling, Projecting, and Translating

It is straightforward to check that e is a non-degenerate bilinear map. We show
that e satisfies cancelling, projecting and translating.

Theorem 5. Let (G = ⊕i∈[1,n]Gi, Gi, H = ⊕i∈[1,n]Hi, Hi, Gt, e, σ) be the output
of the above GCP . Then, e is both cancelling and projecting.

Proof. Let X1, · · · , Xn, Y1, · · · , Yn and D be generated in the step 3 of Section
4.2. These satisfy the following three conditions.

(1) X� and Y� are in GLn(Zp) for � ∈ [1, n].
(2) For � ∈ [1, n] each X� · Y �

� is a diagonal matrix with a diagonal d�.
(3) D = (d1 · · ·dn), that is, the i-th column vector of D is di.

From the condition (1) we can see that Ψi’s are linearly independent and Φi’s are
linearly independent and so G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi are well-defined.
The condition (2) guarantees that e is a cancelling bilinear map: For i �= j,
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Ψi ◦ Φj := (
−→
ψ i1 ·

−→
φ j1, · · · ,

−→
ψ in ·

−→
φ jn) = 0 and so e(gΨi , hΦj ) = e(g, h)Ψi◦Φj =

(1Gt , · · · , 1Gt) is equal to the identity of the product group (Gt)
n. The third

condition (3) implies that {Ψi ◦Φi}i∈[1,n] is a set of linearly independent vectors

in Zn
p ; hence, any pair of groups e(Gi, Hi) = 〈e(g, h)Ψi◦Φi〉 = 〈(g, h)(di1,··· ,din)〉

has no common element except the identity so that Im(e) = ⊕i∈[1,n]e(Gi, Hi) =
Gt. We can consider natural projections πi : G → Gi, π̄i : H → Hi, and
πt,i : Gt → e(Gi, Hi). We can construct these projections, in a similar way as
the construction of the projections in the subsection 3.1. We leave the details to
the full version of this paper. Let G′ = ⊕[2,n]Gi, H

′ = ⊕[2,n]Hj , G
′
t = e(G

′, H ′),
π = πi, π̄ = π̄i, and πt = πt,i. Then, e satisfies the definition 4. �

Theorem 6. GCP (λ, n) satisfies translating property for all i, j ∈ [1, n].

Proof. We will construct T3,1. We can construct other Ti,j and T̄i,j similarly.
Given g3, g

a
3 and n×n matrices Xi defined as in the description of GCP , we can

compute ga1 without knowing a as follows:

Parse ga3 as (gΨ3)a = ((g
−→
ψ 31)a, · · · , (g

−→
ψ 3n)a), and compute

for j ∈ [1, n], ((g
−→
ψ 3j )a)X

−1
j = (ga

−→e 3Xj )X
−1
j = ga

−→e 3 = (1, 1, ga, · · · , 1),

(ga, 1, · · · , 1)Xj = (ga
−→e 1)Xj = ga

−→
ψ 1j ,

then (ga
−→
ψ 11 , · · · , ga

−→
ψ 1n) = (gΨ1)a = ga1 .

where −→e i is the canonical i-th vector in Zn
p , for example, −→e 1 = (1, 0, 0, · · · , 0).

�
We show that anyone knowing σ can test membership of elements in G and H
(membership test for Gt is trivial) in the full version. Finally, we should show
that G satisfies the subgroup decision assumption, but it is not easy to prove that
G satisfies the subgroup decision for any n. Instead, in the full version we give a
proof that, for n = 2, G satisfies the (2, 1)-subgroup decision assumption in the
generic bilinear group model [35] (that is, we assume that the adversary should
access the oracles for group operations of G, H, Gt and pairing computations
for ê, where G1 → (p,G,H,Gt, ê)). Though we give a proof for the case n = 2,
we are positive that GCP satisfies the subgroup decision assumption for n > 2.
For n > 2, there are several variables, particularly in σ, we should consider for
the subgroup decision assumption, so these make it hard to prove for the case
n > 2, even in the generic bilinear group model.6

5 Conclusions and Further Work

In this paper, we answered two open questions left by Meiklejohn, Shacham, and
Freeman. First, we showed that the security of the Meiklejohn et al.’s (partial)

6 All variables in σ is public, so to show that GCP satisfies the subgroup decision
assumption, the simulator should simulate σ in the proof.
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blind signature can be proved in the prime-order bilinear group setting.7 Second,
we showed that there exist bilinear group generators that are both cancelling and
projecting in the prime-order bilinear group setting.

The proof of the Meiklejohn-Shacham-Freeman blind signature scheme, and
the Lewko-Waters identity-based encryption scheme [29] essentially use the fact
that orders of subgroups are relatively prime as well as the projecting and/or
cancelling properties. For each scheme, the adapted version in prime-order bi-
linear groups is proposed, with a different security proof strategy, in this paper
and [29], respectively. It would be interesting to find a general procedure to
transform such schemes using relatively prime orders in composite-order groups
to schemes in prime-order groups.

We proposed a new mathematical framework with both cancelling and pro-
jecting in a prime-order bilinear group setting, and gave the proof that the (2, 1)
subgroup decision assumption holds in the generic bilinear group model when
n = 2. This research leaves many interesting open problems. We ask if the
subgroup decision assumption holds when n > 2, and if the subgroup decision
assumption can be reduced to the simple assumption such as the (decisional)
k-linear assumption. We did not find good cryptographic applications of this
framework. It would be interesting to design cryptographic schemes based on the
proposed framework. We expect that this research will provide other directions
for our primitive question: whether there exists a cryptosystem on composite-
order bilinear groups that cannot be constructed on prime-order bilinear groups.
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20. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round Optimal Blind Sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011)

21. Ghadafi, E., Smart, N.: Efficient two-move blind signatures in the common refer-
ence string model. Cryptology ePrimt Archive, Report 2010/568 (2010),
http://eprint.iacr.org/2010/568

22. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

http://eprint.iacr.org/2010/133
http://eprint.iacr.org/2009/320
http://eprint.iacr.org/2010/568


150 J.H. Seo and J.H. Cheon

23. Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive Zero Knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

24. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

25. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-Secure Blind Signatures
Without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

26. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

27. Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

28. Kiayias, A., Zhou, H.-S.: Concurrent Blind Signatures Without Random Oracles.
In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006)

29. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

30. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on Transformations from
Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Sig-
natures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538.
Springer, Heidelberg (2010)

31. Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Or-
acles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99.
Springer, Heidelberg (2006)

32. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

33. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

34. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. Cryptology ePrimt Archive, Report
2007/074 (2007), http://eprint.iacr.org/2007/074

35. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

http://eprint.iacr.org/2007/074


On Efficient Zero-Knowledge PCPs

Yuval Ishai1,�, Mohammad Mahmoody2,��, and Amit Sahai3

1 Technion, Israel
yuvali@cs.technion.edu

2 Cornell, USA
mohammad@cs.cornell.edu

3 UCLA, USA
sahai@cs.ucla.edu

Abstract. We revisit the question of Zero-Knowledge PCPs, studied by
Kilian, Petrank, and Tardos (STOC ’97). A ZK-PCP is defined similarly
to a standard PCP, except that the view of any (possibly malicious)
verifier can be efficiently simulated up to a small statistical distance.
Kilian et al. obtained a ZK-PCP for NEXP in which the proof oracle is
in EXPNP. They also obtained a ZK-PCP for NP in which the proof
oracle is computable in polynomial-time, but this ZK-PCP is only zero-
knowledge against bounded-query verifiers who make at most an a priori
fixed polynomial number of queries. The existence of ZK-PCPs for NP
with efficient oracles and arbitrary polynomial-time malicious verifiers
was left open. This question is motivated by the recent line of work on
cryptography using tamper-proof hardware tokens: an efficient ZK-PCP
(for any language) is equivalent to a statistical zero-knowledge proof
using only a single stateless token sent to the verifier.

We obtain the following results regarding efficient ZK-PCPs:

Negative Result on Efficient ZK-PCPs. Assuming that the poly-
nomial time hierarchy does not collapse, we settle the above question
in the negative for ZK-PCPs in which the verifier is nonadaptive (i.e.
the queries only depend on the input and secret randomness but not
on the PCP answers).

Simplifying Bounded-Query ZK-PCPs. The bounded-query zero-
knowledge PCP of Kilian et al. starts from a weakly-sound bounded-
query ZK-PCP of Dwork et al. (CRYPTO ’92) and amplifies its
soundness by introducing and constructing a new primitive called
locking scheme — an unconditional oracle-based analogue of a com-
mitment scheme. We simplify the ZK-PCP of Kilian et al. by present-
ing an elementary new construction of locking schemes. Our locking
scheme is purely combinatorial.

Black-Box Sublinear ZK Arguments via ZK-PCPs. Kilian used
PCPs to construct sublinear-communication zero-knowledge argu-
ments for NP which make a non-black-box use of collision-resistant
hash functions (STOC ’92). We show that ZK-PCPs can be used to
get black-box variants of this result with improved round complexity,

� Research done in part while visiting UCLA.
�� Research done in part while visiting UCLA.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 151–168, 2012.
c© International Association for Cryptologic Research 2012



152 Y. Ishai, M. Mahmoody, and A. Sahai

as well as an unconditional zero-knowledge variant of Micali’s non-
interactive CS Proofs (FOCS ’94) in the Random Oracle Model.

Keywords: Zero-Knowledge, Probabilistically Checkable Proofs,
Arthur Merlin Games, Tamper-Proof Tokens, Sublinear Arguments.

1 Introduction

The seminal work of Goldwasser, Micali, and Rackoff [30] changed the classical
notion of a mathematical proof by incorporating randomness and interaction.
This change was initially motivated by the intriguing possibility of zero knowl-
edge proofs – proofs that carry no extra knowledge other than being convinc-
ing. The result of Goldreich, Micali, and Wigderson [27] showed that any NP
statement can be proved in a zero-knowledge (ZK) manner, making ZK proofs a
central tool for cryptographic protocol design; this was later extended by Ben-Or
et al. [8] to any language in PSPACE. All these fundamental results, however,
relied on the assumption that one-way functions exist. Ostrovsky and Wigder-
son [46] showed that (similar) computational assumptions are indeed inherent
for non-trivial zero-knowledge.

Motivated by the goal of achieving unconditionally secure zero-knowledge
proofs for NP, Ben-Or, Goldwasser, Kilian and Wigderson [9] introduced the
model of multi-prover interactive proofs (MIP) and presented a perfect ZK pro-
tocol for any statement that is provable in the MIP model. Shortly after, Babai,
Fortnow, and Lund [6] showed that in fact any language in NEXP can be proved
in the MIP model. Fortnow, Rompel, and Sipser [23] studied the MIP model
further and observed that as a proof system it is equivalent to another model
in which an oracle encodes a probabilistically checkable proof (PCP) which is
queried by an efficient randomized verifier. (The PCP oracle is often identified
with the proof string defined by its truth-table, in which case the output domain
of the oracle is referred to as the PCP alphabet.) The difference between a prover
and a PCP oracle is that a prover can keep an internal state, and hence its answer
to a given question can depend on other questions. Therefore, soundness against
a PCP oracle is potentially easier to achieve than soundness against a malicious
prover. This line of work culminated in the celebrated PCP theorem [4,3].

Zero-Knowledge PCPs. In this work we study zero-knowledge proofs in the PCP
model. A zero-knowledge PCP (ZK-PCP) is defined similarly to a standard
PCP, except that the view of any (possibly malicious) verifier can be efficiently
simulated up to a small statistical distance. It is instructive to note that zero-
knowledge PCPs are incomparable to traditional ZK proofs: since the PCPmodel
makes the prover less powerful, achieving soundness may become easier whereas
achieving zero-knowledge may become harder.

The original ZK protocol of [27] forNP implicitly relies on honest-verifier zero-
knowledge PCP for theNP-complete problem of 3-coloring of graphs. In this PCP
the prover takes any 3-coloring of the input graph, randomly permutes the 3 colors,
and writes down the colors as the PCP string. The verifier chooses a random edge,
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reads the colors of the vertices of that edge, and accepts iff the colors are different.
This ZK-PCP has two disadvantages: (1) it is only zero-knowledge against hon-
est verifiers (a malicious verifier can learn whether the colors of two non-adjacent
nodes are identical), and (2) the soundness error is very large: 1 − 1/m where
m is the number of edges. Dwork et al. [19],1 relying on the PCP theorem [3,4],
improved the ZK-PCP implicit in [27] in both directions. Their construction im-
plies a ZK-PCP for NP of polynomial length and with a constant alphabet size
such that: (1) the PCP is zero-knowledge against verifiers who ask any pair of
queries (but not more), and (2) the soundness error is constant. However, the
soundness error of this ZK-PCP could not be easily reduced further while main-
taining ZK against malicious verifiers. Furthermore, it could not be made zero-
knowledge against arbitrary polynomial-time verifiers, simply because it has poly-
nomial length and a malicious verifier could read the entire proof string.

Kilian, Petrank, and Tardos [40] were the first to explicitly study the power of
ZK-PCPs with malicious verifiers. Their work shows how to get around the above
limitations, resulting in two kinds of ZK-PCPswith security againstmalicious ver-
ifiers. For the case of languages inNP, [40] obtain a PCP of polynomial length over
a binary alphabet which is zero-knowledge with negligible soundness error against
malicious verifiers who are limited to ask only up to any fixed polynomial p(|x|)
number of queries, whereas the honest verifier only asks polylog(|x|) queries to ver-
ify the PCP. (The length of the PCP string can be polynomially larger than p(|x|).)
We call suchPCPs bounded-query ZK.For the case of languages inNEXP, a scaled
up version of this construction yields a ZK-PCP in which honest verifiers are effi-
cient (i.e. run in poly(|x|) time), but soundness holds against arbitrary polynomial
time verifiers. However, the PCP oracle in this case cannot be computed in poly-
nomial time even for languages in NP. (By “computable in polynomial time” we
mean that the oracle outputs a polynomial-time computable function of its secret
randomness, the input x, the NP-witness, and the verifier’s query.) This is inher-
ent to the approach of [40], as it requires the entropy of the PCP oracle to be bigger
than the number of queries made by a malicious verifier.

The above state of affairs leaves open the following natural question.

Main Question: Are there efficiently computable PCPs for NP which
are statistically zero-knowledge against any polynomial-time verifier?

An additional motivation to study the question above comes from the recent
line of work on cryptography in an extended model of interaction with “tamper-
proof hardware tokens” [38,44,14,29,34,41,33]. This model allows the parties to
generate and exchange tamper-proof hardware tokens which are simply circuits
(with or without internal state) that are accessible only as a black-box. Indeed,
an efficient ZK-PCP forNP is equivalent to a statistical zero-knowledge proof for
NP in this model where the only message sent to the verifier is a single stateless
token. The stateless nature of the PCP oracle (inside the token) would make
such a protocol secure against “resetting attacks” [13]. With this motivation in
mind, we revisit the feasibility question of efficient ZK-PCPs for NP.

1 This formulation of the result of [19] is due to [40].
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2 Our Results

Our main theorem provides a negative answer to the main question above for
the case of nonadaptive (honest) verifiers whose queries can only depend on
their randomness and the input x but not on the prover’s answers (so all the
queries can be prepared and asked in one round). This theorem may be viewed
as supporting the conjecture that efficient ZK-PCPs for NP do not exist.

In the setting of bounded-query ZK-PCPs, we revisit the construction of [40]
and simplify it considerably. Our contribution is to present a simple combina-
torial construction of a “locking schemes” which was the main tool developed
in [40] and used in both of their constructions for NP and NEXP.

Finally, motivated by a line of work on the power of black-box constructions
in cryptography, we show that efficient bounded-query ZK-PCPs can be used
to make the sublinear-communication zero-knowledge argument construction of
Kilian [39] black-box. Kilian’s construction assumes the existence of a collision-
resistant hash function, but it uses the hash function in a non-black-box way.
We also obtain constant-round variants of this result and an unconditional non-
interactive variant in the Random Oracle Model. In the following we describe
our results more formally and put them in the proper context

2.1 Efficient Nonadaptive ZK-PCPs

We prove the following negative result about the existence of ZK-PCPs for NP.

Theorem 1 (Main Theorem). If there exists an efficiently computable PCP
for NP with a nonadaptive honest verifier, constant soundness error, and zero-
knowledge against arbitrary polynomial-time verifiers, then the polynomial-time
hierarchy collapses.

What we prove is actually more general than the statement of Theorem 1.
Namely, we show that any language with an efficient ZK-PCP of polynomial
Shannon entropy (see Remark 4) and a nonadaptive verifier is in coAM, and
Theorem 1 follows by the result of [12]. Also, we only require the zero-knowledge
to hold also against nonadaptive verifiers (of arbitrary polynomial time).2

We emphasize that even though the zero-knowledge property of ZK-PCPs is
defined in a statistical fashion, our main theorem above does not follow from the
classical result of Fortnow, Aiello, and H̊astad [1,22] who proved that SZK ⊆
AM ∩ coAM. The reason is that although achieving zero-knowledge in the
PCP model is harder, achieving soundness in this model is potentially easier.3

Therefore the languages which posses efficient ZK-PCPs (as far as we know) are
not necessarily included in SZK. Also recall that if one does not require the

2 The requirement that the honest verifier be nonadaptive is a restriction to our The-
orem 1, but only requiring the zero-knowledge to hold against nonadaptive verifiers
makes our result stronger.

3 The latter comparison manifests itself in the following characterizations: it holds
that PCP(poly,poly) = MIP = NEXP while IP = PSPACE ⊆ EXP.
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PCP oracle to be efficiently computable, by the result of [40] all of the languages
in NEXP (including NP) do have (statistical) ZK-PCPs.

Using Theorem 1 itself, we can extend Theorem 1 to the case of adaptive
(honest) verifiers, as long as the total length of the prover’s answers returned in
an honest PCP verification is O(log n) bits (see Corollary 7).

Ideas and Tools. At a high level the proof of Theorem 1 uses ideas from many
previous influential works [26,1,20,11] and tools from old and new results in the
context of constant-round proofs [31,28,36]. The main challenges are in how to
force an untrusted prover to extract a PCP oracle from the simulator and run
the honest verifier against this PCP. The soundness of this protocol follows from
the soundness of the original PCP. To get the completeness, we need to extract
this PCP in a way that it is “close” to an actual accepting PCP, and this is where
we use efficiency of the PCP and its bounded entropy. Section 3 is dedicated to
describing the main result formally and the main ideas behind it. See the full
version of the paper for a formal description of our AM protocol.

Motivation and Related Work. A recent line of work in cryptogra-
phy [38,44,14,29,34,41,33] studies the possibility of obtaining secure protocols
in an extended model of interaction in which the parties are allowed to ex-
change more than just classical bits: the parties are allowed to locally construct
a (stateful or stateless) circuit, put it inside a tamper-proof token, and send it to
another party. The receiver of a token (in this model) is allowed only to use it as
a black-box. Namely, she is only allowed to give inputs to the token and receive
the output. (If the token is stateful, asking the same query twice might lead to
different answers.) Designing protocols in this model is made challenging by the
fact that a receiver of a token has no guarantee that the token is indeed well
formed. The work of Goyal et al. [34] showed that any two-party functionality
(e.g. zero-knowledge proof) can be carried out securely in this model without
relying on computational assumptions. Unfortunately the solution of [34] uses
stateful tokens, which makes it vulnerable to “resetting attacks”. Namely, there
is no security guarantee if a malicious party receiving a token can reset it to its
initial state, say, by cutting off its power.

In another line of research, Kalai and Raz [37] introduced the Interactive PCP
(IPCP) model which is a hybrid between the two-prover and the PCP models.
In the IPCP model the verifier interacts with a prover and a PCP oracle. Note
that when the prover and the PCP oracle are efficiently computable, the IPCP
model becomes a special case of the tamper-proof token model in which the
prover sends a stateless token (computing the PCP) to the verifier.

Although Kalai and Raz [37] introduced the IPCP model for the purpose of
optimizing the PCP length at the cost of small amount of interaction with the
prover, Goyal, Ishai, Mahmoody, and Sahai [33] showed that the IPCP model is
also interesting for cryptographic purposes in the context of achieving uncondi-
tional security in the tamper-proof token model. It was shown in [33] that uncon-
ditional (statistical) ZK proofs for NP exist in the IPCP model, and moreover
the prover and the PCP oracle can be implemented efficiently given a witness
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w for x ∈ L. The verifier in the protocol of [33] exchanges only four messages
with the prover. A main question left open in [33] was whether there exists any
protocol that avoids such interaction between the verifier and the prover alto-
gether (i.e. the verifier only interacts with the PCP oracle). It is easy to see
that the latter question is equivalent to our main question above! Namely, any
positive answer to our main question implies a proof system in which all the
communication between the prover and the verifier consists of a single stateless
token sent to the verifier which hides the circuit computing the PCP oracle and
can convince the verifier about the truth of the input statement in a ZK manner.

Therefore, if efficient ZK-PCPs for NP exist, they would lead (without
any computational assumptions) to “noninteractive” statistical zero-knowledge
proofs for NP using tamper-proof hardware with the extra feature of being re-
sistant against resetting attacks, since the used token (which computes the PCP
oracle) is stateless.

2.2 Simplifying Bounded-Query ZK-PCPs

Our second contribution is a simplification of the ZK-PCP construction of Kilian
et al. [40]. The construction of [40] starts from the weakly-sound bounded-query
ZK-PCP of [19] and compiles it into a PCP which is zero-knowledge against
malicious verifiers of bounded query complexity. The weakly-sound PCP of [19]
is zero-knowledge against any k (possibly adaptive) queries, but suffers from
the soundness error 1 − 1/ poly(k). The main tool introduced and employed
in the compiler of [40] is called a “locking scheme”, which is an analogue of a
commitment scheme in the PCP model. In a locking scheme a sender holds a
secret w and randomly encodes it into an oracle σw that can be accessed by the
receiver R (denoted as Rσw). The efficient receiver should not be able to learn
any information about w through its oracle access to σw . On the other hand,
the sender can later send a key to the receiver to decommit the value w. The
protocol should guarantee that the sender is not able to change his mind about
the value w after constructing the oracle σw.

4

Kilian et al. [40] gave an elegant way of using locking schemes to convert a ZK-
PCP with 1−1/ poly(k) soundness error into a standard ZK-PCP of constant or
even negligible error. Unfortunately, the locking scheme of [40] which forms the
main technical ingredient of their ZK-PCP constructions is quite complicated to
describe and analyze (pages 6 to 12 there) and uses ad-hoc algebraic techniques.

Motivation. Most applications of ZK-PCPs considered in this work either require
the stronger unbounded variant (see Section 2.1) or alternatively can rely on an
honest-verifier variant (see Section 2.3), which is easier to realize. However, effi-
cient bounded-query ZK-PCPs with security against malicious verifiers can also
be motivated by natural application scenarios. For instance, one can consider

4 In other words, a locking scheme can be thought of as a commitment scheme with
statistical security guarantees and minimal interaction such that during its commit-
ment phase the sender sends only a single tamper-proof token (containing the oracle
σw) to the receiver.
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the goal of distributing an NP-witness among many servers in a way that simul-
taneously supports a very efficient verification (corresponding to the work of the
honest verifier) and secrecy in the presence of a large number of colluding servers
(corresponding to the query bound of a malicious verifier). One can also consider
a “time-lock zero-knowledge proof” in which a stateless hardware token contains
an embedded witness which can be very quickly validated but requires a lot of
time to extract. Another motivation behind our simpler locking schemes comes
from the line of work aiming at simplifying PCP constructions and making them
combinatorial. The main algebraic and technical components in the final PCP
construction of Kilian et al. [40] are (1) the PCP theorem of [3,4] (which comes
in through the construction of [19]) and (2) the locking scheme of [40]. The first
(more important) component was considerably simplified by Dinur, and here we
give a simplified version of the second component. (For a more extensive survey
of this line of research see [42] and the references therein.)

In the full version of this paper, we formally present and analyze a simple
combinatorial construction of a locking scheme which can be viewed as a nonin-
teractive implementation of Naor’s commitment scheme [45] in the PCP model.
In the following we describe the main idea.

Technique. We start by reviewing Naor’s commitment scheme. In this commit-
ment scheme, the parties have access to a pseudorandom generator f : {0, 1}n !→
{0, 1}3n and the protocol works as follows:

The receiver chooses a random “shift” r
$←{0, 1}3n and sends it to the sender.

The sender, who holds a secret input bit b, chooses a random seed s
$← {0, 1}n

and sends f(s) + b · r = t to the receiver (the addition and multiplication are
componentwise over the binary field). In the decommitment phase the sender
simply sends (b, s) to the receiver, and the receiver makes sure that f(s)+b·r = t
holds to accept the decommitted value.

The binding property holds because the support set of f is of size at most

|f({0, 1}n)| ≤ 2n, and a random shift r
$←{0, 1}3n with overwhelming probability

of at least 1− 2n · 2n · 2−3n = 1 − 2−n will have the property that f({0, 1}n) ∩
(f({0, 1}n) + r) = ∅. Thus for such “good” r, by sending t to the receiver
the sender will be bound to at most one possible value of b (regardless of the
structure of the function f).

On the other hand, the hiding property of the scheme reduces in a black-box
way to the pseudorandomness of f(Un). Namely, if an efficient receiver R̂ can
distinguish between f(s) + r and f(s) + r · b, another efficient algorithm D who

uses R̂ internally is able to distinguish f(Un) from a random value U3n. Thus
it holds that if the function f is random, the scheme will be statistically hiding
against receivers who ask at most poly(n) oracle queries to f . The reason is that
a random function f mapping {0, 1}n to random values in {0, 1}3n is statistically
indistinguishable from a truly random function as long as the distinguisher is
bound to ask at most 2o(n) queries to f .

The above observation about the hiding property of Naor’s commitment scheme
means that if, in the second round of the commitment phase, the sender chooses
f to be a truly random function and sends f(s) + b · r to the receiver as well as
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(providing oracle access to) f(·), then we get a secure (inefficient) commitment
scheme in the interactive PCP model without relying on any computational as-
sumption.5 In our construction of locking schemes we show how to eliminate the
first initial message r of the receiver and emulate the role of this shift r by a few
more queries asked by the receiver and more structure in the locking oracle.

2.3 Black-Box Sublinear ZK Arguments

Kilian [39], relying on the PCP construction of [5],6 proved that assuming the
existence of exponentially-hard collision-resistant hash functions (CRH) and 2-
message statistically-hiding commitments, one can construct a (6-message) sta-
tistical ZK argument for NP with polylog(n) communication complexity (where
n is the input length). Later on, Damg̊ard et al. [17] showed that 2-message
statistically-hiding commitments can be obtained from any CRH, which made
the existence of exponentially hard CRH sufficient for the construction of Kilian.
Micali [43] showed how to make Kilian’s protocol noninteractive in the random
oracle model. The above constructions make a non-black-box use of the under-
lying collision-resistant hash function.

Our third contribution is to obtain black-box constructions of sublinear ZK
arguments for NP by using bounded-query efficient ZK-PCPs for NP. Namely,
we observe that the bounded-query ZK-PCP of [19] can be employed to get an
alternative to the ZK argument of Kilian [39] for NP which uses the underlying
CRH function as a black box. (Our protocols are in fact fully black-box [49], in
the sense that the security reduction makes a black-box use of the adversary,
and have black-box simulators.)

Theorem 2 (Black-Box Sublinear ZK Arguments). Let H be any family of
collision-resistant hash functions. Using H only as a black-box, one can construct
a constant-round ZK argument system for NP with negligible soundness error
and communication complexity sublinear in the witness size. Furthermore:
– For the case of an honest verifier, the zero knowledge is statistical, the round

complexity is 4 messages, and the protocol is public coin.
– For the case of malicious-verifier zero knowledge, the round complexity is 5

messages, and the proof of security requires that the family of CRH be secure
against non-uniform adversaries.

– If the family of CRH is secure against adversaries running in time 2n
Ω(1)

,
then the communication complexity can be made polylogarithmic in the wit-
ness size for both honest verifier and malicious verifier settings.

– In the random oracle model, there exists an unconditionally secure non-
interactive statistical zero knowledge argument system for NP with negligible
soundness error and polylogarithmic communication complexity.

We prove Theorem 2 in the full version; below we describe the main ideas.

5 Note that the random oracle f(·) is not efficiently computable. The work of [33]
presents an efficient construction of unconditionally secure commitments in the IPCP
model.

6 The more advanced PCP constructions of [3,4] were not known at that time.
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Motivation and Related Work. Our black-box construction of Theorem 2 is moti-
vated by the recent line of work on studying the power of black-box cryptographic
constructions vs. that of non-black-box ones (e.g. [24,18,35,15,16,48,50,32]). The
goal in this line of work is to understand whether the non-black-box application
of an underlying primitive P which is used in a construction of another (per-
haps more complicated) primitive Q is necessary or a black-box construction
exists as well. The reason behind studying this question is that the black-box
constructions are generally much more efficient (since the source of the non-
black-box-ness usually is an extremely inefficient Cook-Levin reduction to an
NP-complete language). Moreover, black-box constructions are capable of also
incorporating any physical implementations of the employed primitive P in the
implementation of Q.

Technique. Kilian’s argument system, when only required to be sound (and not
ZK), has only four messages and uses the hash function as a black-box. The first
three messages can be easily made ZK, and it is only the last message from the
prover which potentially carries some knowledge. In this last message, the prover
reveals some portions of the PCP. To retain the zero-knowledge property, Kilian
substitutes the last message (of his 4-message protocol) by a zero-knowledge
sub-protocol through which the prover convinces the verifier that he could have
revealed the correct portion of the PCP in a way that would cause the verifier
to accept. The latter zero-knowledge sub-protocol makes non-black box use of
the code of the hash function used in the protocol. Thus, our goal is to remove
the zero-knowledge sub-protocol performed at the end.7

In order to make Kilian’s 6-message ZK argument black-box, we need to
know more details about its first 3 rounds. The first message is simply the
description of the hash function sent to the prover. Then by using the given
hash function and applying a Merkel tree to the PCP the prover hashes down
the PCP into a short string which is sent to the verifier as a commitment to whole
PCP. With some care, one can make the hash value carry negligible information
about the PCP. The third message (from the verifier) consists of the indices of
symbols which the PCP verifier chooses to read from the PCP. The prover, in
the 4th message reveals the answers to the PCP queries by revealing the relevant
paths of the Merkel tree to the verifier. The committed hash value of the PCP
(the second message) together with the collision-resistance property of the hash
function prevent the prover from changing his mind about the PCP that he
committed to in the second message. Thus the soundness of the PCP implies
the soundness of the argument system. To keep the last message of this protocol
zero-knowledge, as we said, Kilian’s prover will not simply reveal the relevant
preimages, but instead would prove in a zero-knowledge manner, that he knows
a set of preimages that would make the PCP verifier accept.

7 Barak and Goldreich [7] also employ Kilian’s approach to get a 4-message universal
argument without zero-knowledge. Similarly to Kilian’s protocol, to make their pro-
tocol zero-knowledge (or just witness indistinguishable) [7] use the hash function in
a non-black-box way.
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Our main intuitive observation is that if instead of using the PCP of [3,4] one
feeds (a direct product version of) the the bounded-query ZK-PCP of [19] to the
construction of Kilian, then the prover can safely reveal the relevant preimages
in the last step of the basic 4-message argument of Kilian and this will not
hurt the zero-knowledge property. The key point is that although the employed
PCP is zero-knowledge only against bounded-query PCP verifiers, since we are
in the prover/verifier setting, the prover can control how many queries of the
PCP are read by the verifier, and therefore the bounded-query ZK property
of the used PCP will suffice for the argument system to be zero-knowledge.
Because our construction is black box, an unconditional result in the random
oracle model follows immediately. Since this construction based on collision-
resistant hash functions is black-box, it immediately implies an unconditional
construction of sublinear ZK arguments in the random oracle model. Using the
transformation of [21,43] one can eliminate the interaction using the random
oracle and obtain an unconditional construction of sublinear ZK arguments for
NP in the random oracle model. To obtain the result for malicious verifiers
(and negligible soundness error), we apply a variant of the Goldreich-Kahan [25]
where both prover and verifier use statistically hiding commitments. See the full
version of the paper for a formal description of the protocol and its analysis.

Using NIZK? A possible alternative way to get a ZK argument (without using
ZK-PCPs) is to use noninteractive zero-knowledge (NIZK) proofs for NP [10].8

To do so, the prover and the verifier should perform a coin-tossing protocol along
with the first 3 messages of the basic variant of Kilian’s argument system, and
this will allow the prover to be able to send a noninteractive zero-knowledge
message to the verifier in his last message which proves to the verifier that the
prover knows the right preimages of the hash function. This approach benefits
from having only 4 messages exchanged, but it still uses the code of the hash
function in a non-black-box way, and moreover, one needs to assume the existence
of NIZK proofs for NP (in addition to the assumption that exponentially-hard
collision-resistant hash functions exist).

3 On Nonadaptive Efficient ZK-PCPs

In this section we give a formal statement of Theorem 1 and more details about
the intuition behind its proof. See the full version for a complete proof.

Definition 3. In a probabilistically checkable proof (PCP) Π = (P, V ) for a
language L, the prover P = {πx} is an (ensemble) of distributions over proof

oracles, V is an efficient verifier accessing a proof πx
$← πx, and the following

properties hold.

– Completeness: For every x ∈ L, it holds that Pr
π

$←πx

[V π(x) = 1] ≥ 2/3.

– Soundness: If x �∈ L, then for every oracle π̂ we have Pr[V π̂(x) = 0] ≥ 2/3.

8 This variant was pointed out to us by Rafael Pass [47].
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The verifier V is nonadaptive if the queries it asks only depend on its own private
randomness and the input x. (A nonadaptive verifier can prepare all of its oracle
queries in advance and ask them in one “round”.) For the case where L ∈ NP,
a PCP Π is called efficient if there is an NP-relation RL(x,w) associated with
L with the following efficiency property. Given any input x and witness w such
that (x,w) ∈ RL, one can efficiently sample a circuit computing a PCP oracle

πx
$← πx.

9

Remark 4 (The Entropy of PCPs). For an input x ∈ L, the entropy of the PCP
oracle πx is defined similarly to the entropy of any random variable. Note that
for a fixed input x ∈ L (and witness w for x ∈ L, if the PCP is efficient), the
distribution of πx is determined by the prover’s private randomness. Since there
are at most 2poly(k) circuits of size k, any PCP oracle computable by circuits
of size at most k = poly(n) (regardless of whether these circuits are generated
efficiently or not) has entropy at most log(2poly(k)) ≤ poly(k) ≤ poly(n), simply
because any finite random variable x has Shannon entropy at most H(x) ≤
log | Supp(x)|.

Definition 5. Let Π = ({πx}, V ) be a PCP for the language L. Π is called
(statistical) zero-knowledge (ZK) if for every malicious poly(n)-time verifier

V̂ , there is an efficient simulator Sim which runs in (expected) poly(n)-time
and for a sequence of inputs x ∈ L the output of Sim(x) is neg(|x|)-close to

View〈πx, V̂ 〉(x).10 A simulator Sim is called straight-line if it uses V̂ only as a

black-box and moreover it just outputs the result of a single interaction with V̂ .
Namely, the simulator Sim interacts with V̂ without knowing its secret random-
ness rV̂ , and its output is distributed statistically close to the view of V̂ πx .

Theorem 1 directly follows from Remark 4 and Theorem 6 below.

Theorem 6. Let Π = ({πx}, V ) be a ZK-PCP for a language L with a non-
adaptive verifier V . If (for every fixed input x) the PCP oracle {πx} has entropy
at most poly(|x|), then L ∈ AM ∩ coAM. Moreover L ∈ BPP if the simulator
is straight-line.11

Corollary 7. Let Π = ({πx}, V ) be a ZK-PCP for a language L with oracle
entropy at most poly(n), and suppose the total length of the PCP answers re-
turned to the verifier during a single verification is at most O(log n) bits, then
(regardless of the adaptivity of the verifier), it holds that L ∈ AM ∩ coAM.
(Also L ∈ BPP if the simulator is straight-line.)

9 More formally, in that case we shall index the oracle distributions {πx,w} by both
the input and the witness. Then the completeness should hold for all x ∈ L when
the prover uses any witness w that x ∈ L.

10 In the case of efficient ZK-PCPs, the zero-knowledge property should hold regardless
of which witness w (for x ∈ L) is used by the prover to generate the oracle.

11 Bounded-query ZK-PCPs of [40] and its predecessors [27,19] all have straight-line
simulators.
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Note that in Corollary 7 there is no bound on the length of the queries of the
verifier, and particularly it can be applied to cases that the number of queries
of V is O(log n) and the PCP answers (alphabet) are of constant size while the
length of the PCP is exponential 2poly(n) (which makes the length of the queries
of the verifier at least poly(n)).

Proof (Proof of Corollary 7). Since the total length of oracle answers is O(log n)
bits, we can modify the verifier V into another equivalent verifier V ′ as follows:
the new verifier V ′ tries to ask a superset of the queries that V would ask, but
V ′ asks its queries in a nonadaptive way. In particular V ′ enumerates all the
possible answers that V might get from the oracle, continues the verification in
each case, and prepares all the possible V queries at the beginning. There are
at most 2O(logn) = poly(n) many possibilities caused by different PCP answers
in a verification, thus there will be at most poly(n) many queries asked by V ′.
After getting the answers, V ′ can emulate V internally and decide as V would.
The completeness, soundness, and zero-knowledge of V ′ are inherited from those
of V by definition.

3.1 Main Ideas and Framework

Here we describe the main ideas behind the proof of Theorem 6. Our AM
protocols for L and L follow the same general framework. (The AM protocol
for L is the more interesting case, since it implies the collapse of the hierarchy
in case L is NP.)

First we show that if a bounded-entropy ZK-PCP for L has a straight-line
simulator, then L (and L) can be decided by an efficient BPP algorithm DL.
At a very high level, this step uses ideas from [26] by looking at a particular
malicious verifier (in our case a repeated version of the honest verifier) and using
its interaction with the straight-line simulator to decide the language. Since the
key ideas already appear in the case of straight-line simulation, in Section 3.2
below we start by only describing this basic case.

Beyond Straight-Line Simulation. For the case of general (statistical) sim-
ulation, we show how to emulate the efficient algorithm DL above with the help
of an untrusted prover. In particular, we first show how to emulate DL with the
help of some advice αx sampled from a specific distribution12, and then we will
show how to get this advice αx from an (untrusted) prover through a constant
round protocol GetAdv. The latter protocols are implemented following similar
frameworks introduced by Feigenbaum and Fortnow [20] (and extended in the
followup works of [11,2]) in the context of studying the possibility of worst-case
to average-case reductions for NP. Our protocol, however, is more complicated
and uses recent and old sampling protocols from [31,28,36].

12 Here we are using the term “advice” in a nonstandard way, because the advice
distribution αx depends on the input x (rather than only depending on the input
length |x|).
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3.2 The Case of Straight-Line Simulation

In this section we present the BPP algorithm for L assuming that the ZK-PCP
has a perfect straight-line simulator. This special case already captures the main
ideas, and we refer the reader to the full version for the general case.

Since the PCP verifier V is assumed to be nonadaptive, we can assume w.l.o.g.
that V permutes its queries a1, . . . , aq randomly before querying the oracle.

The Intuition. The general framework is to use the simulator Sim to find a “good
enough” oracle ϕ and run a fresh instance of the verifier V against this oracle.
This way, the correctness of our algorithm to decide membership in L follows
from the soundness of the original PCP system. The challenge is to sample
the oracle ϕ in a way that makes the verifier accept in case the input x is in
L. Suppose we run the simulator over the “mildly malicious” verifier who only
repeats several (independent) executions of the verifier: (V 1, . . . , V k). Then, in
case x ∈ L, the simulated transcript of all of these executions (V 1, . . . , V k)
will be accepted. To define the oracle ϕ, relying on the straight-line nature
of the simulator, we can fix any simulated partial transcript for (V 1, . . . , V i)
(for i ∈ [k]) and ask Sim to answer any new query only conditioned on the
simulated transcript of (V 1, . . . , V i). (Even though ϕ is a randomized oracle, its
randomness can be fixed independently of the final verification that is executed
over ϕ.) The main intuition is that since the entropy of the simulated transcript
for (V 1, . . . , V k) is bounded, for most of i ∈ [k] the simulated transcript of V i

has very small entropy, and relying on the non-adaptivity of V , all of its queries
could be thought of as the “first query”, and this way the oracle ϕ (defined
above) behaves very close to the actual “oracle” of the simulated transcript of
V i which leads to an accept. The formal argument follows.

Notation. Let V [k] be an execution of k independent copies of the PCP verifier
V . By V i we refer to the i-th execution of V in V [k] (i.e. V [i] = (V 1, . . . , V i)).
V [k] is a potentially malicious verifier whose view View〈πx, V

[k]〉 is assumed to
be perfectly simulated by the straight-line simulator Sim (when given access to
V [k]). The view View〈πx, V

[k]〉 is composed of k random seeds r1, . . . , rk for V
and k transcripts τ1, . . . , τk such that each τ i = (ai1, b

i
1, . . . , a

i
q, b

i
q) is a partial

transcript where {ai1, . . . , aiq} are the queries asked by V using the randomness ri

and bij = πx(a
i
j) is (supposedly) a corresponding returned oracle answer. We will

only use the fact that Sim simulates (τ1, . . . , τk) correctly and will ignore the fact
that this is simulated jointly with random seeds (r1, . . . , rk). Also since we will
use Sim only over V [k] and some input x, for simplicity in the following we will
use Sim to denote Sim(V [k], x). Also, let m = poly(n) ≥ H(πy) be the upper
bound on the PCP entropy for every y ∈ L ∩ {0, 1}n, and let ε = 1/ poly(n)
be a parameter controlling the error of the BPP algorithm DL. The formal
description of the algorithm DL is as follows.

Construction 8. BPP Algorithm DL. Set k = m · (3qε )2 where q is the query
complexity of V and ε is the error parameter.
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1. Randomly choose i
$← [k], and use Sim to generate (τ1, . . . , τ i−1) as prefix of

View〈πx, V
[i−1]〉.

2. Choose a fresh randomness ri for the verifier V and generate the queries
ai1, . . . , a

i
q using ri.

3. Using the simulator Sim answer each of the queries aij as follows to get
the answer bj. We extend the execution of the straight-line simulator Sim
assuming that aij is the first query of V i conditioned on (τ1, . . . , τ i−1) being

generated already for (V 1, . . . , V i−1).
4. Finally output whatever V decides over the view (ri, ai1, b1, . . . , a

i
q, bq).

Lemma 9. If Π has soundness 1 − δs, then DL will reject every x �∈ L with
probability ≥ 1− δs, and if Π has completeness 1− δc, then DL will accept every
x ∈ L with probability ≥ 1− (δc + ε).

Proof (Proof of Lemma 9). We study the cases x ∈ L and x ∈ L separately.

When x ∈ L. The final verification of the algorithm of Construction 8 is
run against a randomized oracle, but this oracle can be sampled and fixed
independently of the randomness of the verifier, thus the soundness of the
PCP implies the soundness of DL. More formally, define the randomized or-
acle ϕi = (πx | τ1, . . . , τ i−1) according to the distribution of the PCP oracle πx

conditioned on the view of V [i−1]. Define the oracle ϕ̂i as a randomized oracle

that for every new query a it samples a fresh instance of the oracle ϕ
$← ϕi

and then answers a using ϕ. Based on Construction 8 DL is indeed running the
verifier V against an instance of the oracle ϕ̂ ← ϕ̂i and outputs V ϕ̂(x) . Thus,
since x �∈ L, by the soundness of V , with probability at least 1 − δs it holds
that V ϕ̂(x) = 0. Note that if instead of asking all of the queries of the verifier
“as the first query” we simply ask the simulator to simulate the whole view, the
answers might not be chosen according to any fixed oracle independently of the
randomness of V , and V might accept even though x ∈ L.

When x ∈ L. Informally speaking, the verifier accepts in this case for the follow-
ing two reasons: (1) If we sample the view of the final verification simply as the
view of V i as an extension of V [i−1] all sampled by the simulator Sim (i.e. using
the oracle ϕi rather than ϕ̂i), then it will be an accepted view by the definition
of the simulator, moreover (2) since the verifier is nonadaptive and permutes its
answers, any of its queries can be thought of as the first query. More formally,
consider the following two mental experiments:

1. Sample (τ1, . . . , τ i−1) and ϕ
$← ϕi (as defined above) and sample ai1, . . . , a

i
q

(by sampling ri). Then execute q versions of the verifier V as follows. In the
j’th execution ask the queries from ϕ in this order: (aij , . . . , a

i
q, a

i
1, . . . , a

i
j−1)

and receive the answers (bij , . . . , b
i
q, b

i
1, . . . , b

i
j−1).
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2. Do the same as above, but here in the j’th execution first sample a fresh oracle

ϕj
$← ϕi and then ask the queries in the order (aij , a

i
j+1, . . . , a

i
q, a

i
1, . . . , a

i
j−1)

to get the answers (cj1, . . . , c
j
q).

Claim. Let α = m/k. Then for every j ∈ [q], it holds that Pr[bij = c
j
1] ≥ 1−3

√
α.

Now we prove Claim 3.2. A crucial point is that the queries of V are already per-
muted randomly, and therefore rotations inside each execution will still produce
a random execution of V (although these random executions are correlated).
Therefore by symmetry, it would suffice to prove Claim 3.2 only for the first
execution of the two experiments. Since H(πx) ≤ m and that aij ’s are sampled
independently of πx, therefore:

m ≥ H(πx) ≥
∑
i∈[k]

∑
j∈[q]

H(bi
j | a11,b1

1, . . . , a
i
j) ≥

∑
i∈[k]

H(bi
1 | τ 1, . . . , τ i−1, ai1).

By averaging over i and using the definition of the conditional entropy it holds
that:

E
i

$←[k],τ1,...,τ i−1,ai
1

H(bi
1 | τ 1, . . . , τ i−1, ai1) ≤ m/k = α. By another aver-

aging argument, with probability at least 1 − √α over sampling and fixing

(i
$← [k], τ1, . . . , τ i−1, ai1), it would hold that H(bi

1 | τ1, . . . , τ i−1, ai1) ≤
√
α. We

use the following lemma to bound the collision probability when the Shannon
entropy is small.

Lemma 10. For every finite random variable x it holds that Pr
x1

$←x,x2
$←x
[x1 =

x2] ≥ 1− 1.45H(x).

Proof. Let C = Pr
x1

$←x,x2
$←x

[x1 = x2] be the collision probability of x, let pi =

Pr[x = i], and let H = H(x). By Jensen’s inequality:
∑

i pi log pi ≤ log
∑

i p
2
i

it holds that H ≥ log 1/C (where log 1/C is also known as the Renyi entropy).
Therefore using e−x ≥ 1 − x we conclude that: C ≥ 2−H = e(− ln 2)·H ≥ 1 −
(ln 2) ·H > 1− 1.45H .

By Lemma 10, the bounded entropy of H(bi
1 | τ1, . . . , τ i−1, ai1) ≤

√
α implies

that its collision probability is at least 1 − 2
√
α and since c11 and bi

1 are both
sampled from (bi

1 | τ1, . . . , τ i−1, ai1), we have Pr[c11 = bi
1] ≥ 1− 2

√
α. Claim 3.2

now follows by a union bound.

Claim 3.2 implies that the sampled (ri, ai1, b1, . . . , a
i
q, bq) in the algorithm DL

(which is the same as using the first query/answer pairs of executions in the
second experiment) will also lead to accepting with probability at least 1− δc −
3q
√
α = 1− (δc + ε).
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Progression-Free Sets and Sublinear Pairing-Based
Non-Interactive Zero-Knowledge Arguments
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Abstract. In 2010, Groth constructed the only previously known sublinear-
communication NIZK circuit satisfiability argument in the common reference
string model. We optimize Groth’s argument by, in particular, reducing both the
CRS length and the prover’s computational complexity from quadratic to quasi-
linear in the circuit size. We also use a (presumably) weaker security assumption,
and have tighter security reductions. Our main contribution is to show that the
complexity of Groth’s basic arguments is dominated by the quadratic number
of monomials in certain polynomials. We collapse the number of monomials to
quasilinear by using a recent construction of progression-free sets.

Keywords: Additive combinatorics, bilinear pairings, circuit satisfiability, non-
interactive zero-knowledge, progression-free sets.

1 Introduction

By using a zero-knowledge proof, a prover can convince a verifier that some statement
is true without leaking any side information. Due to the wide applications of zero-
knowledge, it is of utmost importance to construct efficient zero-knowledge proofs.
Non-interactive zero-knowledge (NIZK) proofs can be generated once can be verified
many times by different verifiers and are thus useful in applications like e-voting.

NIZK proofs (or arguments, that is, computationally sound proofs) cannot be con-
structed in the plain model (that is, without random oracles or any trusted setup as-
sumptions). Blum, Feldman and Micali showed in [4] how to construct NIZK proofs in
the common reference string (CRS) model. During the last years, a substantial amount
of research has been done towards constructing efficient NIZK proofs (and arguments).
Since the communication complexity and the verifier’s computational complexity are
arguably more important than the prover’s computational complexity (again, an NIZK
proof/argument is generated once but can be verified many times), a special effort has
been made to minimize these two parameters.

One related research direction is to construct efficient NIZK proofs forNP-complete
languages. Given an efficient NIZK proof for a NP-complete language, one can hope
to construct NIZK proofs of similar complexity for the whole NP either by reduction
or implicitly or explicitly using the developed techniques. In some NIZK proofs for the
NP-complete problem circuit satisfiability (Circuit-SAT), see Tbl. 1, the communica-
tion complexity is sublinear in the circuit size. Micali [22] proposed polylogarithmic-
communication NIZK arguments for all NP-languages, but they are based on the PCP
theorem (making them computationally unattractive) and on the random oracle model.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 169–189, 2012.
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Table 1. Comparison of NIZK Circuit-SAT arguments with (worst-case) sublinear argument size.
|C| is the size of circuit, G corresponds to 1 group element and A/M /E/P corresponds to 1
addition/multiplication/exponentiation/pairing

CRS length Argument length Prover comp. Verifier comp.

Random-oracle based arguments

[14] O(|C| 12 )G O(|C| 12 )G O(|C|)M O(|C|)M
Knowledge-assumption based arguments from [15]

m = 1 Θ(|C|2)G 42G Θ(|C|2)E Θ(|C|)M +Θ(1)P

m = n
1
3 Θ(|C| 23 )G Θ(|C| 23 )G Θ(|C| 43 )E Θ(|C|)M +Θ(|C| 23 )P

Knowledge-assumption based arguments from the current paper

m = 1 |C|1+o(1)G 39G Θ(|C|2)A+ |C|1+o(1)E (8|C|+ 8)M + 62P

m = n
1
3 |C| 13+o(1)G Θ(|C| 23 )G Θ(|C| 43 )A+ |C|1+o(1)E Θ(|C|)M +Θ(|C| 23 )P

m = n
1
2 |C| 12+o(1)G Θ(|C| 12 )G Θ(|C| 32 )A+ |C|1+o(1)E Θ(|C|)M +Θ(|C| 12 )P

Another NIZK argument for Circuit-SAT, proposed by Groth in 2009 [14], is also based
on the random oracle model. It is well-known that some functionalities are secure in the
random oracle model and insecure in the plain model. As a safeguard, it is important
to design efficient NIZK proofs and arguments that do not rely on the random ora-
cles. Given a fully-homomorphic cryptosystem [10], one can construct efficient NIZK
proofs for all NP-languages in communication that is linear to the witness size [16].
However, since the witness size can be linear in the circuit size, in the worst case the
corresponding NIZK proofs are not sublinear.

In 2010, Groth [15] proposed the first (worst-case) sublinear-communication NIZK
Circuit-SAT argument in the CRS model. First, he constructed two basic arguments for
Hadamard product (the prover knows how to open commitments A, B and C to three
tuples a, b and c of dimension n, such that aibi = ci for i ∈ [n]) and permutation (the
prover knows how to open commitments A and B to two tuples a and b of dimension
n, such that a�(i) = bi for i ∈ [n]). Groth’s Circuit-SAT argument can then be seen
as a program in a program language that has two primitive instructions, for Hadamard
product and permutation. Some of the public permutations depend on the circuit, while
the secret input tuples of the basic arguments depend on the values, assigned to the input
and output wires of all gates according to a satisfying assignment. The basic arguments
then show that this wire assignment is internally consistent and corresponds indeed
to an satisfying input assignment. For example, Groth used one permutation argument
to verify that all input wires of all gates have been assigned the same values as the
corresponding output values of their predecessor gates.

In the basic variant of Groth’s pairing-based Circuit-SAT argument, see Tbl. 1, the
argument has Θ(1) group elements, but on the other hand the CRS has Θ(|C|)2 group
elements, and the prover’s computational complexity is dominated byΘ(|C|2) bilinear-
group exponentiations. A balanced version of Groth’s argument has the CRS and argu-
ment of Θ(|C|2/3) group elements and prover’s computational complexity dominated
by Θ(|C|4/3) exponentiations. (See [15] for more details on balancing. Basically, one
applies basic arguments on length-m inputs,m < n, n/m times in parallel.)
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We propose a new Circuit-SAT argument (see Sect. 3 for a description of the new
techniques, and subsequent sections for the actual argument) that is strongly related
to Groth’s argument, but improves upon every step. We first propose more efficient
basic arguments. We then use them to construct a (slightly shorter) new Circuit-SAT
argument. In the basic variant, while the argument is again Θ(1) group elements, it
is one commitment and one Hadamard product argument shorter. Moreover, in Groth’s
argument, every commitment consisted of 3 group elements while every basic argument
consisted of 2 group elements. In the new argument, most of the commitments consist of
2 group elements. Thus, we saved 3 group elements, reducing the argument size from 42
to 39 group elements, even taking into account that the new permutation argument has
higher communication complexity (12 instead of 5 group elements) than that of [15].

A balanced version of the new argument achieves the combined CRS and argument
of Θ(|C|1/2+o(1)) group elements. In the full version, we describe a zap for Circuit-
SAT that has communication complexity of |C|1/2+o(1) group elements, while Groth’s
zap from [15] has the communication complexity of Θ(|C|2/3) group elements. We
also use much more efficient asymmetric pairings instead of symmetric ones, a (pre-
sumably) weaker security assumption (Power Symmetric Discrete Logarithm instead of
Power Computational Diffie-Hellman), and have more precise security reductions. The
basic version of the new Circuit-SAT argument is more communication-efficient than
any prior-art random-oracle based NIZK argument, and it also has a smaller prover’s
computational complexity than [22].

Our main contribution is to note that the complexity of Groth’s basic arguments is
correlated to the number of monomials of a certain polynomial. In [15], this polynomial
has Θ(n2) monomials, where n = 2|C| + 1. We show that one can “collapse” the
Θ(n2) monomials to Θ(N) monomials, where N is such that [N ] has a progression-
free subset (that is, a subset that does not contain arithmetic progressions of length 3)
of odd integers of cardinality n. By a recent breakthrough of Elkin [9], N = O(n ·
22
√

2(2+log2 n)) = n1+o(1). See Sect. 3 for further elaboration on our techniques.
Thus, one can build an argument of Θ(1) group elements for every language in NP,

by reducing the task at hand to a Circuit-SAT instance. Obviously, one can often de-
sign more efficient tailor-made protocols, see [21,7] for some follow-up work. In par-
ticular, [7] used our basic arguments to construct a non-interactive range proof with
communication of Θ(1) group elements, while [21] used our techniques to design a
new basic argument to construct a non-interactive shuffle. (See [6] for a previous use of
additive combinatorics in the construction of zero-knowledge proofs.)

Due to the lack of space, several proofs have been deferred to the full version [20].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let Sn be the set of permutations from [n] to [n]. Let a =
(a1, . . . , an). Let a ◦ b denote the Hadamard (entry-wise) product of a and b, that is, if
c = a ◦ b, then ci = aibi for i ∈ [n]. If y = hx, then logh y := x. Let κ be the security
parameter. If 0 < λ1 < · · · < λi < · · · < λn = poly(κ). then Λ = (λ1, . . . , λn) ⊂ Z

is an (n, κ)-nice tuple. We abbreviate probabilistic polynomial-time as PPT. If Λ1 and
Λ2 are subsets of some additive group (Z or Zp in this paper), thenΛ1+Λ2 = {λ1+λ2 :
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λ1 ∈ Λ1 ∧λ2 ∈ Λ2} is their sum set and Λ1−Λ2 = {λ1−λ2 : λ1 ∈ Λ1∧λ2 ∈ Λ2} is
their difference set [25]. If Λ is a set, then kΛ = {λ1+ · · ·+λk : λi ∈ Λ} is an iterated
sumset, k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ, and 2̂Λ = {λ1 + λ2 : λ1 ∈ λ ∧ λ2 ∈
Λ ∧ λ1 �= λ2} ⊆ Λ+ Λ is a restricted sumset. (See [25].)

Let Gbp(1κ) be a bilinear group generator that outputs a description of a bilinear
group gk := (p,G1,G2,GT , ê) ← Gbp(1κ), such that p is a κ-bit prime, G1, G2 and
GT are multiplicative cyclic groups of order p, ê : G1 × G2 → GT is a bilinear map
(pairing) such that ∀a, b ∈ Z and gt ∈ Gt, ê(ga1 , g

b
2) = ê(g1, g2)

ab. If gt generates
Gt for t ∈ {1, 2}, then ê(g1, g2) generates GT . Deciding the membership in G1, G2

and GT , group operations, the pairing ê, and sampling the generators are efficient, and
the descriptions of the groups and group elements are O(κ) bit long each. Well-chosen
asymmetric pairings (with no efficient isomorphism between G1 and G2) are much
more efficient than symmetric pairings (where G1 = G2). For κ = 128, the current
recommendation is to use an optimal (asymmetric) Ate pairing [18] over a subclass of
Barreto-Naehrig curves [2]. In that case, at security level of κ = 128, an element of
G1/G2/GT can be represented in respectively 512/256/3072 bits.

A (tuple) commitment scheme (Gcom, Com) in a bilinear group consists of two PPT
algorithms: a randomized CRS generation algorithm Gcom, and a randomized com-
mitment algorithm Com. Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and
Comt(ckt;a; r), with a = (a1, . . . , an), outputs a commitment value A in Gt (or in
Gb

t for some b > 1). We open Comt(ckt;a; r) by outputting a and r.
A commitment scheme (Gcom, Com) is computationally binding in group Gt, if for

every non-uniform PPT adversaryA and positive integer n = poly(κ), the probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :
(a1, r1) �= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]

is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group Gt,
if for any positive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages
a1,a2, the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal.

A trapdoor commitment scheme has three additional efficient algorithms: (a) A trap-
door CRS generation algorithm inputs t, n and 1κ, and outputs a CRS ck∗ (that has the
same distribution as Gtcom(1κ, n)) and a trapdoor td, (b) a randomized trapdoor commit-
ment that takes ck∗ and a randomizer r as inputs and outputs the value Comt(ck∗;0; r),
and (c) a trapdoor opening algorithm that takes ck∗, td, a and r as an input and outputs
an r′ such that Comt(ck∗;0; r) = Comt(ck∗;a; r′).

Let R = {(C,w)} be an efficiently computable binary relation such that |w| =
poly(|C|). Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R}
be an NP-language. Let n be some fixed input length n = |C|. For fixed n, we have
a relation Rn and a language Ln. A non-interactive argument for R consists of the
following PPT algorithms: a common reference string (CRS) generator Gcrs, a prover
P , and a verifier V . For crs ← Gcrs(1κ, n), P(crs;C,w) produces an argument ψ. The
verifier V(crs;C,ψ) outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs,P ,V) is perfectly complete, if ∀n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)←Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .
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A non-interactive argument (Gcrs,P ,V) is (adaptively) computationally sound, if for all
non-uniform PPT adversariesA and all n = poly(κ), the probability

Pr[crs← Gcrs(1κ, n), (C,ψ)← A(crs) : C �∈ L ∧ V(crs;C,ψ) = 1]

is negligible in κ. The soundness is adaptive, that is, the adversary sees the CRS before
producing the statementC. A non-interactive argument (Gcrs,P ,V) is perfectly witness-
indistinguishable, if for all n = poly(κ), if crs ∈ Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈
R2

n, then the distributions P(crs;C,w0) and P(crs;C,w1) are equal.
A non-interactive argument (Gcrs,P ,V) is perfectly zero-knowledge, if there exists a

PPT simulator S = (S1,S2), such that for all stateful non-uniform PPT adversaries A
and n = poly(κ) (with td being the simulation trapdoor),

Pr

⎡⎢⎢⎢⎣
crs← Gcrs(1κ, n),
(C,w)← A(crs),
ψ ← P(crs;C,w) :
(C,w) ∈ Rn ∧ A(ψ) = 1

⎤⎥⎥⎥⎦ = Pr

⎡⎢⎢⎢⎣
(crs; td)← S1(1κ, n),
(C,w)← A(crs),
ψ ← S2(crs;C, td) :
(C,w) ∈ Rn ∧ A(ψ) = 1

⎤⎥⎥⎥⎦ .

3 Our Techniques

We will first give a more precise overview of Groth’s Hadamard product and permuta-
tion arguments [15], followed by a short description of our own main contribution. For
the sake of simplicity, we will make several simplifications (like the use of symmetric
pairings) during this discussion.

Groth uses an additively homomorphic tuple commitment scheme that allows one to
commit to a long tuple, while the commitment itself is short. The best known such com-
mitment scheme is the extended Pedersen commitment scheme in a multiplicative cyclic
group of order p and a generator g, where the commitment of a tuple a = (a1, . . . , an)
with randomness ra is equal to Com(a; ra) := gra ·

∏
gai

i . Here, one usually chooses
n random secrets xi ← Zp, and then sets gi ← gxi . Following [12], Groth [15] chooses
a single random secret x← Zp and then sets gi ← gx

i

. In this case, the commitment

Com(a; ra) := g
ra ·

n∏
i=1

gai

i = gra+
∑n

i=1 aix
i

can be seen as a lifted polynomial ra +
∑n

i=1 aix
i in x, that the committer (who does

not know x) computes from n given values gi = gx
i

. The first obvious benefit of this
commitment scheme is that it has a shorter secret (1 element instead of n elements).

Groth’s Hadamard product argument, where the prover aims to convince the verifier
that the opening of C = Com(c; rc) is equal to the Hadamard product of the openings
of A = Com(a; ra) and B = Com(b; rb) (that is, aibi ≡ ci (mod p) for i ∈ [n]),
is constructed as follows. Let A = gra ·

∏n
i=1 g

ai

i be a commitment of a and B =

grb ·
∏n

i=1 g
bi
i be a commitment of b by using the generator tuple (g1, . . . , gn). Let

C = grc ·
∏n

i=1 g
ci
i(n+1) be a commitment of b andD =

∏n
i=1 gi(n+1) be a commitment

of 1 = (1, . . . , 1) by using a different generator tuple (gn+1, . . . , gn(n+1)).
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Groth’s Hadamard product argument is based around the verification equation

ê(A,B) = ê(C,D) · ê(ψ, g) (1)

that (analogously to the Groth-Sahai proofs [17], though the latter only considers the
much simpler case n = 1) can be seen as a mapping of the required equality a ◦ b =
c ◦ 1 to another algebraic domain, with ψ compensating for the use of a randomized
commitment scheme. One gets that ê(A,B)/ê(C,D) is equal to ê(g, g)F (x), where
F (x) = (ra+

∑n
i=1 aix

i) ·(rb+
∑n

i=1 bix
i(n+1))−(rc+

∑n
i=1 cix

i) ·(
∑n

i=1 x
i(n+1))

is the sum of two formal polynomials in x, F (x) = Fcon(x)+Fψ(x), where Fcon(x) =∑n
i=1(aibi − ci)xi(n+2) is a constraint polynomial, spanned by the powers of x from

Λcon = {i(n+ 2) : i ∈ [n]}, and

Fψ(x) = rarb + rb

n∑
i=1

aix
i +

n∑
i=1

(rabi − rc)xi(n+1) +
n∑

i=1

n∑
j=1
j �=i

(aibj − ci)xi+j(n+1)

is an argument polynomial, spanned by the powers of x fromΛψ = {0}∪[n]∪{i(n+1) :
i ∈ [n]}∪{i+ j(n+1) : i, j ∈ [n]∧ i �= j}. One coefficient of Fcon(x) corresponds to
one constraint aibi = ci that the honest prover has to satisfy, and is 0 if this constraint
is true. Thus, all coefficients of Fcon are equal to 0 iff the prover is honest.

By using homomorphic properties of the commitment scheme, the prover constructs
the argument ψ = gFψ(x) as ψ = grarb · · · · ·

∏n
i=1

∏n
j=1:i�=j g

aibj−ci
i+j(n+1). This can be

done, since the prover — who knows how to open the commitments but does not know
the secret x— knows all coefficients rarb, . . ., aibj − ci. He also knows the generators
g, . . ., gi+j(n+1) if the Θ(n2) generators g�, for � ∈ Λψ, are included to the CRS. Thus,
the CRS has Θ(n2) group elements and the computational complexity of the prover is
Θ(n2) bilinear-group exponentiations. On the other hand, the verifier’s computational
complexity is Θ(1) pairings, since she only has to check Eq. (1).

For the soundness, one needs that when aibi �= ci for some i ∈ [n], then a satisfying
ψ cannot be computed from the elements gx

�

that are in the CRS; otherwise, a dishonest
prover would be able to compute a satisfying argument. This means that for i ∈ [n],

gx
i(n+2)

should not belong to the CRS. To be certain that this is true, one needs

(a) that gx
�

is in the CRS for values � ∈ Λψ but if � ∈ Λcon, then gx
�

does not belong
to the CRS (elements from 2 · Λ \ Λ̂ are allowed),

(b) an appropriate security assumption that states that computing gFψ for Fψ =∑
�∈Λψ

μ�x
� is only possible if one knows all values gx

�

for � ∈ Λψ, and
(c) that Λcon ∩ Λψ = ∅. (This is also a prerequisite for (a).)

One can guarantee (a) by the choice of the CRS. But also (c) is clearly true, since Λcon

and Λψ do not intersect.
To finish off the whole argument, one has to define an appropriate security assump-

tion for (b). Since constructing sublinear NIZK arguments is known to be impossible
under standard assumptions (see Sect. 2), one of the underlying assumptions is a knowl-
edge assumption (PKE assumption, as in [15], see Sect. 5). The whole argument will
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become (slightly!) more complex since all commitments and arguments also have to
include a knowledge component.

Groth’s permutation argument is based on a very similar idea and has basically the
same complexities. The only major difference is that if the permutation is a part of the
prover’s statement, then the verifier also has to perform Θ(n) bilinear-group multipli-
cations. Since Groth’s Circuit-SAT argument consists of a very small (< 10) number of
Hadamard product and permutation arguments, then it just inherits the complexities of
the basic arguments, as also seen from Tbl. 1, where, in the basic variation, |C| = n and
thus the CRS has Θ(|C|2) group elements, the argument length is 42 group elements,
the prover’s computational complexity is Θ(|C|2) exponentiations, and the prover’s
computational complexity is dominated by Θ(|C|) bilinear-group multiplications.

Groth’s Circuit-SAT argument has several sub-optimal properties that are all inher-
ited from the basic arguments. While it has succinct communication and efficient ver-
ification, its CRS of Θ(|C|2) group elements and prover’s computation of Θ(|C|2)
exponentiations (in the basic variant) seriously limit applicability. Recall that here
n = 2|C| + 1. A smaller problem is the use of different generators (g1, . . . , gn) and
(gn+1, . . . , gn(n+1)) while committing to different elements.

We note that Fcon has n monomials (1 per every constraint aibi = ci that a honest
prover must satisfy). On the other hand,Fψ hasΘ(n2) distinct — since i1+j1(n+1) �=
i2 + j2(n + 1) if i1, j1, i2, j2 ∈ [n] and (i1, j1) �= (i2, j2) — monomials. The number
of those monomials is the only reason why the CRS has Θ(n2) group elements and the
prover has to performΘ(n2) bilinear-group exponentiations.

We now show how to collapse many of the unnecessary monomials into one, so
that the full argument still remains secure, obtaining a polynomial Fψ(x) that has only
n1+o(1) monomials. First, we generalize the underlying commitment scheme. We still
choose a single x ← Zp and set gi ← gx

i

, but we allow the indexes of n generators
(gλ1 , . . . , gλn), that are used to commit, to actually depend on the concrete argument
— with the main purpose to be able to obtain as small Λψ as possible, while still guar-
anteeing that Fcon = 0 iff the prover is honest, and that Λcon ∩ Λψ = ∅. Assume that
Λ = (λ1, . . . , λn) is an (n, κ)-nice tuple of integers, so λn = maxi λi. Thus,

Com(a; ra) := g
ra

n∏
i=1

gai

λi
= gra+

∑n
i=1 aix

λi
.

The polynomial ra +
∑n

i=1 aix
λi has degree (up to) λn, but it only has (up to) n + 1

non-zero monomials. We now start again with the verification equation Eq. (1), but this
time we assume that all A, B, C andD have been committed by using the same set of
generators (gλ1 , . . . , gλn). Since F (x) = (ra+

∑n
i=1 aix

λi )(rb+
∑n

i=1 bix
λi)−(rc+∑n

i=1 cix
λi)(

∑n
i=1 x

λi), we get that F (x) = Fcon(x) + Fψ(x), where

Fcon(x) =

n∑
i=1

(aibi − ci)x2λi , (2)

Fψ(x) =rarb +

n∑
i=1

(rabi + rbai − rc)xλi +

n∑
i=1

n∑
j=1
j �=i

(aibj − ci)xλi+λj . (3)
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Here, the powers corresponding to nonzero coefficients belong either to the set Λcon =
2 · Λ := {2λi : i ∈ [n]} or to the set Λψ = Λ̂ := {0} ∪ Λ ∪ 2̂Λ, where 2̂Λ :=
{λi + λj : i, j ∈ [n] ∧ i �= j}.

If the prover is honest (that is, aibi − ci = 0 for all i), then the coefficients aibi − ci
corresponding to the powers in the set 2 · Λ are equal to 0. Therefore, an honest prover
can compute the argument ψ = gFψ(x) as g

∑
�∈Λ̂ μ�x

�

=
∏

�∈Λ̂(g
x�

)μ� , where the

coefficients μ� are known to the prover. This means that all elements gx
�

, � ∈ Λ̂, have
to belong to the CRS, and thus the CRS contains at least |Λ̂| < 2λn group elements.
Recall that in [15], one had to specify Θ(n2) elements in the CRS.

For the soundness, we again need (a–c), as in the case of Groth’s argument, to be
true. One can again guarantee (a) by the choice of the CRS, and one has to define a
reasonable security assumption (PKE assumption) for (b). Finally, achieving (c) is also
relatively easy. Namely, one can guarantee that 0 �∈ 2 ·Λ and Λ∩ 2 ·Λ = ∅ by choosing
Λ to be a set of odd1 integers. It is almost as easy to guarantee that 2 · Λ ∩ 2̂Λ = ∅
as soon as one rewrites this condition as 2λk �= λi + λj for i �= j, and notices that
this is equivalent to requiring that no 3 elements of Λ are in an arithmetic progression.
That is, Λ is a progression-free set [25]. Thus, it is sufficient to assume that Λ is a
progression-free set of odd integers.

Recall that the CRS length (and the prover’s computational complexity) depend
on |Λ̂| and thus it is beneficial to have as small |Λ̂| < 2λn possible. This can
be guaranteed by upper bounding λn, that is, by finding as small λn as possible
such that [λn] contains a progression-free subset of odd integers of cardinality n.
To bound λn, we show in Sect. 4 (following a recent breakthrough of Elkin [9])
that any range [N ] = {1, . . . , N} contains a progression-free set of odd integers of

size n = Θ(N(log2N)1/4/22
√

2 log2 N ) = N1−o(1), and thus one can assume that

λn = n1+o(1). (One can obtain λn = O(n · 22
√

2(2+log2 n)) by inverting a weaker
version of Elkin’s result.) In the full version, we give another proof of this result that,
while based on Green and Wolf’s exposition [13] of [9], provides more details and is
slightly sharper. In particular, Elkin’s progression-free set is efficiently constructible.

Groth’s permutation argument uses similar ideas for a different choice of A, B,
C, and D, and thus also for a different set Λψ. Unfortunately, if we use it with the
new generalized commitment scheme (that is, with general Λ), we obtain the guar-
antee a�(i) = bi only if Λ is a part of the Moser-de Bruijn sequence [23]. But then
λn = Θ(n2) and one ends up with a CRS ofΘ(n2) group elements. We use the follow-
ing idea to get the same guarantees when Λ is an arbitrary progression-free set of odd
integers. We show that if Λ is a progression-free set of odd integers, then Groth’s per-
mutation argument guarantees that a�(i) = TΛ(i, �) · bi, where TΛ(i, �) ≥ 1 is an easily
computable and public integer. We use this result to show that for some separately com-
mitted tuple a∗, a∗�(i) = TΛ(i, �) · bi for i ∈ [n]. We then employ an additional product

argument to show that a∗i = TΛ(�
−1(i), �) · ai for i ∈ [n]. Thus, a�(i) = bi for i ∈ [n].

We obtain basic arguments that only useΘ(λn) = n1+o(1) generators {gx�

: � ∈ Λ̂}.
This means that the CRS has n1+o(1) group elements and notΘ(n2) as in [15]. In both

1 Oddity is not strictly required. For Λ ∩ 2 · Λ = ∅ to hold, one can take Λ := {(2i + 1)22j :
i, j ≥ 0}, see OEIS sequence A003159. Dealing with odd integers is however almost as good.
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basic arguments, the prover has to computeψ (which takesΘ(n2) scalar multiplications
or additions in Zp and n1+o(1) bilinear-group exponentiations). As in [15], the prover’s
computation can be optimized even further by using efficient multi-exponentiation al-
gorithms. The verifier has to only perform Θ(1) bilinear pairings. In the case of the
permutation argument, she also has to compute Θ(n) bilinear-group multiplications,
though the multiplications can be done offline if the permutation is fixed. Thus, the new
basic arguments are considerably more efficient than Groth’s.

The soundness of the new product argument is based on two assumptions, a compu-
tational assumption (Λ̂-PSDL, see Sect. 5) and a knowledge assumption (Λ-PKE, see
Sect. 5). Groth [15] used [an2]-PKE (for a constant a) and [an2]-CPDH (which is a pre-
sumably stronger assumption than PSDL). Since Λ,Λψ are small subsets of [an2], then
our assumptions can be expected to be somewhat weaker in general. Finally, the secu-
rity reduction in the proof of the product argument takes time Θ(t(λn)) in our case and
Θ(t(an2)) in Groth’s case, where t(m) is the time to factor a degree-m polynomial.

4 Progression-Free Sets

A set of positive integers Λ = {λ1, . . . , λn} is progression-free [25], if no three ele-
ments of Λ are in an arithmetic progression, that is, λi + λj = 2λk only if i = j = k,
or equivalently, 2̂Λ ∩ 2 · Λ = ∅.

Let r3(N) denote the cardinality of the largest progression-free set that belongs
to [N ]. For any N > 1, the set of integers in [N ] that have no ternary digit equal
to 2 is progression-free. If N = 3k, then there are 2N − 1 such integers, and thus
r3(N) = Ω(N log3 2) = Ω(N0.63). Clearly, this set can be efficiently constructed. As
shown by Behrend in 1946 [3], this idea can be generalized to non-ternary bases, with

r3(N) = Ω(N/(22
√

2 log2 N · log1/42 N)). Behrend’s result was improved in a recent

breakthrough by Elkin [9], who showed that r3(N) = Ω(N · log1/42 N/22
√

2 log2 N ).
We have included a proof of Elkin’s result in the full version. Our proof is closely
based on [13] but it has a sharper constant inside Ω. Moreover, our proof is much
more detailed than that given in [13]. While both constructions employ the pigeon-
hole principle, Elkin’s methodology can be used to compute his progression-free set
in quasi-linear time N · 2O(

√
logN), see [9]. On the other hand, Bourgain [5] showed

that r3(N) = O(N · (logN/ log logN)1/2), and recently Sanders [24] showed that
r3(N) = O(N · (log logN)5/ logN). Thus, according to Behrend and Elkin, the min-
imalN such that r3(N) = n is N = n1+o(1), while according to Sanders,N = ω(n).

We need the progression-free subset to also consist of odd integers. For this, one
can take Elkin’s set Λ = {λ1, . . . , λn} ⊂ [N ], and then use the set 2 · Λ + 1 =
{2λ1 + 1, . . . , 2λn + 1}. Clearly, if Λ ∈ [n1+o(1)] then also 2 · Λ+ 1 ∈ [n1+o(1)].

Theorem 1. Let rodd3 (N) be the size of the largest progression-free set in [N ] that only
consists of odd integers. For any n, there exists N = n1+o(1), such that rodd3 (N) = n.

5 Cryptographic Tools

In this section, we generalize the PKE assumption from [15] and then define two new
cryptographic assumptions, PDL and PSDL, and prove that PSDL is secure in the
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generic group model. After that, we proceed to describe a generalization of Groth’s
knowledge commitment scheme from [15] and prove that it is computationally bind-
ing under the PDL assumption. Groth proved in [15] that his commitment scheme is
computationally binding under the (potentially stronger) CPDH assumption.

Λ-Power (Symmetric) Discrete Logarithm Assumption. Let Λ be an (n, κ)-nice
tuple for some n = poly(κ). We say that a bilinear group generator Gbp is (n, κ)-PDL
secure in group Gt for t ∈ {1, 2}, if for any non-uniform PPT adversary A, Pr[gk :=

(p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, x← Zp : A(gk; (gx�

t )�∈{0}∪Λ) = x] is
negligible in κ. Similarly, we say that a bilinear group generator Gbp is Λ-PSDL secure,
if for any non-uniform PPT adversaryA,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},

g2 ← G2 \ {1}, x← Zp : A(gk; (gx�

1 , g
x�

2 )�∈{0}∪Λ) = x

]

is negligible in κ. A version of P(S)DL assumption in a non pairing-based group was
defined in [12]. Cheon showed in [8] that if n is a prime divisor of p − 1 or p + 1,
then the [n]-PDL assumption can be broken by a generic adversary in O((

√
p/n +√

n) log p) group operations. Clearly, if the Λ-PSDL assumption is hard, then the Λ-
PDL assumption is hard in both G1 and G2. Moreover, if the bilinear group generator is
CPDH secure, then it is also P(S)DL secure. Therefore, by the results of [15], P(S)DL
holds in the generic group model.

Theorem 2. The Λ-PSDL assumption holds in the generic group model for any (n, κ)-
nice tuple Λ given that n = poly(κ). Any successful generic adversary for Λ-PSDL
requires time Ω(

√
p/λn) where λn is the largest element of Λ.

Λ-Power Knowledge of Exponent Assumption (Λ-PKE). Abe and Fehr showed
in [1] that no statistically zero-knowledge non-interactive argument for an NP-
complete language can have a “direct black-box” security reduction to a standard cryp-
tographic assumption unless NP ⊆ P/poly. (See also [11].) In fact, the soundness
of NIZK arguments (for example, of an argument that a perfectly hiding commitment
scheme commits to 0) is often unfalsifiable by itself. Similarly to Groth [15], we will
base our NIZK argument for circuit satisfiability on Λ-PKE, an explicit knowledge as-
sumption. This assumption was proposed by Groth [15] (though only for Λ = [n]) .

Let t ∈ {1, 2}. For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if
A on input x outputs y, and XA on the same input (including the random tape of A)
outputs z. Let Λ be an (n, κ)-nice tuple for some n = poly(κ). The bilinear group
generator Gbp is Λ-PKE secure in group Gt if for any non-uniform PPT adversary A
there exists a non-uniform PPT extractorXA, such that

Pr

⎡⎢⎢⎢⎢⎣
gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, (α̂, x)← Z2

p,

crs← (gk; (gx
�

t , g
α̂x�

t )�∈{0}∪Λ), (c, ĉ; r, (a�)�∈Λ)← (A||XA)(crs) :

ĉ = cα̂ ∧ c �= grt ·
∏
�∈Λ

ga�x
�

t

⎤⎥⎥⎥⎥⎦
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is negligible in κ. That is, if A (given access to crs that for a random α̂ contains both
gx

�

t and gα̂x
�

t iff � ∈ {0} ∪ Λ) can produce c and ĉ such that ĉ = cα̂, then XA (given
access to crs and to the random coins of A) can produce a tuple (r, (a�)�∈Λ) such that

c = grt ·
∏

�∈Λ g
a�x

�

t . Groth [15] proved that the [n]-PKE assumption holds in the generic
group model; his proof can be straightforwardly modified to the general case.

New Commitment Scheme. We use the following variant of the knowledge commit-
ment scheme from [15] with a generalized choice of generators, defined as follows:

CRS generation: Let Λ be an (n, κ)-nice tuple with n = poly(κ). Define λ0 = 0.
Given a bilinear group generator Gbp, set gk := (p,G1,G2,GT , ê)← Gbp(1κ). Let
g1 ← G1 \ {1}, g2 ← G2 \ {1}, and α̂, x ← Zp. Let t ∈ {1, 2}. The CRS is

ckt ← (gk; (gt,λi , ĝt,λi)i∈{0,...,n}), where gt� = gx
�

t and ĝt� = gα̂x
�

t .
Commitment: To commit to a = (a1, . . . , an) ∈ Zn

p , the committing party chooses a
random r ← Zp, and defines

Comt(ckt;a; r) := (grt ·
n∏

i=1

gai

t,λi
, ĝrt ·

n∏
i=1

ĝai

t,λi
) .

Importantly, we allow Λ to depend on the concrete application. Let t = 1. Fix a com-
mitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2

1

is valid if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is dual.

Theorem 3. Let t ∈ {1, 2}. The knowledge commitment scheme is perfectly hiding in
Gt, and computationally binding in Gt under the Λ-PDL assumption in Gt. If the Λ-
PKE assumption holds in Gt, then for any non-uniform PPT A that outputs some valid
knowledge commitments, there exists a non-uniform PPT extractor XA that, given the
input ofA together withA’s random coins, extracts the contents of these commitments.

In the case of all security reductions in this paper, the tightness of the security reduction
depends on the value λn. Clearly, the knowledge commitment scheme is also trapdoor,
with the trapdoor being td = x: after trapdoor-committing A ← Comt(ck;0; r) = grt
for r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a.

6 New Hadamard Product Argument

Assume that (Gcom, Com) is the knowledge commitment scheme. In an Hadamard prod-
uct argument (in group G1, the case of G2 is dual), the prover aims to convince the ver-
ifier that given commitments A, B and C, he can open them as A = Com1(ck;a; ra),
B = Com1(ck; b; rb), and C = Com1(ck; c; rc), s.t. cj = ajbj for j ∈ [n]. Groth con-
structed an Hadamard product argument [15] with communication of 5 group elements,
verifier’s computation Θ(n), prover’s computation of Θ(n2) exponentiations and the
CRS of Θ(n2) group elements. We present a more efficient argument in Prot. 1. Intu-
itively, the discrete logarithm on basis h = ê(g1, g2) of ê(A,B2)/ê(C,D) = ê(g1, ψ)
is a degree-n formal polynomial inX , which is spanned by {X�}�∈2·Λ∪Λ̂, where

Λ̂ := {0} ∪ Λ ∪ 2̂Λ . (4)

We need that 2 · Λ and Λ̂ do not intersect. The next lemma is straightforward to prove.
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System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be a progression-free set of
odd integers, such that λi+1 > λi > 0. Denote λ0 := 0. Let Λ̂ be as in Eq. (4).

CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1

κ). Let α̂, x ← Zp.

Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Denote gt� ← gx
�

t and ĝt� ← gα̂x�

t

for t ∈ {1, 2} and � ∈ {0} ∪ Λ̂. Let D ← ∏n
i=1 g2,λi . The CRS is crs ←

(gk; (g1�, ĝ1�)�∈{0}∪Λ, (g2�, ĝ2�)�∈Λ̂, D). Let ĉk1 ← (gk; (g1�, ĝ1�)�∈{0}∪Λ).

Common inputs: (A, Â, B, B̂, B2, C, Ĉ), where (A, Â) ← Com1(ĉk1;a; ra), (B, B̂) ←
Com1(ĉk1; b; rb), B2 ← grb2 ·∏n

i=1 g
bi
2,λi

, (C, Ĉ) ← Com1(ĉk1; c; rc), s.t. aibi = ci for
i ∈ [n].

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)): Let I1(�) :=
{(i, j) : i, j ∈ [n] ∧ j �= i ∧ λi + λj = �}. For � ∈ 2̂Λ, the prover sets
μ� ← ∑

(i,j)∈I1(�)
(aibj − ci). He sets ψ ← g

rarb
2 ·∏n

i=1 g
rabi+rbai−rc
2,λi

·∏�∈2̂Λ g
μ�
2� ,

and ψ̂ ← ĝrarb2 ·∏n
i=1 ĝ

rabi+rbai−rc
2,λi

·∏�∈2̂Λ ĝμ�
2� . He sends ψ× ← (ψ, ψ̂) ∈ G

2
2 to the

verifier as the argument.
Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), ψ×): accept iff ê(A,B2)/ê(C,D) = ê(g1, ψ)

and ê(g1, ψ̂) = ê(ĝ1, ψ).

Protocol 1: New Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂, B2)]] = [[(C, Ĉ)]]

Lemma 1. 1) If Λ is a progression-free set of odd integers, then 2 · Λ ∩ Λ̂ = ∅. 2) If
2 · Λ ∩ Λ̂ = ∅, then Λ is a progression-free set.

Moreover, since Λ̂ ∈ {0, . . . , 2λn}, then by Thm. 1,

Lemma 2. For any value n there exists a choice of Λ such that |Λ̂| = n1+o(1).

We are now ready to state the security of the new Hadamard product argument for the
knowledge commitment scheme. The (knowledge) commitments are (A, Â), (B, B̂)
and (C, Ĉ). For efficiency reasons, we include another element B2 to the Hadamard
product language. We denote the argument in Prot. 1 by [[(A, Â)]] ◦ [[(B, B̂, B2)]] =
[[(C, Ĉ)]]. Since (C, Ĉ) is always a commitment of (a1b1, . . . , anbn) for some value
of rc, we cannot claim that Prot. 1 is computationally sound (even under a knowledge
assumption). Instead, analogously to [15], we prove a somewhat weaker version of
soundness that is however sufficient to achieve soundness of the Circuit-SAT argument.
Note that the last statement of the theorem basically says that no efficient adversary can
output an input to the Hadamard product argument together with an accepting argument
and openings to all commitments and all other pairs of type (y, ŷ) that are present in
the argument, such that aibi �= ci for some i ∈ [n]. Intuitively, the theorem statement
includes f ′� only for � ∈ Λ̂ (resp., a� for � ∈ Λ together with r) since ĝ2� (resp., ĝ1�)
belongs to the CRS only for � ∈ Λ̂ (resp., � ∈ {0} ∪ Λ).

Theorem 4. Prot. 1 is perfectly complete and perfectly witness-indistinguishable. If
Gbp is Λ̂-PSDL secure, then a non-uniform PPT adversary has negligible chance
of outputting inp× ← (A, Â, B, B̂, B2, C, Ĉ) and an accepting argument ψ× ←
(ψ, ψ̂) together with a witness w× ← (a, ra, b, rb, c, rc, (f

′
�)�∈Λ̂), s.t. (A, Â) =

Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n

i=1 g
bi
2,λi

, (C, Ĉ) =

Com1(ĉk1; c; rc), (ψ, ψ̂) = (g
∑

�∈Λ̂ f ′
�x

�

2 , ĝ
∑

�∈Λ̂ f ′
�x

�

2 ), and for some i ∈ [n], aibi �= ci.
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The commitment scheme is defined as in Sect. 5 with respect to the set Λ. The following
proof will make the intuition of Sect. 3 more formal. Note that the tightness of the
reduction depends on the time it takes to factor a degree (2λn + 1)-polynomial.

Proof. Let h ← ê(g1, g2) and F (x) ← logh(ê(A,B2)/ê(C,D)) like in Sect. 3.
WITNESS-INDISTINGUISHABILITY: since the argument ψ× = (ψ, ψ̂) that satisfies the
verification equations is unique, all witnesses result in the same argument, and therefore
the Hadamard product argument is witness-indistinguishable.

PERFECT COMPLETENESS. Assume that the prover is honest. The second verifica-
tion is straightforward. For the first one, due to discussion in Sect. 3, F (x) = Fcon(x)+
Fψ(x), where Fcon(x) and Fψ(x) are as defined by Eq. (2) and Eq. (3). Consider x to be
a formal variable, then F (X) is a formal polynomial of X . This formal polynomial is
spanned by {X�}�∈2·Λ∪Λ̂. If the prover is honest, then ci = ai · bi for i ∈ [n], and thus

F (X) = Fψ(X) is spanned by {X�}�∈Λ̂. Denoting ψ ← grarb2 ·
∏n

i=1 g
rabi+rbai−rc
2,λi

·∏n
i=1

∏n
j=1:j �=i g

aibj−ci
2,λi+λj

= grarb2 ·
∏n

i=1 g
rabi+rbai−rc
2,λi

·
∏

�∈2̂Λ g
μ�

2� , we see that clearly
e(g1, ψ) = h. Thus, the first verification succeeds.

WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can break
the last statement of the theorem. We construct an adversaryA′ against the Λ̂-PSDL as-
sumption. Let gk← Gbp(1κ), x← Zp, g1 ← G1 \ {1}, and g2 ← G2 \ {1}. The adver-

saryA′ receives crs← (gk; (gx
�

1 , g
x�

2 )�∈Λ̂) as her input, and her task is to output x. She

sets α̂ ← Zp, crs′ ← (gk; (gx
�

1 , g
α̂x�

1 )�∈{0}∪Λ, (g
x�

2 , g
α̂x�

2 )�∈Λ̂,
∏n

i=1 g
xλi

2 ), and then
sends crs′ to A. Clearly, crs′ has the same distribution as Gcrs(1κ). Both A and A′ set
ckt ← (gk; (gx

�

t , g
α̂x�

t )�∈{0}∪Λ) for t ∈ {1, 2}. Assume thatA returns (inp×, w×, ψ×)
such that the conditions in the theorem statement hold, and V(crs′; inp×, ψ×) accepts.
Here, inp× = (A, Â, B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f

′
�)�∈Λ̂).

If A is successful, (A, Â) = Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 =

grb2 ·
∏n

i=1 g
bi
2,λi

, (C, Ĉ) = Com1(ĉk1; c; rc), and for some i ∈ [n], ci �= aibi. Since

2 · Λ ∩ Λ̂ = ∅, A′ has thus expressed F (X) as a polynomial f(X) where at least for
some � ∈ 2 · Λ, X� has a non-zero coefficient aibi − ci.

On the other hand, A also outputs (f ′�)�∈Λ̂, s.t. F (x) = logg2 ψ = f ′(x), where all

non-zero coefficients of f ′(X) :=
∑

�∈Λ̂ f
′
�X

� correspond toX� for some � ∈ Λ̂. Since
Λ is a progression-free set of odd integers and all elements of 2 ·Λ are distinct, then by
Lem. 1, � �∈ 2 · Λ. Thus, all coefficients of f ′(X) corresponding to any X�, � ∈ 2 · Λ,
are equal to 0. Thus f(X) =

∑
�∈Λ̂∪(2·Λ) f�X

� and f ′(X) =
∑

�∈Λ̂ f
′
�X

� are different
polynomials with f(x) = f ′(x) = F (x). Thus,A′ has succeeded in creating a non-zero
polynomial d(X) = f(X)− f ′(X), such that d(x) =

∑
�∈Λ̂∪(2·Λ) d�x

� = 0.
Next, A′ uses an efficient polynomial factorization algorithm [19] in Zp[X ] to effi-

ciently compute all< 2λn+1 roots of d(X). For some root y, gx
�

1 = gy
�

1 . The adversary
A′ sets x← y, thus violating the Λ̂-PSDL assumption. ��

The Hadamard product argument is not perfectly zero-knowledge. The problem is that
the simulator knows td = (α̂, x), but given td and the common input she will not
be able to generate ψ×. E.g., she has to compute ψ = grarb2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·∏n
i=1

∏n
j=1 g

aibj−ci
2,λi+λj

based on the input, α̂ and x, but without knowing the witness.
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This seems to be impossible. Technically, the problem is that due to the knowledge
of the trapdoor, the simulator can, knowing one opening (a, r), produce an opening
(a′, r′) to any other a′. However, here she does not know any openings. Similarly, the
permutation argument of Sect. 7 is not zero-knowledge. On the other hand, in the final
circuit satisfiability argument of Sect. 8, the simulator creates all commitments by her-
self and can thus properly simulate the argument. By the same reason, the subarguments
of [15] are not zero-knowledge but the final argument (for circuit satisfiability) is.

Let Λ be as described in Thm. 1. The communication (argument size) of Prot. 1 is 2
elements from G2. The prover’s computational complexity is Θ(n2) scalar multiplica-
tions in Zp and n1+o(1) exponentiations in G2. The verifier’s computational complexity
is dominated by 5 bilinear pairings and 1 bilinear-group multiplication. The CRS con-
sists of n1+o(1) group elements, with the verifier’s part of the CRS consisting of only
the bilinear group description plus 5 group elements.

In the Circuit-SAT argument, all ai, bi and ci are Boolean, and thus all n1+o(1) values
μ� can be computed in n(n− 1) = Θ(n2) scalar additions (the server also needs to use
other operations like comparisons j �= i, but they can be eliminated by using loop
unrolling, and λi and λj can be computed by using table lookups), as follows:

1. For � ∈ 2̂Λ do: μ� ← 0
2. For i = 1 to n do:

– If ai = 0 then for j = 1 to n do: if j �= i then μλi+λj ← μλi+λj − ci
– Else for j = 1 to n do: if j �= i then μλi+λj ← μλi+λj + bj − ci

7 New Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for given per-
mutation � ∈ Sn and two commitments A and B, he knows how to open them as
A = Com1(ck;a; ra) and B = Com1(ck; b; rb), such that bj = a�(j) for j ∈ [n]. We
assume that � is a part of the statement. In [15], Groth constructed a permutation argu-
ment, where the prover’s computation isΘ(n2) exponentiations and the CRS hasΘ(n2)
group elements. We now propose a new argument with the CRS of n1+o(1) group ele-
ments. We also improve the prover’s concrete computation, and the argument is based
on a (probably) weaker assumption.

The new permutation argument �([[(A, Ã)]]) = [[(B, B̃)]], see Prot. 2, uses (al-
most) the same high-level ideas as the Hadamard product argument from Sect. 6.
However, the situation is more complicated. Consider the verification equation

ê(g1, ψ
�) = ê(A, g

∑n
i=1 x

λi

2 )/ê(B, g
∑n

i=1 x
2λ
i

−λi

2 ) from [15]. Letting h = ê(g1, g2),
F�(x) := logg2 ψ

� =
∑

i(a�(i) − bi)x
2λ
(i) + ra

∑
i x

λi − rb
∑

i x
2λ
(i)−λi +∑

i a�(i) ·
∑

j �=i x
λ
(i)+λ
(j) −

∑
i bi ·

∑n
j �=i x

λi+2λ
(j)−λj . Following Sect. 6, we re-

quire that Λ̃ = Λ∪{2λk−λi}∪2̂Λ∪{λi+2λk−λj : i �= j} and 2 ·Λ do not intersect.
Since � is a part of the statement, we replaced �(i) and �(j) with a new element k.

Assume that Λ is a progression-free set of odd integers. Since Λ consists of odd
integers, (Λ∪{2λk−λi})∩2 ·Λ = ∅. SinceΛ is a progression-free set, 2̂Λ∩2 ·Λ = ∅.
However, we also need that 2λk∗ �= 2λk + λi − λj for i �= j. That is, one can uniquely
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represent any non-negative integer a as a = 2λk∗ + λj . (It is only required that any
non-negative integer a has at most one representation as a = 2λk∗ + λj . See the full
version.) The unique sequence Λ = (λi)i∈Z+ (the Moser-de Bruijn sequence [23]) that
satisfies this property is the sequence of all non-negative integers that have only 0 or 1
as their radix-4 digits. Since λn = Θ(n2), this sequence is not good enough.

Fortunately, we can overcome this problem as follows. For i ∈ [n] and a permutation
�, let TΛ(i, �) := |{j ∈ [n] : 2λ�(i) + λj = 2λ�(j) + λi}|. Note that 1 ≤ TΛ(i, �) ≤ n,
and that for fixed Λ and �, the whole tuple TΛ(�) := (TΛ(1, �), . . . , TΛ(n, �)) can be
computed in Θ(n) simple arithmetic operations. We can then rewrite F�(x) as

F�(x) =

n∑
i=1

(a�(i) − TΛ(i, �) · bi)x2λ
(i) + ra

n∑
i=1

xλi − rb
n∑

i=1

x2λ
(i)−λi+

n∑
i=1

a�(i)

n∑
j=1
j �=i

xλ
(i)+λ
(j) −
n∑

i=1

bi

n∑
j=1
j �=i

2λ
(i)+λj �=λi+2λ
(j)

xλi+2λ
(j)−λj , (5)

with Λ̃ being redefined as

Λ̃ = Λ ∪ {2λk − λi} ∪ 2̂Λ ∪ ({λi + 2λk − λj : i �= j} \ 2 · Λ) . (6)

Since Λ̃∩ 2 ·Λ = ∅, ê(A,D)/ê(B,E�) = ê(g1, ψ
�) convinces the verifier that a�(i) =

TΛ(i, �) · bi for i ∈ [n]. To finish the permutation argument, we let (A∗, Â∗) to be a
commitment to (a∗1, . . . , a

∗
n) := (TΛ(�

−1(1), �) · a1, . . . , TΛ(�−1(n), �) · an), use an
Hadamard product argument to show that a∗i = TΛ(�

−1(i), �) · ai (and thus a∗�(i) =

TΛ(i, �) · a�(i)) for i ∈ [n], and an argument as described above in this section to show
that a∗�(i) = TΛ(i, �) · bi for i ∈ [n]. Therefore, a�(i) = bi for i ∈ [n].

Clearly Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Since Λ̃ ⊂ {−λn + 1, . . . , 3λn}, then by Thm. 1

Lemma 3. For any n there exists a choice of Λ such that |Λ̃| = n1+o(1).

We are now ready to state the security of the new permutation argument. The (weaker
version of) soundness of this argument is based on exactly the same ideas as that of the
Hadamard product argument.

Theorem 5. Prot. 2 is perfectly complete and perfectly witness-indistinguishable. If
Gbp is Λ̃-PSDL secure, then a non-uniform PPT adversary has negligible chance of
outputting inpperm ← (A, Ã, B, B̂, B̃, �) and an accepting ψperm ← (A∗, Â∗, ψ×,

ψ̂×, ψ�, ψ̃�) together with a witness wperm ← (a, ra, b, rb,a
∗, ra∗ , (f ′(×,�))�∈Λ̂,

(f ′(�,�))�∈Λ̃), s.t. (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), (B, B̃) =

Com1(c̃k1; b; rb), (A∗, Â∗) = Com1(ĉk1;a
∗; ra∗), (ψ×, ψ̂×) = (g

∑
�∈Λ̂ f ′

(×,�)

2 ,

ĝ
∑

�∈Λ̂ f ′
(×,�)

2 ), (ψ�, ψ̂�) = (g
∑

�∈Λ̃ f ′
(
,�)

2 , g̃
∑

�∈Λ̃ f ′
(
,�)

2 ), a∗i = TΛ(�
−1(i), �) · ai (for

i ∈ [n]), and for some i ∈ [n], a�(i) �= bi.
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System parameters: Same as in Prot. 1, but let Λ̃ be as in Eq. (6).
CRS generation Gcrs(1

κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1
κ). Let α̂, α̃, x ← Zp. Let

g1 ← G1 \ {1} and g2 ← G2 \ {1}. Let ĝt ← ĝα̂t and g̃t ← g̃α̃t for t ∈ {1, 2}.

Denote gt� ← gx
�

t , ĝt� ← ĝx
�

t , and g̃t� ← g̃x
�

t for t ∈ {1, 2} and � ∈ {0} ∪ Λ̃. Let
(D, D̃) ← (

∏n
i=1 g2,λi ,

∏n
i=1 g̃2,λi). The CRS is

crs ← (gk; (g1�, ĝ1�, g̃1�)�∈{0}∪Λ, (g2�)�∈{0}∪Λ̃, (ĝ2�)�∈Λ̂, (g̃2�)�∈Λ̃, D, D̃) .

Let ĉk1 ← (gk; (g1�, ĝ1�)�∈{0}∪Λ), c̃k1 ← (gk; (g1�, g̃1�)�∈{0}∪Λ).

Common inputs: (A, Ã, B, B̂, B̃, �), where � ∈ Sn, (A, Ã) ← Com1(c̃k1;a; ra),
(B, B̂) ← Com1(ĉk1; b; rb), and (B, B̃) ← Com1(c̃k1; b; rb), s.t. bj = a	(j) for j ∈ [n].

Argument generation Pperm(crs; (A, Ã,B, B̂, B̃, �), (a, ra, b, rb)):

1. Let (T ∗, T̂ ∗, T ∗
2 ) ← (

∏n
i=1 g

TΛ(	−1(i),	)
1,λi

,
∏n

i=1 ĝ
TΛ(	−1(i),	)
1,λi

,
∏n

i=1 g
TΛ(	−1(i),	)
2,λi

).

2. Let ra∗ ← Zp, (A∗, Â∗) ← Com1(ĉk1;TΛ(�
−1(1), �) · a1, . . . , TΛ(�

−1(n), �) ·
an; ra∗). Create an argument ψ× for [[(A, Â)]] ◦ [[(T ∗, T̂ ∗, T ∗

2 )]] = [[(A∗, Â∗)]].
3. Let Λ̃′

	 := 2̂Λ ∪ ({2λ	(j) + λi − λj : i, j ∈ [n] ∧ i �= j} \ 2 · Λ) ⊂ {−λn +
1, . . . , 3λn}.

4. For � ∈ Λ̃′
	, I1(�) as in Prot. 1, and I2(�) := {(i, j) : i, j ∈ [n]∧j �= i∧2λ	(i)+λj �=

λi + 2λ	(j) ∧ 2λ	(j) + λi − λj = �}, set

μ	,� ←
∑

(i,j)∈I1(�)

a∗
i −

∑
(i,j)∈I2(�)

bi .

5. Let (E	, Ẽ	) ← (
∏n

i=1 g2,2λ
(i)−λi ,
∏n

i=1 g̃2,2λ
(i)−λi).

6. Let ψ	 ← Dr∗a ·E−rb
	 ·∏�∈Λ̃′



g
μ
,�

2� , ψ̃	 ← D̃r∗a · Ẽ−rb
	 ·∏�∈Λ̃′



g̃
μ
,�

2� ,

Send ψperm ← (A∗, Â∗, ψ×, ψ	, ψ̃	) ∈ G
2
1 ×G

4
2 to the verifier as the argument.

Verification Vperm(crs; (A, Ã,B, B̂, B̃, �), ψperm): Let E	 and (T ∗, T̂ ∗, T ∗
2 ) be computed as

in Pperm. If ψ× verifies, ê(A∗, D)/ê(B,E	) = ê(g1, ψ
	), ê(A∗, ĝ2) = ê(Â∗, g2), and

ê(g1, ψ̃
	) = ê(g̃1, ψ

	), then Vperm accepts. Otherwise, Vperm rejects.

Protocol 2: New permutation argument �([[(A, Ã)]]) = [[(B, B̃)]]

Proof. Denote h ← ê(g1, g2) and F�(x) := logh(ê(A
∗, D)/ê(B,E�)). WITNESS-

INDISTINGUISHABILITY: since argument ψperm that satisfies the verification equations
is unique, all witnesses result in the same argument, and therefore the permutation ar-
gument is witness-indistinguishable.

PERFECT COMPLETENESS. Completeness of ψ× follows from the completeness of
the Hadamard product argument. The third and the fourth verifications are straight-
forward. For the verification ê(A∗, D)/ê(B,E�) = ê(g1, ψ

�), consider F�(x) in
Eq. (5). Consider X as a formal variable, then the right-hand side (and thus also
F�(X)) is a formal polynomial of X , spanned by {X�}�∈2·Λ∪Λ̃. If the prover is hon-
est, then bi = a�(i) for i ∈ [n], and thus F�(X) is spanned by {X�}�∈Λ̃. Defin-
ing ψ� ← (

∏n
i=1 g2,λi)

ra∗ · (
∏n

i=1 g2,2λ
(i)−λi)
−rb ·

∏n
i=1(

∏n
j=1:j �=i g2,λi+λj )

a∗
i ·∏n

i=1(
∏

j∈I∗
2 (i,�)

g2,λi+2λ
(j)−λj )
−bi = Dra∗ · E−rb

� ·
∏

�∈Λ̃′


g
μ
,�

2� , where I∗2 (i, �) :=

{j ∈ [n] : j �= i∧2λ�(i)+λj �= λi+2λ�(j)}, we see that the second verification holds.
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WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can
break the last statement of the theorem. We construct an adversary A′ against
the Λ̃-PSDL assumption. Let gk ← Gbp(1κ), x ← Zp, g1 ← G1 \ {1}, and

g2 ← G2 \ {1}. The adversary A′ receives crs ← (gk; (gx
�

1 , g
x�

2 )�∈{0}∪Λ̃) as her
input, and her task is to output x. She sets α̂ ← Zp, α̃ ← Zp, and crs′ ← (gk;

(gx
�

1 , g
α̂x�

1 , gα̃x
�

1 )�∈{0}∪Λ, (g
x�

2 )�∈{0}∪Λ̃, (g
α̂x�

2 )�∈Λ̂, (g
α̃x�

2 )�∈Λ̃,
∏n

i=1 g
xλi

2 ,
∏n

i=1 g̃
xλi

2 ),
and forwards crs′ to A. Clearly, crs′ has the same distribution as Gcrs(1κ). Both parties
also set ĉk1 ← (gk; (gx

�

1 , g
α̂x�

1 )�∈{0}∪Λ) and c̃k1 ← (gk; (gx
�

1 , g
α̃x�

1 )�∈{0}∪Λ).
Assume that A returns (inpperm, wperm, ψperm) such that the conditions in the

theorem statement hold, and V(crs′; inpperm, ψperm) accepts. Here, inpperm =
(A, Ã, B, B̂, B̃, �) and wperm = (a, ra, b, rb,a

∗, ra∗ , (f ′(×,�))�∈Λ̂, (f
′
(�,�))�∈Λ̃).

If A is successful, (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb),
(B, B̃) = Com1(c̃k1; b; rb), ψ× verifies, and for some i ∈ [n], a�(i) �= TΛ(i, �) · bi.
Since ψ× verifies and the Hadamard product argument is (weakly) sound, we have
that (A∗, Â∗) commits to (TΛ(�

−1(1), �) ·a1, . . . , TΛ(�−1(n), �) ·an). (Otherwise, we
have broken the PSDL assumption.) Since 2 ·Λ∩ Λ̃ = ∅,A′ has expressed F�(X) as a
polynomial f(X) where at least for some � ∈ 2 · Λ, X� has a non-zero coefficient.

On the other hand,A also outputs (f ′(�,�))�∈Λ̃, s.t. F�(x) = logg2 ψ = f ′�(x), where

all non-zero coefficients of f ′�(X) :=
∑

�∈Λ̃ f
′
(�,�)X

� correspond toX� for some � ∈ Λ̃.
Since Λ is a progression-free set of odd integers and all elements of 2 · Λ are distinct,
then by the discussion in the beginning of Sect. 7, � �∈ 2 · Λ. Thus, all coefficients
of f ′�(X) corresponding to any X�, � ∈ 2 · Λ, are equal to 0. Thus, f(X) · Xλn =∑

�∈Λ̃∪(2·Λ) f�X
�+λn and f ′�(X) =

∑
�∈Λ̃ f

′
(�,�)X

�+λn are different polynomials with
f(x) = f ′�(x) = F�(x). Thus, A′ has succeeded in creating a nonzero polynomial
d�(X) = f(X) ·Xλn − f ′�(X), such that d�(x) =

∑
�∈Λ̃ d�x

� = 0.
Next, A′ can use an efficient polynomial factorization algorithm [19] in Zp[X ] to

efficiently compute all ≤ 4λn + 1 roots of d�(X). For some root y, gx
�

1 = gy
�

1 . The
adversaryA′ sets x← y, thus violating the Λ̃-PSDL assumption. ��
Let Λ be as described in Thm. 1. The CRS consists of n1+o(1) group elements. The
argument size of Prot. 2 is 2 elements from G1 and 4 elements from G2. The prover’s
computational complexity is dominated byΘ(n2) scalar additions in Zp and by n1+o(1)

exponentiations in G2. The verifier’s computational complexity is dominated by 12
bilinear pairings and 4n− 2 bilinear-group multiplications.

8 New NIZK Argument for Circuit Satisfiability

In a NIZK argument for circuit satisfiability (Circuit-SAT, well-known to be an
NP-complete language), the prover and the verifier share a circuit C. The prover aims
to prove in non-interactive zero-knowledge that she knows an assignment of input
values that makes the circuit output 1. As in [15], the Circuit-SAT argument will use
the Hadamard product argument, the permutation argument and a trivial argument for
element-wise sum of two tuples — in our case, all operating in parallel on (2|C| + 1)-
dimensional tuples, where |C| is the circuit size. Those three arguments can be seen
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System parameters: Define Λ and Λ̂ as in Prot. 1 and Λ̃ as in Prot. 2, but in all cases with n
replaced by 2|C| + 1. Permutation swap.

CRS generation Gcrs(1
κ): Let all other variables (including the secret ones) be defined as

in the CRS generation of Prot. 2, but let crsperm be the CRS of Prot. 2. In addition, let
(D̂,D2) ← (

∏n
i=1 ĝ1,λi ,

∏n
i=1 g2,λi). The CRS is crs ← (crsperm, D̂,D2). Let ck1 ←

(gk; (g1�, ĝ1�, g̃1�)�∈{0}∪Λ).
Common inputs: A satisfiable circuit C, and permutations τ and ζ generated based on C,

such that (L,R, Rn+1,U ,X, Xn+1) is a “satisfying assignment”.
Argument generation P(crs;C, (L,R, Rn+1,U ,X)): Denote Y := (Y1, . . . , Yn) for

Y ∈ {L,R,U,X}. The prover does the following.

1. Set r1, . . . , r4 ← Zp, and then compute (lr, l̂r, l̃r) ←
Com1(ck1;L,R, Rn+1; r1), lr2 ← gr12 · ∏n

i=1 g
Li
2,λi

· ∏n+1
i=1 gRi

2,λi+n
, (rl, r̃l) ←

Com1(c̃k1;R,L, Rn+1; r1), (rz, r̂z) ← Com1(ĉk1;R, 0, . . . , 0, 0; r2), (uz, ûz) ←
Com1(ĉk1;U , 0, . . . , 0, 0; r3), (ux, ûx, ũx) ← Com1(ck1;U ,X, Xn+1; r4).

2. Create an argument ψ1 for [[(lr, l̂r)]] ◦ [[(lr, l̂r, lr2)]] = [[(lr, l̂r)]], ψ2 for
swap([[(rl, r̃l)]]) = [[(lr, l̂r, l̃r)]], ψ3 for [[(rl, r̃l)]] ◦ [[(D, D̂,D2)]] = [[(rz, r̂z)]], ψ4 for
[[(ux, ûx)]] ◦ [[(D, D̂,D2)/(g1,λn , ĝ1,λn , g1,λn)]] = [[(uz, ûz)/(g1,λn , ĝ1,λn , g1,λn)]],
ψ5 for [[(rz, r̂z)]] ◦ [[(lr, l̂r, lr2)]] = [[(D, D̂) · (uz−1, ûz−1)]], ψ6 for τ ([[(lr, l̃r)]]) =

[[(lr, l̂r, l̃r)]], and ψ7 for ζ−1([[(ux, ũx)]]) = [[(lr, l̂r, l̃r)]].
3. Send ψ ← (lr, l̂r, l̃r, lr2, rl, r̃l, rz, r̂z, uz, ûz, ux, ûx, ũx, ψ1, . . . , ψ7) to the verifier.

Verification V(crs;C,ψ): The verifier does the following:
– For A ∈ {lr, rz, uz, ux} check that ê(Â, g2) = ê(A, ĝ2).
– Check that ê(g1, lr2) = ê(lr, g2).
– For A ∈ {lr, rl, ux} check that ê(Ã, g2) = ê(A, g̃2).
– Verify all 7 arguments ψ1, . . . , ψ7 with corresponding inputs.

Protocol 3: New NIZK argument for Circuit-SAT

as basic operations in an NIZK “programming language” for all languages in NP. We
show that a small constant number of such basic operations is sufficient for Circuit-SAT.
The full argument then contains additional cryptographic sugar: a precise definition of
the used CRS, computational/communication optimizations, etc.

The first task is to express the underlying argument as a parallel composition of
some addition, permutation and Hadamard product arguments. These arguments may
include intermediate variables (that will be committed to by the prover) and constants
(that can be online committed to by both of the parties separately). When choosing the
arguments, one has to keep in mind that we work in an asymmetric setting. This may
mean that for some of the inputs to the circuit satisfiability argument, one has to commit
to them both in G1 and G2 (and the verifier has to check that this is done correctly).

The CRS is basically the CRS of the permutation argument. The total argument con-
sists of commitments to intermediate variables and of all arguments in the program of
this “programming language”. Finally, the verifier has to check that all commitments
are internally consistent, and then verify all used arguments.

Let us now turn to the concrete case of circuit satisfiability. For the sake of simplicity,
assume that the circuitC is only composed of NAND gates. LetC have n gates. Assume
that the output gate of the circuit is n, and Un is the output of the circuit. For every gate
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j ∈ [n] ofC, let the input wires of its jth gate be Lj andRj , and letUj be one of its out-
put wires. We also define an extra value Rn+1 = 1. We let Xj be other “output” wires
that correspond to some Lk orRk that were not already covered by Uk (that is, inputs to
the circuit, or duplicates of output wires). That is, (U1, . . . , Un, X1, . . . , Xn+1) is cho-
sen so that for some permutation ζ, (U ,X, Xn+1) is a ζ-permutation of (L,R, Rn+1),
where Y = (Y1, . . . , Yn) for Y ∈ {L,R,U,X}.

More precisely, the prover and the verifier share the following three permutations, the
first two of which completely describe the circuit C. First, τ ∈ S2n+1 is a permutation,
such that for any values Li1 , . . . , Lis , Rj1 , . . . , Rjt that correspond to the same wire, τ
contains a cycle i1 → i2 → · · · → is → j1 + n → · · · → jt + n → i1. For unique
wires i, τ(i) = i. Second, ζ ∈ S2n+1 is a permutation that for every input wire (either
Li or Ri−n), outputs an index j ← ζ(i), such that the output wire Uj orXj−n is equal
to that input wire. Third, swap ∈ S2n+1 is a permutation, with swap(i) = i + n and
swap(i+ n) = i for i ∈ [n], and swap(2n+ 1) = 2n+ 1. Note that swap = swap−1.

The argument is given by Prot. 3. In every subargument used in Prot. 3, the prover
and the verifier use a substring of crs as the CRS. The corresponding substrings are
easy to compute, and in what follows, we do not mention this issue. Instead of com-
puting two different commitments Comt(ĉkt;a; r) = (grt ·

∏
gai

t,λi
, ĝrt ·

∏
ĝai

t,λi
) and

Comt(c̃kt;a; r) = (grt ·
∏
gai

t,λi
, g̃rt ·

∏
g̃ai

t,λi
), we sometimes compute a composed com-

mitment Comt(ckt;a; r) = (grt ·
∏
gai

t,λi
, ĝrt

∏
ĝai

t,λi
, g̃rt ·

∏
g̃ai

t,λi
). We assume that the

same value α̂ is used when creating product arguments and permutation arguments.

Theorem 6. Let Gbp be Λ̃-PSDL secure, and Λ-PKE secure in both G1 and G2. Then
Prot. 3 is a perfectly complete, computationally adaptively sound and perfectly zero-
knowledge non-interactive Circuit-SAT argument.

Proof. PERFECT COMPLETENESS: follows from the perfect completeness of the
Hadamard product and permutation arguments.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform PPT adver-
sary that creates a circuit C and an accepting NIZK argument ψ. By the Λ-PKE as-
sumption, there exists a non-uniform PPT extractor XA that, running on the same
input and seeing A’s random tape, extracts all openings. From the (weaker version
of) soundness of the product and permutation arguments and by the Λ̃-PSDL assump-
tion, it follows that the corresponding relations are satisfied between the opened val-
ues. Moreover, by the Λ̃-PSDL assumption, the opened values belong to corresponding
sets Λ̂ and Λ̃. Let (L,R, Rn+1) be the opening of (lr, l̂r), where L = (L1, . . . , Ln)
and R = (R1, . . . , Rn), and let (U1, . . . , Un, X1, . . . , Xn, Xn+1) be the opening of
(ux, ûx). We now analyze the effect of every subargument in Prot. 3.

The successful verification of ê(g1, lr2) = ê(lr, g2) shows that lr2 is correctly formed.
The first argument ψ1 shows that Li, Ri ∈ {0, 1}. The second argument ψ2 shows that
(rl, r̃l) commits to (R,L, Rn+1). The third argument ψ3 shows that (rz, r̂z) commits to
(R, 0, . . . , 0, 0) and is thus consistent with the opening of (lr, l̂r). The fourth argument
ψ4 shows that (uz, ûz) commits to (U1, . . . , Un−1, U

′
n, 0, . . . , 0, 0) for some U ′

n. It also
shows that Un · 0 = U ′

n − 1, and thus U ′
n = 1. (The value of Un is not important to get

soundness, since it is not used in any other argument.)
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The fifth argument shows ψ5 that the NAND gates are followed. That is, ¬(Li ∧
Ri) = Ui for i ∈ [n− 1]. It also shows that the circuit outputs 1. Really, since (uz, ûz)
commits to (U1, . . . , Un−1, U

′
n = 1, 0, . . . , 0, 0), then (D, D̂) · (uz−1, ûz−1) commits

to (1−U1, . . . , 1−Un−1, 1−1 = 0, 0, . . . , 0, 0). Thus, the Hadamard product argument
verifies only if Li ·Ri = 1−Ui for i ∈ [n−1], andLn ·Rn = 0, that is, ¬(Ln∧Rn) = 1.

The sixth argument ψ6 shows that if i1, . . . , is, j1 + n, . . . , jt + n correspond to the
same wire, then Li1 = · · · = Lis = Rj1 = · · · = Rjt , that is, the values are internally
consistent with the wires. The seventh argument ψ7 shows that the “input wires” and
“output” wires are consistent.

PERFECT ZERO-KNOWLEDGE: we construct the next simulator S = (S1,S2). The
simulator S1(1κ, n) creates a correctly formed CRS together with a simulation trapdoor
td = (α̂, α̃, x) ∈ Z3

p. The adversary then outputs a statementC (a circuit) together with

a witness (a satisfying assignment)w. The simulator S2(crs;C, td) creates (lr, l̂r, l̃r, lr2),
(rl, r̃l), (rz, r̂z), (uz, ûz) and (ux, ûx) as commitments to (0, . . . , 0). Due to the knowl-
edge of trapdoor td, the simulator can simulate all product and permutation arguments.
More precisely, he uses Li = Ri = Ui = U ′

n = 1 to simulate all product and per-
mutation arguments, except in the case of ψ5 where he uses Ui = U ′

n = 0 instead.
(Obviously, (rz, r̂z) and (uz, ûz) commit to consistent tuples.)

To show that this argument ψ′′ simulates the real argument ψ, note that ψ is per-
fectly indistinguishable from the simulated NIZK argument ψ′ where one makes trap-
door commitments but opens them to real witnesses Li, Ri when making product and
permutation arguments. On the other hand, also ψ′ and ψ′′ are perfectly indistinguish-
able, and thus so are ψ and ψ′′. ��

Let Λ be chosen as in Thm. 1. The CRS consists of |C|1+o(1) group elements. The
communication (argument length) of the argument in Prot. 3 is 18 elements from G1

and 21 elements from G2. The prover’s computational complexity is dominated by
Θ(|C|2) simple arithmetical operations in Zp and |C|1+o(1) exponentiations in G. The
verifier’s computational complexity is dominated by 72 bilinear pairings and 8|C| + 8
bilinear-group multiplications.

Moreover, the CRS depends on Λ̂ ∪ Λ̃. Since 0 may or may not belong to Λ̃ (this
depends on the choice of Λ) and Λ ∪ 2̂Λ ⊆ Λ̃, Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Recalling that
elements of G1 can be represented by 512 bits and elements of G2 can be represented
by 256 bits, the communication (argument length) is 18 · 512 + 21 · 256 = 14 592 bits.
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Point Obfuscation and 3-Round

Zero-Knowledge�

Nir Bitansky and Omer Paneth

Tel Aviv University, Boston University

Abstract. We construct 3-round proofs and arguments with negligible
soundness error satisfying two relaxed notions of zero-knowledge (ZK):
weak ZK and witness hiding (WH). At the heart of our constructions lie
new techniques based on point obfuscation with auxiliary input (AIPO).

It is known that such protocols cannot be proven secure using black-
box reductions (or simulation). Our constructions circumvent these lower
bounds, utilizing AIPO (and extensions) as the “non-black-box compo-
nent” in the security reduction.

1 Introduction

Interactive proofs and arguments [GMR85, BCC88] are fundamental notions in
the theory of computation. In cryptography, these are typically used to prove
NP-statements and the proof is required to maintain the prover’s privacy. Dif-
ferent notions of privacy were considered, the most comprehensive one being
zero-knowledge (ZK). ZK protocols allow proving an assertion without revealing
anything but its validity. That is, the information learned by the verifier from
the interaction can be simulated only from the (valid) statement itself.

Since ZK was introduced [GMR85], questions regarding the round complexity
of ZK protocols were studied extensively. While it is known that 2-round ZK
protocols (with auxiliary input) do not exist for languages outside BPP [GO94],
a classical open question is whether there exist 3-round ZK protocols for NP
with negligible soundness error. The difficulty of this problem is expressed by
the lower bound of [GK96]: there do not exist 3-round black-box ZK (BBZK)
protocols with negligible soundness for languages outside BPP. Namely, to prove
that a 3-round protocol is ZK, one must demonstrate a simulator that uses the
verifier in a non-black-box way.

The work of [Bar01] shows that using non-black-box simulation it is possible
to go beyond existing black-box bounds. However, so far we do not know how
to use similar techniques to obtain 3-round ZK protocols. Nevertheless, 3-round
ZK protocols have been constructed based on non-standard “knowledge assump-
tions”. [HT98, BP04] show a 3-round ZK argument based on the knowledge of
exponent assumption (KEA) and variants of it. A different “knowledge assump-
tion” was used to show the existence of 3-round ZK proofs for NP [LM01]. (See
further discussion in Section 1.2.)

� This research was funded by the Check Point Institute for Information Security, by
Marie Curie grant PIRG03-GA-2008-230640, and ISF grant 0603805843.
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In light of the difficulties in achieving 3-round ZK, it is natural to examine
relaxations of ZK that might enable the construction of such protocols. We
discuss several previously studied relaxations.

Witness indistinguishability (WI). A protocol is WI [FS90] if any two proofs
for the same statement that use two different witnesses are indistinguishable.
[FS90] show that, while the parallel repetition of basic (3-round) ZK protocols is
not BBZK, it is WI. Furthermore, the soundness error decreases exponentially
in the number of repetitions. However, WI protocols do not always guarantee
witness secrecy; in particular, for statements with a unique NP-witness, WI is
meaningless. Nevertheless, [FS90] show how to use WI to achieve other notions
of secrecy such as ZK and witness-hiding.

Witness hiding (WH). Roughly speaking, a protocol is WH [FS90] with respect
to a distribution D on an NP-language L if no verifier can extract a witness
from its interaction with the honest prover on a common instance x ← D. For
WH to be meaningful, it should be restricted to hard distributions; namely,
distributions D for which poly-size circuits cannot find a witness w ∈ RL(x)
for instances x ← D. WH is in a sense a “minimal” notion of privacy; indeed,
leaking the entire witness does not leave much room for imagination.

[FS90] present a 3-round protocol with negligible soundness error that is only
WH with respect to a specific type of (hard) distributions on languages, where
every instance has two witnesses. In contrast, extending the lower bounds of
[GK96], the work of [HRS09] show that, for distributions with unique witnesses,
3-round WH cannot be ”black-box reduced” to any ”standard cryptographic as-
sumption” (e.g., existence of OWFs), given natural limitations on the reduction.

In this work, we are interested in protocols that are WH with respect to all
hard distributions (including the unique witness case). We remark that con-
structing WH protocols for restricted classes of distributions, where a lower
bound on their hardness is apriori known, is a relatively easy task (and is not
ruled out by [HRS09]). Indeed, using super-polynomial black-box reductions, it is
possible to obtain 3-round WH protocols with respect to super-polynomial hard
distributions. (For example, f(n) = ω(logn) parallel repetitions of any 3-round
ZK protocol with constant soundness error is WH with respect to distributions
that are hard for 2f(n)-size adversaries.) Typical cryptographic scenarios, how-
ever, do call for secrecy with respect to general languages/distributions where
no apriori super-poly hardness bound is known at the protocol’s design time.
Here, efficient reductions requiring non-black-box techniques are needed.

Weak zero-knowledge (WZK). The standard notion of ZK requires that for any
(potentially adversarial) verifier there exist a simulator that simulates its view
in an interaction with the honest prover. The simulated view should be indistin-
guishable from the real one by any (efficient) distinguisher. The notion of WZK
[DNRS99] relaxes ZK by changing the order of quantifiers. Specifically, it allows
the ZK simulator to depend on the particular distinguisher in question.
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While ZK is often used as a sub-protocol in larger systems, WZK is not always
suitable for this purpose due to its weaker simulation guarantee. In particular,
WZK is not known to be closed under sequential repetition. Nevertheless, WZK
is useful in settings where the verifier tries to learn a specific type of information
and we can present a distinguisher that can test whether the verifier succeeded in
learning it. Examples include verifiers that try to lean a specific predicate of the
witness, or any function of the witness that is efficiently verifiable. In particular,
WZK implies WH (by considering a distinguisher that tests if the verifier’s view
contains a valid witness). We note that, for black-box simulation, WZK and
(standard) ZK coincide; hence, by [GK96], a 3-round protocol with negligible
soundness error cannot even be shown to be WZK with black-box simulation.

To sum up the above discussion, 3-round arguments with negligible sound-
ness error that are ZK, WH or WZK cannot be constructed using black-box
techniques. (From this point on, we only consider proofs/arguments with neg-
ligible soundness error). In light of the existing non-black-box constructions, it
is interesting to investigate which techniques and assumptions could suffice for
constructing such protocols. Another interesting related question is understand-
ing whether the relaxed notions of WH and WZK require simpler techniques
than for full-fledged ZK; indeed, all existing WH constructions are based on the
stronger notion of ZK as a building block. The question of finding “more direct”
constructions of WH was already raised by [FS90]. This work sheds new light
on both questions, introducing techniques based on point obfuscation (PO). We
next briefly review the concept of PO.

Point obfuscation and extensions. Informally, an obfuscator is a randomized
algorithm O that gets as input a program C (given by a circuit) and outputs
a new program O(C) that has the same functionality as the original one, but
does not leak any additional information on C [BGI+01]. A stronger variant is
obfuscation with auxiliary input, in which O(C) does not leak any information
even given a related auxiliary input zC [GK05].

In this work, we consider obfuscation of point circuits and their extensions. A
point circuit Is outputs 1 on s and ⊥ on all other inputs. A multibit point circuit
Is→t outputs t on s and ⊥ otherwise. We also consider a new extension of point
circuits which we call circular point circuits - these are circuits Is�t which output
t on input s, s on input t, and⊥ otherwise. Obfuscators for multibit point circuits
are called Digital Lockers (DL). We introduce the new notion of circular digital
lockers (CDL) that are obfuscators for circular point circuits. Point circuits and
their extensions are among the very few functionalities for which obfuscators have
been shown (albeit, typically, under rather strong hardness assumptions.) So far,
however, POs have found only a handful of applications in cryptographic theory,
mostly to strong forms of encryption [Can97, Wee05, CD08, CKVW10, BC10].

1.1 Our Contribution

We construct 3-round WH and WZK protocols based on two different variants
of point obfuscation:
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– 3-round negligible soundness WH proofs for NP, given auxiliary input point
obfuscators that satisfy a relatively mild distributive security requirement.
The protocol is WH with respect to general hard distributions (including
the unique witness case).

– 3-round WZK arguments for NP, given auxiliary input digital lockers that
satisfy a worst-case simulation security requirement.

We next give an overview of our constructions, followed by a discussion on the
nature of our obfuscation assumptions and how they relate to previous assump-
tions used for 3-round ZK protocols.

3-round witness-hiding. The high level idea behind our WH protocol is as fol-
lows. Given an NP statement x ∈ L, have the verifier V construct a modified
NP verification circuit VeryL,x that on a valid witness w ∈ RL(x) outputs a
secret random point y and outputs ⊥ otherwise. V then “garbles” this circuit
using Yao’s technique and both parties execute a 2-message oblivious-transfer
protocol, at the end of which the prover P possesses the garbled circuit and
the corresponding labels for the witness w. Next, P evaluates the circuit (on w)
and obtains the point y. (This is essentially a conditional disclosure of secrets
protocol, as termed by [GIKM00, AIR01], where P learns the output y only
if it inputs a valid witness.) In the third message, P sends back to V a point
obfuscation of y. V accepts only after verifying it got a valid obfuscation of y.

Informally, soundness follows from the secrecy of the garbled circuit that
prevents a dishonest prover from obtaining the random y in case there is no
valid witness. In fact, we show that our protocol is a proof of knowledge.

The witness-hiding property is based on the security of the underlying obfus-
cator. To exemplify, consider a version of the protocol where P sends back y in
the clear. Following is an attack on this simple version of the protocol. Consider a
cheating verifier V∗ that, instead of garbling VeryL,x, garbles the identity circuit.
P now evaluates the garbled circuit on w and obtains the point y = w. If P was
to simply send back y in the clear, V∗ would have learned w and the protocol
would be completely insecure. Instead, P sends back an obfuscation O(y). The
security of the obfuscator O should then assure that V∗ cannot obtain w, unless
“it was already known” to V∗ in advance.

The security reduction and required obfuscation assumptions. As we have seen,
the WH guarantee of our protocol depends on the security of the underlying point
obfuscator O. We now discuss the properties of the obfuscation used to show
WH. Concretely, our underlying obfuscator should satisfy a distributional indis-
tinguishability requirement with respect to points and related auxiliary infor-
mation that are jointly sampled from an unpredictable distribution. We say that
a distribution ensemble D = {(Zn, Yn)}n∈N on pairs of strings is unpredictable
(UPD) if poly-size circuits cannot predict (with noticeable chance) the point Yn,
given the potentially related auxiliary input Zn. We say that O is a distribu-
tional auxiliary input point obfuscator (AIPO) if, for any UPD D = {(Zn, Yn)},
no poly-size circuit family can distinguish, given Zn, an obfuscation of O(Yn)
from an obfuscation of a random point O(Un).
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In our setting, Zn represents the common input x and the prover’s first mes-
sage (during the OT protocol). Yn is the obfuscated point (returned by the
honest prover). That is, Zn is explicitly known to the verifier, while Yn is obfus-
cated. A malicious V∗ might choose its (garbled) circuit to output illegitimate
information on the witness (i.e., information it could not predict on its own only
from Zn); the obfuscation, however, should prevent it from doing so.

3-round weak zero-knowledge. The WH protocol described above is not ZK - it
enables a cheating verifier V∗ to learn arbitrary predicates of the witness. For
example, to learn w1, the first bit of w, V∗ can maliciously choose its garbled
circuit to map w to one of two arbitrary points y0, y1 according to w1. In this
case, the honest prover sends an obfuscation O(yw1), and V∗ learns w1 by simply
running the obfuscation on each of the two points y0, y1. (This can be generalized
to any function f(w) where |f(w)| = O(log n), using a poly-size set {yi}).

Towards making the protocol ZK, we try to cope with the above attack by
requiring that the verifier “proves” it “fully knows” the secret point y (rather
than just a poly-size set containing y). To achieve this without adding rounds, we
ask that the verifier itself includes an obfuscation of y in its message. The prover
then checks the obfuscation’s consistency with the point extracted from the
circuit evaluation. In case of inconsistency, the prover aborts. This modification,
however, still does not prevent the above attack. The verifier V∗ can learn w1

by sending an obfuscation of the string y0 and observing whether the prover
aborts. Moreover, the protocol may no longer be sound since a cheating prover
might use the verifier’s obfuscation to create an obfuscation of the same point y
without “knowing” y.

We resolve these issues as follows: (a) to regain soundness, we use an obfus-
cation scheme with non-malleability properties, based on an obfuscated circular
point circuit. (b) to achieve WZK, we require that, instead of a plain point
obfuscation, the verifier sends an obfuscated multibit point circuit that on the
secret input y outputs the coins used by the verifier to garble the circuit. Now,
the prover can verify that the garbled circuit is indeed VeryL,x (for some y).

In order to show that the protocol is WZK, we use stronger notions of ob-
fuscation. Since WZK requires worst-case simulation (i.e., simulation for any
x), we require that our obfuscators also satisfy a worst-case simulation guaran-
tee (rather than the weaker distributive definition used for WH). To simulate
any verifier V∗, our simulator must make use of the obfuscation simulator for
V∗. However, an obfuscation simulator for general adversaries with long output
could not exist (see [BGI+01]); in fact, known constructions of PO only address
simulation of adversaries with a single output bit. To overcome this, we use the
fact that the WZK simulator is given a specific distinguisher D, and the simu-
lated verifier view should only needs to fool this specific D. We show how to use
an obfuscation simulator for the binary adversary D(V∗), which is the composi-
tion of the distinguisher and the verifier, in order to construct a WZK simulator.
Indeed, this limitation on simulating adversaries with long output is the reason
we do not achieve full-fledged ZK.
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1.2 Reflections on the Use of Point Obfuscation

The results of [GK96, HRS09] imply that our 3-round protocols cannot be shown
secure using reductions that only make black-box use of the adversary. This is
not surprising: indeed, neither auxiliary input nor standard point obfuscators
can be shown to be secure using black-box reductions [Wee05]. Hence, our use
of obfuscation inherently implies that the verifier is not used as a black-box.

To demonstrate the non-black-box nature of POs, we briefly review the tech-
niques used in existing constructions [Can97, Wee05]. We can view POs as a
special case of AIPOs, where the auxiliary input Zn is empty. In this case, Yn
is unpredictable if it is well-spread (i.e., has super-logarithmic min-entropy) and
the security requirement is that O(Yn) ≈c O(Un) for any well-spread Yn.

The hardness assumptions made in [Can97, Wee05] are shown to imply that
the strategy of any distinguisher essentially consists of a poly-size set of “dis-
tinguishing elements”. That is, only obfuscations of points within this set are
distinguishable from an obfuscation of a random point. However, these elements
cannot be extracted using black-box access to the adversary. Hence, they are
given to the reduction (or simulator) as non-uniform advice.

These techniques allow achieving the stronger worst-case simulation defini-
tion, thus showing that the distributive and worst-case definitions are in fact
equivalent in the case of no auxiliary input. When considering auxiliary input,
we can no longer apply these techniques. Indeed, the set of distinguishing el-
ements can now depend on the auxiliary input in an arbitrary way. That is,
no short advice suffices for the reduction to go through. In general, we do not
know whether the distributive AIPO definition implies the worst-case simulation
definition in the auxiliary input case (the converse still holds).

Concrete constructions. There exist very few constructions that were shown to
be secure with respect to auxiliary input. [GK05] show that any point obfuscator
is also secure with respect to auxiliary input that is chosen independently of the
obfuscated point. [DKL09] suggest a construction that, under a variant of the
LWE assumption, satisfies a restricted definition where the distribution D is
“highly unpredictable”. Both results are insufficient for our needs.

In this work, we consider two concrete constructions of AIPOs based on two
different assumptions. The first AIPO, known as the (r, rx) obfuscator, was sug-
gested by Canetti [Can97] based on a strong variant of DDH. Informally, the
assumption states that there exists an ensemble of prime order groups G =
{Gn : |Gn| = pn} such that for any unpredictable distribution D = (Zn, Yn) with

support {0, 1}poly(n) × Zpn : (z, r, r
y) ≈c (z, r, ru), where (z, y) ← (Zn, Yn), u

U←
Zpn and r is a random generator of Gn

1.
For the second construction, we suggest a new assumption that is stated in

terms of uninvertibility rather than indistinguishability. The assumption strength-
ens the assumptionmade byWee [Wee05] to account for auxiliary inputs. Roughly,
to construct (non auxiliary input) POs, Wee assumes a strong one-way

1 Both [Can97, DKL09], make use of a slightly different formulation for the distribu-
tional AIPO requirement. Their formulation is essentially equivalent to ours.
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permutation f that is “uninvertible” with respect to all well-spread distributions.
A natural extension of the latter to the auxiliary input setting is to assume that
the permutation is hard to invert, even given side information Z on the pre-image
Y , from which Y cannot be predicted. An additional fact used by Wee is that
permutations inherently preserve (information-theoretic) entropy; in particular,
if Y is well-spread, so is f(Y ). In the (computational) auxiliary input setting,
this might not be true; namely, it might be that Y is unpredictable from Z,
while f(Y ) is predictable from Z. One possible way to deal with this issue is to
assume a trapdoor permutation family (with the above strong uninvertibility).
Further details can be found in the full version of this paper [BP11].

We remark that both the assumptions we consider (or any assumption that
states that a specific obfuscation candidate is an AIPO satisfying either a the
worst-case or the distributive security definition) are considered to be non-
standard. In particular, any such assumption is non-falsifiable in the terms of
Naor [Nao03].

Comparison with previous work on 3-round ZK. As already mentioned, it is
known how to construct 3-round ZK arguments and proofs using non-falsifiable
“knowledge assumptions,” such as the knowledge of exponent assumption (KEA)
[HT98, BP04], the POK assumption [LM01], or the existence of “extractable
perfect one-way functions” (EPOWF)[CD09].

The KEA assumption [Dam91], essentially asserts that any algorithm that
produces a DDH tuple, must “know” the corresponding exponents. Upon the
formulation of KEA, [Dam91] raised a more general question regarding the ex-
istence of “sparse range one-way functions”, such that any algorithm that can
sample an element within the function’s image, must also “know” a primage
(KEA indeed yields such a OWF). The EPOWF primitive of [CD09] formalizes
this generalization. All in all, all the above assumptions essentially fall under the
abstract notion of EPOWF. (Indeed, [CD09] show that either one of the KEA
or the POK assumptions imply the EPOWF primitive, when combined with a
hardness assumption such as DDH.)

In this work, we show how to circumvent the black-box impossibility results for
3-round WZK and WH based on a different set of primitives; namely, (variants
of) point obfuscation with auxiliary input. Currently, we do not know of any
formal relation between the AIPO and EPOWF primitives, beyond the relation
established in this work (through 3-round ZK). Formalizing such a relation is an
interesting question on its own (going beyond the scope of 3-round ZK).

On the efficiency of the construction. Basing our constructions on (Yao-based)
secure function evaluation results in efficient protocols with a practical imple-
mentation (similarly to [IKOS07]). By working directly with the verification
circuit VerL, we avoid the overhead of Karp reducions, existing in most ZK pro-
tocols. Specifically, we can achieve communication complexity O(ns), where n
is the security parameter and s is the size of VerL. This is not optimal as there
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exist ZK arguments with polylog communication complexity [Kil92]. However,
these require using PCPs, making them less practical.

Finally, we consider the techniques in use. Unlike previous works, our work
demonstrates a direct WH construction that is not based on a ZK protocol. We
then strengthen it to a limited form of ZK. Our WH to WZK transformation is
specifically tailored for our construction. An interesting open question is whether
a general transformation of this type exists.

Organization. In Section 2 we present the main definitions and tools used in this
work. In Section 3 and Section 4 we introduce our WH and WZK protocols. For
lack of space many of the details and proof are omitted and can be found in the
full version of this paper [BP11].

2 Definitions and Tools

2.1 Weak Zero-Knowledge and Witness Hiding

In this work, we discuss two relaxations of ZK which are formalized next.

Weak zero-knowledge. In ZK, we require that the view of any verifier V∗, in an
interaction with the honest prover P , can be simulated by an efficient simulator
S. The simulated view should be indistinguishable from the view of V∗ for any
poly-size distinguisher. In weak ZK (WZK), the simulator is only required to
output a view that is indistinguishable from that of V∗ for a specific distinguisher.
This is modeled by supplying the simulator with the distinguisher circuit as
additional auxiliary input.

Definition 2.1 (Weak zero-knowledge). An argument system (P ,V) is WZK
if for every PPT verifier V∗ there exist a PPT simulator S such that for every
poly-size circuit family of distinguishers D = {Dn}n∈N and any x ∈ L ∩ {0, 1}n,
w ∈ RL(x), z ∈ {0, 1}poly(n) it holds that:

|Pr[Dn((P(w),V∗(z))(x)) = 1]− Pr[Dn(S(Dn, x, z)) = 1]| ≤ negl(n) .

Witness-hiding. A protocol is WH if the verifier cannot fully learn a witness from
its interaction with P . This requirement is restricted to instances and witnesses
(x,w) sampled from “hard distributions”.

Definition 2.2 (Hard distribution). Let D = {Dn}n∈N be an efficiently sam-
plable distribution ensemble on RL, i.e., the support of Dn is Supp(Dn) =
{(x,w) : x ∈ L ∩ {0, 1}n, w ∈ RL(x)}. We say that D is hard if for any poly-size
circuit family {Cn} and sufficiently large n it holds that:

Pr
(x,w)

Dn←RL

[Cn(x) ∈ RL(x)] ≤ negl(n) .
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Definition 2.3 (D-witness-hiding). An argument system (P ,V) for an NP
language L is WH with respect to a hard distribution D = {Dn}n∈N, if for any
poly-size verifier V∗ and all large enough n ∈ N:

Pr
(x,w)←Dn

[(P(w),V∗)(x) ∈ RL(x)] ≤ negl(n) .

We say that (P ,V) is WH if it is D-WH for every hard distribution D.

As discussed in the introduction, in this work we will be interested in WH
protocols (with respect to a every hard distribution), and not with protocols
that are WH with respect to a specific hard distribution.

2.2 2-Message Delegation

A central tool used in our constructions is a 2-message delegation protocol in
which the prover and verifier jointly evaluate the NP verification circuit of the
language on the common instance and the prover’s witness. We use this primitive
(following the formulation in [IP07]) to abstract the use of the Yao’s garbled
circuit construction.

A 2-message delegation protocol is executed by parties (A,B) where A has
an input x, and B has as input a function f (given by a boolean circuit). The
protocol should allowA to obtain f(x) using two messages:A→ B → A, without
compromising the input secrecy of either party. We additionally require that,
given B’s message and secret randomness, one can reconstruct f . The protocol
is defined by a tuple of algorithms (Gen,Enc,Eval,Dec,Open) and proceeds as
follows:

A: Obtains a key sk ← Gen(1n), computes an encryption of its input c ←
Enc(sk, x), and sends c.

B: Computes an encrypted output ĉ← Eval(c, f) using randomness r, and sends
back ĉ.

A: Outputs y = Dec(sk, ĉ).

We briefly describe the security properties required from 2-message delegation
schemes in this work:

– Correctness: When both parties are honest A outputs f(x).
– Input Hiding: An adversarial B cannot learn A’s input x (in the semantic

security sense).
– Function Hiding: An adversarialA learns nothing about B’s input f , other

than the value of f(x) (security in this case is simulation based).
– Function Binding: In a later stage, B can reveal its input function f by

exhibiting its random coins. We require that for any message sent by B, it
can reveal at most one function. While function-binding is not required in
common formulations of delegation protocols, we show that a Yao-based con-
struction (when instantiated with natural forms encryption) has this prop-
erty.
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In the full version of this paper [BP11], we provide a formal definition of secure 2-
message delegation and describe a concrete instantiation based on Yao’s garbled
circuit technique and 2-message OT. We also define an information-theoretic
version of this primitive, which we use in order achieve a WH protocol with
unconditional soundness (i.e., a proof).

2.3 Point Obfuscation with Auxiliary Input

We start by recalling the standard definition for circuit obfuscation with auxiliary
input. The definition is a worst-case definition, in the sense that simulation must
hold for any circuit in the family and any related auxiliary input.

Definition 2.4 (Worst-case obfuscator with auxiliary input [BGI+01,
GK05]). A PPT O is an obfuscator with auxiliary input for an ensemble C =
{Cn}n∈N of families of poly-size circuits if it satisfies:

– Functionality. For any n ∈ N, C ∈ Cn, O(C) is a circuit that computes the
same function as C.

– Polynomial slowdown. For any n ∈ N, C ∈ Cn, |O(C)| ≤ poly(|C|).
– Virtual black box. For any PPT adversary A there is a PPT simulator S
such that for all sufficiently large n ∈ N, C ∈ Cn and z ∈ {0, 1}poly(n):∣∣∣Pr[A(z,O(C)) = 1]− Pr[SC(z, 1|C|) = 1]

∣∣∣ ≤ negl(n) ,

where the probability is taken over the coins of A,S and O.
An obfuscator O is recognizable if given a program C and an alleged obfuscation
of C, C̃, it is easy to verify that C and C̃ compute the same function.

– Recognizability. There exist a polynomial time recognition algorithm V

such that for any C ∈ Cn:
– PrO [V(C,O(C)) = 1] = 1
– For any C̃ ∈ {0, 1}poly(n) if V(C, C̃) = 1 then C̃ and C compute the same

function.

Point obfuscation. We consider obfuscation of point circuits and their extensions.
A point circuit Is outputs 1 on string s and ⊥ on all other inputs.

Definition 2.5 (Worst-Case auxiliary-input point obfuscation (AIPO)).
A PPT algorithm O is a worst-case AIPO if it is a recognizable obfuscator (accord-
ing to Definition 2.4) for the circuit ensemble: C = {Cn = {Is|s ∈ {0, 1}n}}n∈N.

Remark 2.1. The notion of recognizable obfuscation was not explicitly defined
in previous works. We only consider this property in the context of point obfus-
cation. While, in general, point obfuscators are not required to be recognizable,
previously constructed obfuscators [Can97, Wee05] are trivially recognizable.
This is due to the fact that they use public randomness, i.e., the randomness
used by the obfuscator appears in the clear as part of the obfuscated circuit.
The recognition algorithm, given a program and its obfuscation, can simply
rerun the obfuscation algorithm with the public randomness and compare the
result to the obfuscation in hand.
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We next present a weaker distributional definition for point obfuscation with
auxiliary input that previously appeared in [Can97] (in a slightly different for-
mulation). We first give a preliminary definition of unpredictable distributions
(generalizing Definition 2.2) and then present the obfuscation definition.

Definition 2.6 (Unpredictable distribution). A distribution ensemble D =
{Dn = (Zn, Yn)}n∈N, on pairs of strings is unpredictable if no poly-size circuit
family can predict Yn from Zn. That is, for every poly-size circuit family {Cn}n∈N

and for all large enough n:

Pr
(z,y)←Dn

[Cn(z) = y] ≤ negl(n) .

Definition 2.7 (Auxiliary input point obfuscation for unpredictable
distributions (AIPO)). A PPT algorithm O is a point obfuscator for un-
predictable distributions if it satisfies the functionality and polynomial slowdown
requirements as in Definition 2.4, and the following secrecy property. For any
unpredictable distribution D = {Dn = (Zn, Yn)} over {0, 1}poly(n) × {0, 1}n it
holds that:

{z,O(y) : (z, y)← Dn}n∈N ≈c

{
z,O(u) : z ← Zn, u

U← {0, 1}n
}
n∈N

.

Remark 2.2. Using this definition in our WH construction, we can settle for a
slightly relaxed definition with bounded auxiliary input; namely |Yn| = ω(|Zn|).
We do not know if such a bounded form of auxiliary-input indeed weakens the
requirement. However, it does seem to withstand certain “diagonalization at-
tacks” that can be performed for the non-restrictive (under certain obfuscation
assumptions).

2.4 Digital Lockers and Circular Digital Lockers

We also consider obfuscation of several extensions of point circuits. Specifically,
multibit point circuits and circular point circuits. A multibit point circuit Is→t

outputs t on s and ⊥ otherwise. A circular Point circuit Is�t outputs t on input
s, s on input t, and ⊥ otherwise. Obfuscators satisfying the worst-case AIPO
definition (Definition 2.5) for multibit point circuits and circular point circuits
are called digital lockers (DLs) and circular digital lockers (CDLs).

Definition 2.8 (Digital locker (DL)). A PPT algorithm is a DL if it is a
recognizable obfuscator (according to Definition 2.4) for the circuit ensemble:
C = {Cn = {Is→t|s, t ∈ {0, 1}n}}n∈N.

Definition 2.9 (Circular digital locker (CDL)). A PPT algorithm is a CDL
if it a recognizable obfuscator (according to Definition 2.4) for the circuit ensem-
ble: C = {Cn = {Is�t|s, t ∈ {0, 1}n}}n∈N

.

Remark 2.3. We note that the “security under circularity” feature is inherently
provided by the strong obfuscation guarantees, was already considered in pre-
vious work for constructing strong encryption schemes which withstand key de-
pendent messages and related keys attacks [CKVW10, BC10].
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While AIPOs are sufficient for our WH protocol, our WZK protocol requires DLs
and CDLs. In the full version of this paper [BP11], we describe how DLs and
CDLs can be constructed based on a worst-case AIPOs that satisfy an additional
property of composability.

3 3-Round WH

Overview of the protocol. As a warmup, consider first the following unsound
protocol: to prove an NP statement x ∈ L, the proverP and verifier V first engage
in a 2-message delegation protocol where P ’s (secret) input is the witness w and
V ’s input function is the NP verification circuit VerL,x. P obtains the result
VerL,x(w) and sends it to V . This is unsound since a cheating prover can always
send “1” as its last message.

To make the protocol sound, we augment it as follows. Let VeryL,x be a circuit
that outputs y on valid witnesses and ⊥ otherwise. Now, V will choose a secret
string y ∈R {0, 1}n and use the circuit VeryL,x as its secret input in the delegation
protocol. In order to convince V of the statement, P should send back y. Indeed,
in case x /∈ L we have VeryL,x ≡ ⊥, and hence, the “function hiding” property of
the delegation protocol assures that P does not learn the random y.

However, this protocol is not witness hiding. Indeed, a cheating verifier can
try to obtain w by maliciously choosing its input function. For instance, choosing
the function to be the identity results in the prover sending back w.

A natural approach towards fixing the latter problem would be to have the
verifier “prove” it behaved honestly, without revealing its secret. In other words,
it should give a round-efficient witness-hiding proof, which is what we set out to
do to begin with. Thus, we take a different approach. We note that an honest
verifier that “knows” y should only be able to verify that the prover “knows” it
as well; hence, it suffices to have the prover send a point obfuscation of y, instead
of sending y in the clear. The security of the obfuscation would then guarantee
that any information that the verifier learns on w could also be learned (with
noticeable probability) without the obfuscation.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message dele-
gation protocol and let O be a point obfuscator for unpredictable distributions
(AIPO) with recognition algorithm V. The protocol is given by Figure 1.

Theorem 3.1. Let DEL be a secure 2-message delegation protocol, and let O be
an AIPO. Protocol 1 is a WH interactive argument.

We briefly overview the proof of Theorem 3.1. The full proof as well as an
extension from an argument to a proof can be found in the full version of this
paper [BP11].

Soundness. The soundness of Protocol 1 follows from the function hiding of
the underlying delegation scheme DEL and the recognizability of the point ob-
fuscator. Indeed, in case there is no valid witness the verifier’s message reveals



Point Obfuscation and 3-Round Zero-Knowledge 201

Common Input: x ∈ L. Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and sends c = Enc(sk, w).

2. V: Samples y
U← {0, 1}n, obtains ĉ ← Eval(c,VeryL,x) and sends ĉ.

3. P: Decrypts ỹ = Dec(sk, ĉ), computes a point obfuscation O(ỹ) and sends it.
4. V: Accepts iff V(Iy,O(ỹ)) = 1, i.e., O(ỹ) computes the same function as Iy.

Fig. 1. Protocol 1, 3-round Witness Hiding

no information regarding the verifier’s secret random point y. Specifically, the
prover’s view can be simulated independently of y. Since the obfuscation is rec-
ognizable, in order to fool the verifier, the prover must send a point circuit
computing Iy and can only succeed with negligible probability.

Proof of Knowledge. In fact, we can show that our WH protocol satisfies a
stronger soundness property, namely it is a proof of knowledge. For this purpose,
we use a similar idea to the one in the “knowledge attack” that shows why the
protocol is not ZK (described in the introduction). In order to extract a witness,
we essentially apply this attack repeatedly “against” the prover, revealing the
witness’ bits one by one. Our extractor only makes black-box use of the prover
and extracts the witness using rewinding.

Witness hiding. The WH property is based on the input hiding of the delegation
scheme DEL and the indistinguishability with respect to unpredictable distribu-
tions guarantee of the AIPO O. Concretely, we show how any V∗ that manages
to extract a witness w from its interaction with P can be used to break the input
hiding property of DEL. The reduction samples (x,w) from the hard distribu-
tion and submits c0 = w, c1 = 1|w| to the challenger. Upon receiving a challenge
c = Enc(sk, cb) it simulates V∗(x) with c as the first message. V∗ then generates
its own message ĉ, and it is left to simulate the last obfuscation message. To
do so, we treat two cases, corresponding to whether the secret point y (induced
by V∗’s choice of input circuit to DEL) is (a) unpredictable from (x, c) or (b) is
predictable by some poly size predictor Π . Intuitively, the first corresponds to a
verifier that chooses its input circuit maliciously to gain information on w. The
second, corresponds to a verifier that chooses its circuit honestly. To simulate
the obfuscation in the second case, we apply the prediction circuit to compute
y ← Π(x, c) and feed V∗ with O(y). In the case that y is unpredictable, we feed
V∗ an obfuscation O(u) of a random point u. Finally, when V∗ outputs w̃, we
check whether it is a valid witness, and if so answer the challenger with b = 0.
Otherwise, we guess b at random. Indeed, by the indistinguishability guarantee
of the AIPO, in case b = 0 (i.e., the simulation is done with an encryption of
w) the simulated V∗ will manage to extract a witness with noticeable probability
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(related to the the prediction probability of Π and the success probability of V∗

in a true interaction). In case that b = 1, the reduction is unlikely to produce a
valid witness since its view is completely independent of w and the underlying
distribution is hard. We stress that the reduction is, indeed, not black box in V∗;
in particular, it applies the predictor Π implied by the AIPO guarantee, which
is not black-box in V∗.

On restricted auxiliary input. In our WH protocol we require the AIPO dis-
tributional guarantee to hold with respect to any unpredictable distribution.
However, we can in fact settle for less. Specifically, the auxiliary input distribu-
tion in Protocol 1 is essentially restricted to a very “benign” form; namely, the
first delegation message (ciphertext) and the hard instance x; in particular, the
auxiliary input is of fixed polynomial size and can be made much shorter than
the obfuscated random point.

Why isn’t Protocol 1 ZK? Protocol 1 is not ZK and in fact enables a cheat-
ing verifier V∗ to learn arbitrary predicates on the witness. Specifically, V∗ can
deviate from the protocol by maliciously selecting its input circuit C for the
delegation protocol as follows. Let B : {0, 1}∗ → {0, 1}t be a polynomial time
computable function with t = O(log(n)) output bits. To learn B(w), V∗ fixes
an arbitrary set of strings Y = {yj}j∈{0,1}t and sets its input circuit C = CB

to map the witness w to yB(w). Indeed, given an obfuscation of CB(w), V∗ can
simply run the obfuscation on all points in {yj} and learn B(w). In the following
section we explain how to transform Protocol 1 to a WZK protocol.

4 3-Round WZK

Overview of the protocol. To make Protocol 1 WZK, we try to cope with verifiers
executing the “malicious circuit choice attack” described in the previous section.
As explained in the introduction, this involves two main modifications:

1. We require that the verifier’s message also includes a digital locker DL(Iy→rV ),
which on the secret input y “unlocks” the secret coins rV used by the verifier
in the delegation protocol. Upon receiving this message, the honest prover
P applies Dec as in the previous protocol, obtains y, and then retrieves the
coins rV . Now P can apply the Open algorithm of the delegation to verify
that the input circuit of V∗ was honestly chosen (to be VeryL,x). In case it was
not, P returns a circular digital locker (CDL) (Definition 2.9) of a randomly
selected circular point circuit.

2. The prover is required to send back an obfuscation of y (as in the previous
protocol). However, to maintain soundness we should prevent a malicious
prover from using (or mauling) the verifier’s message DL(Iy→rV ) to get the
required obfuscation. For this purpose, we apply a “non-malleable obfus-
cation scheme”, implemented as follows.2 In its first message, the prover

2 We only consider a very restricted form of non-malleability where the adversary tries
to copy an obfuscation of the same point. A more general notion of non-mailable
obfuscation can be found in [CV08].
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commits to a random r ∈ {0, 1}n (by sending the image of r under some
injective OWF f). Then in the last message, it sends a circular digital locker
CDL(Iy�r) that “binds” r and the secret point y. The honest verifier then
runs the CDL on y, retrieves r and uses the CDL recognition algorithm to
validate the CDL.

We now fully describe the protocol and then turn to analyze it.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message del-
egation scheme. Let DL, CDL be a digital locker and a circular digital locker.
Let V be the recognition algorithm for the CDL. Let f be an injective one way
function. The protocol is presented in Figure 2.

Common Input: x ∈ L. Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and c ← Enc(sk, w), samples r
U← {0, 1}n, sends c

and f(r).

2. V: Samples y
U← {0, 1}n, obtains ĉ ← Eval(c,VeryL,x) using random coins rV ,

sends ĉ and DLV = DL(Iy→rV ).
3. P: Decrypts ỹ = Dec(sk, ĉ), obtains r̃V = DLV(ỹ), verifies that

V(Iỹ→rV ,DLV) = 1 and Open(ĉ, r̃V) = VerỹL,x.

If so, sends back CDLP = CDL(Iỹ�r). Otherwise, samples u
U← {0, 1}n and

sends back CDLP = CDL(Iu�u).
4. V: Obtains r̃ = CDLP(y), accepts iff f(r̃) = f(r) and V(Iy�r̃,CDLP) = 1.

Fig. 2. Protocol 2, 3-round WZK

Theorem 4.1. Let DEL be a 2-message delegation protocol, let DL be a digi-
tal locker and CDL a circular digital locker, and let f be an injective one way
function, then Protocol 2 is a WZK argument.

We briefly overview the proof of Theorem 3.1. The full proof can be found in
the full version of this paper [BP11].

Soundness. Soundness is shown in two stages. First, we argue that given V ’s
message (ĉ,DLV), it is hard to recover the underlying secret point y. I.e, no
poly-size circuit family can recover y, except with negligible chance. Indeed, the
auxiliary input obfuscation guarantee implies that if y can be recovered from
DLV and the related auxiliary information ĉ, it can also be recovered solely
from ĉ. However, since x /∈ L and DEL is function hiding, y cannot be recovered
from ĉ (similarly to the WH protocol).

Second, we show that any cheating prover P∗ can be used to recover y from
V ’s message. Assume WLOG that P∗ is deterministic, and note that, in its
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first message, P∗ sends some (fixed) f(r). Since f is injective, P∗ is in fact
“committed” to the corresponding fixed r. We can then feed P∗ with V ’s message
and get back CDLP . Noting that whenever P∗ convinces V , CDLP(r) = y, we
can run CDLP on r (given as non-uniform advice) and obtain y with noticeable
probability.

Weak zero-knowledge. We present a WZK simulator that, given an adversary V∗

and a distinguisher D, simulates the view of V ∗ with respect to D. Let V∗
D be the

composition of D with V∗. V∗
D outputs a bit after receiving CDLP = CDL(Iy�r)

as the last message. In particular, there exist a PPT SCDL that simulates V∗
D’s

output given oracle access to Iy�r and auxiliary input ai = (z, x, c, f(r)), repre-
senting the rest of V∗

D’s view.
The WZK simulator S will simulate ai on its own, and utilize SCDL to simulate

CDLP as the last message. To simulate ai, S samples r and computes f(r). c
is simulated by generation a random key sk ← Gen(1n) and computing c =
Enc(sk, 0|w|) (instead of w as in a true interaction). The input hiding of DEL
implies that the simulated ai is indistinguishable from the true ai. We explain
how SCDL is used to simulate the last obfuscation message. S first obtains the
verifier’s message (DLV∗ , ĉ). It then runs SCDL with the simulated ai, monitoring
all its oracle queries. We treat two separate cases: (a) SCDL makes a query y which
unlocks DLV∗ ; (b) SCDL never makes such a query, in which case we always answer
its queries with ⊥.

The first case corresponds to a verifier that “knows” the secret point y. In
this case, our simulator can perfectly simulate the behavior of P . That is, it can
“open” ĉ to check its validity and consistency with DLV∗ , and send back the
corresponding CDL.

The second case corresponds to a cheating V∗ that either produces an invalid
message or somehow produces a valid message but without actually “knowing”
the secret y. In this case, the simulator will always return a “dummy obfus-
cation”. This simulates the behavior of the honest prover P . Indeed, if V∗’s
message is invalid, the prover also produces a “dummy obfuscation”. If V∗ does
not “know” y, it can not distinguish P ’s message from a “dummy obfuscation”.

The simulator. Let V∗ be any verifier, and let D be the distinguisher circuit. De-
note by V∗

1 (z, x, c, f(r)) the algorithm that runs V∗(z, x), feeds it with (c, f(r))
as the first message, and outputs V∗’s message. Denote by V∗

2 (x, z, c, f(r),CDLP)
the algorithm that runs V∗(x, z), feeds it with (c, f(r)) as a first message,
with CDLP as a second message, and returns V∗’s output. Also, denote by
V∗
D(x, z, c, f(r),CDLP) the algorithm that runs V∗

2 (x, z, c, f(r),CDLP), applies
the circuit D on the output of V∗

2 and returns the output bit of D.
Let SV∗,D(x, z, c, f(r)) be the PPT obfuscation simulator of V∗

D as specified
by Definition 2.4. Also let �(n) be the length of a witness for instances of length
n. The description of the simulator is given by Algorithm 1.
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Algorithm 1. Simulator S
Input: x ∈ L, z ∈ {0, 1}∗

1: Set ỹ = ⊥.

2: Sample r, u
U← {0, 1}n.

3: Obtain sk ← Gen(1n).
4: Compute c ← Enc(sk, 1�(|x|))
5: Compute (ĉ,DLV) = V∗

1 (x, z, c, f(r)).
6: Emulate SV∗,D(x, z, c, f(r)).
7: for each oracle query Q made by SV∗,D do
8: if DLV(Q) = ⊥ then
9: Answer S ’s query with ⊥ and continue the emulation.
10: else
11: Set r̃V = DLV(Q)
12: if V(IQ→rV ,DLV) = 1 then
13: Set ỹ = Q
14: end if
15: End the emulation of SV∗,D.
16: end if
17: end for
18: if ỹ = ⊥ or Open(ĉ, r̃V) �= VerỹL,x then
19: return V∗

2 (x, z, c, f(r),CDL(Iu�u)).
20: else
21: return V∗

2 (x, z, c, f(r),CDL(Iỹ�r)).
22: end if
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Abstract. Traditional security definitions in the context of secure com-
munication specify properties of cryptographic schemes. For symmetric
encryption schemes, these properties are intended to capture the protec-
tion of the confidentiality or the integrity of the encrypted messages. A
vast variety of such definitions has emerged in the literature and, despite
the efforts of previous work, the relations and interplay of many of these
notions (which are a priori not composable) are unexplored. Also, the
exact guarantees implied by the properties are hard to understand.

In constructive cryptography, notions such as confidentiality and in-
tegrity appear as attributes of channels, i.e., the communication itself.
This makes the guarantees achieved by cryptographic schemes explicit,
and leads to security definitions that are composable.

In this work, we follow the approach of constructive cryptography,
questioning the justification for the existing (game-based) security def-
initions. In particular, we compare these definitions with related con-
structive notions and find that some are too weak, such as INT-PTXT,
or artificially strong, such as INT-CTXT. Others appear unsuitable for
symmetric encryption, such as IND-CCA.

Keywords: confidentiality, integrity, constructive cryptography.

1 Introduction

Symmetric encryption protects the confidentiality of messages transmitted be-
tween two parties that share a secret key. Intuitively, this means that the en-
crypted message (the ciphertext) transmitted from the sender A to the receiver
B does not leak information about the contents of the message (other than,
for example, its length). In contrast, encryption generally does not protect in-
tegrity: If the ciphertext is modified during transmission, the message obtained
by decrypting might differ from the original message.

For some applications of encryption schemes, bare confidentiality is not suf-
ficient. In his analysis of the Authenticate-then-Encrypt (AtE) transformation,
Krawczyk [18] constructs an encryption scheme that guarantees confidentiality,
but if one uses it to encrypt authenticated plaintexts, the combined scheme
does not guarantee both confidentiality and integrity. The vulnerabilities can

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 209–229, 2012.
c© International Association for Cryptologic Research 2012
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either be seen as a breach of confidentiality [18] or as a breach of integrity, see
Sect. 4.4. Natural candidates, such as the cipher block chaining mode (CBC)
or stream ciphers, are not vulnerable; they provide weak but sufficient integrity
guarantees [25].

In this paper, we use the approach of constructive cryptography [21,22] for a
systematic treatment of security notions for symmetric encryption schemes. This
approach leads to security definitions that capture the exact conditions that the
schemes have to satisfy to achieve certain guarantees for the message transmis-
sion. In particular, these definitions are composable, which is instrumental for
the soundness of a modular protocol design. We then show how different types of
confidentiality and integrity are captured and compare these notions with sev-
eral security definitions from the literature. This shows that some of the previous
definitions are either too weak or artificially strict (which is in general undesired
as it may lead to disregarding efficient schemes that are indeed sufficient).

1.1 Game-Based Security Definitions

Most widely-used security definitions for cryptographic schemes in the context
of secure communication are game-based. The main concept of these definitions
is an interaction of two (hypothetical) entities: The challenger and the attacker.
During this interaction, the attacker issues certain “oracle queries” to the chal-
lenger; these queries model the use of the scheme in applications. The game also
specifies a goal for the attacker, which often corresponds to forging a message
or distinguishing encryptions of different messages. The infeasibility of achieving
this goal is supposed to capture the guarantees required from the scheme.

Unfortunately, the oracle queries and winning conditions of games encode the
use and guarantees only implicitly, and the exact guarantees are often hard to
understand. In particular, such security definitions are generally not composable,
and subtle details often have a significant impact on the resulting guarantees:
Examples where slight slackness in the oracle queries rendered the guarantees of
games too weak are discussed in Sect. 4.

1.2 Constructive Cryptography

The foundational idea of constructive cryptography [21,22] is to specify both the
setup assumptions and the guarantees of protocols explicitly as resources, and
to consider a protocol as a transformation of such resources. Here, a resource is
a shared functionality accessed by several parties (similar to the ideal function-
alities in frameworks such as [2,8]). Real resources are assumed functionalities
needed for executing protocols (such as a network) and ideal resources describe
the guaranteed functionalities the parties want to achieve. The way a party ac-
cesses a resource is described by the interface provided by the resource to this
party; the resource provides one interface per party.

A converter systems formalizes the actions that a party performs locally, for
example when it uses a cryptographic scheme. A converter has two interfaces:
The inner interface is attached to an interface of the resource, and the outer
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interface is used by the party instead of the original interface of the resource. In
particular, the composition of the resource and the converter is again a resource
with one interface for each party, which is depicted in Fig 1 for the case of
symmetric encryption.

A protocol is a tuple (in our context just a pair) of converters, there is one such
system for each (honest) party. The goal of a protocol is to construct a specified
ideal resource from available real resources, where the meaning of “construct”
is made precise in Sect. 2.3. The constructed ideal resources can again serve as
real resources for other protocols.

1.3 Secure Communication

The resources considered in this work are communication functionalities with
different types of security guarantees, and the goal of a cryptographic protocol
is to construct a functionality with stronger guarantees from one (or more) with
weaker guarantees. As the setting for communication security is described by
two (honest) entities that communicate in a potentially hostile environment, we
consider resources with three interfaces: One interface labeled A for the sender,1

one labeled B for the receiver, and a third one that is labeled E and captures
potential adversarial access. A resource of this type is called a channel (from A
to B), and its security properties are described by the capabilities provided at
the E-interface. The basic types of channels are (informally) described in the
following table, using the notation of [24].

−→ An insecure channel leaks the complete messages at the E-interface, and
allows at the E-interface to delete, change, or inject messages.

•−→ An authenticated channel leaks the complete messages. The E-interface
only allows to forward or to delete messages.

−→• A confidential channel only leaks the length of the messages, but allows
to delete, change, or inject messages.

•−→• A secure channel only leaks the length of the messages and only allows
to forward or to delete messages.

The intuitive interpretation of the symbol “•” is that the capabilities at the
marked (sender’s or receiver’s) side of the channel are provided exclusively to
that party. Consequently, if one side is not marked, the adversary might also
be able to send or receive messages. A shared secret key is a system •==• that
outputs the same random value at the A- and B-interfaces, and does not interact
at the adversarial interface. This system models the key that is required by
(symmetric) schemes; it could be generated in a key agreement protocol.

Security mechanisms such as encryption or MAC schemes are protocols that
transform one type of channel (and possibly a shared secret key) into a “more
secure” type of channel. In Fig. 1, the protocol (enc, dec) uses as resources a
channel −→ and a key •==•. The converter enc is attached with its inner interface
to the A-interfaces of −→ and •==• (dec is attached to the B-interfaces), and

1 Bidirectional communication also involves the analogous setting with opposite roles.
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−→
•==•

enc dec
A

A B

B

A B

E

Fig. 1. Encryption protocol (enc, dec) applied to the channel −→ and the key •==•

the outer interfaces of enc and dec are the interfaces of the constructed (dashed)
system, which is again a channel. For more examples, we refer to [22,25].

1.4 Related Work

The major part of research on (symmetric) encryption schemes has been pursued
in game-based security models. The nowadays “standard” confidentiality notions
IND-CPA and IND-CCA are derived from [14] and have been translated to the
setting of symmetric encryption schemes by [3]. Further variants of these notions
are introduced and compared in [16]. Several types of integrity guarantees have
been considered: Notions of non-malleability have been translated in [5] from
the respective public-key notions [12]. Further standard notions are INT-CTXT
and INT-PTXT (integrity of ciphertext and integrity of plaintext, respectively)
introduced and analyzed in [5], their relation is further examined in [28]. Also,
various types of unforgeability notions appear in the literature [13,17,18].

The security requirements for schemes used to protect communication over
insecure networks is often specified as a combination of properties for confiden-
tiality and integrity, where the standard combination is IND-CPA and INT-
CTXT [5,7,17]; combinations with weaker types of integrity properties appear
in [5,9,13,17,27]. A single game-based notion for authenticated encryption ap-
peared in [31,34]. A different approach is taken in the definition of [9]: While
confidentiality is similar to IND-CPA, authenticity is simulation-based; equiva-
lent fully game-based notions appear in [27]. Fully simulation-based definitions
of secure communication have been provided in [29] for Reactive Simulatability
and in [10] in the UC framework.

1.5 Outline

We analyze confidentiality and integrity notions for (symmetric) encryption
schemes using the paradigm of constructive cryptography. Sect. 2 introduces
the notation and the general model, and Sect. 3 shows how different types of
confidentiality and integrity guarantees are captured. In Sect. 4, we compare
various existing game-based security definitions to the notions in our model.

2 Preliminaries

We use the concept of abstract systems [22,23] to formulate our results. At the
highest level of abstraction, a system is an object with interfaces via which it
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interacts with its environment and with other systems. Every two systems can be
composed by connecting one interface of each system, and the composed object
is again a system. Also, every two different systems are mutually independent.

2.1 Notation

We consider two distinct types of systems, resources and converters, and we
describe topologies of these systems using the notation from [23]. Resources,
with three interfaces labeled by A, B, and E, are denoted either by special
symbols or by upper case boldface letters. Converters, with one inner and one
outer interface, are denoted either by small Greek letters or by special identifiers
such as enc or dec; the set of all converters is denoted as Σ.

The composition of a resource R and a converter φ is written as φIR, where
the label I ∈ {A,B,E} means that the inner interface of φ is attached to the
I-interface of the resource R. Note that the composed system is again a resource
that exposes the outer interface of φ as the I-interface together with the other
interfaces of R. A protocol is a pair of converters, one for each honest party, and
applying the protocol (φ1, φ2) to the resourceR is defined as φA1 φ

B
2 R—attaching

the converters to the A- and B-interfaces of the resource.
If two resources R and S are used in parallel, this is denoted as R‖S and is

again a resource with the same set of interfaces; each of these interfaces A, B, or
E of R‖S allows to access the corresponding interfaces of both sub-systems R
and S. The sequential composition of converters is denoted by ψ◦φ, and is defined
by (ψ ◦ φ)IR = ψI(φIR) for all resources R. The parallel composition ψ‖φ of
converters is defined by (ψ‖φ)I(R‖S) = (ψIR)‖(φIS) for all R and S. The term
id refers to the “identity converter” that forwards all inputs and outputs.

In general, for bit-strings x = x1 · · ·xn ∈ {0, 1}n and l ≤ n, we denote by
x|l the sub-string x|l = x1 · · ·xl. We extend the operation “⊕” to bit-strings by
defining, for x = x1 · · ·xn and x′ = x′1 · · ·x′n, the ith bit of x⊕ x′ to be xi ⊕ x′i.

2.2 Discrete Systems

In the analysis of protocols, we model all systems as (probabilistic) discrete
systems that communicate by passing messages, where the term “discrete” refers
to the value spaces of the messages as well as the time. The behavior of discrete
systems is formalized by random systems [20], i.e., conditional distributions of
the outputs of the system (as random variables) given all previous inputs and
outputs. Each input or output is associated to a specific interface.

Discrete systems are an instance of the abstract systems concept described
above. The composition of two discrete systems (such as connecting a resource
and a converter via interfaces) is a discrete system whose behavior is defined via
an interaction of the two sub-systems: A message that is input to the system
is processed by the sub-system corresponding to the (external) interface where
the message was input, and, if the sub-system provides output at the (internal)
connected interface, this value is processed by the other sub-system. Once one
of the two sub-systems outputs a message at an external interface, this becomes
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the output of the composed system. The parallel composition of two resources is
defined asynchronously: Each input at an interface A, B, or E explicitly specifies
one of the sub-systems, and this sub-system is invoked with the input.

A distinguisher D is a system that connects to all interfaces A, B, and E
of a resource U and outputs (at a separate interface) a single bit, here called
W . The complete interaction of D and U defines a random experiment, and the
probability that the bit W is 1 is written as PDU(W = 1). The distinguishing
advantage of D for U and V measures how much the output of D differs when
it is connected to either U or V. Intuitively, if no (efficient) distinguisher dif-
ferentiates between the two systems, they can be used interchangeably in any
environment (as otherwise the environment serves as a distinguisher).

Definition 1 (Distinguishing advantage). The distinguishing advantage of
a distinguisher D for the systems U and V is defined as

ΔD(U,V) :=
∣∣PDU(W = 1)− PDV(W = 1)

∣∣,
where W is the special output of D. The advantage for a set D of distinguishers
is defined as ΔD(U,V) := supD∈DΔ

D(U,V).

2.3 The Simulation-Based Security Definition

The paradigm of constructive cryptography is derived from [23] and follows the
ideal world/real world approach similar to [8,29]: The “real world” describes
the protocol execution with two honest parties and an adversary, and is defined
by the composition of the two converters of the protocol (π1, π2) with the real
resource R. In the “ideal world”, the ideal resource S specifying the security
goals is composed with a simulator σ connected to the E-interface. The purpose
of σ is to adapt the E-interface of S such that it resembles the corresponding
interface of πA1 π

B
2 R. (As the adversary can emulate the behavior of σ, using σES

instead of S can only restrict the adversary’s power, so using σES and hence
πA1 π

B
2 R instead of S is safe.)

To exclude trivial protocols, we require that if no adversary is present, the
protocol must implement the specified functionality. In the definition, we use
the special converter “⊥” that, when attached to a certain interface of a system,
blocks this interface for the distinguisher.

Definition 2 (Secure construction). The protocol π constructs S from the
resource R within ε and with respect to the set D of distinguishers if

∃σ ∈ Σ : ΔD(πA1 π
B
2 R, σES) ≤ ε and ΔD(πA1 π

B
2 ⊥ER,⊥ES) ≤ ε.

An important property of Definition 2 is its composability. Intuitively, if a re-
source S is used in the construction of a larger system, then the composability
implies that S can be replaced by a construction πA1 π

B
2 R without affecting the

security of the composed system. Theorem 1, taken from [25], shows that security
and availability are preserved under sequential and parallel composition.
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Theorem 1 (Composition for the 3-party setting). Let R, S, T, and U
be resources, and let π = (π1, π2) and ψ = (ψ1, ψ2) be protocols such that π
constructs S from the resource R within ε1 and ψ constructs T from S within
ε2. If the considered class of distinguishers is closed under composition with
converters, that is D◦Σ ⊆ D, then (ψ1 ◦π1, ψ2 ◦π2) constructs T from R within
ε1 + ε2, (π1‖id, π2‖id) constructs S‖U from R‖U within ε1 and (id‖π1, id‖π2)
constructs U‖S from U‖R within ε1.

In asymptotic statements, a system S implicitly refers to a family of systems
{Sk}k∈IN, and the distinguishing advantage is a real-valued function in the pa-
rameter k: For each k, one considers the distinguishing advantage where, for all
involved systems, one takes the element described by this k. Efficiency notions
for sets of systems and a negligibility notion for the distinguishing advantage
can be chosen such that they are closed under composition. Examples are the
sets of systems with a polynomial bound on the number of queries and/or the
run-time, together with the standard notion of negligibility.

2.4 Resources and Protocols as Discrete Systems

This section details the resources and protocols considered in the setting of secure
communication.

Channels. LetM be a discrete set, we usually considerM := {0, 1}∗. A channel
with message space M is a resource that takes at the A-interface inputs from
the set M and provides at the B-interface outputs from M̄ :=M∪{�}, where
the element � is interpreted as indicating a transmission error. A single-use
channel allows for exactly one input at the A-interface and one output at the B-
interface, a multiple-use channel allows for several (arbitrarily interleaved) such
interactions. The possible interactions at the E-interface describe the security
properties of the channel. For the insecure channel −→, every input m ∈ M
at the A-interface provokes the output m at the E-interface, and every input
m′ ∈ M at the E-interface leads to the output m′ at the B-interface. The
E-interfaces of the “more secure” types of channels are detailed in Sect. 3.

Keys. Let K be a discrete set, usually K := {0, 1}k for some k ∈ IN. A key with
key space K is a resource that draws a key κ ∈ K uniformly at random and
outputs it to both A and B. The E-interface does not provide any output.

Encryption Protocols. An encryption protocol with key space K, message space
M, and ciphertext space C is a pair (enc, dec) of converters. These converters
connect with their inner interfaces to a shared secret key with key space K and
to a channel with message space M′ ⊇ C. The resulting resource is a channel
with message space M.

As an example, we describe the one-time pad encryption for bit-strings with
length at most n. The key space in this setting is K = {0, 1}n, and the message
space of the assumed channel is (in general at least) the set of strings of length
at most n bits, M′ = C =

⋃
l≤n{0, 1}l.
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Example 1 (The one-time pad). The encryption converter otp-enc (generically
called enc in Fig. 1) obtains as input the n-bit key κ at the inner interface and
a message m with |m| ≤ n at the outer interface. The message transmitted via
the channel is c = m ⊕ κ||m|. The decryption converter otp-dec obtains the key
κ and the ciphertext c′ at its inner interface. It computes m′ = c′ ⊕ κ||c′| and
outputs the message m′ at the outer interface.

Fig. 1 shows the setting in which the encryption and decryption converters
are attached to the resources, the channel −→ and the key •==•, with their inner
interfaces. Both the A-interface and the B-interface of the combined (dashed)
system are of the same type as for the original channel: The A-interface allows
to input messages from M = C, and the B-interface outputs messages from the
same set. Hence, the complete system is again a channel with message spaceM
(but differs at the E-interface).

The scheme extends to multiple, say t, messages as follows. Consider a key
with key space {0, 1}tn, and encrypt/decrypt the ith message with the bits (i−
1)n+ 1 through (i− 1)n+ |mi|. �

2.5 Formalizing Games

In game-based definitions, we formalize both the adversary and the game (or
challenger) as systems, which are connected via their interfaces as described in
Sect. 2.2. The game allows the adversary to make certain “oracle queries” via this
interface. Whether or not the game is won is signaled by a special (monotone)
output bit ofG (this can be considered as an additional interface) that is initially
0 but switches to 1 as soon as the winning condition is fulfilled. For a game G
and an adversary A, we define the game-winning probability after q steps as

ΓA
q (G) := PAG(Wq = 1).

For an adversary that halts after (at most) q steps, we write ΓA(G) := ΓA
q (G).

As winning the game with a certain probability might be trivial (such as when
the goal is to guess a secret bit), one usually considers the advantage of A,
that is, the (absolute) difference between A’s probability of winning G and the
probability for “trivial” strategies.

If a security property of a scheme is defined by the adversary’s inability to
win a game G, then we say that the scheme is ε-secure with respect to that
property and a class2 D of adversaries if the advantage for D in winning G is
bounded by ε.

3 Notions of Confidentiality and Integrity

The security of communication channels corresponds to restrictions on the ca-
pabilities provided at the E-interface, which can be characterized according to
two aspects: the amount of information leaked about transmitted messages, and

2 We will often use the same class D for both adversaries and distinguishers.
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the potential influence on messages delivered to the receiver. Consequently, a
confidentiality guarantee bounds the amount of information that is leaked, and
an integrity guarantee restricts the adversarial influence on delivered messages.

3.1 Confidentiality

A channel is perfectly confidential if no information about the transmitted plain-
text message is leaked at the E-interface. We also consider weaker types of
confidentiality where the “amount of leakage” is non-trivial but bounded; the
(remaining) guarantee is described by a function on the transmitted messages.

Definition 3 (Leakage specification). For some (discrete) set S, a leakage
specification is a family of functions L = {�i :Mi → S}i≥1.

Functions �i on vectors of messages allow to capture, for example, channels that
leak whether the same message is sent twice (as in deterministic encryption).

Definition 4 (Confidential channels). For L = {�i :Mi → S}i≥1, let
L•−→•

be the channel that, given inputs m1, . . . ,mi at the A-interface, outputs the value
�i(m1, . . . ,mi) at the E-interface (and only allows forwarding or deleting mes-
sages). A channel C is L-confidential if there exists a simulator σ such that

ΔD(⊥BC,⊥BσE(
L•−→•)) = 0, and ΔD(⊥EC,⊥E(

L•−→•)) = 0,

where D is the set of all distinguishers. If M ⊆ {0, 1}∗ and the leakage is re-
stricted to �i : (m1, . . . ,mi) !→ |mi| for all i, the channel is simply called confi-
dential.

The condition of being L-confidential is merely a restriction on the information
leaked at the E-interface; there is no guarantee on the potential influence of the
adversary on the delivered messages. In the security condition, this absence of
guarantees is expressed by attaching the converter ⊥ to the B-interface, which
hides all messages from the distinguisher.

The goal of an encryption protocol is to construct a confidential channel from
one that is not confidential. In particular, the one-time pad encryption achieves
confidentiality in this sense.

Example 2 (Confidentiality achieved by the one-time pad). The ciphertext gen-
erated by the one-time pad encryption for the message m ∈ M =

⋃
l≤n{0, 1}l

is an |m|-bit string of independent and uniformly distributed random bits. The
information leaked to the adversary is exactly the length |m| of the message:
There is a simulator that, given the length |m|, generates a ciphertext that has
exactly the same distribution as the “real” ciphertext for the message m.

This means that the leakage is described by | · | :M→ {1, . . . , n} (for multiple
messages, �i maps (m1, . . . ,mi) to |mi|). The channel that is constructed by the
one-time pad from the insecure channel is described in Examples 3 and 4. �
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3.2 Integrity

Encryption schemes in general do not protect the integrity of messages: If the
adversary replaces the transmitted ciphertext c for a message m ∈ M by a
ciphertext c′ �= c, the receiver will potentially obtain a different messagem′ ∈M
during the decryption. For the adversary (oblivious of m), replacing c by c′

corresponds to selecting a transformation F :M→M that describes, for every
potentially transmitted message m̃, which message m̃′ = F (m̃) the receiver would
obtain, given that the original message was m̃.

Example 3 (XOR-Malleability of the one-time pad). For the one-time pad en-
cryption, the adversary can replace the transmitted ciphertext c by an arbitrary
ciphertext c′. Assume that c = m⊕κ and |c| = |c′|, then this means that the re-
ceiver will compute m′ = c′⊕κ = c′⊕c⊕m. Hence, replacing c by c′ corresponds
to selecting the function m !→ m⊕ (c⊕ c′). �

In general, the distribution of each output at the B-interface depends on the pre-
vious inputs and outputs at all interfaces of the channel. But then, conditioned
on the complete interaction at the E-interface—the adversary’s knowledge—
the channel “transforms” all inputs at the A- and all previous outputs at the
B-interface into the next output at the B-interface; the interaction at the E-
interface can be seen as a choice of a particular such plaintext transformation.

Definition 5 (Plaintext transformation). Let M be a discrete set. A plain-
text transformation F onM is a (probabilistic) transformationM∗×M∗ → M̄.

The arguments of the plaintext transformation are the sequence of messages
transmitted by the sender, and the sequence of messages previously delivered to
the receiver; the result is the next message delivered to the receiver. The set of
all plaintext transformations available to the adversary formalizes the potential
adversarial influence on the delivered messages. Of course, the less such transfor-
mations are available to the adversary, the stronger are the integrity guarantees
of the channel. This is captured by the concept of integrity specifications.

Definition 6 (Integrity specification). An integrity specification is a family
F := {Fq}q∈IN of random variables with Fq ⊆ F̄ , where F̄ is a set of plaintext
transformations.

The random variables Fq ⊆ F̄ formalize that, depending on the state of the
channel, only a subset of the transformations might actually be accessible: After
the qth query to the channel, the adversarymay choose a transformation from the
set Fq (note that this choice corresponds to replacing the transmitted ciphertext
in the “real world”). The generality of this definition is indeed necessary to
describe the malleability of certain encryption schemes, such as CBC mode [25].
There, the availability of certain transformations depends on the randomness
used during the encryption, so Fq �= F̄ .

Example 4 (XOR-malleability). Let m, m′, c, and c′ be as in Example 3. If we
set δ := c⊕c′, the adversary’s choice to replace c by c′ = c⊕δ can be interpreted
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as selecting the XOR-mask δ for the transmitted message. More generally, the
plaintext transformations Fi,j,δj after i inputs at the A-interface and j inputs at
the E interfaces, with δj ∈

⋃
l≤n{0, 1}l, are described as follows:

– i < j : the output is a uniformly random |δj |-bit string,
– i ≥ j and |δj | ≤ |mj |: the output is mj ||δj | ⊕ δj,
– i ≥ j and |δj | > |mj |: the output is mj ⊕ δj followed by |δj |− |mj | uniformly

random bits.

The transformations available after i inputs at the A- and j inputs at the B-
interface are, for each δ ∈

⋃
l≤n{0, 1}n, the transformations Fi,j,δ. �

The set Fq of transformations available after the qth query must be (implicitly
of explicitly) known to the adversary; abstractly, a description of the set Fq is
output to the adversary by the channel. Of course, for a confidential channel,
this description must not leak any information beyond the information specified
by the leakage. In the following definition, we refer to the number of queries at
the A- and E-interfaces by i and j, respectively, and use q := i+ j.

Definition 7 (Malleable confidential channel). Let L be a leakage specifi-
cation and F be an integrity specification such that the distribution of each Fq

depends (only) on the leakage �s(m
s) for 1 ≤ s ≤ i of the messages m1, . . . ,mi,

the previous sets F1, . . . ,Fq−1, and the selected transformations F1, . . . , Fj. An

F -malleable L-confidential channel L,F−→• (in the following only −→• if L and F
are clear) is an L-confidential channel with malleability described by F .

On receiving mi at the A-interface, −→• outputs �i(m
i) and a description

of Fq at the E-interface. Upon receiving a description of F ∈ Fq at the E-
interface, −→• evaluates the transformation F on the plaintexts and outputs the
result at the B-interface. If the ⊥-converter is attached to the E-interface, −→•
immediately forwards each input mi from the A- to the B-interface.

As an example, we describe the XOR-malleable confidential channel and sketch
the proof that the one-time pad constructs this channel from an insecure channel
and a shared secret key.3

Example 5 (The XOR-malleable channel). The channel −⊕�• behaves as follows.
Upon the ith input mi ∈ M at the A-interface, leak the length |mi| at the E-
interface. Upon the jth input δj ∈ {0, 1}n at the E-interface (after i inputs at
the A-interface), output m′

j := Fi,j,δ(m) at the B-interface.
We use the following simulator σ to prove that the one-time pad indeed con-

structs −⊕�•:

– Upon a message li ∈ {1, . . . , n} at the inner interface (i.e., from −⊕�•),
output a uniformly random li-bit string c̃i as the transmitted ciphertext at
the outer interface.

3 For simplicity, we only consider the case i > j. For the general case, cf. [25, Sect. 6.1].
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– Upon a message c̃′j at the outer interface,

• if j > i, input δj = 0|mj| at −⊕�•,
• if j ≤ i and |c̃′j | ≥ |c̃j |, input δj = c̃j ||c̃′j| ⊕ c̃

′
j at −⊕�•,

• else, input δj = (c̃j ⊕ c̃′j)|0|c̃
′
j|−|c̃j| at −⊕�•.

The simulator σ is perfect, i.e., ΔD(otp-encAotp-decB(−→ ‖ •==•), σE(−⊕�•)) =
0 for all distinguishers D:

– On input the ith message mi at the A-interface, in both cases a |mi|-bit
uniformly random string is output at the E-interface (generated either by
otp-enc using the key or by σ).

– On input the jth message c′j at the E-interface, the message output at the
B interface also has the same distribution in both cases (by construction of
σ; this is a simple check for each of the cases). �

Consequently, the one-time pad constructs from the resources •==• and −→
the channel −⊕�•. This channel is confidential according to Definition 4, the
simulator assumed in the definition is trivial (both •−→• and −⊕�• leak exactly
the length of the message).

4 Relation to Game-Based Security Definitions

In game-based security definitions for encryption schemes, the attacker has ac-
cess to oracles for encrypting plaintext messages and decrypting or checking the
correctness of ciphertexts, sometimes with additional constraints on the number
or order of queries. The attacker’s goal is either to generate a ciphertext that
satisfies a certain condition, or to distinguish two cases in which it is provided
with different sets of oracles. For many of these notions, it is not clear which
guarantees the proven schemes provide when the ciphertexts are transmitted
over a certain type of network.

In contrast, a constructive security statement makes these guarantees explicit:
The confidentiality and integrity guarantees appear as the leakage functions
and plaintext transformations of the constructed channel. In this section, we
analyze the semantics of game-based notions from the literature by proving the
(in)equivalence with corresponding constructive notions.

4.1 Goals and Attack Models

Security properties defined using games are often characterized by a goal and
an attack model. The goal is essentially specified by the winning condition (the
monotone output switches to 1), and the attack model is characterized by the
“oracle queries” the adversary has at its disposal.

The attack model roughly corresponds to adversarial access to the “real re-
sources” used by the protocol in constructive security statements. The more
capabilities the game provides, the weaker the security modeled by the real re-
sources, and the stronger the requirements for the protocol. Roughly, the idea
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of a chosen plaintext attack corresponds to the real resource being an authenti-
cated channel, and a chosen ciphertext attack corresponds to the real resource
being an insecure channel. The goal of a game corresponds to the attributes of
the constructed resource. For instance, the IND-type of games are often con-
nected with confidentiality, whereas NM (non-malleability) and INT (integrity)
are integrity guarantees.

4.2 Indistinguishability of Ciphertexts

The standard security notions for confidentiality are IND-CPA and IND-CCA,
i.e., indistinguishability (of ciphertexts) under chosen-plaintext and chosen-ci-
phertext attack, respectively. Several variants appear in the literature; in all
variants, a bit b ∈ {0, 1} is chosen uniformly at random, and, depending on the
variant, the adversary has access to one of the following settings of oracles:

– multiple queries at a “real-or-random” oracle where, in each query, the adver-
sary inputs a plaintext m0, the game choosesm1 with |m0| = |m1| uniformly
at random, and returns an encryption of mb;

– multiple queries at a “left-or-right” oracle where the adversary inputs two
messages m0 and m1 with |m0| = |m1| and obtains an encryption of mb;

– multiple queries at an “encryption” oracle where, on input m, the adversary
obtains an encryption of m, as well as one “real-or-random” query;

– multiple “encryption” queries and one “left-or-right” query.

Finally, the adversary has to guess the bit b (with probability non-negligibly
different from 1/2). It turns out that, for any encryption scheme, the advantages
that can be achieved in the above games are related by a factor that is either a
constant or linear in the number of queries [3].

IND-CPA. The term IND-CPA usually refers to a game where the adversary
has access to the oracles described in one of the four settings above. While these
settings correspond to assuming that the ciphertexts are transmitted via authen-
ticated channels (and cannot be changed during the transmission), in several
practical protocols such as SSL/TLS, the ciphertexts can actually be changed
during the transmission. Indeed, as confidentiality in the sense of Definition 4 is
defined by restricting only the adversarial interface (the output at the receiver’s
interface is ignored), one may hope that IND-CPA security will still imply this
weak form of confidentiality in this setting. The following example shows that
this is not the case.

Consider an encryption scheme where a certain ciphertext c̄ ∈ C is never used,
and append in the encryption to each ciphertexts a perfectly hiding commitment
on the plaintext. In particular, expand the secret key using a PRG, use the
first part as key for the encryption and the remainder as randomness in the
commitment. Also, modify the decryption to output the initial secret key if it
receives the special ciphertext c̄. As the decryption algorithm does not appear
in the IND-CPA game and the erroneous decryption does not hurt correctness
(as c̄ is never used), the modified scheme is IND-CPA secure. However, for any
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confidential channel, it is easy to construct a distinguisher that differentiates
between the real and the ideal setting (input a message m ∈M at A, input c̄ at
E, interpret the output at B as the secret key, expand by the PRG, and decrypt
the output at E. If this decrypts to m and the decommitment was correct then
say 0, otherwise say 1).

IND-CCA. In the IND-CCA game, the adversary is, in addition to one type of
oracles of the IND-CPA game, given access to a decryption oracle where it can
query ciphertexts that are different from those he obtained from the encryption
oracle.4 While IND-CCA is considered the standard notion for confidentiality in
settings where the adversary can modify ciphertexts, it differs considerably from
the notion implied by Definition 4. In particular:

1. IND-CCA is artificially strict: A scheme that allows “obvious” modifications
of ciphertexts (e.g., appending bits that are ignored) is considered insecure.

2. The definition of IND-CCA already implies strong integrity guarantees.
3. These integrity guarantees seem artificial for symmetric encryption.

These issues are explained further in the following paragraphs.

Replayable CCA. Several authors [1,11,18,19,33] have noticed that IND-CCA is
artificially strict in the sense that the decryption oracle will decrypt any cipher-
text except for the exact challenge ciphertext. Schemes that allow for “obvious”
ciphertext modifications are not IND-CCA secure, the typical separating exam-
ple being an (otherwise IND-CCA secure) encryption scheme where the encryp-
tion always appends a single bit to the ciphertext, and this bit is ignored during
decryption. While this modification does not hurt the security guarantees in any
meaningful way, the resulting scheme is not IND-CCA secure.

In [11], several variants of “replayable” CCA security are analyzed.5 In these
games, not only the exact challenge ciphertext is disallowed in decryption queries,
but also “related” ciphertexts. Intuitively, this means that encryption schemes
may allow certain modifications to ciphertexts that do not change the result of
the decryption. In more detail, the notions considered in [11] are:

– IND-RCCA, or “replayable CCA”: any ciphertext that decrypts to one of
the plaintexts issued to the encryption oracle is disallowed;

– IND-sd-RCCA, or “secretly detectable RCCA”: intuitively, the receiver can
detect whether an adversarially generated ciphertext was generated as a
“modification” of an honestly generated one, or whether it is “independent”
of all honestly generated ones, these “modified” ciphertexts are disallowed;

– IND-pd-RCCA, or “publicly detectable RCCA”: the above distinction can
be done publicly, i.e., without knowledge of the secret key.

4 The reason for the latter restriction is that if the adversary were allowed to decrypt
the challenge, winning the game would become trivial.

5 Their original notions regard public-key schemes, but the extensions to symmetric
schemes are also described.
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The exact formalization is technically involved; for details, we refer to [11].
With respect to achieving secure communication, the guarantees provided by

IND-CCA and IND-sd-RCCA secure schemes are indeed equivalent, which can
be formalized via bisimulation. Intuitively, the simulator for the IND-sd-RCCA
scheme can use the assumed detectability to decide whether a given ciphertext
should be considered a replay.

Strong Integrity. An IND-sd-RCCA secure encryption scheme achieves a strong
notion of integrity: The remaining malleability is described by the integrity spec-
ification Fnm with the set {fm̄ : M → M,m → m̄}m̄∈M of transformations,
where nm refers to “non-malleable.” The proof of the following theorem is de-
ferred to the full version of this paper.

Theorem 2 (Informal). Let (enc, dec) be a symmetric encryption protocol. If
the protocol is ε-IND-sd-RCCA secure, then it constructs an Fnm-malleable con-
fidential channel from an insecure channel and a secret key within ε.

Conversely, if the protocol constructs an Fnm-malleable confidential channel
from an insecure channel and a secret key within ε (for distinguishers that issue
at most q queries and with a special type of simulator) then it is (q2 +1)ε-IND-
sd-RCCA secure (with respect to the class of adversaries that issue at most q
queries). For large message spaces, the special type of simulator is general.6

Unnatural Malleability. IND-CCA is not a natural security requirement for sym-
metric encryption: The adversary may generate valid ciphertexts for arbitrary
plaintexts (but only independently of honestly sent messages). Realistic symmet-
ric encryption schemes are either malleable (such as the one-time pad or CBC)
or, if they are non-malleable, they will actually already implement the fully se-
cure channel (such as authenticated encryption). Here, it becomes apparent that
IND-CCA has evolved as a notion for public-key schemes, where the adversary
knows the encryption key and can encrypt arbitrary messages.

4.3 Specific Variants of Integrity

Games that are used to characterize integrity properties express impossibilities
(for the adversary) to generate ciphertexts that satisfy certain conditions. In
constructive cryptography, integrity guarantees are expressed explicitly by spec-
ifying the set of transformations that model the capabilities of the adversary.
The correspondence between these two paradigms is as follows: A scheme is se-
cure according to a game if and only if it implements a channel that allows no
transformations that contradict the game; the potential probability in winning
the game translates into a distinguishing advantage in the constructive security
statement.

6 If the distinction between “modified” and “independent” ciphertexts can be per-
formed without the key, then the condition on the size of the message space is not
needed. If we assume that the distinction is perfect, the factor q2 + 1 reduces to 1.
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NM-CCA. The notion of non-malleable encryption has been introduced in [12]
in the context on public-key schemes. Intuitively, no attacker (even given hon-
estly generated ciphertexts) may be able to generate a ciphertext whose decryp-
tion relates to “honestly encrypted” messages in a meaningful way. NM-CCA
is equivalent to IND-CCA [12]; this extends to the RCCA notions [11]. Conse-
quently, these notions also correspond to Fnm-malleable communication.

INT-CTXT. Integrity of ciphertexts has been introduced in [5,6] and for-
malizes that the adversary cannot produce any fresh valid ciphertext. In more
detail, an encryption scheme is said to achieve INT-CTXT security if no adver-
sary with access to an encryption oracle can generate a valid ciphertext that is
different from all ciphertexts obtained from the oracle. Here, “valid” means that
the decryption outputs a message (not an error symbol). Note that existential
unforgeability [17] and ciphertext unforgeability [18] are similar: The differences
are, for example, that the definition from [5,6] allows multiple queries to the
challenge oracle, whereas [17] allows only one.

A symmetric encryption protocol that achieves confidentiality and is addi-
tionally INT-CTXT secure constructs a fully secure channel from an insecure
channel. Yet, INT-CTXT, as IND-CCA, is artificially strict concerning modifica-
tions of ciphertexts. We describe a relaxation of INT-CTXT which is constructed
analogously to IND-sd-RCCA. In particular, we also require the existence of a
secretly (i.e., given the secret key) computable relation, called ≡κ, on C with
the same properties as for IND-sd-RCCA; this relation formalizes the receiver’s
ability to distinguish “modified” and “independent” ciphertexts generated by
the adversary.

We define INT-sd-CTXT security by changing the INT-CTXT game as fol-
lows: The adversary wins only if dec(κ, c′) �= � and ∀ r ≤ i : c′ �≡κ cr for all
honestly generated cr. Note that we also have to change the output of the oracle
in the case that c′j ≡κ cr holds (for some r) to be mr. The proof of the following
theorem is deferred to the full version of this paper.

Theorem 3 (Informal). Let (enc, dec) be a symmetric encryption protocol that
constructs a confidential channel from an insecure channel and a secret key
within ε1. If the protocol is ε2-INT-sd-CTXT secure, then it constructs a secure
channel from an insecure channel and a secret key within ε1 + ε2. Conversely, if
the protocol constructs the secure channel within ε for distinguishers in Dq, then
it is (q2 + 2)ε-INT-sd-CTXT secure with respect to Dq.

7

INT-PTXT. Integrity of plaintexts has been defined in [5,6] and is weaker than
INT-sd-CTXT. The adversary is also given access to an encryption oracle, but
to win the game, it has to fabricate a ciphertext that decrypts to a plaintext
that has not been queried at the encryption oracle before. This notion is weaker
than INT-sd-CTXT in the sense that the adversary may still be able to generate
a ciphertext that decrypts to plaintext that was queried at the encryption oracle
but cannot be detected to be a modification of one particular honestly generated

7 The factor q2 + 2 appears for the same technical reasons as for IND-sd-RCCA.
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ciphertext (even if all ciphertexts are delivered). This weakens the guarantees in
two aspects: First, the adversary can replay messages undetectably, and second,
the adversary may fabricate messages that decrypt to any one of the previous
messages with some probability that may even depend on the plaintexts. Conse-
quently, if the adversary is able to determine which of the original plaintexts has
been received, he will potentially obtain information about some transmitted
plaintext.

An integrity specification is value-preserving if all transformations Fα :
M∗ ×M∗ → M̄ have the property that the output message is either one of
the input messages or �, but any one of these may appear with some proba-
bility (which may even depend on the plaintexts). The proof of the following
theorem is deferred to the full version of this paper.

Theorem 4. Let (enc, dec) be a symmetric encryption protocol that constructs
a confidential channel from an insecure channel and a secret key within ε1. If the
protocol is ε2-INT-PTXT secure, then it constructs an Fvp-malleable confidential
channel within ε1+ε2, with Fvp being value-preserving. Conversely, if the protocol
constructs an Fvp-malleable confidential channel within ε1 such that Fvp is value-
preserving, then it is ε1-INT-PTXT secure.

Namprempre [27] introduces a related but stricter notion called SINT-PTXT,
which prohibits replaying messages arbitrarily. There, the adversary also wins the
game if it generates ciphertexts such that the decryption outputs any plaintext
more often than it was queried at the encryption before. Consequently, SINT-
PTXT corresponds to a channel with this bounded type of replay.

Fixing the definition from [5,6]. In the original game, the output of the verifi-
cation oracle is one bit indicating whether the decrypted plaintext is valid. This
renders the notion too weak: If (via a higher-level protocol), the adversary learns
which of the valid plaintexts has been obtained by decrypting (this probability
may depend on secret values), this is not captured. Hence, this notion cannot
guarantee composability. A slight modification to the game fixes this issue: The
verification oracle returns the decrypted message (instead of the single bit). The
following (artificial) encryption scheme exemplifies the weakness.

Example 6. Consider a scheme (enc, dec) secure according to the stricter notion.
Change the decryption such that for (n, c0, c1) with decκ(cb) �= ⊥, b ∈ {0, 1},
the output is decκ(cκn) (with κn the nth bit of κ). �
The change does not affect the security with respect to the notion of [5,6]: The
output of the oracle on (n, c0, c1) can be easily computed from the output on c0
and c1. In contrast, in the strengthened game, such queries reveal the secret key.

Plaintext Uncertainty. This notion from [13] attempts to capture that the
adversary cannot “control” the result of a forgery. While the description is rather
informal, it captures that the decrypted message contains a certain amount of en-
tropy (for each message, the probability that this message is obtained by decrypt-
ing is small). While this is hard to achieve at least for multiple decryptions—the
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only entropy in the (otherwise deterministic) decryption is “fresh” key material—
the computational (pseudo-entropy) version might prove useful in applications.

The corresponding integrity specification is the set of transformations that
have at least a certain min-entropy, meaning that for each input m and trans-
formation F , the min-entropy of the random variable F (m) is larger than some
bound. Computational indistinguishability from such a channel means that the
output at the receiver’s interface has a certain pseudo-entropy.

Known-Plaintext Forgery. This notion from [13] is intended to capture that
the adversary providing a forged ciphertext can predict the changes to the trans-
mitted message. The (informal) description in [13] states that the adversary
could have computed the outcome with overwhelming probability (this can be
formalized by means of an extractor). In the language of integrity specifications,
this means that all transformations in F are deterministic (and efficiently com-
putable). Properties of this type can indeed be helpful, as can be seen in the
proof of the soundness of Authenticate-then-Encrypt in [25].

4.4 Combining Notions of Confidentiality and Integrity

Traditionally, security requirements for schemes for protecting communication
are expressed as a combination of separate properties for confidentiality and
integrity [5,7,9,13,17,27]. Such a combination, however, does not necessarily
achieve the expected guarantees.

We revisit an example from [18] (modified in [25]): The composition of a
tailor-made encryption scheme with a strongly unforgeable MAC. Briefly, the
encryption first encodes each bit of the plaintext as two bits, such that the prob-
ability whether flipping one of these two bits has an effect depends on the original
value (i.e., 0 !→ 00, 01, or 10; 1 !→ 11), and encrypts this expanded string using a
one-time pad. Hence, if one encrypts an authenticated message, the probability
that flipping a ciphertext bit changes the contained message—and the MAC ver-
ification fails—with a probability that depends on the original plaintext value.
The resulting scheme achieves both confidentiality (by the one-time pad) and
integrity (in the sense of INT-PTXT, by the unforgeability of the MAC), but the
different success probabilities for the MAC verification leak information about
the message, which is often described as a breach of confidentiality [18].

The described scheme implements a confidential Fvp-malleable channel, where
Fvp is value-preserving as described in Sect. 4.3: The weakness of this scheme is
not a deficiency of confidentiality, but it only achieves a weak notion of integrity.
Note that, in terms of integrity, INT-PTXT is equivalent to WUF-CMA8, which
is sufficient to construct an authenticated channel (where the adversary can
only forward or delete messages) from an insecure channel. Indeed, for channels
that are not confidential, the integrity guarantees specified by Fvp are equivalent

8 Weak unforgeability: Given an oracle for generating tags, it is infeasible for the
adversary to generate a tag for a message that has not been queried at the oracle.
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to those of an authenticated channel: A simulator that knows the plaintext
messages can sample according to distributions that depend on these messages.
This equivalence does not hold if the considered channels are confidential.

4.5 A Critique of Game-Based Security Notions

Starting from [14], the major part of research on the security of encryption
schemes has been pursued in game-based models. There, however, it is often not
immediately clear which assumptions and guarantees are encoded by the oracle
queries and winning conditions of games. For instance, which of the a priori dif-
ferent types of IND-CPA security described in Sect. 4.2 captures confidentiality
“best” (and why)? This lack of semantics abets the prevalence of security notions
that do not capture the security requirements exactly (see Sect. 4.2 and 4.3).

A further issue with game-based notions is that seemingly innocent changes
may have a significant impact on the security guarantees. The security notion
indistinguishability from random bits was introduced in [30] and is similar to
IND-CPA. Yet, instead of an encryption of a random message, the game returns
a uniformly random string of appropriate length. The way this length is chosen,
however, is crucial: In the original definition, this is determined by a function of
the length of the queried message. If this choice is changed (as done, for example,
in [15]) to the length of an encryption of the queried message, this allows to
leak information about the plaintext via the length of the ciphertext! A further
example is the weakness of the INT-PTXT notion described in Sect. 4.3.

Moreover, several attack models in the definitions described in the litera-
ture seem inappropriate for practical applications. One example is IND-CCA19,
where the receiver stops decrypting adversarially generated ciphertexts after the
first message has been sent honestly. Also, certain terms such as NM-CPA are ac-
tually misleading: An attack exploiting the malleability of an encryption scheme
is necessarily mounted by injecting or replacing ciphertexts. A more appropriate
correspondence for this type of notion is a CCA attack on a single-use channel.

5 Conclusion

We have defined and analyzed confidentiality and integrity notions for sym-
metric encryption schemes using the paradigm of constructive cryptography.
The resulting security definitions are composable and have clear semantics: The
guarantees of a cryptographic protocol appear explicitly in the description of the
constructed resource. We have shown how existing game-based notions can be
translated into guarantees in this setting, which makes their semantics explicit.
Additionally, this analysis has uncovered a weakness in the notion INT-PTXT,
and it has shown that INT-CTXT and IND-CCA are artificially strict.

9 In the CCA1 game, the adversary looses access to the decryption oracle after the
first call to the challenge oracle. This corresponds to the situation where the receiver
only decrypts messages until the first message has been generated by the sender.
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32. Rüedlinger, A.: Restricted Types of Malleability in Encryption Schemes. Master’s
thesis, ETH Zürich (2011)
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Abstract. Physical cryptographic devices inadvertently leak informa-
tion through numerous side-channels. Such leakage is exploited by so-
called side-channel attacks, which often allow for a complete security
breache. A recent trend in cryptography is to propose formal models to
incorporate leakage into the model and to construct schemes that are
provably secure within them.

We design a general compiler that transforms any cryptographic
scheme, e.g., a block-cipher, into a functionally equivalent scheme which
is resilient to any continual leakage provided that the following three re-
quirements are satisfied: (i) in each observation the leakage is bounded,
(ii) different parts of the computation leak independently, and (iii) the
randomness that is used for certain operations comes from a simple (non-
uniform) distribution. In contrast to earlier work on leakage resilient cir-
cuit compilers, which relied on computational assumptions, our results
are purely information-theoretic. In particular, we do not make use of
public key encryption, which was required in all previous works.

1 Introduction

Leakage resilient cryptography attempts to incorporate side-channel information
leakage into standard cryptographic models and to design new cryptographic
schemes that provably withstand such leakages under reasonable physical as-
sumptions. The “holy grail” in leakage-resilient cryptography is a generic method
to provably protect any cryptographic computation against a broad, well-defined
and realistic class of side-channel leakages. This fundamental question has first
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been studied in the work of Ishai et al. [ISW03] who initiated the concept of
leakage resilient circuit compilers. A circuit compiler takes a description of a
(Boolean) circuit Γ as input and outputs a transformed (Boolean) circuit ΠΓ

with the same functionality, but with resilience to certain well-defined classes
of leakage. The authors consider a very specific type of leakage, namely, an ad-
versary who learns the values of up to n ∈ N internal wires in each execution
of ΠΓ . Security is proven by a simulation based argument. More precisely, it is
shown that any (computationally unbounded) adversary that learns the value of
up to n internal wires in each execution of ΠΓ has only a negligible advantage
over an adversary that only views the inputs/outputs of the original circuit Γ .

The result of Ishai et al. shows security for a very restricted class of leakages,
namely, security is proven only against the specific attack of learning the val-
ues of n wires. The question that motivates our work is whether, analogously
to [ISW03], we can protect any computation against the much broader class of
polynomial-time computable leakages. This question has been answered affirma-
tively in the recent feasibility results of Juma and Vahlis [JV10] and Goldwasser
and Rothblum [GR10] by making additionally use of the prominent “only com-
putation leaks information” assumption [MR04]. The security of both compilers,
however, relies on heavy cryptographic machinery by using public key encryption
to “encrypt” the secret state and the whole computation of Γ .1

At first sight, it may look natural to rely on some form of cryptographic en-
cryption, if we want to achieve security against any polynomial-time computable
leakage function. For instance, it is necessary to “encrypt” the secret state of Γ ,
as already a single bit of information leaking about the original secret state
makes simulation-based security impossible. Perhaps surprisingly, in this paper
we show that cryptographically secure encryption schemes are not necessary to
construct leakage resilient circuit compilers for polynomial-time computable leak-
ages. More precisely, we show that even an unbounded adversary with continuous
leakage access to ΠΓ only gains a negligible advantage over an adversary with
only black-box access to Γ .

Similar to earlier work, we make certain restrictions on the leakage. We follow
the work of Dziembowski and Pietrzak [DP08], and allow the leakage to be
arbitrary as long as the following two restrictions are satisfied:

1. Bounded leakage: the amount of leakage in each round is bounded to λ
bits (but overall can be arbitrary large).

2. Independent leakage: the computation can be structured into sub compu-
tations, where each part of the computations leaks independently (we define
the term of a “sub computation” below).

Formally, this is modeled by letting the adversary for each observation choose a
leakage function f with range {0, 1}λ, and then giving her f(τ) where τ is all
the data that has been accessed in the current sub-computation. In addition, we
require access to a source of correlated randomness generated in a leak-free way
1 More precisely, Juma and Vahlis require fully homomorphic encryption, while Gold-

wasser and Rothblum use a variant of the BHHO encryption scheme.
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– e.g., computed by a simple leak free component. We provide more details on
our hardware assumptions below.

On Independent Leakages. Variants of the assumption that different parts
of the computation leak independently have been used in several works [DP08,
Pie09,KP10,GR10,GR10,JV10]. In its weakest form, the assumption says that
the state is divided into two parts that leak independently. This type of assump-
tion is used, e.g., in the work on leakage resilient stream ciphers [DP08,Pie09].
Several stronger flavors have been used in the literature. For instance, in the cir-
cuit compiler of Goldwasser and Rothblum [GR10] the computation is structured
into O(s) sub-computations, where s is the size of the original circuit. Of course,
in practice leakage is a global phenomenon and assumptions that require a large
number of independent computations is a strong assumption on the hardware.
We would like to emphasize, however, hat many relevant global leakage func-
tions can be computed from independent leakages. This is not only true for the
prominent Hamming weight leakage, but more generally, for any affine leakage
function.

On the Relation between Leakage Granularity and the Amount of
Leakage. We show a relation between the granularity level of the independent
leakage assumption and the amount of leakage that can be tolerated per obser-
vation. More precisely, in our basic setting we assume that the computation is
structured into 2s parts that leak independently, where s is the number of gates
in Γ (this is comparable to the model of [GR10]). Here, the amount of leakage
can increase linearly with the size of the circuit. Alternatively, we may settle for
weaker independency assumptions. That is, in the best case we may require only
two sub-components that leak independently. Of course this comes at a price: the
amount of leakage that is tolerated is independent of the circuit’s size. We notice
that we can tolerate more leakage if we assume some strong form of memory
erasures between sub-computations (cf. Section 6 for the details).

On Leak-Free Components. Leak-free components are used by recent leakage
resilient circuit compilers [GKR08,FRR+10,JV10,GR10]. A leak-free component
leaks from its outputs, but the leakage is oblivious to its internals. In this work,
we use the leak-free component, O, that was recently introduced by Dziembowski
and Faust [DF11]. This component outputs two random vectors A, B ← Fn (with
F being a finite field and n being a statistical security parameter) such that their
inner product is 0, i.e.,

∑
i Ai ·Bi = 0. As discussed in [DF11], O exhibits several

properties that are beneficial for implementation. We refer the reader to [DF11]
for a more thorough discussion on the properties of O.

1.1 Our Contributions

We propose a general transformation (also called the “compiler”) that takes any
circuit Γ computing over finite fields F and transforms it into ΠΓ in such a
way that (1) the circuit ΠΓ computes the same function as Γ , and (2) any
(computationally unbounded) adversary that obtains continuous leakage from
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ΠΓ gains only negligible advantage over an adversary with only black-box ac-
cess to Γ . We emphasize that in contrast to earlier works in similar leakage
models [GR10, JV10], we do not use public key encryption to achieve leakage
resilience. This makes our results significantly more efficient.

Our construction is secure in the continuous leakage setting with adaptive
queries. That is, we assume that the circuit Γ can be initialized (during a trusted
step-up phase) with some secret state, and is then queried by an adversary S on
adaptively chosen inputs X1, . . . , X�. For each i let Y i := Γ (X i, state) be the
outcome of the ith query. To define security, we consider an adversary A that
attacks ΠΓ and gets the same information (i.e., pairs (X1, Y 1), . . . , (X�, Y �) for
X i’s chosen by him) plus the leakage from each computation. Informally, the
security definition requires that for every such (computationally unbounded)
adversary A, there exists S with only black-box access to Γ that produces the
same output as A. The formal definition is given in Section 5.3. For simplicity,
in the formal model we consider only the case where the adversary is allowed
to observe the computation once. For readers familiar with the work on leakage
resilient circuits [ISW03,FRR+10] this is the case of stateless circuits. We briefly
discuss how to extend our result to the continuous leakage setting in Section 6.

We emphasize that the running time of our simulator S is polynomial in the
running time of A. This is necessary to protect circuits Γ , which hide the secret
key only computationally – which is the case for most prominent cryptographic
schemes. This is in contrast to the recent work of Dziembowski and Faust [DF11]
that consider efficient transformations for cryptographic schemes which hide the
secret key information theoretically (e.g., Okamoto signatures or Cramer-Shoup
encryption).

1.2 Comparison to Related Work

An extension of the circuit compiler of Ishai et al. [ISW03] (mentioned above)
was proposed by Faust et al. [FRR+10]. The authors use similar techniques
as [ISW03] based on secret sharing but give a significantly improved security
analysis considering computationally weak (e.g., AC0) and noisy leakages. Simi-
lar to our work, the results of [ISW03,FRR+10] work in the information theoretic
setting. The leak-free components that are used in earlier works are similar in
spirit to the component used in our work. In [FRR+10], the leak-free compo-
nent outputs an n-bit string with parity 0, while in the works of Juma and
Vahlis [JV10] and Goldwasser and Rothblum [GR10] it outputs ciphertexts that
encrypt 0 using the underlying public-key encryption scheme. Except for the
work of Juma and Vahlis all leakage resilient circuit compilers (including ours)
require at least one leak-free component for each gate in the original circuit Γ .

We finally remark that our results do not imply the recent results of Dziem-
bowski and Faust [DF11]. More precisely, although we use the same trusted source
O as [DF11], the schemes of [DF11] cannot be obtained by using our circuit com-
piler. The reason for this are twofold: first, the protocols of [DF11] only use the
leak-free component for the refreshing of the secret key, while our protocols need
to use O for each gate of the original circuit. Second, their implementation of
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standard cryptographic schemes are significantly more efficient: while we work on
the gate level and blow-up the circuit’s size by O(n4), Dziembowski and Faust di-
rectly exploit homomorphic properties of cryptographic schemes and increase the
size only by a factor of O(n). Unfortunately, however, these techniques are limited
only to certain schemes such as the Okamoto identification and the Cramer-Shoup
encryption.

2 Preliminaries

For a set S we denote by X ← S the process of drawing X uniformly from S.
A vector V is a row vector, and we denote by V T its transposition. We let F be
a finite field and for m, n ∈ N, let Fm×n denote the set of m × n-matrices over
F. For a matrix M ∈ Fm×n and an m bit vector V ∈ Fm we denote by V ·M
the n-element vector that results from matrix multiplication of V and M . For a
natural number n let (0)n = (0, . . . , 0). We use V [i] to denote the ith element
of a vector V and V [i, . . . , j] to denote the elements i, i + 1, ..., j of V . For two
vectors V ∈ Fm, W ∈ Fn we denote by V ||W its concatenation and by V ⊗W
we will mean a vector in Fm·n defined as

V ⊗W := (V1W1, . . . , V1Wm, V2W1, . . . , V2Wm, . . . , VnW1, . . . , VnWm). (1)

Finally, let 〈V, W 〉 denote the inner product of V and W . We will use the fact
that the inner product is linear, i.e. 〈a · V + V ′, W 〉 = a · 〈V, W 〉+ 〈V ′, W 〉.

The “ d= ” symbol denotes the equality of two distributions. For two random
variables X0, X1 over X we define the statistical distance between X and Y as
Δ(X ; Y ) =

∑
x∈X 1/2|Pr[X0 = x]− Pr[X1 = x]|.

2.1 Leakage Model

To formally model leakage, we follow Dziembowski and Faust [DF11] and only
recall some important details here. We model independent leakage from mem-
ory parts in form of a leakage game, where the adversary can adaptively learn
information from the memory parts. More precisely, for some c, �, λ ∈ N let
M1, . . . , M� ∈ {0, 1}c denote the contents of the memory parts, then we define a
λ-leakage game played between an adaptive adversary A, called a λ-limited leak-
age adversary, and a leakage oracle Ω(M1, . . . , M�) as follows. For some m ∈ N,
the adversary A can adaptively issue a sequence {(xi, fi)}m

i=1 of requests to the
oracle Ω(M1, . . . , M�), where xi ∈ {1, . . . , �} and fi : {0, 1}c → {0, 1}λi with
λi ≤ λ. To each such a query the oracle replies with fi(Mxi) and we say that
in this case the adversary A retrieved the value fi(Mxi) from Mxi. The only
restriction is that in total the adversary does not retrieve more than λ bits
from each memory part. In the following, let (A � (M1, . . . , M�)) be the out-
put of A at the end of this game. Without loss of generality, we assume that
(A � (M1, . . . , M�)) := (f1(Mx1), . . . , fm(Mxm)).

Leakage from Computation. We model the computation that is carried out
on a device as a �-party protocol Π = (P1, . . . , P�), which is executed between
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the parties (P1, . . . , P�) and an adversary is allowed to obtain partial information
(the leakage) from the internal state of the players. Initially, some parties may
hold inputs, and we denote by Si the input of Pi. The execution of Π with initial
inputs S1, . . . , S�, denoted by Π(S1, . . . , S�), is structured into sub-computations.
In each sub-computation one player is active and sends messages to the other
players. These messages can depend on his input (i.e., his initial state), his local
randomness, and the messages that he received in earlier rounds. At the end of
the protocol’s execution, the players P1, . . . , P� output values S′

1, . . . , S
′
�, resp.

(some of these values may be empty). For each player Pi, we denote the local
randomness that is used by Pi during the execution of Π and all the messages
that are received or sent (including the messages from the user of the protocol)
by viewi. We assume that after the protocol terminates, the adversary A plays
a λ-leakage game against the leakage oracle Ω(viewi, . . . , view�). We will use
the following convention in order to simplify the exposition: while describing a
protocol we will explicitly describe the view of each player, sometimes omitting
redundant variables. For instance, if the view contains variables X, Y, Z, such
that always Z = X ⊕ Y , then we will omit Z, as it can be calculated by the
leakage function from X and Y .

2.2 Leakage-Resilient Storage

Davi et al. [DDV10] recently introduced the notion of leakage-resilient storage
(LRS) Φ = (Encode, Decode). An LRS allows to store a secret in an “encoded
form” such that even given leakage from the encoding no adversary learns in-
formation about the encoded values. One of the constructions that the authors
propose uses two source extractors and can be shown to be secure in the in-
dependent leakage model. More precisely, an LRS for the independent leakage
model is defined for message space M and encoding space L×R as follows:

– Encode :M→ L×R is a probabilistic, efficiently computable function and
– Decode : L×R →M is a deterministic, efficiently computable function such

that for every S ∈M we have Decode(Encode(S)) = S.

An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈M and any λ-limited adver-
sary A, we have Δ(A � (L, R);A � (L′, R′)) ≤ ε, where (L, R) ← Encode(S)
and (L′, R′) ← Encode(S′), for any two secrets S, S′ ∈ M. In this paper, we
consider a leakage-resilient storage scheme Φn

F that allows to efficiently store
elements from M = F. It is a variant of a scheme proposed in [DF11] and
based on the inner-product extractor. For some security parameter n ∈ N,
Φn
F := (Encoden

F , Decoden
F) is defined as follows:

– Encoden
F(S):

1. Sample (L[2, . . . , n], R[2, . . . , n])← (
Fn−1

)2.
2. Set L[1]← F \ {0} and R[1] := L[1]−1 · (S − 〈(L[2, . . . , n], R[2, . . . , n])〉)

Output (L, R).
– Decoden

F (L, R): Output 〈L, R〉.
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The property that L[1] �= 0 will be useful in the “generalized multiplication”
protocol (cf. Section 4.2). It is easy to see that Φn

F is correct, i.e.:

Decoden
F(Encoden

F (S)) = S.

Security is shown in the following lemma whose proof appears in the full version
of this paper.

Lemma 1. Let n ∈ N and let F such that |F| = Ω(n). For any 1/2 > δ > 0, γ >
0 the LRS Φn

F as defined above is (λ, ε)-secure, with λ = (1/2 − δ)n log |F| −
log γ−1 − 1 and ε = 2m(|F|3/2−nδ + |F| γ).

We instantiate Lemma 1 with concrete parameters in the next corollary.
Corollary 1. Suppose |F| = Ω(n). Then, LRS Φn

F is (0.49·log2 |Fn|−1, negl(n))-
secure, for some negligible function negl.

3 An Informal Description of the Protocol

In this section we describe informally our circuit compiler that is based on the
LRS scheme Φn

F . Our starting point is the result of [DF11] where a protocol
Refreshn

F is proposed to refresh secrets encoded with Φn
F . Refreshn

F is run between
two parties PL and PR, which initially hold L and R in Fn. At the end of the
protocol, PL holds L′ and PR holds R′ such that 〈L, R〉 = 〈L′, R′〉. The protocol
can be repeated continuously to refresh the encoding and satisfies the follow-
ing security requirement: even given continuous leakage independently from the
parties PL and PR no adversary can learn the encoded secret 〈L, R〉.

In order to create a general circuit compiler in the independent leakage model,
all we need is to perform in a leakage-resilient way arithmetic operations on the
encoded secrets using the LRS Φn

F . This is similar to the methods used in the
MPC literature: first, the secret is secret-shared between the parties (in our case:
“encoded”), and then the operations are performed “gate-by-gate” in a secure way.
At the end the outputs of the computation are reconstructed in the following
way: one of the players, PL, say, sends his share L′ of the output to PR and PR

computes Decoden
F(L, R). We us a similar approach in this paper.

To illustrate this approach, consider the simple case of a circuit that multiplies
a constant α with a secret S encoded as (L, R). If L is held by PL and R is
held by PR, then one of the players, PL, say, multiplies his vector by α (as
〈α · L, R〉 = α · 〈L, R〉). Also, addition of a constant c to S is simple: the player
PL sends x = L[1] to PR (for simplicity assume that L[1] �= 0), and then PR

sets R′ = R + (x−1 · c, 0, . . . , 0) and PL sets L′ = L. We notice that (L′, R′)
was computed from (L, R) just by sending one field element from PL to PR,
and in particular it did not involve computing 〈L, R〉. We call this protocol
AddConstnF(α, (L, R)).

The only ingredient that is missing for computing arbitrary functionalities is
a protocol for leakage-resilient multiplication of two encoded secrets. The con-
struction of such a protocol is the main contribution of this paper (for techni-
cal reasons, we construct in Section 4.2 a protocol for a slightly more general
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functionality, which we call “generalized multiplication”). Suppose we have two
secrets S0 ∈ F and S1 ∈ F encoded as (L0, R0) and (L1, R1), respectively.
Suppose further that player PL holds (L0, L1) and player PR holds (R0, R1).
Their goal is to compute L′′, R′′ ∈ Fn in a leakage-resilient way such that
〈L′′, R′′〉 = S and L′′ is held by PL, while R′′ is held by PR. Our first ob-
servation is that 〈L0 ⊗ L1, R0 ⊗ R1〉 = 〈L0, R0〉 · 〈L1, R1〉 = S0 · S1, which
follows from simple linear algebra. Hence, (L0⊗L1, R0⊗R1) encodes the secret
S0 · S1 in the Φn2

F scheme. Note that this protocol, so far, is non-interactive
so it is clearly secure. The disadvantage of this protocol is that the length of
the encoding grows exponentially with the depth of Γ . Therefore, we need a
method of reducing the length of this encoding. This can be done in the fol-
lowing way. First, the players refresh the (L0 ⊗ L1, R0 ⊗R1) encoding with the
Refreshn2

F protocol. Let (L′, R′) ∈ Fn2 × Fn2

be the result of this refreshing.
Then, the players reconstruct in clear the secret encoded by the final n(n − 1)
elements of L′ and R′. More precisely, the player PL sends L′[n + 1, . . . , n2]
to PR, and PR computes d = 〈L′[n + 1, . . . , n2], R′[n + 1, . . . , n2]〉. We now
clearly have that S0 · S1 = 〈L′, R′〉 = 〈L′[1, . . . , n], R′[1, . . . , n]〉 + d. Hence,
(L′[1, . . . , n], R′[1, . . . , n]) encodes S0 ·S1 minus d. Since d can be published by PR

we can now use the protocol AddConstnF(d, (L′[1, . . . , n], R′[1, . . . , n])), and add
a constant d to (L′[1, . . . , n], R′[1, . . . , n]). The output (L′′, R′′) of the protocol
is the result of this operation. Observe that the use of the refreshing protocol is
crucial, as (L0 ⊗ L1)[n + 1, . . . , n2] gives almost complete information about L0

and L1.

4 The Ingredients

In this section, we describe the two main ingredients of our compiler construction:
the “refreshing” protocol for Φn

F (cf. Section 4.1) and the “generalized multipli-
cation” protocol (cf. Section 4.2). The latter protocol will use the former as a
sub-routine. In the full version of this paper, we show that these two components
satisfy a simple security property called reconstructibility. This notion was intro-
duced recently in [FRR+10] and essentially says that the view of the parties in a
protocol can be efficiently reconstructed from just knowing the encoded inputs
and outputs. For our setting, we modify this notion and define reconstruction
as a protocol run between players PL and PR, where the efficiency criteria of the
reconstructor is the amount of information exchanged between the parties. For
instance, for the generalized multiplication the reconstructor protocol is run be-
tween PL with input (L0, L1, L′′) and PR with input (R0, R1, R′′) and computes
viewL and viewR with only one field element of communication.

4.1 Leakage-Resilient Refreshing of LRS

In this section, we propose a simple variant of the refreshing protocol proposed
in [DF11] (cf. Section 3) for the LRS Φn

F . As described in the introduction,
we assume that the players have access to a leak-free component that samples
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uniformly at random pairs of orthogonal vectors. Technically, we will assume that
we have an oracle O′ that samples a uniformly random vector ((A, Ã), (B, B̃)) ∈
(Fn)4, subject to the constraint that the following three conditions hold:

1. 〈A, B〉+ 〈Ã, B̃〉 = 0,
2. A �= (0)n, and
3. B̃ �= (0)n.

Note that this oracle is different from the oracle O described in the introduction
(and used earlier in [DF11]) that simply samples pairs (A, B) of orthogonal
vectors. It is easy to see, however, that this “new” oracle O′ can be “simulated”
by the players that have access to O that samples pairs (C, D) of orthogonal
vectors of length 2n each. First, observe that C ∈ F2n can be interpreted as a
pair (A, Ã) ∈ (Fn)2 (where A||Ã = C), and in the same way D ∈ F2n can be
interpreted as a pair (B, B̃) ∈ (Fn)2 (where B||B̃ = D). By the basic properties
of the inner product we get that 〈A, B〉+〈Ã, B̃〉 = 〈C, D〉 = 0. Hence, Condition
1 is satisfied. Conditions 2 and 3 can simply verified by players PL and PR

respectively. If one these conditions is not met, then the players sample a fresh
(C, D) from O. Obviously, this happens with a negligible probability 2 · 2−n|F|

only, so it has almost no impact on the efficiency of the protocol.
The reason for introducing Conditions 2 and 3 is to make the exposition sim-

pler as it avoids dealing with the events that happen with negligible probability
(cf. the caption of Figure 1). The reason for having Condition 1 is slightly more
subtle and will be explained below.

The refreshing scheme is presented in Figure 1. The main idea behind this
protocol is as follows (for this high-level overview ignore Step 4, as it anyway
influences the execution only with negligible probability). Denote α := 〈A, B〉(=
−〈Ã, B̃〉). The Steps 2 and 3 are needed to refresh the share of PR. This is done
by generating, with the “help” of (A, B) (coming from O′) a vector X such that

〈L, X〉 = α. (2)

Eq. (2) comes from simple linear algebra: 〈L, X〉 = 〈L, B ·MT 〉 = 〈L ·M, B〉 =
〈A, B〉 = α. Then, vector X is added to the share of PR by setting (in Step 3)
R′ := R+X . Hence we get 〈L, R′〉 = 〈L, R〉+〈L, X〉 = 〈L, R〉+α. Symmetrically,
in Steps 5 and 6 the players refresh the share of PL, by first generating Y such
that 〈Y, R〉 = −α, and then setting L′ = L + Y . By similar reasoning as before,
we get 〈L′, R′〉 = 〈L, R′〉 − α, which, in turn is equal to 〈L, R〉. Hence, the
refreshing is correct.

The security proof of this refreshing scheme appears in the full version of this
paper. The key property that is used there is that X is generated “obliviously”
from PL, and Y is generated “obviously” from PR. In other words: PL gets no
information on X except that 〈L, X〉 = −〈Y, R〉, and a symmetric fact holds
for PR. For more intuition behind this protocol the reader may consult [DF11]
(Sect. 3), where a similar refreshing scheme is constructed. The main difference
is that the protocol presented here refreshes the shares “completely”, i.e. the new
encoding (L′, R′) is completely independent from (L, R) (except that is encodes
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the same secret), while in [DF11] this was not the case. More precisely, in the
refreshing of [DF11] A, Ã, B, and B̃ were such that 〈A, B〉 = 〈Ã, B̃〉 = 0, which
implied that in particular 〈L, R′−R〉 and 〈L′−L, R′〉 were equal to 0 (and hence
(L′, R′) was not independent from (L, R)). In our protocol it is not the case since
〈A, B〉 = α and 〈Ã, B̃〉 = −α (where α is random) and hence 〈L, R′ − R〉 and
〈L′ − L, R〉 are random. This “independence” of encodings after refreshing is a
very useful property for showing security of composition of larger circuits.

Protocol (L′, R′)← Refreshn
F ((L, R)):

Input (L, R): L ∈ (F \ {0})× Fn−1 is given to PL and R ∈ Fn is given to PR.

1. Let (A, Ã, B, B̃)← O′ and give (A, Ã) to PL and (B, B̃) to PR.

Refreshing the share of PR:

2. Player PL generates a random non-singular matrix M ∈ Fn×n such that
L ·M = A and sends it to PR.

3. Player PR sets X := B ·MT and R′ := R + X.

Refreshing the share of PL:
4. If R′ = (0, . . . , 0) then PR sends a message μ = “zero′′ to PL. Player PL sets

L′ ← (F \ {0}) × Fn−1. The players output (L′, R′) and finish this round
of refreshing. Otherwise the player PR sends a message μ = “nonzero′′ to
PL and they execute the following:

5. Player PR generates a random non-singular matrix M̃ ∈ Fn×n such that
M̃ ·R′ = B̃ and sends it to PL.

6. Player PL sets Y := Ã · M̃T and L′ := L + Y .
7. If L′[1] = 0 then restart the procedure of refreshing the share of PL, i.e.

go to Step 4.

Output: The players output (L′, R′).
Views: The view viewL of player PL is (L, A,M, Ã, M̃, μ) and the view viewR

of player PR is (R, B, M, B̃, M̃, μ).

Fig. 1. Protocol Refreshn
F . Oracle O′ samples random vectors (A, Ã, B, B̃) ∈ (Fn)4

such that (1) 〈A,B〉 = −〈Ã, B̃〉 and (2) A �= (0)n, and (3) B̃ �= (0)n. Note that the
conditions (2) and (3) are needed as otherwise it might be impossible to find matrices
M and M̃ in Steps 2 and 5, respectively. It is easy to see that L[1] has a uniform
distribution over F, and hence restarting part of the protocol in Step 7 happens with
probability |F |−1. Therefore if F is large then this probability is negligible. In Sect. 6
we show how to change our protocol so that the probability of restarting is negligible
even if |F| is small (e.g. constant).

4.2 Leakage-Resilient Computation of Generalized Multiplication

We now present a leakage-resilient protocol for computing a “generalized mul-
tiplication” function f(S0, S1, c) = c − S0 · S1, where the values S0 ∈ F and
S1 ∈ F are encoded by an LRS Φn

F = (Encoden
F , Decoden

F) (let (L0, R0) and
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(L1, R1) be the respective encodings), and c ∈ F is a constant. The result
f(S0, S1, c) of the computation is encoded by (L′′, R′′). This construction has
already been discussed informally in Section 3. The formal description appears
in Figure 2. It uses the Refreshn2

F protocol as a sub-routine, and hence also re-
lies on the special free oracle O′. It is easy to see that this protocol is correct.
More formally, for any inputs L0, R0, L1, R1 ∈ Fn and c ∈ F we have that
Decoden

F(L′′, R′′) = c − Decoden
F (L0, R0) · Decoden

F(L1, R1), where (L′′, R′′) ←
MultnF((L0, R0), (L1, R1), c). The security properties of this protocol are defined
and proven in the full version of this paper, where we show that the multiplica-
tion protocol is reconstructible with low communication between the parties PL

and PR.

Protocol (L′′, R′′)← Multn
F ((L0, R0), (L1, R1), c):

Input (L, R): L0, L1 ∈ (F \ {0})× Fn−1 are given to PL and R0, R1 ∈ Fn are
given to PR. The field element c ∈ F is given to both players.

1. The players PL and PR run the Refreshn2

F (L0 ⊗L1, R0 ⊗R1) protocol. Let
L′ and R′ be their respective outputs, and let view′

L and view′
R be their

respective views.
2. Player PL sends x := L′[1] and the last n(n− 1) bits of L′ (i.e. the vector

L′[n+1, . . . , n2]) to PR. Player PR computes d := 〈L′[n+1, . . . , n2], R′[n+
1, . . . , n2]〉 and sets R′′ := −R′[1, . . . , n] + (x−1(c− d), 0, . . . , 0).

3. Player PL sets L′′ := L′[1, . . . , n].

Output: The players output (L′′, R′′).
Views: The view viewL of player PL is (L0, L1, L′, L′′, c, view′

L) and the view
viewR of player PR is (R0, R1, R′, R′′, c, d, x, L′[n + 1, . . . , n2], view′

R).

Fig. 2. Protocol Multn
F . Note that computing x−1 is possible since in our LRS the first

bit of L is never equal to 0. This is actually precisely the reason why this restriction
was introduced.

5 The Compiler

5.1 Arithmetic Circuits

Before describing our general circuit compiler, we must define how to model
arithmetic circuits over finite fields F as these are used to describe the original
circuits. To keep the exposition simple, we consider circuits consisting only of 4
types of gates. The first two types are: the public-input gates that will be used
by the user, or the adversary, to provide the input X to the circuit, and the
private-input gates that will be used to provide the secret input state (e.g., the
cryptographic key) to the scheme. The third type of a gate is the multiplication
gate (a, b, c). This gate takes as input the values A ∈ F and B ∈ F of two other
gates (indicated by a and b, resp.) and a constant c ∈ F, and produces a result
c − AB. Note that in particular the “negated and” function over bits can be
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expressed by such a gate, as A ∧B = 1 − AB, for A, B ∈ {0, 1}. Finally, we
also have the output gates. Each output gate takes as input a value from of a
gate of a previous type and outputs it. Since it is well-known that a NAND gate
is complete the above suffices to describe any functionality. Formally, a circuit
over a field F is a sequence Γ = (γ1, . . . , γt), where each γi is called a gate. The
set of gates is divided into the following groups.

public-input gates: γ1, . . . , γm — each such a gate is equal to a special symbol
pub and takes the inputs provided by the user.

private-input gates: γm+1, . . . , γm+k — each such a gate is equal to a special
symbol priv and represents the memory containing the secret state,

multiplication gates: γm+k+1, . . . , γt−u — each such a gate γi (i ∈ [m + k +
1, t − u]) has a form (a, b, c), where a, b ∈ {1, . . . , i − 1} and c ∈ F. We say
that the outputs of the gates γa and γb are inputs for the gate γi,

output gates: γt−u+1, . . . , γt — each such a gate γi is equal to some j, where
j ∈ {1, . . . , t− u}. We say that γj is an input for the gate γi.

For technical reasons, we also assume that the circuit’s fan-out is at most 2, more
precisely: each γi is an input for at most 2 other gates. This can be clearly done
without loss of generality. The computation Comp(Γ, X, state) of such a circuit
on input (X, state) = ((x1, . . . , xm), (s1, . . . , sk)) is a sequence (ξ1, . . . , ξt) of
values on the outputs of circuit gates (one may think of this as the output wires
of the gates), defined by the following procedure:

– For i = 1 to t do:
1. if γi = pub (“public-input gate”) then set ξi := xi,
2. if γi = priv (“private-input gate”) then set ξi := si−m,
3. if γi = (a, b, c) (“multiplication gate”) then set ξi = c− ξaξb.
4. if γi = j (“output gate”) then set ξi = ξj ,

The output of the computation is equal to (ξt−u+1, . . . , ξt) and will be denoted
by Γ (X, state).

5.2 Protocols Computing Circuits

Recall the definition of a protocol from Sect. 2.1. In this section we consider a
special type of such protocols, that we call LRS-protocols. Each such a protocol
ΠΦ is parameterized by an LRS Φ = (Encode : M → L × R, Decode : L ×
R → M) (we will say that Π works over Φ). It consists of 2t parties P =
{P 1

L , . . . , P t
L , P 1

R , . . . , P t
R}. The parties are divided into following groups:

“public-input parties”: P 1
L , . . . , Pm

L , P 1
R , . . . , Pm

R — each P i
L takes no input

and each P i
R takes as input xi ∈ F,

“private-input parties”: Pm+1
L , . . . , Pm+k

L , Pm+1
R , . . . , Pm+k

R — each P i
L takes

as input Li ∈ L, and each P i
R takes as input Ri ∈ R,

“multiplication parties”: Pm+k+1
L , . . . , P t−u

L , Rm+k+1, . . . , P t−u
R — they have

no inputs or outputs,
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“output parties”: P t−u+1
L , . . . , P t

L , Rt−u+1, . . . , P t
R — each P i

R produces an out-
put yi ∈M, and the P i

L’s produce no output.

The LRS-protocols will be analyzed only under the assumption that for i =
k + 1, . . . , m we have that (Li, Ri) ← Encode(zi) for some xi. More precisely
for X = (x1, . . . , xm) ∈ Fm and state = (s1, . . . , sk) ∈ Fk consider the following
experiment.

Experiment ExpExec(ΠΦ, X, state):

1. For each i = 1, . . . , m give xi to P i
R.

2. For each i = 1, . . . , k sample (Lm+i, Rm+i) ← Φ(si). Give Lm+i to Pm+i
L

and Rm+i to Pm+i
R .

3. Run the protocol ΠΦ with the inputs for the players as described in the
previous steps.

4. For i = 1, . . . , t let viewi
L be the view of P i

L, and let viewi
R be the view of P i

R

in the above execution.
Denote View(ΠΦ, (X, state)) := ((view1

L, view
1
R), . . . , (viewt

L, view
t
R)).

5. Let Exec(ΠΦ, (X, state)) be the vector containing the outputs of the parties
P t−u+1

R , . . . , P t
R in the above execution.

5.3 The Security Definition

We now present the main security definition of this paper. As mentioned in the
introduction, in this definition we consider only the non-adaptive security. In
Sect. 6 we show how this definition can be extended to adaptive settings. Let
Γ be a circuit with m public-input gates, k private-input gates and u output
gates. Let ΠΦ be an LRS-protocol with 2m public-input parties, 2k private-
input parties and 2u output parties. We say that the ΠΦ protocol (λ, ε)-securely
computes Γ if:

– ΠΦ computes Γ i.e.: for every (X, state) ∈ Fk × Fm we have that

Exec(ΠΦ, (X, state)) = Γ (X, state),

and
– for every λ-limited adversary A there exists a simulator S, running in time

polynomial in the running time of A, that for every (X, state) ∈ Fk × Fm,
on input (X, Γ (X, state)) produces a variable S(X, Γ (X, state)) such that

Δ((S(X, Γ (X, state)) ; (A � View(ΠΦ, (X, Γ (X, state)))) ≤ ε. (3)

Note that state is not given directly to the simulator. The only variables that
he gets are: the public input X and the output Y = Γ (X, state). Therefore,
intuitively, the only information that he gets about state comes from (X, Y ).
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5.4 The Construction

We are now ready to present our construction of the circuit compiler. Our com-
piler takes an arithmetic circuit Γ and a parameter n ∈ N and produces an LRS
protocol ΠΓ

Φn
F

over Φn
F . To simplify the notation we will write ΠΓ

n instead of ΠΓ
Φn

F

.
The protocol ΠΓ

n is depicted on Fig. 3.

Protocol (zt−u+1, . . . , zt)← (ΠΓ
n (x1, . . . , xm, (L1, R1), . . . , (Lk, Rk))):

Input (x1, . . . , xm, (L1, R1), . . . , (Lk, Rk)): Give each xi ∈ F to P i
R, each

Li ∈ Fn to P m+i
L and each Ri ∈ Fn to P m+i

R .

1. For i = 1, . . . , m player P i
R computes (Li, Ri) ← Encoden

F (xi) and sends
Li to P i

L . The view viewi
L of P i

L is Li and the view viewi
R of P i

R is (Li, Ri).
2. For i = m + 1, . . . , m + k the view viewi

L of P i
L is Li and the view viewi

R of
P i

R is Ri.
3. For i = m + k + 1, . . . , t− u let (a, b, c) be such that γi = (a, b, c)

(a) Player P a
L sends La to P i

L .
(b) Player P a

R sends Ra to P i
R.

(c) Player P b
L sends Lb to P i

L .
(d) Player P b

R sends Rb to P i
R.

(e) Players P i
L and P i

L execute the Multn((La, Ra), (Lb, Rb), c) protocol.
Let Li and Ri be the respective outputs of the players at the end of
this protocol, and let viewi

L and viewi
R be their respective views.

4. For i = t− u + 1, . . . , t let j be such that γi = j.
(a) Player P j

L sends Lj to P i
L .

(b) Player P j
R sends Rj to P i

R.
(c) The players P j

L and P i
R execute the Refreshn(Lj , Rj) protocol. Let Li

and Ri be the respective outputs of the players at the end of this
protocol, and let viewi

L and viewi
R be their respective views.

(d) Player P i
L sends Li to P i

R. Player P i
R computes zj := Decoden

F (Li, Ri)
and outputs it. The vi of P i

L is viewi
L and the view viewi

R of P i
R is

(viewi
R, Li).

Fig. 3. The ΠΓ
n protocol

We now have the following theorem. Its proof is based on the hybrid argument
and appears in the full version of this paper.

Theorem 1. Assume that for some n the LRS (Encoden
F , Decoden

F) is (λ, ε)-
secure for some λ and ε. Then for any Γ the ΠΓ

n protocol (λ/3 − log2 |F| , tε)-
securely computes Γ .

The following is an example of the application of Thm. 1 for a concrete LRS.

Corollary 2. Suppose |F| = Ω(n). Then for any Γ the ΠΓ
n protocol (0.16 ·

log2 |Fn| − 1− log2 |F| , negl(n))-securely computes Γ , for some negligible n.
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6 Extensions

The model in Sect. 5 was intentionally kept simple in order to make the proof as
easy as possible, and to satisfy the page limit. In this section we present several
generalizations and extensions of this model. The formal security definitions and
proofs will be presented in the extended version of this paper.

Adaptive security. Most of the cryptographic security definitions assume that
the adversary is adaptive, meaning that he can interact with the cryptographic
device in rounds, and his queries in the ith round may depend on the answers
that he got in rounds 1, . . . , i − 1. Our model from Sect. 5 obviously does not
cover this scenario. We now briefly argue how to extend the model and the
protocol to cover also the adaptive security. In the adaptive model one assumes
that the circuit Γ is initialized with some secret state ∈ Fk and it can be queried
adaptively on several inputs X1, . . . , X� (where � is the number of rounds). To
each such a query the circuit responds with Y i := Γ (X i, state). The input X i

is placed on the “private input gates” at the beginning of each round, and the
output Y i appears on the “output gates”.

The protocol ΠΓ that “computes Γ ” consists of 2t parties, whose role is ex-
actly like in the protocol in Sect. 5. In particular: the “private input parties” are
initialized with an encoding of state, the “public input parties” in the ith round
take X i as input, and the output Y i is produced by the “output parties”. After
the end of each round the memory of all the parties (except the “private-input
parties” that hold the encoding of state) gets erased. The adversary A can adap-
tively choose the X i’s and leak at most λ bits from each party in each round of
the computation of ΠΓ on input X i. The security definition assumes that for
each round the simulator S gets a pairs {(X i, Y i)}�

i=1 and his goal is to produce
the output that is statistically close to the output of A.

The implementation of ΠΓ is similar to the implementation of ΠΓ from Sect.
5. In particular, the protocols for the parties in a single round are the same as
before. The only change is that, since state does not change between the rounds,
the “private input parties” need to refresh the encodings that they hold. This can
be done easily with the Refreshn

F protocol from Sect. 4.1: each pair (P i
L, P

i
R) of

“private input parties” applies, at the end of each round, the refreshing protocol
to their encoding (L,Ri), setting (Li, Ri) := Refreshn

F (Li, Ri). The security proof
goes along the same lines as the proof of Thm. 1. It will be provided in the
extended version of this paper.

More general circuits. The circuits that we consider in Sect. 5 have a very
restricted form in order to make the proof of Thm. 1 as simple as possible. We
now argue how some of these restrictions can be avoided. First, observe that we
can consider circuits with fan-out q > 2. The only price to pay is that the leakage
bound in the statement of Thm. 1 changes from “λ/3− |F|” to “λ/(q + 1)− |F|”.
This is because now each (Li, Ri) is given to at most q + 1 parties (not just 3
parties as before).

For some applications it may also be useful to have a separate procedure for
adding values in a leakage resilient way. First, observe that adding a publicly-
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known constant c to an encoded secret can be done easily, as depicted on Fig.
4 (protocol AddConstnF). In fact, this protocol has already been described in
Sect. 3 used (implicitly) in protocol MultnF (cf. Fig. 2, Step 2). The protocol
computing the sum of two encoded secrets is presented on Fig. 4. Correctness of
this protocols is a simple calculation. Because of the lack of space we the formal
pro of their security properties is moved to the full version of this paper.

Protocol (L′, R′)← AddConstn
F ((L, R), c):

Input (L, R): L ∈ (F \ {0}) × Fn−1 is given to PL and c ∈ F is given to both
players.

1. Player PL sends x := L[1] to PR.
2. Player PR computes R̃ := R + (x−1 · c, 0, . . . , 0)
3. The players execute the Refresh(L, R̃) procedure. Let (L′, R′) be the result.

Output: The players output (L′, R′).

Protocol (L′, R′)← Addn
F ((L0, R0), (L1, R1)):

Input (L, R): L0, L1 ∈ (F \ {0})× Fn−1 are given to PL and R0, R1 ∈ Fn are
given to PR.

1. Player PL sets A := L0 and C := L1 − L0.
2. Player PL sets B := R0 + R1 and D := R1.

Note that 〈A,B〉+ 〈C, D〉 = 〈L0, R0〉+ 〈L1, R1〉.
3. Refresh (C, D) by (C′, D′)← Refreshn

F (C, D).
4. Compute c := Decoden

F (C′, D′).
Note that this does not reveal any information about the inputs of the
protocol, as (C′, D′) were “refreshed”.

5. Set (L′, R′)← AddConstn
F ((A, B), c)

Output: The players output (L′, R′).

Fig. 4. Protocols AddConstn
F and Addn

F

Dealing with small fields. A natural field over which one could use our
compiler is Z2. The problem here is that we assumed that in our encoding we
have L[1] �= 0, and in the refreshing protocol, if this condition is not met, then
part of the protocol is restarted (cf. Fig. 1). Of course if F is small then this
restarting can happen with a high probability. To avoid this problem one could
change the underlying encoding scheme and require that some prefix of L of
length a = ω(log|F|(n)) (instead of just L[1]) is not equal to (0)a. In this way the
probability of restarting is at most |F|−a and hence it is negligible in n. The other
change that is also needed in this case is that in Step 2 of the MultnF protocol
the player PL needs to send L[1, . . . , a] (instead of L[1]) to PR. The price to pay
for it is that the “− |F|” term in the leakage bound needs to be replaced by 2a.

Smaller number of parties. Recall that the number of parties in the pro-
tocol ΠΓ corresponds to the number of independent memory parts in the real
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implementation of the scheme. In our model this number is linear (2t) in the
number t of the gates of Γ . This can be reduced in the following way. First,
observe that some parties can be “reused” if we look at the computation of Γ
as a procedure that evaluates Γ gate-by-gate (cf. Sect. 5.1). More precisely: if a
given gate γi is not used anymore as an input to other gates, then the memory
of the party P i that corresponds to γi can be erased and P i can be “assigned”
to some other gate. Hence, we can reduce the number of parties to 2t′, where t′

is the width of Γ . Here, by the “width” of a circuit we mean the minimal number
of gates that needs to be kept in memory in order to compute Γ .

Observe also that we can actually decrease the number of memory parts even
to two (call these parts: L and R), by placing all P i

L’s on L, and all P i
R’s on R.

This, however, comes at a price: the leakage bound of L and R still needs to be
a constant fraction of |n|, and hence it is a c

t′ · |L| (where c is a constant and t′

is the width of Γ ), and the fraction c
t′ gets very small for large t′. Hence it is

mostly of a theoretical interest.

Acknowledgments. The authors wish to thank Marcin Andrychowicz for point-
ing out some errors in an earlier version of this paper.
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Abstract. A leakage resilient encryption scheme is one which stays se-
cure even against an attacker that obtains a bounded amount of side
information on the secret key (say λ bits of “leakage”). A fundamen-
tal question is whether parallel repetition amplifies leakage resilience.
Namely, if we secret share our message, and encrypt the shares under
two independent keys, will the resulting scheme be resilient to 2λ bits of
leakage?

Surprisingly, Lewko andWaters (FOCS 2010) showed that this is false.
They gave an example of a public-key encryption scheme that is (CPA)
resilient to λ bits of leakage, and yet its 2-repetition is not resilient to
even (1 + ε)λ bits of leakage. In their counter-example, the repeated
schemes share secretly generated public parameters.

In this work, we show that under a reasonable strengthening of the
definition of leakage resilience (one that captures known proof techniques
for achieving non-trivial leakage resilience), parallel repetition does in
fact amplify leakage (for CPA security). In particular, if fresh public
parameters are used for each copy of the Lewko-Waters scheme, then
their negative result does not hold, and leakage is amplified by parallel
repetition.

More generally, given t schemes that are resilient to λ1, . . . , λt bits
of leakage, respectfully, we show that their direct product is resilient
to

∑
(λi − 1) bits. We present our amplification theorem in a general

framework that applies other cryptographic primitives as well.

1 Introduction

In recent years, motivated by a large variety of real-world physical attacks, there
has been a major effort by the cryptographic community to construct schemes
that are resilient to leakage from the secret keys. This successful line of work gave
rise to many constructions of leakage-resilient cryptographic primitives, including
stream ciphers [11, 19], signature schemes [15, 12], symmetric and public-key
encryption schemes [1, 18, 10, 9], as well as more complicated primitives.

A natural question to ask is: Does parallel repetition amplify leakage? More
concretely, suppose we are given a public-key encryption scheme E that remains
secure even if λ bits about the secret key are leaked. Is it possible to amplify the

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 248–265, 2012.
c© International Association for Cryptologic Research 2012
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leakage-resilience to tλ by taking t copies of E , and encrypting a message m by
secret sharing it, and encrypting the ith share using Ei (we denote the resulting
scheme by Et)? Using an appropriate definition of parallel repetition, a similar
question can be asked for signatures.

Alwen, Dodis, and Wichs [3] and Alwen, Dodis, Naor, Segev, Walfish and
Wichs [2] were able to amplify leakage resilience for particular schemes, using
the specific properties of these schemes. They raised the fundamental question of
whether leakage resilience can always be amplified by parallel repetition. They
predicted that such a result will be hard or even impossible to prove under the
known definitions.

Recently, Lewko and Waters [16] gave a striking negative result, giving an
example of a public-key encryption scheme that is resilient to λ bits of leakage
but whose 2 repetition is not resilient to even (1 + ε)λ bits. This was followed
by a work of Jain and Pietrzak [14] who presented a signature scheme where
increasing the number of repetitions does not improve the leakage resilience at
all. We elaborate on these negative results (and on how they go hand-in-hand
with our positive results) in Section 1.2.

1.1 Our Results

We give positive results, by proving direct product theorems for leakage re-
silience. In particular, we show that parallel repetition does amplify the leakage
resilience (almost) as expected.

The leakage model we consider is based on the “noisy leakage” model of Naor
and Segev [18].1 In this model, “legal” leakage functions are poly-size circuits
that reduce the min-entropy of the secret key by at most λ. A scheme is said
to be λ-leakage resilient if every ppt adversary, that asks for a “legal” leakage
function, breaks the scheme with only negligible probability.

In this work, we consider a slightly relaxed leakage model. Instead of requiring
the leakage function to always reduce the min-entropy of sk by at most λ, we
require that it should be hard to break the scheme on those leakage values that
do reduce the min-entropy by at most λ. In other words, we consider a point-wise
definition: We say that a scheme is point-wise λ-leakage resilient if for any ppt

adversary, that asks for a poly-size leakage function L, the probability that both
the leakage value y ← L(pk, sk) reduces the min-entropy of sk by at most λ,
and that A(pk, y) breaks the scheme, is negligible.

We believe that this leakage model is of independent interest, as it captures
our “intent” better: As long as the secret key is left with enough min-entropy,
the scheme is secure. Moreover, we note that all known constructions that are
λ-leakage resilient are also point-wise λ-leakage resilient (including [18, 15, 9, 5]).
We elaborate on this in Section 4.

At first it may seem that point-wise leakage is equivalent to noisy leakage.
However, the difficulty is that it may be hard to determine whether a leakage

1 While “entropic leakage” may be a more suitable name for this model, we stick with
the terminology of [18] for historic reasons.
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value y ← L(pk, sk) indeed reduces the min-entropy of sk by at most λ. If this
was efficiently determined, then indeed we would have a reduction between the
two models.

For technical reasons (see Section 1.3), we need to further relax our leakage
model for our results to go through. We consider two (incomparable) relaxations.

First Relaxation: Almost λ-Leakage. In the first relaxation, instead of requiring
that sk has high min-entropy (given pk, y), we require that it is statistically close
to a random variable with high min-entropy. A scheme that is secure in this
model is said to be point-wise almost λ-leakage resilient. We can prove a direct
product theorem of any constant number of repetitions under this definition.

Theorem 1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei be a point-wise
almost λi-leakage-resilient public-key encryption scheme. Then, E1 × . . .× Ec is
point-wise almost λ-leakage-resilient, where λ =

∑c
i=1(λi − 1).

We refer the reader to Section 1.3 and Section 5 for more details.

Second Relaxation: Leakage with Small Advice. In the second relaxation, we give
the adversary an additional logarithmic (in the security parameter) number of
bits of (possibly hard to compute) advice (quite surprisingly, we were unable to
reduce this model to the point-wise λ-leakage model). A scheme that is secure
in this model is said to be point-wise λ-leakage resilient with logarithmic advice.
We can prove a direct product theorem of any polynomial number of repetitions
under this definition.

We note that it is not clear what it means to have t different leakage resilient
schemes when t is super constant, since there is a different number of schemes
for each value of the security parameter. While one can come up with a proper
definition (involving a generation algorithm that, for every value of the security
parameter, gets i and implements Ei), for the sake of clarity, we choose to state
the theorem below only for parallel repetition of the same scheme.

Theorem 2. Let t = t(k) be a polynomial in the security parameter. Let E be
a public-key encryption scheme that is point-wise λ-leakage resilient with loga-
rithmic advice. Then Et is point-wise t(λ − 1)-leakage resilient with logarithmic
advice.

We refer the reader to Section 1.3 for an overview of the proof, and to Section 6
for more details.

The Relation Between our Models. Interestingly, we are not able to show that
our relaxations are equivalent to one another, nor to show that they are implied
by (plain) point-wise leakage resilience. This is surprising since in the bounded
leakage model,2 a negligible change in the secret-key distribution, or adding
a logarithmic number of hard to compute bits, does not change the model.

2 Where the leakage function’s output is required to be bounded by λ bits, as opposed
to our requirement that the secret key has high residual entropy.
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In a nutshell, the reason that this does not carry to our models, is that having
high min-entropy is not an efficiently verifiable condition, and that statistical
indistinguishability does not preserve min-entropy.

We are able to show, however, that point-wise λ-leakage resilience implies λ-
bounded leakage resilience (for the same value of λ), and thus in particular, our
relaxed models also imply bounded leakage resilience. We note that proving the
above is somewhat nontrivial since we do not want to suffer a degradation in λ.
We refer the reader to Section 3.3 for a formal presentation.

Our Models and Current Proof Techniques. We show that for essentially all
known schemes that are resilient to non-trivial leakage (i.e. super-logarithmic
in the hardness of the underlying problem), amplification of leakage resilience
via parallel repetition works. Specifically, this includes the Lewko-Waters coun-
terexample, if the public parameters are chosen independently for each copy of
the scheme. In order to do this, we identify a proof template that is used in all
leakage resilience proofs, and show that this template is strong enough to prove
point-wise leakage resilience, as well as our relaxed notions. See Section 4 for the
full details.

The Lewko-Waters counterexample uses its public parameters in a very par-
ticular way that makes the argument not go through (see below).

1.2 Prior Work

As we claimed above, all known leakage resilient schemes are proved using the
same proof template, and remain secure under our leakage models. This implies
that parallel repetition should amplify security for all known schemes, which
does not seem to coincide with the negative results of [16, 14]. We explain this
alleged discrepancy below.

The Lewko-Waters Counterexample. Lewko and Waters [16] construct a public
key encryption scheme that is resilient to non-trivial length-bounded leakage, and
prove that parallel repetition does not amplify its leakage resilience. However,
the copies of their encryption scheme share public parameters: They are all using
the same bilinear group. Their scheme, like all other schemes we are aware of,
is (computationally indistinguishable from) point-wise leakage resilient and our
theorems imply that parallel repetition does amplify its resilience to leakage.
This is true so long as the public parameters are generated anew for each copy
of the scheme: In our proof, we need to be able to sample key pairs for the
scheme in question. Lewko and Waters use the public parameters in an extremely
pathological (and clever!) way: The public parameters enable to generate keys for
their actual scheme, but not for the computationally indistinguishable scheme
where leakage resilience is actually proven. However, if we consider the generation
of public parameters as a part of the key generation process, then new key pairs
can always be generated, and parallel repetition works.
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The Jain-Pietrzak Counterexample. Jain and Pietrzak [14] give a negative result
for signature schemes. They take any secure signature scheme and change it so
that if the message to be signed belongs to a set H , then the signature algorithm
simply outputs the entire secret key. The set H is computationally hard to hit
(given only the public key), and thus the scheme remains secure. It follows that
the scheme remains secure also given leakage of length O(log k), where k is the
security parameter (more generally, if the underlying problem is 2λ hard, then
the scheme is resilient to ∼ λ bits of leakage).

They prove that parallel repetition fails, by proving that if the scheme is
repeated t times, for some large enough t, then the leakage can in fact give
enough information to find a message m that belongs to all the sets Hi, and
thus break security completely. They start with a result that relies on common
public parameters: a common (seeded) hash function. Then, they suggest to
remove this public parameter by replacing the seeded hash function with an
explicit hash function, such as SHA256. However, this explicit hash function is
also, in some sense, a joint non-uniform public parameter.

This counterexample heavily relies on the “help” of the signing oracle when
breaking the repeated scheme. The paper also presents a construction of a CCA
encryption scheme, where they use the decryption oracle to break the parallel
repetition system.

In general, signature schemes are not covered by our amplification theorems.
Our theorems (and proofs) only cover public key primitives where the challenger
in the security game does not need to know the secret key (beyond providing
the adversary with the leakage value). Our results do extend to schemes such as
signature schemes or CCA encryption schemes, if they have the property that
the challenger (i.e., the signing oracle or the decryption oracle) can be efficiently
simulated given only the public key (or given very little information about the
secret key), in a way that is computationally indistinguishable even given the
leakage. For example, the signature scheme of Katz and Vaikuntanathan [15]
has this property, and thus its leakage resilience is amplified by parallel repeti-
tion. Whether our techniques can be applied to other leakage resilient signature
schemes (e.g. [4, 17, 13]) is an interesting question that we leave for further
research.

1.3 Overview of Our Techniques

In what follows we give a high-level overview of our proofs. For the sake of
simplicity, we focus on the case of two-fold parallel repetition. Let E be any
λ-leakage resilient encryption scheme. Our goal is to prove that the scheme E2
is 2λ-leakage resilient. For technical reasons, in our actual proof, we manage to
show that E2 is (2λ− 1)-leakage resilient (in both our leakage models).

Our proof is by reduction: Suppose there exists an adversary B for the parallel
repetition scheme E2 that leaks L(pk1, pk2, sk1, sk2), where L reduces the min-
entropy of (sk1, sk2) by at most 2λ − 1. We construct an adversary A, that
uses B to break security of E , and uses a leakage function L′ that reduces the
min-entropy of the secret key by at most λ.
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Intuitively (and, as we will show, falsely), it does not seem too hard to show
such a reduction. It only makes sense that when the pair (sk1, sk2) looses 2λ bits
of entropy, then at least one of the secret keys sk1, sk2 “loses” at most λ bits
(otherwise the total loss should be more than 2λ). Therefore the adversary A
can sample a key pair by itself and “plant” it either as (pk1, sk1) or as (pk2, sk2)
(at random). Namely, A will sample a random i ∈ {1, 2}, and uniformly sample
(pki, ski), the key pair of the scheme we actually wish to attack will play the role
of (pk3−i, sk3−i). Upon receiving a leakage function L(·) from B, the adversary
A will plug the known (pki, ski) into the function and thus obtain L′ to be sent
to the challenger. Upon receiving a response from the challenger, it is forwarded
back to B, which can then break security with noticeable probability. Notice that
B’s view in the game is identical to its view in the repeated game against E2,
and thus it still breaks the security with the same probability. The only worry
is whether the function L′ only reduces the key entropy by the allowed amount,
which is unfortunately not the case. Assume that L leaks some 2λ bits on the
bit-wise XOR sk1 ⊕ sk2. Then when plugging in a known ski, the resulting L′

still leaks 2λ bits on sk3−i.
To solve this problem, we must prevent A from knowing ski. This is achieved

by having the key pair (pki, ski) sampled by the leakage function L′, rather than
by A. Namely, L′(pk, sk) is now defined as follows: First, sample (pki, ski) and
set (pk3−i, sk3−i) = (pk, sk). Then run y←L(pk1, pk2, sk1, sk2) to obtain the
leakage value. Lastly, output (y, pk1, pk2). Given the output of L′, the adversary
A can forward the value y to B, that uses it to break the scheme, all without
ever being exposed to the value of ski.

This seems to give A the least amount of information possible, so we should
hope that now we can prove that the entropy of sk is reduced by at most λ.
However, again, this is not true. Suppose that with probability 1/2, the leakage
function L outputs 2λ bits about sk1 and with probability 1/2 it outputs 2λ
bits about sk2. In this case, L indeed reduces the min-entropy of (sk1, sk2) by
2λ, and yet for every i ∈ {1, 2} the leakage function L′(pk, sk) reduces the min-
entropy of sk by essentially 2λ as well, and thus is not a valid leakage function
for the one shot game.

This abnormality results, to some extent, from using min-entropy (as opposed
to Shannon entropy) as our entropy measure: If L′(pk, sk) outputs both y =
L(pk1, pk2, sk1, sk2) and sk3−i, then it would indeed leak at most λ bits on sk
(with probability 1/2). The fact that we have less information, namely ski is
not known, might actually decrease the min-entropy of the key.

We arrive at a conflict: On one hand, knowing ski is a problem, but on the
other, not knowing it seems to also be a problem. We show that revealing ski
only in some cases, enables to prove parallel repetition. We use a simple lemma
(Lemma A.1), which essentially shows how to “split-up” the joint min-entropy
of two random variables. More precisely, it says that there is a subset S of all
possible secret keys sk1, such that for every sk1 ∈ S, the the random variable
sk2|sk1 has high min-entropy. Moreover, given the additional bit of information
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that sk1 /∈ S, causes sk1 to have high min-entropy (which decreases as the size
of S shrinks).

We proceed by a specific analysis for each of our two relaxed models. For
explanatory reasons, we first discuss leakage with advice (our second relaxation)
and then go back to the almost leakage resilience model (our first relaxation).

Point-Wise λ-Leakage with Advice. In this model, the adversary A will leak
L′(pk, sk), which is a randomized leakage function, defined by choosing a random
τ ∈ {1, 2}, setting (skτ , pkτ ) = (sk, pk), choosing a new fresh key pair (ski, pki),
where i = 3 − τ , and outputting L(pk1, pk2, sk1, sk2). In addition, it will use
one bit of advice which is whether ski ∈ S. If so, the leakage function L′(pk, sk)
outputs ski in addition to L(pk1, pk2, sk1, sk2), and otherwise it outputs only
L(pk1, pk2, sk1, sk2). Now we can prove that indeed, for many pairs (pk, sk),
the leakage L′(pk, sk) leaks at most λ bits about sk (and B breaks E2 on the
corresponding keys).

Note that the leakage function L′ sometimes leaks more than it should.
Namely, in some cases the value y ← L′(pk, sk) reduces the min-entropy of
sk by λ; but in other cases it reduces the min-entropy of sk by more than λ,3

and in these cases it is an invalid leakage function. For this reason, we need to
consider the point-wise λ-leakage definition. In addition, note that L′ used only
one bit of additional advice. Therefore when going from E to Et the reduction
uses log t bits of advice.

Point-Wise Almost λ-Leakage. In this model, the idea of the reduction is the
following: The adversary A will leak L′(sk, pk), which is a randomized leakage
function, defined by choosing a random τ ∈ {1, 2}, setting (skτ , pkτ ) = (sk, pk),
choosing a new fresh key pair (ski, pki), where i = 3 − τ , and outputting
L(pk1, pk2, sk1, sk2), and in addition with probability 1/2 outputting ski.

As in the model with advice, the leakage function L′ might leak more than
λ bits about sk, and thus we use the point-wise definition. In the analysis, we
distinguish between the case that the set S is noticeable and the case that it
is negligible. In the former, with non-negligible probability the leakage function
L′ will sample ski ∈ S and will output it. In this case the leakage function is
legal. If the set S is negligible, we claim the distribution of the secret key skτ
is statistically close to the distribution of skτ conditioned on the event that
ski /∈ S (as this event happens only with negligible probability). Therefore, if
L′ did not output the secret key ski, the secret key skτ is statistically close to
a distribution with high enough min-entropy. Due to this analysis, we need to
relax our leakage model almost λ-leakage resilient.

Since the analysis in this model is asymptotic, we are not able to extend it
beyond a constant number of repetitions. See discussion in Section 5.

1.4 Paper Organization

We define our generalized notion of public-key primitives in Section 2, where we
also define parallel repetition and leakage attacks on such primitives. Our model

3 This happens when the set S is very small, yet skτ ∈ S.
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of point-wise leakage resilience is presented in Section 3. In Section 4 we explain
why all known leakage resilient schemes are also point-wise leakage-resilient.

Our parallel repetition theorems for a constant number of repetitions and for a
polynomial number of repetitions are presented in Sections 5 and 6, respectively.
In Section 7 we discuss what our theorems imply for schemes that are only
computationally indistinguishable from being secure in our model. Appendix A
contains the min-entropy splitting lemma that is used for all our proofs.

Due to space limitations, some proofs are omitted from this extended abstract
and can be found in the full version [6].

2 Public-Key Primitives, Parallel-Repetition, Leakage
Attacks

In this section we give a definition of a public key primitive which generalizes one-
way relations and public-key encryption under chosen plaintext attack (CPA).
We then show how to define parallel repetition with respect to public-key primi-
tives in a way that, again, generalizes the intuitive notions of parallel repetition
for either one-way relations or public-key encryption.

2.1 A Unified Framework for Public-Key Primitives

We use the following formalization that generalizes both one-way relations and
public-key encryption.

Definition 2.1 (public-key primitive). A public-key primitive E = (G, V ) is
a pair of ppt algorithms such that

– The key generatorG generates a pair of secret and public keys: (sk, pk)←G(1k).
– The verifier V is an oracle machine such that V O(pk)(pk) either accepts or

rejects.

Definition 2.2 (secure public-key primitive). A public-key primitive E =
(G, V ) is secure if for any ppt oracle break, it holds that

Pr
(sk,pk)←G(1k)

[V break(pk)(pk)] = negl(k) .

To be concrete, for one-way relations, the breaker needs to send a candidate
secret key sk (= inversion of the public key), and the verifier runs the relation’s
verification procedure. To see why public key encryption can be stated in these
terms, requires some work. The reason it is not immediate is that typically, we
would consider the interaction between the verifier and the breaker, to be the
following: The verifier gives the breaker a challenge ciphertext Encpk(b), and he
accepts if the breaker succeeds in guessing b. However, the breaker can clearly
cause the verifier to accept with probability 1/2, where we need to ensure that
the breaker succeeds only with negligible probability. This technical annoyance
can be fixed by considering the game where the verifier sends poly(k) challenge



256 Z. Brakerski and Y.T. Kalai

ciphertexts to the breaker, each encrypting a random bit. The breaker succeeds
if it succeeded in guessing significantly more than 1/2 of the bits encrypted. The
formal definition and precise analysis are much more cumbersome. The proof
appears in the full version [6].

Note that our verifier (which corresponds to the challenger in “security game”
based definitions) only gets the public key as input and not the secret key. If
the secret key was also given, then all public-key encryption schemes, signature
schemes, and one-way relations, would trivially fit into this framework. However,
in this work, we only consider primitives where the verifier V does not use the
secret key sk to verify, but uses only the public key pk. An example of such a
primitive is public-key encryption (under CPA). However, signature schemes or
CCA secure encryption schemes do not fall into this category, since for these
primitives the verifier in the definition above does need to know the secret key
sk in order to simulate the signing oracle, in the case of signature schemes, and
to simulate the decryption oracle, in the case of CCA encryption schemes.

2.2 Parallel Repetition

Definition 2.3 (t-parallel repetition). For any public-key primitive E =
(G, V ) and any t ∈ N, its t-parallel repetition, denoted Et = (Gt, V t), is in itself
a public-key primitive defined as follows

– The key generator (skt, pkt)←Gt(1k) generates (ski, pki)←G(1k) for all i ∈
[t] and outputs skt � (sk1, . . . , skt), pk

t � (pk1, . . . , pkt).

– The verifier (V t)
O(pkt)

(pkt), runs V O(pkt,i)(pki) for all i ∈ [t], and accepts
if and only if they all accept.

A direct product of t schemes E1 × · · · × Et is defined similarly.
While it is straightforward that our definition captures the notion of parallel

repetition for one-way relations (where the goal is to find legal pre-images for all
input public-keys), let us be a little more explicit about how the above captures
parallel repetition for public-key encryption.

Lemma 2.4. Let E = (G, V ) be a public-key primitive that represents a public-
key encryption scheme and let t ∈ N. Then there exists a public key encryption
scheme that is represented by Et.

Moreover, this scheme is obtained by secret sharing the message into t shares
and encrypting share i with pki. To decrypt, decrypt all shares and restore the
message.

The proof is straightforward and is omitted.

2.3 Leakage Attacks

In this section, we generalize the notion of leakage attacks to our public-key
primitive framework. Note that we do not define what it means for a scheme to
be secure, only present a model for an attack.
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Definition 2.5 (leakage attack). We consider adversaries of the form A =
(leakA, breakA), where leakA, breakA are (possibly randomized) functions. We
refer to leakA as the leakage function and to breakA as the breaker.

A leakage attack of an adversary A = (leakA, breakA) on a public-key primitive
E = (G, V ) (with security parameter k) is the following process.

– Initialize: Generate a key pair (sk, pk)
$← G(1k).

– Leak: Apply the leakage function on the key pair to obtain the leakage value
y←leakA(pk, sk).

– Break: A succeeds if V break(pk,y)(pk) accepts.

3 Point-Wise Leakage Resilience

In this work, we consider “noisy leakage” functions, which are only allowed to
reduce the (average) min-entropy of the secret key by a bounded amount. How-
ever, we relax the min-entropy restriction, and consider a point-wise definition,
where we require that the specific leakage value is legal (as opposed to requiring
that the leakage function is always legal).

We define our new model below. Then, in Sections 3.1, 3.2, we present two
relaxed versions of point-wise leakage resilience that we need in order to prove
our parallel repetition theorems. Finally, in Section 3.3 we show that all of these
notions are strictly stronger than the old bounded-leakage model of [1]. Namely,
security w.r.t. to our definitions imply, as a special case, security w.r.t. bounded
leakage.

Definition 3.1 (point-wise λ-leakage). Let E = (G, V ) be a public key primi-
tive. A possibly randomized leakage function leak is λ-leaky at point (pk, y), where
pk is a public key and y is a leakage value (in the image of leak), if

H∞(Spk,y) ≥ H∞(Spk)− λ ,

where Spk is the distribution of secret keys conditioned on the public key being
pk, and Spk,y is the distribution of secret keys conditioned on both the public key
being pk and on leak(pk, sk) = y.

Definition 3.2 (point-wise λ-leakage resilience). A public-key primitive
E = (G, V ) is point-wise λ-leakage-resilient if for any ppt adversary A, where
A = (leakA, breakA), it holds that

AdvE,λ[A] � Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.

In order to obtain our direct product theorems for leakage resilience, we relax
the point-wise leakage resilience definition in two (incomparable) ways.
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3.1 First Relaxation: Almost Leakage Resilience

In this relaxation, instead of requiring that sk has high min-entropy conditioned
on pk and y = leak(pk, sk), we require that the distribution of sk (conditioned
on pk, y) is statistically close to one that has high min-entropy.

Definition 3.3 (close to λ-leaky). A leakage function leak is μ-close to λ-
leaky at point (pk, y) if there exists a distribution S̃pk,y that is μ-close to Spk,y
and

H∞(S̃pk,y) ≥ H∞(Spk)− λ .

Definition 3.4 (resilience to almost λ-leakage). E = (G, V ) is point-wise
almost λ-leakage-resilient if for any ppt adversary A = (leakA, breakA) and for
any negligible function μ, it holds that

AdvE,λ,μ[A] � Pr [(leakA is μ-close to λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)]
= negl(k) .

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.

Under this definition we obtain a direct-product theorem for constant number
of repetitions.

3.2 Second Relaxation: Leakage Resilience with Advice

To obtain a direct-product theorem for a super-constant number of repetitions,
we use a slightly different (and incomparable) model, where we do not allow
statistical closeness, but rather allow the attacker to get a logarithmic number
of bits of (possibly inefficient) advice.

Definition 3.5 (ppt-a). We say that a function f is ppt-a computable if the
function f-a, defined below, is ppt computable. The function f-a is identical to
f , except that the last a bits of its output are truncated.

We say that an adversary A = (leakA, breakA) is a ppt-a adversary if leakA
is ppt-a computable and breakA is ppt computable.

Definition 3.6 (point-wise λ-leakage with advice). A public-key primitive
E = (G, V ) is resilient to point-wise λ-leakage and logarithmic advice if for any
ppt-O(log k) adversary A = (leakA, breakA) it holds that

AdvE,λ[A] � Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.
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3.3 Relation to Bounded Leakage

To conclude, we prove that point-wise λ-leakage resilience implies the basic form
of λ-bounded leakage. A proof sketch appears in the full version [6].

Definition 3.7 ([1]). A public-key primitive E = (G, V ) is λ-bounded leakage
resilient if any ppt adversary A = (leakA, breakA) for which the output of leakA
is at most λ bits, succeeds with negligible probability.

Lemma 3.8. If E = (G, V ) is point-wise λ-leakage resilient then it is also λ-
bounded leakage resilient.

We note that point-wise almost λ-leakage resilience, and λ-leakage resilience with
logarithmic advice, are stronger notions of security (they give the adversary more
power) and thus the above immediately applies to these notions as well.

4 Why Known Schemes Are Point-Wise Leakage
Resilient

In this section, we show that leakage resilience is amplified by parallel repetition
for, essentially, all known schemes that are resilient to non-trivial (i.e. super-
logarithmic) leakage. To show this, we sketch a proof template that is shared
among all (non trivial) leakage resilient results, and we show that this proof
template proves security also w.r.t. our leakage models (the point-wise almost
λ-leakage model, and the point-wise λ-leakage with logarithmic advice model).

The Proof Template. The proof template for proving leakage resilience is very
simple, and works in two hybrid steps. Recall that the adversary first gets a pair
(pk, y = L(pk, sk)), where L is a poly-size leakage function chosen by A. Then it
chooses messages m0,m1 and gets a challenge ciphertext cb ← Encpk(mb). The
adversary wins if it guesses the bit b correctly.

The first step in the template is to replace the challenge cb with an “illegally”

generated ciphertext c∗b , such that (sk, pk, cb)
c≈ (sk, pk, c∗b) (and it is efficient to

generate c∗b given sk, pk, b). Due to computational indistinguishability, the ad-
versary’s success probability should remain unchanged. We note that there is no
entropy involved in this part, only a requirement that L is efficiently computable.

The second step is completely information theoretic: It is proven that if the
distribution of the secret key conditioned on pk, y, which we denote by Spk,y, has
sufficient min-entropy, then c∗b carries no information on b (or, more precisely,
that conditioned on the view of the adversary, b is statistically close to uniform).
Therefore, no adversary can guess its value with non-negligible advantage.

Point-Wise Leakage Resilience. The above proof template also proves point-wise
leakage resilience. The second step of the hybrid works in a point-wise manner
and therefore we only need to worry about the first step. In the first step, clearly
computational indistinguishability still holds, but proving that the point-wise
advantage remains unchanged is a bit harder, since we cannot efficiently check
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the point-wise advantage. Nevertheless, we argue that if the advantage of A is
non-negligible, then it drops by a factor of at most two. Such a claim is sufficient
for the next level of the template.

To see why this is the case, consider an adversary A that has non-negligible
point-wise advantage ε when given (pk, y, cb), but less than ε/2 when given
(pk, y, c∗b). Recall that the advantage measures the probability of both A suc-
ceeding (in the verification game) and pk, y being point-wise λ-leaky. It follows
that with non-negligible probability over pk, y, the conditional success probabil-
ity of A, conditioned on pk, y, drops by at least ε/4 (otherwise the advantage,
which measures over a subset of the pk, y, couldn’t have dropped).

A distinguisher B(sk, pk, cb/c∗b) is defined as follows: First, compute the leak-
age y:=L(sk, pk). Then generate many samples of cb/c

∗
b and use them to evaluate

the success probability of A conditioned on pk, y in the two cases. If indeed pk, y
are such that the success probability drops, use A to distinguish between the
two cases. If no noticeable change in the success probability was noticed, then
output a random guess. Putting it all together, we get a polynomial distinguisher
between (pk, y, cb) and (pk, y, c∗b), in contradiction to the hardness assumption.

We note that this is true even if y is not fully known to the distinguisher: say
O(log k) bits of y are not known, the distinguisher can still try all options and
check if for either one the success probability changes by ε/4.

Our Relaxed Models of Point-Wise Leakage Resilience. Our first relaxation, of
allowing the secret key to be statistically close to λ-leakage resilient, only effects
the second step of the template. We can still argue that b is statistically close
to uniform by adding another hybrid where the conditional distribution Spk,y is

replaced with a statistically indistinguishable S̃pk,y that has high min-entropy.
Our second relaxation, of allowing logarithmic advice, goes into the first step

(this is the only step where we care about the complexity of L). As we explained
above, our argument works even if a logarithmic part of the leakage value is not
known. Therefore we will use only the efficient part of the leakage function and
computational indistinguishability will still hold.

Computationally Indistinguishable Schemes. For some schemes, such as [1, 16],
leakage resilient is proven by showing that they are computationally indistin-
guishable from another scheme which, in turn, is proven leakage resilient using
the template. We show in Section 7 that this still implies that parallel repetition
amplifies leakage.

5 Direct-Product Theorem for a Constant Number of
Repetitions

In this section, we prove a direct-product theorem for a constant number of
repetitions, w.r.t. point-wise almost leakage-resilience as defined in Section 3.1.

Theorem 5.1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei = (Gi, Vi) be
a point-wise almost λi-leakage-resilient public-key primitive. Then, E1× . . .×Ec
is point-wise almost λ-leakage-resilient, where λ =

∑c
i=1(λi − 1).
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It suffices to prove this theorem for c = 2, and apply it successively. In order to
simplify notation, we prove it for the case of parallel repetition, where E1 = E2,
the proof extends readily to the case of direct product.

Lemma 5.2. Let E = (G, V ) be a point-wise almost λ-leakage-resilient public-
key primitive. Then E2 is point-wise almost (2λ− 1)-leakage-resilient.

Before we present the outline of the proof, let us make a few remarks.

1. Note that there is a loss of one bit in the amplification. Namely, we go from λ
to (2λ−1) instead of just 2λ. While some loss in the parameters is implied by
our techniques, more detailed analysis can show that the composed scheme
is in fact (2λ − δ)-leakage resilient for any δ(k) = 1/poly(k). Thus the loss
incurred is less than a single bit. As our result is qualitative in nature, we
chose not to overload with the additional complication.

2. While at first glance one could imagine that Theorem 5.1 should extend
beyond constant c, we were unable to prove such an argument. The reason is
that super-constant repetition gives a different scheme for each value of the
security parameter. This means that we cannot use Theorem 5.1 as black-
box. More importantly, our proof techniques rely on the asymptotic behavior
of the scheme so we were not able to even change the proof to apply for a
super-constant number of repetitions.

A result for the more general case of any polynomial number of repetitions
is presented, in the slightly different and incomparable “advice” model, in
Section 6.

Finally, we remark that known negative results for security of parallel
repetition are already effective for a constant number of repetitions. Thus
our result contrasts them even for this case.

Proof overview of Lemma 5.2. We consider an adversary B that succeeds in
the parallel repetition game, and construct an adversary A that succeeds in the
single instance game. The straightforward proof strategy would be to “plant”
the “real” key pair, that is given as input to A, as one of the key pairs that
are input to B, and sample the other pair uniformly.4 In such case, the input
to B is distributed identically to the parallel repetition case and indeed B will
succeed with noticeable probability. However, we may no longer be able to claim
that our leakage leaves sufficient entropy in the secret key. We are guaranteed
by the functionality of B that the key pair (sk1, sk2) is left with sufficient min-
entropy but it is still possible that neither sk1 nor sk2 have any min-entropy by
themselves.

To solve the above we use Lemma A.1, which essentially says how to split-up
the joint entropy of two random variables. Specifically it says that either sk1 or
sk2|sk1 will have sufficient min-entropy, depending on whether sk1 belongs to a

4 We note that even this step is impossible when relying on “secretly generated” public
parameters as in the scheme presented in [16] (or rather, the scheme that is compu-
tationally indistinguishable to theirs and actually has entropic leakage resilient).
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hard-to-recognize set R, and conditioned on the knowledge of whether sk1 ∈ R.
Namely, either sk1|�sk1∈R or sk2|(sk1,�sk1∈R) have high min-entropy. If we
could compute the bit �sk1∈R, we would have been done (and indeed if we are
allowed one bit of inefficient leakage, an easier proof follows, see Section 6). Since
this is impossible, we turn to case analysis:

Obviously, if Pr[sk1 ∈ R] = negl(k), then we can always guess that �sk1∈R = 0
and be right almost always. This implies that in such case sk2|sk1 is statistically
indistinguishable from having high min-entropy, as we wanted.

For the second case, if Pr[sk1 ∈ R] ≥ 1/poly(k), then sk2|(sk1,�sk1∈R) will
have high min-entropy for a noticeable part of the time. To complete the analysis
here, we notice that

H∞(sk2|(sk1,�sk1∈R)) = H∞(sk2|sk1).

This is because R is a well defined set and thus �sk1∈R is a deterministic (though
hard to compute) function of sk1. It follows that sk2|sk1 will have high min-
entropy for a noticeable fraction of the time, which completes the proof.

For the formal proof, see the full version [6].

6 Direct-Product Theorem for Polynomially Many
Repetitions

In this section we present a direct product theorem that applies to any polyno-
mial number of repetitions. This theorem is relative to the advice model defined
in Section 3.2. For the sake of simplicity, we will assume that the number of
repetitions is a power of 2, although the same techniques can be used for any
number.

Theorem 6.1. Let E = (G, V ) be a public-key primitive that is resilient to point-
wise λ-leakage and logarithmic advice. Let t = t(k) be a polynomially bounded
function of the security parameter such that t(k) is always a power of 2. Then
Et is resilient to point-wise t(λ− 1)-leakage and logarithmic adivce.

Towards proving the theorem, we present the following lemma, which is a pa-
rameterized special case of the above theorem, and will imply the theorem by
successive applications.

Lemma 6.2. For any public-key primitive E = (G, V ) and any ppt-a adversary
B = (leakB, breakB) for E2, there exists a ppt-(a+1) adversary A = (leakA, breakA)
for E, such that for all k,

AdvE,λ[A] ≥ (1/4) · AdvE2,(2λ−1)[B] .

The theorem immediately follows by applying the lemma log t times. See proofs
in the full version [6].
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7 Leakage from Computationally Indistinguishable
Schemes

Our definition of point-wise leakage resilience is based on the residual min-
entropy of the secret key, conditioned on the leakage value. In the literature,
starting with [18], this is referred to as “resilience to noisy leakage”. It is self ev-
ident that schemes where the public key is an injective function of the secret key
cannot be proven leakage resilient in this respect. This is because even leaking
the secret key in its entirety, which obviously breaks security, does not reduce its
min entropy conditioned on the public key (the conditional min-entropy is 0 to
begin with, and it stays 0 after the leakage). We do know, however, of such injec-
tive public-key encryption schemes that are proven to be leakage resilient with
respect to the weaker notion of “length bounded leakage”. There, the restriction
on the leakage function is that it has bounded length. Notable examples are the
scheme of [1] and the scheme of [16] (which was introduced as a counterexam-
ple for parallel repetition of length-bounded leakage resilience, see Section 1.2).
While at first glance it may seem that our result is completely powerless with
regards to such schemes, we show in this section that for all known schemes, and
specifically for the schemes of [1, 16], our theorem in fact does imply parallel
repetition.

The key observation upon revisiting the proofs of security of [1, 16], is that
in both cases, the proof is by presenting a second scheme in which the key
distribution is computationally indistinguishable from the original scheme (but
may have undesired features such as worse efficiency of key generation), and
proving that this second scheme is resilient to leakage of bounded length. This
implies that the original scheme is resilient to bounded leakage as well (since
otherwise one can distinguish the key generation processes). The second scheme,
in these two cases, is in fact resilient to noisy leakage. Furthermore, the second
scheme in the two cases adheres to our notion of point-wise leakage resilience.

In light of the above, we put forth the following corollary of Theorems 5.1
and 6.1.

Corollary 7.1. Let E = (G, V ) be a public-key primitive, and let G′ be such

that G(1k)
c≈ G′(1k). Then:

1. If E ′ = (G′, V ) is point-wise almost λ-leakage resilient, then Et is t · (λ− 1)-
bounded leakage resilient for any constant t ∈ N.

2. If E ′ = (G′, V ) is point-wise λ-leakage resilient with logarithmic advice, then
Et is t · (λ− 1)-bounded leakage resilient for any polynomial t = t(k).

Proof. The proof of the two parts is almost identical: We use either Theorem 5.1
or Theorem 6.1 to show that (E ′)t is point-wise almost t ·(λ−1)-leakage resilient,
or, respectively, leakage resilient with logarithmic advice. By Lemma 3.8, this
means that (E ′)t is t · (λ− 1)-bounded leakage resilient.
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By a hybrid argument (G′)t(1k)
c≈ Gt(1k).5 Therefore, it must be that Et

is also t · (λ − 1)-bounded leakage resilient (otherwise there is a distinguisher
between the key generators). This completes the proof.

Using Corollary 7.1, we can show that t-parallel repetition of the schemes of [1,
16] indeed amplifies their leakage resilience.
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A How to Split Min-Entropy

We present a lemma that shows that the joint min-entropy of two random vari-
ables can be split between them under some condition. Variants of this lemma
appeared in previous works (e.g. [8, 20]), this formulation is from [7].

Lemma A.1 (min-entropy split). Let X,Y be such that H∞(X,Y ) ≥ a+ b,
for a, b > 0. Then there exists a set RX , which is a subset of the support of X
such that both:

1. For all x ∈ RX , it holds that H∞(Y |X = x) ≥ b.
2. H∞(X |X �∈ RX) ≥ a− log(1/ε), where ε � Pr[X �∈ RX ].

Proof. Define
RX � {x : Pr[X = x] ≥ 2−a} .

Then for all x ∈ RX and for all y, it holds that Pr[Y = y|X = x] ≤ 2−b, and
thus H∞(Y |X = x) ≥ b. In addition, H∞(X |X �∈ RX) ≥ a + logPr[X �∈ RX ],
i.e. H∞(X |X �∈ RX) ≥ a− log(1/ε).
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Abstract. We put forth a framework for expressing security require-
ments from interactive protocols in the presence of arbitrary leakage.
The framework allows capturing different levels of leakage-tolerance of
protocols, namely the preservation (or degradation) of security, under
coordinated attacks that include various forms of leakage from the secret
states of participating components. The framework extends the univer-
sally composable (UC) security framework. We also prove a variant of
the UC theorem that enables modular design and analysis of protocols
even in face of general, non-modular leakage.

We then construct leakage-tolerant protocols for basic tasks, such
as secure message transmission, message authentication, commitment,
oblivious transfer and zero-knowledge. A central component in several of
our constructions is the observation that resilience to adaptive party cor-
ruptions (in some strong sense) implies leakage-tolerance in an essentially
optimal way.

1 Introduction

Traditionally, cryptographic protocols are studied in a model where participants
have a secret state that is assumed to be completely inaccessible by the adversary.
In this model, the adversary can only influence the system via anticipated inter-
faces (such as, the communication among parties). These interfaces are crossed
only when the adversary manages to fully corrupt a party, thus gaining access
to its entire inner state.

In reality, an intermediate setting often emerges, when the adversary manages
to gain some partial information on the secret state of uncorrupted parties. This
information, termed leakage, can be obtained by a variety of side channels attacks
that bypass the usual interfaces and are often undetectable. Known examples
include: timing, power, EM-emission, and cache attacks (see [Sta09] for a survey).

The threat of leakage gained much attention in the past few years, giving
rise to an impressive array of leakage-resilient schemes for basic cryptographic
tasks such as encryption and signatures, as well as general non-interactive cir-
cuits (e.g., [DP08, AGV09, ADW09, DKL09, Pie09, NS09, ADN+10, BKKV10,
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DHLAW10b, DHLAW10a, BSW11]). Most of the work concentrates on preserv-
ing, in the presence of leakage, the same functionality and security guarantees
that the original primitives guarantee in a leak-free setting. Such strong leakage-
resilience is typically guaranteed only when the leakage is restricted in some
ways. Examples include: assuming bounded amounts of leakage, assuming that
leakage only occurs in specific times (e.g., prior to encryption), or assuming that
leakage is limited to specific parts of the state, such as the active parts in the
only computation leaks model [MR04].

However, in many cases maintaining the same level of security as in a leak-
free setting may be too costly, or even outright impossible. To exemplify this,
consider the task of secure message transmission (SMT), where a sender wishes
to transmit a (secret) message m to a receiver, so that the contents of m remain
completely hidden from any adversary witnessing the communication. In the
leak-free setting, the problem is easily solved using standard semantically secure
encryption; however, in the presence of leakage, this is no longer the case. In
fact, semantic security is not achievable at all: an adversary that can get even
one bit of arbitrary leakage, from either party, can certainly learn any bit of the
message, since this bit must reside in the party’s leaky memory at some point.

Nevertheless, this inherent difficulty does not imply that we should give up on
security altogether, but rather that we should somehow meaningfully relax the
security requirements from protocols in the presence of leakage. Concretely, in
the above example, we would like to design schemes in which one-bit of leakage
on the message does not compromise the security of the entire message. More
generally, we would like to establish a framework that will allow to express and
analyze security of general cryptographic tasks in the presence of general (non-
restricted) leakage, where the level of security may gracefully degrade according
to the amount of leakage (that might develop over time). A first step in this
direction was taken by Halevi and Lin [HL11] in the context of encryption.

Another intriguing question is what are the composability properties of re-
silience to leakage. Can one combine two or more schemes and deduce leakage-
resilience of the combined system based only on the leakage-resilience proper-
ties of the individual schemes? If so, constructs with various levels of leakage-
resilience may be composed to obtain new systems that enjoy improved such
resilience properties. Some specific examples where this is the case have been
recently exhibited [BCG+11, BGK11, GJS11]. What can we say in general?

1.1 Our Contribution

We propose a new approach for defining leakage-resilience, or rather leakage-
tolerance, properties of cryptographic protocols. The approach is based on the
ideal model paradigm and, specifically, on the UC framework. The approach al-
lows formulating relaxed security properties of protocols in face of leakage and,
in particular, allows specifying how the security of protocols degrades with leak-
age. It also allows specifying leakage-tolerant variants of interactive, multi-party
protocols for general cryptographic tasks. In this context, the new modeling
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also captures attacks that combine leakage with other “network based” attacks
such as controlling the communication and corrupting parties. In addition:

– We prove a general security-preserving composition theorem with respect to
the proposed notion. This allows constructing and analyzing protocols in a
modular way while preserving leakage-tolerance properties. This is a powerful
tool, given the inherently modularity-breaking nature of leakage attacks.

– We describe a methodology for constructing leakage-tolerant protocols in
this framework. Essentially, we show that any protocol that is secure against
adaptive party corruptions (in some strong sense) is already leakage-tolerant.

– Using the above methodology and other techniques, we construct composable
leakage-tolerant protocols for secure channels, commitment, zero-knowledge,
and honest-but-curious oblivious transfer. (commitment and zero-knowledge
are realized in the common reference string model.)

Below we describe these contributions in more detail.

Leakage-Tolerant Security within the Ideal Model Paradigm. Following the ideal
model paradigm, we define security by requiring that the protocol π at hand
provides the same security properties as in an “ideal world” where processing is
done by a trusted party running some functionality F . Specifically, in the UC
framework, a protocol π UC-realizes a functionality F if for any adversary A
there exists a simulator S such that no environment Z can tell whether it is
interacting with A and π or with S and F .

We consider a “real world” where the adversary can get leakage on the state
of any party at any time. As we argued above, such attacks may unavoidably
degrade the security properties of the protocols at hand and to account for this
degradation we also allow leakage from the trusted party in the ideal world.
Specifically, the functionality F defines the “ideal local state” for each party
and the party’s behavior (and degradation in security) after leakage. (Typically,
we will be interested in functionalities where the ideal local state includes the
party’s inputs and outputs, but weaker functionalities that allow joint leakage
on the inputs of several parties can also be considered.) When A performs a
leakage measurement L on the state of some party in the real protocol π, the
simulator S is entitled to a leakage measurement L′ on the ideal local state of
that party in the ideal protocol. We allow the simulator to choose any function
L′, so long that its output length is the same as that of L.

For example, we allow our leaky SMT functionality to leak bits from message
that it sends and require that a real world attacker that gets � bits of leakage
from the state of the implementation can be simulated by a simulator that learns
only � bits about the message. Our model also allows the functionality to react
to leakage, in order to handle situations where security is only maintained as
long as not too much leakage occurred. (For example, an authenticated channels
functionality may allow forgeries once the attacker gets more bits of leakage than
the security parameter, but not before that.)

Leakage vs. Adaptive Corruptions for Secure Channels. Consider trying to realize
leaky SMT in our model using standard encryption; namely, the receiver sends its
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public key to the sender, who sends back an encryption of m. In the ideal world,
the simulator does not witness any communication (and has no information
about the message), so it can simulate the cipher by encrypting say the all-zero
string, which should be indistinguishable from an encryption ofm. However, after
seeing the ciphertext the adversaryA can ask for a leakage query specifying (say)
the entire secret decryption key and the first bit of m. Although the simulator
can now ask for many bits of leakage onm, it can no longer modify the ciphertext
that it sent before and therefore cannot maintain a consistent simulation.

A similar problem arises in the well studied setting of adaptive corruption
(with non-erasing parties), where the adversary can adaptively corrupt parties
throughout the protocol and learn their entire state. Also there, the simulator
needs to first generate some messages (e.g., the ciphertext) without knowing the
inputs of the parties (e.g., the message m), and later it learns the inputs and has
to come up with an internal state that explains the previously-generated mes-
sages in terms of these inputs. Indeed, it turns out that techniques for handling
adaptive corruptions can be used to get leakage-tolerance.

In fact, the problem of secure leaky channels can be solved simply by plugging
in non-committing encryption (NCE) [CFGN96], which was developed for adap-
tively secure communication. Recall that an NCE scheme allows generating a
“fake” equivocal ciphertext c̃ that can later be “opened” as an encryption of any
string of a predefined length �. Namely, c̃ is generated together with a poly-size
equivocation circuit E, such that, given any message m ∈ {0, 1}�, E(m) gener-
ates randomness (r̃mS , r̃

m
R ), for both the sender and the receiver, that “explains”

c̃ as an encryption of m.
To obtain leakage-tolerant secure message transmission, we can simply encrypt

the message using an NCE scheme. The simulator can now generate the fake ci-
phertext c̃ with the associated equivocation circuit E and can then translate any
c-dependent leakage function on the entire state (plaintext and randomness) into
a leakage function on the plaintext only, which can be queried to the leaky SMT
functionality. When leakage on P ∈ {S,R} occurs, the simulator S translates
the leakage function L(m, rP ) into L′(m) = L(m,E(m)) = L(m, r̃mP ). Indeed,
this idea was used in [BCG+11] in the context of a specific protocol.

The General Case. The above example can be made general. Specifically, we
show that, with some limitations, any protocol that realizes a functionality F
under adaptive corruptions also realizes a leaky variant F+lk under leakage. The
“leaky variant” is a natural adaptation that allows leakage on the state of F ,
just like the leaky SMT allow leakage on the transmitted message. This variant,
denoted F+lk, is identical to F except that F+lk allows the simulator to apply
arbitrary leakage functions to the ideal local state (which is the same as the state
defined in a semi-honest corruption). When such leakage occurs the environment
is reported on the identity of the leaking party and the number of bits leaked.
(This makes sure that the simulator can only leak the same number of bits as
in the protocol execution.) After such a leakage event, F+lk behaves in the same
way that F behaves after a semi-honest corruption of that party. That is, if
F modifies its overall behavior following the corruption of a party, then F+lk
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modifies its behavior in the same way. (In the applications considered in this
work, we will consider functionalities that do not change their behavior after
semi-honest corruptions, see Section 5.)

A limitation of this result is that it only holds when the given proof of security
uses a restricted type of simulators, namely ones that work “obliviously” of
the state that they learn when corrupting a player. We call such simulators
corruption-oblivious. We have:

Theorem 1.1 (informal). If protocol π realizes F under adaptive corruptions
(either semi-honest or Byzantine) with a corruption-oblivious simulator, then it
also realizes F+lk under arbitrary leakage (and the same type of corruptions).

Composable Leakage-Tolerance. An important property of ideal model based
notions of security is that they enable modularity, since the guarantees that they
provide are preserved even under (universal) composition of protocols. That is, if
a protocol π realizes an ideal functionality F , the security properties of F carry
over to any environment where π is used.

To achieve such modularity, common models of composable security rely cru-
cially on viewing different sub-modules of a large system as autonomous small
systems, each with its own local state and well-defined interfaces to the rest of
the system. Unfortunately, extending this “modular security” paradigm to the
leaky world is problematic: real world leakage is inherently non-modular, in that
the adversary can obtain leakage from the joint state of an entire physical device
and is not bound by our modular separation to logical modules of the software
running on the device. In fact, it is not even clear how to express joint leakage
from the state of different modules within standard models, let alone how to
argue about preservation of security properties.

We extend the UC security framework [Can01] to allow expressing leakage
attacks from physical devices that span multiple logical modules. We first allow
the protocol analyzer to delineate sets of “jointly leakable modules” (roughly
corresponding to physical machines). Then, we introduce a new entity, called an
aggregator, that has access to the internal states of all the modules in each set.

To get leakage from the joint state of the modules in a set P , the adversary
sends the leakage function L to the aggregator, who applies L to the combined
state and returns the result to the adversary. The same mechanism is used to
obtain leakage from ideal functionalities, except that here the ideal functionality
F hands the aggregator some “ideal local state” that F associated with the set
P . We stress again that our model considers a strong adversary that obtains
leakage information in a non-modular way from multiple subroutines that reside
on a common device, this makes positive results in this model quite strong.

Having extended the model of protocol execution to capture leakage attacks,
we would like to re-assert the composability property described above, i.e., to
re-prove the UC composition theorem from [Can01] in our setting. However, that
theorem was only proved for systems that behave in a “modular way”, and the
proof no longer holds in the presence of our modularity-breaking aggregator.

Still, we manage to salvage much of the spirit of the UC theorem, as follows.
We formulate a more stringent variant of UC security by putting some technical
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restrictions on the simulator and then re-assert the UC theorem with respect to
this varaint. Similarly to the case of corruption-oblivious simulators, here too we
require that the simulator S handles leakage queries “obliviously”.

Roughly, S has a “query-independent” way of translating, via a
state-translation function, real world leakage queries L(stateπ) to ideal world
leakage queries L′(stateF ). Furthermore, it ignores the leakage-results in the
rest of the simulation. We call such simulators leakage-oblivious and show:

Theorem 1.2 (UC-composition with leakage, informal). Let ρF be a pro-
tocol that invokes F as a sub-routine. Let π be a protocol that UC-emulates F
with a leakage-oblivious simulator. Then the composed protocol ρπ/F (where each
call to F is replaced with a call for π) UC-emulates ρF in face of leakage. Fur-
thermore, it does so with a leakage-oblivious simulator.

Theorem 1.2 provides a powerful tool in the design of leakage-resilient protocols.
In particular, we later use it to (a) combine any leakage-resilient protocol that
assumes authenticated communication with a leakage-resilient authentication
protocol into a leakage-resilient protocol over unauthenticated channels, and
(b) to combine any leakage-resilient zero-knowledge protocol that assumes ideal
commitment with leakage-resilient commitment protocols to obtain a composite
leakage-resilient zero-knowledge protocol.

Leakage-Tolerant Protocols. We construct leakage-tolerant protocols for a num-
ber of basic cryptographic tasks. We first observe that the general result regard-
ing the leakage-tolerance of adaptively secure protocols (Theorem 1.1) in fact
guarantees UC security with leakage-oblivious simulators. We then observe that
existing adaptively secure protocols for secure channels, UC commitment and
UC semi-honest oblivious transfer already have corruption-oblivious simulators;
hence, we immediately get:

– Assume authenticated communication. Then, any non-committing encryp-
tion scheme UC-realizes F+lk

SMT in the presence of arbitrary leakage using a
leakage-oblivious simulator.

– In the CRS model, the UC commitment protocols of Canetti and Fischlin
[CF01] and Canetti, Lindell, Ostrovsky and Sahai [CLOS02], UC-realize
F+lk

MCOM (the leaky version of the multi-instance commitment functionality)
in the presence of arbitrary leakage. Furthermore, they do so with leakage-
oblivious simulators.

– Also in the CRS model, the UC (non-interactive) zero-knowledge protocol
of Groth, Ostrovsky and Sahai[GOS06] realize F+lk

ZK under arbitrary leakage.
– The semi-honest oblivious transfer protocol of [CLOS02] for adaptive cor-

ruptions UC-realizes F+lk
OT (the leaky version of the ideal oblivious transfer

functionality in the presence of arbitrary leakage). Furthermore, it does so
with leakage-oblivious simulators.

In this work, we do not consider the generation of a CRS in the presence of
leakage; rather, we treat the CRS as an external entity that can be generated in
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a physically separate location. As in other settings, here too it is interesting to
find ways to reduce the setup requirements.

Finally, we note that for certain functionalities F , applying Theorem 1.1 alone
may still not give an adequate level of leakage-resilience. Indeed, while the leaky
adaptation F+lk assures graceful degradation of privacy, it may not account for
correctness (or soundness) aspects in the face of leakage. In such cases, we may
need to further strengthen F+lk. One such example is message authentication.
Indeed, F+lk

AUTH gives essentially no security guarantees: as soon as even a single

bit of information is leaked from the sender, F+lk
AUTH behaves as if the sender

is fully corrupted, in which case forgery of messages is allowed. We thus first
formulate a variant of FAUTH that guarantees authenticity as long as the number
of bits leaked is less than some threshold B. We then realize this functionality,
denoted F+B

AUTH, assuming an initial k-bit shared secret key between the parties
and as long as at most B = O(k) bits leak between each two consecutive message
transmissions. Furthermore, we do this with a leakage-oblivious simulator. The
techniques used to realize F+B

AUTH include information-theoretic leakage-resilient
message authentication codes, as well as NCE schemes.

We note that the techniques here borrow strongly from the techniques used in
[BCG+11] for the related goal of authentication within the context of obfuscation
with leaky hardware. That work, however, analyzed these tools in an ad-hoc
manner, and the results there apply only to that specific context.

In contrast, using the above UC theorem with leakage, we can combine the
above authentication protocol with any protocol that assumes ideally authenti-
cated communication to obtain composite leakage-tolerant protocols that with-
stand unauthenticated communication.

Finally, we address the task of obtaining zero-knowledge from ideal leaky
commitment F+lk

MCOM (the adaptive NIZK protocol of [GOS06] is obtained from
specific number-theoretic assumptions on bilinear groups). At first it may seem
that, as in the case of commitment, existing protocols for UC-realizing the ideal
zero-knowledge functionality, FZK, would work also in the case of leakage. How-
ever, this turns out not to be the case. In particular, while the protocol of [CF01]
for UC-realizingFZK:R, for some relationR, given FMCOM is indeed secure against
adaptive corruptions, the simulator turns out not to be corruption-oblivious and
Theorem 1.1 does not apply.

Instead, we settle for UC-realizing, in the presence of leakage, a weaker variant
of F+lk

ZK:R. This weaker variant permits violation of the soundness requirements
if too many bits were leaked from the verifier. We denote this weaker version
by F+B

ZK:R, where B is the leakage threshold for the verifier. We show how to

UC-realize F+B
ZK:R for B = k − ω(log k) (where k is the security parameter),

given access to F+lk
MCOM. Using the (leaky) universal composition theorem and

the protocol for realizing FMCOM (mentioned above), we obtain a protocol for
UC-realizing F+B

ZK:R in the CRS model.

ConcurrentWork. Garg, Jain, and Sahai [GJS11] also investigate zero-knowledge
in the presence of leakage, albeit not in the UC setting. Instead, they consider a
stand-alone definition with a rewinding simulator (where a CRS is not needed).
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Some of the difficulties that emerge in standard 3-round zero-knowledge pro-
tocols, as well as the suggestion to overcome them using the Goldriech-Kahn
paradigm, were communicated to us by Amit Sahai.

Damg̊ard, Hazay, and Arpita [DHP11] consider leakage-resilient two-party
protocols. Their definition of security, which is also ideal-model based, accounts
also for noisy leakage (namely leakage that might not be length-restricted, but is
somewhat entropy preserving). They achieve leakage-resilience (or tolerance) for
NC1 functions in a setting where one party is statically and passively corrupted
and the other party is leaky. The result, however, only applies in the ”only
computation leaks” (OCL) model of [MR04] (and with some extra technical
limitations). They also prove a security preserving composition theorem, but
their modeling considers only separate leakage from each module (rather than
overall leakage as considered here). They also construct a leakage-tolerant OT
protocol for sufficiently entropic inputs distributions, but only in the OCL model
and under a relatively strong hardness assumption; in terms of communication,
however, their protocol is more efficient than ours. Finally, we remark that the
setting where one party is statically passively corrupted can be seen as a special
case of a weak leakage-tolerance model, where the ideal world simulator is allowed
to jointly leak from all the parties. See further discussion in Section 5.3.

2 Modeling Leakage in the UC Framework

This section defines the new model of UC security with leakage. Here we provide
a high-level overview, the full details can be found in the full version of this
work [BCH11]. Recall that the basic UC framework considers realization of an
“ideal specification” F by a “real implementation” π. (Formally both F and
π are just protocols, we call them by different names to guide the intuition.)
The realization requirement is that for any “real world attacker” A against the
implementation π there exists another adversary S (called a simulator) against
the specification F , such that an “environment” Z that interacts with S,F has
essentially the same view as in an interaction with A, π.

The basic UC execution model lets the environment Z determine the inputs to
the parties running the protocol and see the outputs generated by these parties
and also allows free communication between the environment and the adversary.
The adversary, typically, has full control over the communication between parties
and the ability to “corrupt” parties in various ways. Corruption is modeled as
just another interface available to the adversary, where it can send a message
“you are corrupted” to any party. (In the case of standard passive corruption,
the party responds to this message by handing its entire internal state to the
adversary. To model Byzantine corruption, the party also changes the program
that it is running from then on.)

A crucial aspect of the UC framework is its modularity, where programs can
call subroutines, and these subroutines are treated as separate entities that can
be analyzed separately for security properties. Importantly, local randomness
and secrets that are used by a subroutine should typically not be visible to the
calling routine or to other components in the system.
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A useful technicality in the UC framework, is that it is sufficient to prove
security only with respect to the dummy real world adversary D. This is the
adversary that simply reports all the information it receives to the environment
and follows all the instructions of the environment regarding sending messages
to parties and ideal functionalities. Relying on the fact that any adversary can
be emulated by the environment itself, it is easy to show that simulation of the
dummy adversary D implies simulation for any adversary.

Leaky UC. A natural approach to modeling leakage within the UC framework
is to view it as a weak form of corruption, where the adversary gets some in-
formation about the internal state of the leaky party but perhaps not all of it.
Also, leakage resembles “semi-honest” corruption more than “malicious”, in that
leaky parties keep following the same protocol and do not change their behavior
following a leakage event. Thus we could provide yet another interface to the
adversary where it can send a “leak L” message to a party (where L is some
function) and have that party reply with L(s) where s is its internal state.

The Leakage Aggregator. A serious shortcoming of the modeling approach
in the previous paragraphs is that it only lets the adversary obtain leakage on
individual processes (or subroutines). In contrast, real life leakage usually pro-
vides information that depends on the entire state of a physical device, including
all the processes that are currently running on it. To account for this inherently
non-modular property of real life leakage, we introduce to the model a new
“global entity” that we call the leakage aggregator. The aggregator G can access
the entire internal state of all the components in the system. A leakage query
specifies a leakage function L and a set of processes P = {p1, . . . , pt}. This query
is forwarded to the aggregator, who evaluates L(s1, . . . , st) and returns the result
to the adversary. Some important technicalities regarding the working of G are
the following:

– A convention should be set for how to specify the sets of processes and ensure
that this is a “legitimate set” for joint leakage. We assume that processes
are tagged with “party identifiers” pid (roughly corresponding to physical
machines), and joint leakage is allowed only from a set of processes that all
have the same pid.

– As done for corruptions, here too the identity of the leaky processes and the
amount of leakage needs to be reported to the environment. This forces the
simulator, in the ideal world, to use the same amount of leakage from the
same processes as in the real world.

– Since ideal functionalities represent idealized constructs that do not necessar-
ily run on physical devices, they are often associated with more than one pid.
Thus care should be taken when deciding how an ideal functionality reacts
to leakage queries w.r.t. one of its pid’s. (For example, the secure-channels
functionality runs on behalf of both the sender and the receiver, and would
typically react differently to sender-leakage than to receiver-leakage queries.)
We let the ideal functionality itself decide how to reply when G asks it for
the state corresponding to any of its pid’s. (This is the same convention as
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used for corruption, where the functionality gets to decide what to reveal
to the adversary when one of its pid’s is corrupted.) Typically, the “state”
associated with a certain pid will be just the inputs that were received from
that pid and the outputs it receives.

– To allow functionalities to react to leakage situations, we have G, upon ac-
cessing the state of a module, report to that module the output size of the
leakage function L. Typically, “real world implementations” ignore this re-
port (since we assume that real world leakage is undetectable), but “ideal
functionalities” may use it to change their behavior (e.g., reduce the security
guarantee if too much leakage occurred).

With these conventions in place, a leakage operation is handled as follows: first,
the adversary sends a query (leak, L, pid) to G, where L is the leakage function
and pid is the leaking party ID. Then, G obtains statepid, the total state of party
pid, applies L to statepid, and returns the result to A. Finally, G reports the
output length of the function L to all the processes whose state is included in
statepid and reports pid and the output length to the environment.

We note that the security guarantee provided by this model may be weaker
than one could desire, as the number of leaked bits is reported to each one of
the processes (or functionalities). This means that when a domain leaks � bits,
each one of its components behaves as if the � bits leaked entirely from this
component. While this is a relatively weak leakage-resilience guarantee, it seems
unavoidable in any general model with modularity-breaking leakage.

Leakage-Oblivious Simulation. Following the approach of basic UC security, the
definition of protocol emulation requires that for any adversary A that attacks
the implementation π there exists a simulator S that attacks the specification
F so that no environment can distinguish between an interaction with A and
π, and an interaction with S and F . In particular, S must provide an overall
transformation from one interaction scenario to the other, including among oth-
ers the leakage queries made by A to the parties (via the aggregator). As noted
above, an equivalent requirement considers, instead of any adversary A, only
the dummy adversary, D, that merely passes messages between the environment
and the protocol’s parties.

This natural requirement, however, has (seemingly inherent) difficulties when
considering composition of protocols. In particular, we were not able to prove
a general composition theorem in this model (see details in Section 3). Conse-
quently, we consider a more restricted notion of protocol emulation, which we
term emulation with leakage-oblivious simulators.

To simplify the exposition, we describe here leakage-oblivious simulation only
with respect to the dummy adversary D. A leakage-oblivious simulator S for the
dummy adversary has a special form: specifically, S has a separate subroutine S̃
for handling leakage. When S receives from the environment a request to apply
a leakage function L to a set P of processes, S̃ is invoked to produce a “state
translation” function T . This function is meant to transform the internal state of
P in the specification F into “the actual state” in the implementation π. Once T
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is produced, the aggregator is given the composed leakage function L◦T . Finally,
when the leakage-result is returned, it is forwarded directly to the environment
and S returns to its state prior to the leakage event.

The subroutine S̃ should operate independently of the leakage function
L, its only input is the state of S (prior to the leakage query) and a party
identifier pid. Also, the leakage operation has no side effects on S. That is,
following the leakage event S return to the state that it had before that event.

3 Universal Composition of Leaky Protocols

We now state the universal composition theorem for leaky protocols and leakage-
oblivious simulators (as defined in Section 2). Let π be an implementation and F
be a specification. (As mentioned earlier, formally these are just two protocols,
and the different names are meant only to help the intuition.) Also let ρ = ρ[π]
be a protocol that includes subroutine calls to π. Below we denote by ρπ the
system where the subroutine calls to π are actually processed by π and by ρF/π

the system where these subroutine calls are processed by F .
The UC theorem [Can01] states that if π UC-realizes F , then ρπ UC-realizes

ρF/π; however, that theorem does not hold in the presence of the modularity-
breaking aggregator G. The proof of the UC-theorem in [Can01] relies on all the
processes being “modular”; namely, a process can only interact with its caller
and its subroutines (and the adversary).1

As we have seen, modularity is incompatible with the definition of leaky pro-
tocols; indeed, all processes are required to interact with the aggregator, which
is neither their caller nor their subroutine (nor an adversarial entity). Still, if π
realizes F with a leakage-oblivious simulator, we can recover the same result.
Below we call a protocol “modular up to leakage” if it only interacts with its
caller, its subroutines, the adversary, and the aggregator.

Theorem 3.1 (UC-composition with leakage). Let ρ, π,F be protocols as
above, all modular up to leakage, such that π UC-emulates F with a leakage-
oblivious simulator. Then ρπ UC-emulates ρF/π. Furthermore, it does so with a
leakage-oblivious simulator.

Proof Overview. The proof follows the outline of the proof of the basic UC
theorem; here, we focus on the required adjustments due the leakage. For sake
of simplicity, in this overview we assume that ρ invokes only a single instance of
the sub-protocol π.

Recall that we need to construct a leakage-oblivious simulator Sρ such that no
environment can tell whether it is interacting with ρπ and the dummy adversary
D, or with ρF/π and Sρ. The construction of Sρ is naturally based on the leakage-
oblivious simulator Sπ as guaranteed by the premise. That is, Sρ runs a copy
of Sπ ; as in the basic UC theorem, the interaction between Z and the parties
is separated into two parts. The interaction with π is dealt with by Sπ, which
1 Such protocols are also called “subroutine respecting”.
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generates messages for the corresponding sub-parties and handles incoming mes-
sages from these parties. The effect of the environment on rest of the system, is
handled by direct interaction with the external parties running ρ.

Leakage queries are handled by way of a subroutine S̃ρ that generates a state
translation Tρ, as needed for leakage-oblivious simulation. Recall that the leakage
function L that Sρ receives from the environment was designed to be applied
to a “real protocol state” in ρπ (and since ρ runs a single copy of π then this
state is of the form (stateρ, stateπ)). The simulator Sρ, on the other hand, can
only ask the aggregator for leakage on the state of ρF , which is of the form
(stateρ, stateF). To bridge this gap, S̃ρ runs the “state translation subroutine”

S̃π. (This can be done since Sρ has the entire current state of Sπ.) Once S̃π
produces a state translation function Tπ, S̃ρ generates its own state translation
function Tρ (stateρ, stateF ) = (stateρ, Tπ (stateF )) and sends to the aggregator a
leakage function L′, where

L′ (stateρ, stateF ) = L (Tρ (stateρ, stateF )) = L (stateρ, Tπ (stateF )) .

Observe that already at this stage we rely crucially on Sπ being leakage-oblivious:
if Sπ was expecting to see a leakage function Lπ (stateπ) before producing the
translation, then we could not use it (since Sρ does not know the state stateρ, and
therefore cannot write the description of the induced function Lstateρ (stateπ) =
L (stateρ, stateπ)). Once the aggregator returns an answer, Sρ passes it to the
environment and returns to its previous state (including the previous state of
the sub-simulator Sπ).

It is clear from the description that Sρ is leakage-oblivious. The validity of
Sρ is shown by reduction to the validity of Sπ. That is, given an environment
Zρ that distinguishes an execution of (ρπ ,D) from an execution of (ρF/π,Sρ),
we construct an environment Zπ that distinguishes an execution of (π,D) from
an execution of (F ,Sπ). The environment Zπ simulates an execution of (Zρ, ρ)
“in its head”, except that all messages corresponding to π are forwarded to the
external execution. Indeed, leakage queries aside, we have: (a) if the external
execution consists of Sπ and F , then the entire (composed) execution amounts
to running Zρ with Sρ and ρF ; (b) if the external execution consists of D and
π, then the entire (composed) execution amounts to running Zρ with D and ρπ.

Extending this argument to include leakage, the environment Zπ acts as fol-
lows. When Zρ produces a leakage query L to be evaluated on stateρ, stateπ,
Zπ computes the simulated state stateρ and computes the restricted leakage
function Lstateρ (stateπ) = L (stateρ, stateπ), which should be evaluated only on
stateπ . Note that since Sπ is leakage-oblivious, the state-translation function that
it outputs when run as a subroutine of Sρ is the same as the state-translation
function that it outputs when run with the environment Zπ. The rest of the
argument remains unchanged.

The actual proof also deals with the case where multiple instances of the sub-
routine π are invoked and can be found in the full version of this work [BCH11].
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4 From Adaptive Security to Leakage-Tolerance

Recall that the adversary in the UC framework can adaptively corrupt parties
during protocol execution, thereby learning their entire internal state. If the cor-
ruption is passive (semi-honest), the party keeps following the same program as
it did before the corruption, and if it is Byzantine (malicious), then the adversary
also gains control of the program that the party runs from now on.

As already pointed out, leakage can be thought of as a form of corruption,
where the adversary gains partial information on the inner state of a party.
The converse is also true, passive corruption can be viewed simply as leaking
the entire internal state. The challenges in simulation are also similar: for both
corruption and leakage the simulator must translate some “ideal state” that it
gets from the functionality into a “real state” that it can show the environment,
and do it in a way that is consistent with the transcript so far. Below we for-
malize this similarity, showing that “in principle” a protocol that realizes some
functionality F in the presence of passive adaptive corruptions also realizes it
in the presence of leakage. There are considerable restrictions, however. Most
importantly, the implication holds only for corruption-oblivious simulators (see
below). Also, F must be adapted to handle leakage queries, and we prove the
implication for a particular (natural) way of doing this adaptation.

Adapting Functionalities to Leakage. Let F be functionality that was designed
for a leakage-free model with corruptions. This means that F already has some
mechanism to reply to messages from the adversary about corruptions of players.
We now need to adapt it by explaining how it reacts to leakage queries from
the aggregator G. The adaptation is natural: whenever G asks for the state of
party pid for the purpose of leakage, the functionality replies with exactly the
same thing that it would have given the adversary if pid was passively corrupted
at this time. Then, once G reports the number of leakage bits, the functionality
forwards this number on the I/O lines of party pid.2 Thereafter, the functionality
behaves just as if party pid was passively corrupted. We denote the resulting
functionality by F+lk. We stress that if F was designed to react differently to
passive and Byzantine corruptions, then it uses the passive corruption mode to
handle leakage.

Note the implication of viewing leakage as corruption: in principle, reaction
to leakage could be gradual - a functionality F can change its behavior propor-
tionally to the amount of leakage, or to have a leakage threshold up to which it
does one thing and after which it does another. However, the reaction of F to
(passive) corruption is typically “all or nothing”, it is either not affected or it
completely “gives up”. Using our convention from above, this “all or nothing”
reaction is carried over to F+lk. For example, if F is an authenticated channels
functionality, then F+lk will permit forgery as soon as even a single bit is leaked.
On the other hand, if F is a commitment functionality then leakage events have
no effect on the subsequent behavior of F+lk. Although the transformation that

2 This number-reporting action is meant to allow the environment to do its leakage
bookkeeping, and for ideal functionalities to be able to react to leakage.
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we prove below works for every functionality F , its usefulness depends crucially
on the way F handles passive corruptions.

Corruption-Oblivious Simulators. The intuition for why adaptive corruption im-
plies leakage-tolerance is that if we can simulate the entire state of an adaptively
corrupted party, then we should also be able to simulate only parts of its state
(according to a particular leakage function). The problem with this intuition,
however, is that future behavior of the simulator may depend on the entire state
learned during corruption, which is not available to the leakage simulator.

We thus restrict our attention to special simulators that are oblivious of the
state learned during corruption (similarly to the leakage-oblivious simulators
from Section 2). As for leakage, we only define corruption-oblivious simulators
for the dummy adversary D (which is sufficient). The simulator S for D should
have a special subroutine S̃ for handling passive corruptions. When S receives
from the environment a request (passive corrupt, pid) to passively corrupt a party
pid, S invokes S̃ to produce a state translation function T . T is used to transform
the “internal state” that F (or the hybrid-world protocol) returns for party pid
into a state of the “real world” implementation protocol π for this party. Then,
S sends a passive corrupt message to pid, obtains the corresponding state (from
F or the hybrid-world instance), applies to it the transformation T and returns
the result stateπ = T (state) to the environment. After the result is forwarded to
the environment, S returns to its state prior to the time it invoked S̃.

Note that since this is passive corruption, then party pid can keep evolving its
state after the initial corruption, and the environment can ask to see the updated
state from time to time. S handles each such update request as a new passive
corruption query, invoking S̃ again to get state-translation function, calling the
functionality again, etc. (We note that there is no restriction on the way that S
handles Byzantine corruptions.)

We stress that S does not make any direct use of the state of the corrupted
parties. In particular, the future operation of S, when simulating the messages
generated by corrupted parties, is done independently of their secret local states.
As seen in subsequent sections, in some cases this turns out to be a strong
restriction (see Example 5.1 in Section 5). We are now ready to state the main
result of this section. The proof is provided in the full version [BCH11].

Theorem 4.1. Let π be a protocol that UC-realizes an ideal functionality F in
the presence of passive adaptive corruptions (but no leakage), with a corruption-
oblivious simulator. Then π also UC-realizes F+lk with a leakage-oblivious sim-
ulator in the UC model with leakage.

Composition of Corruption-Oblivious Simulators. We note that, viewing
corruption-oblivious simulators as a special case of leakage-oblivious simulators
(for leaking the identity function), the proof of the leaky UC Theorem 3.1 implies
that corruption-oblivious simulation is preserved under universal composition:

Corollary 4.1 (of Theorem 3.1). Let ρ, π,F be protocols that are modular
up to leakage, such that π UC-emulates F with a corruption-oblivious simulator.
Then ρπ UC-emulates ρF/π with a corruption-oblivious simulator.
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5 Realizing Leaky Adaptations of Basic Interactive Tasks

This section describes the construction of leakage-tolerant protocols for for sev-
eral interactive tasks. We describe constructions for secure message transmis-
sion, (semi-honest) oblivious transfer, commitment and zero-knowledge. These
constructions all assume ideal authenticated channels. We then present a con-
struction of leakage-resilient authenticated channels. All of our constructions
are composable. We conclude the section with a discussion on the difficulties in
obtaining general leakage-tolerant multi party computation.

The bulk of this section is omitted. It can be found in the full version of this
work [BCH11]. Here, we only sketch the constructions for the last two tasks.

5.1 Zero-Knowledge from Ideal Leaky Commitments

We adapt the zero-knowledge ideal functionality to tolerate leakage and demon-
strate a protocol that realizes the adapted functionality in the presence of leak-
age. Recall that FZK:R, for a relation R, takes from the prover P an input (x,w),
and outputs x to the verifier V only if R(x,w) holds. This formulation guarantees
to P perfect secrecy of w. It also guarantees perfect soundness to V .

Adapting FZK to leakage, we can ideally hope to realize a functionality with
optimal tolerance, such as F+lk

ZK , which can “gracefully” tolerate arbitrary leak-
age from the prover, and in addition does not give up on soundness even in face
of arbitrary leakage on the verifier. However, we could not manage to realize
such a functionality. Instead, we consider an adaptation that can tolerate arbi-
trary leakage from the prover, but only a bounded amount of leakage from the
verifier before soundness breaks. Before presenting our eventual adaptation and
implementation, we briefly sketch the difficulties which prevent us from achieving
optimal leakage-tolerance.

As shown in [CF01, CLOS02], the parallel repetition of classic 3-round zero-
knowledge protocols, such as Blum’s Hamiltonian cycle [Blu86], and GMW’s
3-coloring [GMW91], UC-realizes the basic (non-leaky) FZK, given access to
(non-leaky) ideal commitment. Moreover, they do so even in the presence of
adaptive corruptions. However, the proofs of security of these protocols do not
yield corruption-oblivious simulation. Thus, we cannot conclude that these pro-
tocols UC-realize F+lk

ZK under leakage.
In fact, without any modifications, these protocols seem inherently impossi-

ble to simulate in the face of leakage. To demonstrate this, let us recall GMW’s
3-coloring protocol. Here, the prover, who possesses a 3-coloring c, chooses a
random permutation σ of the three colors and commits to the permuted color-
ing σ(c). The verifier then requires that the prover opens the colors of a random
edge and checks that its endpoints are indeed colored differently. Now, consider
a (Byzantinely) corrupted verifier V ∗ that also obtains leakage on the prover’s
coloring during the protocol. This verifier can leak, for example, the secret per-
mutation σ and then ask the (honest) prover to open the colors σ(c(i)), σ(c(j))
of some random edge (i, j). Finally, it can leak again the true colors c(i), c(j).
Simulating such a behavior seems impossible (assuming 3COL /∈ BPP). Indeed,
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once the simulator simulates σ for the first leakage, it essentially becomes com-
mitted to it for the rest of the protocol. Then, when it is required to simulate
the opening of σ(c(i)), σ(c(j)), it essentially has no information on c, and hence,
if it can consistently simulate the second leakage query, then essentially it must
“know” a proper coloring of the entire graph.3 We stress that this inherent dif-
ficulty also fails simulators that are not leakage-oblivious (and are thus allowed
to depend on both the leakage function and the leakage-result).

To overcome the above problem, we require that at the beginning of the proto-
col, the verifier commits to all its challenges. This already allows the simulation
to go through; now the simulator can first extract the challenge edge (i, j), choose
random colors for it c′(i), c′(j), and then have the leakage return a permutation
mapping the real c(i), c(j) to c′(i), c′(j). In fact, we show that this adjustment
is enough for simulating any malicious verifier.

This adjustment comes, however, at a price: unlike the original protocols,
where the verifier was of the public coins type (and had no secret state), now
the verifier commits to its challenges, and the secrecy of these challenges is crucial
for the protocol’s soundness. Hence, we cannot hope that in such a protocol the
verifier will be able to withstand arbitrary amounts of leakage; in particular,
once the prover leaks all of the verifier’s challenge, soundness is doomed.

Consequently, we only realize a weaker adaptation, where the verifier can only
tolerate a bounded amount of leakage. (The prover can still tolerate arbitrary
leakage.) More specifically, we can tolerate arbitrary leakage on the verifier’s ran-
domness so long that a super-logarithmic amount of min-entropy is maintained.

5.2 Authenticated Channels

We construct a protocol for realizing leaky authenticated channels with bounded
leakage-resilience. More specifically, the protocol UC-realizes an ideal function-
ality F+B

Auth that guarantees authenticated communication as long as the overall
leakage between any two transmissions of some messages does not exceed a pre-
specified bound B.

The protocol we present uses two main building blocks: (a) non-committing
encryption (NCE) (b) information theoretic c-time message authentication codes
(MACs) that are resilient to a constant leakage rate from the secret key. The
idea behind the protocol is simple. The parties initially share a (leaky) secret
key K1. Then the protocol proceeds inductively; at each round, a current au-
thentication key Ki is used to authenticate the i-th message, mi. In addition,
a fresh key Ki+1 is generated and transmitted using non-committing encryp-
tion. These transmitted ciphers are also authenticated using Ki. To allow the
authentication to go through, we need our underlying leaky MAC scheme to
allow authentication of messages that are polynomially longer than the secret
key. This is achieved using universal hashing. Concretely, the protocol we present
tolerates, between each two transmissions, roughly k/10 bits of leakage on the

3 This intuition can be made formal; namely, given such a simulator we can construct
an algorithm for 3-coloring arbitrary graphs.
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k-long secret key. Similar techniques are used for a related goal in [BCG+11].
However, the security analysis there is different than the one here.

The protocol we construct admits leakage-oblivious simulation and is thus
composable. We can, therefore, use it as a basic building block supporting any
protocol that requires authenticated channels, when ideally authenticated chan-
nels are unavailable. We stress, however, that when doing so the leakage-tolerance
of the higher-level protocol, naturally degrades to that of the authentication
protocol.

5.3 On the Difficulty in Achieving General Leakage-Tolerant MPC

Equipped with Theorem 4.1, we may hope that, similarly to the tasks consid-
ered above, general leakage-tolerant multi-party computation (MPC) would also
follow from known results on adaptively secure MPC (such as, [CLOS02]). Un-
fortunately, known results do not admit corruption-oblivious simulation and are
in fact far from being leakage-tolerant. We exemplify the relevant difficulties by
giving a protocol that is adaptively secure but not leakage-tolerant. Although
seemingly contrived, the protocol suffers from the same caveats that fail known
adaptively secure protocols from achieving leakage-tolerance.

Example 5.1. Let F be a standard corruption functionality that takes n-bit in-
puts from two parties, P0 and P1, and outputs nothing. As soon as party Pi
provides input xi, the virtual local state of Pi is set to xi. Now, consider the fol-
lowing protocol π: first, the parties give their inputs to some trusted party that
returns a random bi to Pi such that b0 + b1 = 〈x0, x1〉 where 〈, 〉 denotes inner-
product in F2. (The inner product can be replaced by any two-source extractor.)
Next, the parties output nothing and halt.

It can be seen that π securely realizes F with respect to adaptive corruptions.
This is so since, once the first party Pi is corrupted, the simulator learns xi and
can give xi to the adversary, plus a random bit instead of bi. Now, when P1−i

is corrupted, the simulator learns x1−i and can determine the bit b1−i so that
b0 + b1 = 〈x0, x1〉. However, notice that here the simulator is not corruption-
oblivious: the handling of the second corruption depends on the input value xi
of the first corrupted party. Indeed, π does not realize F+lk with even one bit
of leakage from each party: the adversary can ask to leak bi from Pi and thus
learn 〈x0, x1〉. However, in the ideal model for F+lk, assuming x0, x1 are long
random strings, the simulator has no hope of learning 〈x0, x1〉. This is so since
in the ideal model, the simulator can only perform one-bit leakage on x0 and x1
separately, and hence it can not guess 〈x0, x1〉 with non-negligible advantage.

Indeed, the same problem would arise in GMW-based protocols, where the value
of each wire is secret-shared between the parties in a non leakage-resilient manner
as above. This is actually also the case for YAO-based adaptively secure protocols
(for NC1 functions); there also (although not explicitly), the value of each wire
is effectively secret-shared between the parties in a non leakage-resilient way.

Weak (Joint-State) Leakage-Tolerance Vs. Strong (Separate-State)
Leakage-Tolerance. Note that, had we modified F+lk in the above example so
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that the virtual local state of each party includes both inputs, the above proto-
col would UC-realize F+lk with leakage. More generally, if we settle for a weaker
leakage-tolerance guarantee where the ideal world simulator can jointly leak from
the inputs and outputs of all parties (and not only separately from the inputs
and outputs of each leaking party alone), then leakage-tolerance can already be
achieved. In fact, combining our leakage-tolerant OT protocol with an adaptively
secure protocol, such as GMW, it is easy to obtain semi-honest MPC for general
functions. (We note that this, in particular, concerns the two party setting where
one party is statically corrupted considered by [DHP11], which can be seen as a
special case of weak leakage-tolerance.)

However, in a setting where real world adversaries are restricted to separate
leakage from each party, an ideal process that allows joint leakage from the inter-
nal states of the parties is somewhat unsatisfactory. Achieving strong (separate-
state) leakage-tolerant MPC in general (without preprocessing or limitations on
the number of honest parties) remains an interesting open question.

Acknowledgments. We thank Amit Sahai for telling us about the problems
with proving leakage-tolerance of the standard three round zero-knowledge pro-
tocols and about the way this problem is solved in [GJS11].
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Abstract. We show that the Feistel construction with six rounds and
random round functions is publicly indifferentiable from a random in-
vertible permutation (a result that is not known to hold for full indiffe-
rentiability). Public indifferentiability (pub-indifferentiability for short)
is a variant of indifferentiability introduced by Yoneyama et al. [29] and
Dodis et al. [12] where the simulator knows all queries made by the dis-
tinguisher to the primitive it tries to simulate, and is useful to argue the
security of cryptosystems where all the queries to the ideal primitive are
public (as e.g. in many digital signature schemes). To prove the result,
we introduce a new and simpler variant of indifferentiability, that we call
sequential indifferentiability (seq-indifferentiability for short) and show
that this notion is in fact equivalent to pub-indifferentiability for state-
less ideal primitives. We then prove that the 6-round Feistel construction
is seq-indifferentiable from a random invertible permutation. We also ob-
serve that sequential indifferentiability implies correlation intractability,
so that the Feistel construction with six rounds and random round func-
tions yields a correlation intractable invertible permutation, a notion
we define analogously to correlation intractable functions introduced by
Canetti et al. [4].

Keywords: indifferentiability, correlation intractability, Feistel
construction.

1 Introduction

Indifferentiability. Indifferentiability has been introduced by Maurer et al. [22]
as a generalization of the concept of indistinguishability for systems using public
components (i.e. components that can be queried by any party including the
adversary). This framework has since then gained much popularity, and starting
with [7] it has been widely used to analyze hash functions built from a smaller
ideal primitive, e.g. a fixed input-length (FIL) random compression function
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or an ideal block cipher. Informally, a construction C using an ideal primitive
F (e.g. a hash function based on a FIL random compression function) is said
to be indifferentiable from another ideal primitive G (e.g. a random oracle) if
there exists a simulator S accessing G such that the two systems (G,SG) and
(CF , F ) are indistinguishable. Roughly, the goal of the simulator is twofold: it
must provide answers that are consistent with G, without deviating too much
from the distribution of answers of F . Indifferentiability allows modular proofs
of security in idealized models in the sense that if a construction CF is indiffe-
rentiable from an ideal primitive G, then any cryptosystem proven secure when
used with G remains secure when used with the construction CF .1 For example,
if a cryptosystem is secure in the random oracle model, and some hash function
construction Hf based on a FIL random compression function f is indifferen-
tiable from a random oracle, then the cryptosystem is still secure when used
with Hf . More interestingly from a theoretical point of view, Coron et al. [7]
showed that a number of variants of the Merkle-Damgård construction, used
with an ideal cipher in Davies-Meyer mode, are indifferentiable from a random
oracle. This implies that any functionality that can be securely implemented in
the random oracle model can also be securely realized in the ideal cipher model.

The Feistel Construction with Public Round Functions. The Feistel con-
struction turns a function F from n-bit strings to n-bit strings into an (effi-
ciently invertible) permutation on 2n-bit strings. It is computed as ΨF (L, R) =
(R, L ⊕ F (R)). In their seminal paper [18] which triggered a lot of subsequent
work [20,23,24,28], Luby and Rackoff showed that three (resp. four) rounds of the
Feistel construction, with independent pseudorandom functions in each round,
yields a pseudorandom permutation (resp. strong pseudorandom permutation).
The core of this result is in fact purely information-theoretic [20], meaning that
the Feistel construction with three (resp. four) rounds and random round func-
tions is indistinguishable from a random permutation (resp. an invertible random
permutation) by any computationally unbounded distinguisher limited to a poly-
nomial number of oracle queries. The Luby-Rackoff theorem crucially relies on
the secrecy of the round functions. A few papers studied what happens when
the round functions are made public. In particular, Ramzan and Reyzin [25]
have shown that the Feistel construction with four rounds remains strongly
pseudorandom even when the distinguisher has oracle access to the two middle
round functions (but not to the first or the fourth round function). Dodis and
Puniya [11] have studied various properties of the Feistel construction (unpre-
dictability, pseudorandomness) when all intermediate round values of the Feistel
computation are leaked to the adversary and shown that in that case a super-
logarithmic number of rounds was necessary and sufficient for the property to
be inherited by the Feistel construction from the round functions.

Indifferentiability of the Feistel Construction. As already mentioned, it
is possible to securely instantiate a random oracle in the ideal cipher model.

1 It was recently pointed out that this composition theorem only holds for cryptosys-
tems whose security is defined by so called single-stage games [26].
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A natural question is whether the other direction holds, namely whether there
is a construction using a random oracle that securely implements a random
invertible permutation.2 Given its numerous cryptographic properties, the Feis-
tel construction (with public random round functions) appears as an obvious
candidate for this task. Again, this question can be rigorously formulated in
the indifferentiability framework: namely, is the Feistel construction with suffi-
ciently many rounds, and public random round functions, indifferentiable from a
random invertible permutation? Dodis and Puniya [10] considered the problem
in the so-called honest-but-curious model, where the distinguisher only sees the
queries made by the Feistel construction to the random round functions, but is
not allowed to make arbitrary queries to the round functions. In this setting,
they showed that a super-logarithmic number of rounds is sufficient to securely
realize a random invertible permutation. However, since full indifferentiability
is not implied in general by indifferentiability in the honest-but-curious model
(these two notions are in fact incomparable [9]), they were not able to conclude
in the general setting. Coron, Patarin, and Seurin [9] gave a first proof that the
Feistel construction with six rounds is indifferentiable from a random invertible
permutation. The proof was rather involved, and Künzler [17] later found a dis-
tinguishing attack against the simulator given in [9], therefore invalidating the
indifferentiability proof.3 Only recently, Holenstein et al. [14] gave a new proof
that the Feistel construction with fourteen rounds is indifferentiable from a ran-
dom invertible permutation, which was inspired from a previous proof for ten
rounds that appeared in the PhD thesis of Seurin [27] but had some gaps.

Public Indifferentiability. Yoneyama et al. [29] and Dodis et al. [12] indepen-
dently realized that indifferentiability was sometimes stronger than needed to ar-
gue security of cryptosystems. In particular, when all queries made to the ideal
primitive are public (like in many digital signature schemes such as FDH [2],
probabilistic FDH [6], PSS [3]. . . , where all queries to the hash function can
be revealed to the attacker without affecting the security), the weaker notion of
public indifferentiability is sufficient. [29,12] were both concerned with indifferen-
tiability from a random oracle and respectively called this notion leaky random
oracle and public-use random oracle. Public indifferentiability is defined simi-
larly to indifferentiability, but the task of the simulator is made easier by letting
it know all queries made by the distinguisher to the ideal primitive G.

Correlation Intractability. Correlation intractability was introduced by Ca-
netti et al. [4] as an attempt to capture as many security properties of the random
oracle as possible. A family of functions is said to be correlation intractable if
for a random function of the family it is hard to find a sequence of inputs that
together with their image satisfy a relation that would be hard to satisfy for a

2 Such a construction easily implies a secure ideal cipher by simply prepending the
key of the block cipher to the input of each random oracle queries.

3 We stress that this does not mean that the 6-round Feistel construction is not in-
differentiable from a random invertible permutation, but only that no one is able to
give a proof at the moment.
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uniformly random function (a so-called evasive relation). Correlation intractabil-
ity in particular implies collision resistance, pre-image resistance and many other
security properties usually required for cryptographic hash functions. Unfortu-
nately, Canetti et al. also showed that in the standard model, no correlation
intractable hash function family exists. A consequence of this non-existence re-
sult is that there are cryptosystems that are secure in the random oracle model,
but insecure when the random oracle is instantiated by any function family.
Though correlation intractability was primarily defined in the standard model,
it is easily transposable to idealized models. As we will see our result establishes
a connection between correlation intractability and public indifferentiability.

Contributions of This Work. We define a new and weaker notion of indif-
ferentiability that we call sequential indifferentiability (seq-indifferentiability for
short). This new definition only restricts the order in which the distinguisher
can query the two oracles it is granted access to: it can first query the primitive
F (or the simulator S), and then the construction CF (or the ideal primitive G),
but not F /S again. We show that when the ideal primitive G is stateless (which
is the most usual case), this notion is equivalent to public indifferentiability in-
troduced by [12,29] where all queries to the primitive G are public. However the
seq-indifferentiability notion has the advantage of being simpler and easier to use
in proofs. This simple restriction on the queries of the distinguisher enables to
give a relatively simple proof that the 6-round Feistel construction with random
round functions is seq-indifferentiable (and hence also publicly indifferentiable)
from a random invertible permutation, a result whose analogue for full indiffe-
rentiability seems out of reach at the moment. Our result in particular implies
that any scheme proven secure in the random invertible permutation model or
the ideal cipher model and where all queries to the ideal primitive can be made
public without affecting the security (e.g. signature schemes like OPSSR [13] and
subsequent variants [15,5]) remains secure in the random oracle model when us-
ing a 6-round Feistel construction (while the best generic replacement previously
to our work was the 14-round Feistel construction [14]).

Though weaker than full indifferentiability, we also show that seq-indifferen-
tiability is still sufficiently strong to imply correlation intractability. In particu-
lar, our result shows that the 6-round Feistel construction with random round
functions yields a correlation intractable invertible permutation (we note that
previous observations [9] already implied that the 5-round Feistel construction
fails to provide a correlation intractable invertible permutation). We discuss the
implications of this result for chosen-key and known-key attacks on block ci-
phers [16].

On a slightly different topic, we also analyze the Feistel-like domain extension
construction for ideal ciphers proposed by Coron et al. [8] and show that in
the seq-indifferentiability model one can obtain a security bound beyond the
birthday barrier. See the full version of the paper [19].

Open Problems. The most challenging open question is of course whether
the 6-round Feistel construction is fully indifferentiable from a random invert-
ible permutation, and if not, what is the minimal number of rounds needed to
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achieve this property. We hope that our result will constitute a first step to-
wards a finer understanding of this question. In particular, our result implies
that if the 6-round Feistel construction is not fully indifferentiable from a ran-
dom invertible permutation, then this cannot be shown by proving that it is not
correlation intractable as was done for five rounds. Another interesting problem
is to weaken the assumptions on the round functions and see which property
would continue to hold: e.g. is the 6-round Feistel construction with correlation
intractable round functions still a correlation intractable invertible permutation?
A related question is whether our result could be a first step towards proposing
plausible constructions of (restricted) correlation intractable function families in
the standard model, a question left open by [4, Section 5.1].

Organization. In Section 2, we start by giving the definition of sequential in-
differentiability and prove that it is equivalent to public indifferentiability for
stateless ideal primitives. In Section 3, we prove the main result of this paper,
namely that the 6-round Feistel construction is sequentially (and hence pub-
licly) indifferentiable from a random invertible permutation. In Section 4, we
apply this result to prove the correlation intractability of the 6-round Feistel
construction.

2 Preliminaries

2.1 Notations and Definitions

Notations. [i..j] will denote the set of integers k such that i ≤ k ≤ j. We will
use n to denote the security parameter, and in sections dealing with the Feistel
construction we will identify n with the input and output length of the round
functions. We will write f ∈ poly(n) to denote a polynomially bounded function
and f ∈ negl(n) to denote a negligible function. When X is a non-empty finite
set, we write x ←R X to mean that a value is sampled uniformly at random
from X and assigned to x. PPT will stand for probabilistic polynomial-time, and
ITM for interactive Turing machine.

Ideal Primitives. Given two sets Dom ⊂ {0, 1}∗ and Rng ⊂ {0, 1}∗, we denote
F(Dom, Rng) the set of all functions from Dom to Rng. A primitive G is a sequence
G = (Domn, Rngn,Gn)n∈N where Gn ⊂ F(Domn, Rngn). The ideal primitive G
associated with G is the sequence of random variables (Gn)n∈N where Gn is
uniformly distributed over Gn. We will often adopt the lazy sampling view [1]
to describe ideal primitives queried as oracles.

A random function F = (Fn)n∈N is the ideal primitive associated to the set of
all functions from {0, 1}n to {0, 1}n. Queried as an oracle it returns a uniformly
random string in {0, 1}n if x was never queried, or the same answer as before if
x was previously queried.

A random invertible permutation P = (Pn)n∈N is the ideal primitive associ-
ated with the sequence P = (Domn, Rngn,Pn)n∈N where Domn = {0, 1} × {0, 1}n,
Rngn = {0, 1}n, and Pn is the set of functions P such that x �→ P (0, x) is a
permutation of {0, 1}n, and y �→ P (1, y) its inverse. Queries of the form (0, x)
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and (1, y) will be called respectively forward and backward queries. In the lazy
sampling point of view, Pn keeps two lists Lx and Ly of forward and backward
queries whose image is already defined together with an invertible mapping from
Lx to Ly. Upon receiving a forward query (0, x) such that x /∈ Lx it returns an
answer y uniformly random over {0, 1}n \ Ly, and adds x to Lx and y to Ly

and updates the mapping (and reciprocally for a backward query (1, y)). Later,
we will occasionally refer to Lx and Ly as the history of the random invertible
permutation. An ideal cipher E = (En) takes an additional input, the key, of
length �(n), and for each key k ∈ {0, 1}�(n), En(k, ·) is an independent random
invertible permutation over {0, 1}n.

A two-sided random function on {0, 1}n, denoted Rn, is very similar to a
random invertible permutation. It also keeps to lists Lx and Ly together with
an invertible mapping from Lx to Ly. However when receiving a forward query
(0, x) such that x /∈ Lx or a backward query (1, y) such that y /∈ Ly, it re-
turns a uniformly random answer in {0, 1}n. In case a collision happens, the
previous image or pre-image is removed from Ly or Lx and the mapping is up-
dated accordingly. Note that a two-sided random function is stateful: it may
return different answers to the same query (however at any time it defines an
invertible mapping from Lx to Ly). A two-sided random function is statistically
indistinguishable from a random invertible permutation: the so called PRF/PRP
switching lemma [1] establishes4 that an oracle machine making at most q oracle
queries can distinguish Pn from Rn with advantage at most q2/2n+1.

In the following, we omit the subscripts when the domain and the range of
an ideal primitive are clear from the context. A construction will simply be a
Turing machine having oracle access to an ideal primitive and implementing
another given primitive. The main construction we will consider in this work is
the Feistel construction.

The Feistel Construction. Given a function F : {0, 1}n → {0, 1}n, the ba-
sic (1-round) Feistel construction is the permutation on {0, 1}2n defined by
ΨF (L, R) = (R, L ⊕ F (R)). Its inverse is computed by (ΨF )−1(S, T ) = (T ⊕
F (S), S). (Here L, R, S, and T are n-bit strings). The k-round Feistel construc-
tion associated to round functions (F1, . . . , Fk) takes inputs x ∈ {0, 1}×{0, 1}2n

and is defined by:

Ψ
(F1,...,Fk)
k (0, (L, R)) = ΨFk ◦ · · · ◦ ΨF1(L, R)

Ψ
(F1,...,Fk)
k (1, (S, T )) =

(
ΨF1

)−1 ◦ · · · ◦ (ΨFk
)−1

(S, T ) .

Notations used for denoting the intermediate round values for the 6-round Feistel
construction are given in Figure 1. In the following, when considering the Feistel
construction using k independent random functions, we will simply note F =
(F1, . . . , Fk) this tuple of functions and ΨF

k = Ψ
(F1,...,Fk)
k .

4 Strictly speaking, the result is proven in [1] for one-sided functions and permutations,
but the proof can be straightforwardly adapted to two-sided primitives.
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F1

F2 X

F3 Y

F4 Z

F5 A

F6 S

L R

S T

Fig. 1. Notations used for the 6-round Feistel construction

2.2 Sequential Indifferentiability

Indifferentiability was originally formulated within the formalism of random sys-
tems [21]. We adopt here the simpler formulation using interactive Turing ma-
chines as in [7]. We first recall the classical definition of indifferentiability [22].
For this, we slightly change the way one usually measure the cost of queries of
a distinguisher (this will make our results simpler to express). Given a distin-
guisher D, the total oracle queries cost of D is the number of queries received
by the oracle F when D interacts with (CF , F ). Hence this is the sum of the
number of direct queries of D to F and the number of queries made by C to F
to answer D’s queries.

Definition 1 ((Statistical, Strong) Indifferentiability). Let q, σ : N → N

and ε : N → R be three functions of the security parameter n. A construction C
with oracle access to an ideal primitive F is said to be statistically and strongly
(q, σ, ε)-indifferentiable from an ideal primitive G if there exists an oracle ITM
S such that for any distinguisher D of total oracle queries cost at most q, S
makes at most σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DCF ,F (1n) = 1

]∣∣∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any
q ∈ poly(n), the above definition is fulfilled with σ ∈ poly(n) and ε ∈ negl(n).

Definition 1 does not refer to the running time of S andD. When only polynomial-
time algorithms are considered, indifferentiability is said to be computational.
Weak indifferentiability is defined as above, but the order of quantifiers for the
distinguisher and the simulator are switched (for all distinguisher, there is a sim-
ulator. . . ). We will mainly be concerned with statistical strong indifferentiability
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in this work, but we note that weak indifferentiability is sufficient for our results
on correlation intractability in Section 4.

In order to define our new notion of indifferentiability, we will consider a
restricted class of distinguisher, called sequential distinguisher, which can only
make queries in a specific order. Such a distinguisher first queries the primitive F
(or the simulator S) as it wishes, and then the construction CF (or the primitive
G) as it wishes, but after its first query to CF or G, it cannot query S or F
again. Sequential indifferentiability (seq-indifferentiability for short) is defined
relatively to such distinguishers.

Definition 2 (Seq-indifferentiability). A construction C with oracle access
to an ideal primitive F is said to be (statistically and strongly) (q, σ, ε)-seq-
indifferentiable from an ideal primitive G if Definition 1 is fulfilled when D
ranges over the class of sequential distinguishers.

Full indifferentiability obviously implies seq-indifferentiability. Yoneyama
et al. [29] and Dodis et al. [12] have introduced another weakened notion of
indifferentiability, where the primitive G is only queried on public inputs, that
we call here public indifferentiability (pub-indifferentiability for short). This can
be formalized as follows: given an ideal primitive G, we define the augmented
ideal primitive G as the primitive exposing two interfaces: the first (regular) one
is the same as G, and the second is an interface Reveal that, when queried,
returns the ordered sequence of all (regular) queries and corresponding answers
made so far by any party to the regular interface. The second interface can only
be used by the simulator, not by the distinguisher.

Definition 3 (Pub-indifferentiability). A construction C with oracle access
to an ideal primitive F is said to be (statistically and strongly) (q, σ, ε)-pub-
indifferentiable from an ideal primitive G if there exists an oracle ITM S such
that for any distinguisher D of total oracle queries cost at most q, S makes at
most σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DCF ,F (1n) = 1

]∣∣∣ ≤ ε .

As explained in [12], the composition theorem of [22] still holds with pub-indif-
ferentiability for cryptosystems where all messages queried to G can be inferred
from the adversary’s query during the security experiment.

Clearly, pub-indifferentiability implies seq-indifferentiability. Indeed, since af-
ter its first query to G a sequential distinguisher never queries the simulator
again, the interface Reveal is of no use to the simulator. A less trivial result
is that seq-indifferentiability implies pub-indifferentiability for stateless5 ideal
primitives G, thus making seq- and pub-indifferentiability equivalent notions in
that case.
5 By stateless we mean that the answer of G to any query only depends on the query

and the randomness of G and not on any additional state information. In particular,
for fixed randomness, G always returns the same answer to a given query.
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Theorem 1. Let C be a construction with oracle access to some ideal prim-
itive F . If CF is statistically (resp. computationally) strongly (2q, σ, ε)-seq-in-
differentiable from a stateless ideal primitive G, then CF is statistically (resp.
computationally) strongly (q, σ + q, ε)-pub-indifferentiable from G.

Proof. See the full version of the paper [19]. ��
Ristenpart6 observed that the above theorem does not hold (at least in the com-
putational setting) when G is stateful. This is explained in the full version of
the paper [19]. A very simple example enables to separate full indifferentiability
from seq/pub-indifferentiability, namely the Merkle-Damgård construction with-
out strengthening using a random compression function: it was proven in [7] that
it is not indifferentiable from a random oracle (a consequence of length-extension
attacks), and in [12] that it is pub-indifferentiable from a random oracle.

3 Seq-Indifferentiability of the 6-Round Feistel
Construction

In this section we prove the main result of this paper which states that the Feistel
construction with 6 rounds and random round functions is seq-indifferentiable
from a random invertible permutation, and hence also pub-indifferentiable since
a random invertible permutation is stateless. Before stating the result, we recall
that in [9], it was shown that the Feistel construction with five rounds is not
indifferentiable from a random invertible permutation. In fact, the distinguisher
they described is sequential, which implies that the 5-round Feistel construction
is not even seq-indifferentiable from a random invertible permutation. We recall
this attack in the full version of the paper [19].

Theorem 2. The Feistel construction with six rounds and random round func-
tions is statistically and strongly (q, σ, ε)-seq-indifferentiable from a random in-
vertible permutation, where:

σ(q) = q2 and ε(q) =
8q4

2n
+

q4

22n
.

The rest of this section is devoted to the proof of Theorem 2. We will consider a
sequential distinguisher D that first issues at most qf queries to the simulator (or
the random functions Fi). These queries will be called F -queries. Then, it issues
at most qp queries to the random permutation P (or the Feistel construction ΨF

6 ).
These queries will be called P -queries. The total oracle queries cost is qf + 6qp

(for each P -query, the Feistel construction makes 6 F -queries to compute the
answer) and is assumed to be less than q.

We start by describing how the simulator S works. It maintains an history of
values for which each round function has been defined (either because this value
has been queried by the distinguisher, or because the simulator has set this value
6 Personal communication.
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internally). We will note Fi, i ∈ [1..6] the history of the i-th round function, that
is a set of pairs (U, V ) ∈ {0, 1}n×{0, 1}n, where U is an input to round function
Fi and V is the corresponding image (which we denote Fi(U) = V ). We write
U ∈ Fi to denote that the image of U by Fi is defined in the history. Initially
round function values Fi(U) are undefined for all i ∈ [1..6] and all U ∈ {0, 1}n.
The images are then modified during the execution of the simulator. Fi(U) ← V
means that the image of U by Fi is set to V and Fi(U) ←R {0, 1}n means that
the image of U by Fi is set uniformly at random in {0, 1}n. If a round function
value is already in the history and a new assignment occurs, the previous value
is overwritten (alternatively, we could let the simulator abort in this case, as
in [9], but as we will see this happens only with negligible probability so that
the exact behavior of the simulator in such a case in unessential). We will note
H = (F1, . . . , F6) the complete history of the six round functions.

When the simulator receives a F -query (i, U) (meaning that the distinguisher
asks for the image of U through round function Fi), it calls an internal procedure
Query(i, U). This procedure checks whether the corresponding image is in the
history of Fi, in which case it returns this value and stops. Otherwise it sets the
image uniformly at random. If i = 1, 2, 5, or 6, it does nothing more. If i = 3 or
4, the simulator additionally completes all centers (Y, Z) ∈ F3×F4 newly created
so that the corresponding values of (L, R) and (S, T ) obtained by evaluating the
Feistel construction respectively backward and forward are consistent with the
random permutation P , meaning that P (0, (L, R)) = (S, T ). This is done by call-
ing two internal procedures CompleteForward (if i = 4) or CompleteBackward
(if i = 3) which “adapts” two round function values (F5(A) and F6(S) for
CompleteForward, and F1(R) and F2(X) for CompleteBackward) so that the
Feistel matches with the random permutation. The pseudo-code for the three
procedures is given below. Statements put in boxes in CompleteForward and
CompleteBackward are replacements for a different system used in the indiffe-
rentiability proof and can be ignored for the moment.

There are two points to prove in order to obtain Theorem 2: that the simulator
runs in polynomial time, and then that the probabilities that the distinguisher
outputs 1 when interacting with (P ,SP ) and (ΨF

6 , F ) differ by a negligible quan-
tity ε. The following lemma shows that the simulator runs in time polynomial
in the number of queries it receives.

Lemma 1. When the simulator is asked at most q queries, then the size of
histories for F3 and F4 is at most q, the size of histories for F1, F2, F5 and F6

is at most q2 + q, the procedures CompleteForward and CompleteBackward are
called in total at most q2 times, and the simulator makes at most q2 queries to
the random permutation.

Proof. Elements are added to the history of F3 and F4 only when a correspond-
ing F -query is made to the simulator, so that the size of their history cannot be
greater than q. For each pair (Y, Z) ∈ F3 × F4, either CompleteForward(Y, Z)
or CompleteBackward(Y, Z) is called, at most once, so that in total these pro-
cedures are called at most q2 times. Since the simulator makes one query to the
random permutation per execution of CompleteForward and CompleteBackward
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Algorithm 1 Simulator

1: variable: round function histories F1, . . . , F6

2: procedure Query(i,U)
3: if U /∈ Fi then
4: Fi(U)←R {0, 1}n
5: if i = 3 then
6: for all Z ∈ F4 do
7: CompleteBackward(U, Z)

8: if i = 4 then
9: for all Y ∈ F3 do

10: CompleteForward(Y,U)

11: return Fi(U)

12: procedure CompleteForward(Y ,Z)
13: X := Z ⊕ F3(Y )
14: Query(2, X)
15: R := Y ⊕ F2(X)
16: Query(1, R)
17: L := X ⊕ F1(R)
18: (S,T ) := P (0, (L, R))

(S, T ) := R(0, (L, R))

19: A := Y ⊕ F4(Z)
20: F5(A)← Z ⊕ S
21: F6(S)← A⊕ T

22: procedure CompleteBackward(Y ,Z)
23: A := Y ⊕ F4(Z)
24: Query(5, A)
25: S := Z ⊕ F5(A)
26: Query(6, S)
27: T := A⊕ F6(S)
28: (L, R) := P (1, (S, T ))

(L, R) := R(1, (S, T ))

29: X := Z ⊕ F3(Y )
30: F2(X)← R⊕ Y
31: F1(R)← L⊕X

this in turns implies that the total number of queries to P is at most q2. Fi-
nally, elements are added to the history of F1, F2, F5 and F6 either when a
query is made to the simulator, or during an execution of CompleteForward
or CompleteBackward, so that the size of their history cannot be greater than
q2 + q. ��
In order to prove that the two systems Σ1 = (P ,SP ) and Σ4 = (ΨF

6 , F ) are
indistinguishable, we will use two intermediate systems: Σ2 = (ΨSP

6 , SP ) where
the P -queries ofD are answered by the Feistel construction asking round function
values to the simulator, which itself interacts with P , and Σ3 = (ΨSR

6 , SR)
where the random invertible permutation is replaced by a two-sided random
function R (note the corresponding change in procedures CompleteForward and
CompleteBackward indicated by a boxed statement). The four systems used in
the proof are depicted in Figure 2.

The main part of the analysis is concerned with systems Σ2 and Σ3. We will
show that unless some bad event happens, the round function values set by the
simulator in Σ2 are consistent with P (which will enable to bound the statistical
distance between Σ1 and Σ2), and that in Σ3 they are uniformly random and
independent (which will enable to bound the statistical distance between Σ3 and
Σ4). In systems Σ2 and Σ3, the simulator first receives at most qf queries from
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D

0/1
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D

0/1

SΨ6

P

D

0/1

SΨ6

R

D

0/1

FΨ6

Σ1 Σ2 Σ3 Σ4

Fig. 2. Systems used in the seq-indifferentiability proof

the distinguisher, and then at most 6qp queries from the Feistel construction
(6 for each P -query of the distinguisher). Hence the total number of queries
received by the simulator is exactly the total oracle queries cost of D, which is
less than q. The statistical distance between answers of systems Σ2 and Σ3 is
easily bounded.

Lemma 2. For any distinguisher of total oracle queries cost at most q, the
following holds:∣∣Pr

[DΣ2(1n) = 1
]− Pr

[DΣ3(1n) = 1
]∣∣ ≤ q4

22n+1
.

Proof. Consider the union of D, Ψ6, and S as a single distinguisher D′ interacting
either with a random invertible permutation or a two-sided random function.
Note that D′ makes at most q2 queries to its oracle (Lemma 1). One can conclude
thanks to the PRF/PRP switching lemma [1]. ��
Before going further with the proof, we define formally what it means for an
input x ∈ {0, 1} × {0, 1}n to the Feistel construction to be computable with
respect to the history of the simulator.

Definition 4 (Computable input). Given a simulator history H and an input
x ∈ {0, 1}×{0, 1}2n, the sequence ρH(x) = (ρH(x)[i])i∈[0..7] is defined as follows:

– for a forward input x = (0, (L, R)), ρH(x)[0] = L, ρH(x)[1] = R, and for
i = 2 to 7:{

if ρH(x)[i− 1] ∈ Fi−1 then ρH(x)[i] = ρH(x)[i− 2]⊕ Fi−1(ρH(x)[i− 1])
else ρH(x)[i] =⊥

– for a backward input x = (1, (S, T )), ρH(x)[7] = T , ρH(x)[6] = S, and for
i = 5 to 0:{

if ρH(x)[i + 1] ∈ Fi+1 then ρH(x)[i] = ρH(x)[i + 2]⊕ Fi+1(ρH(x)[i + 1])
else ρH(x)[i] =⊥
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An input x is said to be computable with respect to H iff ρH(x)[i] �=⊥ for all
i ∈ [0..7]. In that case we note ΨH

6 (x) = (ρH(x)[6], ρH(x)[7]) if x is a forward
input and ΨH

6 (x) = (ρH(x)[0], ρH(x)[1]) if x is a backward input.

For a computable input x, we will often use the notation (L, R, X, Y, Z, A, S,
T ) = ρH(x) as depicted on Figure 1.

We now define a bad event that may occur during the execution of the sim-
ulator (in Σ2 or Σ3) in relation with Lines 20, 21, 30, and 31 of the simulator.
We will say that event Bad happens if in any execution of CompleteForward or
CompleteBackward, the input value whose image is set at Lines 20, 21, 30 or 31
is already in the history of the corresponding round function. This implies that
the simulator overwrites a value so that its answers may not be coherent with P
or R any more.7 Reciprocally, if Bad does not happen, then the simulator never
overwrites any value in its history.

We start with the simple observation that if Bad does not happen, then during
any execution of CompleteForward or CompleteBackward, the query to P or R
made by the simulator is fresh.

Lemma 3. In system Σ2, if Bad does not happen, then in any execution of
CompleteForward or CompleteBackward the query to P made by the simulator
is not in the history of P . For Σ3, the corresponding statement holds for R.

Proof. The reasoning is the same for Σ2 and Σ3, we use Σ2 to fix ideas. Consider
an execution of CompleteForward(Y, Z). Let x = (0, (L, R)) be the query to P
made by the simulator, and (S, T ) = P (x). If x is already in the history of P ,
it was necessarily added by a previous execution of CompleteForward(Y ′, Z ′) or
CompleteBackward(Y ′, Z ′) (note that the distinguisher does not make any query
to P in Σ2 or to R in Σ3). But since Bad does not happen, round function values
are never overwritten so that necessarily (Y ′, Z ′) = (Y, Z). This is impossible
since by construction the simulator makes at most one call to CompleteForward
or CompleteBackward per center (Y, Z) ∈ F3 × F4. ��
We are now ready to bound the probability that Bad happens in Σ2 or Σ3.

Lemma 4. For any distinguisher of total oracle queries cost at most q, event
Bad happens with probability less than 4q4/2n in Σ3 and less than 4q4/2n +
q4/22n+1 in Σ2.

Proof. See the full version of the paper [19]. ��
The following lemma says that as long as Bad does not happen in Σ2, the round
function values set by the simulator are consistent with P .

Lemma 5. If Bad does not happen in Σ2, then for any input x ∈ {0, 1}×{0, 1}2n

computable with respect to the final history of the simulator H, ΨH
6 (x) = P (x).

7 In previous work on indifferentiability of the Feistel construction [9,27], in such a
case the simulator aborted. It does not change much since, as we will prove, this
happens only with negligible probability.
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Proof. Consider an input x ∈ {0, 1} × {0, 1}2n computable with respect to the
final history H of the simulator, and let (L, R, X, Y, Z, A, S, T ) = ρH(x). There
was necessarily a call to CompleteForward(Y, Z) or CompleteBackward(Y, Z)
during the execution of the simulator. With respect to the history H′ just af-
ter the completion of CompleteForward(Y, Z) or CompleteBackward(Y, Z), it
is clear that ΨH′

6 (x) = P (x). Since Bad does not happen the simulator never
overwrites a value and the equality remains true until the end of the simulation,
hence ΨH

6 (x) = P (x). ��
A direct consequence of this lemma is that as long as Bad does not happen in
Σ2, the answers of systems Σ1 and Σ2 are identically distributed.

Lemma 6. For any distinguisher of total oracle queries cost at most q, the
following holds:∣∣Pr

[DΣ1(1n) = 1
]− Pr

[DΣ2(1n) = 1
]∣∣ ≤ 4q4

2n
+

q4

22n+1
.

Proof. Clearly, answers to F -queries of the distinguisher are identically dis-
tributed in Σ1 and Σ2 since they are answered by SP in both systems (may
Bad occur or not).8 Moreover, in Σ2 any P -query x asked by the distinguisher
is computable with respect to the history of the simulator at the time it is an-
swered by Ψ6, and if Bad does not happen in Σ2, then according to Lemma 5,
ΨH

6 (x) = P (x) so that answers to P -queries of the distinguisher are also identi-
cally distributed in both systems. The result follows from Lemma 4. ��
Lemma 7. If Bad does not happen in system Σ3, then the round function values
set by the simulator are uniformly random and independent.

Proof. Since this is clear for round function values set uniformly at random
(independently of Bad occurring or not), we only have to examine values that
are adapted at Lines 20, 21, 30, and 31 of the simulator. But according to
Lemma 3, if Bad does not happen, the query to R made by the distinguisher in
any execution of CompleteForward or CompleteBackward is not in the history of
R, so that the answer (S, T ) or (L, R) is uniformly random. Consequently, round
function values set by F5(A) ← Z⊕S and F6(S) ← A⊕T in CompleteForward,
or F2(X) ← R ⊕ Y and F1(R) ← L ⊕ X in CompleteBackward are uniformly
random and independent of previous round function values set by the simulator.
Since Bad does not happen round function values are not overwritten and the
result follows. ��
This lemma finally enables to bound the statistical distance between the answers
of Σ3 and Σ4.

Lemma 8. For any distinguisher of total oracle queries cost at most q, the
following holds: ∣∣Pr

[DΣ3(1n) = 1
]− Pr

[DΣ4(1n) = 1
]∣∣ ≤ 4q4

2n
.

8 It is crucial here that the distinguisher is sequential, otherwise the simulation in Σ2

would be altered by the queries made by Ψ6.
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Proof. If Bad does not occur in Σ3 then answers of SR are distributed exactly
as answers of F according to Lemma 7. Hence the statistical distance between
answers of Σ3 and Σ4 is upper bounded by the probability that Bad happens in
Σ3, given by Lemma 4. ��
Theorem 2 is now a simple consequence of Lemmata 2, 6, and 8.

Remark 1. The strategy of using the intermediate system Σ2 is likely to be
quite generic for seq-indifferentiability proofs (system Σ3, on the contrary, is
quite specific to the Feistel construction). We believe this could probably make
proofs of pub-indifferentiability (e.g. [12, Section 7]) much easier, but leave this
for future work.

Remark 2. Note that for general distinguishers (not necessarily sequential), the
proof would go through exactly as above for Lemmata 2 and 8. The problem-
atic step is clearly going from Σ1 to Σ2. To see what could go wrong if the
distinguisher can interleave queries to P and S, consider the following simple
example. D first makes a P -query P (0, (L, R)) = (S, T ), and then makes the
sequence of F -queries F1(R), F2(X), F6(S), F5(A). In system Σ1, the simulator
returns uniformly answers to the four F -queries and will be unable to adapt
F3 and F4, whereas in Σ2 the initial P -query of the distinguisher will trigger
six F -queries from Ψ6 which will lead the simulator to adapt the chain when
query F4(Y ) occurs. Making progress towards proving full indifferentiability for
six rounds clearly requires to find the right way to deal with these “external”
chains without knowing the P -queries of the distinguisher.

4 Applications to Correlation Intractability

Correlation intractability was introduced by Canetti et al. in their work on the
limits of the random oracle methodology [4]. In the standard model, a function
family is said to be correlation intractable if given the description of a random
function f of the family, no PPT algorithm can find an input x, or more generally
a sequence of inputs (x1, . . . , xm), such that ((x1, . . . , xm), (f(x1), . . . , f(xm)))
satisfies a relation that would be hard to satisfy for a uniformly random function.

There is no difficulty in extending the definition of correlation intractability to
an idealized model: instead of passing the description of the function as input to
the algorithm, it is granted access to the ideal primitive used by the construction
C. This way one can define a correlation intractable construction (accessing an
ideal primitive).

In all the following, we will consider relations over pairs of binary sequences
(formally, a subset of {0, 1}∗ × {0, 1}∗). We assume that the machine M re-
turns sequences of strings in Domn, the domain of the ideal primitive Gn or the
construction CFn .

Definition 5 (Evasive relation). Let G = (Gn) be an ideal primitive asso-
ciated to G = (Domn, Rngn,Gn). A relation R over pairs of binary sequences is
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said to be evasive with respect to G if for any PPT oracle machine M, there is
a negligible function ε such that the following holds:

Pr
[
(x1, . . . , xm) ←MGn(1n) :

((x1, . . . , xm), (Gn(x1), . . . , Gn(xm))) ∈ R] ≤ ε(n) .

Definition 6 (Correlation intractable construction). Let C be a construc-
tion with oracle access to an ideal primitive F = (Fn) and implementing some
primitive G. CF is said to be (multiple-output) correlation intractable if for any
relation R over pairs of binary sequences evasive with respect to G, and any
PPT oracle machine M, there is a negligible function ε such that:

Pr
[
(x1, . . . , xm) ←MFn(1n) :(

(x1, . . . , xm), (CFn(x1), . . . , CFn(xm))
) ∈ R] ≤ ε(n) .

Weak correlation intractability is defined similarly as above by quantifying only
over all polynomial-time recognizable relations (i.e. relations R such that there
exists a polynomial-time algorithm that, given ((x1, . . . , xm), (y1, . . . , ym)), de-
cides whether it belongs to R or not).

Theorem 3. Let C be a construction with oracle access to an ideal primitive
F = (Fn) and implementing some primitive G. If CF is statistically (resp. com-
putationally) seq-indifferentiable from the ideal primitive G, then CF is correla-
tion intractable (resp. weakly correlation intractable).

Proof. See the full version of the paper [19]. ��
A direct consequence of Theorems 2 and 3 is that the 6-round Feistel construction
with random round functions is correlation intractable: no polynomial algorithm
with oracle access to the round functions can find a sequence of inputs that
together with their image by the Feistel satisfy a relation that would be hard to
satisfy in the random invertible permutation model. Note that the sole existence
of correlation intractable invertible permutations in the random oracle model was
already implied by the result of Holenstein et al. [14] on the full indifferentiability
of the 14-round Feistel construction (since full indifferentiability implies seq-
indifferentiability and hence correlation intractability), but our results shows
that six rounds are sufficient to achieve this property.

Remark 3. According to Theorem 3, sequential indifferentiability implies corre-
lation intractability. However correlation intractability does not necessarily im-
ply sequential indifferentiability. In the full version of the paper [19] we provide
a simple counter-example separating the two notions.

Implications for Chosen-Key and Known-Key Attacks on Block Ci-
phers. Knudsen and Rĳmen [16] have introduced so-called known-key attacks
on block ciphers. We discuss the implications of our results regarding this attack
model in the full version of the paper [19].
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Abstract. We present a new construction of a compression function
H : {0, 1}3n → {0, 1}2n that uses two parallel calls to an ideal primitive
(an ideal blockcipher or a public random function) from 2n to n bits.
This is similar to the well-known MDC-2 or the recently proposed MJH
by Lee and Stam (CT-RSA’11). However, unlike these constructions,
we show already in the compression function that an adversary limited
(asymptotically in n) to O(22n(1−δ)/3) queries (for any δ > 0) has disap-
pearing advantage to find collisions. A key component of our construction
is the use of the Szemerédi–Trotter theorem over finite fields to bound
the number of full compression function evaluations an adversary can
make, in terms of the number of queries to the underlying primitives.
Moveover, for the security proof we rely on a new abstraction that re-
fines and strenghtens existing techniques. We believe that this framework
elucidates existing proofs and we consider it of independent interest.

1 Introduction

Ever since the initial efforts to turn a blockcipher into a hash function, a major
drawback of using blockcipher-based compression functions producing a digest
size equal to the block-length is that the digest size is too small to produce a hash
function meeting today’s security requirements. For example, AES, operating
on 128 bits, limits collision resistance to at most 264 operations/queries. As a
remedy, double-length compression functions and corresponding double-length
hash functions have been introduced (e.g. [3–5]): A design that outputs 2n bits
(while making several calls to a blockcipher with n-bit blocks) could potentially
provide collision resistance up to roughly 2n blockcipher evaluations.

In this work, we are interested in the construction of a provably collision-
resistant (beyond 2n/2 queries) compression function from 3n to 2n bits making
two parallel calls to an ideal primitive from 2n to n bits (either a public random
function– PuRF–or an ideal blockcipher with n-bit blocks and n-bit keys). Our
motivation is a natural one: All existing designs in this class fall short. There is no
proof, or the proof is not known to extend to the blockcipher case; (non-trivial)
collision resistance is only provided in the iteration; the primitive calls need to
be made in sequence; or the number of calls is higher. Yet known impossibility
bounds [11, 12, 15] give no reason why such a construction should not be possible.
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� International Association for Cryptologic Research 2012



304 D. Jetchev, O. Özen, and M. Stam

a
f1b

c f2⊗

⊗ A Z

n
n

n

n

n

2n

Fig. 1. Our compression function Hf1,f2 : {0, 1}3n → {0, 1}2n illustrated (see Con-
struction 1 for the details)

Our Contribution. We provide a construction (see Fig. 1), for which we prove
that any adversary limited (asymptotically in n) to O(22n(1−δ)/3) queries (for
any δ > 0) has disappearing advantage to find collisions. To the best of our
knowledge, this is the first design of its kind offering collision resistance beyond
2n/2 queries. Our construction has two key innovative components (see Fig. 1):
a preprocessing function Cpre that transforms the 3n-bit input into a pair of
2n-bit strings that are passed as inputs to the two ideal primitive calls; and a
postprocessing function Cpost that combines the two outputs of the ideal prim-
itives and the 3n-bit input into the 2n-bit output of the compression function.
Initially, we will concentrate on the PuRF scenario; details for the more compli-
cated ideal-cipher model follow later (Section 6). In either case, we work in the
ideal-primitive model (giving separate proofs for each scenario).

A major technical hurdle in the proof of collision resistance is that the stan-
dard proof techniques turn out to be insufficient. For concreteness, consider an
adversary that adaptively makes three queries trying to create a collision. Cus-
tomarily, one would upper bound the probability pi (for i = 1, 2, 3) that an
adversary causes a collision on the ith query, say with Bi = 1/4 each; taking a
union bound leads to an overall bound 3/4. Our first abstraction is a game hop
where we allow an adversary to choose its success probability pi directly, rather
than computing it based on which query to some primitive is being made. By
requiring pi ≤ Bi this leads to the same overall winning bound 3/4, achieved by
a greedy adversary. However, this abstraction allows us to phrase and study dif-
ferent scenarios as well (relevant for our collision resistance proof), for instance
one where we only set a global requirement

∑
i pi ≤ 1/2. Now potentially each of

the pi values could be 1/2 itself, so using
∑

iBi would lead to an overall bound
of 3/2 (which is vacuous for a probability), yet intuitively no adversary should
be able to do better than 1/2. A further complication arises when we require
the adversary to obtain a success at least twice. While it is easy to deal with
non-adaptive adversaries, properly taking care of adaptive adversaries is non-
trivial. We provide the abstraction and solutions to the problems just described
in Section 3. We believe this framework to be of independent theoretical interest.

The main innovation of our design is the choice for Cpre: the 3n-bit input
is transformed into a pair of an affine line on �2

2n and a point on that line.
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Hence, any given valid input pair to the underlying ideal primitives corresponds
to an incidence between a point and a line in the affine plane �2

2n over the finite
field �2n . We then use a classical result of discrete geometry, the Szemerédi–
Trotter theorem over finite fields, to bound the number of incidences between a
set of q lines and a set of q points on �2

2n , namely by roughly q3/2.
The postprocessing is inspired by the Rogaway–Steinberger construction [10],

where a special type of �2n linear map is used. However, we add the product
of the two primitive-outputs to the inputs to this linear map. This turns out to
be crucial for our collision resistance proof. In Section 5 we prove that the best
strategy for any collision-finding adversary is (close to) maximizing the number
of the aforementioned point-line incidences (in Cpre). Our proof uses the newly
developed techniques given in Section 3 to deal with adaptive adversaries.

Putting the pieces together, we achieve the claimed collision resistance of
already at the compression function level. We also prove (everywhere) preimage
resistance up to O(2(1−δ)n) queries (for arbitrary δ > 0). From an efficiency
perspective, our construction makes two parallel calls to distinct primitives, each
with 2n-bit inputs. The overhead consists of a number of xors (to implement
the matrix-multiplication) plus, more significantly, two full (�2n) finite field
multiplications: one during the preprocessing and one during the postprocessing.

2 Preliminaries

Primitive-Based Compression Functions. A compression function is a map
H : {0, 1}tn → {0, 1}sn, where n is an integer (the block-length, which in an
asymptotic setting typically takes the role of the security parameter) and t >
s > 0 are integer parameters. A compression function is primitive-based if it
is computed by a program making calls to a finite number of specified oracles
(primitives). We use superscripts to denote oracle access. For integers c and n, let

Func(cn, n) denote the set of all maps {0, 1}cn → {0, 1}n and let f
$← Func(cn, n)

denote that f is sampled uniformly at random from all elements in Func(cn, n).
Then we call f a public random function (PuRF) and we refer to a compression
function making oracle calls to f as PuRF-based. For given input W we denote
the resulting digest as Hf (W ). More generally, when there are r independently

sampled primitives f1, . . . , fr
$← Func(cn, n) we write Hf1,...,fr (W ).

Similarly, let Block((c− 1)n, n) denote the set of all blockciphers having
(c− 1)n-bit key and operating on n-bit blocks. In other words, Block((c− 1)n, n)
is the set of all maps E : {0, 1}(c−1)n × {0, 1}n → {0, 1}n, such that for any
key K ∈ {0, 1}(c−1)n, E(K, ·) is a permutation on the set {0, 1}n. (Note that
(c− 1)n + n = cn, so that one can interpret E ∈ Func(cn, n) as well.) For
a blockcipher E, we denote its inverse by D, so for all K ∈ {0, 1}(c−1)n and

X ∈ {0, 1}n we have that D(K,E(K,X)) = X . When E
$← Block((c− 1)n, n)

is chosen uniformly at random we call it an ideal cipher and refer to a compres-
sion function HE (or more generally, HE1,...,Er when there are r independently

sampled blockciphers E1, . . . , Er
$← Block((c− 1)n, n)) as blockcipher-based. The

definitions and the illustrations below are provided in the PuRF-based setting;
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the blockcipher-based case is analogous, where we assume that oracle access to
E implicitly implies access to its inverse D as well.

We study single-layer compression functions. This means that the oracle calls
can be made in parallel and the output of the compression function is computed
based on the results of these calls, as well as on the input itself. Formally, let
Cpre

i : {0, 1}tn → {0, 1}cn for i = 1, . . . , r, and Cpost : {0, 1}tn × ({0, 1}n)r →
{0, 1}sn, be pre and postprocessing functions, respectively. Given a tn-bit in-
put W , compute output Z = Hf1,...,fr (W ) as follows: for i = 1, . . . , r, let
xi ← Cpre

i (W ) and yi ← fi(xi); the output is then Z ← Cpost(W, y1, . . . , yr).

Security Notions. An adversary is an algorithm (typically modelled as an in-
teractive Turing machine) that uses its oracle access to the underlying primitives
of the compression function in order to ‘break’ some well-defined property. We
will limit ourselves to (everywhere) preimage resistance and collision resistance,
and consider information-theoretic adversaries only; our sole resource of interest
is the number of queries made to their oracles (adversaries are considered com-
putationally unbounded). Without loss of generality, adversaries are assumed
not to repeat queries nor to query an oracle outside of its specified domain.

When, for some l ∈ {1, . . . , r}, an adversary makes an fl-query obtaining
Y = fl(X), we will append (l, X, Y ) to the query history Q (which is initialized
empty). For preimage and collision resistance, adversarial success can be deter-
mined based on the query history Q only, which we formalize using the yield
set (Definition 1) and which we exploit by dropping the explicit sampling of the
primitives fi and the queries Q for experiments. We partition Q in Q[1] . . .Q[r]
depending on which of the primitives was called and, although technically ele-
ments of Q are triples, we assume that the context suffices to determine which
of the r primitives was used. For i ≤ |Q|, we let Qi denote the first i elements
of Q. Occasionally, we abuse notation by writing X ∈ Q or Y ∈ Q.

Definition 1. Let Hf1,...,fr be a primitive-based compression function and let
Q be a set of queries (with answers) to the underlying primitives, then the yield
set yieldset(Q) is the set of all pairs (W,Z) such that Z = Hf1,...,fr(W ) and all
queries necessary for the evaluation of the compression function at W are in Q.
We refer to the cardinality of yieldset(Q) as the yield and denote it by yield(Q).
Additionally, we define yield(q) = maxQ yield(Q) where |Q[i]| ≤ q. (Note that
since Q incorporates the primitives’ answers, the maximum implicitly includes
a maximization over the choice of the underlying primitives.)

Definition 2 (Collision resistance). Let Hf1,...,fr be a primitive-based com-
pression function. For a given Q and Z ∈ {0, 1}sn, define

coll(Q) ≡ ∃Z,W �=W ′ (W,Z), (W ′, Z) ∈ yieldset(Q) .

The collision-finding advantage of an adversary A is defined as

AdvcollH (A) = Pr
[
f1...fr

$← Func(cn, n),Q ← Af1...fr : coll(Q)
]
.
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Similarly, define AdvcollH (q) = maxA AdvcollH (A), where the maximum is taken over
all adversaries A making at most q queries to each of the underlying primitives.

Definition 3 (Everywhere preimage resistance). Let Hf1,...,fr be a
primitive-based compression function. For a given Q and Z ∈ {0, 1}sn, define

epreZ(Q) ≡ ∃W ′(W ′, Z) ∈ yieldset(Q) .

The everywhere preimage-finding advantage of an adversary A is defined as

AdvepreH (A) = max
Z∈{0,1}sn

{
Pr
[
f1...fr

$← Func(cn, n),Q ← Af1...fr : epreZ(Q)
]}

.

We also define AdvepreH (q) = maxA AdvepreH (A), where the maximum is taken over
all adversaries A making at most q queries to each of the r primitives.

3 Probabilistic Analysis of Adaptive Adversaries

Most of the security proofs in the literature for compression and hash functions
rely on the same principle. Consider the game depicted in Fig. 2, where the ad-
versary has access to some underlying primitive f() and tries to set a predicate
E that is defined for all collections of query-response pairs. We are primarily in-
terested in monotone predicates E, that once set cannot be ‘unset’ by additional
queries. A predicate E is monotone if and only if for all Q ⊆ Q′ it holds that
E(Q)⇒ E(Q′). Additionally, we impose non-triviality of the predicate meaning
that the predicate is not set from the outset (i.e. E(∅) = false). For collision
resistance, one should read coll (Definition 2) for E and for preimage resistance
epreZ (Definition 3). Note that coll and epreZ are always monotone and that, for
our construction, both coll and epreZ are non-trivial.

Bounding an advantage is then tantamount to bounding Pr [E(Q)], where the
probabilities are taken over the randomness of f and the coins of A, if any. In
the following, we show how we can analyse such events in a stepwise approach
to determine useful upper bounds.

There is a distinction between adaptive and non-adaptive adversaries. The
latter are required to commit to a fixed set of queries at the very beginning
of the game. In the information-theoretic setting, it is customary (and WLOG)
to consider deterministic adversaries only. Consequently, maximizing over all
q-query (non-adaptive) adversaries becomes equivalent to maximizing over all
possible query sets of cardinality q. This considerably simplifies proofs. For in-
stance, when providing a proof in the ideal-cipher model (using a union bound),
for a non-adaptive adversary every response can be considered fully random,
whereas for an adaptive adversary previous queries to the cipher might influence
the outcome slightly.

Related work. Maurer [7] (see also Pietrzak [8]) developed a methodology to
equate adaptive and non-adaptive adversaries in certain cases. While it is possi-
ble to phrase our game from Fig. 2 in their framework, for many of our winning
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ExpE-ad(A):
Let i ← 0,Q0 ← ∅
While i < q do

i ← i+ 1
xi ← A(Qi−1)
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq).

ExpE-na(A):
(x1, . . . , xq) ← A()
Let i ← 0,Q0 ← ∅
While i < q do

i ← i+ 1
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq).

ExpE,F(A):
Let i ← 0,Q0 ← ∅
While i < q do

i ← i+ 1
xi ← A(Qi−1)
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq) ∧ ¬F(Qq).

Fig. 2. Standard adaptive (ExpE-ad(A)) and non-adaptive (ExpE-na(A)) security games
for predicate E, as well as the flagged experiment ExpE,F(A)

predicates adaptive adversaries do have an advantage over non-adaptive adver-
saries. Instead we opt for a more direct approach, where we primarily take our
inspiration from existing hash-function security proofs. Henceforth, unless stated
otherwise, we will consider adaptive adversaries only (and consequently drop the
“ad” suffix in naming experiments and advantages).

The Straightforward Approach. The standard way of dealing with adaptive
adversaries, as exemplified for instance by the security proofs [1, 2, 13] for the
PGV compression functions [9], is the following. Suppose an adversary makes
q queries. These are necessarily made in sequence, so denote with Qi the set
of query-responses after i queries have been made (where i ∈ {0, . . . , q}). The
overall winning probability can then be stated as a sum of the probability of
winning on the ith step, where these ‘stepwise’ probabilities are only taken over
the choice of yi. This makes derivation of the overall bound relatively easy (even
when taking into account the accompanying maximization).

Proposition 1. Let E be a monotone non-trivial predicate. Then the advantage
of any (adaptive) adversary A playing ExpE(A) (see Fig. 2) is bounded by

AdvE(A) ≤
q∑

i=1

max
Qi−1s.t.¬E(Qi−1)

max
xi

Pr [E(Qi) | Qi−1 ∧ xi] .

Using an Auxiliary Flag. Although easy, the standard approach has the dis-
advantage that for many more involved constructions, the maximum probalities
can get too large. This is typically due to the maximum being attained only for
relatively obscure values for Qi, values that themselves are extremely unlikely
to occur. To weed out these unwanted cases, the analysis is often enhanced by
splitting the monotone predicate into a set of auxiliary events. For some positive
integer k, let E1, . . . ,Ek be predicates such that (for all Q) E(Q)⇒

∨k
i Ei(Q),

then a union bound implies Pr [E] ≤
∑k

i Pr [Ei]. Several examples of proofs using
auxiliary events can be found in the realm of double-length hash functions [6, 14].

The events Ei(Q) themselves are usually composed as the conjunction of a
monotone event and a negated monotone event. In the simplest scenario, consider
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ExpB(A):
Let i ← 0

While i < q do
i ← i+ 1
pi ← A()
if 0 ≤ pi ≤ Bi then

with probability pi return true

Return false .

ExpBΣ (A):
Let i ← 0
While i < q do

i ← i+ 1
pi ← A()

if 0 ≤ ∑i
j=1 pj ≤ BΣ then

with probability pi return true

Return false .

Fig. 3. Game-playing interpretation of the adaptive security game (where B =
(B1, . . . Bq)) and our refined abstract flagging game.

a second (non-trivial) monotone predicate F. If we define E1 = E ∧ ¬F and
E2 = F then E ⇒ E1 ∨ E2 is satisfied. To bound Pr [E2] = Pr [F] we can use
Proposition 1; for Pr [E1] = Pr [E ∧ ¬F] Proposition 2 shows how the use of the
predicate F effectively allows us to consider a more restricted class of Qi.

Proposition 2. Let E be a non-trivial monotone predicate and let F be an arbi-
trary auxiliary non-trivial monotone predicate. Then the advantage of (adaptive)
adversary A setting E ∧ ¬F is bounded by

Pr [E ∧ ¬F] ≤
q∑

i=1

Pr [E(Qi) | ¬E(Qi−1) ∧ ¬F(Qi−1)] ≤
q∑

i=1

Bi ,

where Bi = maxQi−1s.t.¬E(Qi−1)∧¬F(Qi−1) maxxi Pr [E(Qi) | Qi−1 ∧ xi].

An Alternative Interpretation. We now make a far bigger step, removing
most of the underlying mechanics of the original game. Instead of letting the
adversary output elements xi and then determining by virtue of yi whether
the adversary wins this round, we directly bound the latter probability. That
is, in experiment ExpB(A) we let the adversary output a probabilities pi and
imagine that E is set with probability pi. To avoid this game becoming vacuous
(namely if the adversary would output some pi = 1) we put bounds Bi and B

′
i

on the adversary’s success probability. These bounds correspond to the actual
game: they are the highest possible success probabilities any adversary in any
run can achieve in round i. These probabilities are reminiscent of the conditional
probabilities used in the derivation from the standard approach and indeed we
can formalize this relationship. Since in ExpB(A) a straightforward application
of the union bound leads to an overall upper bound of the winning probability
of
∑q

i=1 Bi, we can recover Proposition 2.

Lemma 1. Consider games ExpE,F and ExpB and subject to

Bi = max
Qi−1 s.t. ¬E(Qi−1)∧¬F(Qi−1)

max
xi

Pr [E(Qi)] . Then,

for all adversaries A, there exists an adversary A′ s.t. AdvE,F(A) ≤ AdvB(A′).
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3.1 A More Refined Approach

In ExpB(A) instead of the guards 0 ≤ pi ≤ Bi for all i, we could have used

0 ≤
∑i

j=1 pj ≤
∑i

j=1 Bj as well. With a seemingly minor modification, this leads

to another, different game where instead of bounding step-specific by
∑i

j=1 Bj ,

we always use the same bound BΣ , as in the game ExpBΣ(A) (Fig. 3).

Proposition 3. For any adversary A, it holds that AdvBΣ(A) ≤ BΣ.

Usage. The ExpBΣ game captures a special kind of condition that one can en-
counter in the ExpE,F game. For any given Q, we can a posteriori determine
the probabilities of success by taking Qi−1 and xi from Q and then looking
at the probability that a freshly drawn yi causes a E. The overall a posteriori
probability of some Q is the sum (over i) of these probabilities. The maximum
attainable probability this way determines BΣ , as formalized in Lemma 2. Of
note here is the observation that for certain games the BΣ obtained here is much
smaller than the

∑q
i=1 Bi one would obtain from application of Lemma 1. Very

broadly speaking (and with some abuse of notation), it is the difference between
maxQ {

∑
i pi(Q)} and

∑
i maxQ {pi(Q)}.

Lemma 2. Consider the game ExpE,F. For any given Q, define

pi(Q) =
{
0, if E(Qi−1) ∨F(Qi−1) or |Q| < i
Pr [yi ← f(xi) : E(Qi−1 ∪ {(xi, yi)}) | Qi−1] otherwise

and let BΣ = maxQ
∑q

i=1 pi(Q). Then for all adversaries A there exists an

adversary A′ such that AdvE,F(A) ≤ AdvBΣ(A′).

3.2 Counting Successes

In the previous games we considered a predicate E(Q) that could either be true
or false . In other words, we were interested in at least one success occurring. In
some scenarios, counting the number of succcesses is more appropriate. To this
end, let ctr be a function such that ctr(Q) ∈ � and ctr(Qi)− ctr(Qi−1) ∈ {0, 1}
for all possible Qi. For future reference, define the event hit(Qi) = true iff
ctr(Qi) = ctr(Qi−1) + 1. In the new game AdvBΣ

κ (A), the predicate E(Q) is set
if and only if ctr(Qq) > κ.

Proposition 4. For any non-adaptive adversary AdvBΣ
κ (A) ≤

(
q

k+1

) (
BΣ

q

)k+1

.

Note that for κ = 0 we retrieve the result of the preceding section given that(
q
1

) (
BΣ

q

)1
= BΣ and it might be tempting to think that for larger κ adaptivity

can be argued away. This however is not the case, an adaptive adversary does

have an increased advantage playing AdvBΣ,B
′

κ when compared to a non-adaptive
one. Nonetheless, we conjecture that the bound just derived is sufficiently loose
to apply to adaptive adversaries as well.
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Conjecture 1. For any adaptive adversary AdvBΣ
κ (A) ≤

(
q

k+1

) (
BΣ

q

)k+1

.

Proposition 5. For any adaptive adversary AdvBΣ
κ (A) ≤ (BΣ)

κ+1
.

4 A New Double-Length Compression Function

In this section, we introduce a new compression function (Construction 1, see
also Fig. 1) H : {0, 1}3n → {0, 1}2n that makes parallel calls to two random
functions f1, f2 : {0, 1}2n → {0, 1}n. For notational convenience, we often write
the input W ∈ {0, 1}3n as (a, b, c) ∈ ({0, 1}n)3 and identify {0, 1}n with �2n .

Construction 1. Let f1, f2 : {0, 1}2n → {0, 1}n be two distinct and indepen-
dently sampled PuRFs. Define Hf1,f2 : {0, 1}3n → {0, 1}2n to be a single-layer
compression function using the preprocessing function Cpre : �3

2n → (�2
2n)

2 de-
fined by Cpre = (Cpre

1 , Cpre

2 ), where

Cpre

1 (a, b, c) = (a, b) and Cpre

2 (a, b, c) = (c, ac+ b)

and the postprocessing function Cpost : �5
2n → �

2
2n

Cpost(a, b, c, y1, y2) = A · (a c y1 y2 y1y2
)T

, where A =

(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)

is a matrix (over�2n) satisfying certain non-degeneracy conditions (see Table 1).

Design Rationale. In the security proofs, we abstract as best as we can the
properties required of Cpre and Cpost. In practice, we recommend using the

matrix (cf. Table 1) A =

(
1 1 0 0 1
0 0 1 1 0

)
. Note that in the context of iterating the

compression function, one needs to specify which input blocks represent the mes-
sage block and which ones represent the state or chaining variable. Our security
results are independent of this choice. The choice may, however, significantly
affect the efficiency of the design.

Incidence-Based Preprocessing. For a single-layer construction, the prepro-
cessing function Cpre fully determines the relationship between the queries made
to the primitive on one hand, and the compression function evaluations this en-
ables on the other. Our search is therefore for a preprocessing function Cpre

such that yield(q) does not grow too fast as a function of q. In particular, we are
interested in whether we can find a Cpre that has good behaviour for q < 22n

as well. It turns out, we can do well by exploiting results from incidence geome-
try. We note the following theorem that is a finite field version of a theorem of
Szemerédi and Trotter over the reals (see, e.g. [16] for an elementary proof).

Theorem 2. Let � be a finite field and P (resp. L) be a set of points (resp. lines)
in �2. Let I(P,L) = {(p, �) | (p, �) ∈ P × L and p ∈ �}. Then

|I(P,L)| ≤ min
(
|P ||L|1/2 + |L|, |L||P |1/2 + |P |

)
.
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Let (a, b), (c, d) ∈ �2
2n denote the query pairs made to f1 and f2, respectively.

We call a query pair (a, b)–(c, d) compatible if and only if ((a, b), (c, d)) is in
the image of Cpre. In addition, a query (a, b) is called (c, d)-compatible or vice
versa if the pair (a, b)–(c, d) is compatible. For the preprocessing function Cpre

from Construction 1, a pair (a, b)–(c, d) is compatible if and only if d = ac+ b is
satisfied. Finally, a preprocessing function Cpre satisfies the completion property
if and only if (i) (a, b) and c (ii) (c, d) and a uniquely determines a compatible
query pair (a, b)–(c, d) for any a, b, c, d ∈ �2n .

Proposition 6. The preprocessing function Cpre from Construction 1 has the
completion property and yield(q) ≤ q3/2 + q.

Proof. We remark that the completion property can be algebraically verified.
To determine the yield, we interpret the (a, b) as the line y = ax + b in �2

2n

and (c, d) as a point in �2
2n . This renders bounding the yield an immediate

consequence of Theorem 2. To finish the proof, note that the sets Q[1] and
Q[2] correspond to the lines L and the points P , respectively, and |I(Q[2],Q[1])|
counts exactly the number of compression function inputs whose mapping can
be completely determined by the given queries. Specifying |Q[1]| = |Q[2]| = q
yields the proposition statement. ��

Non-linear Matrix-Style Postprocessing. Our postprocessing is clearly in-
spired by the use of �2n-matrices by Rogaway and Steinberger [10], but with the
crucial difference that we add the non-linear term y1y2. Omitting this non-linear
term is fatal for security. For the fully-linear version an adaptive adversary can
force its evaluated digest to lie (uniformly) on a prespecified set of size 2n. In
contrast, for our construction, the adversary’s control is significantly reduced.

Security Claims. We state our security claims for collision and (everywhere)
preimage resistance in Theorems 3 and 4, respectively. A sketch of our collision
resistance proof is given in Section 5. We refer to the full version for proofs of
Theorem 4, Corollaries 1 and 2.

Theorem 3. Let Hf1,f2 be a single-layer compression function defined by Cpost

given in Construction 1 where Cpre : �3
2n → (�2

2n)
2 is any function that satisfies

the completion property. Let k, μ, γ > 0 and λ ≥ 3 be integers and let κ = kλ+μ.
Then

AdvcollH (q) ≤ κY

2n
+

q(γ2 + 1)

2n−1
+

(
q
γ

)
2(γ−1)n−1

+ 22n
(

Y

2n

)k+1

+

(
q
μ

)
2(μ−1)n−1

+

(
q
λ

)
2(λ−2)n−1

.

Corollary 1. Let Hf1,f2 be the compression function given in Construction 1.
For every δ > 0 and q = 22n(1−δ)/3, one has AdvcollH (q) = o(1) as n→∞.

Theorem 4. Let Hf1,f2 be a single-layer compression function defined by Cpost

given in Construction 1 and an arbitrary Cpre that satisfies the completion prop-
erty. For any integer κ > 1, one has

AdvepreH (q) ≤ 2n+1

(
q

κ

)(
1

2n−1

)κ

+
q

2n−1
+

κq

2n−1
.
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Corollary 2. Let Hf1,f2 be the compression function given in Construction 1.
Then for all δ > 0 and q = 2n(1−δ), it holds that AdvepreH (q) = o(1) as n→∞.

5 Proof of Collision Resistance (Theorem 3)

5.1 Overall Strategy

Let A be a collision-finding adversary making at most q queries to each of the
public random functions f1 and f2 (without loss of generality, we assume that
the adversary makes exactly q queries to both). Our goal is to bound AdvcollH (A),
in particular Pr[coll(Q)], where Q is adaptively generated by A. We slightly
abuse notation and use Q (and derived symbols such as Qi) interchangeably as
a random variable (when it is the direct result of playing the collision game), or as
a dummy variable (e.g. when we want to quantify over all possible instantiations),
where the context makes the precise meaning clear. In all cases we can use the
global parameter q for the number of f1 and f2 queries and Y = yield(q).

To bound the probability of an adversary finding a collision, we first look at
the probability that any specific query completes the collision: fix i and consider
the event coll(Qi) ∧¬coll(Qi−1). Here we call query i fresh and we say it causes
a collision. For concreteness, suppose the ith query is an f1-query (a, b) (the case
for an f2-query (c, d) is analogous), then the first observation is that it adds a
new point to the yield set for every (a, b)-compatible pair (c, d) that was already
in Qi−1. Now the ith query can cause a collision in two different ways:

Case I. Two compatible and colliding pairs (a, b)–(c, d) and (a′, b′)–(c′, d′) are
formed with the triple {(a′, b′), (c, d), (c′, d′)} ⊆ Qi−1 (where (a, b) �= (a′, b′)).

Case II. Two distinct compatible and colliding pairs exist with (a, b) = (a′, b′)
and {(c, d), (c′, d′)} ⊆ Qi−1, where (c, d) �= (c′, d′).

We associate the events collI(Q) and collII(Q) with these two cases; it follows
that coll(Q) ≡ (collI(Q) ∨ collII(Q)). The probability of finding a collision at the
ith step depends strongly on the number of compatible queries already in Qi−1;
we denote this number by (random variable) ni. While we know (by design)

that
∑2q

i=1 ni ≤ yield(q) , a straightforward union bound fails to take this into

account properly: Because potentially ni ≈ q, naive bounding of
∑2q

i=1 ni would
be quadratic in q (which is typically much larger than yield(q)). Dealing with this
in case of non-adaptive adversaries is straightforward (as such an adversary needs
to commit to the ni values in advance), but requires a more careful treatment
in the case of adaptive adversaries. To bound the probability of collI(Q), we
additionally condition on not having too many collinear output points. For an
integer κ > 0, badcl[κ](Q) is set if and only if Q leads to more than κ collinear
output points in �2

2n . The reason for collinearity will become evident shortly.

An Overview of the Proof. We start with the observation, for any Q, that

coll(Q) ≡ (collI(Q) ∨ collII(Q)) ≡ (collI(Q) ∧ ¬collII(Q)) ∨ collII(Q) ,
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where the expression (collI(Q) ∧ ¬collII(Q)) is equivalent to(
collI(Q) ∧ ¬collII(Q) ∧ ¬badcl[κ](Q)

)
∨
(
collI(Q) ∧ ¬collII(Q) ∧ badcl[κ](Q)

)
.

Using the trivial implications for the above statements, we reach

coll(Q) ⇒ (
collI(Q) ∧ ¬badcl[κ](Q)

)
︸ ︷︷ ︸

E1

∨ (¬collII(Q) ∧ badcl[κ](Q)
)

︸ ︷︷ ︸
E2

∨ collII(Q)︸ ︷︷ ︸
E3

. (1)

The idea of our proof is to find separate upper bounds for the probability of the
events Ei for i = 1, 2, 3 and then use the union bound the finalize the proof in
Corollary 3 (i.e.

∑3
i=1 Pr[Ei] provides the overall upper bound). An upper bound

for Pr[E1] is given in Lemma 7 (corresponding to the term κY/2n in Theorem 3).
An upper bound for Pr[E3] is established in Lemma 8, which corresponds to the
term qγ2/2n−1 + qγ/2(γ−1)n−1 from Theorem 3. Finally, we explain where the
bounds for Pr[E2] (i.e. the remaining terms from Theorem 3) come from. We
use Proposition 9 to establish an implication that leads to an upper bound for
Pr[E2]. Moreover, several auxiliary events, which are defined and investigated
in Sections 5.2 and 5.4, are required to finalize the bound Pr[E2]: The upper
bound for the auxiliary events are given in Lemmas 3, 4, 5 and 9.

On the Matrix A Used in Cpost. In the following, we consider a general
matrix A (see Construction 1) over �2n for the proof of Theorem 3. The condi-
tions on the entries of the matrix A required throughout the paper, as well as
where they are used, are provided in Table 1. (Note that the probability that a
randomly selected matrix A satisfies our criterion is close to one.)

Output Lines. By assumption, we know that an f1-query (a, b) can only com-
plete a collision using an already present compatible f2-query (c, d). Let (a, b)
be an f1-query and let (c, d) be a preceding (a, b)-compatible f2-query with
y2 = f2(c, d). The output Cpost(a, b, c, y1, y2) of the compression function on
input (a, b, c) then lies on the line (in �2

2n)

L1:c,d,y2;a :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
aω11 + cω12 + y2ω14
aω21 + cω22 + y2ω24

)
︸ ︷︷ ︸

offset

+y1

(
ω13 + y2ω15
ω23 + y2ω25

)
︸ ︷︷ ︸

slope

| y1 ∈ �2n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2)

where we get the actual output point for (a, b, c) by setting y1 = f1(a, b). The
randomness of f1 results in a random point on L1:c,d,y2;a. Note that the line
cannot be degenerate (see condition C1 in Table 1), i.e. it has nonzero slope.

Similarly, let (c, d) be an f2-query and let (a, b) be a preceding (c, d)-compatible
f1-query. The output of the compression function on (a, b, c) lies on the line:

L2:a,b,y1;c :

{(
aω11 + cω12 + y1ω13
aω21 + cω22 + y1ω23

)
+ y2

(
ω14 + y1ω15
ω24 + y1ω25

)
| y2 ∈ �2n

}
. (3)

This time the output point is obtained by setting y2 = f2(c, d). Again, the
randomness of f2 results in a random point on L2:a,b,y1;c. We note that this time
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Table 1. Quick recap of the properties of the entries of A (see Construction 1) used
in the proof of Theorem 3. (N) denotes that the condition is necessary, whereas (S)
denotes it is sufficient.

The Condition Where used Reference

(Theorem 3) (Section 5)

C1: ω13ω25 �= ω15ω23 (S) Non-degeneracy of L1:-lines (2)
(N) Non-parallel P1:-partitions Lemma 4

C2: ω14ω25 �= ω15ω24 (S) Non-degeneracy of L2:-lines (3)
(N) Non-parallel P2:-partitions Lemma 4

C3: ω11 �= 0 ∧ ω21 �= 0 (N) Non-degeneracy of P1:-partitions Lemma 3
C4: ω12 �= 0 ∧ ω22 �= 0 (N) Non-degeneracy of P2:-partitions Lemma 3

C5: ω15 �= 0 ∧ ω25 �= 0 (N) Nonlinearity of Cpost Construction 1

non-degeneracy follows from ω14ω25−ω24ω15 �= 0 (see condition C2 in Table 1).
Now it is easy to see why we do not want too many collinear points: It would
ease the collision-finding considerably due to the above output lines.

5.2 Partitions, Bunches and Some Auxiliary Events

Partitions and Bunches. Suppose that an f2-query (c, d) results in y2 =
f2(c, d). By the completion property, we obtain, for each a ∈ �2n , a unique b
such that (a, b) is (c, d)-compatible. Now we recall that if we query f1(a, b), the
resulting yield point lies on the line L1:c,d,y2;a. From Equation (2) of L1:c,d,y2;a, it
follows that the slope of these lines is fixed (because (c, d) and y2 are fixed) and
independent of a; hence by ranging over all possible a ∈ �2n we achieve a set of
(parallel) lines. This is what we call a partition (partitions due to an f1-query is
defined analogously): P1:c,d,y2 = {L1:c,d,y2;a | a ∈ �2n} . The opposite notion to a
partition is a bunch: For all preceding and (a, b)-compatible (cj , dj) ∈ Q, for some
integer j ≥ 1, the bunch of interest is the collection of lines (for y2:j = f2(cj , dj))

B1:(a,b)(Q) =
{
L1:cj ,dj,y2:j;a | (cj , dj , y2:j) ∈ Q ∧ (cj , dj) compatible with (a, b)

}
.

(We also write B1:i if the ith query is an f1-query (a, b).) The answer y1 = f1(a, b)
specifies a point on each of these lines to be added to the yield set; we refer to
this as realizing the bunch. For the record, B2:(c,d)(Q) is defined analogously.

Degenerate Partitions. We have seen that a partition contains a set of parallel
lines. If different choices of a lead to different lines, the lines compatible to
(c, d) necessarily partition the output plane (justifying our terminology). It is
possible however that regardless of the a values, we end up with identical lines
(though with a different parametrization). In such a case, a partition collapses
to a single line and we speak of a degenerate partition. A degenerate partition
causes problems in our proof, because it allows an adversary to create many
collinear points (by ranging over a). Let baddp(Q) denote the event that Q gives
rise to a degenerate partition (either via different a or c values).
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Lemma 3. Let Q be generated adaptively, then Pr [baddp(Q)] ≤ q/2n−1 , and if
ω11ω23 �= ω13ω21, ω12ω24 �= ω14ω22, ω11ω25 = ω15ω21 and ω12ω25 = ω15ω22 , then
Pr [baddp(Q)] = 0 .

Parallel Partitions. We now define another bad event, parallel partitions, that
can potentially help a collision-finding adversary create collinear points. We have
seen that, once answered, a single f2-query (c, d) determines a well-defined slope
for the partition P1:c,d,y2. If two or more distinct partitions (of the same type)
have the same slope, we call the partitions parallel. The number of parallel
partitions is tightly related to a standard occupancy problem. Consequently,
avoiding parallel partitions altogether is not realistic, yet we can put reasonable
bounds on too much parallelism occurring. We define badpp[μ](Q) to be the event
that Q results in more than μ parallel partitions (of identical type).

Lemma 4. Let Q be generated adaptively. Then, for any integer μ > 0,

Pr
[
badpp[μ](Q)

]
≤

(
q
μ

)
2(μ−1)n−1

.

Local Collinearity. Now we discuss another auxiliary event, local collinearity,
that is used in our collinearity analysis. Suppose an f1-query results in y1 =
f1(a, b). We associate with this query-response pair a point (a, y1) ∈ F2

2n . Let
badlc[λ](Q) be the event that there exist at least λ pairs of f1-queries (ai, bi)
with distinct ai values, such that the associated points (ai, y1:i) are collinear or,
alternatively, that there exist at least λ pairs of f2-queries (ci, di) with distinct
ci values, such that the points (ci, y2:i) are collinear.

Lemma 5. Let Q be generated adaptively. Then, for any integer λ > 0,

Pr
[
badlc[λ](Q)

]
≤

(
q
λ

)
2(λ−2)n−1

.

Target Local Collinearity. For local collinearity, we are interested in any λ
associated points being collinear, without worrying about which line they are
on. However, in an upcoming case we are only interested in points all lying on
a line with a pre-specified slope (the offset of the line is not fixed in advance).
Let badslc[γ](Q) be the event that Q[1] or Q[2] leads to more than γ associated
points collinear with pre-specified, non-vertical slope.

Lemma 6. Let Q be generated adaptively. Then, for any integer γ > 0,

Pr
[
badslc[γ](Q)

]
≤

(
q
γ

)
2(γ−1)n−1

.

5.3 Bounding Collisions: Focusing on Pr[E1] and Pr[E3]

Lemmas 7 and 8 provide an upper bound for Pr[E1] and Pr[E3], respectively.
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Lemma 7. Let i be a positive integer that satisfies i ≤ q and Let Qi−1 be arbi-
trary query list satisfying ¬badcl[κ](Qi−1) (for some positive integer κ). Then

Pr[E1] = Pr[collI(Q) ∧ ¬badcl[κ](Q)] ≤
κY

2n
.

Proof (Sketch). We start by noticing that Pr[E1] ≤ Pr[collI(Q)|¬badcl[κ](Q)].
Each of the ni compatible elements together with the ith query, defines a line
such that the random answer to the ith query will determine which point will
be added to the yield set. The condition ¬badcl[κ](Qi−1) implies that on each
of these lines, there are at most κ previous yield points. Since the underlying
primitive is a random function, the answer is fully random and for a given line,
one of the previous yield points is hit with probability at most κ/2n. A union
bound over the ni lines gives the bound niκ/2

n. To obtain the overall bound,
we exploit our refined game AdvBΣ

κ (A) to determine the
∨

expression. Here we

use the above to determine BΣ = κY/2n as
∑2q

i=1 ni ≤ Y (Proposition 3). ��
We now bound the probability of finding an instantaneous collision with a fresh
query, first given that ¬badslc[γ](Qi−1) holds. Then we finalize our bound for
Pr [collII(Q)] using Proposition 2 along with Lemma 6.

Lemma 8. Let i be a positive integer that satisfies i ≤ q and let Q be generated
adaptively. Then, for any integer γ > 0,

Pr[E3] = Pr [collII(Q)] ≤
qγ2

2n−1
+ Pr

[
badslc[γ](Q)

]
.

5.4 Bounding Overall Collinearity: Bounding Pr[E2]

We now bound Pr[E2]. The main technical difficulty is to properly separate the
randomness of the f1- and f2-queries. In order to do this in the adaptive setting,
we use a method that we call bunching. For a fixed i, suppose that the ith query
is an f1-query (a, b). Recall that for the f1-query (a, b), the bunch B1:i consists
of the lines L1:cj ,dj,y2:j ;a for the ni compatible preceding f2-queries (cj , dj) (with
y2:j = f2(cj , dj) for j = 1, . . . , ni). The answer y1 = f1(a, b) adds a single point
to the yield set for each compatible f2-query (cj , dj). These ni new points lie on
the lines L1:cj,dj ,y2:j;a, thereby realizing the bunch B1:i. We refer to the set of
freshly added points inside a bunch as a constellation that we denote by

C1:i(Q) = {Hf1,f2(a, b, cj) | (cj , dj) ∈ Qi−1 ∧ (cj , dj) compatible with (a, b)} .

In order to determine the maximum collinearity within the yield set, we estimate
(i) the probability of too much collinearity occurring within a single constellation
(Proposition 8) and (ii) the probability of too many constellations being collinear
(Lemma 9). Here, a set of constellations is collinear if we can choose a point from
each constellation in the set such that all chosen yield points are collinear. If we
know that at most λ points are collinear within a single constellation, and at
most k constellations are collinear, we can conclude that at most κ = kλ points
are collinear overall. This is formalized in the proposition below, taking into
account an additional technicality.
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Proposition 7. Let k, λ, μ > 0 be fixed integers, κ = kλ+μ and let badint[λ](Q)
be the event that there exists a constellation having more than λ collinear points.
Define badext[k](Q) to be the event that there exists a line � passing through more
than k constellations whose bunches do not contain �. Then (for arbitrary Q)

badcl[κ](Q)⇒
(
badint[λ](Q) ∨ badext[k](Q) ∨ badpp[μ](Q)

)
.

Proposition 8 is used to decompose the event badint[λ](Q) into two events.

Proposition 8. For arbitrary Q, if (integer) λ ≥ 3 then(
¬collII(Q) ∧ badint[λ](Q)

)
⇒

(
baddp(Q) ∨ badlc[λ](Q)

)
.

To bound collinearity between constellations, we first consider collinearity with
a given line � in the output plane. We are interested in bounding the probability
that at least k constellations are incident to �. For a line �, integer k and query
history Q, let bad�−hit[k](Q) be the following event: there exist at least k con-
stellations whose corresponding bunches do not contain � that are incident to �.
Recall that badext[k](Q) is the event that there exists a line � passing through
more than k constellations whose bunches do not contain �.

Lemma 9. Let � be given and let Q be generated adaptively. Then

Pr
[
bad�−hit[k](Q)

]
≤
(
Y

2n

)k+1

and Pr
[
badext[k](Q)

]
≤ 22n

(
Y

2n

)k+1

.

Proof (Sketch). Let ctr�−hit(Q) be the number of constellations that are incident
to �, again restricted to those constellations whose corresponding bunch does not
contain �. Clearly, the event bad�−hit[k](Q) is equivalent to ctr�−hit(Q) ≥ k. Note
that for any i, we have ctr�−hit(Qi)− ctr�−hit(Qi−1) ∈ {0, 1} since constellation i
can be counted at most once (namely if it is incident to �). Let hit�−hit(i) be the
event that the bunch Bi upon realization is incident to �. Suppose that � �∈ Bi and
that Bi consists of ni lines (each containing an output point). Since � intersects
each line in a bunch in at most one point, we obtain that Pr [hit�−hit(i)] ≤ ni/2n.
Due to yield restrictions,

∑2q
i=1 ni ≤ Y . The lemma statement follows from

applying Proposition 4 with BΣ = Y/2n. The statement for Pr
[
badext[k](Q)

]
follows from the union bound over all lines �. ��
Proposition 9. Let k, λ, and μ be positive integers with λ ≥ 3 and κ = kλ+μ.
Then, for arbitrary Q,

Pr[¬collII(Q) ∧ badcl[κ](Q)] ≤ Pr[F(Q)] ,where

Pr [F(Q)] ≤ Pr[badext[k](Q)] + Pr[badpp[μ](Q)] + Pr[badlc[λ](Q)] + Pr[baddp(Q)] .

Finishing the Proof. The following corollary wraps up what we have discussed
so far and finishes the proof of Theorem 3 with the help of earlier obtained bounds
(Lemmas 3, 4, 5, 7, 8, and 9).

Corollary 3. Let Q be generated adaptively, then for F(Q) given in Prop. 9

Pr [coll(Q)] ≤ Pr[collI(Q) ∧ ¬badcl[κ](Q)] + Pr [collII(Q)] + Pr [F(Q)] .
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6 Blockcipher-Based Instantiation

A näıve replacement of the underlying PuRFs in Construction 1 with ideal block-
ciphers leads to a weaker security due to the availability of the decryption queries
(see the full version for the justification). However, adding a layer of “Davies–
Meyer” suffices for our purposes. Note that there is no need to change Cpre; the
only modification is in Cpost (the proofs are given in the full version).

Construction 5. Let E1, E2 : {0, 1}n×{0, 1}n → {0, 1}n be two fixed randomly
(and independently) chosen blockciphers. Define a single-layer compression func-
tion HE1,E2 : {0, 1}3n → {0, 1}2n by Cpre : �3

2n → (�2
2n)

2 from Construction 1
and Cpost : �5

2n → �
2
2n

Cpost(a, b, c, y1, y2) = A · (a, c, a+ y1, c+ y2, (a+ y1)(c+ y2))T , where

A is a matrix satisfying certain non-degeneracy conditions.1

Theorem 6. Let HE1,E2 be given as in Construction 5 where Cpre : �3
2n →

(�2
2n)

2 is an arbitrary function that satisfies the completion property. Let k, μ, γ >

0 and λ ≥ 3 be integers. Then, for κ = kλ+ μ, AdvcollH (q) is upper bounded by

κY + 2qγ2 + 4q

2n − q
+

4
(
q
γ

)
(2n − q)(γ−1)

+22n
(

Y

2n − q

)k+1

+
4
(
q
μ

)
(2n − q)(μ−1)

+
4
(
q
λ

)
(2n − q)(λ−2)

.

Theorem 7. Let HE1,E2 be given as in Construction 5 where Cpre : �3
2n →

(�2
2n)

2 is an arbitrary function that satisfies the completion property and let
κ > 1 be an integer. Then

AdvepreH (q) ≤ 2n+2

(
q

κ

)(
2

2n − q

)κ

+
2q

2n − q +
2κq

2n − q .
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Abstract. This paper is about private data analysis, in which a trusted
curator holding a confidential database responds to real vector-valued
queries. A common approach to ensuring privacy for the database ele-
ments is to add appropriately generated random noise to the answers,
releasing only these noisy responses. A line of study initiated in [7] ex-
amines the amount of distortion needed to prevent privacy violations of
various kinds. The results in the literature vary according to several pa-
rameters, including the size of the database, the size of the universe from
which data elements are drawn, the “amount” of privacy desired, and for
the purposes of the current work, the arity of the query. In this paper
we sharpen and unify these bounds. Our foremost result combines the
techniques of Hardt and Talwar [11] and McGregor et al. [13] to obtain
linear lower bounds on distortion when providing differential privacy for
a (contrived) class of low-sensitivity queries. (A query has low sensitivity
if the data of a single individual has small effect on the answer.) Several
structural results follow as immediate corollaries:

– We separate so-called counting queries from arbitrary low-sensitivity
queries, proving the latter requires more noise, or distortion, than
does the former;

– We separate (ε, 0)-differential privacy from its well-studied relax-
ation (ε, δ)-differential privacy, even when δ ∈ 2−o(n) is negligible in
the size n of the database, proving the latter requires less distortion
than the former;

– We demonstrate that (ε, δ)-differential privacy is much weaker than
(ε, 0)-differential privacy in terms of mutual information of the tran-
script of the mechanism with the database, even when δ ∈ 2−o(n) is
negligible in the size n of the database.

We also simplify the lower bounds on noise for counting queries in [11]
and also make them unconditional. Further, we use a characterization
of (ε, δ) differential privacy from [13] to obtain lower bounds on the
distortion needed to ensure (ε, δ)-differential privacy for ε, δ > 0. We
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1 Introduction

This is a paper about private data analysis, in which a trusted curator holding
a confidential database responds to real vector-valued queries. Specifically, we
focus on the practice of ensuring privacy for the database elements by adding
appropriately generated random noise to the answers, releasing only these noisy
responses. A line of study initiated by Dinur and Nissim examines the amount
of distortion needed to prevent privacy violations of various kinds [7]. Dinur and
Nissim did not have a definition of privacy; rather, they had a notion that has
come to be called blatant non-privacy; the modest goal, then, was to add enough
distortion to avert blatant non-privacy. Since that time, the community has
raised the bar by definining (and achieving) powerful and comprehensive notions
of privacy [7,9,8], and the goal has been to preserve (ε, 0)-differential privacy and
its relaxation, (ε, δ)-differential privacy. A final goal considered herein, attribute
privacy, has a more complicated description, but may be thought of as preventing
blatant non-privacy for a single data attribute [12] in the presence of a certain
kind of contingency table query.

The results in the literature vary according to several parameters, including
the number n of elements in the database, the size d of the universe from which
data elements are drawn, the “amount” and type of privacy desired, and for
the purposes of the current work, the arity k of the query. In this paper we
strengthen and unify these bounds.

As corollaries of our work, we obtain several “structural” results regarding
different types of privacy guarantees:

– We separate so-called counting queries from arbitrary low-sensitivity queries,
proving the latter requires more noise, or distortion, than does the former;

– We separate (ε, 0)-differential privacy from its well-studied relaxation (ε, δ)-
differential privacy, even when δ ∈ 2−o(n) is negligible in the size n of the
database, proving the latter requires less distortion than the former;

– We demonstrate that (ε, δ)-differential privacy is much weaker than (ε, 0)-
differential privacy in terms of mutual information of the transcript of the
mechanism with the database even when δ ∈ 2−o(n) is negligible in the size
n of the database.

We also simplify the lower bounds on noise for counting queries in [11] and also
make them unconditional removing a technical assumption on the mechanism
present in their paper. Next, we use a characterization of (ε, δ) differential pri-
vacy from [13] to obtain lower bounds on the distortion needed to ensure (ε, δ)-
differential privacy for ε, δ > 0. We remark that [12] also obtain quantitatively
similar lower bounds on the distortion required to maintain (ε, δ) differential
privacy for the class of �-way marginals though their proof technique is very
different and arguably much more complicated.

After this, we use results of Rudelson [15] and combine it with LP decoding
to show that attribute privacy is violated if �-way marginals are released with
at least 1− η fraction of these marginals are released with o(

√
n) noise for some

η > 0. The results and the technique in [12] required η = 0 making our results
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more powerful. Finally, we extend the results of [7] to the case of small universe
size achieving stronger lower bounds to prevent blatant non-privacy.

To describe our results even at a high level we must outline the privacy-
preserving database model, the notion of distortion or noise that may be em-
ployed in order to preserve privacy, and the meaning of the goals of the adversary:
blatant non-privacy, violation of (ε, 0)-differential privacy, violation of (ε, δ)- dif-
ferential privacy, and attribute non-privacy.

Typically, the curator of a database receives questions to which it responds
with potentially noisy answers. There are two possible settings here. One is that
the queries are received by the curator one at a time. The other situation is that
all the queries are received by the curator at once and it then publishes (noisy)
answers to all of them at once. The former is called the interactive setting and
the latter is called the non-interactive setting. All our lower bounds are in the
non-interactive setting making them applicable to the interactive setting as well.

We now formally describe a database and a query : A database X is an
element of (Z+)d . Here d is called the universe size and intuitively refers to the
number of types of elements present in the database. Also, for a database X ,
n =

∑d
i=1Xi is defined as the size of the database and refers to the number of

elements in the database. Note that we are representing databases as histograms.
A query (of arity k) is a map F : (Z+)d → Rk such that ∀i ∈ [k], ∀x, y ∈ (Z+)d,
|F (x+ y)i−F (x)i| ≤ 1 if ‖y‖1 = 1. In other words, every coordinate of the map
F is 1-Lipschitz. We say F is a counting query if F is a linear map. The meaning
of d, k, n throughout the paper shall be the same as above unless mentioned
otherwise.

We now formally introduce the definition of mechanism and privacy.

Definition 1. Let F be a family of queries such that ∀F ∈ F , F : (Z+)d → Rk.
Then, a mechanism M : (Z+)d × F → μ(Rk) where μ(Rk) is simply the set of
probability distributions over Rk. On being given a query F ∈ F and a database
x ∈ (Z+)d, the curator samples z from the probability distribution M(x, F ) and
returns z.

We next state the definition of ε-differential privacy (introduced by Dwork et al.
in [9]) and (ε, δ)-differential privacy (introduced by Dwork et al. in [8]).

Definition 2. For a family of queries F , a mechanism M : (Z+)d × F →
μ(Rk) is said to be ε-differentially private if for every x, y ∈ (Z+)d such that
‖x − y‖1 ≤ 1, every measurable set S ⊆ Rk and ∀F ∈ F , the following holds :
Let M(x, F ) =Mx,F and M(y, F ) =My,F and for a probability distribution Γ ,
let Γ (S) denote the probability of set S under Γ . Then,

2−ε ≤ Mx,F (S)

My,F (S)
≤ 2ε

The mechanism is said to be (ε, δ)-differentially private if

2−ε ·My,F (S)− δ ≤Mx,F (S) ≤ 2ε ·My,F (S) + δ

Typically, δ is set to be negligible in n, k.
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We remark that we do not define the notion of noise very precisely here as the
notion of noise depends on the context. However, in the context of differential
privacy, we use the following definition of noise.

Definition 3. For a family of queries F , a mechanism M : (Z+)d×F → μ(Rk)
is said to add noise (at most) η if with high probability (say 0.99) over the
randomness of M , ‖M(x, F )− F (x)‖∞ ≤ η.

While differential privacy is a very strong notion of privacy, sometimes one can
show that even very modest definitions of privacy get violated. One such notion
is that of blatant non-privacy. We say that a mechanism M for answering F
over databases of size n and universe size d is blatantly non-private, if there is
an attack A such that w.h.p. over the answer y returned by the mechanism M ,
A(y) differs from the database only at o(1) fraction of the places. Yet another
very weak notion of privacy that is interesting to us is that of attribute non-
privacy. The formal definition follows :

Definition 4. For a query F ∈ F , a mechanism M : ({0, 1}d)n × F → Rk is
said to be attribute non-private if there exists Y ∈ ({0, 1}d−1)n and an algorithm
A such that for every x ∈ {0, 1}n,

Pr
z∈M(Y ◦x,F )

[A(z) = x′ : ‖x− x′‖1 = o(‖x‖1)] ≥ 1/10

where Y ◦x simply denotes the obvious concatenation of Y and x. A need not be
computationally efficient and the constant 1/10 is arbitrary and can be replaced
by any positive constant.

We show the following results :

1. Combining techniques from [11] and [13], we obtain tight lower bounds on
the noise for arbitrary (non-counting) low-sensitivity queries for any (ε, 0)-
differentially private mechanism. Given positive results of Blum, Ligett, and
Roth [3], this separates non-counting queries from counting queries, prov-
ing that the former require more distortion than the latter for maintain-
ing differential privacy. Also, given the positive results of [8] for arbitrary
low-sensitivity queries, this separates (ε, δ)-differential privacy from (ε, 0)-
differential privacy, where δ = δ(n, k) denotes a function negligible in its
argument. We also use this technique to show that the guarantees in terms
of information content is drastically weaker for an (ε, δ) differentially private
protocol as compared to an ε-differentially private protocol. Our technique
also simplifies the volume-based lower bounds on noise for counting queries
in [11]. In addition, we also make the lower bounds unconditional. The lower
bound in [11] required the mechanism to be defined on “fractional” databases
i.e., on (R+)d as opposed to just (Z+)d while we do not have any such re-
strictions.

2. We give tight lower bounds on noise for ensuring (ε, δ)-differential privacy
for δ > 0. This proof relies on a lemma due to [13] showing that (ε, δ)-
differentially private mechanisms yield a certain kind of unpredictable source.
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On the other hand, any mechanism that is blatantly non-private cannot yield
an unpredictable source. Thus, if the noise is insufficient to prevent bla-
tant non-privacy then it cannot provide (ε, δ)-differential privacy. We subse-
quently use the lower bounds of [7,10] for preventing blatant non-privacy to
get lower bounds on the distortion for (ε, δ) differential privacy.

3. We revisit the LP decoding attack of Dwork, McSherry, and Talwar [10],
observing that any linear query matrix yielding a Euclidean section suffices
for the attack. The LP decoding attack succeeds even if a certain constant
fraction of the responses have wild noise. Armed with the connection to
Euclidean sections, and a recent result of Rudelson [15] bounding from below
the least singular value of the Hadamard product of certain i.i.d. matrices,
we qualitatively strengthen a lower bound of Kasiviswanathan, Rudelson,
Smith, and Ullman [12] on the noise needed to avert attribute non-privacy in
�-way marginals release by making the attack resilient to a constant fraction
of wild responses.

There is an extension of results of [7] when the size of the universe is smaller
than the size of the database which can be found in the full version of this
paper [5].

2 Lower Bound by Volume Arguments

We now recall the volume based argument of Hardt and Talwar [11] to show
lower bounds on the noise required for ε differential privacy.

Theorem 1. Assume x1, . . . , x2s ∈ (Z+)
d
such that ∀i, ‖xi‖1 ≤ n and for

i �= j, ‖xi − xj‖1 ≤ Δ. Further, let F : (Z+)
d → Rk such that for any i �= j,

‖F (xi) − F (xj)‖∞ ≥ η. If Δ ≤ (s − 1)/ε, then any mechanism which is ε-
differentially private for the query F on databases of size n must add noise η/2.

While the line of reasoning in the proof is same as that of [11], we do the proof
here as the argument in [11] works only for counting queries i.e., when F is a
linear transformation. On the other hand, the statement and proof of our result
works for any query F .

Proof. Consider the �∞ balls of radius η/2 around each of the F (xi). By the
hypothesis, these balls are disjoint. Now assume, any mechanism M which adds
noise η/2 and consider any xi. Then, because all the balls are disjoint, we have
that there is some j �= i such that if S is the �∞ ball of radius η/2 around F (xj),
then

Pr
z∈M(xi,F )

[z ∈ S] ≤ 2−s

However, we can also say that because the noise added by the mechanism M is
at most η,

Pr
z∈M(xj ,F )

[z ∈ S] ≥ 1/2
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Also, because the mechanism M is ε-differentially private and ‖xi − xj‖1 ≤ Δ,
then

Prz∈M(xi,F )[z ∈ S]
Prz∈M(xj ,F )[z ∈ S]

≥ 2−ε·Δ

This leads to a contradiction if Δ ≤ (s− 1)/ε thus proving the assertion.

2.1 Linear Lower Bound for Arbitrary Queries

In this subsection, we prove the following theorem.

Theorem 2. For any k, d, n ∈ N and 1/40 ≥ ε > 0, where n ≥ min{k/ε, d/ε},
there is a query F : (Z+)d → Rk such that any mechanism M which is ε-
differentially private adds noise Ω(min{d/ε, k/ε}).

If ε > 1, then there is a query F : (Z+)d → Rk such that any mechanism
M which is ε-differentially private adds noise Ω(min{d/(ε ·25ε), k/ε}) as long as
n ≥ min{k/ε, d/(ε · 25ε)}

Before starting the proof, we make a couple of observations. First of all, note that
the statement of the theorem does not give any lower bound for 1 ≥ ε > 1/40.
However, any mechanism which is ε-differentially private for ε in the aforemen-
tioned range is also ε′-differentially private for ε′ = 10/9. Hence, the noise lower
bounds for ε′-differential privacy for ε′ = 10/9 are also applicable for the range
of 1 ≥ ε > 1/40. It is easy to see that up to constant factors, the lower bounds
with ε′ = 10/9 are optimal for ε in the aforementioned range.

Secondly, Laplacian mechanism maintains ε-differential privacy while adding
only O(k/ε) noise. Also, because the databases are of size n, it is enough to add
noise O(n) to maintain ε-differential privacy for any ε ≥ 0. Thus, as long as
k = O(d), our lower bounds are tight up to constant factors. Next, we do the
proof of Theorem 2.

Also, in the subsequent proofs, the databases shall be constructed in clever
ways. The full details of these constructions can be found in [5]. We will be
referring to the appropriate claims whenever necessary.

Proof. Our proof strategy is to construct a set of databases and a query which
meets the conditions stated in the hypothesis of Theorem 1 and then get the
desired lower bound on the noise. We first deal with the case when 0 < ε < 1/40.
Let � = min{d, k}. We can now use Claim A.2 in [5] to construct 2s databases
x1, . . . , x2s (for s = �/400) such that xi ∈ (Z+)d with the property that ∀i �=
j, ‖xi − xj‖1 ≥ n′/10 and ‖xi‖1 ≤ n′ where n′ = �/(1280ε) (Application of
Claim A.2 uses d′ = �/320). Note that our databases are of size bounded by
n′ ≤ n. We now describe a mapping L : (Z+)d → R

2s which is related to a
construction in [13]. The mapping is as follows :

– For every xi, there is a coordinate i in the mapping.
– The ith coordinate of L(z) is max{n′/30− ‖xi − z‖1, 0}.

Claim. The map L is 1-Lipschitz i.e., if ‖z1−z2‖1 = 1, then ‖L(z1)−L(z2)‖1 ≤ 1.
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Proof. We observe that for any z1, z2 such that ‖z1 − z2‖ ≤ 1, if A denotes the
set of coordinates where at least one of L(z1) or L(z2) are non-zero, then A
is either empty or is a singleton set. Given this, the statement in the claim is
obvious, since the mapping corresponding to any particular coordinate is clearly
1-Lipschitz.

We now describe the queries. Corresponding to any r ∈ {−1, 1}2s, we define
fr : (Z

+)d → R, as

fr(x) =

d∑
i=1

L(x)i · ri

Now, we define a random map F : (Z+)d → Rk as follows. Pick r1, . . . , rk ∈
{−1, 1}2s independently and uniformly at random and define F as follows :

F (x) = (fr1(x), . . . , frk(x))

Now consider any xh, xj ∈ S such that h �= j. Because of the way L is defined,
it is clear that for any ri,

Pr
ri
[|fri(xh)− fri(xj)| ≥ n′/15] ≥ 1/2

A basic application of the Chernoff bound implies that

Pr
r1,...,rk

[For at least 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15] ≥ 1− 2−k/30

Now, note that the total number of pairs (xi, xj) of databases such that xi, xj ∈ S
is at most 22s ≤ 2�/200 ≤ 2k/200. This implies (via a union bound)

Pr
r1,...,rk

[∀h �= j,≥ 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15] ≥ 1− 2−k/40

This implies that we can fix r1, . . . , rk such that the following is true.

∀h �= j, For at least 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15

This implies that for any xh �= xj ∈ S, ‖F (xh) − F (xj)‖∞ ≥ n′/15. In fact,

‖F (xh)− F (xj)‖2 ≥ n′
√
k/150 which is a much stronger assumption than what

we require and is quantitatively similar to the results in [11] where they consider
�2 noise as opposed to �∞ noise.

We can now apply Theorem 1 by putting Δ = 2n′ and s = �/400 > 3εn′ and
η = n′/15 and observe that Δ ≤ (s− 1)/ε thus proving the result.

We next deal with the case when ε > 1. This part of the proof differs from the
case when ε < 1 only in the construction of x1, . . . , x2s . We also emphasize that
had we not insisted on integral databases, our proof would have been identical
to the first part. We construct the databases x1, . . . , x2s using combinatorial
designs. More precisely, for some sufficiently large constant C, let � = min{d/(C ·
25ε), k}. We can now use Claim A.3 from [5] to construct 2s databases x1, . . . , x2s

(for s = �/400) such that xi ∈ (Z+)d with the property that ∀i �= j, ‖xi−xj‖1 ≥
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n′/10 and ‖xi‖1 ≤ n′ where n′ = �/(1280ε) (using d′ = �/320 in Claim A.3).
Again, we note here that the databases constructed are of size n′.

From this point onwards, we define the map L and the query F as we did in
the proof of Theorem 2 and the proof proceeds identically. In particular, we get a
query F : (Z+)d → Rk such that for any i �= j, ‖F (xi)−F (xj)‖2 ≥ n′

√
k/150. As

before, we can now apply Theorem 1 by putting Δ = 2n′ and s = �/100 > 3εn′

and η = n′/15 and observe that Δ ≤ (s− 1)/ε thus proving the result.

For the subsequent part of this paper, we only consider lower bounds on ε-
differential privacy for 0 < ε < 1 as opposed to ε > 1. This is because the
privacy guarantees one gets becomes unmeaningful when ε is large. However, we
do remark that the results can be carried in a straightforward way to the regime
of ε > 1 using combinatorial designs (like we did for Theorem 2).

Consequences of the Linear Lower Bound. We briefly describe the two
consequences of the linear lower bound on the noise proven in Theorem 2. The
first is separation of counting queries from non-counting queries. While our sepa-
ration gives quantitatively the same results as long as d = kO(1) and n = Θ(k/ε),
for simplicity, we consider the setting when k = d and n = k/ε. In this case,
Theorem 2 shows existence of a (non-counting) query such that maintaining ε-
differential privacy requires noise Ω(n). On the other hand, [3] had proven that
for any counting query with the same setting of parameters, there is a mechanism
which adds noise Õ(n2/3) and maintains ε-differential privacy. This shows that
maintaining ε-differential privacy inherently requires more distortion in case of
non-counting queries than counting queries.

The next consequence is a separation of (ε, δ) differential privacy from (ε, 0)
differential privacy for δ = 2−o(n). We note that Hardt and Talwar [11] had
shown such a separation but that was only when k = O(log n) and δ = n−O(1).
Again, we use the setting of parameters when k = d and n = k/ε. The gaussian
mechanism of [8] shows that to maintain (ε, δ) differential privacy for any k
queries, it sufficies to add noise O(

√
k log(1/δ)/ε) = o(n). However, Theorem 2

shows that there is a query which requires adding noise Ω(n) to maintain (ε, 0)
differential privacy.

The last consequence of our result is more indirect and is explained next.

2.2 Information Loss in Differentially Private Protocols

In [13], a connection was established between differentially private protocols and
the notion of mutual information from information theory. In fact, as [13] was
dealing with 2-party protocols, the connection was actually between differentially
private protocols and that of information content [1,2] which is a symmetric
variant of mutual information useful in 2-party protocols. In that paper, it was
shown that the information content (which simplifies to mutual information
in our setting) between transcript of a ε-differentially private mechanism and
the database vector is bounded by O(εn). Using the construction used in the
previous subsection, we show that in case of (ε, δ) differentially private protocols
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(for any δ = 2−o(n)), there is no non-trivial bound on the mutual information
between the transcript of the mechanism and the database vector. Thus as far
as information theoretic guarantees go, the situation is drastically different for
pure differentially private protocols vis-a-vis approximately differentially private
protocols. The contents of this subsection are a result of personal communication
between the author and Salil Vadhan [6].

We first define the notion of mutual information (can be found in standard
information theory textbooks).

Definition 5. Given two random variables X and Y , their mutual information
I(X ;Y ) is defined as

I(X ;Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X |Y )

where H(X) denotes the Shannon entropy of X.

The next claim establishes an upper bound on the mutual information between
transcript of a differentially private protocol and the database vector.

Claim. Let F : (Z+)d → R
k be a query and M : (Z+)d → μ(Rk) be an ε-

differentially private protocol for answering F for databases of size n. If X is a
distribution over the inputs in (Z+)d, then I(M(X);X) ≤ 3εn.

Proof. We first note that since the databases are of size bounded by n, hence
instead of assuming that μ is a distribution over the inputs X ∈ (Z+)d, we can
assume that μ is a distribution over the inputsX ∈ [n]d where [n] = {0, 1, . . . , n}.
Now, we can apply Proposition 7 from [13]. We note that the aforesaid propo-
sition is in terms of information content for 2-party protocols but we observe
that we can simply make the second party’s input as a constant and get that
I(M(X);X) ≤ 3εn.

Next, we state the following claim which says that for (ε, δ) differentially private
protocols, even for an exponentially small δ, the mutual information between the
transcript and the input can be as large as n(1−η) for any value of 0 < ε, η < 1. In
other words, an (ε, δ) differentially private protocol does not imply any effective
bound on the mutual information between the input and the transcript even as
ε→ 0 and δ is exponentially small.

Lemma 1. For n ∈ N and 0 < ε, η < 1, there is a constant C = C(ε, η) > 0 and
a distribution X over (Z+)n with a support over databases of size n and a query
F : (Z+)n → Rk and an (ε, δ)-differentially private protocol M for answering F
such that I(X ;M(X)) ≥ n(1− 2η) if δ ≥ 2−C(ε,η)n.

Proof. We first construct 2s vectors in {0, 1}n (for s = n(1− η)) with the prop-
erty that for any xi, xj (i �= j), ‖xi − xj‖1 ≥ η2n/8. It is easy to guarantee
the existence of such a set of vectors by a simple application of the probabilis-
tic method. The distribution X is simply the uniform distribution over the set
{x1, . . . , x2s}. By construction, all the databases in X are of size bounded by n.
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Next, we define the query F : (Z+)n → Rk be defined in the same way as
the query F in the proof of Theorem 2. Following, exactly the same calculations,
we can show that if we set k = 80n, we get a query F : (Z+)n → Rk such
that for any i �= j, ‖F (xi)− F (xj)‖2 ≥ η2n

√
k/50. We now recall the Gaussian

mechanism of [8] which maintains (ε, δ) differential privacy.

Lemma 2. [8] Let F : (Z+)d → Rk be a query. Let Y = (Y1, . . . , Yk) be a
distribution over Rk such that each Yi is an i.i.d. N (0, σ) random variable. Here

σ2 = k log(1/δ)
ε2 . Then the mechanism M which for a database x and query F ,

which samples Y0 from Y and responds by F (x) + Y0 is an (ε, δ) differentially
private mechanism.

Note that for the above mechanism M , and database x, if Z is sampled from
M(x), then the distribution of M(x)− F (x) is same as (Y1, . . . , Yk) where each
Yi is an i.i.d. N (0, σ) random variable. Thus,

‖M(x)− F (x)‖22 ∼ Y 2
1 + . . .+ Y 2

k

As the following fact shows, the distribution on the right hand side is concen-
trated around its mean. The fact is possibly well-known but we could not find a
reference and hence we prove it in Appendix C in [5].

Fact 3 . If Y1, . . . , Yk are i.i.d. N (0, σ) random variables, then,

Pr
Y1,...,Yk

[Y 2
1 + . . .+ Y 2

k > 2(1 + ξ) · k · σ2] ≤ 2−
kξ
2

Using the above fact, we get

Pr

[
‖M(x)− F (x)‖22 >

2(1 + ξ)k2 log(1/δ)

ε2

]
≤ 2

−ξk
2

Here the probability is over the randomness of the mechanism. Putting ξ = 1
and δ = 2−C(ε,η)n for an appropriate constant C(ε, η), we get that

Pr

[
‖M(x)− F (x)‖2 >

η2n
√
k

200

]
≤ 2−40n

As we know, for any i �= j, ‖F (xi)− F (xj)‖2 ≥ η2n
√
k/50. Hence, with proba-

bility at least 1− 2−n over the randomness of the mechanism, for any database
xi ∈ supp(X), if y is sampled from M(xi),

∀j �= i ‖F (xj)− y‖2 > ‖F (xi)− y‖2
Thus, for any xi, givenM(xi), we can recover xi with high probability and hence,
we can say

Pr
y∼M(X)

[H(X |M(X) = y) = 0] > 1− 2−n

This means that
H(X |M(X)) ≤ 2−nn < 1

Recall that I(X ;M(X)) = H(X)−H(X |M(X)) ≥ H(X)− 1 = (1− η)n− 1 ≥
(1− 2η)n. This completes the proof of the Lemma 1.
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3 Lower Bound on Noise for Counting Queries

In the last section, we proved that to preserve ε differential privacy for k queries,
one may need to addΩ(k/ε) noise provided d, n( k. However, these queries were
not counting queries. It is interesting to derive lower bounds on noise required
to preserve privacy for counting queries as these are the queries mostly used
in practice. While one might initially hope to prove a similar lower bound for
counting queries, [3] states that there is a ε-differentially private mechanism
which adds Õ(n2/3/ε) noise per query and can answer O(n) counting queries
(when d = nO(1)).

Still, Hardt and Talwar [11] showed that to answer k counting queries, any
mechanism which is ε-differentially private must add min{k/ε,

√
k log(d/k)/ε}

noise (in fact, this is true for k random queries). However, [11] make a tech-
nical assumption that the mechanism has a smooth extension which works for
“fractional” databases as well. In other words, they require the domain of the
mechanism to be (R+)d as opposed to (Z+)d. However, it is not clear if this is
always true i.e., if given a mechanism which is defined only over true (integral)
databases, one can get a mechanism which is defined over “fractional” databases
with similar privacy guarantees.

Next, we prove the same result without making any such technical assump-
tions. Again, our constructions are dependent on combinatorial designs [14].
First, we prove the following simple but useful claim.

Claim. Let a ∈ Z and assume x1, x2, . . . , x2s ∈ (Z+)d such that ∀i, every entry
of xi is either 0 or a. Also, for every i �= �, ‖xi − x�‖1 ≥ Δ. Then, for k ≥ 20s,
there is a linear query F : (Z+)d → Rk such that for every i, � ∈ [2s] and i �= �,
the following holds :

Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

where Δ′ =
√
Δ · a.

Proof. Consider any xi, x� such that i �= �. Note that, z defined as z = xi − x�
is such that all its entries are 0,±a and also that z has at least Δ/a or more
non-zero entries. If we choose r ∈ {−1, 1}d u.a.r., then note that

Y =

d∑
i=1

zi · ri =
∑

zi=±a

zi · ri

Note that the total number of summands is �′ ≥ Δ/a and hence the distribution
of the random variable Y is same as choosing r′ ∈ {−1, 1}d and considering the
random variable

Y ′ = a ·

⎛⎝ �′∑
i=1

r′i

⎞⎠
However using Corollary B.2 from [5], we get
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Pr

[
|Y ′| ≥

√
Δ · a
10

]
= Pr

⎡⎣| �′∑
i=1

r′i| ≥
√
Δ/a

10

⎤⎦ ≥ 9

10
(1)

Now, let us choose r′1, . . . , r
′
k uniformly and independently at random from

{−1, 1}d and consider the linear query F : (Z+)d → Rk defined as

F (x) =

⎛⎝ d∑
j=1

xj · r′1j , . . . ,
d∑

j=1

xj · r′kj

⎞⎠
Set Δ′ =

√
Δ · a. Now, (1) and an application of Chernoff bound implies that

for any xi, x� (i �= �)

Pr
r′1,...,r

′
k

[
Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

]
> 1− 2−k/10

We now observe that the total number of pairs (xi, x�) (i �= �) is at most 22s ≤
2k/10. Applying a union bound, we get that there is some choice of r′1, . . . , r

′
k

(and hence a fixed F ) such that

Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

We now prove a lower bound on the noise required to maintain privacy for
random counting queries. As we have said before, Hardt and Talwar [11] proved
the same result under an additional assumption that the mechanism defined over
integral databases can be smoothly extended to fractional databases as well.

Theorem 4. For every k, d ∈ N and 1 > ε > 0, there is a counting query
F : (Z+)d → Rk such that any mechanism which maintains ε-differential pri-
vacy adds noise Ω(min{k/ε,

√
k log(d/k)/ε}). The size of the database i.e., n =

O(k/ε).

Proof. The proof strategy is to come up with databases meeting the hypothesis
of Claim 3 and use Claim 3 to get a counting query F . We then use Theorem 1
to get a lower bound on the distortion required by any private mechanism to
answer F . We consider two cases : k ≤ log d and k > log d.

The first case is trivial : Namely, consider databases x1, . . . , x2k/20 such that
each xi = �(k/80ε) · ei where ei is the standard unit vector in the ith direction.
This is possible as there are d ≥ 2k different unit vectors. Note that for any
i �= �, ‖xi − x�‖1 = 2 · �k/(80ε). We can now apply Claim 3 and get that there
is a linear query F : (Z+)d → Rk (using Δ = 2 · �k/(80ε) and a = �k/(80ε))
such that

Pr
j∈[k]

[
|F (xi)j − F (x�)j | ≥

√
2

10
�k/(80ε) ≥ k

800ε

]
≥ 1/40



Lower Bounds in Differential Privacy 333

We see that there are 2k/20 = 2s databases which differ by exactly 2 ·�k/(80ε) =
Δ. Note that Δ ≤ (s − 1)/ε. Hence we can apply Theorem 1 to note that to
maintain ε-differential privacy, any mechanism needs to add k/(800ε) noise. In
fact, we note that the �2 error of the answer returned by the mechanism needs
to be Ω(k3/2/ε) which is quantitatively the same as the result in [11].

The second case is slightly more complicated. We use Claim A.1 from [5] to
construct x1, . . . , x2k/20 ∈ (Z+)d with the following properties :

– Every entry of any of the xi’s is either 0 or a ∈ Z such that a ≥ log(d/k)/160ε.
– ∀i, ‖xi‖1 ≤ k/80ε and ∀i �= j, ‖xi − xj‖1 ≥ k/160ε

Again, we can apply Claim 3 and get that there is a linear query F : (Z+)d → Rk

(using Δ ≥ k/(160ε) and a ≥ (log(d/k)/160ε)) such that ∀i �= �

Pr
j∈[k]

[
|F (xi)j − F (x�)j | ≥

1

10
·
√
k log(d/k)

160ε

]
≥ 1/40

Again, we have 2k/20 databases which differ by at most k/(40ε) and hence we can
apply Theorem 1 to get that to maintain ε-differential privacy, any mechanism

needs to add Ω

(√
k log(d/k)

ε

)
noise.

4 Lower Bounds for Approximate Differential Privacy

In this section, we prove lower bounds on the noise required to maintain (ε, δ)
differential privacy for ε, δ > 0. Our lower bounds are valid for any positive δ > 0
and are in fact tight for a constant ε and δ. We note that a quantitatively similar
lower bound was proven for the class of �-way marginals by [12] though our proof
(for random queries) is arguably much simpler.

In this section, we consider databases which are elements of {0, 1}n or in other
words we consider the case when the universe size d = n and the databases
are allowed to have exactly one element of each type. We note that restrict-
ing databases to bit vectors is a well-considered model in literature including
[7,10,13] among others.

We prove the following theorem.

Theorem 5. For any n ∈ N, ε > 0 and 1/20 > δ > 0, there exist positive
constants α, γ and η such that there is a counting query F : {0, 1}n → Rk with
k = αn such that any mechanism M that satisfies

Pr
M
[ Pr
i∈[k]

[|M(x, F )i − F (x)i| ≤ η
√
n] ≥ 1/2 + γ] ≥ 3

√
δ

is not (ε, δ) differentially private. In other words, any mechanism M which with
significant probability i.e., 3

√
δ answers at least 1/2+γ fraction of the k queries

with at most η
√
n noise, is not (ε, δ) differentially private.



334 A. De

An immediate corollary is that there exists a positive constant α and a counting
query F : {0, 1}n → Rk where k = αn such that any mechanism which adds
o(
√
n) noise is not (ε, δ) differentially private for ε > 0 and δ < 1/20.
To do the proof of Theorem 5, we first need to introduce some definitions

previously discussed in [13]. We do note that the paper [13] deals with the two-
party setting but the relevant definitions and the lemma we use here easily extend
to the standard (curator-client) setting of privacy.

Definition 6. A random variable Y = (y1, . . . , yi−1, yi, yi+1, . . . , yn) ∈ {0, 1}n
is said to be δ-approximate strongly α-unpredictable bit source (for α ≥ 1) if with
probability 1− δ over i ∈ [n]

1

α
≤ Pr[Yi = 1|Y1 = y1, . . . , Yi−1 = yi−1, Yi+1 = yi+1, . . . , Yn = yn]

Pr[Yi = 0|Y1 = y1, . . . , Yi−1 = yi−1, Yi+1 = yi+1, . . . , Yn = yn]
≤ α

The next lemma (proven in [13] for the two-party setting) roughly says that for
any (ε, δ) private mechanism, conditioned on the transcript of the mechanism, the
distribution of the database is a δ-approximate strong 2ε-unpredictable source.
More precisely, we have the following lemma.

Lemma 3. Let F : {0, 1}n → Rk be a query and M be a (ε, δ)-differentially
private mechanism for answering F . Let X be the uniform distribution over
{0, 1}n and Γ be the probability distribution over the transcripts of M(x) when
x is drawn from X. Then for any μ > 0 and t← Γ , the distribution X |Γ=t is δt
approximate strongly 2ε+μ-unpredictable sources such that

E
t∈Γ

[δt] ≤ 2δ · 1 + e
−ε−μ

1− e−μ
.

The above lemma trivially follows from Lemma 20 of [13] (full version) and
hence we do not prove it here. Before, proving Theorem 5, we need to recall the
following theorem from [10] (Theorem 24 in the paper).

Theorem 6. For any γ > 0 and any ν = ν(n), there is a constant α = α(γ) > 0
such that for k = αn, there is a counting query F : {0, 1}n → Rk and an
algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ ν] ≥
1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x− x′‖1 ≤ 4ν2

γ2

The following corollary follows immediately from Theorem 6.

Corollary 1. For any δ′ > 0, there are positive constants γ = γ(δ′), η =
η(δ′), α = α(δ′) such that for k = αn, there is a counting query F : {0, 1}n → Rk

and an algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ η
√
n] ≥ 1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x− x′‖1 ≤ δ′n.
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We now prove Theorem 5.

Proof (of Theorem 5).
Let X denote the uniform distribution over {0, 1}n. First, using Lemma 3,

we get that over the randomness of the mechanismM and the choice of x ∈ X , if
we sample a transcript t from M(x, F ), then for any positive μ, the distribution
X |M(x,F )=t is a δt-approximate strongly 2ε+μ-unpredictable sources where δt
satisfies

E
t∈M(x,F )

[δt] ≤ 2δ · 1 + e
−ε−μ

1− e−μ
.

Clearly, we can put μ = 10 and get that the distribution X |M(x,F )=t is a δt-
approximate strongly 2ε+10-unpredictable sources where Et∈M(x,F ) [δt] ≤ 3δ.

By an application of Markov’s inequality, we get that with probability 1 − 2
√
δ

over the choice of x and the randomness of the mechanism M , the distribution
X |M(x,F )=t is 2

√
δ-approximate strongly 2ε+10-unpredictable source.

We now apply corollary 1. In particular, we put δ′ =
√
δ and get that for

some positive γ, η, α (which are functions of δ′ and hence δ), there is a counting
query F : {0, 1}n → Rαn and an algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ η
√
n] ≥ 1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x−x′‖1 ≤
√
δ ·n.

Now, consider a mechanism M which satisfies

Pr
M
[ Pr
i∈[k]

[|M(x, F )i − F (x)i| ≤ η
√
n] ≥ 1/2 + γ] ≥ β

for β = 3
√
δ. Clearly such a mechanism M is not (ε, δ) differentially private

because with probability at least β = 3
√
δ, the algorithm A will be able to

predict at least 1 −
√
δ fraction of the positions which contradicts that with

probability 1−2
√
δ, the distribution X |M(x,F )=t is a 2

√
δ -approximate strongly

2ε+10-unpredictable source.

5 LP Decoding, Euclidean Sections and Hardness of
Releasing �-way Marginals

In this section, we consider attacks on privacy using linear programming. In par-
ticular, we use the technique of LP decoding (previously used in [10] in context
of privacy) to give attacks which violate even minimal notions of privacy when
1 − ε0 (for some ε0 > 0) fraction of the queries are released with insufficient
noise. We do this by establishing a connection between Euclidean sections and
use of LP decoding in context of privacy which does not seem to have explicitly
appeared in the literature before. We remark that the relation between LP de-
coding and Euclidean spaces is very well known in context of compressed sensing
[4]. However, in case of privacy, the adversary is allowed to add small error to
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say 99% of the entries and arbitrary error to the remaining 1% of the entries. In
context of compressed sensing however, the adversary is allowed to add error to
only 1% of the entries.

We first describe how to use linear programming in context of privacy. As-

sume x ∈ Z+d
is a database and A : Rd → Rk is a linear map which represents

a counting query with arity k made on the database x. Further, the right set of
answers is given by y = A ·x. (To make sure that the queries are 1-Lipschitz, all
the entries of A come from [−1, 1].) Suppose, ỹ ∈ R

k is the answer returned by
the mechanism. Then, consider the following optimization problem (which can
be written as a linear program) :

Minimize ‖y − ỹ‖1 subject to y = A · x̃ (2)

The following theorem states the necessary conditions such that the solution to
the above linear program, call it x̃, is such that ‖x − x̃‖1 is small. To state the
theorem, we will need the definition of a Euclidean section.

Definition 7. V ⊆ Rk is said to be a (δ, d, k) euclidean section if V is a linear
subspace of dimension d and for every x ∈ V , the following holds:

√
k‖x‖2 ≥ ‖x‖1 ≥ δ

√
k‖x‖2

Theorem 7. Let A : Rd → Rk be a full rank linear map (k > d) and all the
singular values of A are at least σ. Further, the range of A (denoted by L(A))
is a (δ, d, k) Euclidean section. Let F : (Z+)d → Rk the query corresponding to
A. Then, there exists γ = γ(δ) such that if

Pr
i∈[k]

[|F (x)i − ỹi| ≤ α] ≥ 1− γ

then, any solution x̃ to the linear program (2) satisfies ‖x̃− x‖1 ≤ O(α
√
kd/σ)

where the constant inside the O(·) notation depends on δ.

The proof of this theorem can be found in [5]. The specific problem we are in-
terested in is the application of LP decoding to violate attribute privacy when
�-way marginals of a contingency table are released. Informally, attribute privacy
refers to the situation in a contingency table when all but one of the attributes
are public and attacks on privacy amount to revealing the last attribute given
the responses to the queries and knowledge of all the other attributes. Releasing
the �-way marginals is simply the following : For every subset of size � of the
attributes and every configuration of these �-attributes, a count of how many
entries in the database have that specific configuration on those �-attributes is
released. Due to the lack of space, we refer the reader to [12,5] for the precise
definitions of attribute privacy and �-way marginals. We will also need the defi-
nition of row products of matrices which can be found in [5]. The next theorem
(proven in [5]) shows how if the range of row product of matrices is Euclidean
and all the singular values of the row product are large, one can violate attribute
privacy when noisy �-way marginals are released.
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Lemma 4. Let A1, . . . , A�−1 ∈ {0, 1}d
′×n. Let A = A1 ◦ A2 . . . ◦ A�−1 (with

d′�−1 > n) be their row product. Also, all the singular values of A are at least
σ and the range of A i.e., L(A) is a (δ, n, d′�−1) Euclidean section. Then, there
exists a constant γ = γ(δ) > 0 such that any mechanism which answers at
least 1 − γ fraction of the �-way marginals with noise bounded by α is attribute

non-private provided α
√

d�′−1·n
σ = o(n) or in other words, α = o(

√
nσ/

√
d�′−1)

The main technical tool for us is the following theorem of Rudelson [15].

Theorem 8. [15] Let q, � ∈ N be constants. Also, let D ∼ Rd′×n be a dis-
tribution over matrices such that every entry of the matrix is an independent
and unbiased {0, 1} random variable. Let A1, . . . , A�−1 be i.i.d. copies of ran-
dom matrices drawn from the distribution D and A be the Hadamard product of
A1, . . . , A�−1. Then, provided that d′�−1 ( n log(q) n, with probability 1 − o(1),
the smallest singular value of A denoted by σn(A) satisfies σn(A) = Ω(

√
d′�−1)

Also, the range of A is a (n, d′�−1, γ(q, �)) Euclidean section for some γ(q, �) > 0.

The above theorem uses the notion of iterated logarithm which is defined as :For
r ∈ N, we define log(r) n as follows : log(1) n = max{log2 n, 1} and for r > 1,
log(r) n = log(1) (log(r−1) n). Combining Theorem 8 and Lemma 4, we have the
main theorem of this section.

Theorem 9. Let q, � ∈ N be constant integers. Then, there exists a constant
γ = γ(q, �) > 0 such that any mechanism which releases the �-way marginals of
a table of size n over d′ attributes and n ≤ d′�−1 log(q) n by adding at most η
noise to 1− γ fraction of the queries where

η = o(
√
n)

is attribute non-private. Further, the algorithm which violates attribute privacy
is efficient and uses LP decoding.

This improves upon the following result of Kasiviswanathan et al. [12] who could
violate attribute privacy only when all the queries were allowed o(

√
n) noise.

Theorem 10. [12] Let � ∈ N be a constant and n, d ∈ N such that d′�−1 (
n · log2�−4 n. Then, for every mechanism M which releases �-way marginals of
a database of size n (and universe {0, 1}d′

) such that the noise for every single

query is bounded by η where η )
√
n

log�2−�+1 n
is attribute non-private. The attack

is an efficient algorithm based on �2 norm minimization.

The details of the results in this section can be found in [5].
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Abstract. In this paper we study the problem of approximately releasing the
cut function of a graph while preserving differential privacy, and give new algo-
rithms (and new analyses of existing algorithms) in both the interactive and non-
interactive settings.

Our algorithms in the interactive setting are achieved by revisiting the prob-
lem of releasing differentially private, approximate answers to a large number of
queries on a database. We show that several algorithms for this problem fall into
the same basic framework, and are based on the existence of objects which we
call iterative database construction algorithms. We give a new generic framework
in which new (efficient) IDC algorithms give rise to new (efficient) interactive
private query release mechanisms. Our modular analysis simplifies and tightens
the analysis of previous algorithms, leading to improved bounds. We then give a
new IDC algorithm (and therefore a new private, interactive query release mech-
anism) based on the Frieze/Kannan low-rank matrix decomposition. This new re-
lease mechanism gives an improvement on prior work in a range of parameters
where the size of the database is comparable to the size of the data universe (such
as releasing all cut queries on dense graphs).

We also give a non-interactive algorithm for efficiently releasing private
synthetic data for graph cuts with error O(|V |1.5). Our algorithm is based on ran-
domized response and a non-private implementation of the SDP-based, constant-
factor approximation algorithm for cut-norm due to Alon and Naor. Finally, we
give a reduction based on the IDC framework showing that an efficient, private al-
gorithm for computing sufficiently accurate rank-1 matrix approximations would
lead to an improved efficient algorithm for releasing private synthetic data for
graph cuts. We leave finding such an algorithm as our main open problem.

1 Introduction

Consider a graph representing the online communications between a set of individuals;
each vertex represents a user, and an edge between two users indicates that they have
corresponded by email. It might be useful to allow data analysts to mine this graph for
statistical information. However, the graph is also composed of sensitive information,
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and we cannot release information that reveals much about the existence of specific
edges. Thus we would like a way to analyze the structure of this graph while protect-
ing the privacy of individual edges. Specifically we would like to guarantee differential
privacy [7] (defined in Section 2), which, roughly, requires that our algorithms be ran-
domized, and induce nearly the same distribution over outcomes when given two data
sets (e.g. graphs) which differ in only a single point (e.g. an edge).

Table 1. Comparison of accuracy bounds for linear queries. The bounds in the first column are
prior to this work, the second column are what we achieve in this work, and the last column are the
new bounds instantiated for releasing all cut queries. The bounds listed here are approximate and
hide the dependence on certain parameters, such as δ and β. n denotes database size, k denotes the
total number of queries answered, and X represents the data universe. For a graph G = (V,E),
n = n2 = |E|, |X | = (|V |

2

)
, and for all cut queries, k = 22|V |. Previous efficient results do not

achieve non-trivial (≤ |E|) error, while all of the new bounds do for sufficiently dense graphs.

Previous Bounds
This Paper

General Bounds All Cut Queries

Median Mech.a [19] n2/3(log k)(log |X|)1/3
ε1/3

n1/2(log k)3/4(log |X|)1/4
ε1/2

|E|1/2|V |3/4(log |V |)1/4
ε1/2

Online MW [15] n1/2(log k)(log |X|)1/4
ε

n1/2(log k)1/2(log |X|)1/4
ε1/2

|E|1/2|V |1/2(log |V |)1/4
ε1/2

Frieze/Kannan IDC New in this paper
n
1/4
2 (log k)1/2|X|1/4

ε1/2
b |E|1/4|V |

ε1/2

K-Norm Mech.[16]
√

k
ε

(
log

(
|X|
k

))1/2
c Not in IDC Framework Not Applicable

a The bounds listed here are for linear queries. The Median Mechanism more generally works
for any set of low sensitivity queries Q that have an α-net of size Nα(Q). We improve the

bound from the solution to α = log(Nα(Q)) log2 k
ε

to the solution to α =

√
logNα(Q) log k

ε
.

b Here we use n2 = ‖D‖22, in contrast to other known IDCs, whose error is in terms of n =
‖D‖1. Note that n ≤ n2 ≤ n2.

c For k ≤ |X |/2. This is an approximate bound on average per-query error. All other algorithms
listed bound worst-case per-query error.

One natural objective is to provide private access to the cut function of this graph.
That is, to provide a privacy preserving way for a data analyst to specify any two (of
the exponentially many) subsets of individuals, and to discover (up to some error) the
number of email correspondences that have passed between these two groups. There are
two ways we might try to achieve this goal: We could give an interactive solution where
we give the analyst private oracle access to the cut function. Here the user can write
down any sequence of cut queries and the oracle will respond with private, approximate
answers. We may also try for a stronger, non-interactive solution, in which we release
a private synthetic dataset; a new, private graph that approximately preserves the cut
function of the original graph.
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The case of answering cut queries on a graph is just one instance of the more general
problem of query release for exponentially sized families of linear queries on a data set.
Although this problem has been extensively studied in the differential privacy literature,
we observe that no previously known efficient solution is suitable for the case of releas-
ing all cut queries on graphs. In the setting of cut queries on a graph, we use “efficient
solution” roughly to mean one in which each query is answered in time poly(|V |), in
the interactive setting, or one in which the whole construction runs in time poly(|V |), in
the non-interactive setting. In this paper we provide both efficient interactive and non-
interactive solutions for this problem.

We give a generic framework that converts objects we call iterative database con-
struction (IDC) algorithms into private query release mechanisms in both the interactive
and non-interactive settings. This framework generalizes the median mechanism [19],
the online multiplicative weights mechanism [15], and the offline multiplicative weights
mechanism [12, 14]. Our framework gives a simple, modular analysis of all of these
mechanisms, which lead to tighter bounds in the interactive setting than those given in
[19] and [15]. These improved bounds are crucial to our objective of giving non-trivial
approximations to all possible cut queries. We also instantiate this framework with a
new IDC algorithm for arbitrary linear queries that is based on the Frieze/Kannan low-
rank matrix decomposition [10] and is tailored to releasing cut queries. This algorithm
leads to a new online query release mechanism for linear queries that gives a better ap-
proximation in settings (such as we would encounter trying to answer all cut queries on
a dense graph) where the database size is comparable to the size of the data universe.
We summarize our bounds in Table 1.

We also give a new algorithm (building on techniques for constructing private syn-
thetic data in [2, 8]) in the non-interactive setting that efficiently generates private syn-
thetic graphs that approximately preserve the cut function. Finally, we use our IDC
framework to show that an efficient, private algorithm for privately computing good
rank-1 approximations to matrices would automatically yield efficient private algo-
rithms for releasing synthetic graphs with improved approximation guarantees.

1.1 Our Results and Techniques

Our main conceptual contribution is to define the abstraction of iterative database con-
struction (IDC) algorithms (Section 3) and to show that an efficient IDC for any class of
queriesQ automatically yields an efficient private data release mechanism forQ in both
the interactive and non-interactive settings. Informally, IDCs construct a data structure
that can be used to answer all the queries inQ by iteratively improving a hypothesis data
structure. Moreover, they update the hypothesis when given a query witnessing a sig-
nificant difference between the hypothesis data structure and the underlying database.

In hindsight, this framework generalizes the median mechanism [19] and the online
multiplicative weights mechanism [15]. It also generalizes the offline multiplicative
weights mechanism [12, 14]. All of these mechanisms can be seen to use IDCs of the
sort we define in this work. (In Appendix A we show how these algorithms fall into the
IDC framework.)
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Our generalization and abstraction also allows for a simple, modular analysis of
mechanisms based on IDCs. Using this analysis, we are able to show improved bounds
on the accuracy of both the median mechanism and multiplicative weights mechanism.
These improved bounds are significant in our application of using an interactive mech-
anism to release a large number of cut queries and crucial if we want to answer all cut
queries. When answering all cut queries, the previous bounds would not guarantee er-
ror that is ≤ |E|, meaning that the error may be larger than the largest cut in the graph.
Of course, we can privately guarantee error ≤ |E| simply by releasing the answer 0 for
every cut query. Our new analysis shows that these mechanisms are capable of answer-
ing all 22|V | cut queries with error o(|E|) on sufficiently dense graphs; e.g., multiplica-
tive weights gives sublinear error for graphs with |E| = ω(|V |

√
log |V |).

Although it may seem unrealistic to answer all cut queries using an interactive mech-
anism, our new analysis allows us to give a best-of-both-worlds guarantee that we can
answer each query efficiently with non-trivial accuracy without ever having to “shut
off” the algorithm for answering too many queries. In practice it may be preferable to
limit the number of queries the interactive mechanism will have to answer, in order to
improve the accuracy of the responses. In this case our new bounds still offer signifi-
cant improvements in accuracy.

We also define a new IDC based on the Frieze/Kannan low-rank matrix decompo-
sition [10], which yields a private interactive mechanism for releasing linear queries.
Our new mechanism outperforms previously known techniques when the size of the
database is comparable to the size of the data universe, as is the case on a dense graph.
The error for the Frieze/Kannan IDC is smaller than that for multiplicative weights for
extremely dense graphs, where |E| = Ω(|V |2/ log |V |).

We then consider the problem of efficiently releasing private synthetic data for the
class of cut queries. We show that a technique based on randomized response efficiently
yields a private data structure (but not a synthetic database) capable of answering any
cut query on a graph with |V | vertices up to maximum error O(|V |1.5). (Note this er-
ror is independent of the density of the graph and the Frieze/Kannan and multiplicative
weights IDCs introduce smaller error for sparser graphs.) We then show how to use this
data structure to efficiently construct a synthetic database with only a small constant fac-
tor blowup in our error. Our algorithm is based on a technique for constructing synthetic
data in [2, 8]. Their observation is that, for linear queries, the set of accurate synthetic
databases is described by a (large) set of linear constraints. In the case of cut queries, we
are able to use a constant-factor approximation to the cut-norm due to Alon and Naor
[1] as the separation oracle to find a feasible solution (and thus a synthetic database) ef-
ficiently. Finally, we show how the existence of an efficient private algorithm for finding
good low-rank approximations to matrices would imply the existence of an improved al-
gorithm for privately releasing synthetic data for cut queries, using our IDC framework.

To summarize the results for cut queries: between the multiplicative weights IDC,
the Frieze/Kannan IDC, and randomized response, the best mechanism depends on |E|.
When |E| is below O(|V |2/ log |V |), the multiplicative weights IDC introduces the
least error. For |E| lying between O(|V |2/ log |V |) and O(|V |2), the Frieze/Kannan
IDC introduces the least error. Both IDC mechanisms have error increasing with |E|, fi-
nally matching the error for randomized response when |E| = Θ(|V |2). When



Iterative Constructions and Private Data Release 343

answering k queries, the error for all three mechanisms depends on
√
log k, so these

thresholds are independent of the number of queries.

1.2 Related Work

Differential privacy, introduced in a series of papers [4, 6, 7] in the last decade, has
become a standard solution concept for statistical database privacy. The first mecha-
nism for simultaneously releasing the answers to exponentially large classes of statisti-
cal queries was given in [5]. They showed that the existence of small nets for a class of
queries Q automatically yields a (computationally inefficient) non-interactive, private
algorithm for releasing answers to all the queries in Q with low error. Subsequent im-
provements were given by Dwork et al. [8, 9].

Roth and Roughgarden [19] showed that large classes of queries could also be re-
leased with low error in the interactive setting, in which queries may arrive online, and
the mechanism must provide answers before knowing which queries will arrive in the
future. Subsequently, Hardt and Rothblum [15] gave improved bounds for the online
query release problem based on the multiplicative weights algorithm. In hindsight, both
of these algorithms follow the same basic framework, which is to use an IDC.

Gupta et al. [12] gave a non-interactive data release mechanism based on the multi-
plicative weights algorithm and an arbitrary agnostic learner for a class of queries. An
instantiation of this algorithm (the offline multiplicative weights algorithm) using the
generic agnostic learner of Kasiviswanathan et al. [17] (who use the exponential mech-
anism of [18]) was implemented and experimentally evaluated on the task of releasing
small conjunctions to low error on real data by Hardt, Ligett, and McSherry [14]. This
algorithm gives bounds comparable to those given in this paper, but it does not work
in the interactive setting, and is not computationally efficient for settings in which the
number of queries is exponentially larger than the database size (as is the case with
graph cuts). We note in Section 7 that this generic algorithm can also be instantiated
with any iterative database construction algorithm.

Hardt and Talwar [16] consider the setting where the number of queries is smaller
than the universe size and introduced the K-Norm mechanism. Subsequent improve-
ments were given by [3]. When the number of queries and the database size are com-
parable to the universe size (i.e. |Q| = Ω(|X |), n ≥ Ω (|X |/ log |X |)), the K-Norm
mechanism gives average error that is smaller than the worst-case error promised by the
online multiplicative weights mechanism. In this range of parameters the Frieze/Kannan
IDC and the K-Norm mechanism both improve on the online multiplicative weights,
and give roughly the same error. However, the Frieze/Kannan IDC has bounded worse-
case error, as opposed to average-case error. In general the two mechanisms are in-
comparable, as the error of the Frieze/Kannan IDC has bounded worse-case error and
applies even when |Q| > |X |, but its error has polynomial, rather than logarithmic de-
pendence on |X |.

The Frieze-Kannan low-rank approximation (or the weak regularity lemma) shows
that every matrix can be approximated by a sum of a small number of cut matrices [10,
11], and this fact has many important algorithmic applications. We also use the fact that
the proof extends to more general settings, as was noted by [20].
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2 Preliminaries

In this paper, we study datasets D that consist of collections of n elements from some
universe X . We can also write D ∈ N|X | when it is convenient to represent D as a
histogram over X . We say that two databases D, D′ are adjacent if they differ in only
a single element. As histograms, they are adjacent if ‖D − D′‖1 ≤ 1. We will require
that our algorithms satisfy differential privacy:

Definition 1 (Differential Privacy). A randomized algorithmM : N|X | → R (for any
abstract rangeR) satisfies (ε, δ)-differential privacy if for all adjacent databasesD and
D′, and for all events S ⊆ R, Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ

We will generally think of ε as being a small constant, and δ as being negligibly small
– i.e. smaller than any inverse polynomial function of n.

We note that when we will discuss interactive mechanisms, we must view the output
of a mechanism as the transcript of an interaction between an adaptive adversary who
supplies questions about the database based on previous outcomes of the mechanism,
and the mechanism itself. For clarity, in this paper we will elide specifics about the
model of adaptive private composition. For a detailed treatment of this issue, see [9].

A useful distribution is the Laplace distribution.

Definition 2 (The Laplace Distribution). The Laplace Distribution with mean 0 and
scale b is the distribution with probability density function: Lap(x|b) = 1

2b exp(−
|x|
b ).

We will sometimes write Lap(b) to denote the Laplace distribution with scale b, and
will sometimes abuse notation and write Lap(b) simply to denote a random variable
X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries with
Laplace noise preserves (ε, 0)-differential privacy.

Theorem 1 ([7]). Suppose Q : N|X | → Rk is a function such that for all adjacent
databases D and D′, ‖Q(D) − Q(D′)‖1 ≤ 1. Then the procedure which on input D
releasesQ(D)+(X1, . . . , Xk), where eachXi is an independent draw from a Lap(1/ε)
distribution, preserves (ε, 0)-differential privacy.

It will be useful to understand how privacy parameters for individual steps of an algo-
rithm compose into privacy guarantees for the entire algorithm. The following useful
theorem is due to Dwork, Rothblum, and Vadhan:

Theorem 2 ([9]). Let 0 ≤ ε ≤ 1 be a parameter. Let P,Q be probability measures
supported on a set S such that maxs∈S |log (P (s)/Q(s))| ≤ ε. Then

EP [log (P (s)/Q(s))] ≤ 2ε2.

We are interested in privately releasing accurate answers to large collections of queries.
Queries are functions Q : N|X | → R, and we denote collections of queries by Q. We
write k = |Q| to denote the cardinality of the set of queries.

A common type of queries are linear queries. A linear queryQ has a representation
as a vector [0, 1]|X |, and can be evaluated on a database by taking the dot product
between the query and the histogram representation of the database: Q(D) = Q · D.
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Definition 3 (Accuracy). Let Q be a set of queries. A mechanism M : N|X | → R
is (α, β)-accurate for Q if there exists a function Eval : Q × R → R s.t. for every
databaseD ∈ N|X |, with probability at least 1− β over the coins ofM ,M(D) outputs
r ∈ R such that maxQ∈Q |Q(D)− Eval(Q, r)| ≤ α. We will abuse notation and write
Q(r) = Eval(Q, r).

We say that an algorithm M releases synthetic data (as is the case for our new IDC,
as well as the multiplicative weights IDC [15]) if R = N|X | In this case, M(D) =

D̂ ∈ N|X | and Eval(D̂, Q) = Q(D̂). We say that a synthetic data release algorithm is
efficient if it runs in time polynomial in n = ‖D‖1, the size of the data set. Note that if
n ) |X|, efficient algorithms will have to input and output concise representations of
the dataset (i.e., as collections of items from the universe) instead of using the histogram
representation. Nevertheless, it will be convenient to think of datasets as histograms.

We say an algorithm efficiently releases k queries from a class Q in the interactive
setting if on an arbitrary, adaptively chosen stream of queries Q1, . . . , Qk, it outputs
answers a1, . . . , ak. The algorithm must output each ai after receiving queryQi but be-
fore receiving Qi+1, and is only allowed poly(n) run time per query. We are typically
interested in the case when k can be exponentially large in n. Note that as far as com-
putational efficiency is concerned, releasing synthetic data for a class of queries k is at
least as difficult as releasing queries from k in the interactive setting, since we can use
the synthetic data to answer queries interactively.

Graphs and Cuts. When we consider datasets that represent graphs G = (V,E), we
think of the database as being the edge set DG = E, and the data-universe being the
collection of all possible edges in the complete graph: |X | =

(|V |
2

)
. That is, we consider

the vertex set to be common among all graphs, which differ only in their edge sets. One
example we care about is approximating the cut function of a sensitive graphG.

For any real-valued matrix A ∈ Rm×m′
, for S ⊆ [m] and T ⊆ [m′], we define

A(S, T ) :=
∑

s∈S,t∈T Ast. The cut norm of the matrix A is now defined as ‖A‖C :=
maxS⊆[m],T⊆[m′] |A(S, T )|. A graph G can be represented as its adjacency matrix
AG ∈ {0, 1}|V |×|V |. In this paper, a cut in a graph G is defined by any two subsets of
vertices S, T ⊆ V . We write the value of an S, T cut in G as G(S, T ) := AG(S, T ),
whereAG is the adjacency matrix of G. Similarly, we extend the definition of cut norm
to n vertex graphs naturally by defining ‖G‖C := ‖AG‖C = maxS,T⊆V |G(S, T )| and
‖G − H‖C := ‖AG − AH‖C . The class of cut queries QCut = {QS,T : S, T ⊆ V },
where QS,T (G) = AG(S, T ). Note that cut queries are an example of a class of lin-
ear queries, because we can represent them as a vector in which QS,T [i, j] = 1 if
i ∈ S, j ∈ T and 0 otherwise, and evaluateQS,T (G) =

∑
i,j∈V QS,T [i, j] ·AG[i, j].

Note that as linear queries, we can write cut queries as the outer product of two
vectors: QS,T = χS · χTT , where χS , χT ∈ {0, 1}|V | are the characteristic vectors of
the sets S and T respectively. Let us define a more general class of rank-1 queries on
graphs to be a subset of all linear queries: Qr1 = {Q ∈ [0, 1]|V |×|V | such that Q =
u · vT for some vectors u, v ∈ [0, 1]|V |} . Of course the set of rank-1 queries includes
the set of cut queries, and any mechanism that is accurate with respect to rank-1 queries
is also accurate with respect to cut queries.
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Proofs. Because of space constraints, many of the proofs in this paper have been omit-
ted. The interested reader can see full proofs in the full version of this paper: [13].

3 Iterative Database Constructions

In this section we define the abstraction of iterative database constructions that in-
cludes our new Frieze/Kannan construction and several existing algorithm [19, 15] as a
special case. Roughly, each of these mechanisms works by maintaining a sequence of
data structures D(1),D(2), . . . that give increasingly good approximations to the input
databaseD (in a sense that depends on the IDC). Moreover, these mechanisms produce
the next data structure in the sequence by considering only one query Q that distin-
guishes the real database in the sense that Q(D(t)) differs significantly fromQ(D).

Syntactically, we will consider functions of the form U : RU ×Q×R →RU. The
inputs to U are a data structure inRU, which represents the current data structureD(t);
a queryQ, which represents the distinguishing query, and may be restricted to a certain
set Q; and also a real number. which estimates Q(D). Formally, we define a database
update sequence , to capture the sequence of inputs to U used to generate the database
sequenceD(1),D(2), . . . .

Definition 4 (Database Update Sequence). Let D ∈ N|X | be any database and let{
(D(t), Q(t), Â(t))

}
t=1,...,C

∈ (RU × Q × R)C be a sequence of tuples. We say the

sequence is an (U,D,Q, α, C)-database update sequence if it satisfies the following
properties:

1. D(1) = D(∅, ·, ·),
2. for every t = 1, 2, . . . , C,

∣∣Q(t)(D) −Q(t)(D(t))
∣∣ ≥ α,

3. for every t = 1, 2, . . . , C,
∣∣∣Q(t)(D) − Â(t)

∣∣∣ < α,

4. and for every t = 1, 2, . . . , C − 1, D(t+1) = U(D(t), Q(t), Â(t)).

We note that for all of the iterative database constructions we consider, the approximate
answer Â(t) is used only to determine the sign ofQ(t)(D)−Q(t)(D(t)), which is the mo-
tivation for requiring that Â(t) have error smaller thanα. The main measure of efficiency
we’re interested in from an iterative database construction is the maximum number of
updates we need to perform before the databaseD(t) approximatesD well with respect
to the queries in Q. To this end we define an iterative database construction as follows:

Definition 5 (Iterative Database Construction). Let U : RU ×Q×R →RU be an
update rule and let B : R → R be a function. We say U is a B(α)-iterative database
construction for query class Q if for every database D ∈ N|X |, every (U,D,Q, α, C)-
database update sequence satisfies C ≤ B(α).

Note that, by definition, if U is a B(α)-iterative database construction, then given any
maximal (U,D,Q, α, C)-database update sequence, the final database D(C) must sat-
isfy maxQ∈Q

∣∣Q(D)−Q(D(C))
∣∣ ≤ α or else there would exist another query satisfy-

ing property 2 of Definition 4, and thus there would exist a (U,D,Q, α, C+1)-database
update sequence, contradicting maximality.
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4 Query Release from Iterative Database Construction

In this section we describe an interactive algorithm for releasing linear queries using an
arbitrary iterative database construction.

Algorithm 1. Online Query Release Mechanism

MU(D, ε, δ, α, β, k):
Input: A database D ∈ N

|X|, a parameter α ∈ R, parameters ε, δ, β ∈ [0, 1], and the number
of queries k ∈ N. Oracle access to U, a B = B(α)-iterative database construction for Q.
Parameters:

σ = σ(α) :=
1000

√
B(α) · log(4/δ)

ε
T = T (α) := 4σ(α) · log(2k/β).

Set D(1) := U(∅, ·, ·), C = 0.
For: t = 1, 2, . . . , k

1. Receive a query Q(t) ∈ Q and compute

Z(t) ∼ Lap(σ) A(t) = Q(t)(D) Â(t) = Q(t)(D)+Z(t) Λ(t) = Q(t)(D(t))

2. If: |Â(t) − Λ(t)| ≤ T then: output Λ(t) and set D(t+1) = D(t)

Else: output Â(t), set D(t+1) = U
(
D(t), Q(t), Â(t)

)
, and set C = C + 1.

3. If: C = B(α) then: terminate.

4.1 Privacy Analysis

Theorem 3. Algorithm 1 is (ε, δ)-differentially private.

Proof (Proof Sketch). Our privacy analysis follows the approach of [15] straightfor-
wardly. The details appear in the full version of the paper. Intuitively, we will try to
classify the answers to the queries by the amount of “information leaked about the
database.” This classification will lead to a bound on the total amount of information
leaked, and a tighter bound can be deduced using Theorem 2.

At a very high level, the argument can be thought of in two steps. The first is to argue
that the noise we add has large enough magnitude that the information leaked in the
(small number of) “update rounds” is small. This step is simple and follows from the
bound on the number of update rounds and the well-known properties of the Laplace
distribution. The second step is to argue that the location of the update rounds also leaks
little information. This second step is more difficult, and requires reasoning carefully
about rounds that are “close to update rounds.”

More specifically, though still informally we will consider three possible ranges for
the value of the noise Z(t) in each round t = 1, 2, . . . , k.. Intuitively the three cases
are as follows: 1) The noise is sufficiently small that there would never be an update,
even if the input database were exchanged with an adjacent one. Here we argue no
information is leaked. 2) The noise is sufficiently large that there would always be an
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update, even if the database were exchanged with an adjacent one. In these rounds there
is information leaked, but we also increment C, and thus there cannot be too many of
these before terminating. 3) The noise is intermediate, such that we do not do an update
and increment C, but might if we switched to an adjacent database. In principle there
may be as many as k such rounds, however it will turn out with high probability the
number of such rounds is not much bigger than B.

We then complete the proof by applying Theorem 2 to bound the expected privacy
loss over the course of all the rounds, and apply Azuma’s inequality to argue that except
with probability δ, the total privacy loss does not exceed ε.

4.2 Utility Analysis

Theorem 4. Let D ∈ N|X | be any database. And U be a B(α)-iterative database

construction for query class Q. Then for any β, ε, δ > 0, Algorithm 1 is
(

5T (α)
4 , β

)
-

accurate for Q, as long as T (α) ∈ [4α/3, 2α].

Proof (Proof sketch). Roughly, the argument is as follows: Assume we did not add any
noise to the queries. Then we would answer each query with the exactly-correct answer
A(t) or with Λ(t) so long as Λ(t) is sufficiently close to A(t). Essentially, all we do in
the proof is show that this intuition remains correct when noise is added.

When adding noise we answer with either A(t) + Z(t) or Λ(t), so long as Λ(t) is
sufficiently close to A(t) +Z(t). It is not hard to argue that Z(t) remains small in every
round, and thus the answers in the latter case are not much less accurate than the answers
in the former case.

What remains to be shown is that the mechanism does not terminate early due to
the condition C = B. In order to do this, we show that the sequence of updates forms
a database update sequence, and thus cannot be too long if U is an efficient iterative
database construction. In order to do this, we argue that Z(t) is sufficiently small that
the condition for performing an update (|A(t)+Z(t)−Λ(t)| ≥ T ) is sufficient to ensure
that the query is a good distinguisher (|A(t) − Λ(t)| ≥ α).

In order to get the best accuracy parameters, one can just solve for the equation
α = 3T (α)/4; substituting for T (·), this is the same as solving the following equation

for α: α =
96
√

B(α) log(4/δ) log(k/β)

ε . Using this method we obtain bounds on the error
for various IDCs, which are summarized both in Table 1 and in the full version.

5 An Iterative Database Construction Based on Frieze/Kannan

In this section we describe and analyze an iterative database construction based on the
Frieze/Kannan “cut decomposition” [10]. Although the style of analysis we use was
originally applied specifically to cuts in [10], their argument generalizes to arbitrary
linear queries. To our knowledge, such a generalization was first observed in [20].

Note that the sum in Algorithm 2 denotes entrywise vector addition.

Theorem 5. Let D ∈ N|X | be a dataset. For any α > 0, UFK
α is a B(α)-iterative

database construction for a class of linear queries Q, where B(α) = ‖D‖2
2|X |

α2 .
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Algorithm 2. The Frieze/Kannan-based IDC

UFK
α (D, Q, Â):
If: D = ∅ then: output D′ = ∅
Else if: Q(D)− Â > 0 then: output D′ = D − α

|X| ·Q
Else if: Q(D)− Â < 0 then: output D′ = D + α

|X| ·Q

Proof (Proof sketch). LetD ∈ N|X | be any database and let
{
(D(t), Q(t), Â(t))

}
t=1,...,C

be (UFK
α ,D,Q, α,B)-database update sequence (Definition 4). We want to show that

C ≤ ‖D‖22|X |/α2. Specifically, after ‖D‖22|X |/α2 invocations of UFK
α , the database

D(‖D‖2
2|X |/α2) is (α,Q)-accurate for D, and thus there cannot be a sequence of longer

than ‖D‖22|X |/α2 queries that satisfy property 2 of Definition 4.
In order to formalize this intuition, we use a potential argument as in [10] to show

that for every t = 1, 2, . . . , B,D(t+1) is significantly closer toD thanD(t). Specifically,
our potential function is the L2

2 norm of the database D − D(t), defined as ‖D‖22 =∑
i∈X D(i)2. Observe that ‖D − D(1)‖22 = ‖D‖22, and ‖D‖22 ≥ 0. Thus it will suffices

to show, as we do in the full proof, that in every step, the potential decreases by α2/|X |.

Corollary 1. Let γ = O
(
ε−1/2n

1/4
2 |X |1/4

√
log(k/β)

)
. Then Algorithm 1, instanti-

ated with UFK
γ is (ε, δ)-differentially private and an (α, β)-accurate interactive re-

lease mechanism for query set Q with α = O

(
n
1/4
2 |X |1/4

√
log(k/β) log(1/δ)√

ε

)
where

n2 = ‖D‖22. Note that for databases that are subsets of the data universe (rather than
multisets), n2 = n.

Remark 1. For the setting in which the database represents a graph and the queryset
contains all cut queries, this bounds is O(|V ||E|1/4/

√
ε). This improves on the accu-

racy of the multiplicative weights IDC for dense graphs with |E| ≥ Ω(|V |2/ log |V |).

6 Results for Synthetic Data

In this section, we consider the more demanding task of efficiently releasing synthetic
data for the class of cut queries on graphs. Our algorithm is simple, and is based on
releasing a noisy histogram. Note that for a graph, |X | =

(|V |
2

)
, and D = E, so as long

as |E| = Ω(|V |), the universe is at most a polynomial in the database size. (Moreover,
it is easy to show that there does not exist any (ε, 0)-private mechanism that has error
o(|V |), so the only interesting cases are when |E| = Ω(|V |).)

Consider a database whose elements are drawn from X ; we represent this as a vec-
tor (histogram) D ∈ N|X |. Let D̂ = D + (Y1, . . . , Y|X |) be a “noisy” database, where
each Yi ∼ Lap(1/ε) is an independent draw from the Laplace distribution. Note that
by Theorem 1, the procedure which on inputD releases the noisy database D̂ preserves
(ε, 0)-differential privacy. This follows because the histogram vector can be viewed as
simply the evaluation of the identity queryQ : N|X | → N|X |, which can be easily seen
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to be 1-sensitive. At this stage, we could release D̂ and be satisfied that we have de-
signed a private algorithm. There are two issues: first, we must analyze the utility guar-
antees that D̂ has with respect to our query setQ. Second, D̂ is not quite synthetic data.
It will be a vector with possibly negative entries, and so does not represent a histogram.
Interpreted as a graph, it will be a weighted graph with negative edge weights. Such
an answer may be insufficient for some applications, so in Section 6.1 we show how to
convert such an answer into [0, 1] weighted graph with similar accuracy guarantees.

The utility guarantee of this procedure over the collections Q of linear queries is
also not difficult; i.e., each queryQ ∈ Q is a vector in [0, 1]|X |, and on any databaseD
evaluates to Q(D) = 〈Q,D〉.

Lemma 1. Suppose that Q ⊆ [0, 1]|X | is some collection of linear queries. For the
case |Q| ≤ (β/2) 2|X |/6, it holds that with probability at least 1 − β, for every query
Q ∈ Q, |Q(D) − Q(D̂)| ≤ ε−1

√
6|X | log(|Q|/β). For general Q, the error bound is

O(ε−1
√
|X | log(|X |/β) log(|Q|/β)).

The proof of this lemma uses standard moment-generating function techniques and is
deferred to the full version.

In summary, the bounds on the error are ≈ ε−1
√
|X | log |Q|, with some correction

terms depending on whether the size of the query set is at most 2O(|X |) or larger.

6.1 Randomized Response and Synthetic Data for Cut Queries

For the case of cuts in graph on a vertex set V , the database is a vector in {0, 1}(
|V |
2 ),

and the noisy database just adds independent Lap(1/ε) noise to each bit value. Since
the query set Qcuts has size 22|V |, (namely it consists of all (S, T ) pairs), we have
|Qcuts| ) (β/2)2|X |/6 for all reasonable β and |V |, we can use the randomized re-
sponse analysis above to get accuracy

O

(((|V |
2

)
log(|Qcuts|/β)

)1/2
/ε

)
= O((|V |3/2 + |V | log 1/β)/ε)

with probability at least 1−β. In fact, one can give a slightly tighter analysis where the
accuracy depends on the size of the sets S, T—by observing that the number of random
variables participating in a cut query (S, T ) is exactly |S||T |, one can show that the
accuracy for all cuts is whp O(ε−1

√
|V ||S||T |).

Viewing the noisy database D̂ as a weighted graph Ĝ, where the weight of (u, v)
is 1(u,v)∈E(G) + Lap(1/ε), note that Ĝ has negative weight edges and hence cannot
be considered synthetic data. We can remedy the situation (using the idea of solving a
suitable linear program [2, 8]):

Lemma 2 (Synthetic Data for Cuts). There is a computationally efficient (ε, 0)-diff-
erentially private randomized algorithm that takes a unweighted graph G and outputs
a synthetic graphG′ such that, with high probability, ‖G−G′‖C ≤ O(|V |3/2/ε)—all
cuts in G andG′ are within O(|V |3/2/ε) additive error.
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The proof is deferred to the full version, but the idea is straightforward: we write a
linear program with exponentially many constraints to solve for a synthetic database,
and use an SDP-based approximation algorithm of [1] for the cut-norm problem as an
approximate separation oracle to solve the LP.

7 Towards Improving on Randomized Response for Synthetic Data

In this section, we consider one possible avenue towards giving an efficient algorithm
for privately generating synthetic data for graph cuts that improves over randomized
response. We first show how generically, any efficient Iterative Database Construction
algorithm can be used to give an efficient offline algorithm for privately releasing syn-
thetic data when paired with an efficient distinguisher. The analysis here follows the
analysis of [12], who analyzed the corresponding algorithm when instantiated with the
multiplicative weights algorithm, rather than a generic Iterative Database Construction
algorithm.

We will pair an Iterative Database Construction algorithm for a class of queries C
with a corresponding distinguisher.

Definition 6 ((F (ε), γ)-Private Distinguisher). Let Q be a set of queries, let γ ≥ 0
and let F (ε) : R

+ → Z be a function. An algorithm Distinguishε : N
|X |×N|X | → Q is

an (F (ε), γ)-Private Distinguisher for Q if for every setting of the privacy parameter
ε, it is ε-differentially private with respect to D and if for every D,D′ ∈ N|X | it outputs
a Q∗ ∈ Q such that |Q∗(D) − Q∗(D′)| ≥ maxQ∈Q |Q(D) − Q(D′)| − F (ε) with
probability at least 1− γ.

We present the algorithm in the full version, but the idea is very simple. Rather than
waiting for a query to arrive online that induces an update step, we find queries which
will induce update steps using the distinguisher. The IDC algorithm will guarantee that
there will not be too many update steps, and so an efficient distinguisher will yield an
efficient algorithm for releasing synthetic data.

Theorem 6. There is an (ε, δ)-differentially private mechanism for releasing synthetic
data such that given an (F (ε), γ)-private distinguisher and a B(α)-IDC, it is (α, β)-
accurate for:

α ≥ max

[
16
√
B(α) log(1/δ) log(2B(α)/β)

ε
, 2F

(
ε

4
√
B(α) log(1/δ)

)]

as long as γ ≤ β/(2B(α))

We defer the proof until the full version. Note that the running time of the algorithm
is dominated by the running time of the IDC algorithm and of the distinguishing al-
gorithm: efficient IDC algorithms paired with efficient distinguishing algorithms for a
class of queriesQ automatically correspond to efficient algorithms for privately releas-
ing synthetic data useful for Q. For the class of graph cut queries, both the multiplica-
tive weights IDC and the Frieze/Kannan IDC are computationally efficient. Therefore,
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one approach to finding a computationally efficient algorithm for releasing synthetic
data useful for cut queries is to find an efficient private distinguisher for cut queries.

One curious aspect of this approach is that it might in fact be computationally easier
to release a larger class of queries than cut queries, even though this is a strictly more
difficult task from an information theoretic perspective. For example, solving the distin-
guishing problem for cut queries on graphs D and D′ is equivalent to finding a pair of
sets (S, T ) which witness the cut-norm on the graph D − D′. On the other hand, solv-
ing the distinguishing problem for rank-1 queries (which include cut queries, and are a
larger class) is equivalent to finding the best rank-1 approximation to the adjacency ma-
trixD−D′. The former problem is NP-hard, whereas the latter problem can be quickly
solved non-privately using the singular value decomposition.

Corollary 2. An efficient (F (ε), γ)-distinguisher for the class of rank-1 queries for
F (ε) = T/ε would yield an (α, β)-accurate mechanism for releasing synthetic data
for graph cuts (and all rank-1 queries) for any β ≥ Ω(exp(−εT )) and: αMW =

2 4
√
2ε−1/2

√
Tm (log |V | log(1/δ))1/4 using the multiplicative weights IDC, or:αFK ≥

2ε−1/2(m log(1/δ))1/4
√
|V |T using the Frieze/Kannan IDC

The proof, deferred to the full version, only requires plugging in the parameters for
these two IDC algorithms. We remark that for the class of rank-1 queries, an efficient

(F (ε), γ)-distinguisher with F (ε) = Õ
(

|V |
ε

)
would be sufficient to yield an efficient

algorithm for releasing synthetic data useful for cut queries, with guarantees matching
those of the best known algorithms for the interactive case, as listed in Table 1. For
graphs for which the size of the edge setm ≤ Ω(n2), this would yield an improvement
over our randomized response mechanism, which is the best mechanism currently for
privately releasing synthetic data for graph cuts. We observe that such a distinguisher
is information-theoretically possible, and the only question is whether such a private
distinguisher exists that is also computationally efficient. To see this, observe that an
O(|V |)-net for the set of all rank-1 queries can be constructed by considering all pairs
of vectors x, y ∈ {0, 1/|V |, 2/|V |, . . . , 1}|V | and their associated outer-products x ·yT .
Since there are at most |V |2|V | such pairs, the exponential mechanism serves as an
inefficient F (ε) distinguisher for F (ε) = O(|V | log |V |/ε).

We note that a distinguisher for rank-1 queries must simply give a good rank-1 ap-
proximation to the matrix D −D′, which will always be symmetric in this setting (be-
cause both the hypothesis is at every step simply the adjacency matrix for an undirected
graph, as of course is the private database), and hence an algorithm for finding accurate
rank-1 approximations merely for symmetric matrices would already yield an algorithm
for releasing synthetic data for cuts! Unlike classes of queries like conjunctions, for
which their are imposing barriers to privately outputting useful synthetic data [21, 12],
there are as far as we know no such barriers to improving our randomized-response
based results for synthetic data for graph cuts. We leave finding such an algorithm, for
privately giving low rank approximations to matrices, as an intriguing open problem.

Acknowledgements. This paper benefited from interactions with many people. We
particularly thank Moritz Hardt and Kunal Talwar for extensive, enlightening discus-
sions. In particular, the observation that randomized response leads to a data structure



Iterative Constructions and Private Data Release 353

for graph cuts with error O(|V |1.5) is due to Kunal Talwar. We thank Salil Vadhan for
helpful discussions about the Frieze/Kannan low-rank matrix decomposition, and Frank
McSherry and Adam Smith for helpful discussions about algorithms for computing low-
rank matrix approximations. We thank Cynthia Dwork for always fruitful conversations.

References

[1] Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J.
Comput. 35(4), 787–803 (2006) (electronic)

[2] Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In: PODS, pp. 273–
282 (2007)

[3] Bhaskara, A., Krishnaswamy, R., Talwar, K.: Unconditional differentially private mecha-
nisms for linear queries (2011) (manuscript)

[4] Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework.
In: PODS, pp. 128–138 (2005)

[5] Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database
privacy. In: STOC, pp. 609–618 (2008)

[6] Chawla, S., Dwork, C., McSherry, F., Smith, A., Wee, H.: Toward Privacy in Public
Databases. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 363–385. Springer, Heidel-
berg (2005)

[7] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private
Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

[8] Dwork, C., Naor, M., Reingold, O., Rothblum, G., Vadhan, S.: On the complexity of differ-
entially private data release: efficient algorithms and hardness results. In: STOC, pp. 381–
390 (2009)

[9] Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: FOCS, pp. 51–
60 (2010)

[10] Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinator-
ica 19(2), 175–220 (1999)

[11] Frieze, A., Kannan, R.: A simple algorithm for constructing Szemerédi’s regularity parti-
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A Other Iterative Database Construction Algorithms

In this section, we demonstrate how the median mechanism and the multiplicative
weights mechanism fit into the IDC framework. These mechanisms apply to general
classes of linear queriesQ.

A.1 The Median Mechanism

In this section, we show how to use the median database subroutine as an Iterative
Database Construction.

Definition 7 (Median Datastructure). A median datastructure D is a collection of
databasesD ⊂ N|X |. Any query can be evaluated on a median datastructure as follows:
Q(D) = Median({Q(D′) : D′ ∈ D}).

Algorithm 3. The Median Mechanism (MM) Algorithm

UMM
k,α (Dt, Q(t), Â(t))

If: Dt = ∅ then: output D0 = {D ∈ N
|X| : |D| = n2 log k/α2}

Else if: Q(t)(Dt)− Â(t) > 0 then: output D′ = D′ \ {D ∈ D : Q(t)(D) ≥ Q(t)(D)}
Else if: Q(t)(Dt)− Â(t) < 0 then: output D′ = D′ \ {D ∈ D : Q(t)(D) ≤ Q(t)(D)}

Theorem 7. The Median Mechanism algorithm is a B(α) = n2 log |X | log k/α2 iter-
ative database construction algorithm for every class of k linear queries Q.

Proof. Let D ∈ N|X | be any database and consider a (UMM
k ,D∗,Q, α,B)-database

update sequence,
{
(Dt, Q(t), Â(t))

}
t=1,...,B

. It will be sufficient if we can show that

B(α) ≤ n2 log |X | log k/α2. Specifically, that after n2 log |X | log k/α2 invocations
of UMM

k,α , the median datastructure Dn2 log |X | log k/α2

is (α,Q)-accurate for D. The
argument is simple. First, we have a simple fact from [5]:

Claim. For any set of k linear queries Q and any database D of size n, there is a
databaseD′ of size |D′| = n2 log k/α2 so thatD′ is α-accurate forD with respect toQ.

From this claim, we have that |Dt| ≥ 1 for all t, and so can always be used to evaluate
queries. On the other hand, each update step eliminates half of the databases in the
median datastructure: |Dt| = |Dt−1|/2. This is because the update step eliminates
every database either above or below the median with respect to the last query. Initially
|D0| = |X |n2 log k/α2

, and so there can be at most B(α) ≤ log n2|X | log k/α2 update
steps before we would have |DB | < 1, a contradiction.

A.2 The Multiplicative Weights Mechanism

In this section we show how to use the multiplicative weights subroutine as an Itera-
tive Database Construction. The analysis of the multiplicative weights algorithm is not
new, and follows [15]. It will be convenient to think of our databases in this section as
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probability distributions, i.e. normalized so that ||D||1 = 1. Note that if we are α/n
accurate for the normalized database, we are α-accurate for the un-normalized database
with respect to any set of linear queries.

Algorithm 4. The Multiplicative Weights (MW) Algorithm

UMW
α (Dt, Q(t), Â(t)):

Let η ← α/(2n).
If: Dt = ∅ then: output D′ = D ∈ R

|X| such that D0
i = 1/|X | for all i.

if Â(t) < Q(t)(Dt) then
Let rt = Q(t)

else
Let rt = 1−Q(t)

end if
Update: For all i ∈ [|X |] Let

D̂t+1
i = exp(−ηrt(Dt

i)) · Dt
i

Dt+1
i =

D̂t+1
i∑|X|

j=1 D̂t+1
j

Output Dt+1.

Theorem 8. The Multiplicative Weights algorithm is a B(α) = 4n2 log |X |/α2 itera-
tive database construction algorithm for every class of linear queriesQ.

Proof. Let D ∈ N|X | be any database and consider a (UMW ,D∗,Q, α,B)-database

update sequence,
{
(D(t), Q(t), Â(t))

}
t=1,...,B

. It will be sufficient if we can show that

B(α) ≤ 4n2 log |X |/α2. Specifically, that after 4n2 log |X |/α2 invocations of UMW ,
the database D(4n2 log |X |/α2) is (α,Q)-accurate for D. First let D̂ ∈ R|X| be a nor-
malization of the database D: D̂i = Di/‖D‖1. Note that for any linear query,Q(D) =
n ·Q(D̂). We define:

Ψt
def
= D(D̂||Dt) =

|X |∑
i=1

D̂i log

(
D̂i

Dt
i

)

We begin with a simple fact:

Claim ([15]). For all t: Ψt ≥ 0, and Ψ0 ≤ log |X |.

We will argue that in every step for which |Q(t)(D) − Q(t)(Dt)| ≥ α/n the potential
drops by at least α2/4n. Because the potential begins at log |X |, and must always be
non-negative, we know that there can be at most B(α) ≤ 4n2 log |X |/α2 steps before
the algorithm outputs a databaseDt such that maxQ∈Q |Q(D)−Q(Dt)| < α/n, which
is exactly the condition that we want.
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Lemma 3 ([15])
Ψt − Ψt+1 ≥ η

(
rt(Dt)− rt(D)

)
− η2

Proof

Ψt − Ψt+1 =

|X |∑
i=1

D̂i log

(
Dt+1

i

Dt
i

)

= −ηrt(D)− log

⎛⎝ |X |∑
i=1

exp(−ηrt(xi))Dt
i

⎞⎠
≥ −ηrt(D)− log

⎛⎝ |X |∑
i=1

Dt
i(1 + η

2 − ηrt(xi))

⎞⎠
≥ η

(
rt(Dt)− rt(D)

)
− η2

The rest of the proof now follows easily. By the conditions of an iterative database con-
struction algorithm, |Â(t)−Q(t)(D)| ≤ α/(2n). Hence, for each t such that |Q(t)(D)−
Q(t)(Dt)| ≥ α/n, we also have that Q(t)(D) > Q(t)(Dt) if and only if Â(t) >
Q(t)(Dt). In particular, rt = Q(t) if Q(t)(Dt)−Q(t)(D) ≥ α/n, and rt = 1 −Q(t) if
Q(t)(D)−Q(t)(Dt) ≥ α/n. Therefore, by Lemma 3 and the fact that η = α/2n:

Ψt − Ψt+1 ≥
α

2n

(
rt(Dt)− rt(D)

)
− α2

4n2
≥ α

2n

(α
n

)
− α2

4n2
=
α2

4n2
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Abstract. Unlike the standard notion of pseudorandom functions
(PRF), a non-adaptive PRF is only required to be indistinguishable from
random in the eyes of a non-adaptive distinguisher (i.e., one that pre-
pares its oracle calls in advance). A recent line of research has studied the
possibility of a direct construction of adaptive PRFs from non-adaptive
ones, where direct means that the constructed adaptive PRF uses only
few (ideally, constant number of) calls to the underlying non-adaptive
PRF. Unfortunately, this study has only yielded negative results, show-
ing that “natural” such constructions are unlikely to exist (e.g., Myers
[EUROCRYPT ’04], Pietrzak [CRYPTO ’05, EUROCRYPT ’06]).

We give an affirmative answer to the above question, presenting a
direct construction of adaptive PRFs from non-adaptive ones. Our con-
struction is extremely simple, a composition of the non-adaptive PRF
with an appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser,
and Micali [11], cannot be distinguished from a family of truly random functions
by an efficient distinguisher who is given an oracle access to a random member
of the family. PRFs have an extremely important role in cryptography, allowing
parties, which share a common secret key, to send secure messages, identify them-
selves and to authenticate messages [10, 13]. In addition, they have many other
applications, essentially in any setting that requires random function provided
as black-box [2, 3, 6, 7, 14, 18]. Different PRF constructions are known in the
literature, whose security is based on different hardness assumption. Construc-
tions relevant to this work are those based on the existence of pseudorandom
generators [11] (and thus on the existence of one-way functions [12]), and on,
the so called, synthesizers [17].

In this work we study the question of constructing (adaptive) PRFs from
non-adaptive PRFs. The latter primitive is a (weaker) variant of the standard
PRF we mentioned above, whose security is only guaranteed to hold against
non-adaptive distinguishers (i.e., ones that “write” all their queries before the
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first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom
generator or as a synthesizer, [11, 17] tell us how to construct (adaptive) PRF
from a non-adaptive one. In both of these constructions, however, the resulting
(adaptive) PRF makes Θ(n) calls to the underlying non-adaptive PRF (where
n being the input length of the functions).1

A recent line of work has tried to figure out whether more efficient reductions
from adaptive to non-adaptive PRF’s are likely to exist. In a sequence of works
[16, 19, 20, 5], it was shown that several “natural” approaches (e.g., composition
or XORing members of the non-adaptive family with itself) are unlikely to work.
See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate
pairwise independent hash function, yields an adaptive PRF. To state our result
more formally, we use the following definitions: a function family F is T =
T (n)-adaptive PRF, if no distinguisher of running time at most T , can tell a
random member of F from a random function with advantage larger than 1/T .
The family F is T -non-adaptive PRF, if the above is only guarantee to hold
against non-adaptive distinguishers. Given two function families F1 and F2, we
let F1 ◦ F2 [resp., F1

⊕
F2] be the function family whose members are all pairs

(f, g) ∈ F1×F2, and the action (f, g)(x) is defined as f(g(x)) [resp., f(x)⊕g(x)].
We prove the following statements (see Section 3 for the formal statements).

Theorem 1 (Informal). Let F be a (p(n) · T (n))-non-adaptive PRF, where
p ∈ poly is function of the evaluating time of F , and let H be an efficient
pairwise-independent function family mapping strings of length n to [T (n)]{0,1}n,
where [T ]{0,1}n is the first T elements (in lexicographic order) of {0, 1}n. Then
F ◦ H is a

(
3
√
T (n)/2

)
-adaptive PRF.

For instance, assuming that F is a (p(n) · 2cn)-non-adaptive PRF and that H
maps strings of length n to [2cn]{0,1}n , Theorem 1 yields that F ◦H is a

(
2

cn
3 −1

)
-

adaptive PRF.
Theorem 1 is only useful, however, for polynomial-time computable T ’s (in

this case, the family H assumed by the theorem exists, see Section 2.2). Un-
fortunately, in the important case where F is only assumed to be polynomially
secure non-adaptive PRF, no useful polynomial-time computable T is guaran-
teed to exists.2

We suggest two different solutions for handling polynomially secure PRFs.
In Section 4 we observe (following Bellare [1]) that a polynomially secure non-
adaptive PRF is a T -non-adaptive PRF for some T ∈ nω(1). Since this T can

1 We remark that if one is only interested in polynomial security (i.e., no adaptive
ppt distinguishes with more than negligible probability), then w(log n) calls are
sufficient (cf., [8, Sec. 3.8.4, Exe. 30]).

2 Clearly F is p-non-adaptive PRF for any p ∈ poly, but applying Theorem 1 with
T ∈ poly, does not yield a polynomially secure adaptive PRF.
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be assumed without loss of generality to be a power of two, Theorem 1 yields a
non-uniform (uses n-bit advice) polynomially secure adaptive PRF, that makes
a single call to the underlying non-adaptive PRF. Our second solution is to use
the following “combiner”, to construct a (uniform) adaptively secure PRF, which
makes ω(1) parallel calls to the underlying non-adaptive PRF.

Corollary 1 (Informal). Let F be a polynomially secure non-adaptive PRF,
let H = {Hn}n∈N be an efficient pairwise-independent length-preserving function
family and let k(n) ∈ ω(1) be polynomial-time computable function.

For n ∈ N and i ∈ [n], let Ĥn

i
be the function family Ĥn

i
= {ĥ : h ∈ H}, where

ĥ(x) = 0n−i||h(x)1,...,i (‘||’ stands for string concatenation). Then the ensemble

{
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

�i·log n�
)
}n∈N is a polynomially secure adaptive PRF.

1.2 Proof Idea

To prove Theorem 1 we first show that F ◦ H is indistinguishable from Π ◦ H,
where Π being the set of all functions from {0, 1}n to {0, 1}�(n) (letting �(n)
be F ’s output length), and then conclude the proof by showing that Π ◦ H is
indistinguishable from Π .

F ◦ H Is indistinguishable from Π ◦ H. Let D be (a possibly adaptive) al-
gorithm of running time T (n), which distinguishes F ◦ H from Π ◦ H with

advantage ε(n). We use D to build a non-adaptive distinguisher D̂ of running
time p(n) · T (n), which distinguishes F from Π with advantage ε(n). Given

an oracle access to a function φ, the distinguisher D̂φ(1n) first queries φ on
all the elements of [T (n)]{0,1}n . Next it chooses at uniform h ∈ H, and uses

the stored answers to its queries, to emulate Dφ◦h(1n).

Since D̂ runs in time p(n) · T (n), for some large enough p ∈ poly, makes
non-adaptive queries, and distinguishes F from Π with advantage ε(n), the
assumed security of F yields that ε(n) < 1

p(n)·T (n) .

Π ◦ H Is indistinguishable from Π. We prove that Π ◦ H is statistically in-
distinguishable from Π . Namely, even an unbounded distinguisher (that
makes bounded number of calls) cannot distinguish between the families.
The idea of the proof is fairly simple. Let D be an s-query algorithm trying
to distinguish between Π ◦ H and Π . We first note that the distinguish-
ing advantage of D is bounded by its probability of finding a collision in a
random φ ∈ Π ◦ H (in case no collision occurs, φ’s output is uniform). We
next argue that in order to find a collision in φ, the distinguisher D gains
nothing from being adaptive. Indeed, assuming that D found no collision
until the i’th call, then it has only learned that h does not collide on these
first i queries. Therefore, a random (or even a constant) query as the (i+1)
call, has the same chance to yield a collision, as any other query has. Hence,
we assume without loss of generality that D is non-adaptive, and use the
pairwise independence of H to conclude that D’s probability in finding a
collision, and thus its distinguishing advantage, is bounded by s(n)2/T (n).
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Combining the above two observations, we conclude that an adaptive dis-
tinguisher whose running time is bounded by 1

2
3
√
T (n), cannot distinguish

F ◦ H from Π (i.e., from a random function) with an advantage better than
T (n)

2
3 /4

T (n) + 1
p(n)T (n) ≤ 2/ 3

√
T (n). Namely, F ◦H is a

(
3
√
T (n)/2

)
-adaptive PRF.

1.3 Related Work

Maurer and Pietrzak [15] were the first to consider the question of building
adaptive PRFs from non-adaptive ones. They showed that in the information
theoretic model, a self composition of a non-adaptive PRF does yield an adaptive
PRF.3

In contrast, the situation in the computational model (which we consider here)
seems very different: Myers [16] proved that it is impossible to reprove the result
of [15] via fully-black-box reductions. Pietrzak [19] showed that under the Deci-
sional Diffie-Hellman (DDH) assumption, composition does not imply adaptive
security. Where in [20] he showed that the existence of non-adaptive PRFs whose
composition is not adaptively secure, yields that key-agreement protocol exists.
Finally, Cho et al. [5] generalized [20] by proving that composition of two non-
adaptive PRFs is not adaptively secure, iff (uniform transcript) key agreement
protocol exists. We mention that [16, 19, 5], and in a sense also [15], hold also
with respect to XORing of the non-adaptive families.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ‘||’ denote string con-
catenation. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. For an integer t, we let [t] = {1, . . . , t}, and
for a set S ⊆ {0, 1}∗ with |S| ≥ t, we let [t]S be the first t elements (in in-
creasing lexicographic order) of S. A function μ : N→ [0, 1] is negligible, denoted
μ(n) = neg(n), if μ(n) = n−ω(1). We let poly denote the set all polynomials, and
let ppt denote the set of probabilistic algorithms (i.e., Turing machines) that
run in strictly polynomial time.

Given a random variable X , we write X(x) to denote Pr[X = x], and write
x ← X to indicate that x is selected according to X . Similarly, given a fi-
nite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and Q over
a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2

∑
u∈U |P (u)−Q(u)|.

3 Specifically, assuming that the non-adaptive PRF is (Q, ε)-non-adaptively secure, no
Q-query non-adaptive algorithm distinguishes it from random with advantage larger
than ε, then the resulting PRF is (Q, ε(1 + ln 1

ε
))-adaptively secure.
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2.2 Ensemble of Function Families

Let F = {Fn : Dn !→ Rn}n∈N stands for an ensemble of function families, where
each f ∈ Fn has domain Dn and its range contained in Rn. Such ensemble is
length preserving, if Dn = Rn = {0, 1}n for every n.

Definition 1 (efficient function family ensembles). A function family en-
semble F = {Fn}n∈N is efficient, if the following hold:

Samplable. F is samplable in polynomial-time: there exists a ppt that given
1n, outputs (the description of) a uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and
(a description of) f ∈ Fn, outputs f(x).

Operating on Function Families

Definition 2 (composition of function families). Let F1 = {F1
n : D1

n !→
R1

n}n∈N and F2 = {F2
n : D2

n !→ R2
n}n∈N be two ensembles of function families

with R1
n ⊆ D2

n for every n. We define the composition of F1 with F2 as F2 ◦
F1 = {F2

n ◦ F1
n : D1

n !→ R2
n}n∈N, where F2

n ◦ F1
n = {(f2, f1) ∈ F2

n × F1
n}, and

(f2, f1)(x) := f2(f1(x)).

Definition 3 (XOR of function families). Let F1 = {F1
n : D1

n !→ R1
n}n∈N

and F2 = {F2
n : D2

n !→ R2
n}n∈N be two ensembles of function families with

R1
n,R2

n ⊆ {0, 1}�(n) for every n. We define the XOR of F1 with F2 as
F2

⊕
F1 = {F2

n

⊕
F1
n : D1

n∩D2
n !→ {0, 1}�(n)}n∈N, where F2

n

⊕
F1
n = {(f2, f1) ∈

F2
n ×F1

n}, and (f2, f1)(x) := f2(x)⊕ f1(x).

Pairwise Independent Hashing

Definition 4 (pairwise independent families). A function family H =
{h : D !→ R} is pairwise independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
,

for every distinct x1, x2 ∈ D and every y1, y2 ∈ R.

For every � ∈ poly, the existence of efficient pairwise-independent family en-
sembles mapping strings of length n to strings of length �(n) is well known
([4]). In this paper we use efficient pairwise-independent function family en-
sembles mapping strings of length n to the set [T (n)]{0,1}n , where T (n) ≤ 2n

and is without loss of generality a power of two.4 Let H be an efficient length-
preserving, pairwise-independent function family ensemble and assume that
t(n) := logT (n) is polynomial-time computable. Then the function family

Ĥ = {Ĥn = {h′ : h ∈ Hn, h
′(x) = 0n−t(n)||h(x)1,...,t(n)}}, is an efficient pairwise-

independent function family ensemble, mapping strings of length n to the set
[T (n)]{0,1}n .

4 For our applications, see Section 3, we can always consider T ′(n) = 2�log(T (n))	,
which only causes us a factor of two loss in the resulting security.
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Pseudorandom Functions

Definition 5 (pseudorandom functions). An efficient function family en-
semble F = {Fn : {0, 1}n !→ {0, 1}�(n)}n∈N is a (T (n), ε(n))-adaptive PRF, if for
every oracle-aided algorithm (distinguisher) D of running time T (n) and large
enough n, it holds that∣∣Prf←Fn [D

f (1n) = 1]− Prπ←Πn [D
π(1n) = 1]

∣∣ ≤ ε(n),
where Πn is the set of all functions from {0, 1}n to {0, 1}�(n). If we limit D above
to be non-adaptive (i.e., it has to write all his oracle calls before making the first
call), then F is called (T (n), ε(n))-non-adaptive PRF.

The ensemble F is a t-adaptive PRF, if it is a (t, 1/t)-adaptive PRF according
to the above definition. It is polynomially secure adaptive PRF (for short, adaptive
PRF), if it is a p-adaptive PRF for every p ∈ poly. Finally, it is super-polynomial
secure adaptive PRF, if it T -adaptive PRF for some T (n) ∈ nω(1). The same
conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Section 4
we prove that the converse is also true: a polynomially secure PRF is also super-
polynomial secure PRF.

3 Our Construction

In this section we present the main contribution of this paper — a direct con-
struction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 2 (restatement of Theorem 1). Let T be a polynomial-time com-
putable integer function, let H = {Hn : {0, 1}n !→ [T (n)]{0,1}n} be an efficient
pairwise independent function family ensemble, and let F = {Fn : {0, 1}n !→
{0, 1}�(n)} be a (p(n) · T (n), ε(n))-non-adaptive PRF, where p ∈ poly is
determined by the computation time of T , F and H. Then F ◦ H is a(
s(n), ε(n) + s(n)2

T (n)

)
-adaptive PRF for every s(n) < T (n).

Theorem 2 yields the following simpler statement.

Corollary 2. Let T , p and H be as in Theorem 2. Assuming F is a (p(n)T (n))-

non-adaptive PRF, then F ◦ H is a
(

3
√
T (n)/2

)
-adaptive PRF.

Proof. Applying Theorem 2 with respect to s(n) = 3
√
T (n)/2 and ε(n) =

1
p(n)T (n) , yields that F ◦ H is a

(
s(n), 1

p(n)T (n) +
s(n)2

T (n)

)
-adaptive PRF. Since

1
p(n)T (n) <

1
2s(n) and s(n)2

T (n) ≤
1

2s(n) , it follows that F ◦ H is a (s, 1/s)-adaptive

PRF. �
To prove Theorem 2, we use the (non efficient) function family ensemble Π ◦ H,
where Π = Π� (i.e., the ensemble of all functions from {0, 1}n to {0, 1}�), and
� = �(n) is the output length of F . We first show that F ◦ H is computationally
indistinguishable from Π ◦ H, and complete the proof showing that Π ◦ H is
statistically indistinguishable from Π .
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3.1 F ◦ H Is Computationally Indistinguishable From Π ◦ H
Lemma 1. Let T , F and H be as in Theorem 2. Then for every oracle-aided
distinguisher D of running time T , there exists a non-adaptive oracle-aided dis-
tinguisher D̂ of running time p(n) · T (n), for some p ∈ poly (determined by the
computation time of T , F and H), with∣∣Prg←Fn [D̂

g(1n) = 1]− Prg←Πn [D̂
g(1n) = 1]

∣∣ =∣∣Prg←Fn◦Hn [D
g(1n) = 1]− Prg←Πn◦Hn [D

g(1n) = 1]
∣∣

for every n ∈ N, where Πn is the set of all functions from {0, 1}n to {0, 1}�(n).

In particular, the pseudorandomness of F yields that F ◦ H is computationally
indistinguishable from the ensemble {Πn ◦ Hn}n∈N by an adaptive distinguisher
of running time T .

Proof. The distinguisher D̂ is defined as follows:

Algorithm 3 (D̂)

Input: 1n.
Oracle: a function φ over {0, 1}n.

1. Compute φ(x) for every x ∈ [T (n)]{0,1}n.
2. Set g = φ ◦ h, where h is uniformly chosen in Hn.
3. Emulate Dg(1n): answer a query x to φ made by D with g(x), using the

information obtained in Step 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that D̂ makes T (n) non-adaptive queries to φ, and it can be implemented
to run in time p(n)T (n), for large enough p ∈ poly. We conclude the proof by
observing that in case φ is uniformly drawn from Fn, the emulation of D done
in D̂φ is identical to a random execution of Dg with g ← Fn ◦ Hn. Similarly,
in case φ is uniformly drawn from Πn, the emulation is identical to a random
execution of Dπ with π ← Πn. �

3.2 Π ◦ H Is Statistically Indistinguishable From Π

The following lemma is commonly used for proving the security of hash based
MACs (cf., [9, Proposition 6.3.6]), yet for completeness we give it a full proof
below.

Lemma 2. Let n, T be integers with T ≤ 2n, and let H be a pairwise-
independent function family mapping string of length n to [T ]{0,1}n. Let D be
an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries),
then

|Pr g←Π◦H [Dg = 1]− Pr π←Π [Dπ = 1]| ≤ s2/T,
where Π is the set of all functions from {0, 1}n to {0, 1}� (for some � ∈ N).
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Proof. We assume for simplicity that D is deterministic (the reduction to the
randomized case is standard) and makes exactly s valid (i.e., inside {0, 1}n)
distinct queries, and let Ω = ({0, 1}�)s. Consider the following random process:

Algorithm 4

1. Emulate D, while answering the i’th query qi with a uniformly chosen ai ∈
{0, 1}�.
Set q = (q1, . . . , qs) and a = (a1, . . . , as).

2. Choose h← H.
3. Emulate D again, while answering the i’th query q′i with a′i = ai (the same
ai from Step 1), if h(q′i) /∈ {h(q′j)}j∈[i−1], and with a′i = aj, if h(q

′
i) = h(q

′
j)

for some j ∈ [i− 1].
Set q′ = (q′1, . . . , q

′
s) and a

′ = (a′1, . . . , a
′
s).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let A, Q, A′, Q′ and H be the (jointly distributed) random variables induced by
the values of q, a, q′, a′ and h respectively, in a random execution of the above
process. It is not hard to verify that A is distributed the same as the oracle
answers in a random execution of Dπ with π ← Π , and that A′ is distributed
the same as the oracle answers in a random execution of Dg with g ← Π ◦ H.
Hence, for proving Lemma 2, it suffices to bound the statistical distance between
A and A′.

Let Coll be the event that H(Qi) = H(Qj) for some i �= j ∈ [s]. Since the
queries and answers in both emulations of Algorithm 4 are the same until a
collision with respect to H occurs, it follows that

Pr[A �= A′] ≤ Pr[Coll] (1)

On the other hand, since H is chosen after Q is set, the pairwise independent
of H yields that

Pr[Coll] ≤ s2/T, (2)

and therefore Pr[A �= A′] ≤ s2/T . It follows that Pr[A ∈ C] ≤ Pr[A′ ∈ C]+s2/T
for every C ⊆ Ω, yielding that SD(A,A′) ≤ s2/T . �

3.3 Putting It Together

We are now finally ready to prove Theorem 2.

Proof (of Theorem 2). Let D be an oracle-aided algo-
rithm of running time s with s(n) < T (n). Lemma 1
yields that |Prg←Fn◦Hn [D

g(1n) = 1]− Prg←Πn◦Hn [D
g(1n) = 1]| ≤

ε(n) for large enough n, where Lemma 2 yields that
|Pr g←Πn◦Hn [Dg(1n) = 1]− Pr π←Πn [Dπ(1n) = 1]| ≤ s(n)2/T (n)
for every n ∈ N. Hence, the triangle inequality yields that
|Prg←Fn◦Hn [D

g(1n) = 1]− Prπ←Πn [D
π(1n) = 1]| ≤ ε(n) + s(n)2/T (n) for

large enough n, as requested. �
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3.4 Handling Polynomial Security

Corollary 2 is only useful when the security of the underlying non-adaptive PRF
(i.e., T ) is efficiently computable (or when considering non-uniform PRF con-
structions, see Section 1.1). In this section we show how to handle the important
case of polynomially secure non-adaptive PRF. We use the following “combiner”.

Definition 6. Let H be a function family into {0, 1}n. For i ∈ [n], let Ĥi be the

function family Ĥi = {ĥ : h ∈ H}, where ĥ(x) = 0n−i||h(x)1,...,i.

Corollary 3. Let F be a T (n)-non-adaptive PRF, let H be an efficient length-
preserving pairwise-independent function family ensemble, and let I(n) ⊆ [n] be
polynomial-time computable (in n) index set. Define the function family ensemble

G = {Gn}n∈N, where Gn =
⊕

i∈I(n)

(
Fn ◦ Ĥn

i)
.

There exists q ∈ poly such that G is a
(

3
√
2t(n)/2

)
-adaptive PRF, for every

polynomial-time computable integer function t, with t(n) ∈ I(n) and 2t(n) ≤
T (n)/q(n).

Before proving the corollary, let us first use it for constructing adaptive PRF
from non-adaptive polynomially secure one.

Corollary 4 (restatement of Corollary 1). Let F be a polynomially secure
non-adaptive PRF, let H be an efficient pairwise-independent length-preserving
function family ensemble and let k(n) ∈ ω(1) be polynomial-time computable

function. Then G := {
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

�i·logn�
)
}n∈N is polynomially secure

adaptive PRF.

Proof. Let I(n) := {�logn , �2 · logn . . . , �k(n) · logn}. Applying Corollary 3
with respect to F , H, I and t(n) = �c · logn, where c ∈ N, yields that G is a
O( 3
√
nc)-adaptive PRF. It follows that G is p-adaptive PRF for every p ∈ poly.

Namely, G is polynomially secure adaptive PRF. �

Remark 1 (unknown security). Corollary 3 is also useful when the security of
F is “not known” in the construction time. Taking I(n) = {1, 2, 4, . . . , 2�log n�}
(resulting in logn calls to F) and assuming that F is found to be T (n)-non-
adaptive PRF for some polynomial-time computable T , the resulting PRF is
guaranteed to be O( 6

√
T (n))-adaptive PRF (neglecting polynomial factors).

Proof (of Corollary 3). It is easy to see that G is efficient, so it is left to argue for
its security. Let q(n) = q′(n)p(n), where p is as in the statement of Corollary 2,
and q′ ∈ poly to be determined later. Let t be a polynomial-time computable
integer function with t(n) ∈ I(n) and 2t(n) ≤ T (n)/q(n). It follows that Ĥt =

{Ĥn

t(n)
}n∈N is an efficient pairwise-independent function family ensemble, and

Corollary 2 yields that F ◦ Ĥt is a
(

3
√
q′(n)2t(n)/2

)
-adaptive PRF.
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Assume towards a contradiction that there exists an oracle-aided distinguisher
D that runs in time T ′(n) =

3
√
2t(n)/2 and

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| > 1/T ′(n) (3)

for infinitely many n’s. We use the following distinguisher for breaking the pseu-
dorandomness of F ◦ Ĥt:

Algorithm 5 (D̂)

Input: 1n.
Oracle: a function φ over {0, 1}n.

1. For every i ∈ I(n) \ {t(n)}, choose gi ← Fn ◦ Ĥn

i
.

2. Set g := φ⊕
⊕

i∈I(n)\{t(n)} g
i.

3. Emulate Dg(1n).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that D̂ can be implemented to run in time |I(n)| · r(n) ·T ′(n) for some r ∈
poly, which is smaller than 3

√
q′(n)2t(n)/2 for large enough q′. Also note that in

case φ is uniformly distributed over Πn, then g (selected by D̂φ(1n)) is uniformly

distributed in Πn, where in case φ is uniformly distributed in Fn ◦ Ĥn

t(n)
, then

g is uniformly distributed in Gn. It follows that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ =

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| (4)

for every n ∈ N. In particular, Equation (3) yields that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ > 2

3
√
2t(n)

>
2

3
√
q′(n)2t(n)

for infinitely many n’s, in contradiction to the pseudorandomness of F ◦ Ĥt we
proved above. �
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4 From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial se-
curity: any ppt trying to break the primitive has only negligible success proba-
bility. Bellare [1] showed that for any polynomially secure primitive there exists
a single negligible function μ, such that no ppt can break the primitive with
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probability larger than μ. Here we take his approach a step further, showing that
for a polynomially secure primitive there exists a super-polynomial function T ,
such that no adversary of running time T breaks the primitive with probability
larger than 1/T .

In the following we identify algorithms with their string description. In par-
ticular, when considering algorithm A, we mean the algorithm defined by the
string A (according to some canonical representation). We prove the following
result.

Theorem 6. Let v : {0, 1}∗ × N !→ [0, 1] be a function with the following prop-
erties: 1) v(A, n) ≤ 1/p(n) for every oracle-aided ppt A, p ∈ poly and large
enough n; and 2) if the distributions induced by random executions of Af (x) and
Bf (x) are the same for any input x ∈ {0, 1}n and function f (each distribution
describes the algorithm’s output and oracle queries), then v(A, n) = v(B, n).

Then there exists an integer function T (n) ∈ nω(1) such that following holds:
for any algorithm A of running time at most T (n), it holds that v(A, n) ≤ 1/T (n)
for large enough n.

Remark 2 (Applications). Let f be a polynomially secure OWF (i.e.,
Pr[A(f(Un)) ∈ f−1(f(Un))] = neg(n) for any ppt A). Applying Theorem 6 with
v(A, n) := Pr[A(f(Un)) ∈ f−1(f(Un))] (where if A expects to get an oracle, pro-
vide him with the constant function φ(x) = 1), yields that f is super-polynomial
secure OWF (i.e., exists T (n) ∈ nω(1) such that Pr[A(f(Un)) ∈ f−1(f(Un))] ≤
1/T (n) for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure PRF F = {Fn}n∈N (see Definition 5), ap-
plying Theorem 6 with v(A, n) :=

∣∣Prf←Fn [A
f (1n) = 1]− Prπ←Πn [A

π(1n) = 1]
∣∣,

where Πn is the set of all functions with the same domain/range as Fn, yields
that F is super-polynomial secure PRF.

Proof (of Theorem 6). Given a probabilistic algorithm A and an integer i, let Ai

denote the variant of A that on input of length n, halts after ni steps (hence,
Ai is a ppt). Let Si be the first i strings in {0, 1}∗, according to some canonical
order, viewed as descriptions of i algorithms. Let I(n) = {i ∈ [n] : ∀A ∈ Si, k ≥
n : v(Ai, k) < 1/ki} ∪ {1}, let t(n) = max I(n) and T (n) = nt(n).

Let A be an algorithm of running time T (n), and let iA be the first integer
such that A ∈ SiA . In Claim 7 we prove that t(n) ∈ ω(1), hence it follows that
t(n) > iA for any large enough n. For any such n, the definition of t guarantees
that v(At(n), n) < 1/nt(n) = 1/T (n). Since A is of running time T (n), the second
property of v yields that v(A, n) = v(At(n), n), and therefore v(A, n) < 1/T (n).

�

Claim 7. It holds that t(n) ∈ ω(1).

Proof. Fix i ∈ N. For each A ∈ Si, let nA be the first integer such that v(Ai, n) ≤
1/ni for every n ≥ nA (note that such nA exists by the first property of v), and
let ni = max{nA : A ∈ Si}. It follows that v(Ai, n) ≤ 1/ni for every n ≥ ni and
A ∈ Si, and therefore t(ni) ≥ i. �
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Abstract. We show a hardness-preserving construction of a PRF from
any length doubling PRG which improves upon known constructions
whenever we can put a non-trivial upper bound q on the number of
queries to the PRF. Our construction requires only O(log q) invocations
to the underlying PRG with each query. In comparison, the number of
invocations by the best previous hardness-preserving construction (GGM
using Levin’s trick) is logarithmic in the hardness of the PRG.

For example, starting from an exponentially secure PRG {0, 1}n �→
{0, 1}2n, we get a PRF which is exponentially secure if queried at most
q = exp(

√
n) times and where each invocation of the PRF requires

Θ(
√
n) queries to the underlying PRG. This is much less than the Θ(n)

required by known constructions.

1 Introduction

In 1984, the notion of pseudorandom functions was introduced in the seminal
work of Goldreich, Goldwasser and Micali [10]. Informally speaking, a pseudo-
random function (PRF) is a keyed function F : {0, 1}n × {0, 1}m → {0, 1}n,
such that no efficient oracle aided adversary can distinguish whether the oracle
implements a uniformly random function, or is instantiated with F(k, .) for a
random key k ← {0, 1}n. PRFs can be used to realize a shared random function,
which has found many applications in cryptography [9,7,8,2,16,15,12].

Goldreich et al. [10] gave the first construction of a PRF from any length-
doubling pseudorandom generator G : {0, 1}n → {0, 1}2n; this is known as the
GGM construction. In this work, we revisit this classical result. Although we will
state the security of all constructions considered in a precise quantitative way,
it helps to think in asymptotic terms to see the qualitative differences between
constructions. In the discussion below, we will therefore think of n as a parameter
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(and assume the PRG G is defined for all input lengths n ∈ N, and not just say
n = 128). Moreover, for concreteness we assume that G is exponentially hard,
that is, for some constant c > 0 and all sufficiently large n, no adversary of size
2cn can distinguish G(Un) from U2n (where Un denotes a variable with uniform
distribution over {0, 1}n) with advantage more than 2−cn. We will also refer to
this as “G having cn bits of security”.

The GGM construction GGMG : {0, 1}n × {0, 1}m → {0, 1}n is hardness
preserving, which means that if the underlying PRG G has cn bits of security,
it has c′n bits of security for some 0 < c′ < c. The domain size {0, 1}m can
be arbitrary, but the efficiency of the construction depends crucially on m as
every invocation of GGMG requires m calls to the underlying PRG G.

Levin [13] proposed a modified construction which improves efficiency for long
inputs: first hash the long m-bit input to a short u-bit string using a universal
hash function h : {0, 1}m → {0, 1}u, and only then use the GGM construction
on this short u-bit string. The smaller a u we choose, the better the efficiency.
If we just want to achieve security against polynomial size adversaries, then a
super-logarithmic u = ω(logn) will do. But if we care about exponential security
and want this construction to be hardness preserving, then we must choose a
u = Ω(n) that is linear in n. Thus, the best hardness-preserving construction
of a PRF FG from a length-doubling PRG G requires Θ(n) invocations of G for
every query to F (unless the domain m = o(n) is sublinear, then we can use
the basic GGM construction.) In this work we ask if one can improve upon this
construction in terms of efficiency. We believe that in this generality, the answer
actually is no, and state this explicitly as a conjecture. But our main result
is a new construction which dramatically improves efficiency in many practical
settings, namely, whenever we can put a bound on the number of queries the
adversary can make.

In the discussion above, we didn’t treat the number of queries an adversary can
make as a parameter. Of course, the size of the adversary considered is an upper
bound on the number of queries, but in many practical settings, the number of
outputs an adversary can see is tiny compared to its computational resources.

For example consider an adversary of size 2cn who can make only q = 2
√
n )

2cn queries to the PRF. If the domain of the PRF is small, m = Θ(
√
n), then

using GGM we get a hardness-preserving construction with efficiency Θ(
√
n)

(where efficiency is measured by the number of queries to G per invocation of
the PRF.) If we want a larger domain m = ω(

√
n), then the efficiency drops to

m = ω(
√
n). We can get efficiency Θ(n) regardless of how large m is by using

Levin’s trick, but cannot go below that without sacrificing hardness preservation.
In this paper we give a hardness-preserving construction which, for any in-

put length m, achieves efficiency Θ(
√
n). The construction works also for other

settings of the parameters. In particular, for q = 2n
ε

(note that above we con-
sidered the case ε = 1/2) we get a construction with efficiency Θ(log q) = Θ(nε).
Actually, this is only true for ε ≥ 1/2; whether there exists a hardness-preserving
black-box construction with efficiency Θ(log q) for q = 2n

ε

where ε < 1/2 is an
interesting open question.
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Other Applications. Although we described our result as an improved reduction
from PRFs to PRGs, the main idea is more general. Viewing it differently, ours is
a new technique for extending the domain of a PRF. If we apply our technique to
PRFs with an input domain of length � bits, Levin’s trick would require roughly
a domain of size �2 to achieve a comparable quality of hardness preservation.

This technique can be used to give more efficient constructions in other set-
tings, for example to the work of Naor and Reingold [18] who construct PRFs
computable by low depth circuits from so called pseudorandom synthesizer
(PRS), which is an object stronger than a PRG, but weaker than a full blown
PRF. Very briefly, [18] gives a hardness-preserving construction of a PRF from
PRS which can be computed making Θ(n) queries to the PRS in depth Θ(log n)
(GGM also makes Θ(n) queries, but sequentially, i.e. has depth Θ(n); on the
other hand, GGM only needs a PRG, not a PRS as building block). Our domain
extension technique can also be used to improve on the Naor-Reingold construc-
tion, and improves efficiency from Θ(n) to Θ(log q) = Θ(nε) whenever one can
put an upper bound q = 2n

ε

(ε ≥ 1/2) on the number of adversarial queries.
Subsequent to [18], several number-theoretic constructions of PRFs have been

proposed, inspired by the PRS based construction and GGM [19,20,14,5,1]. In
particular, in [19], Naor and Reingold gave an efficient construction of a PRF
from the DDH assumption that requires only n multiplications and one expo-
nentiation instead of the n exponentiations required for GGM or the PRS based
construction. This is achieved by exploiting particular properties of the underly-
ing assumptions like the self reducibility of DDH. Our technique does not seem
to be directly applicable to improve upon these constructions [19].

The Construction. Before we describe our construction in more detail, it is
instructive to see why the universal hash-function h : {0, 1}m → {0, 1}u used for
Levin’s trick must have range u = Ω(n) to be hardness-preserving. Consider any
two queries xi and xj made by the adversary. If we have a collision h(xi) = h(xj)
for the initial hashing, then the outputs GGMG(k, h(xi)) = GGMG(k, h(xj)) of
the PRF will also collide. To get exponential security, we need this collision
probability to be exponentially small. The probability for such a collision depends
on the range u and is Prh[h(xi) = h(xj)] = 2−u. So we must choose u = Θ(n)
to make this term exponentially small.

Similar to Levin’s trick, we also use a hash function h : {0, 1}m → {0, 1}t
to hash the input down to t = 3 log q bits (Recall that q is an upper bound
on the queries to the PRF, so if say q = 2

√
n, then t = 3

√
n.) As discussed

earlier, the collision probability with such a short output length will not be
exponentially small. However, we can prove something weaker, namely, if h is
t-wise independent, then the probability that we have a t+ 1-wise collision (i.e.
any t+ 1 of the q inputs hash down to the same value.) is exponentially small.

Next, the hashed value x′i = h(xi) is used as input to the standard GGM PRF
to compute x′′i := GGMG(k, x

′
i). Note, however, that we can’t simply set x′′i as

the output of our PRF because several of the inputs x1, . . . , xq can be mapped
by h to the same x′, and thus also the same x′′, which would not look random
at all.
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We solve this problem by using x′′i = GGMG(k, h(xi)) to sample a t-wise
independent hash function hi. The final output zi := hi(xi) is then computed by
hashing the original input xi using this hi. Note that with very high probability,
for every i, at most t′ ≤ t different xi1 , . . . , xit′ will map to the same t-wise
independent hi. Thus, the corresponding outputs hi(xi1 ), . . . , hi(xit′ ) will be
random.

The invocation of the GGM construction and the sampling of hi from x′′i can
both be done with Θ(t) invocations of G, thus we get an overall efficiency of
Θ(
√
n).

2 Preliminaries

Variables, Sets and Sampling. By lowercase letters we denote values and bit
strings, by uppercase letters we denote random variables and by uppercase calli-
graphic letters we denote sets. Specifically, by Um we denote the random variable
which takes values uniformly at random from the set of bit strings of length m
and by Rm,n the set of all functions F : {0, 1}m !→ {0, 1}n. If X is a set, then by
X t we denote the t’th direct product of X , i.e., (X1, . . . ,Xt) of t identical copies
of X . If X is a random variable, then by X(t) we denote the random variable
which consists of t independent copies of X . By x← X we denote the fact that
x was chosen according to the random variable X and analogously by x ← X ,
that x was chosen uniformly at random from set X .

Computational/Statisical Indistinguishability. For random variables X0, X1 dis-
tributed over some set X , we write X0 ∼ X1 to denote that they are identically
distributed, we write X0 ∼δ X1 to denote that they have statistical distance δ,
i.e. 1

2

∑
x∈X |PrX0 [x]− PrX1 [x]| ≤ δ, and X0 ∼(δ,s) X1 to denote that they are

(δ, s) indistinguishable, i.e. for all distinguishers D of size at most |D| ≤ s we
have

∑
x∈X |PrX0 [D(x)→ 1]− PrX1 [D(x)→ 1]| ≤ δ. In informal discussions we

will also use ∼s to denote statistical closeness (i.e. ∼δ for some “small” δ) and
∼c to denote computational indistinguishability (i.e. ∼(δ,s) for some “large” s
and “small” δ.)

3 Definitions

We will need two information theoretic notions of hash functions, namely, δ-
universal and t-wise independent hash functions. Informally, a hash function is
t-wise independent if its output is uniform on any t distinct inputs. A function
is δ-universal if any two inputs collide with probability at most δ.

Definition 1 (almost universal hash function). For �,m, n ∈ Z, a function
h : {0, 1}� × {0, 1}m → {0, 1}n is δ-almost universal if for any x �= x′ ∈ {0, 1}m

Prk←{0,1}� [hk(x) = hk(x
′)] ≤ δ
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Universal hash functions were studied in [6,21], who also gave explicit construc-
tions.

Proposition 1. For any m,n there exists a 2−n+1-universal hash function with
key length � = 4(n + logm). Further, no such function can be δ-universal for
δ < 2−n−1.

Definition 2 (t-wise independent hash function family). For �,m, n, t ∈
Z, a function h : {0, 1}� × {0, 1}m → {0, 1}n is t-wise independent, if for every
t distinct inputs x1, . . . , xt ∈ {0, 1}m and a random key k ← {0, 1}� the outputs
are uniform, i.e.

hk(x1)‖ . . . ‖hk(xt) ∼ U (t)
n

Proposition 2. For any t,m, n ≤ m there exits a t-wise independent hash func-
tion with key length � = m · t.

Remark 1. Note that 2-wise independence implies 2−n-universality. The reason
to consider the notion of δ-universality for δ > 2−n is that it can be achieved
with keys of length linear in the output, as opposed to the input.

Definition 3 (PRG[4,22]). A length-increasing function G : {0, 1}n !→ {0, 1}m
(m > n) is a (δ, s)-hard pseudorandom generator if

G(Un) ∼(δ,s) Um

We say G has σ bits of security if G is (2−σ, 2σ)-hard. G is exponentially
hard if it has cn bits of security for some c > 0, and G is sub-exponentially
hard if it has cnε bits of security for some c > 0, ε > 0.

The following lemma, which follows from a standard hybrid argument, will be
useful.

Lemma 1. If G : {0, 1}n !→ {0, 1}m is a (δ, s)-hard PRG of size |G| = s′, then
for any q ∈ N

G(Un)
(q) ∼(q·δ,s−q·s′) U

(q)
m

Definition 4 (PRF[10]). A function F : {0, 1}� × {0, 1}m → {0, 1}n is a
(q, δ, s)-hard pseudorandom function (PRF) if for every oracle aided distin-
guisher D∗ of size |D∗| ≤ s making at most q oracle queries∣∣∣Prk←{0,1}� [DF(k,.) → 1]− Prf←Rm,n [D

f(.) → 1]
∣∣∣ ≤ δ

F has σ bits of security against q queries if F is (q, 2−σ, 2σ) secure.
If q is not explicitly specified, it is unbounded (the size 2σ of the distinguisher

considered is a trivial upper bound on q.)
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3.1 The GGM Construction

Goldreich, Goldwasser and Micali [10] gave the first construction of a PRF from
any length doubling PRG. We describe their simple construction below.

For a length-doubling function G : {0, 1}n → {0, 1}2n and m ∈ N, let GGMG :
{0, 1}n × {0, 1}m → {0, 1}n denote the function

GGMG(k, x) = kx where kx is recursively defined as kε = k and ka‖0‖ka‖1 := G(ka)

Proposition 3 ([10]). If G is a (δG, sG)-hard PRG, then for any m, q ∈ N,
GGMG : {0, 1}n × {0, 1}m → {0, 1}n is a (q, δ, s)-hard PRF where

δ = m · q · δG s = sG − q ·m · |G| (1)

3.2 Levin’s Trick

One invocation of the GGM construction GGMG : {0, 1}n × {0, 1}m → {0, 1}n
requires m invocations of the underlying PRG G, so the efficiency of the PRF
depends linearly on the input length m. Levin observed that the efficiency can
be improved if one first hashes the input using a universal hash function. Using
this trick one gets a PRF on long m-bit inputs at the cost of evaluating a PRF
on “short” u bit inputs plus the cost of hashing the m-bit string down to u bits.1

Proposition 4 (Levin’s trick). Let h : {0, 1}� × {0, 1}m → {0, 1}u be a δh-
universal hash function and F : {0, 1}�′ × {0, 1}u → {0, 1}n be a (q, δF, s)-hard
PRF, then the function Fh : {0, 1}�+�′ × {0, 1}m → {0, 1}n defined as

Fh(kF||kh, x) := F(kF, h(kh, x))

is a (q, δ, s)-hard PRF where

δ = q2 · δh + δF s = sF − q · |h| (2)

3.3 Hardness Preserving and Good Constructions

Definition 5 (Hardness Preserving Construction). A construction F∗ of
a PRF from a PRG is hardness preserving up to q = q(n) queries, if for
every constant c > 0, ε > 0 there is a constant c′ > 0 and n′ ∈ Z such that for all
n ≥ n′: if G is of polynomial size and has cnε bits of security, F has c′nε bits of
security against q queries. It is hardness preserving if it is hardness preserving
for any q.

If the above holds for every c′ < c, we say that it is strongly hardness pre-
serving.

1 As universal hash functions are non-cryptographic primitives, hashing is generally
much cheaper than evaluating pseudorandom objects.
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Proposition 5. The GGM construction is hardness preserving, more concretely
(1) if G has cnε bits of security, GGMG has c′nε bits of security for any c′ < c/2
(2) GGM for q = nε

′
, ε′ < ε queries is strongly hardness preserving.

Proof. By eq.(1), if G has cnε bits of security, then the GGM construction has

min{cnε − log(q)− log(m), cnε − log |G| − log(m)} (3)

bits of security. To see (1), we observe that for any c′ < c/2 eq.(3) is c′nε for
sufficiently large n as required (using that m and |G| are polynomial in n and
q = 2c

′n.) To see (2) observe that for log(q) = nε
′
where ε′ < ε, the term eq.(3)

is c′nε for sufficiently large n and every c′ < c.

Recall that one invocation of GGM requires m invocations of the underlying
PRG, where m must be at least *log(q)+. We conjecture that Ω(log(q)) invoca-
tions are necessary for any hardness preserving construction.

Conjecture 1. Any construction2 FG(., .) : {0, 1}n × {0, 1}m → {0, 1}n that pre-
serves hardness for q queries and has a black-box security proof must make
Ω(log q) invocation to G per invocation of FG.

In the appendix we give some intuition as why we believe this conjecture holds.
We show that the standard black-box security proof technique as used e.g. for
GGM will not work for constructions making o(log q) invocations.

Definition 6 ((Very) Good Construction). We call a construction as in
Definition 5 good for q queries, if it is hardness preserving up to q queries and
each invocation of FG results in O(log q) invocations of G. We call it very good,
if it is even strongly hardness-preserving.

Thus, GGMG is good as long as the domain m is in O(log q), but not if we need
a large domain m = ω(log q). Let’s look at Levin’s construction.

Proposition 6. The GGM construction with Levin’s trick GGMh
G (with h :

{0, 1}� × {0, 1}m → {0, 1}u as in Proposition 4) is hardness preserving if and
only if u is linear in the security of the underlying PRG (e.g. u has to be linear
in n if G is exponentially hard.)

Proof. For concreteness, we assume G is exponentially hard, the proof is easily
adapted to the general case. The number of queries to G per invocation of GGMh

G

is u, where {0, 1}u is the range of the δh universal hash function. By eq.(2),
GGMh

G has security δ = q2 · δh + δGGMG
. To preserve exponential hardness, δ

must be exponentially small. So also δh ≤ δ must be exponentially small. By
Proposition 1 δh > 2−u−1, thus u must be linear in n.

2 We restrict the key length to n bits. This is not much of a restriction, as one can use
G to expand the key. If we allow polynomially sized keys directly, then the conjecture
would be wrong for polynomial q as the key could just contain the entire function
table.
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Summing up, the GGM construction is hardness preserving for any q, but only
good if the domain is restricted to m = O(log q) bits. By using Levin’s trick,
we can get a hardness preserving construction where u = Θ(n) (if G is exponen-
tially hard), but this will only be a good construction for q queries if q is also
exponentially large.

In a practical setting we often know that a potential adversary will never see
more than, say 2

√
n outputs of a PRF FG. If we need a large domain for the

PRF, and would like the construction to preserve the exponential hardness of
the underlying PRG G, then the best we can do is to use GGM with Levin’s
trick, which will invoke G a linear in n number of times with every query. Can we
do better? If Conjecture 1 is true, then one needs Θ(

√
n) invocations, which is

much better than Θ(n). The main result in this paper is a construction matching
this (conjectured) lower bound.

4 Our Construction

Let G : {0, 1}n → {0, 1}2n be a length doubling function. For e ∈ N, we denote
with Ge : {0, 1}n → {0, 1}en the function that expands an n bit string to a

C0 = C
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Fig. 1. The leftmost figure illustrates our construction C(., .) using key k = k0‖k1 on
input x. The numbers 3n, t · 3n, . . . on the left indicate the bit-length of the corre-
sponding values x, k0, . . .. The remaining figures illustrate the games from the proof of
Theorem 1. t = 3 log(q) is a parameter which depends on the number of queries q we
allow.
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en bits string using e − 1 invocations of G (this can be done sequentially, or in
parallel in depth *log e+.) We will use the following simple lemma which follows
by a standard hybrid argument.

Lemma 2. Let G be a (δ, s)-hard PRG, then Ge is a (e · δ, s−e · |G|)-hard PRG.

Further, our constructions uses a t-wise independent (cf. Proposition 2) hash
function.

h : {0, 1}t·3n × {0, 1}3n → {0, 1}3n

Our construction CG : {0, 1}t·3n+n× {0, 1}3n → {0, 1}3n of a PRF which will be
good for large ranges of q, on input a key k = k0‖k1 (where k0 ∈ {0, 1}t·3n and
k0 ∈ {0, 1}n) and x ∈ {0, 1}3n, computes the output as (X|t denotes the t bit
prefix of X .)

C(k, x) = h(G3t(GGMG(k1, h(k0, x)|t)) , x)

Remark 2 (About the domain size and key-length). This construction has a do-
main of 3n bits and key-length t ·3n+n. We can use Levin’s trick to expand the
domain to any m bits, and this will not affect the fact that the construction is
good: by eq.(2) we get an additional q2 ·δh = q2/23n−1 term in the distinguishing
advantage, which can be ignored compared to the other terms.

We can also use a short n-bit key (like in plain GGM) and then expand it
to a longer t · 3n + n bit key with every invocation (if we use Levin’s trick we
will need an extra 4(3n+ logm) bits.) This also will preserve the fact that the
construction is good.

Theorem 1 (Main Theorem). If G is a (δG, sG)-hard PRG, then CG is a
(q, δ, s)-secure PRF where

δ = 4 · q · t · δG + q2/2n + qt/2t
2

s = sG − q · |CG| − q · 3 · t · n · |G| (4)

Before we prove this Theorem, let’s see what it implies for some concrete pa-
rameters. Assume G is (δG = 2−cn, sG = 2cn)-hard and we want security against
q = 2

√
n queries. If we set t := 3 log q then the construction is very good (cf.

Def. 6):

– It makes 7t = 21 log(q) = O(log q) invocation to G per query to CG.
– CG is strongly hardness preserving for q = 2

√
n queries. By eq.(4) we get

δ < 2−cn+2+
√
n+log(3

√
n) s ≥ 2cn − 2

√
n · |CG|

If |CG| is polynomial in n (which is the only case we care about), then by
the above equation, for every c′ < c, we have δ ≤ 2−c′n and s ≥ 2c

′n for
sufficiently large n as required by Definition 5.

The above argument works for any q = 2n
ε

where 0.5 ≤ ε < 1. It also works if
q is unbounded (i.e. ε = 1), but we only get normal (and not strong) hardness-
preservation. The argument fails for ε < 0.5, that is whenever q = 2o(

√
n). Tech-

nically, the reason is that the qt/2t
2

term in eq.(4) is not exponentially small (as
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required for hardness-preservation) when we set t = O(log q) (as required for a
good construction.) It is an interesting open question if an optimal and hardness
preserving construction with range ω(log(q)) exits for any q = 2o

√
n. Summing

up, we get the following corollary of Theorem 1

Corollary 1. For any 0 < δ ≤ 1 and ε ∈ [δ/2, δ[, the construction CG (setting
t := 3 log(q)) is very good for q = 2n

ε

queries for any G with cnδ bits of security
(for any c > 0.) It is good for ε = δ.

Proof (Proof of Theorem 1). Let D∗ be any q-query distinguisher of size s. We
denote with C0 our construction C, with C4 = R3n,3n a random function and
with C1,C2,C3 intermediate constructions as shown in Figure 1. With p(i) we
denote the probability that DCi(.) outputs 1 (where e.g. in C0 the probability
is over the choice of k0‖k1, in C1 the probability is over the choice of k0 and
f ←Rt,n, etc.)

Note that the advantage of D∗ in breaking C is δ = |p(0)− p(4)|, to prove the
theorem we will show that

|p(0)− p(4)| =
∣∣∣∣∣

3∑
i=0

p(i)− p(i+ 1)

∣∣∣∣∣ ≤
3∑

i=0

|p(i)− p(i+ 1)| ≤ 4 · q · t · δG + q2/2n + qt/2t
2

The last step follows from the four claims below.

Claim. |p(0)− p(1)| ≤ q · t · δG

Proof (Proof of Claim). Assume |p(0)− p(1)| > q · t · δG. We will construct a
distinguisher D1 for GGMG and Rt,n, which is of size sG − q · t · |G| and has

advantage > q · t · δG, contradicting Proposition 3. D
O(.)
1 chooses a random k0 ∈

{0, 1}3tn, and then runs D∗ where it answers its oracle queries by simulating C
(using k0), but replacing the GGMG invocation with its oracle O(.). In the end
D1 outputs the same as D. If O(.) = GGMG(k1, .) (for some random k1) then this
simulates C0, and if O(.) = Rt,n it will simulate C1. Thus D1 will distinguish
GGMG and Rt,n with exactly the same advantage > q · t · δG that D has for C0

and C1.

Claim. |p(1)− p(2)| ≤ q · 3 · t · δG

Proof (Proof of Claim). Assume |p(1)− p(2)| > q · 3 · t · δG. We will construct
a distinguisher D2 which is of size sG − q · 3 · n · t · |G| who can distinguish q-
tuples of samples of U3tn from G3t(Un) with advantage > q · 3 · t · δG. Using a
standard hybrid argument this then gives a distinguisher D′

2 who distinguishes
a single sample of U3tn from G3t(Un) with advantage > q · 3 · t · δG/q = 3 · t · δG,
contradicting Lemma 2.

D2 on input v1, . . . , vq ∈ {0, 1}3tn, runs D∗ and answers its oracle queries by
simulating C1, but replacing the output of G3t with the vi’s (using a fresh vi
for every query, except if x′ appeared in a previous query, then it uses the same
vi as in this previous query. If the vi’s have distribution G3t(Un) this perfectly
simulates C1, and if they have distribution U3tn this simulates C2. So D2 has the
same distinguishing advantage as D∗ has for C1 and C2.
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The proofs of the final two claims are completely information theoretic.

Claim. |p(2)− p(3)| ≤ q2/2n

Proof (Proof of Claim). We claim that the distinguishing advantage of any (even
computationally unbounded) q-query distinguisher for C2 and C3 is ≤ q2/2n.

We get C3 from C2 by replacing the two nested uniformly random functions
f2(.) = Rn,t·3n(Rt,n(.)) with a single f3(.) = Rt,t·3n(.). As each invocation of C2

results in exactly one invocation of f2(.), the distinguishing advantage of the best
q-query distinguisher for C2 from C3 can be upper bounded by the distinguishing
advantage of the best such distinguisher for f2(.) and f3(.).

Let E denote the event that the q distinct queries x′1, . . . , x
′
q to f2(.) =

Rn,t·3n(Rt,n(.)) do not contain a collision on the inner function, i.e. Rt,n(x
′
i) �=

Rt,n(x
′
j) for all x′i �= x′j . Conditioned on E , the outputs of f2 and f3 have the

same distribution, namely U
[q]
t·3n. Using this observation, we can bound (using

e.g. Theorem 1.(i) in [17] or the “fundamental Lemma” from [3])3 the distin-
guishing advantage of any q-query distinguisher for f2 and f3 by the probability
that one can make the event E fail. This is the probability that q uniformly
random elements from {0, 1}n (i.e. the outputs of the inner function) contain a
collision. This probability can be upper bounded as q2/2n.

Claim. |p(3)− p(4)| ≤ qt/2t2

Proof (Proof of Claim). We claim that the distinguishing advantage of any (even

computationally unbounded) q-query distinguisher for C3 and C4 is ≤ qt/2t2 . We
will first prove this only for non-adaptive distinguishers. To show security against
adaptive adversaries, security against adaptive adversaries will then follow by a
result from [17].

Let x1, . . . , xq denote the q distinct queries non-adaptively chosen by D∗.
Let E denote the event which holds if there is no t + 1-wise collision after the
evaluation of the initial hash function h in C3. That is, there is no subset I ⊆ [q]
of size |I| = t + 1 such that h(k0, xi) = h(k0, xj) for all i, j ∈ I. Below we
show that conditioned on E , the outputs y1, . . . , yq (where yi := C3(xi)) are
uniformly random, and thus have the same distribution like the outputs of C4.
Using Theorem 1.(i) in [17] or the “fundamental Lemma” from [3], this means we
can upper bound the distinguishing advantage of any non-adaptive distinguisher
for C3 and C4 by the the probability that the event E fails to hold. Which means
we have a t + 1 wise collision in q t-wise independent strings over {0, 1}t. This
can be upper bounded as qt/2t

2

.4

We now show that the outputs of C3 are uniform conditioned on E . Consider
a subset J ⊆ [q] with |J | ≤ t such that h(k0, xi) = h(k0, xj) = a for all

3 Informally, the statement we use is the following: given two systems F and G and an
event E defined for F , if F conditioned on E behaves exactly as G, then distinguishing
F from G is at least as hard as making the event E fail.

4 The probability that any t particular strings in {0, 1}t collide is exactly (2−t)t−1 =

2−t2+t, we get the claimed bound by taking the union bound over all qt/t! possible
t-element subsets of the q element set.
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i, j ∈ J . The fact that Rt,3tn(a) is a uniformly random together with the fact
that h is a t-wise independent hash function implies that the joint distribution
of (h(a, xi))i∈J follows the uniform distribution. Now let J1, . . . ,Jq′ be the
subsets of [q] of size at most t, such that for j ∈ Ji h(k0, xj) = ai and all ai’s
are distinct. The fact that (Rt,3nt(ai))i∈[q′] follows the uniform distribution and
J1, . . . ,Jq′ are of size at most t implies that (h(Rt,3nt(ai), xi))i∈[q] follows the
uniform distribution as well.

So far, we only established the indistinguishability of C3 and C4 against non-
adaptive distinguishers. We get the same bound for adaptive distinguishers using
Theorem 2 from [17], which (for our special case) states that adaptivity does not
help if the outputs of the system (C3 in our case) are uniform conditioned on
the event we want to provoke. Very recently [11] found that the precondition
stated in[17] is not sufficient, but one additionally requires that the probability
of the event failing is independent of the outputs observed so far. Fortunately in
our case (and also for all applications in [17]) this stronger precondition is easily
seen to be satisfied.
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A Intuition for Conjecture 1

We can think of the GGM construction with domain {0, 1}m as a tree, where the
outputs are leaves at depth m. More generally, we can think of any construction
FG as a directed loop-free graph, which is separated in layers. Each invocations
starts at the root which holds the secret key K, and the computation follows
a path, crossing layers, where the path within each layer contains at most one
invocation of G.

We can define the “entropy” of a layer, as the amount of randomness leaving
the layer (assuming G is a uniformly random function.) In the GGM contsruction,
the fist layer has 2n bits of randomness, namely G(K), the ith layer has 2in bits
of randomness. In a construction FG contradicting the conjecture, there must
be a layer which has significantly more than twice as much randomness as the
layer before. To see this note that if each layer at most doubles the randomness,
we need log(q) layers to get the qn bits of randomness. And moreover the last
layer must have qn bits of randomness, as for a black-box security proof the only
source of randomness is G.

Now, if a layer more than doubles its randomness, it must be the case that
in this layer, G is invoked on either (1) inputs that are not uniformly random,
or (2) the inputs to G are not independent. In a black-box reduction from FG

to G, one considers a series of hybrids H1, H2, . . . , Ht, where H1 is FG and Ht

is a random function. One gets from a hybrid Hi to Hi+1 by replacing some
internal value Y := G(X) with a uniform U2n. If we have an adversary A who
can distinguish Hi from Hi+1, we can use it to tell if a random variable Z has
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distribution U2n or G(Un) by replacing Y with Z in Hi, and using A to tell if
what we get is Hi (which will be the case if Z = G(Un)) or Hi+1.

In the above argument, it is crucial that X has distribution Un, but if (1) or
(2) holds, this will not be the case. It is hard to imagine a black-box technique
which works differently than by replacing some internal variables Y with the
challenge Z, which as just explained will not work here.
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Abstract. Computational extractors are efficient procedures that map a
source of sufficiently high min-entropy to an output that is computation-
ally indistinguishable from uniform. By relaxing the statistical closeness
property of traditional randomness extractors one hopes to improve the
efficiency and entropy parameters of these extractors, while keeping their
utility for cryptographic applications. In this work we investigate com-
putational extractors and consider questions of existence and inherent
complexity from the theoretical and practical angles, with particular fo-
cus on the relationship to pseudorandomness.

An obvious way to build a computational extractor is via the “extract-
then-prg” method: apply a statistical extractor and use its output
to seed a PRG. This approach carries with it the entropy cost inherent
to implementing statistical extractors, namely, the source entropy needs
to be substantially higher than the PRG’s seed length. It also requires a
PRG and thus relies on one-way functions.

We study the necessity of one-way functions in the construction of
computational extractors and determine matching lower and upper
bounds on the “black-box efficiency” of generic constructions of com-
putational extractors that use a one-way permutation as an oracle. Un-
der this efficiency measure we prove a direct correspondence between
the complexity of computational extractors and that of pseudorandom
generators, showing the optimality of the extract-then-prg approach for
generic constructions of computational extractors and confirming the in-
tuition that to build a computational extractor via a PRG one needs to
make up for the entropy gap intrinsic to statistical extractors.

On the other hand,we show thatwith stronger cryptographic primitives
one can have more entropy- and computationally-efficient constructions.
In particular, we show a construction of a very practical computational ex-
tractor from any weak PRF without resorting to statistical extractors.

1 Introduction

Randomness extractors (or simply ‘extractors’) are algorithms that map sources
of sufficient min-entropy to outputs that are statistically close to uniform.

� See [DGKM11] for the full version of this paper.
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Randomness extraction has become a central and ubiquitous notion in complex-
ity theory and theoretical computer science with innumerable applications and
surprising connections to other notions. Cryptography, too, has greatly benefited
from this notion. Cryptographic applications of randomness extractors range from
the construction of pseudorandom generators from one-way functions to the de-
sign of cryptographic functionalities from noisy and weak sources (including ap-
plications to quantum cryptography) to the more recent advances in areas such
as leakage- and exposure-resilient cryptography, circular encryption, lattice-based
cryptosystems, and more. Randomness extractors have also found important uses
in practical applications, particularly for the construction of key derivation func-
tions. In many of these cryptographic applications, the defining property of ran-
domness extractors, namely, statistical closeness of their output to a uniform dis-
tribution, can often be relaxed and replaced with computational indistinguisha-
bility. Extractors that provide this relaxed guarantee are called computational ex-
tractors, and they are the main object studied in this paper.

Let us review informally some basic facts about statistical extractors and the
associated parameters n,m, k, δ. A function Ext : {0, 1}n × {0, 1}� → {0, 1}m
is a (k, 2−δ)-statistical extractor if for any distribution X on {0, 1}n with min-
entropy k, the statistical distance between Ext(X,U�) and Um is at most 2−δ,
where U�, Um denote the uniform distribution over {0, 1}�, {0, 1}m, respectively.
Note that extractors are randomized via the second argument called a seed or
key (in our actual definitions we require the seed to be output, i.e., the so called
strong extractor). We are interested in extractors where the values k and 2−δ are
as small as possible (i.e., we want to minimize the entropy requirement from the
source and get as small as possible statistical distance of the output to uniform).
It is known how to construct statistical extractors that achieve δ = (k+�−m)/2
[NZ96, HILL99]. Radhakrishnan and Ta-Shma [RTS00] show that this bound
on δ is optimal, by showing how to build, for every extractor with parameters
as above, a source distribution of min-entropy k for which the output of the
extractor is 2−δ-far from uniform for δ = (k + � −m)/2. In the sequel we refer
to this as the RT bound.

A major motivation to study computational extractors is that they allow
us to go beyond the RT bound by replacing statistical closeness to uniform
with computational indistinguishability. Indeed, an obvious way to do so is to
first use a statistical extractor applied to the source distribution to obtain a
short statistically close-to-uniform string and then use this string as a seed to a
pseudorandom generator (PRG) to obtain more bits that are indistinguishable
from uniform. We will refer to this as the extract-then-prg approach.

While the latter is a natural way to build computational extractors, it is not
the only one or necessarily the best one, especially when implemented in practi-
cal settings. In particular, this approach carries with it the entropy limitations
of statistical extractors as set by the RT bound, a serious concern in cases where
the entropy of the source is too small to produce (via the statistical extractor)
a sufficiently long key for the PRG. For example, consider the use of an extrac-
tor to convert a 160-bit elliptic curve Diffie-Hellman value (which by the DDH
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assumption has 160 bits of computational min-entropy) into a 128-bit seed for
an AES-based PRG. Applying a statistical extractor to the DH value only guar-
antees a poor indistinguishability bound of 2−16 (i.e., δ = (160− 128)/2). If we
wanted to preserve, say, 100-bit security we would need δ = 100 bringing the
required source entropy to 328 (= 128 + 2 · 100).

One way around this problem is to build dedicated computational extrac-
tors based on cryptographic functions. Such an approach is taken in [Kra10,
DGH+04], where computational extractors are built using specific schemes
(HMAC and CBC) under assumptions that are specific to these schemes (and
directed to the use of these extractors in the context of key derivation functions)
including random-oracle type assumptions. On the other hand, the recent results
of [BDK+11] show that for some key derivation applications one may relax the
entropy requirements dictated by the RT bound (see more discussion on these
issues in Section 7).

In this work, we further investigate computational extractors and consider
questions of existence and inherent complexity from the theoretical and prac-
tical angles, with particular focus on the relationship to pseudorandomness. In
particular, we ask how intrinsic is the use of pseudorandomness in constructing
computational extractors, to what extent can we build computational extractors
without resorting to a statistical extractor, and whether the “entropy penalty”
of the extract-then-prg approach is avoidable.

Our Results

On the existence of computational extractors. The most basic question with
respect to computational extractors is whether they exist at all and if they do
under what (if any) assumption. The trivial answer is affirmative: statistical
extractors are also computational. But we are interested in non-trivial computa-
tional extractors that output “more bits” than a statistical one. To capture this,
we define the notion of stretch. For a security parameter p consider an extractor
acting on a k(p)-entropy source: its stretch σ is the difference between the extrac-
tor’s output length and its input’s min-entropy, i.e., σ(p) = m(p)− k(p)− �(p).
Computational extractors with negative stretches of the form1 −ω(log p) exist
unconditionally since a statistical extractor (that matches the RT bound) gener-
ates an output that is 2−ω(log p)-close to uniform and therefore is computationally
indistinguishable from uniform. Thus, non-trivial computational extractors are
those for which the stretch is at least −O(log p): we call such stretches and their
associated extractors proper. The fact that proper computational extractors can
be built on the basis of one-way functions via the extract-then-prg approach,
raises the fundamental question: Are one-way functions necessary for building
proper computational extractors? One would expect the answer to be “of course
they are!”. However, we can only provide a partial answer: We can show this
to be the case for proper extractors of positive stretch. But for stretches in
the range between −O(log p) and 0 the question remains open. Interestingly,

1 ω(·) stands for any superlinear function (i.e., one that grows faster than any linear
function of its argument).



386 D. Dachman-Soled et al.

however, we can provide an affirmative answer under the assumption that the
RT bound applies to efficiently samplable distributions. We refer to this as the
SRT Assumption (see details in Section 3):

Samplable RT (SRT) Assumption. Let Ext : {0, 1}n × {0, 1}� → {0, 1}m
be a poly-time computable statistical extractor. Then, for k < n there exists a
poly-time samplable source X of min-entropy k such that the statistical distance
between the distributions Ext(X,U�) and Um is at least 2−O(k+�−m).

In other words, the SRT assumption strengthens the RT bound by requiring it
to hold even if we restrict our attention to efficiently samplable distributions.
On the other hand, it weakens the RT bound by only requiring it to hold for
efficient extractors and by reducing the lower bound requirement to 2−c·(k+�−m)

for any constant c (in the RT bound, c = 1/2). To the best of our knowledge, the
validity of this assumption has not been settled. Interestingly, given our results,
any resolution of the assumption will have significant consequences. Disproving
the assumption would open the door to the possibility of more effective statistical
extractors for applications that are only concerned with efficient sources; e.g.,
it would mean that extractors based on the Leftover Hash Lemma may not
be the best in practice (a surprising conclusion that may actually indicate the
plausibility that the SRT does hold). And if the SRT assumption does hold, then
our work settles affirmatively the question of existential equivalence of proper
computational extractors and one-way functions.

Black-box constructions of proper extractors from OWPs. After investigating
the relationship between proper extractors and one-way functions, we examine
the question of whether we can have black-box constructions of proper extrac-
tors from OWPs that are more efficient than going through the extract-then-
prg approach. As the measure of efficiency we use “OWP-complexity”, namely,
the number of invocations to the OWP in a black-box construction, follow-
ing [GGKT05]. We prove a lower bound on the OWP-complexity of black-box
constructions of proper extractors from OWPs. We show that, under the SRT
assumption, the OWP-complexity of the extract-then-prg construction is opti-
mal by showing a tight lower bound on the number of invocations to the OWP
for any black-box construction of proper extractors from OWPs. Interestingly,
this result confirms the intuition that in order to build a proper computational
extractor one needs to make up for the entropy gap intrinsic to the RT bound
(as explained above).

The above result applies to any black-box construction of a proper extractor
that has oracle access to a OWP and it puts no restriction on the security reduc-
tion (which efficiently transforms an extractor-attacker into a OWP-attacker).
A more restricted form of black-box constructions, known as fully black-box, also
requires that the reduction between attackers be black-box (i.e., the reduction
cannot access the code of the extractor-attacker). Interestingly, we prove a sim-
ilar bound for fully black-box constructions, but unconditionally, i.e. without a
need for the SRT assumption. Thus, we trade the more restricted form of black-
box reduction for a lower bound that fully dispenses with the SRT assumption.
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(For a thorough treatment of the semi- and fully-black-box notions and their
meanings and implications please refer to [RTV04].)

Constructions based on Stronger Primitives. Next, we investigate the possibility
of avoiding the intrinsic entropy loss in the generic extract-then-prg construction
by assuming stronger primitives as the basis for the construction.

Our first result in this direction shows that given an exponentially-hard OWP,
one can build a proper computational extractor where the OWP is applied di-
rectly to the high-entropy source without having to go through an initial extrac-
tion phase, hence avoiding the need to compensate for the entropy gap of the
extractor. In order to achieve this result we replace the standard extract-then-
prg approach with a dual prg-then-extract scheme that exploits the exponential
hardness of the OWP to build a PRG that uses as its seed the very input from
the high-entropy source.2

A practical computational extractor based on wPRF. We show a very simple
construction of computational extractors based on weak pseudorandom functions
(i.e., PRFs whose output is indistinguishable from uniform by adversaries that
only see values of the function computed on random independent inputs). For
this we resort to a lemma by Pietrzak [Pie09] showing that weak PRFs retain
some of their security even when the keys are chosen from an imperfect source.
More specifically, [Pie09] shows that if the original keys are of length n but they
are chosen from a source with min-entropy k ≤ n then their security degrades
roughly by an (optimal) factor of 2−(n−k). This allows us to construct (strong)
computational extractors where the source distribution is used to sample a key
for the PRF and the extractor’s random seed is used as an input to the PRF. This
results in a very practical construction of computational extractors that fully
dispenses with statistical extractors and perfectly fits the needs of randomness
extraction in the context of key derivation functions (KDF) as studied in [Kra10]
and as extensively used in real-world applications. In particular, one obtains a
very practical KDF for cases where the input to the KDF (the source of key
material) is at most of the size of the wPRF key. The security of the scheme
solely depends on the security of the underlying (weak) PRF and it implies
meaningful security bounds even in constrained cases where the entropy-output
gap is small (or even negative). See Section 7 for details.

Relations to work on statistical extractors. While a main theme of our work is the
role of pseudorandom generators in the construction of computational extractors,
it is interesting to point out that pseudorandomness also plays a fundamental role
in the development of statistical extractors. Starting with the work of Trevisan
[Tre01] it has been realized that constructions of “non-cryptographic” pseudo-
random generators such as [NW88, IW97] can lead to efficient statistical extrac-
tors. The notion of pseudorandomness in these works is usually weaker than the
traditional cryptographic notion (that we use in our definition of computational

2 This construction is somewhat reminiscent of the techniques used by Kalai et al.
in [KLR09] for building two-source or network extractors, though the context and
goals of these constructions are different.
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extractors), e.g., they allow for super-polynomial (on the seed length) running
time or consider more limited adversaries. Also the focus on efficiency in statis-
tical extractors has traditionally been geared towards minimizing the size of the
random seed as this determines the utility of these extractors in derandomization
applications. See [Sha02] for a survey of results in this area. It would be very inter-
esting to find closer relations between results in the above area and the questions
raised by our work. In particular, in spite of the large body of work on statistical
extraction, there seems to be little work that investigates statistical extractors
against (efficiently) samplable sources. The only paper on the subject that we
are aware of is by Trevisan and Vadhan [TV00] who show that if we only care
about samplable distributions we can use deterministic extractors; however, this
only works as long as the sampler of the source is computationally weaker than
the extractor itself. Indeed, [TV00] shows that if we allow the source to depend
on the extractor and to have higher computational complexity then determinis-
tic extraction is not possible. In terms of our SRT assumption, what this shows is
that the SRT does apply to deterministic extractors (for each such extractor there
is a samplable source where the extractor fails). For all we know, the seemingly
fundamental question of the entropy bounds that apply to statistical extractors
when acting on samplable sources has not been studied. We hope that our work
will provide motivation to investigate this question.

2 Proper Computational Extractors

We recall the definitions of statistical extractors, define proper computational
extractors and give some of their basic properties. All extractor definitions pre-
sented here are stated in an asymptotic setting; in Section 5 we provide defini-
tions in a concrete-complexity framework.

2.1 Preliminaries

Terminology. A probability ensemble X is an infinite sequence of proba-
bility distributions {Xp} indexed by a parameter p. We usually assume that
for all p, Xp has support in {0, 1}n(p) where n(·) is a polynomially bounded
function. For any integer t we use the symbol Ut to denote the uniform dis-
tribution on {0, 1}t. The statistical distance between two probability ensem-
bles X,Y with common support ensemble {0, 1}n(p) is defined as the function
ΔX,Y (p) = maxT⊆{0,1}n(p) |Pr[Xp ∈ T ]− Pr[Yp ∈ T ]|. We say that a distribu-
tion X has min-entropy k(p) if for all x in the support of Xp it holds that
PrXp [x] ≤ 2−k(p). For simplicity, in what follows we assume that the entropies
denoted k(p) are positive integers (in case k(p) is not an integer, our results hold
by replacing it with *k(p)+).

Definition 1. An extractor family (or simply extractor) is an infinite family
E = {Ep}, indexed by a parameter p, of the form Ep : {0, 1}n(p) × {0, 1}�(p) →
{0, 1}m(p) where the functions n(p), �(p),m(p), are all polynomial in p. The ex-
tractor family E is called (k(p), ε(p))-statistical if for any probability ensemble
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X with support in {0, 1}n(p) and min-entropy k(p), it holds that the statistical
distance between 〈U�(p), Ep(Xp, U�(p))〉 and U�(p)+m(p) is at most ε(p).

The probability distribution from which the first input is taken is called the
source and the second input is the seed. This definition of an extractor, requiring
the joint distribution of output and seed to be ε statistically-close to uniform, is
sometimes referred to in the literature as a strong extractor. A weaker flavor of
this definition, referred to as a weak extractor, is one where one only considers the
distance between the output Ep(Xp, U�(p)) and the uniform distribution Um(p)

(without the seed, which may remain hidden). In this paper, unless otherwise
noted, an “extractor” refers to a strong extractor.

Intuitively, the goal of an extractor is to extract close-to-uniform bits out of a
source with sufficiently high min-entropy, using a “short” uniformly random seed.
We require that the output is longer than the seed,3 specifically that m(p) >
�(p) + 1.

Ideally, we’d like to extract all the randomness from the input, getting m =
k + � truly uniform bits (with ε = 0). However, this is impossible in general.
From the results of [RTS00, NZ96, HILL99] we have the following lemma (which
holds even for weak extractors) showing a tight relationship between how much
of the input entropy k + � can be extracted, and the distance ε from uniform.

Lemma 1 (RT Bound [RTS00]). Let E be a (k(p), ε(p))-statistical extractor
with parameters n(p), �(p),m(p) where k(p) < n(p) − O(1)4 and ε(p) < 1/2.

Then ε(p) ≥ 2−
k(p)+�(p)−m(p)+O(1)

2 . That is, for every such E there is a probability
ensemble X with min-entropy k(p) for which Ep(Xp, U�(p)) has statistical dis-

tance min{ 12 , 2−
k(p)+�(p)−m(p)

2 } from Um(p). This bound is tight and achieved, in
particular, by statistical extractors implemented via pairwise independent hash
functions.

2.2 Proper Computational Extractors and Proper Stretch

We start by defining computational extractors, which differ from statistical ones
in that the output is only required to be computationally indistinguishable from
uniform rather than statistically close, the extractor itself needs to be efficient,
and it is only required to work on efficiently samplable distributions.

Definition 2. A family E of extractors is called k(p)-computational if Ep is
polynomial-time computable, and for all efficiently-samplable probability ensem-
bles X with min-entropy k(p), the joint distribution (U�(p), Ep(Xp, U�(p))) is com-
putationally indistinguishable from U�(p)+m(p).

In this definition “efficiently samplable” means samplable by a polynomial-time
algorithm and “computationally indistinguishable” refers to the regular notion
of negligible advantage for all polynomial-time distinguishers. In a non-uniform
setting, polynomial-time is be replaced by poly-size circuits.

3 Without this condition, the trivial extractor that outputs its seed works for any
source (even with 0 entropy).

4 The symbol O(1) represents a specific constant calculated in [RTS00].
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Discussion. The defined notion corresponds to a strong extractor (see Sec-
tion 2.1). A weak computational extractor is defined similarly but only requiring
that the output Ep(Xp, U�(p))) (without the seed) is indistinguishable from uni-
form. Although our lower bounds hold even for weak extractors, we focus our
treatment on strong extractors, because in the computational setting, weak ex-
tractors are not very interesting. Indeed, any PRF is, by definition, a weak
computational extractor that works for any source distribution.

We require the output of the computational extractor to be pseudorandom
only when the input is an efficiently samplable distribution. Indeed, for com-
putational uses (where we model feasible computation as polynomial-time) a
hard-to-sample distribution is of little interest. In particular, we would not want
to disqualify a good computational extractor just because it fails on a hard to
compute source. Also, samplable sources allow to use the same seed – as long
as it has been chosen at random and independently of the source – with mul-
tiple samples (this is crucial in some applications, including key derivation as
discussed in Section 7).

At the same time, it is worth noting that we could consider a flavor of our
definition where efficient samplability is replaced with oracle access (for the
attacker) to an arbitrary distribution. The lower-bound results from Sections
3 and 4 hold for this definition, while the upper bound from Lemma 7 holds
as long as the OWP is secure against non-uniform attackers (non-uniformity is
necessary to argue that access to a hard-to-compute distribution does not help
the attacker break the OWP or other primitives such as a PRG). Finally, we
note that for our results on fully black-box reductions from Section 5, we do
consider the latter setting, namely, arbitrary distributions to which the attacker
gets oracle access.

It is clear that any efficient (k(p), ε(p))-statistical extractor for a negligible
ε(p), is also a k(p)-computational extractor. Thus, the upper bound of Lemma
1 implies the following.

Lemma 2. There exist extractors with parameters n(p), �(p),m(p) that are k(p)-
computational for any k(p) < n(p)−O(1) such that

k(p) = m(p)− �(p) + ω(log p) (1)

Note that the Lemma is unconditional, i.e., computational extractors with pa-
rameters as in (1) exist unconditionally. In this sense, non-trivial computational
extractors are those whose parameters beat (1), and in particular have an output
that is (indistinguishable from but) statistically far from uniform. We call such
extractors proper, defined as follows.

Definition 3. The stretch σ(p) of a k(p)-computational extractor with param-
eters n(p), �(p),m(p)is defined as σ(p) = m(p) − k(p) − �(p). The stretch σ(p)
is proper if σ(p) ≥ −O(log p) (i.e., there exists a constant c such that σ(p) ≥
−c log p for all p). A k(p)-computational extractor is proper if its stretch is
proper.
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Note that the stretch does not only depend on the extractor but also on the
input entropy k(p) (though, for simplicity, we sometimes omit the explicit k(p)
notation when talking about proper extractors). Since, for simplicity, we have
assumed that k(p) is integer (or else we consider *k(p)+) then the stretch is
integer and can be negative, zero, or positive. Hereafter, when we say “proper
extractor” we mean “proper computational extractor.”

3 The Equivalence of Proper Extractors and One-Way
Functions

Note that statistical extractors have statistical distance from uniform of at least
ε(p) = 2−

k(p)+�(p)−m(p)
2 which is 1/poly(p) (hence non-negligible) in the case of

proper extractors. Thus, statistical extractors do not immediately yield proper
computational extractors.

This raises the question: Do proper computational extractors exist? The fol-
lowing Lemma answers this in the affirmative, assuming one-way functions exist.

Lemma 3. If one-way functions exist then strong proper computational extrac-
tors exist too.

Proof Sketch. Let E = {Ep} be a k(p)-computational extractor with parame-
ters n(p), �(p),m(p) for which equation (1) holds (such an extractor exists for any
functions m(p), k(p) as in Lemma 2). Also assume ω(log p) ≤ p. Let {Gp} be a
pseudorandom generator with seed lengthm(p) and output length k(p)+�(p) (as-
suming OWFs, PRGs exist for some function m(p) and output length m(p)+p).
Construct extractor E′ that first applies E and uses the output to seed the PRG.
It is easy to see that E has parameters n(p), �(p),m′(p) = k(p) + �(p) and its
output is indistinguishable from Um′(p). But m

′(p) = k(p) + �(p), thus E′ is
proper.

Somewhat surprisingly we can’t immediately prove equivalence between proper
extractors and one-way functions. The opposite direction of Lemma 3 can be
easily proven only for proper computational extractors with positive stretch as
shown in the following Lemma.

Lemma 4. From any (even weak) computational extractor with positive stretch
one can build a pseudorandom generator.

Proof Sketch. Let E be a k(p)-computational extractor with parameters n(p),
�(p), m(p) and positive stretch σ(p), i.e. m(p) > k(p)+ �(p). We build a PRG G
with random seeds of length s(p) = k(p) + �(p) and output length m(p) > s(p).
G partitions its seed into a k(p)-long value x and an �(p)-long value y, and calls
E on (x′, y) where x′ consists of x padded with n(p) − k(p) zeros. Clearly, the
input distribution to E has entropy k(p), hence its output is pseudorandom.
Since G outputs more bits than its seed then G is a pseudorandom generator.
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The last two lemmas leave the following question: Does the existence of proper
computational extractors, even those with non-positive proper stretch imply the
existence of one-way functions? In particular, is this the case for computational
extractors of stretch 0? To provide an affirmative answer we need to resort to an
additional assumption about the RT bound.

Samplable RT (SRT) Assumption. For every polynomial-time computable
extractor E with parameters n(p), �(p),m(p) and every function k such that
k(p) < n(p) − O(1), there exists a poly-time samplable probability ensemble
X of min-entropy k such that the statistical distance between the distributions
Ep(Xp, U�(p)) and Um(p) is at least min{ 12 , 2−O(k(p)+�(p)−m(p))}.

In other words, we are assuming that if we restrict attention to efficiently
samplable sources then the RT bound still applies. More accurately, we as-
sume a weaker bound where the RT bound 2−

1
2 (k(p)+�(p)−m(p)) is replaced with

2−c·(k(p)+�(p)−m(p)) for any constant c, possibly much larger than 1/2. In addi-
tion, we assume this to be the case only for efficient extractors5. This assumption
is not implied by the proof in [RTS00] which builds a source on which the extrac-
tor incurs the claimed bound but this source may not be efficiently samplable.
Quite interestingly, the question raised by this conjecture does not seem to have
been widely researched. Any answer to it, positive or negative, would be of in-
terest. If true it implies the equivalence of proper computational extractors and
pseudorandom generators (see Theorem 1). If disproven it would open the possi-
bility of building efficient extractors that beat the RT and Leftover-Hash-Lemma
bounds on efficient sources.

Lemma 5. Under the SRT assumption, the existence of a proper extractor im-
plies the existence of a OWF.

Proof Sketch. Let E be a proper k(p)-computational extractor and let X be
a polynomial-time samplable ensemble of min-entropy k(p), then the output
of E on X induces a polynomial-time samplable distribution that is statisti-
cally far from uniform but computationally indistinguishable. Thus, the pair
of distributions (EP (XP , U�(p)), Um(p)) are efficiently samplable, have statistical
distance greater than 1/poly(p) for some polynomial and are computationally
indistinguishable. Using the results of [Gol90, HILL99], constructing such a pair
of distributions is sufficient to construct pseudorandom generators (PRG). This
in turn implies the existence of OWF.

From Lemmas 3 and 5 we get:

Theorem 1. Under the SRT assumption, proper computational extractors exist
if and only if one-way functions exist.

5 It is most likely (using a counting argument) that the conjecture does not hold for
super-polynomial extractors, namely, there may be inefficient extractors that beat
the RT bound on all efficiently samplable distributions.
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4 The Cost of Black-Box Constructions of Proper
Extractors from OWPs

In this section we follow the methodology from [GGKT05] for quantifying the
cost, as a number of OWP invocations, of (semi) black-box constructions of
proper computational extractors from OWPs. We show a lower bound on the
number of calls to the OWP that depends on the strength of the OWP and
the stretch of the extractor. This result reflects the intuition that in order to
build a computational extractor one needs to first make up for the entropy gap
intrinsic to the RT bound. Indeed, the result shows that it is not enough to call
the OWP just to generate as many bits as the extractor’s stretch but one needs
to generate ω(log p) additional bits to cover for the loss of entropy. Comparing
with the corresponding results of [GGKT05] about pseudorandom generators, we
see that making up for this entropy gap is the only intrinsic difference between
proper extractors and PRGs (under this black-box complexity measure). We also
prove that the lower bound is tight.

Remark: Our lower bounds deal with constructions of computational extrac-
tors from one-way permutations. However, we note that our results extend to
the case of one-way functions since our lower bounds are proven using random
permutations which are not efficiently distinguishable from one-way functions.
However we do not know if for the case of OWF our bounds are tight (i.e. the
currently known constructions based on OWF have a larger number of queries).

In Section 3 we showed that proper extractors are equivalent to one-way func-
tions. Here we formalize a notion of black-box constructions for computational
extractors: such constructions access a one-way function as an oracle, rather
than having access to the code of an algorithm computing it.

We start by developing an analogue of the treatment from [GGKT05] to the
asymptotic setting of our analysis. For any integers t, n, t ≤ n, we denote by Πn

the set of all permutations over {0, 1}n and by Πt,n the set of permutations in
Πn that arbitrarily permute the first t bits of input while leaving the remaining
n− t bits fixed.

For a security parameter p denote with n(p), k(p), �(p),m(p) and t(p) integer
functions that grow polynomially in p. Assume also that t(p) ≤ n(p) and k(p) ≤
n(p)− O(1) for all p. Consider an infinite family of permutations Π = {πp}∞p=1

where πp is chosen in Πn(p). We say that Π is T (p)-hard if for sufficiently large p,
any attacker running in time T (p) succeeds in inverting πp with probability less
than 1/T (p). We say that Π is one-way if it is T (p)-hard for every polynomial
T (·).

With Π∗ we denote such a family Π∗ = {π∗p}∞p=1 where each permutation
π∗p is chosen at random from the set Πt(p),n(p). The following Lemma (based on
[IR89]) proves that for any hardness T (p), if we choose t(p) = 3 logT (p) (and an
additional technical condition that t(p) ≥ 6 log p), then this family is T (p)-hard
with probability 1.

Lemma 6. Let t(p) ≥ 6 log p. Then with probability 1, Π∗ constructed as above
is T (p)-hard for T (p) = 2t(p)/3.
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Proof. Let A be an adversary that runs time T (p) and attempts to invert Π∗.
On expectation, over the choice of π∗p, A succeeds in inverting with probability

T (p)/2t(p) = 1/T 2(p), namely:

Eπ∼Πt(p),n(p)
[ Pr
x∼Un(p)

[A(π(x)) = x]] = 1/T 2(p).

Using Markov’s inequality we have that the probability over the choice of π∗p
that A inverts successfully with probability better than T (p) ·1/T 2(p) is at most
1/T (p):

Pr
π∼Πt(p),n(p)

[ Pr
x∼Un(p)

[A(π(x)) = x] ≥ T (p) · 1/T 2(p)] ≤ 1/T (p). (2)

Since by choice of t(p) ≥ 6 log p we have 1/T (p) ≤ 1/p2 we get that the sum∑
p→∞ 1/T (p) is finite. The convergence of this sum allows us to apply the Borel-

Cantelli Lemma to (2) which implies that with probability 1 over the choice of
Π∗ the inequality Prx∼Un(p)

[A(π∗p(x)) = x] < 1/T (p) (where A is assumed to
run time T (p)) holds for all but a finite number of p’s. In other words, with
probability 1 over the choice of Π∗, the resultant family Π∗ is T (p)-hard.

Definition 4. An oracle extractor construction (from a one-way permutation)

is a family of oracle procedures E(·) = {E(·)
p : {0, 1}n(p)×{0, 1}�(p) → {0, 1}m(p)}

such that E
(·)
p expects as an oracle a permutation πp ∈ Πn(p) and E

(·)
p is com-

putable in time polynomial in p. We say that E(·) has black-box access to a family

Π = {πp}∞p=1 (and denote it as E(Π)) if E
(·)
p uses πp ∈ Π as its oracle.

We say that E(·) is a k(p)-computational oracle extractor if for every one-
way family Π the family E(Π) is a k(p)-computational extractor according to
Definition 2.

Another way to restate the above definition is that there must be an efficient
reduction from distinguishing the output of the extractor from uniform to in-
verting the permutation family. In other words, any distinguishing adversary
can be used to construct an inverter for the permutation family. Note that the
above definition formalizes the notion of semi black-box construction in which the
construction (the extractor) has oracle access to the underlying primitive (the
one-way permutation), but no restriction is made on the reduction (in particu-
lar, the reduction might be able to access the code of the adversary). The more
restricted notion of fully black-box constructions (in which additionally the secu-
rity reduction only has oracle access to the adversary breaking the construction)
will be discussed in Section 5.

We now state the main theorem in this section. It shows that under the SRT
assumption, proving a semi-black-box construction of a computational extractor
for which q(p) · t(p)− σ(p) = O(log p) is at least as hard as proving that OWFs
exist (or, equivalently, proving such a construction is at least as hard as proving
that the SRT assumption implies OWF).
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Theorem 2. Let E(·) be a proper k(p)-computational oracle extractor according
to Definition 4, which has access to a T (p)-hard family where T (p) is super-
polynomial. Let t(p) = 3 logT (p) = ω(log p). Assuming SRT, if E

πp
p has proper

stretch σ(p) and it calls the oracle πp a total of q(p) times, then q(p)·t(p)−σ(p) =
ω(log p) or else one-way functions exist. This lower bound on q(p) is tight.

Proof. Let E(·) be a proper k(p)-computational oracle extractor with param-
eters (n(p), �(p),m(p)) and proper stretch σ(p) = m(p) − k(p) − �(p). By as-
sumption EΠ is k(p)-computational whenever the oracle Π is implemented with
one-way permutation family, i.e. Π is T (p)-hard where T (p) is a function grow-
ing faster than any polynomial. In particular, by Lemma 6 this is the case
(with probability 1) when Π is implemented by the family Π∗ with parame-
ter t(p) = 3 logT (p) = ω(log p). We will show that if E

πp
p calls πp ∈ Π∗ a total

of q(p) times, we can construct a computational extractor E′
p with parameters

(n(p), �′(p) = �(p) + q(p)t(p),m(p)) (and no oracle calls) such that for any dis-
tribution Xp with min-entropy k(p), the output distributions E′

p(Xp, U�′(p)) and

E
π∗
p

p (Xp, U�(p)) are q2(p)/2t(p)-statistically close, and since the latter distribu-

tion is pseudorandom so is the former (here we use the fact that q(p)/2t(p) is
negligible since q(p) is polynomial and 2t(p) = T 3(p) super-polynomial).

More specifically, we construct E′
p : {0, 1}n(p)×{0, 1}�′(p) → {0, 1}m(p), where

�′(p) = �(p) + q(p) · t(p), in the following way: Let x, z′ denote the input to
E′
p. The string x and the first �(p) bits of z′ are used by E′

p to define the

input (x, z) to E
(·)
p and the remaining bits of z′ are used to select q(p) dis-

tinct elements y1, . . . , yq(p) ∈ {0, 1}t(p). We then define: E′
p(x, z, y1, . . . , yq(p))

def
=

E
y1,...,yq(p)
p (x, z), namely, when E

(·)
p presents its i-th query to its oracle, call it

wi, we return as response the string yi followed by the last n(p)− t(p) bits of wi.
Note that as long as all the yi’s are different the output distributions

E′
p(Xp, U�′(p)) and E

π∗
p

p (Xp, U�(p)) are identical. The probability of a repeated

yi is q
2(p)/2t(p) and therefore the actual statistical distance between these dis-

tributions is negligible. In particular, we have that the output from E′
p is indis-

tinguishable from random and therefore E′
p is a k(p)-computational extractor

which makes no oracle calls. Moreover, its stretch σ′(p) equals

σ′(p) = m(p)− k(p)− �′(p) = m(p)− k(p)− �(p)− q(p)t(p) = σ(p)− q(p)t(p).

If, for the sake of contradiction, we assume that q(p)t(p) ≤ σ(p) + c log p for
some constant c then we would get σ′(p) ≥ −c log p meaning that E′

p is a regular
(non-oracle) proper computational extractor from which, using Lemma 5 and the
SRT assumption, we can construct a one-way function. This proves the theorem
(the tightness of the bound on q(p) is proven in Lemma 7 below).

Lemma 7. The bound of Theorem 2 is tight: For any function σ(p), polynomial
in p, and any function W (p) that grows as ω(log p) there is a black-box construc-
tion of a strong proper extractor from OWP that attains stretch σ(p) and calls
the OWP q(p) times such that q(p)t(p) ≤ σ(p) +W (p).
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Proof Sketch. We start by noting that there are black-box constructions of
pseudorandom generators from OWPs that for any PRG-stretch function σ′(p)
(defined as the length of the PRG output less the length of PRG seed) call the
OWP σ′(p)/t(p) times where t(p) is defined as in Theorem 2. This is the case,
in particular, for the Blum-Micali construction using Goldreich-Levin hard-core
bits. Therefore, to prove the Lemma it suffices to show how to build a proper
extractor of stretch σ(p) using a PRG of stretch σ(p) +W (p) for any W (p) that
grow as ω(log p).

Let G = {Gp}p be a PRG family, indexed by a parameter p, with seed length
s(p) and output size r(p) = s(p) + σ(p) + W (p), for a given (polynomial in
p) function σ(p). Assume G is (T (p), ε(p))-secure (where ε(p) is negligible in
p). Let E be a strong statistical extractor (e.g., based on pairwise independent
hash functions) with parameters n(p), �(p),m(p) = s(p) + �(p) that on input

distributions of min-entropy k(p) outputs a distribution that is 2−
k(p)−s(p)

2 -close
to Um(p). Using both G and E we build a proper computational extractor E′

with parameters n(p), �(p),m′(p) = r(p) + �(p). On input (x, z), E′ calls E on
(x, z) and uses the s(p)-bit output from E as the seed to G to produce an output
of bit length r(p) = s(p) + σ(p) +W (p). This, plus the �(p)-bit input salt, are
the outputs from E′.

Note that on distributions of min-entropy k(p) = r(p) − σ(p), E′ has stretch
σ(p); moreover, we claim that the output fromE′ is (T (p), ε′(p))-indistinguishable
from uniform where ε′(p) equals ε(p) plus a negligible term 2−W (p)/2 = 2−ω(log p).
Indeed, the only loss of security with respect to G is in the derivation of the
seed z ∈ {0, 1}s(p) that is chosen from a distribution that is 2−(k(p)−s(p))/2 =
2−W (p)/2 = 2−ω(log p)-close to Us(p). Thus E

′ is a proper computational extractor
with stretch σ(p) built on the basis of a PRG of stretch σ(p) +W (p) which, as
said, implies the tightness of the bound.

Note. The Blum-Micali construction with a randomized hardcore like Goldreich-
Levin [GL], requires extra perfect but non-secret randomness. Hence this auxil-
iary randomness can be supplied by the extractor’s seed and be output as part
of the strong extractor’s output.

5 Unconditional Fully Black-Box Lower Bound

Next, we pose the question of what can be shown without assuming SRT. We
show that by restricting our attention to fully black box constructions, not only
can we get rid of the SRT but actually can show an unconditional lower bound
on the number of OWP invocations.

We first show an analogous lower bound to the semi black-box case (though
unconditional) in the asymptotic, uniform setting. We then show a tighter
concrete-complexity result in the non-uniform setting.

To begin, we review the notion of fully black box construction/reduction.

Definition 5. A fully black-box reduction from a primitive Q to a primitive P
is a pair of oracle PPT Turing machines (G(·), S(·,·)) such that the following two
properties hold:
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Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A,
if A breaks Gf (as an implementation of Q) then SA,f breaks f . (Thus, if f is
“secure”, then so is Gf .)

Notice that in a full black-box reduction, the adversary is only accessed as an
oracle. One consequence of this fact is that the adversary does not have to
be efficient. We remark that an implementation of a primitive is any specific
scheme that meets the requirements of that primitive (e.g., an implementation
of a public-key encryption scheme provides samplability of key pairs, encryption
with the public-key, and decryption with the private key).

5.1 Unconditional Lower Bound in the Asymptotic, Uniform
Setting

In this section we show an analogue of the lower bound in Theorem 2 for the
fully black-box setting. While the bound on the number of queries is the same as
in Theorem 2, this result can be proven unconditionally (i.e., without requiring
the SRT and without concluding that a construction that violates the bound
implies a proof of the existence of one-way functions). However, Theorem 3
holds only when we consider a slightly modified definition of computational
extractors where the output of the extractor is required to be computationally
indistinguishable from uniform for every input probability ensemble X of min-
entropy k. Observe that the construction outlined in Lemma 7 satisfies this
stronger notion of security.

Theorem 3. Let E(·) be a proper k(p)-computational fully black box extractor con-
struction, which has access to a T (p)-hard family where T (p) is super-polynomial.
Further assume that such extractor remains proper k(p)-computational on any
k(p)-entropy source, including those that are not efficiently samplable. Let t(p) =
3 logT (p) = ω(log p). If E

πp
p has proper stretch σ(p) and it calls the oracle πp a

total of q(p) times, then q(p) · t(p)− σ(p) = ω(log p).

Proof. See full version [DGKM11].

Next, we present a stronger version of this result. It will be a tighter concrete
(rather than asymptotic) lower bound, for non-uniform fully black-box construc-
tions of proper extractors from OWP. In order to do that, we need to revisit
definitions and preliminary Lemmas in a concrete, non-uniform context.

5.2 Unconditional Lower Bounds in the Concrete, Non-uniform
Setting

We start by adapting the definition of (oracle) computational extractors to the
non-uniform and concrete (i.e., non-asymptotic) complexity setting.

We say that a permutation π over {0, 1}n is S-hard if no circuit of size ≤ S and
oracle access to π can invert π with probability better than 1/S. Additionally,
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we say that two distributions are (S, ε)-indistinguishable if no circuit of size ≤ S
can distinguish between them with probability better than ε.

Definition 6. E : {0, 1}n × {0, 1}� → {0, 1}m is a (k, S, 2−δ)-computational
extractor (CompEXT) if for any distribution X on {0, 1}n with H∞(X) ≥ k,
we have that (E(X,U�), U�) and Um+� are (S, 2−δ)-indistinguishable (where in-
distinguishability holds even for circuits given oracle access to a Sampler which
samples from distribution X).

Definition 7. An oracle computational extractor (OCompEXT) construction
(from a one-way permutation) is an oracle procedure E(·) : {0, 1}n × {0, 1}� →
{0, 1}m that expects as an oracle a permutation π ∈ Πn. We are interested in
constructions where E(·) is computable in time polynomial in n.

We say that E(·) is is an (k, Sπ, SE , 2
−δ)-OCompEXT construction from OWP

if for every permutation π that is Sπ-hard, E
π is an (k, SE , 2

−δ)-secure CompEXT
(where indistinguishability holds even for circuits given oracle access to both
Sampler and π).

Using a standard averaging argument, the existence of a non-uniform attacker
that succeeds in inverting a OWP with the help of such an oracle implies the
existence of another attacker (of slightly larger size) that inverts the OWP with-
out access to the oracle (just wire-in into the attacker circuit the source samples
that maximize the attacker’s inverting probability).

We now restate the lower bound of Radhakrishnan and Ta-Shma [RTS00]
regarding the efficiency of statistical extractors (which was given in Lemma 1
for the asymptotic, uniform setting).

Lemma 8. Let E′ : {0, 1}n×{0, 1}�′ → {0, 1}m be a statistical extractor. Then,
for any k < n− C′ there exists a distribution X of min-entropy k such that the
two distributions E′(X,U�′) and Um are statistically min{ 12 , 2−((k+�′−m+C)/2)}-
far, where C and C′ are universal constants.

We are now ready to state our main result in this section, namely, a lower
bound on the number of queries to the OWP by a fully black box construction
of a computational extractor.

Theorem 4. Let E(·) be a fully black-box construction of a (k, Sπ, SE , 2
−δ)

proper oracle extractor which expects an Sπ-hard one-way permutation π over
n bits. Assume that E(·) makes q ≤ Sπ queries to its oracle and that SE ≤ Sπ
and 2−δ ≥ 1/Sπ. If E

(·) has proper stretch σ then E(·) must call the one-way
permutation q times, where q ≥ (2δ + σ − C)/(5 logSπ) for some constant C.

Proof. See full version [DGKM11].

6 Construction from Exponentially-Hard One-Way
Permutations

The results from Sections 4 and 5 indicate the optimality of the “extract-then-
prg” approach when all we are interested in is minimizing the number of calls to
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a OWP in a black-box construction. However, a significant cost of this approach
is that in order to use an n-bit OWP we need to start with an input distribution
whose entropy is noticeably larger than n so we can apply the extraction part of
the construction to it and still get n bits that are close to uniform and serve as
input to the OWP. Here we show that one can make up for the entropy gap if the
OWP has exponential hardness. In this case, we show a black-box construction
based on such a OWP where one applies the OWP directly on the entropy source
without an intermediate extractor step. For this we reverse the extract-then-prg
approach and use instead an “prg-then-extract” construction where the OWP
is applied first to expand (pseudo) entropy and then a statistical extractor is
applied on this expanded entropy to generate a close-to-uniform output.6

The Construction. Given an (Sπ, 2
−δ/2n−k)-hard OWP, π, we present a con-

struction of a k-entropy strong computational extractor

F : {0, 1}n × {0, 1}(2δ+σ)·n+� → {0, 1}k+(2δ+σ)·n+�+σ

with proper stretch σ in Figure 1.

On input (x, z′ = (r0, . . . , r2δ+σ−1, z)), where x ∈ {0, 1}n, ri ∈ {0, 1}n, z ∈ {0, 1}�,
the extractor F does the following:

Step 1:
– Compute (w1, w2) =((

π2δ+σ(x), 〈r2δ+σ−1, π
2δ+σ−1(x)〉, . . . , 〈r0, x〉

)
, (r2δ+σ−1, . . . , r0)

)
Step 2:

– Let F ′ : {0, 1}n+2δ+σ×{0, 1}� → {0, 1}k+�+σ be a statistical (k+2δ+σ, 2−δ)
strong extractor.

– Compute (v, z) = F ′(w1, z).
Step 3: F outputs (v, z, w2) ∈ {0, 1}k+(2δ+σ)·n+�+σ.

Fig. 1. Strong Computational Extractor from Exponentially-Hard OWP

The proof of Lemma 10 that F is indeed a strong extractor when π is an
exponentially-hard OWP is based on the following lemma showing that
exponentially-hard OWP’s are “hard to invert” on arbitrary distributions of suf-
ficiently high min-entropy.

Lemma 9. Let π : {0, 1}n → {0, 1}n be an (S, ε)-one way permutation and let
X be a distribution over {0, 1}n of min-entropy k where k = n−α. Then for all
adversaries A of size at most S it is the case that:

Pr
x∼X

[A(π(x)) = x] ≤ ε · 2α.

6 [BDK+11] also uses the prg-then-extract approach for constructing an extractor; in
their case, however, the prg is used to expand the seed rather than for increasing
the computational entropy of the source as in our case.
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Lemma 10. The construction of F from Figure 1 is a black-box construction of
a (k, Sπ/poly(n), poly(n) · 2−O(δ))-strong CompEXT with proper stretch σ from
any (Sπ, 2

−δ/2n−k)-OWP π.

Proof. See full version [DGKM11].

7 Practical Computational Extractors from Weak PRF

In this section we explore a connection between computational extractors and
pseudo-random functions. We show a very efficient construction of a strong com-
putational extractor using any PRF, and demonstrate its practical utility in the
context of key derivation functions. Actually, we do not need the full security of
a PRF; it suffices that the PRF is secure against attackers that do not choose
inputs to the function but only see pairs of (input, output) where the inputs are
chosen uniformly at random. Such PRFs are referred to as weak PRF (wPRF)
(note that in our application ‘weak’ is stronger). The proof of our scheme follows
directly from recent results by Pietrzak [Pie09] about leakage-resilient wPRFs.

Weak PRF. A pseudo-random function family is a family of functions F =
{fa : {0, 1}� → {0, 1}m}a∈{0,1}n with the property that if a is chosen uniformly
at random in {0, 1}n, then the function fa is computationally indistinguishable
from a random function from {0, 1}� to {0, 1}m. More specifically, no efficient
algorithm which has oracle access to either fa or to a random function, can
decide which is the case. If the oracle access is restricted to query the function
on randomly chosen inputs, one obtains the notion of weak PRF (wPRF). We
quantify this notion by saying that F is a (S, q, ε)-wPRF family if no circuit
of size S can distinguish between fa (for a chosen uniformly at random) and
a random function with advantage better than ε when seeing the value of the
function on q random inputs.

The main contribution in this section is in presenting the following construc-
tion of a simple computational extractor from any wPRF and demonstrating its
practical security.

wPRF-based computational extractor. Let F = {fa : {0, 1}� → {0, 1}m}a∈{0,1}n

be a wPRF family. We define the extractor F : {0, 1}n × {0, 1}� → {0, 1}m+� as
F (a, s) = (fa(s), s).

Theorem 5. If F = {fa : {0, 1}� → {0, 1}m}a∈{0,1}n is (S, q, ε)-weak PRF with

q2 < ε2�+1, then for k ≤ n the extractor F defined above is a (k, S′, ε′) strong
(and proper7) computational extractor with ε′ ≈ ε · 2n−k and S′ ≈ S · ε′.

Proof. See full version [DGKM11].

7 We assume m ≥ n; if this is not the case in the given family F we can achieve it
using standard range expansion techniques to increase m, possibly at the cost of
somewhat strengthening the weak PRF requirement.
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7.1 Application to Key Derivation

A main application of a strong computational extractor in cryptography is for
key derivation [Kra10]. In this case, the source distribution is some key material,
derived from some statistical process or a key agreement protocol, that has some
significant amount of min-entropy but is not uniformly random as needed to key
cryptographic functions. Thus, we need a way to produce a cryptographic key
(random or pseudorandom) out of this key material. This is where our compu-
tational extractor is useful. One restriction is that if we use a wPRF whose key
size is n we need to consider sources of key material whose length is at most
n. In this case, we simply use the key material (without any processing, except
maybe for padding to n bits) as the key to the wPRF and choose as the input
to the wPRF a random value of length �. The latter is the seed of the extractor
and is assumed that the application provides such random but public “salt” (see
[Kra10] for discussions on this issue). Next we show concrete examples of the ap-
plicability of this method when the key material is derived from a Diffie-Hellman
value (as is common in the settings of key exchange and ElGamal encryption).

We are given (S, q, ε)-wPRF and consider the ratio S/ε as its measure of
security (here S is a function of ε and q). Assume that the wPRF has full
security, i.e. for a key of size n we have S/ε ≈ 2n. In this case, Theorem 5
guarantees that the extractor F (the KDF in our application) has parameters
(S′, ε′) such that:

ε′ ≈ ε · 2n−k and S′ ≈ S · ε′ = 2n · ε · ε′ ≈ 2kε′2

As a concrete example, consider the case of a wPRF with a 256-bit key and
security S/ε = 2256 (this would apply, given current knowledge, to a PRF based
on SHA-256, especially that we only consider attacks where the attacker cannot
chose any inputs – it only sees the function applied to a set of random values).
Assume now that the key, instead of being sampled uniformly at random, follows
a distribution with min-entropy k = 160; this is the case, for example, when the
key material is a Diffie-Hellman value computed over an elliptic curve of size
2160 [GKR04]. In this case we have that to distinguish the 256-bit output of
the extractor from random with advantage ε′ ≈ 2−40 we must invest S′ ≈ 280.
If we want to double the advantage ε′ we need to invest four times more work
(circuit size). For example, to obtain ε′ = 2−20 we need to work S′ = 2120 and
for ε′ = 0.001 one needs S′ = 2140. Even if we consider a less-perfect function,
say S/ε = 2200 one still gets S′ = 264 for ε′ = 2−20 and S′ = 284 for ε′ = 0.001.
Note that in all these cases we are outputting more pseudorandom bits (256)
than the source entropy (160).

In comparison, if we were applying a statistical extractor to the key material
of min-entropy 160 to obtain a key of size 256, we could not claim any security
at all (this is the case even if we only needed a 160-bit of output, and we would
get security of only 2−16 if were outputting a 128-bit key). In comparing with
statistical extractors another main advantage of our PRF-based computational
extractor is the fact that PRFs are already available in practical cryptographic
protocols for other uses (including key expansion as often needed in the context
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of key derivation) and hence do not require of additional mechanisms such as a
statistical extractor.

Related Schemes. It is worth noting the duality between the above KDF con-
struction and the HKDF scheme from [Kra10]. In our case, the imperfect key
material is used to key the (weak) PRF and the seed is used as an input to
the KDF. In HKDF these roles are reversed. This gives HKDF the advantage of
being appropriate for input distributions of arbitrary length while in our scheme
we are limited to the key size. On the other hand, the very non-standard use of
a known value (the seed) as a key to a PRF in the HKDF scheme, makes the lat-
ter much more restricted on the type of PRFs one can use (actually, the known
analysis of HKDF is for particular PRFs, mainly HMAC, and under dedicated
assumptions). In contrast, our scheme can use any PRF and even any wPRF.

The recent work of Barak et al. [BDK+11] builds a computational extractor in
the traditional way, namely, using a statistical extractor to get a close-to-uniform
key and using a PRG or PRF to get additional pseudorandom bits as needed.
The novelty of that work, however, is that they show that if the output from the
statistical extractor (implemented via a suitable hash function) is used as a key
to a wPRF and this wPRF is applied to a random point then the best possible
distinguishing advantage against the output of this scheme is the wPRF’s best
distinguishing advantage plus 2−(k−m). This is an improvement over the generic
analysis using statistical extractors where the latter term would be 2−(k−m)/2.
This relaxes the entropy requirement from the source and is significant in cases
as those considered above (e.g. when generating keys from Diffie-Hellman pro-
tocols of relative small order). Moreover, depending on the security parameters,
the analysis from [BDK+11] can sometimes be used, as in our case, to generate
keys that are even larger than the available entropy. The crucial difference with
our construction, however, is that [BDK+11] requires the implementation of a
statistical extractor (with its corresponding seed) in addition to the wPRF. In
contrast, our scheme re-uses the PRF already available in most cryptographic
implementations without requiring extra machinery (which may seem a minor
issue considering the relative simplicity of statistical extractors but represents
a significant barrier for adoption into standardized protocols, particularly those
requiring hardware support). On the downside, our scheme is limited to situa-
tions where the source of key material produces values that are no longer than
the key of the wPRF, while [BDK+11, Kra10] have no such length restrictions.
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Abstract. We introduce a natural cryptographic functionality called
functional re-encryption. Informally, this functionality, for a public-key
encryption scheme and a function F with n possible outputs, transforms
(“re-encrypts”) an encryption of a message m under an “input public
key” pk into an encryption of the same message m under one of the n
“output public keys”, namely the public key indexed by F (m).

In many settings, one might require that the program implementing
the functional re-encryption functionality should reveal nothing about
both the input secret key sk as well as the function F . As an example,
consider a user Alice who wants her email server to share her incoming
mail with one of a set of n recipients according to an access policy spec-
ified by her function F , but who wants to keep this access policy private
from the server. Furthermore, in this setting, we would ideally obtain
an even stronger guarantee: that this information remains hidden even
when some of the n recipients may be corrupted.

To formalize these issues, we introduce the notion of collusion-resistant
obfuscation and define this notion with respect to average-case secure
obfuscation (Hohenberger et al. - TCC 2007). We then provide a con-
struction of a functional re-encryption scheme for any function F with a
polynomial-size domain and show that it satisfies this notion of collusion-
resistant obfuscation. We note that collusion-resistant security can be
viewed as a special case of dependent auxiliary input security (a setting
where virtually no positive results are known), and this notion may be
of independent interest.

Finally, we show that collusion-resistant obfuscation of functional re-
encryption for a function F gives a way to obfuscate F in the sense of
Barak et al. (CRYPTO 2001), indicating that this task is impossible for
arbitrary (polynomial-time computable) functions F .

1 Introduction

Informally, a program obfuscator is an algorithm that transforms a program into
another, functionally equivalent program whose inner workings are “completely
unintelligible”. Starting from the formalization of programobfuscation in the work
ofBarak,Goldreich, Impagliazzo,Rudich, Sahai,VadhanandYang [3], theproblem
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has received considerable attention in the cryptographic community. A method of
obfuscating programs is an exceedingly valuable tool, both in theory and practice.

Despite its potential for far-reaching applications, the area of program obfus-
cation is wrought with impossibility results. The seminal work of Barak et al. [3]
demonstrated a class of circuits which cannot be obfuscated even under a weak
notion of obfuscation, thereby diminishing the hope of achieving general-purpose
obfuscation. Further impossibility results for obfuscation of more natural func-
tionalities were shown in [14,27,18,4]. Positive results for obfuscation, on the
other hand, have been largely limited to relatively simple classes of functions
such as point functions [7,9,21,27,14,8], proximity testing [12], encrypted per-
mutations [1] and more recently, testing hyperplane membership [10].

In one of the few exceptions to this trend, Hohenberger et al. [19] showed how
to obfuscate a complex cryptographic functionality called re-encryption [5,2].
Informally, a re-encryption program associated with two public keys transforms
an encryption of a message m under the first of these keys to an encryption
of the same message m under the second public key. Hohenberger et al. (and
independently, [18]) also introduce a strong definition of (average-case) secure
obfuscation which we will use and build on in this work. Following [19], Hada [17]
showed how to securely obfuscate an encrypted signature functionality.

Despite the slow and steady stream of positive results for obfuscation, we have
relatively few techniques and paradigms for obfuscation. In particular,

– The key point that enables obfuscation in both [19] and [17] is that they
obfuscate functionalities that compute a function “inside a ciphertext”. For
example, in [19], this is the decryption function and in [17], it is the signature
function. Not surprisingly, it has been noted that given a fully homomorphic
encryption scheme [22,13], the functionalities of [19,17] can be easily obfus-
cated. Thus, we would like to find other paradigms for obfuscating complex
functionalities.

– Both re-encryption and obfuscated signatures can be thought of as access
control mechanisms. The catch, though, is that both of them embody an “all-
or-nothing” form of access control – for example, in the case of re-encryption,
neither the re-encryptor nor the recipient alone can decrypt a ciphertext
created by the initiator although together, the two of them can learn the
entire contents of the ciphertext. We would like to consider functionalities
that capture a finer grained delegation of access.

– An issue that is important in both theory and practice is the presence of
auxiliary inputs. Most positive results on obfuscation (including [19,17], but
also others) do not achieve any form of security against auxiliary inputs that
depend on the function being obfuscated. Indeed, this task seems quite hard,
as indicated by impossibility results of [14] (for some limited positive results
against auxiliary inputs, see [4]). Can we achieve obfuscation against a large,
meaningful class of auxiliary inputs?

In this work, we make progress on the above lines of inquiry. Firstly, we relax
(somewhat) the definition of secure obfuscation in the presence of auxiliary in-
puts, and introduce the notion of collusion resistant obfuscation. Secondly, we
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show how to obfuscate a natural and complex cryptographic functionality called
functional re-encryption in a way that satisfies this notion of security. This func-
tionality captures a finer grained delegation of access, and also protects against
collusion between various participating parties.

1.1 Collusion Resistant Obfuscation

Consider the following scenario. A department would like to create a login pro-
gram that will grant access to several users - say, Alice, Bob, and Carol, who
have different passwords. The department would like to obfuscate this program
and give it to the server that will run it. Now, we would like to guarantee that
this obfuscation remains secure even if, for example, Alice were to collude with
the server. One can view Alice’s password as being specific auxiliary information
that an adversary obtains about the program. Note that this is a restricted form
of auxiliary information as we do not allow an adversary to learn, say specific
bits of Bob or Carol’s passwords. In this work, we are interested in the notion of
average-case secure obfuscation (as defined by [19,18]) and hence in the above
example we assume that all passwords are chosen uniformly at random.

One can generalize the above functionality and obtain a general definition
of collusion resistant obfuscation. We would like to obfuscate a function family
{Cλ} that has the following form. Any CK ∈ Cλ is parameterized by a set of
“secret” keys K = {k1, k2, · · · , k�} (in addition to any other parameters that the
circuit might take) that are chosen at random from some specified distribution.
Now, define a subset of keys represented through a set of indices T ⊆ [�]. ([�]
denotes the set {1, 2, · · · , �}.) We would like to construct an obfuscation of the
circuit, denoted by Obf(CK), so that Obf(CK) is a “secure obfuscation” of CK (in
the sense of [19]) even against an adversary that knows the set of keys {ki}i∈T .

1.2 Functional Re-encryption

Functional re-encryption is an expressive generalization of re-encryption [5,2].
A functional re-encryption functionality is parameterized by a policy function
F : D → [n] (i.e, F has domain D and has n possible outputs) chosen from
some class of functions, an input public key pk, and n output public keys. The
functionality receives as input a ciphertext of messagem with “identity” id under
the input public key pk.1 It decrypts the ciphertext using the secret key sk to
get m and id, and then re-encrypts m under the “appropriate” output public

key p̂kF (id). Following our desiderata from before, one could think of functional
re-encryption as a form of fine-grained delegation of access.

To motivate the functional re-encryption functionality, consider the following
scenario: Alice wishes to have her e-mail server “route” her incoming mail to
one of a set of n recipients. The particular recipient to which the ciphertext
should be routed depends on both the contents of the ciphertext – essentially,

1 This is a slight generalization of the description given earlier in the abstract where
the function F is applied to the entire message. We choose to view the message as an
identity on which the function F is applied, and a separate “payload” for conceptual
cleanliness.
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the identity id – as well as Alice’s access policy encoded by her function F . The
e-mail server does this by “re-encrypting” the contents of the ciphertext under
the appropriate public key. The minimal requirement from such a system is that
the “re-encryption mechanism” hide both the message and Alice’s access policy
– it should merely provide a means for the server to do the appropriate routing. 2

One (not particularly appealing) way for Alice to do this would be to give the
e-mail server her secret key and her access policy; this lets the server decrypt
all incoming messages and determine where to route them. Unfortunately, this
“solution” completely fails this minimum requirement. Ideally, Alice would like
to “obfuscate” the trivial functional re-encryption program above and give it to
the server. We show how to securely obfuscate functional re-encryption which,
informally speaking, guarantees that any “attack” that the server can carry out
given the obfuscated functional re-encryption program, could also be carried out
given only oracle access to the functional re-encryption program (which is no
power at all!).

Furthermore, in reality we could reasonably expect the server to collude with
some of the recipients to learn additional information about messages or about
Alice’s access policy function F . Clearly, collusion helps the server – he can use a
recipient’s decryption key together with the re-encryption program to learn the
output of F on certain inputs. If we consider the auxiliary input to be the secret
keys of the colluding recipients, then our strong notion of collusion-resistant
secure obfuscation guarantees that this is the only information that the server
could possibly learn by colluding.

Selectively delegating access is also the central theme of a recently introduced
notion of predicate encryption [20,25] (which can be viewed as attribute based
encryption in which ciphertexts hide their attributes). In fact, (predicate-hiding,
public key) predicate encryption schemes can potentially be used to solve Alice’s
dilemma. This is done by completely ignoring the email server and giving each
of the recipients a “little secret key” that is just powerful enough to decrypt the
appropriate ciphertexts (dictated by the access policy). Aside from the fact that
there are no known public-key predicate hiding encryption schemes (nor even
good definitions of them), this solution has two drawbacks – first, there is no
way to revoke access from a recipient other than by having Alice choose a fresh
key for herself (which could be quite expensive). Second, this solution requires
all recipients to be aware of the existence of an access policy, while the solution
based on functional re-encryption is completely invisible to the recipients – they
continue using their already registered public keys, and they do not even have
to know of the existence of the functional re-encryption mechanism.

1.3 Overview of Results and Techniques

Collusion resistant obfuscation. We define the notion of collusion resistant obfus-
cation which guarantees security against a natural form of auxiliary inputs. This

2 Of course, since the e-mail server does not know who the recipient is, it either sends
the resulting ciphertext to all the recipients or publishes it on a bulletin board from
which the intended recipient can then access it.
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notion of auxiliary input security might be realizable (without random oracles)
for many common cryptographic tasks.

Functional Re-encryption. We show, informally:

Theorem 1 (Informal). Under the Symmetric External Diffie-Hellman as-
sumption there exists an encryption scheme such that for any function F : D → R
with polynomial-sized domain D, there is a collusion-resistant average-case secure
obfuscation of the functional re-encryption program w.r.t. F . The size of the input
ciphertext in the encryption scheme is O(|D| · poly(λ)), and the size of the output
ciphertext is O(poly(λ)) (i.e., independent of the domain and the range of F ).

We now present the ideas behind our construction at a very high level. One
can think of a functional re-encryption program as a program that must achieve
two goals - a) it must “hide” the policy function F , and b) it must also “hide”
the input secret key (that it uses to decrypt the input ciphertext). These two
goals must simultaneously be achieved while maintaining the right functionality.
Informally, the main innovation in our work is a technique to hide the policy
function - this combined with techniques from [19] allows us to achieve both
goals simultaneously. We shall now describe this first technique in more detail.

Let G,H,GT be groups such that there is a bilinear map e : G×H→ GT . Let
a1, · · · ,ad ∈ Zd

q be vectors that denote elements in the domain D of function F
and let â1, · · · , ân ∈ Zq denote elements in the range R of F . Now consider a
function OF that maps elements in Gd to elements in GT in the following way.
OF is parameterized by random generators g ∈ G and h ∈ H. On input gai , OF
outputs e(g, h)âF (i) . We shall now informally sketch how to publish a program
that achieves the functionality provided by OF, but at the same time hides F .

The program computes a vector α ∈ Zd
q such that the inner product 〈ai,α〉 =

âF (i) for all i. Note that this is indeed possible as α is a solution to a system of d
equations in d variables. The program description simply contains hα. (This can
be computed given only hâF (i) and ai for all i, so we do not actually need the
recipient secret keys âF (i).) On input gai , the program computes and outputs∏d

j=1 e(g
aij , hαj ) = e(g, h)〈ai,α〉 = e(g, h)âF (i) , which is the output as desired.

Unfortunately, this solution does not completely hide the function. Note that
if F (1) = F (2) (say), then an adversary can learn this by simply running the
above program and checking if the output is the same on both the inputs. To
get around this problem, we modify the program in the following way. The
program picks random wi, for all i, and computes two vectors α,β ∈ Zd

q such
that the inner product 〈ai,α〉 =wiâF (i) and 〈ai,β〉 =wi, for all i (in our actual
solution we require the R.H.S of the second equation to be wi − 1 instead of
wi, but we will ignore that for now). The program description now contains

hα, hβ. On input gai , the program computes and outputs
∏d

j=1 e(g
aij , hαj ) =

e(g, h)wiâF (i) , as well as
∏d

j=1 e(g
aij , hβj ) = e(g, h)wi . Now, on two different

inputs (of F ) that have the same output, the above program outputs elements
of the form (e(g, h)xa, e(g, h)x) and (e(g, h)ya, e(g, h)y), for random a, x and y.
However, these tuples are indistinguishable from random, even given e(g, h) and
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e(g, h)a, (by DDH) and hence an adversary cannot tell if F (1) = F (2). This
construction now ensures that F is completely hidden.

Now, note that if we let {gai}, 1 ≤ i ≤ d be the input public key and e(g, h)âj

be the output public key, then one can potentially use the above construction to
build a scheme that converts an encryption of messagem under gai to one under
e(g, h)âF (i) . This is precisely what we do. Our encryption schemes are ElGamal-
like, the input encryption key contains a set of vectors gai , · · · , gad , and an input
encryptionofmessagemwith identity iuses thekey gai . Finally, in order to obtaina
secure obfuscation, we apply techniques from [19] to re-randomize the ciphertexts.

Obfuscating Functional Re-encryption for Arbitrary Policy Functions? A natu-
ral question raised by our result is whether it is possible to achieve collusion-
resistant obfuscation of functional re-encryption for arbitrary (polynomial-time
computable) policy functions F (in particular, functions F with domains of
super-polynomial size). We show that this goal is impossible to achieve. In par-
ticular, we show that a collusion-resistant obfuscation with respect to a policy
function F already contains within it a [3]-style obfuscation (a so-called “pred-
icate obfuscation”) of the policy function F . In some sense, this is not entirely
surprising, and corresponds to the intuition that a collusion-resistant obfusca-
tion of functional re-encryption allows computation of the function F 3, and yet
hides all internal details of F except the input-output behavior. Together with
the impossibility result of [3] for obfuscating general (families of) functions, this
shows that there are classes of (polynomial-time computable) policy functions for
which it is impossible to construct collusion-resistant secure obfuscation of func-
tional re-encryption. See the full version of the paper [11] for a formal statement
and proof of this result. The next question to ask is whether there is any non-
trivial policy function (with a domain of super-polynomial size) for which this
goal can be achieved. We informally argue that this may require some new inno-
vation on the question of constructing public-key predicate encryption schemes
which satisfy a strong security notion called predicate-hiding. Predicate encryp-
tion schemes were defined by Katz, Sahai and Waters [20], following [23,15] (in
particular, the predicate-hiding property was defined in the work of Shi, Shen
and Waters [25]). Constructions of predicate encryption schemes (even ones that
do not achieve predicate-hiding) are known only for simple classes of functions
such as inner products [20]. Moreover, in the public-key setting, we do not know
how to achieve (any reasonable definition of) predicate-hiding, even for simple
functions. Since collusion-resistant obfuscation of functional re-encryption seems
to have the same flavor in functionality as predicate-hiding public-key predicate
encryption, advancements in the class of policy functions that these primitives
can handle seem to be correlated.

3 A collusion-resistant obfuscation of functional re-encryption allows computation of
the function F since given an output secret key ŝki and the re-encryption program,
one can test if F (id) = i for any id in the domain of F . Simply encrypt a random
message with identity id, run it through the re-encryption program and decrypt it
using ŝki. If this returns the same message that was encrypted, then conclude that
F (id) = i.
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2 Collusion Resistant Secure Obfuscation

2.1 Average-Case Secure Obfuscation

Throughout this paper, we will implicitly assume that the adversary (as well as
simulator) can obtain arbitrary polynomial-size independent auxiliary input z.
We remark that our construction is secure even against the presence of such aux-
iliary information. We now recall the notion of average-case secure obfuscation
introduced in [19] below.

Definition 1. An efficient algorithm Obf that takes as input a (probabilistic)
circuit C from the family {Cλ} and outputs a new (probabilistic) circuit, is an
average-case secure obfuscator, if it satisfies the following properties:

- Preserving functionality: With overwhelming probability Obf(C) behaves “al-
most identically” to C on all inputs. Formally, there exists a negligible func-
tion neg(λ), such that for any input length λ and any C ∈ Cλ:

Pr
coins of Obf

[∃x ∈ {0, 1}λ : C′ ← Obf(C); SD(C′(x), C(x)) ≥ neg(λ)] ≤ neg(λ)

where SD(X ,Y) denotes the statistical distance between two distributions X
and Y.

- Polynomial slowdown: There exists a polynomial p(λ) such that for suffi-
ciently large input lengths λ, for any C ∈ Cλ, the obfuscator Obf only en-
larges C by a factor of p. That is, |Obf(C)| ≤ p(|C|).

- Average-case Virtual Black-Boxness: There exists an efficient simulator S
and a negligible function neg(λ), such that for every efficient distinguisher
D, and for every input length λ:

|Pr[C ← Cλ : DC(Obf(C)) = 1]− Pr[C ← Cλ : DC(SC(1λ)) = 1]| ≤ neg(λ)

The probability is over the selection of a random circuit C from Cλ, and the
coins of the distinguisher, the simulator, the oracle, and the obfuscator. 4

2.2 Average-Case Secure Obfuscation with Collusion

Consider the case where we would like to obfuscate a function family {Cλ} that
has the following particular form. Any CK ∈ Cλ is parameterized by a set of
“secret” keys K = {k1, k2, · · · , k�} (in addition to any other parameters that the
circuit might take) that are chosen at random from some specified distribution.
Now, define a (non-adaptively chosen) subset of keys represented through a set of
indices T ⊆ [�], where [�] denotes the set {1, 2, · · · , �}. We would like to construct
an obfuscation of the circuit, denoted by Obf(CK), so that Obf(CK) is a “secure
obfuscation” of CK (in the sense of [19]) even against an adversary that knows
the set of keys {ki}i∈T .

We accomplish this using a definition that is similar in spirit to the notion of
obfuscation against dependent auxiliary inputs [14]. More precisely, in addition

4 This is the definition in [19] but with a dummy adversary. The authors of that paper
note that this is equivalent to the definition they give.
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to their usual inputs and oracles, we give both the adversary and the simulator
access to a (non-adaptively chosen) subset {ki}i∈T ⊆ K of the keys. This can be
seen as auxiliary information about the circuit CK ← Cλ. The formal definition
of collusion-resistant secure obfuscation is as follows.

Definition 2. An efficient algorithm Obf that takes as input a (probabilistic)
circuit and outputs a new (probabilistic) circuit, is a collusion-resistant (average-
case) secure obfuscator for the family {Cλ} if it satisfies the following properties:

- “Preserving functionality” and “Polynomial Slowdown”, as in Definition 1.
- Average-case Virtual Black-Boxness against Collusion: There exists an effi-
cient simulator S, and a negligible function neg(λ), such that for every input
length λ, every efficient distinguisher D, and any subset T ⊆ [�]:∣∣∣Pr[CK ← Cλ : DCK(Obf(CK), {ki}i∈T ) = 1]−

Pr[CK ← Cλ : DCK(SCK(1λ, {ki}i∈T ), {ki}i∈T ) = 1]
∣∣∣ ≤ neg(λ)

The probability is over the selection of a random circuit CK from Cλ, and
the coins of the distinguisher, the simulator, the oracle, and the obfuscator.

Remarks on the Definition. An even stronger attack model allows the adversary
to obtain an obfuscation of a circuit CK where some of the keys in {ki}i∈T are
adversarially chosen. Furthermore, one could allow the adversary to select the
set T adaptively, after seeing the public keys and/or the obfuscated program.
We postpone a full treatment of these issues to future work.

2.3 Securely Obfuscating Functional Re-encryption

We would like to obtain a collusion-resistant average-case obfuscator for the func-
tional re-encryption functionality. A Functional Re-encryption (FR) functionality
associated to function F : D → R, input public/secret key pair (pk, sk), and out-

put public keys p̂k1, . . . , p̂k|R|
5 is a functionality that takes as input a ciphertext

c = I-Enc(pk, id,m) and re-encryptsm under the output public key p̂kF (id). More
precisely, for a given functionF : D → R, we are interested in the family of circuits
FRF,D,R = {FRλ,F,D,R}λ>0 where each circuit Cpk,sk,p̂k1,...,p̂k|R|

∈ FRλ,F,D,R is a

probabilistic circuit indexed by a key pair (pk, sk) ← I-Gen(1λ), and public keys

(p̂ki, $)← O-Gen(1λ), and works as follows:

Cpk,sk,p̂k1,...,p̂k|R|
, on input c :

Computes (id,m)← I-Dec(sk, c), and outputs ĉ← O-Enc(p̂kF (id),m).

If I-Dec(sk, c) returns ⊥ then outputs random elements in the format of ĉ.
Cpk,sk,p̂k1,...,p̂k|R|

, on a special input keys:

Outputs pk, p̂k1, . . . , p̂k|R|.

5 Without loss of generality, and for simplicity of notation, throughout the paper we
will often assume that the domain D = {1, 2, . . . , d} and the range R = {1, 2, . . . , n}.
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Now, for a class of functions, F , we say that a re-encryption program securely
obfuscates re-encryption for F , if there exists a simulator S that satisfies the
collusion resistant obfuscation property w.r.t. FRF,D,R for all F : D → R ∈ F .

In other words, all public keys in the circuit Cpk,sk,p̂k1,...,p̂k|R|
are considered

public knowledge; the only pieces of information we are interested in protecting
are the input secret key sk and the function F . Also, note that we are interested
in guaranteeing security for arbitrarily chosen F , not F chosen at random.

The set of secret keys that will parameterize a functional re-encryption func-
tionality is K = {ŝk1, · · · , ŝk|R|}. The definition of collusion-resistant average-
case secure obfuscation guarantees security against an adversary who not only
knows the re-encryption program, but also has access to a subset {ŝki}i∈T ⊆ K
of the output secret keys. This scenario endows the adversary with considerable
power and knowledge. For instance,

– The adversary will inevitably be able to decrypt all ciphertexts c =
I-Enc(pk, id,m), where F (id) ∈ T , simply by using the re-encryption pro-
gram to convert the ciphertext c into an encryption of m under the output

public key p̂kF (id), and then decrypting it using ŝkF (id).
– Moreover, the power to selectively decrypt a subset of the input ciphertexts

gives the adversary information about the access policy function F itself.
For instance, the adversary can determine if F (id) = i whenever i ∈ T .

– Finally, we remark that the definition of obfuscation for functional re-
encryption by itself does not guarantee the semantic security of the input
and output encryption schemes. We define these separately and prove the
security of the encryption schemes (even in the presence of the re-encryption
program). In more detail, we will require the semantic security of the input
encryption scheme, on messages encrypted with an identity id∗, whenever
F (id∗) /∈ T , even when the adversary is given access to a re-encryption or-
acle. We will similarly require that the input ciphertext hides the identity
id∗, under which the message is encrypted. The security of the output en-
cryption scheme will be that of standard semantic security. Since we wish
to hide everything about the function F , we will also require the output
encryption scheme to be key private; i.e., an encryption under public key

p̂ki will be indistinguishable from an encryption under public key p̂kj . For
formal definitions and proofs of these properties, see the full version [11].

3 Preliminaries

We let λ be the security parameter throughout this paper. By neg(λ) we denote
some negligible function, namely a function μ such that for all c > 0 and all

sufficiently large λ, μ(λ) < 1/λc. For two distributions D1 and D2, D1
c≈ D2

means that they are computationally indistinguishable (to be precise, this state-
ment holds for ensembles of distributions).

We let [�] denote the set {1, · · · , �}. We denote vectors by bold-face letters,
e.g., a. Let G be a group of prime order q. For a vector a = (a1, a2, · · · , a�) ∈ Z�

q
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and group element g ∈ G, we write ga to mean the vector (ga1 , ga2 , · · · , ga�).
For two vectors a and b where a and b are either both in Z�

q or both in G�,
we write ab to denote their component-wise product and a/b to denote their
component-wise division. In case b ∈ Z�

q, we let a
b denote their component-wise

exponentiation. For a vector a and scalar x, xa = ab,a/x = a/b, and ax = ab,
where b = (x, x, · · · , x) of dimension �.

Assumptions. We assume the existence of families of groups {G(λ)}λ>0,

{H(λ)}λ>0 and {G(λ)
T }λ>0 with prime order q = q(λ), endowed with a bilin-

ear map eλ : G(λ) × H(λ) → G
(λ)
T . When clear from the context, we omit the

superscript that refers to the security parameter from all these quantities. The
mapping is efficiently computable, and is bilinear – namely, for any generators
g ∈ G and h ∈ H, and a, b ∈ Zq, e(g

a, hb) = e(g, h)ab. We also require the bilin-
ear map to be non-degenerate, in the sense that if g ∈ G, h ∈ H generate G and
H respectively, then e(g, h) �= 1.

We assume the Symmetric External Diffie-Hellman Assumption (SXDH)),
which says that the decisional Diffie-Hellman (DDH) problem is hard in both
of the groups G and H. That is, when (q,G,H,GT , e) ← BilinSetup(1λ); g ←
G; a, b, c← Zq, the following two ensembles are indistinguishable:

{(q,G,H,GT , e, g, g
a, gb, gab)} c≈ {(q,G,H,GT , e, g, g

a, gb, gc)}

and a similar statement when g ∈ G is replaced with h ∈ H. In contrast, the
assumption that DDH is hard in one of the two groups G or H is simply called
the external Diffie-Hellman assumption (XDH). These assumptions were first
proposed and used in various works, including [26,6,24,16]. In this work, we use
the SXDH assumption.

4 Collusion-Resistant Functional Re-encryption

We are now ready to present our construction of a functional re-encryption
scheme from the symmetric external Diffie-Hellman (SXDH) assumption. We
first construct our basic encryption schemes in Section 4.1. In Section 4.2, we
describe a program that implements the functional re-encryption scheme. Finally,
in Section 4.3, we prove that our functional re-encryption program satisfies the
notion of collusion-resistant average-case secure obfuscation.

4.1 Construction of the Encryption Schemes

A functional re-encryption scheme transforms a ciphertext under an input public
key into a ciphertext of the same message under one of many output public keys.
In our construction, the input and the output ciphertexts have different shapes
– namely, the input ciphertext lives in the “source group” G whereas the output
ciphertext lives in the “target group” GT . We now proceed to describe our
input and output encryption schemes which are both variants of the ElGamal
encryption scheme.
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Parameters. The public parameters for both the input and the output encryption
scheme consist of the description of three groups G, H and GT of prime order
q = q(λ), with a bilinear map e : G × H → GT . Also included in the public
parameters are two generators – g ∈ G and h ∈ H. Let M = M(λ) ⊆ G

denote the message space of both the input and output encryption schemes. We
assume that |M| is polynomial in λ. The construction of our output encryption
scheme requires this to be the case; however, one can encrypt longer messages by
breaking the message into smaller blocks and encrypting the blocks separately.
The Input Encryption Scheme. We first construct the input encryption scheme,
which is parameterized by d = d(λ) which is an upper bound on the size of
the domain of the policy function that we intend to support. We will also use
a NIZK proof system; we note that [16] provides an efficient scheme for the
type of statements we use, which is perfectly sound and computationally zero-
knowledge based on SXDH. We remark that, while the semantic security of
the input encryption scheme does not require this NIZK proof, the obfuscation
guarantee provided by our construction relies on it; if, for example the adversary
were to provide an invalid ciphertext as input to the re-encryption program (e.g.
by combining 2 valid ciphertexts with different i’s), the program might output
some group elements that are distinguishable from random to an adversary that
possesses some of the recipient secret keys.

The input encryption scheme is as follows:

1. I-Gen(1λ, 1d): Pick random vectors a1, · · · ,ad from Zd
q that are linearly

independent. We also generate crs, a common reference string (abbreviated
CRS) for the NIZK proof system. Output pk = (crs, g, ga1 , · · · , gad), and
sk = (a1, · · · ,ad). We remark that the public key pk can be viewed as being
made up of d public keys pki = (g, gai) of a simpler scheme.

2. I-Enc(pk, i ∈ [d],m): To encrypt a message m ∈M, with “identity” i ∈ [d],
choose random exponents r and r′ from Zq, and compute:

(a) C = grai ; D = grm, and
(b) C′ = gr

′ai ; D′ = gr
′

(c) π, a proof that these values are correctly formed, i.e. that they correspond
to one of the vectors gai contained in the public key.

Output the ciphertext (E,E′, π) where E = (C, D) and E′ = (C′, D′).
(Looking ahead, we remark that E looks like an encryption of message m
under pki, while E′ looks like an encryption of 1G under pki. E

′ is primarily
used by the re-encryption program for input re-randomization, and is not
required if the encryption scheme is used stand-alone without the functional
re-encryption program.)

3. I-Dec(sk, (E,E′)): If any of the components of the ciphertextE′ is 1G or if the
proof π does not verify, output ⊥.6 Ignore E′, π subsequently, and parse E as
(C, D). Check that for some i ∈ [d] andm ∈ M,D ·(C1/ai)−1 = (m, · · · ,m).
If yes, output (i,m). Otherwise output ⊥.

6 This “sanity check” is to ensure the correctness of the re-encryption program. Note
that if (E,E′) is honestly generated, this event happens only with negligible proba-
bility.
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The Output Encryption scheme. We now describe the output encryption scheme.

1. O-Gen(1λ): Pick â← Zq. Let p̂k = hâ and ŝk = â.

2. O-Enc(p̂k,m): To encrypt a message m ∈ M ⊂ G,
– Choose random number r ← Zq.

– Compute Ŷ = (hâ)r and Ŵ = hr.

– Output the ciphertext as
[
F̂ , Ĝ

]
:=

[
e(g, Ŷ ), e(g, Ŵ ) · e(m,h)

]
.

3. O-Dec(ŝk = â, (F̂ , Ĝ)): The decryption algorithm does the following:

– Compute Q̂ = Ĝ · F̂−1/â.
– For each m ∈ M, test if e(m,h) = Q̂. If so, output m and halt. (Note

that if e(m,h) are precomputed for all m ∈ M, then this step can be
implemented with a table lookup.)

4.2 Obfuscation for Functional Re-encryption

We now describe our scheme for securely obfuscating the functional re-encryption
functionality for the input and output encryption schemes described above.

The Functional Re-encryption Key. The obfuscator gets an input secret key sk,

the n output public keys p̂ki, and the description of a function F : [d] → [n]. It
outputs a functional re-encryption key which is a description of a program that
takes as input a ciphertext of message m ∈ M and identity i ∈ [d] under public

key pk, and outputs a ciphertext of m under p̂kF (i).
The obfuscator does the following:

1. Pick wi ← Zq for all i ∈ [d] uniformly at random.
2. Solve for α = (α1, . . . , αd) and β = (β1, . . . , βd) such that for all i ∈ [d]:

〈ai,α〉 = wi · âF (i) and 〈ai,β〉 = wi − 1

The re-encryption key consists of the tuple (A,B) where A = hα and B = hβ.
We remark that computing the re-encryption key does not require knowledge
of the output secret keys. To compute hα, one can take the output public keys
hâ1 , · · · , hâd , and with the knowledge of the input secret keys {a1, · · · ,ad} and
random values w1, . . . , wd, one can solve the set of equations h〈ai,α〉 = hwi·âF (i) ,
for all i ∈ [d], to obtain hα. hβ can be computed in a similar manner.

The Functional Re-encryption Program. Given the functional re-encryption key
(A,B) and an input ciphertext (E,E′) where E = (C, D) and E′ = (C′, D′),
the functional re-encryption program performs the following steps:

1. Sanity Check: If any of the components of the input ciphertext E′ is 1G or
if the proof π does not verify, output (F̂ , Ĝ) for random F̂ , Ĝ ∈ GT . The
sanity check is to ensure that the next step – namely, input re-randomization
– randomizes the ciphertext E.

2. Input Re-Randomization: Pick a random exponent t ← Zq and compute

Ĉ = C(C′)t and D̂ = D(D′)t.
Note that the random exponent t is used to re-randomize the encryption of
1G, and this re-randomized encryption of 1G is multiplied with the encryption
of m to get a re-randomized encryption of m.



416 N. Chandran, M. Chase, and V. Vaikuntanathan

3. The main Re-encryption step: Write Ĉ := (Ĉ1, . . . , Ĉd), A := (A1, . . . , Ad)
and B := (B1, . . . , Bd). Compute

F̂ =

d∏
j=1

e(Ĉj , Aj) and Ĝ =

d∏
j=1

e(Ĉj , Bj) · e(D̂, h)

Output the ciphertext (F̂ , Ĝ).

Preserving functionality. Let the input ciphertext be (C, D,C′, D′, π). Given
that π verifies, we know these values will be of the form C = grai , D = grm and
C′ = gr

′ai , D = gr
′
. (If π does not verify, then both the functionality and the

above program will output random group elements.) Let the re-encryption key
be (A,B) where A = hα and B = hβ.

– First, the input re-randomization step computes Ĉ = C(C′)t =

g(r+tr′)ai=gr̂ai and D̂ = D(D′)t = gr+tr′m = gr̂m, where we defined

r̂
Δ
= r + tr′.

– Second, the main re-encryption step computes F̂ =
∏d

j=1 e(Ĉj , Aj) =

e(g, h)r̂〈ai,α〉 = e(g, h)r̂wiâF (i) and

Ĝ =

d∏
j=1

e(Ĉj , Bj) · e(D̂, h)

= e(g, h)r̂〈ai,β〉 · e(gr̂m,h) = e(g, h)r̂(wi−1) · e(gr̂, h) · e(m,h)
= e(g, h)r̂wi · e(m,h)

– Now the ciphertext looks like F̂ = e(g, hâF (i)ρ), Ĝ = e(g, hρ) · e(m,h), where
ρ = r̂wi is uniformly random in Zq, even given all the randomness in the
input ciphertext. The claim about ρ being uniformly random crucially relies
on the “sanity check” step in the re-encryption program (in particular, since
r′ �= 0).

Thus, the final ciphertext is distributed exactly like the output of

O-Enc(p̂kF (i),m).

Semantic security of encryption schemes. We show that the input and output
encryption schemes are semantically secure (in particular, the input scheme hides
both the message and the “identity”, and the output scheme is also key-private)
under the DDH assumption over different groups, even given the re-encryption
program. We present a detailed proof in the full version [11].

Remark. Note that if d = n = 1, then our construction (with the removal of
certain now unnecessary parts, such as the NIZK proof) reduces to something
very similar to that of [19]. Also, note that if the function F were to have
larger (super-polynomial) domain, then our solution would satisfy the property
of polynomial slowdown only if F were represented as a truth table. If F has
large domain but a concise representation, then this property no longer holds.
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4.3 Proof of Collusion-Resistant Secure Obfuscation

We show that our construction is a collusion-resistant average-case secure obfus-
cator for the functional re-encryption functionality. In order to satisfy collusion-
resistance, the encryption as well as the obfuscation scheme have to be modified
somewhat. The modifications do not affect the functionality or the security of the
scheme, and are merely artifacts that seem necessary to show that our functional
re-encryption scheme meets the rigorous demands of being a secure obfuscation.

A necessary modification to the encryption and obfuscation schemes. Consider
the case where a corrupt recipient that holds secret key ŝkj colludes with the
re-encryption program. Now, essentially, this recipient has access to a program
that selectively decrypts input ciphertexts that are encrypted with an identity
i such that F (i) = j. However, the simulator only has oracle access to such a
program and must yet produce a “fake” re-encryption program, that on input a
ciphertext of messagem with identity id, outputs a correct ciphertext ofm under

p̂kj . Hence, in order to put the simulator on an equal footing with the adversary
we need to give the simulator the power to produce an explicit program which
can selectively decrypt input ciphertexts. One way to do this is to cheat and give
the simulator the vector ai, for all i such that F (i) = j, in our construction,
which we will refer to as ski. (Note that ski is a secret key that allows for the
selective decryption of ciphertexts with identity i, but not any other ciphertext.).
For ease of exposition, we shall for now assume that the simulator obtains ski for
all i such that F (i) ∈ T . However, we would not like to resort to this cheat — we
show in the full version [11] how this can be avoided. In other words, we first show
the security of our scheme in the modified model where the simulator obtains
the ski values for all i such that F (i) ∈ T . Next (in the full version [11]), we show
that if the scheme is secure in this model, then it can be easily transformed into
a scheme that is secure in the standard model where the simulator, like the real
world adversary, only gets ŝkj values for j ∈ T . We will now focus on proving the
former statement. Towards showing that our obfuscation satisfies the collusion-
resistant secure obfuscation definition in the model where the simulator obtains
the ski values for all i such that F (i) ∈ T , we first construct a simulator.

Simulator. Let C ← FRλ,F,d,n be a functional re-encryption circuit for the func-
tion F : [d]→ [n], parameterized by the input keys (pk, sk) and the output keys

(p̂kj , ŝkj) for all j ∈ [n]. Let T ⊆ [n] be a set of corrupted receivers. We construct

a simulator S that gets as input the secret keys ŝkj of all the corrupted receivers
(where j ∈ T ) and the secret keys ski such that F (i) ∈ T , and has oracle access
to the functionality C.

First, consider the case where none of the receivers is corrupted. Then, the
simulator works as follows. Recall that the obfuscated re-encryption program
consists of the tuple (h, hα, hβ) where and α and β are solutions to some linear
equations involving the input and output secret keys. The simulator, instead,
simply picks α and β uniformly at random (with no relation to the input or the
output keys). It then runs the adversary on this “junk functional re-encryption
program” (along with the secret keys of the corrupted receivers). Under the
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SXDH assumption, we manage to show that this is indistinguishable from the
obfuscated program that the adversary expects to get (even if the adversary is
also given oracle access to the real re-encryption circuit C).

If some of the receivers are corrupted, the simulator cannot choose α and β at
random any more. Indeed, since the distinguisher has the corrupted output keys,
it can check if the α and β (in the exponent) satisfy the equations involving the

corrupted keys, namely {ŝkj}j∈T . Thus, the simulator has to choose α and β as
uniformly random solutions to a set of equations that involve the corrupted keys.
It turns out that this can be done efficiently since the simulator knows the keys
of the corrupted receivers as well.

Without further ado, let us present the simulator SC(1λ, T , {ŝki}i∈T ,
{skj}j∈F−1(T )) that works as follows:

1. Query the oracle C on input the string “keys” to get all the public keys,
including the input public key pk = (g, ga1 , · · · , gad); and the output public

keys p̂k1 = (h, hâ1), · · · , p̂kn = (h, hân).
2. Sample random w1, . . . , wd from Zq . Sample random α,β from Zd

q such that

∀i s.t. F (i) ∈ T : 〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1

Note that this can be done efficiently using the knowledge of the vectors ai

that we obtained in {skj}j∈F−1(T ), as well as the âF (i) values which are part

of the corrupted secret keys. Compute A = hα, and B = hβ . Output the
tuple (A,B) as the re-encryption key.

We now show that the output of the simulator described above is indistinguish-
able from an obfuscation of the re-encryption functionality (given in Section 4.2),
even to a distinguisher that has the corrupted receivers’ secret keys and ora-
cle access to the re-encryption functionality. This proves that the obfuscation
scheme we constructed in section 4.2 is a collusion-resistant average-case secure
obfuscation satisfying Definition 2. More formally, we show:

Theorem 2. Under SXDH, for any ppt distinguisher D and corrupt set T ⊆ [n],

DC
[
Obf(C), T , {ŝkj}j∈T , {skj}j∈F−1(T )

]
c≈

DC
[
SC(1λ, T , {ŝkj}j∈T , {skj}j∈F−1(T )), {ŝkj}j∈T , {skj}j∈F−1(T )

]
for obfuscator Obf, where C ← FRλ,F,d,n is a uniformly random re-encryption

circuit parameterized by (pk, sk)← I-Gen(1λ) and (p̂ki, ŝki)← O-Gen(1λ).

From the above theorem, our main theorem (which we stated informally as
Theorem 1) follows after making the necessary modifications to the construction
outlined earlier. We now describe a sketch of the proof of Theorem 2. For the
formal proof, see the full version [11].

Proof. (sketch.) At a high level, the proof will go through the following steps:

– Step 1: For simplicity, let us first consider the case when there is no collusion
– that is, neither the distinguisher nor the simulator has access to any of the
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output secret keys. Later, we will point out the necessary modifications to
achieve collusion-resistance.
We first show that the re-encryption key is indistinguishable from random
group elements to any distinguisher D who is given the public keys for the
input and output encryption scheme (but no oracle access). In other words,
we will show that constructing a re-encryption key (A,B) where A = hα

and B = hβ with α,β being solutions to the equations

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ [d] (1)

is indistinguishable from constructing a re-encryption key with uniformly
random α and β. This follows from two ideas – first, under the DDH as-
sumption in group H, it is hard to distinguish between (h, hα, hβ) where α
and β are solutions to Equations 1, from the case where they are solutions
to the same set of equations with the right-hand sides replaced by uniformly
random elements in Z∗

q .
7 Next, we note that choosing α,β as a solution

to a set of equations with uniformly random right-hand side is equivalent
to simply choosing random α,β. This completes the first step - in the full
version [11] we show that this generalizes to the case where T is non-empty,
and the simulator’s α,β are chosen as a random solution to the resulting
underconstrained set of equations.

– Step 2: Next, we will provide our distinguisher D with oracle access to
a random oracle that simply returns random group elements of the same
format as the output ciphertext of the re-encryption program. (The only
exception is that, when it receives a ciphertext encrypted under id such that
F (id) ∈ T , it honestly performs the re-encryption.) We then show that the
re-encryption key is indistinguishable from random group elements to this
distinguisher DRO as well.
This follows from Step 1 fairly easily once we note that the distinguisher in
Step 1 could easily simulate this random oracle itself.

– Step 3: Next, we will provide our distinguisher D with oracle access to either
the re-encryption oracle or the random oracle, and argue that D will not be
able to determine which oracle it is given, even if it is also given the real
re-encryption key.
The main intuition behind this proof is that, based on SXDH, we can show
that honestly generated outputs ciphertexts are indistinguishable from ran-
dom tuples. This is fairly easy to see: consider public key hâ, and the fol-
lowing tuple

[
e(g, hw), e(g, hr) · e(m,h)

]
for random â, r ∈ Zq. If w = âr,

this is a valid encryption of m, if w is a random element of Zq, then this is
a random tuple from GT ×GT .
A fairly straightforward hybrid argument then shows that a real encryption

oracle for public keys p̂k1, . . . , p̂kn is indistinguishable from a random oracle

7 Note that the right-hand sides of Equation 1 are not random as such – for example,
consider the case where F (1) = F (2) = 1. Then, the right-hand sides of the four
equations corresponding to i = 1 and i = 2 are w1â1, w1 − 1, w2â1, w2 − 1, which are
clearly correlated.
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which only produces valid ciphertexts for p̂ki with i ∈ T (even when the

distinguisher is given ŝki for i ∈ T ).
Now, we note that we can generate a real re-encryption key and perfectly
simulate either the real re-encryption oracle or the random re-encryption

oracle given only p̂k1, . . . , p̂kn, and either the encryption oracle or the random
oracle described above. We conclude that the real re-encryption oracle and
random re-encryption oracle are indistinguishable even given the real re-
encryption key (and ŝki for i ∈ T ).

– Step 4: Finally, we will again provide our distinguisher D with oracle access
to either the re-encryption oracle or the random oracle and argue that it will
not be able to determine which oracle it is given, this time when given the
simulated re-encryption key instead.
Again, this follows from Step 3, when we note that the distinguisher in Step
3 could easily ignore the re-encryption key it is given and instead run the
simulator to generate a simulated one.

We have argued that the distinguisher has the same behavior given the real re-
encryption key and real re-encryption oracle or the real re-encryption key and
random oracle (Step 3), that it has the same behavior given the real re-encryption
key and random oracle or the simulated re-encryption key and random oracle
(Step 2), and that it has the same behavior given the simulated re-encryption key
and random oracle or the simulated re-encryption key and real re-encryption ora-
cle (Step 4). Putting everything together, we conclude that the real re-encryption
key and simulated re-encryption key are indistinguishable, even given access to
the real re-encryption oracle. Thus, we obtain the proof of Theorem 2.

Acknowledgements. We wish to thank Markulf Kohlweiss for suggesting the
use of the SXDH assumption which simplified our construction.
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Abstract. The wide variety of small, computationally weak devices,
and the growing number of computationally intensive tasks makes it
appealing to delegate computation to data centers. However, outsourcing
computation is useful only when the returned result can be trusted, which
makes verifiable computation (VC) a must for such scenarios.

In this work we extend the definition of verifiable computation in
two important directions: public delegation and public verifiability, which
have important applications in many practical delegation scenarios. Yet,
existing VC constructions based on standard cryptographic assumptions
fail to achieve these properties.

As the primary contribution of our work, we establish an important
(and somewhat surprising) connection between verifiable computation
and attribute-based encryption (ABE), a primitive that has been widely
studied. Namely, we show how to construct a VC scheme with public del-
egation and public verifiability from any ABE scheme. The VC scheme
verifies any function in the class of functions covered by the permissible
ABE policies (currently Boolean formulas). This scheme enjoys a very
efficient verification algorithm that depends only on the output size. Ef-
ficient delegation, however, requires the ABE encryption algorithm to
be cheaper than the original function computation. Strengthening this
connection, we show a construction of a multi-function verifiable com-
putation scheme from an ABE scheme with outsourced decryption, a
primitive defined recently by Green, Hohenberger and Waters (USENIX
Security 2011). A multi-function VC scheme allows the verifiable evalu-
ation of multiple functions on the same preprocessed input.

In the other direction, we also explore the construction of an ABE
scheme from verifiable computation protocols.
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1 Introduction

In the modern age of cloud computing and smartphones, asymmetry in computing
power seems to be the norm. Computationally weak devices such as smartphones
gather information, and when they need to store the voluminous data they col-
lect or perform expensive computations on their data, they outsource the storage
and computation to a large and powerful server (a “cloud”, in modern parlance).
Typically, the clients have a pay-per-use arrangement with the cloud, where the
cloud charges the client proportional to the “effort” involved in the computation.

One of the main security issues that arises in this setting is – how can the
clients trust that the cloud performed the computation correctly? After all, the
cloud has the financial incentive to run (occasionally, perhaps) an extremely fast
but incorrect computation, freeing up valuable compute time for other transac-
tions. Is there a way to verifiably outsource computations, where the client can,
without much computational effort, check the correctness of the results provided
by the cloud? Furthermore, can this be done without requiring much interac-
tion between the client and the cloud? This is the problem of non-interactive
verifiable computation, which was considered implicitly in the early work on ef-
ficient arguments by Kilian [18] and computationally sound proofs (CS proofs)
by Micali [20], and which has been the subject of much attention lately [2–
5, 10, 11, 13, 14].

The starting point of this paper is that while the recent solutions consider
and solve the bare-bones verifiable computation problem in its simplest form,
there are a number of desirable features that they fail to achieve. We consider
two such properties – namely, public delegatability and public verifiability.

Public Delegatability. In a nutshell, public delegatability says that everyone
should be able to delegate computations to the cloud. In some protocols [2,
4, 10, 11], a client who wishes to delegate computation of a function F is re-
quired to first run an expensive pre-processing phase (wherein her computation
is linear in the size of the circuit for F ) to generate a (small) secret key SKF

and a (large) evaluation key EKF . This large initial cost is then amortized over
multiple executions of the protocol to compute F (xi) for different inputs xi, but
the client needs the secret key SKF in order to initiate each such execution. In
other words, clients can delegate computation to the cloud only if they put in a
large initial computational investment. This makes sense only if the client wishes
to run the same computation on many different inputs. Can clients delegate
computation without making such a large initial commitment of resources?

As an example of a scenario where this might come in handy, consider a clinic
with a doctor and a number of lab assistants, which wishes to delegate the compu-
tation of a certain expensive data analysis function F to a cloud service. Although
the doctor determines the structure and specifics of F , it is in reality the lab as-
sistants who come up with inputs to the function and perform the delegation. In
this scenario, we would like to ask the doctor to run the (expensive) pre-processing
phase once and for all, and generate a (small) public key PKF and an evaluation
key EKF . The public key lets anyone, including the lab assistants, delegate the
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computation of F to the cloud and verify the results. Thus, once the doctor makes
the initial investment, any of the lab assistants can delegate computations to the
cloud without the slightest involvement of the doctor. Needless to say, the cloud
should not be able to cheat even given PKF and EKF .

Goldwasser, Kalai and Rothblum [13] present a publicly delegatable verifiable
computation protocol for functions in the complexity class NC (namely, func-
tions that can be computed by circuits of size poly(n) and depth polylog(n));
indeed, their protocol is stronger in that it does not even require a pre-processing
phase. In contrast, as mentioned above, many of the protocols for verifying gen-
eral functions [2, 4, 10, 11] are not publicly delegatable. In concurrent work,
Canetti, Riva, and Rothblum propose a similar notion (though they call it “pub-
lic verifiability”) [9] and construct a protocol, based on collision-resistant hashing
and poly-logarithmic PIR, for general circuits C where the client runs in time
poly(log(|C|), depth(C)); they do not achieve the public verifiability property
we define below. Computationally sound (CS) proofs achieve public delegata-
bility; however the known constructions of CS proofs are either in the random
oracle model [20], or rely on non-standard “knowledge of exponent”-type as-
sumptions [5, 14]. Indeed, this seems to be an inherent limitation of solutions
based on CS proofs since Gentry and Wichs [12] showed recently that CS proofs
cannot be based on any falsifiable cryptographic assumption (using a black-box
security reduction). Here, we are interested in standard model constructions,
based on standard (falsifiable) cryptographic assumptions.

Public Verifiability. In a similar vein, the delegator should be able to produce a
(public) “verification key” that enables anyone to check the cloud’s work. In the
context of the example above, when the lab assistants delegate a computation on
input x, they can also produce a verification key V Kx that will let the patients,
for example, obtain the answer from the cloud and check its correctness. Neither
the lab assistants nor the doctor need to be involved in the verification process.
Needless to say, the cloud cannot cheat even if it knows the verification key VKx.

Papamanthou, Tamassia, and Triandopoulos [23] present a verifiable compu-
tation protocol for set operations that allows anyone who receives the result of
the set operation to verify its correctness. In concurrent work, Papamanthou,
Shi, and Tamassia [22] propose a similar notion, but they achieve it only for
multivariate polynomial evaluation and differentiation, and the setup and eval-
uation run in time exponential in the degree; they do not consider the notion
of public delegation. Neither the Goldwasser-Kalai-Rothblum protocol [13] nor
any of the later works [2, 4, 10, 11] seem to be publicly verifiable.

Put together, we call a verifiable computation protocol that is both publicly
delegatable and publicly verifiable a public verifiable computation protocol. We
are not aware of any such protocol (for a general class of functions) that is
non-interactive and secure in the standard model. Note that we still require the
party who performs the initial function preprocessing (the doctor in the example
above) to be trusted by those delegating inputs and verifying outputs.

As a bonus, a public verifiable computation protocol is immune to the “rejec-
tion problem” that affects several previous constructions [2, 10, 11]. Essentially,
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the problem is that these protocols do not provide reusable soundness; i.e., a
malicious cloud that is able to observe the result of the verification procedure
(namely, the accept/reject decision) on polynomially many inputs can eventually
break the soundness of the protocol. It is an easy observation that public veri-
fiable computation protocols do not suffer from the rejection problem. Roughly
speaking, verification in such protocols depends only on the public key and some
(instance-specific) randomness generated by the delegator, and not on any long-
term secret state. Thus, obtaining the result of the verification procedure on one
instance does not help break the soundness on a different instance.1

This paper is concerned with the design of public (non-interactive) verifiable
computation protocols.

1.1 Our Results and Techniques

Our main result is a (somewhat surprising) connection between the notions of
attribute-based encryption (ABE) and verifiable computation (VC). In a nut-
shell, we show that a public verifiable computation protocol for a class of func-
tions F can be constructed from any attribute-based encryption scheme for a
related class of functions – namely, F∪F . Recall that attribute-based encryption
(ABE) [15, 25] is a rich class of encryption schemes where secret keys ABE.SKF

are associated with functions F , and can decrypt ciphertexts that encrypt a
message m under an “attribute” x if and only if F (x) = 1.

For simplicity, we state all our results for the case of Boolean functions, namely
functions with one-bit output. For functions with many output bits, we simply
run independent copies of the verifiable computation protocol for each output
bit.

Theorem 1 (Main Theorem, Informal). Let F be a class of Boolean func-
tions, and let F = {F | F ∈ F} where F̄ denotes the complement of the function
F . If there is a key-policy ABE scheme for F∪F , then there is a public verifiable
computation protocol for F .
Some remarks about this theorem are in order.

1. First, our construction is in the pre-processing model, where we aim to out-
source the computation of the same function F on polynomially many inputs
xi with the goal of achieving an amortized notion of efficiency. This is the
same as the notion considered in [10, 11], and different from the one in [13].
See Definition 1.

2. Secondly, since the motivation for verifiable computation is outsourcing com-
putational effort, efficiency for the client is obviously a key concern. Our pro-
tocol will be efficient for the client, as long as computing an ABE encryption
(on input a message m and attribute x) takes less time than evaluating the
function F on x. We will further address the efficiency issue in the context
of concrete instantiations below (as well as in Section 3.2).

1 In fact, this observation applies also to any protocol that is publicly delegatable and
not necessarily publicly verifiable.
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3. Third, we only need a weak form of security for attribute-based encryption
which we will refer to as one-key security. Roughly speaking, this requires
that an adversary, given a single key ABE.SKF for any function F of its
choice, cannot break the semantic security of a ciphertext under any attribute
x such that F (x) = 0. Much research effort on ABE has been dedicated to
achieving the much stronger form of security against collusion, namely when
the adversary obtains secret keys for not just one function, but polynomially
many functions of its choice. We will not require the strength of these re-
sults for our purposes. On the same note, constructing one-key secure ABE
schemes is likely to be much easier than full-fledged ABE schemes.

Note on Terminology: Attribute-based Encryption versus Predicate Encryption.
In this paper, we consider attribute-based encryption (ABE) schemes to be ones
in which each secret key ABE.SKF is associated with a function F , and can de-
crypt ciphertexts that encrypt a message m under an “attribute” x if and only
if F (x) = 1. This formulation is implicit in the early definitions of ABE intro-
duced by Goyal, Pandey, Sahai and Waters [15, 25]. However, their work refers
to F as an access structure, and existing ABE instantiations are restricted to
functions (or access structures) that can be represented as polynomial-size span
programs (a generalization of Boolean formulas) [15, 19, 21]. While such restric-
tions are not inherent in the definition of ABE, the fully general formulation
we use above was first explicitly introduced by Katz, Sahai, and Waters, who
dubbed it predicate encryption [17]. Note that we do not require attribute-hiding
or policy/function-hiding, properties often associated with predicate encryption
schemes (there appears to be some confusion in the literature as to whether
attribute-hiding is inherent in the definition of predicate encryption [8, 17, 19],
but the original formulation [17] does not seem to require it).

Thus, in a nutshell, our work can be seen as using ABE schemes for general
functions, or equivalently, predicate encryption schemes that do not hide the
attributes or policy, in order to construct verifiable computation protocols.

Let us now describe an outline of our construction. The core idea of our con-
struction is simple: attribute-based encryption schemes naturally provide a way
to “prove” that F (x) = 1. Say the server is given the secret key ABE.SKF for
a function F , and a ciphertext that encrypts a random message m under the
attribute x. The server will succeed in decrypting the ciphertext and recovering
m if and only if F (x) = 1. If F (x) = 0, he fares no better at finding the message
than a random guess. The server can then prove that F (x) = 1 by returning the
decrypted message.

More precisely, this gives an effective way for the server to convince the client
that F (x) = 1. The pre-processing phase for the function F generates a master
public key ABE.MPK for the ABE scheme (which acts as the public key for the
verifiable computation protocol) and the secret key ABE.SKF for the function F
(which acts as the evaluation key for the verifiable computation protocol). Given
the public key and an input x, the delegator encrypts a random messagem under
the attribute x and sends it to the server. If F (x) = 1, the server manages to
decrypt and return m, but otherwise, he returns ⊥. Now,
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– If the client gets back the same message that she encrypted, she is convinced
beyond doubt that F (x) = 1. This is because, if F (x) were 0, the server
could not have found m (except with negligible probability, assuming the
message is long enough).

– However, if she receives no answer from the server, it could have been because
F (x) = 0 and the server is truly unable to decrypt, or because F (x) = 1 but
the server intentionally refuses to decrypt.

Thus, we have a protocol with one-sided error – if F (x) = 0, the server can never
cheat, but if F (x) = 1, he can.

A verifiable computation protocol with no error can be obtained from this
by two independent repetitions of the above protocol – once for the function F
and once for its complement F̄ . A verifiable computation protocol for functions
with many output bits can be obtained by repeating the one-bit protocol above
for each of the output bits. Intuitively, since the preprocessing phase does not
create any secret state, the protocol provides public verifiable computation. Fur-
thermore, the verifier performs as much computation as is required to compute
two ABE encryptions.

Perspective: Signatures on Computation. Just as digital signatures authenticate
messages, the server’s proof in a non-interactive verifiable computation protocol
can be viewed as a “signature on computation”, namely a way to authenti-
cate that the computation was performed correctly. Moni Naor has observed
that identity-based encryption schemes give us digital signature schemes, rather
directly [7]. Given our perspective, one way to view our result is as a logical
extension of Naor’s observation to say that just as IBE schemes give us digital
signatures, ABE schemes give us signatures on computation or, in other words,
non-interactive verifiable computation schemes.

Instantiations. Instantiating our protocol with existing ABE schemes creates
challenges with regard to functionality, security, and efficiency. We discuss this
issues briefly below and defer a detailed discussion to Section 3.2.

As mentioned earlier, existing ABE schemes only support span programs or
polynomial-size Boolean formulas [15, 19, 21], which restricts us to this class
of functions as well. In particular, the more recent ABE schemes, such as that
of Ostrovsky, Sahai, and Waters [21], support the class of all (not necessarily
monotone) formulas.

Another challenge is that most ABE schemes [15, 21, 25] are proven secure only
in a selective-security model. As a result, instantiating the protocol above with
such a scheme would inherit this limitation. If we instantiate our protocol with the
scheme of Ostrovsky, Sahai, andWaters [21], we achieve a VCprotocol for the class
of polynomial-size Boolean formulas, which has delegation and verification algo-
rithms whose combined complexity is more efficient than the function evaluation.
Essentially, the complexity gain arises because the delegation algorithm is essen-
tially running the ABE encryption algorithm whose complexity is a fixed polyno-
mial in |x|, the size of the input to the function, as well as the security parameter.
The verification algorithm is very simple, involving just a one-way function com-
putation. The resulting verifiable computation protocol is selectively secure.
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Unfortunately, removing the “selective restriction” seems to be a challenge
with existing ABE schemes. Although there have recently been constructions of
adaptively secure ABE schemes, starting from the work of Lewko et al. [19], all
these schemes work for bounded polynomial-size Boolean formulas. The up-shot
is that the amount of work required to generate an encryption is proportional to
the size of the formula, which makes the delegation as expensive as the function
evaluation (and thus, completely useless)!

Much work in the ABE literature has been devoted to constructing ABE
schemes that are secure against collusion. Namely, the requirement is that even
if an adversary obtains secret keys for polynomially many functions, the scheme
still retains security (in a precise sense). However, for our constructions, we re-
quire much less from the ABE scheme! In particular, we only need the scheme
to be secure against adversaries that obtain the secret key for a single func-
tion. This points to instantiating our general construction with a one-key se-
cure ABE scheme from the work of Sahai and Seyalioglu [24] for the class of
bounded polynomial-size circuits. Unfortunately, because their scheme only sup-
ports bounded-size circuits, it suffers from the same limitation as that of Lewko
et al. [19]. However, we can still use their construction to obtain a VC protocol
where the parallel complexity of the verifier is significantly less than that required
to compute the function.

We also note that when we instantiate our VC protocol with existing ABE
schemes, the computation done by both the client and the worker is significantly
cheaper than in any previous VC scheme, since we avoid the overhead of PCPs
and FHE. However, existing ABE schemes restrict us to either formulas or a less
attractive notion of parallel efficiency. It remains to be seen whether this effi-
ciency can be retained while expanding the security offered and the class of func-
tions supported. Fortunately, given the amount of interest in and effort devoted
to new ABE schemes, we expect further improvements in both the efficiency and
security of these schemes. Our result demonstrates that such improvements, as
well as improvements in the classes of functions supported, will benefit verifiable
computation as well.

1.2 Other Results

Multi-Function Verifiability and ABE with Outsourcing. The definition of veri-
fiable computation focuses on the evaluation of a single function over multiple
inputs. In many constructions [4, 10, 11] the evaluated function is embedded in
the parameters for the VC scheme that are used for the input processing for the
computation. Thus evaluations of multiple functions on the same input would
require repeated invocation for the ProbGen algorithm. A notable difference are
approaches based on PCPs [5, 13, 14] that may require a single offline stage for
input processing and then allow multiple function evaluations. However, such
approaches inherently require verification work proportional to the depth of the
circuit, which is at least logarithmic in the size of the function and for some
functions can be also proportional to the size of the circuit. Further these ap-
proaches employ either fully homomorphic encryption or private information
retrieval schemes to achieve their security properties.
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Using the recently introduced definition of ABE with outsourcing [16], we
achieve a multi-function verifiable computation scheme that decouples the eval-
uated function from the parameters of the scheme necessary for the input prepa-
ration. This VC scheme provides separate algorithms for input and function
preparation, which subsequently can be combined for multiple evaluations. When
instantiated with an existing ABE scheme with outsourcing [16], the verification
algorithm for the scheme is very efficient: its complexity is linear in the output
size but independent of the input length and the complexity of the computation.
Multi-function VC provides significant efficiency improvements whenever mul-
tiple functions are evaluated on the same input, since a traditional VC scheme
would need to invoke ProbGen for every function.

Attribute-Based Encryption from Verifiable Computation. We also consider the
opposite direction of the ABE-VC relation: can we construct an ABE scheme
from a VC scheme? We are able to show how to construct an ABE scheme from
a very special class of VC schemes with a particular structure. Unfortunately,
this does not seem to result in any new ABE constructions.

Due to space constraints, we defer the details to the full version of this paper.

2 Definitions

2.1 Public Verifiable Computation

We propose two new properties of verifiable computation schemes, namely

– Public Delegation, which allows arbitrary parties to submit inputs for dele-
gation, and

– Public Verifiability, which allows arbitrary parties (and not just the delega-
tor) to verify the correctness of the results returned by the worker.

Together, a verifiable computation protocol that satisfies both properties is called
a public verifiable computation protocol. The following definition captures these
two properties.

Definition 1 (Public Verifiable Computation). A public verifiable compu-
tation scheme (with preprocessing) VC is a four-tuple of polynomial-time algo-
rithms (KeyGen,ProbGen,Compute,Verify) which work as follows:

– (PKF , EKF ) ← KeyGen(F, 1λ): The randomized key generation algorithm
takes as input a security parameter λ and the function F , and outputs a
public key PKF and an evaluation key EKF .

– (σx, V Kx) ← ProbGen(PKF , x): The randomized problem generation algo-
rithm uses the public key PKF to encode an input x into public values σx
and V Kx. The value σx is given to the worker to compute with, whereas
V Kx is made public, and later used for verification.

– σout ← Compute(EKF , σx): The deterministic worker algorithm uses the
evaluation key EKF together with the value σx to compute a value σout.

– y ← Verify(V Kx, σout): The deterministic verification algorithm uses the ver-
ification key V Kx and the worker’s output σout to compute a string
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y ∈ {0, 1}∗ ∪ {⊥}. Here, the special symbol ⊥ signifies that the verification
algorithm rejects the worker’s answer σout.

A number of remarks on the definition are in order.
First, in some instantiations, the size of the public key (but not the evaluation

key) will be independent of the function F , whereas in others, both the public
key and the evaluation key will be as long as the description length of F . For
full generality, we refrain from making the length of the public key a part of the
syntactic requirement of a verifiable computation protocol, and instead rely on
the definition of efficiency to enforce this (see Definition 4 below).

Secondly, our definition can be viewed as a “public-key version” of the ear-
lier VC definition [10, 11]. In the earlier definition, KeyGen produces a secret
key that was used as an input to ProbGen and, in turn, ProbGen produces a
secret verification value needed for Verify (neither of these can be shared with
the worker without losing security). Indeed, the “secret-key” nature of these
definitions means that the schemes could be attacked given just oracle access
to the verification function (and indeed, there are concrete attacks of this na-
ture against the schemes in [2, 10, 11]). Our definition, in contrast, is stronger
in that it allows any party holding the public key PKF to delegate and verify
computation of the function F on any input x, even if the party who originally
ran ProbGen is no longer online. This, in turn, automatically protects against
attacks that use the verification oracle.

Definition 2 (Correctness). A verifiable computation protocol VC is correct
for a class of functions F if for any F ∈ F , any pair of keys (PKF , EKF ) ←
KeyGen(F, 1λ), any x ∈ Domain(F ), any (σx, V Kx) ← ProbGen(PKF , x), and
any σout ← Compute(EKF , σx), the verification algorithm Verify on input VKx

and σout outputs y = F (x).

Providing public delegation and verification introduces a new threat model in
which the worker knows both the public key PKF (which allows him to delegate
computations) and the verification key V Kx for the challenge input x (which
allows him to check whether his answers will pass the verification).

Definition 3 (Security). Let VC be a public verifiable computation scheme
for a class of functions F , and let A = (A1, A2) be any pair of probabilistic

polynomial time machines. Consider the experiment ExpPubV erif
A [VC, F, λ] for

any F ∈ F below:

Experiment ExpPubV erif
A [VC, F, λ]

(PKF , EKF )← KeyGen(F, 1λ);
(x∗, state)← A1(PKF , EKF );

(σx∗ , V Kx∗)← ProbGen(PKF , x
∗);

σ∗out ← A2(state, σx∗ , V Kx∗);
y∗ ← Verify(V Kx∗ , σ∗out)

If y∗ �=⊥ and y∗ �= F (x∗), output ‘1’, else output ‘0’;

A public verifiable computation scheme VC is secure for a class of functions F ,
if for every function F ∈ F and every p.p.t. adversary A = (A1, A2):
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Pr[ExpPubV erif
A [VC, F, λ] = 1] ≤ negl(λ). (1)

where negl denotes a negligible function of its input.

Later, we will also briefly consider a weaker notion of “selective security” which
requires the adversary to declare the challenge input x∗ before it sees PKF .

For verifiable outsourcing of a function to make sense, the client must use “less
resources” than what is required to compute the function. “Resources” here could
mean the running time, the randomness complexity, space, or the depth of the
computation. We retain the earlier efficiency requirements [11] – namely, we re-
quire the complexity of ProbGen and Verify combined to be less than that of F .
However, for KeyGen, we ask only that the complexity be poly(|F |). Thus, we em-
ploy an amortized complexity model, in which the client invests a larger amount of
computational work in an “offline” phase in order to obtain efficiency during the
“online” phase. We provide two strong definitions of efficiency – one that talks
about the running time and a second that talks about computation depth.

Definition 4 (Efficiency). A verifiable computation protocol VC is efficient for
a class of functions F that act on n = n(λ) bits if there is a polynomial p s.t.: 2

– the running time of ProbGen and Verify together is at most p(n, λ), the rest
of the algorithms are probabilistic polynomial-time, and

– there exists a function F ∈ F whose running time is ω(p(n, λ)). 3

In a similar vein, VC is depth-efficient if the computation depth of ProbGen and
Verify combined (written as Boolean circuits) is at most p(n, λ), whereas there is
a function F ∈ F whose computation depth is ω(p(n, λ)).

We now define the notion of unbounded circuit families which will be helpful in
quantifying the efficiency of our verifiable computation protocols.

Definition 5. We define a family of circuits {Cn}n∈N to be unbounded if for
every polynomial p and all but finitely many n, there is a circuit C ∈ Cn of size
at least p(n). We call the family depth-unbounded if for every polynomial p and
all but finitely many n, there is a circuit C ∈ Cn of depth at least p(n).

2.2 Key-Policy Attribute-Based Encryption

Introduced by Goyal, Pandey, Sahai and Waters [15], Key-Policy Attribute-
Based Encryption (KP-ABE) is a special type of encryption scheme where a
Boolean function F is associated with each user’s key, and a set of attributes
(denoted as a string x ∈ {0, 1}n) with each ciphertext. A key SKF for a function
F will decrypt a ciphertext corresponding to attributes x if and only if F (x) = 1.

2 To be completely precise, one has to talk about a family F = {Fn}n∈N parameterized
by the input length n. We simply speak of F to implicitly mean Fn whenever there
is no cause for confusion.

3 This condition is to rule out trivial protocols, e.g., for a class of functions that can
be computed in time less than p(λ).
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KP-ABE can be thought of as a special-case of predicate encryption [17] or func-
tional encryption [8], although we note that a KP-ABE ciphertext need not hide
the associated policy or attributes. We will refer to KP-ABE simply as ABE
from now on. We state the formal definition below, adapted from [15, 19].

Definition 6 (Attribute-Based Encryption). An attribute-based encryption
scheme ABE for a class of functions F = {Fn}n∈N (where functions in Fn take n
bits as input) is a tuple of algorithms (Setup,Enc,KeyGen,Dec) that work as fol-
lows:

– (PK,MSK) ← Setup(1λ, 1n) : Given a security parameter λ and an index
n for the family Fn, output a public key PK and a master secret key MSK.

– C ← Enc(PK,M, x): Given a public key PK, a message M in the message
space MsgSp, and attributes x ∈ {0, 1}n, output a ciphertext C.

– SKF ← KeyGen(MSK,F ): Given a function F and the master secret key
MSK, output a decryption key SKF associated with F .

– μ← Dec(SKF , C): Given a ciphertext C ∈ Enc(PK,M, x) and a secret key
SKF for function F , output a message μ ∈ MsgSp or μ =⊥.

Definition 7 (ABE Correctness). Correctness of the ABE scheme requires
that for all (PK,MSK) ← Setup(1λ, 1n), all M ∈ MsgSp, x ∈ {0, 1}n, all
ciphertexts C ← Enc(PK,M, x) and all secret keys SKF ← KeyGen(MSK,F ),
the decryption algorithm Dec(SKF , C) outputs M if F (x) = 1 and ⊥ if F (x) =
0. (This definition could be relaxed to hold with high probability over the keys
(PK,MSK), which suffices for our purposes).

We define a natural, yet relaxed, notion of security for ABE schemes which we
refer to as “one-key security”. Roughly speaking, we require that adversaries
who obtain a single secret key SKF for any function F of their choice and
a ciphertext C ← Enc(PK,M, x) associated with any attributes x such that
F (x) = 0 should not be able to violate the semantic security of C. We note
that much work in the ABE literature has been devoted to achieving a strong
form of security against collusion, where the adversary obtains not just a single
secret key, but polynomially many of them for functions of its choice. We do not
require such a strong notion for our purposes.

Definition 8 (One-Key Security for ABE). Let ABE be a key-policy
attribute-based encryption scheme for a class of functions F = {Fn}n∈N, and
let A = (A0, A1, A2) be a three-tuple of probabilistic polynomial-time machines.
We define security via the following experiment.

Experiment ExpABE
A [ABE , n, λ]

(PK,MSK)← Setup(1λ, 1n);
(F, state1)← A0(PK);

SKF ← KeyGen(MSK,F );
(M0,M1, x

∗, state2)← A1(state1, SKF );
b← {0, 1}; C ← Enc(PK,Mb, x

∗);

b̂← A2(state2, C);

If b = b̂, output ‘1’, else ‘0’;
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The experiment is valid if M0,M1 ∈ MsgSp and |M0| = |M1|. We define the
advantage of the adversary in all valid experiments as

AdvA(ABE , n, λ) = |Pr[b = b′]− 1/2|.

We say that ABE is a one-key secure ABE scheme if AdvA(ABE , n, λ) ≤ negl(λ).

3 Verifiable Computation from ABE

In Section 3.1, we present our main construction and proof, while Section 3.2
contains the various instantiations of our main construction and the concrete
verifiable computation protocols that we obtain as a result.

3.1 Main Construction

Theorem 2. Let F be a class of Boolean functions (implemented by a family
of circuits C), and let F = {F | F ∈ F} where F̄ denotes the complement of the
function F . Let ABE be an attribute-based encryption scheme that is one-key
secure (see Definition 8) for F ∪ F , and let g be any one-way function.

Then, there is a verifiable computation protocol VC (secure under Definition 3)
for F . If the circuit family C is unbounded (resp. depth-unbounded), then the
protocol VC is efficient (resp. depth-efficient) in the sense of Definition 4.

We first present our verifiable computation protocol.
Let ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) be an attribute-

based encryption scheme for the class of functions F ∪ F . Then, the verifiable
computation protocol VC = (VC.KeyGen,ProbGen,Compute,Verify) for F works
as follows.4 We assume, without loss of generality, that the message spaceM of
the ABE scheme has size 2λ.

Key Generation VC.KeyGen: The client, on input a function F ∈ F with in-
put length n, runs the ABE setup algorithm twice, to generate two indepen-
dent key-pairs

(msk0,mpk0) ← ABE.Setup(1n, 1λ) and (msk1,mpk1) ← ABE.Setup(1n, 1λ)

Generate two secret keys skF ← ABE.KeyGen(msk0, F ) (corresponding to
F ) and skF ← ABE.KeyGen(msk1, F ) (corresponding to F ).

Output the pair (skF , skF ) as the evaluation key and (mpk0,mpk1) as the
public key.

Delegation ProbGen: The client, on input x and the public key PKF , samples

two uniformly random messages m0,m1
R←M, computes the ciphertexts

CT0 ← ABE.Enc(mpk0,m0) and CT1 ← ABE.Enc(mpk1,m1)

Output the message σx = (CT0,CT1) (to be sent to the server), and the
verification key V Kx = (g(m0), g(m1)), where g is the one-way function.

4 We denote the VC key generation algorithm as VC.KeyGen in order to avoid confusion
with the ABE key generation algorithm.
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Computation Compute: The server, on receiving the ciphertexts (CT0,CT1)
and the evaluation key EKF = (skF , skF ) computes

μ0 ← ABE.Dec(skF ,CT0) and μ1 ← ABE.Dec(skF ,CT1)

and send σout = (μ0, μ1) to the client.

Verification Verify: On receiving V Kx = (v0, v1) and σout = (μ0, μ1), output
5

y =

⎧⎨⎩0 if g(μ0) = v0 and g(μ1) �= v1
1 if g(μ1) = v1 and g(μ0) �= v0
⊥ otherwise

Remark 1. Whereas our main construction requires only an ABE scheme, using
an attribute-hiding ABE scheme (a notion often associated with predicate en-
cryption schemes [8, 17]) would also give us input privacy, since we encode the
function’s input in the attribute corresponding to a ciphertext.

Remark 2. To obtain a VC protocol for functions with multi-bit output, we re-
peat this protocol (including the key generation algorithm) independently for
every output bit. To achieve better efficiency, if the ABE scheme supports at-
tribute hiding for a class of functions that includes message authentication codes
(MAC), then we can define F ′(x) = MACK(F (x)) and verify F ′ instead, simi-
lar to the constructions suggested by Applebaum, Ishai, and Kushilevitz [2], and
Barbosa and Farshim [3].

Remark 3. The construction above requires the verifier to trust the party that
ran ProbGen. This can be remedied by having ProbGen produce a non-interactive
zero-knowledge proof of correctness [6] of the verification key V Kx. While the-
oretically efficient, the practicality of this approach depends on the particular
ABE scheme and the NP language in question.

Proof of Correctness: The correctness of the VC scheme above follows from:

– If F (x) = 0, then F (x) = 1 and thus, the algorithm Compute outputs μ0 =
m0 and μ1 =⊥. The algorithm Verify outputs y = 0 since g(μ0) = g(m0) but
g(μ1) =⊥�= g(m1), as expected.

– Similarly, if F (x) = 1, then F (x) = 0 and thus, the algorithm Compute
outputs μ1 = m1 and μ0 =⊥. The algorithm Verify outputs y = 1 since
g(μ1) = g(m1) but g(μ0) =⊥�= g(m0), as expected.

We now consider the relation between the efficiency of the algorithms for the
underlying ABE scheme and the efficiency for the resulting VC scheme. Since the
algorithms Compute and Verify can potentially be executed by different parties,
we consider their efficiency separately. It is easily seen that:

– The running time of the VC key generation algorithm VC.KeyGen is twice
that of ABE.Setup plus ABE.KeyGen.

5 As a convention, we assume that g(⊥) =⊥.
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– The running time of Compute is twice that of ABE.Dec.

– The running time of ProbGen is twice that of ABE.Enc, and the running time
of Verify is the same as that of computing the one-way function.

In short, the combined running times of ProbGen and Verify is polynomial in their
input lengths, namely p(n, λ), where p is a fixed polynomial, n is the length of
the input to the functions, and λ is the security parameter. Assuming that F is
an unbounded class of functions (according to Definition 5), it contains functions
that take longer than p(n, λ) to compute, and thus our VC scheme is efficient in
the sense of Definition 4. (Similar considerations apply to depth-efficiency).

We now turn to showing the security of the VC scheme under Definition 3. We
show that an attacker against the VC protocol must either break the security of
the one-way function g or the one-key security of the ABE scheme.

Proof of Security: Let A = (A1, A2) be an adversary against the VC scheme
for a function F ∈ F . We construct an adversary B = (B0, B1, B2) that breaks
the one-key security of the ABE, working as follows. (For notational simplicity,
given a function F , we let F0 = F , and F1 = F .)

1. B0 first tosses a coin to obtain a bit b ∈ {0, 1}. (Informally, the bit b corre-
sponds to B’s guess of whether the adversary A will cheat by producing an
input x such that F (x) = 1 or F (x) = 0, respectively.)

B0 outputs the function Fb, as well as the bit b as part of the state.

2. B1 obtains the master public key mpk of the ABE scheme and the secret key
skFb

for the function Fb. Set mpkb = mpk.

Run the ABE setup and key generation algorithms to generate a master
public key mpk′ and a secret key skF1−b

for the function F1−b under mpk′.
Set mpk1−b = mpk′.

Let (mpk0,mpk1) be the public key for the VC scheme and (skF0 , skF1) be
the evaluation key. Run the algorithm A1 on input the public and evaluation
keys and obtain a challenge input x∗ as a result.

If F (x∗) = b, output a uniformly random bit and stop. Otherwise, B1

now chooses two uniformly random messages M (b), ρ ← M and outputs
(M (b), ρ, x∗) together with its internal state.

3. B2 obtains a ciphertext C(b) (which is an encryption of either M (b) or ρ
under the public key mpkb and attribute x∗).

B2 constructs an encryptionC(1−b) of a uniformly randommessageM (1−b)

under the public key mpk1−b and attribute x∗.

Run A2 on input σx∗ = (C(0), C(1)) and V Kx∗ = (g(M (0)), g(M (1)), where
g is the one-way function. As a result, A2 returns σout.

If Verify(V Kx∗ , σout) = b, output 0 and stop.

We now claim the algorithms (B0, B1, B2) described above distinguish between
the encryption of M (b) and the encryption of ρ in the ABE security game with
non-negligible advantage.
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We consider two cases.

Case 1: C(b) is an encryption of M (b). In this case, B presents to A a perfect
view of the execution of the VC protocol, meaning that A will cheat with
probability 1/p(λ) for some polynomial p.

Cheating means one of two things. Either F (x∗) = b and the adversary
produced an inverse of g(M (1−b)) (causing the Verify algorithm to output
1 − b), or F (x∗) = 1 − b and the adversary produced an inverse of g(M (b))
(causing the Verify algorithm to output b).

In the former case, B outputs a uniformly random bit, and in the latter
case, it outputs 0, the correct guess as to which message was encrypted.
Thus, the overall probability that B outputs 0 is 1/2 + 1/p(λ).

Case 2: C(b) is an encryption of the message ρ. In this case, as above, B out-
puts a random bit if F (x∗) = b. Otherwise, the adversary A has to pro-
duce σout that makes the verifier output b, namely a string σout such that
g(σout) = g(M (b)), while given only g(M (b)) (and some other information
that is independent of M (b)).

This amounts to inverting the one-way function which A can only do with
a negligible probability. (Formally, if the adversary wins in this game with
non-negligible probability, then we can construct an inverter for the one-way
function g).

The bottom line is that the adversary outputs 0 in this case with proba-
bility 1/2 + negl(λ).

This shows that B breaks the one-key security of the ABE scheme with a non-
negligible advantage 1/p(λ)− negl(λ).

Remark 4. If we employ an ABE scheme that is selectively secure, then the
construction and proof above still go through if we adopt a notion of “selectively-
secure” verifiable computation in which the VC adversary commits in advance
to the input on which he plans to cheat.

3.2 Instantiations

We describe two different instantiations of our main construction.

Efficient Selectively Secure VC Scheme for Formulas. The first instantiation uses
the (selectively secure) ABE scheme of Ostrovsky, Sahai and Waters [21] for the
class of (not necessarily monotone) polynomial-size Boolean formulas (which
itself is an adaptation of the scheme of Goyal et al. [15] which only supports
monotone formulas6). This results in a selectively secure public VC scheme for
the same class of functions, by invoking Theorem 2. Recall that selective security

6 Goyal et al.’s scheme [15] can also be made to work if we use DeMorgan’s law to
transform f and f̄ into equivalent monotone formulas in which some variables may
be negated. We then double the number of variables, so that for each variable v, we
have one variable representing v and one representing its negation v̄. Given an input
x, we choose an attribute such that all of these variables are set correctly.



How to Delegate and Verify in Public 437

in the context of verifiable computation means that the adversary has to declare
the input on which she cheats at the outset, before she sees the public key and
the evaluation key.

The efficiency of the resulting VC scheme for Boolean formulas is as follows:
for a boolean formula C, KeyGen runs in time |C| ·poly(λ); ProbGen runs in time
|x| ·poly(λ), where |x| is the length of the input to the formula; Compute runs in
time |C| · poly(λ); and Verify runs in time O(λ). In other words, the total work
for delegation and verification is |x| · poly(λ) which is, in general, more efficient
than the work required to evaluate the circuit C. Thus, the scheme is efficient
in the sense of Definition 4. The drawback of this instantiation is that it is only
selectively secure.

Recently, there have been constructions of fully secure ABE for formulas start-
ing from the work of Lewko et al. [19] which, one might hope, leads to a fully
secure VC scheme. Unfortunately, all known constructions of fully secure ABE
work for bounded classes of functions. For example, in the construction of Lewko
et al., once a bound B is fixed, one can design the parameters of the scheme
so that it works for any formula of size at most B. Furthermore, implicit in
the work of Sahai and Seyalioglu [24] is a construction of an (attribute-hiding,
one-key secure) ABE scheme for bounded polynomial-size circuits (as opposed to
formulas).

These constructions, unfortunately, do not give us efficient VC protocols. The
reason is simply this: the encryption algorithm in these schemes run in time
polynomial (certainly, at least linear) in B. Translated to a VC protocol using
Theorem 2, this results in the worker running for time Ω(B) which is useless,
since given that much time, he could have computed any circuit of size at most
B by himself!

Essentially, the VC protocol that emerges from Theorem 2 is non-trivial if
the encryption algorithm of the ABE scheme for the function family F is (in
general) more efficient than computing functions in F .

Depth-Efficient Adaptively Secure VC Scheme for Arbitrary Functions. Although
the (attribute-hiding, one-key secure) ABE construction of Sahai and Seyali-
oglu [24] mentioned above does not give us an efficient VC scheme, it does result
in a depth-efficient VC scheme for the class of polynomial-size circuits. Roughly
speaking, the construction is based on Yao’s Garbled Circuits, and involves an
ABE encryption algorithm that constructs a garbled circuit for the function F
in question. Even though this computation takes at least as much time as com-
puting the circuit for F , the key observation is that it can be done in parallel.
In short, going through the VC construction in Theorem 2, one can see that
both the Compute and Verify algorithms can be implemented in constant depth
(for appropriate encryption schemes and one-way functions, e.g., the ones that
result from the AIK transformation [1]), which is much faster in parallel than
computing F , in general.

Interestingly, the VC protocol thus derived is very similar to the protocol of
Applebaum, Ishai and Kushilevitz [2]. We refer the reader to [2, 24] for details.
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We believe that this scheme also illuminates an interesting point: unlike other
ABE schemes [15, 19, 21], this ABE scheme is only one-key secure, which suffices
for verifiable computation. This relaxation may point the way towards an ABE-
based VC construction that achieves generality, efficiency, and adaptive security.

4 Conclusions and Future Work

In this work, we introduced new notions for verifiable computation: public dele-
gatability and public verifiability. We demonstrated a somewhat surprising con-
struction of a public verifiable computation protocol from any (one-key secure)
attribute-based encryption (ABE) scheme.

Our work leaves open several interesting problems. Perhaps the main open
question is the design of one-key secure ABE schemes for general, unbounded
classes of functions. Is it possible to come up with such a scheme for the class
of all polynomial-size circuits (as opposed to circuits with an a-priori bound on
the size, as in [24])? Given the enormous research effort in the ABE literature
devoted to achieving the strong notion of security against collusion, our work
points out that achieving even security against the compromise of a single key
is a rather interesting question to investigate!
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Abstract. We prove that there is no black-box construction of a thresh-
old predicate encryption system from identity-based encryption. Our re-
sult signifies nontrivial progress in a line of research suggested by Boneh,
Sahai and Waters (TCC ’11), where they proposed a study of the relative
power of predicate encryption for different functionalities. We rely on and
extend the techniques of Boneh et al. (FOCS ’08), where they give a black-
box separation of identity-based encryption from trapdoor permutations.

In contrast to previous results where only trapdoor permutations were
used, our starting point is a more powerful primitive, namely identity-
based encryption, which allows planting exponentially many trapdoors in
the public-key by only planting a single master public-key of an identity-
based encryption system. This makes the combinatorial aspect of our
black-box separation result much more challenging. Our work gives the
first impossibility result on black-box constructions of any cryptographic
primitive from identity-based encryption.

We also study the more general question of constructing predicate
encryption for a complexity class F, given predicate encryption for a
(potentially less powerful) complexity class G. Toward that end, we rule
out certain natural black-box constructions of predicate encryption for
NC1 from predicate encryption for AC0 assuming a widely believed
conjecture in communication complexity.

Keywords: Predicate Encryption, Black-Box Reductions, Identity-
based Encryption, Communication Complexity.

1 Introduction

An encryption scheme enables a user to securely share data with other users. Tra-
ditional methods based on Secret-Key Cryptography and Public-Key Cryptog-
raphy consider the scenarios where a user securely shares data with another fixed
user whose identity (characterized by the possession of the decryption-key) it
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knows in advance. In particular, in these schemes, there is a bijection between the
encryption-key and the decryption-key, fixed by the chosen encryption scheme.

As systems and networks grow in complexity, and in particular with the emer-
gence of the cloud computing, the above viewpoint may be too narrow to cover
many important applications. Often, a user might want to encrypt data to be
shared with a large set of other users based on some common “property”, or at-
tribute, they satisfy. Membership in this set may not be known to the encryp-
tor, or may not even be decidable in advance. Furthermore, a user might want to
share data selectively so different users are able to decrypt different parts of that
data. To cater to these scenarios, the notion of Predicate Encryption (or Attribute-
based Encryption) has recently emerged. Predicate encryption was introduced by
Sahai and Waters [31], and further developed in the work of Goyal et al. [17]. It
has been the subject of several recent works, e.g., [11,19,24,28,10]. Predicate en-
cryption is useful in a wide variety of applications; in particular, for fine-grained
access control. It has also been a useful technical tool in solving seemingly un-
related problems, e.g., key escrow[15] and user revocation [5] in Identity-based
Encryption (IBE). IBE [32,8,12] can be seen as the most basic form of a predicate
encryption, where the predicate corresponds to a point function.

A predicate encryption scheme is defined in terms of a family F of Boolean
functions (predicates) on a universe A of attributes. Decryption-keys are associ-
ated to a predicate f ∈ F and ciphertexts are labeled with (or are created based
on) an attribute string a ∈ A. A user with a decryption-key corresponding to
f can decrypt a ciphertext labeled with x if and only if f(x) = 1. As argued
by Boneh et al. [10], the key challenge in the study of predicate encryption (or
Functional Encryption in general) is understanding what classes of functionali-
ties F can be supported. If we could support any polynomial time computable
predicate f , then any polynomial-time access control program that acts over a
user’s credentials could be supported [10].

Unfortunately, the current state of the art is far frombeing able to support an ar-
bitrary polynomial-time f . Given this, an important directionBoneh et al. [10] sug-
gested was to understand the relative strengths of predicate encryption schemes
with respect to the functionalities they can support: When does a scheme for one
functionality imply a scheme for another? In the absence of such a reduction, can
we prove that predicate encryption for one functionality is inherently harder than
for another? Ameaningful approach to address this latter question is via black-box
separations [18]; see [30,27] for a comprehensive survey on the topic. A proof that
a cryptographic primitive P1 cannot be constructed given black-box access to an-
other primitive P2 (and of course without incurring any additional assumptions)
can be viewed as an indication that P1 is in some sense a stronger primitive than
P2. Hence, to construct P1 one may have to look for more powerful techniques, or
stronger assumptions than for P2 (or try non-black-box reductions). Thus, study-
ing these questionswould help us better understand the extent to which techniques
for current predicate encryption systems might or might not be useful in obtain-
ing systems for more general functionalities. The broad goal of this work is to make
progress toward answering these questions.
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Since a predicate encryption scheme has an associated family F of Boolean
functions, a natural way to classify such schemes is according to the complexity
class the corresponding family comes from. For example, we can call a scheme
(A,F) an AC0-PE scheme, if every member of F can be computed by a constant-
depth polynomial size circuit (an AC0 circuit) on an attribute string from A.
Hence, a concrete approach to compare predicate encryption schemes is to ask
questions of the kind: Given a predicate encryption scheme for predicates in
complexity class G, can we construct a scheme for predicates in a (potentially
larger) complexity class F in a black-box way? For example, it is well-known that
the circuit class NC1 is strictly larger than AC0. Thus a concrete question is: Is
NC1-predicate encryption provably harder than AC0-predicate encryption with
respect to black-box reductions? A second aspect of our work is to try to relate
(perhaps conjectured) separations among Boolean function complexity classes to
black-box separations among the corresponding predicate encryption schemes.

1.1 Our Results

Our main result is a black-box separation of threshold predicate encryption
(TPE) from identity-based encryption (IBE) schemes. To our knowledge, this
is the first result on the impossibility of constructing a cryptographic primitive
from IBE in a blackbox manner. Recall that IBE can be viewed as the most
basic form of predicate encryption in which the decryption tests exact equality
(in other words, the predicate is a point function). Hence, the first natural step
in the study of the above question is whether IBE can be used to construct
more general predicate encryption systems. Our results show that IBE cannot
be used to construct even a basic system for threshold predicates (introduced by
Sahai and Waters [31]). We believe that the question of IBE vs. more advanced
predicate encryption systems is of special interest. IBE as a primitive is very
well studied [8,12,7,6,34,14], and constructions of IBE are now known based on
a variety of hardness assumptions.

Returning to our more general question, we rule out certain “natural” black-
box constructions of predicate encryption for the class NC1 from predicate en-
cryption for the class AC0, assuming a widely believed conjecture in the area
of two-party communication complexity. Given black-box access to a predicate
encryption scheme for (B,G), a natural way to construct a predicate encryption
scheme for a “larger” system (A,F) is to use a a Sharing-Based Construction as
follows. The decryption-key for an f ∈ F is simply the set of decryption keys for
a set S(f) = {g1, . . . , gq} of predicates gi ∈ G from the smaller system. Similarly,
for each attribute a ∈ A, we associate a set S(a) = {α1, . . . , αq} of attributes
from B. To encrypt a message m under an attribute a for the big system, we
generate q shares m1, . . . ,mq of m and encrypt mj under the attribute αj of
the small system. The concatenation of these encrypted shares is the ciphertext
of m under a. To decrypt, we try to decrypt each mj using the decryption keys
of each gi ∈ S(f). The sharing construction ensures that the shares mj that
are successfully decrypted, if any, in this process suffice to recover m. Thus the
sharing-based construction is a rather natural and obvious way to build pred-
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icate encryption schemes for more complex functionalities from simpler ones.
Our result shows that such a sharing-based construction is impossible if F is a
family of functions in NC1 and G is any family of functions from AC0, assuming
certain conjectures in communication complexity. It is worth noting that com-
binatorial arguments about sharing-based constructions form a core component
of our main result on (unrestricted) black-box separation of TPE from IBE.

1.2 Techniques

We build upon and extend the techniques of Boneh et al. [9] (and a follow-up
work by Katz and Yerukhimovich [20]) which rule out black-box construction
of IBE from Trapdoor Permutations (TDP). Along the way, we also simplify
several aspects of their proof. Given a black-box construction of TPE from IBE,
our proof proceeds by designing an attack on TPE which succeeds with high
probability (in fact arbitrarily close to the completeness probability of the pur-
ported TPE scheme). Somewhat more formally, we build an oracle O relative
to which a CCA secure IBE exists, but any purported construction of a TPE
relative to this oracle is insecure.

Our analysis of the attack roughly consists of a combinatorial part and a cryp-
tographic part. The combinatorial aspect of our analysis is new and completely
different from that in [9]. While the cryptographic part is similar in structure
to that of [9], we do make several crucial modifications that makes our attack
simpler and analysis cleaner.

A Comparison of the Combinatorial Aspects. At the heart of the proof of [9]
is a combinatorial argument as follows. An IBE system obtained by a black-
box construction from a TDP must embed in its public parameters the public
keys of some permutations of the TDP oracle. The adversary’s main goal is to
collect all the trapdoors corresponding to these permutations. Such trapdoors are
embedded in the decryption keys corresponding to identities in the IBE system.
The main point is that there are only q = poly(κ) many permutations planted
in the public parameters of the IBE, but they must also encode an exponential
number of identities. Therefore, if we look at a sufficiently large set of random
identities and their secret keys, and encrypt and decrypt a random message
under these identities, during at most q of these decryptions we might encounter a
“new” trapdoor (which is planted in the public-key to be used during encryption,
but was not discovered during other decryptions). It follows, if we choose our
identity set S to be of size k ·q (and encrypt and decrypt random messages under

them), and then choose an identity id
$←S at random from those q · k identities,

then with probability at least 1 − 1/k there is no new (undiscovered) trapdoor
left for this identity id. Therefore, whatever is learned during the decryptions of
the encryptions of random messages under the identities S \ {id}, is sufficient to
decrypt a message encrypted under id without knowing its decryption-key.

This combinatorial argument immediately suggest the following attack. Get
decryption-keys for all but a random identity id∗ chosen from a large enough
random set S = id1, . . . , idk·q of identities. Collect the trapdoors learned from
the encryptions of random messages under the identities in S \ id∗, and their de-
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cryptions using the corresponding decryption-keys. Try to decrypt the challenge
ciphertext C encrypted under the identity id∗.

In our case, we have a related but more difficult question: what if we start
with a more powerful primitive like an IBE and want to construct another “tar-
get” predicate encryption scheme? Now the intuition behind the combinatorial
argument of [9] completely breaks down. The reason is that in our new setting,
by planting only one (master) public-key of the IBE scheme in the public-key of
the target predicate encryption, the encryption algorithm potentially has access
to an exponential number of permutations (each indexed by an identity) whose
trapdoors can be planted in the decryption-keys. In fact, each decryption-key of
the predicate encryption system might have a unique trapdoor (corresponding
to a unique identity derived from the description of the predicate). Hence, one
can’t hope to learn all trapdoors and use them to decrypt the challenge cipher-
text. Thus, roughly speaking, by moving from a trapdoor permutation oracle
to various forms of PE oracles such as IBE (as the primitive used in the con-
struction), we are allowing the “universe” of trapdoor permutations planted in
the public-key and decryption-keys to be exponentially large (rather than some
fixed polynomial). The latter difference is the main reason behind the complica-
tions in the combinatorial aspect of our problem, because suddenly the regime of
positive results becomes much richer, making the job of proving an impossibility
result much more challenging.

Our proof relies on the collusion-resistance property of the predicate encryp-
tion. The “hope” that an attack exists comes from the following observations:

– The decryption key for each predicate may still consist of only a polynomial
number of IBE decryption-keys.

– Each ciphertext is encrypted using a polynomially large set of identities such
that a decryption-key for at least one of these identities is required to decrypt
the ciphertext. On the other hand, each ciphertext can be decrypted by
keys for an exponential number of different predicates (this follows from the
property of a threshold encryption scheme). Call such predicates “related”.

– This exponentially large set of related predicates must share an IBE
decryption-key since they can decrypt a common ciphertext.

Our attack works by requesting sufficient number of decryption-keys for related
predicates (which would still be unable to decrypt challenge ciphertext). Since
related predicates share IBE decryption-keys, the adversary is able to collect all
“useful” IBE decryption-keys. It is not surprising that the above combinatorial
arguments sound as though they could already be used to attack sharing based
constructions. Indeed, our core combinatorial lemma (Lemma 10) is used to
refute any sharing-based construction of a TPE from an IBE (Corollary 11).

A Comparison of the Cryptographic Aspects. As in [9], turning the combinato-
rial analysis into a full-fledged impossibility result requires non-trivial black-box
separation machinery. For this reason, even though the combinatorial argument
of [9] is relatively simple, the full proof is quite complicated. The explanation
for the complexity of such proofs is that one has to handle all possible construc-
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tions using a trapdoor permutation oracle (and not just where, for example, a
decryption-key simply consists of decryption keys for various identities).

Although the overall structure of our proof is similar to that of [9], there
are several differences in the detailed arguments. In fact, we make some crucial
modifications which lead to a more direct attack and cleaner analysis. The first
major modification is that our attacker “directly” learns the heavy queries (fol-
lowing the paradigm of [2,3]). In [9], the attack proceeds by having steps (such
as several encryptions of a random bit under the challenge identity, repeating
a few steps several times) whose indirect purpose is to learn the heavy queries.
Secondly, since we start with an oracle which roughly provides four functional-
ities (as opposed to the three functionalities of a trapdoor permutation oracle),
we need to modify and adapt the techniques of [9] to the new setting. Apart
from these, there are significant differences in the manner we compare the vari-
ous experiments which we believe makes the analysis cleaner and more general.
The details regarding these can be found in Section 5 and in the full version [16]
where we have deferred most of the proofs due to space constraints.

2 Preliminaries

Notation. For any probabilistic algorithm A, by y ← A(x) we denote the process
of executing A over the input x while using fresh randomness (which we do not
represent explicitly) and getting the output y. By a partial oracle we refer to
an oracle which is defined only for some of the queries it might be asked. By
[x !→ y] ∈ P we mean that P(x) = y is defined. For a query x and a partial
oracle P , we misuse the notation and denote x ∈ P whenever an answer for x
is defined in P . By Supp(X) we refer to the support set of the random variable
X . For a random variable S whose values are sets, we call an element ε-heavy,
if Pr[x ∈ S] ≥ ε. The view of any probabilistic oracle algorithm A, denoted as
View(A) refers to its input, private randomness, and oracle answers (which all
together determine the whole execution of A).

Definition 1 (Predicate Encryption). A predicate encryption scheme PE
for the predicate set Fκ and attribute set Aκ with completeness ρ consists of four
probabilistic polynomial time algorithms PE = (G,K,E,D) such that for every
predicate f ∈ F, every attribute a ∈ A such that f(a) = 1, and every message
M , if we do the following steps, then with probability at least ρ it holds that
M ′ =M : (i). generate a public-key and a master secret-key (PK, SK)← G(1κ),
(ii). get a decryption-key DKf ← K(SK, f) for the predicate f ∈ F, (iii). encrypt
the message M under the attribute a ∈ A and get C ← E(PK, a,M), and finally,
(iv). decrypt C using the decryption-key DKf and get M ′ ← D(PK,DKf , C).

Definition 2 (Neighbor Sets of Predicates and Attributes). For every
set of predicates F and f ∈ F, and for every set of attributes A and a ∈ A we
define the following terminology:

– N(f) = {a | a ∈ A, f(a) = 1} and similarly N(a) = {f | f ∈ F, f(a) = 1}.
– deg(f) = |N(f)| and deg(a) = |N(a)|.
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Since we always work with families of algorithms and sets indexed by a security
parameter κ, when it is clear from the context we might omit the index κ.

Definition 3 (Security of Predicate Encryption). Let PE = (G,K,E,D)
be a predicate encryption scheme with the predicate set F and the attribute set
A. PE is said to be CPA secure if for any PPT adversary Adv participating in
the experiment below, the probability of Adv correctly outputting the bit b is at
most 1/2 + neg(κ):

1. Setup: Generate the keys (PK, SK)← G(1κ) and give PK to Adv.
2. Query Keys: Adv adaptively queries some predicates fi ∈ F for i = 1, 2, . . .

and is given the corresponding decryption-keys DKi ← K(SK, fi).
3. Challenge: Adv submits an attribute a ∈ A and a pair of messages M0 �=
M1 of the same length |M0| = |M1| conditioned on

fi(a) = 0 for every predicate fi whose key DKi is acquired by Adv (1)

and is given C ← E(PK, a,Mb) for a randomly selected b
$← {0, 1}.

4. Adv continues to query keys for predicates subject to condition (1) and
finally outputs a bit.

PE is said to be CCA secure if for any PPT adversary Adv participating in a
modified experiment (explained next), the probability of Adv correctly outputting
the bit b is at most 1/2+neg(κ). The modified experiment proceeds identically as
the above experiment, except that after Step 3, Adv is also allowed to adaptively
query ciphertexts Ci for i = 1, 2, . . . encrypted under the attribute a, with the
condition that Ci �= C for any i, and he is given the decrypted message M ←
D(DKf , Ci), where DKf ← K(SK, f) is a decryption-key for a predicate f such
that f(a) = 1.

Definition 4 (Identity-based Encryption [32]). An Identity Based Encryp-
tion scheme is a predicate encryption scheme where (1) the predicate and at-
tribute sets are equal A = F = {0, 1}κ (and are called the set of identities), and
(2) for every predicate f ∈ {0, 1}κ and every attribute a ∈ {0, 1}κ we have that
f(a) = 1 if and only if f = a.

Definition 5 (Threshold Predicate Encryption [31]). A Threshold Pred-
icate Encryption with threshold 0 < τ < 1 (or simply a τ-TPE) is a predicate
encryption where both the predicate and the attribute sets are equal to {0, 1}κ and
for any predicate f ∈ {0, 1}κ and any attribute a ∈ {0, 1}κ we have that f(a) = 1
if and only if 〈f, a〉 ≥ τ ·κ where 〈f, a〉 is the inner product of the Boolean vectors
f = (f1, . . . , fκ), a = (a1, . . . , aκ) defined as 〈f, a〉 =

∑
i∈[κ] ai · fi.

The notion of threshold predicate encryption was defined in [31] and is also
known as the fuzzy IBE.

3 Sharing-Based Constructions and Impossibility Results

In this section, we describe two intuitive and simple approaches to build a
predicated encryption scheme using another predicate encryption scheme as a
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black-box. It is interesting that the simpler of the two, the OR-based approach
turns out to be as powerful as the seemingly more general Sharing-based ap-
proach. Even though ruling out constructions using these approaches is a weaker
impossibility result than an unrestricted black-box separation (as we will do in
Section 5), it seems instructive to refute these natural and general approaches
to black-box reductions among predicate encryption schemes. In fact, our proof
refuting OR-based constructions of TPE from this section forms the combinato-
rial core of our subsequent proof of a general black-box separation in Section 5.
Moreover, the basic approach to building the attack needed in our proof (as well
as that in [9]) of the general black-box separation results seems to benefit by
keeping the sharing-based constructions in mind. In Section 4, we investigate
a new approach to refute sharing-based constructions using (proved or conjec-
tured) separation results in two-party communication complexity. In particular,
we can use conjectures in communication complexity to give evidence that NC1-
predicate encryption is strictly harder than AC0-predicate encryption.

Definition 6. Let (F,A) and (G,B) be two pairs of predicate and attribute sets.
We call S(·) a q-set system for (F,A) using (G,B) if S is a mapping defined over
F∪A such that: (1) For every f ∈ F it holds that S(f) ⊂ G, and for every a ∈ A

it holds that S(a) ⊂ B, and (2) For every x ∈ F ∪ A it holds that |S(x)| ≤ q.

Definition 7 (OR-based Construction). We say there is an OR-based con-
struction with set-size q for the pair of predicate and attribute sets (F = {f1, . . .},
A = {a1, . . .}) using another pair (G = {ϕ1, . . .},B = {α1, . . .}) if there ex-
ists a q-set system S(·) for (F,A) using (G,B) such that: For every f ∈ F

and a ∈ A, if S(f) = {ϕ1, . . . , ϕdf
} and S(a) = {α1, . . . , αda}, then f(a) =∨

i∈[df ],j∈[da]
ϕi(αj). We call the OR-based construction efficient if the mapping

S(·) is efficiently computable.

The encryption under attribute a of an OR-based construction works by en-
crypting a message M independently under every αi ∈ S(a) and concatenating
the corresponding ciphertexts. The decryption key for a predicate f is simply
the set of keys DKj for all j ∈ [df ], where DKj is the decryption key for ϕj .

Lemma 8. Suppose there exists an efficient OR-based construction for (F,A)
using (G,B). Then a secure predicate encryption scheme PE1 = (G1,K1,E1,D1)
for (F,A) with completeness ρ can be constructed (in a black-box way) from any
secure predicate encryption scheme PE2 = (G2,K2,E2,D2) for (G,B) with
completeness ρ.

Clearly, the OR-based construction of Lemma 8 is not the only way that one can
imagine to construct an F-PE from a G-PE. In fact, as noted also by [20] in
the context of using trapdoor permutations, there is a possibility of employing
a more complicated “sharing-based” approach that generalizes the OR-based
construction. The idea is to use a set system S(·) in a similar way to the OR-based
construction, but to encrypt the message M differently: instead of encrypting
the message M da times, first construct some “shares” M1, . . . ,Mda of M , and
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then encrypt each Mi using αi. To get the completeness and the security, we
need the following two properties.

– Completeness: For every f ∈ F such that f(a) = 1, the set of indices
IS(a, f) = {j | ∃ϕ ∈ S(f) such that ϕ(αj) = 1} is rich enough that {Mi |
i ∈ IS(a, f)} can be used to reconstruct M .

– Security: For every choice of a∗, f∗, f1, . . . , fk for k = poly(κ) such that
f∗(a∗) = 1 and fi(a∗) = 0 for all i ∈ [k], it holds that CS(a∗, f∗) �⊆

⋃
j∈[k]

CS(a∗, fj),where CS(a, f) = {αi | i ∈ IS(a, f)}. This is because otherwise
the adversary can acquire keys for f1, . . . , fk and use the sub-keys planted
in them to decrypt enough of the shares of Mi’s and reconstruct M which
is encrypted under the attribute a∗.

Despite the fact that the sharing-based approach is more general than the OR-
based approach, for the case of polynomial sized sets q = poly(κ), we show
that the construction of Lemma 8 is indeed as powerful as any sharing-based
approach:

Lemma 9. There is a sharing based construction for the predicate system F

using G if and only if there exists an OR-based construction.

Note that by proving Theorem 19, we shall rule out an OR-based (and hence
sharing-based) constructions along the way. A special case of the following com-
binatorial lemma, Corollary 11, shows that no OR-based (nor sharing-based)
construction of τ -TPE from IBE exists for any constant 0 < τ < 1. Moreover,
not surprisingly, we will use this lemma in our proof of Theorem 19.

Lemma 10. Let F = A = {0, 1}κ denote the set of attributes and predicates for
τ-TPE for a constant 0 < τ < 1. Also suppose that the following sets of size at
most q = poly(κ) are assigned to F, A, and F × A : S(a) for a ∈ A, S(f) for
f ∈ F, and S(a, f) for (a, f) ∈ A × F. Then, there exists a sampling algorithm
Samp that, given an input parameter ε > 1/ poly(κ), outputs k + 1 = poly(κ)
pairs (f∗, a∗), (f1, a1), . . . , (fk, ak) such that with probability at least 1 − ε over
the randomness of Samp the following holds:

1. f∗(a∗) = 1 and fi(ai) = 1 for all i ∈ [k] (this part holds with probability 1),
2. fi(a∗) = 0 for all i ∈ [k],
3. S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) ⊆

⋃
i∈[k] S(ai, fi).

Moreover, the algorithm Samp chooses its k + 1 pairs without the knowledge of
the set system S(·). Therefore we call Samp an oblivious sampler against the
predicate structure of τ-TPE.

Note that although F = A, the sets S(a) for a ∈ A and S(f) for f ∈ F are
potentially different even if a and f represent the same string. Intuitively, the
set S(a) refers to the set of sub-attributes (or identities in case of using IBE as
the black-box primitive) used during an encryption of a random message under
the attribute a, the set S(f) refers to the set of decryption-keys planted in the
decryption-key of f , and finally S(a, f) refers to the decryption-keys discovered
during the decryption of the mentioned random encryption (under the attribute
a) using the generated key for f .
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Proof. Let A be the set of vectors in {0, 1}κ of normalized Hamming weight τ ,
namely A = {a | a = (a1, . . . , aκ) ∈ {0, 1}κ,

∑
i ai = τ · κ}. Also let F be the set

of vectors in {0, 1}κ of normalized Hamming weight τ ′ = τ + 1−τ
2 . Consider a

bipartite graph G with nodes (A,F) and connect a ∈ A to f ∈ F iff f(a) = 1
according to τ -TPE (i.e., the indexes of the nonzero components of a is a subset
of those of f). We will later use the fact that G is a regular graph (on its F side).
For any vertex x in G let N(x) be the set of neighbors of x in the graph G. The
covering-sampler acts as follows: Choose p = poly(κ) and h = poly(κ) to satisfy
q( 1p + 1

h + (1− 1
h )

p) < ε
2 (e.g., this can be done by setting h =

√
p and choosing

p large enough). Choose f∗
$← F at random. Choose a∗, a1, . . . , ap

$← N(f∗) at
random with possible repetition from the neighbors of f∗. For each i ∈ [p], choose

p random neighbors fi1, . . . , fip
$←N(ai) of ai (repetition is allowed). Output the

p2 + 1 pairs: (a∗, f∗), (ai, fij)i∈[p],j∈[p].
Now we prove that with probability at least 1 − ε/2 − neg(κ) > 1 − ε the

output pairs have the properties specified in Lemma 10.
Property (1) holds by construction.
Since 0 < τ < τ ′ < 1 are constants, using standard probabilistic arguments

one can easily show that the probability of fij being connected to a∗ in G (i.e.,
fij(a∗) = 1) is neg(κ) (given a∗, ai are random subsets of f∗, a random superset
fij of ai is exponentially unlikely to pick all the elements of a∗). Thus (2) holds.

The challenging part is to show that (3) holds, i.e., the following: With prob-
ability at least 1− q( 1p +

1√
p +(1− 1√

p )
p) ≥ 1− ε/2 it holds that S(a∗)∩S(f∗)∩

S(a∗, f∗) ⊂ ∪ijS(ai, fij). The proof will go through several claims.
In the following let h =

√
p. For an attribute node a ∈ A of G, define H(a)

to be the set of “heavy” elements that with probability at least 1/h are present
in S(a, f) for a random neighbor f of a, i.e., H(a) = {x : Pr[x ∈ S(a, f) |
f

$←N(a)] > 1/h}. Note that H(a) is not necessarily a subset of S(a).

Claim. Define BE1 to be the bad event “S(a∗) ∩ S(a∗, f∗) �⊆ H(a∗).” Then,
Pr[BE1] ≤ q/h.
Proof. Since G is regular on its F side, conditioned on a fixed a∗ the distribution
of f∗ is still uniform over N(a∗). Now fix a∗ and fix an element b ∈ S(a∗). If
b is not in H(a∗), then over the random choice of f∗

$← N(a∗), it holds that
Pr[b ∈ S(a∗, f∗)] ≤ 1/h. The claim follows by a union bound over the q elements
in S(a∗). ��
Claim. Define BE2 to be the bad event “there exists a b ∈ S(f∗) such that
b ∈ H(a∗) but for every i ∈ [p], b �∈ H(ai), i.e., S(f∗)∩H(a∗) �⊆ ∪iH(ai).” Then,
Pr[BE2] ≤ q/p.
Proof. It is enough to bound BE2 by 1/p for a fixed b ∈ S(f∗) and the claim
follows by union bound over the elements of S(f∗). But when b ∈ S(f∗) is fixed,
we can pretend that a∗ is chosen at random from the sequence a0, . . . , ap after
they are chosen and are fixed. In that case BE2 happens if there is only a unique
j ∈ {0, . . . , p} such that b ∈ H(aj) and a∗ chooses to be aj . The latter happens
with probability at most 1/(p+ 1) < 1/p. ��
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Claim. Define BE3 to be the bad event “given neither BE1 nor BE2 happens,
S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) �⊆ ∪i,jS(ai, fij).” Then, Pr[BE3] ≤ q(1− 1/h)p.

Proof. We assume events BE1 and BE2 have not happened and perform the
analysis. By ¬BE1, we have S(a∗) ∩ S(a∗, f∗) ⊆ H(a∗). Moreover, since ¬BE2

holds, any element b ∈ S(f∗) ∩ H(a∗) will be in H(ai) for at least one i ∈ [p].
Therefore for each j ∈ [p], Pr[b ∈ S(ai, fij)] ≥ 1/h holds by the definition of
heavy sets, and thus b �∈ ∪jS(ai, fij) can hold only with probability at most
(1 − 1/h)p. By union bound, the probability that there exists a b ∈ S(a∗) ∩
S(f∗) ∩ S(a∗, f∗) such that b �∈ ∪jS(ai, fij) is bounded by q(1− 1/h)p. ��

From Claims 3, 3, and 3, it follows that (3) fails with probability at most q( 1p +
1
h + (1 − 1

h )
p) < ε

2 . Therefore, the sampled [a∗, f∗, {fij}i∈[p],j∈[p]] will have the
desired properties with probability at least 1− neg(κ) − ε/2 which finishes the
proof of Lemma 10. ��

Using Lemma 10, it is almost straightforward to prove the following.

Corollary 11. For any constant 0 < τ < 1, there is no OR-based (nor sharing-
based) construction of τ-TPE schemes from IBE schemes.

4 The Communication Complexity Approach

In this section, we show an alternative general approach to refute sharing-based
constructions of predicate encryption schemes using separation results in two-
party communication complexity. In particular, using conjectured separations in
communication complexity, we prove the impossibility of a sharing-based con-
struction of NC1-PE from AC0-PE, thus making some progress toward the
question of separating PE schemes based on the complexity classes the underly-
ing predicates come from. On the other hand, we are currently able to apply this
approach only to sharing-based constructions rather than to general black-box
constructions.

Let (A,F) be a predicate encryption scheme. W.l.o.g. we identify A with
{0, 1}κ and think of F as a family of functions {fb : {0, 1}κ → {0, 1}}b∈{0,1}κ,
i.e., we assume for simplicity that |F| = 2κ and its members are also indexed by
b ∈ {0, 1}κ. We may abuse this notation and refer to b itself as a member of F.
We can then talk about the communications complexity of F when b ∈ F is given
to Bob and a ∈ A to Alice. We can represent this communication complexity
problem by the {0, 1}-matrix with rows indexed by A and columns by F. With
a little more abuse of notation, we denote this matrix also by F = (fb(a))a,b and
refer to the communication complexity of F. Recall that the essential resource
in communication complexity is the number of bits Alice and Bob need to com-
municate to determine fb(a). Various models such as deterministic, randomized
(public or private coins), nondeterministic, etc., communication complexity can
be defined naturally. For details on such models, we refer to the classic book by
Kushilevitz and Nisan [22], the paper by Babai et al. [1], and the surveys by
Lokam [26] and Lee and Shraibman [23].
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To connect communication complexity to OR-based constructions using IBE,
we use the model of Merlin-Arthur (MA) games in communication complexity:

Definition 12 (Merlin-Arthur Protocols [21]). A matrix F is said to have
an MA-protocol of complexity �+ c if there exists a c-bit randomized public-coin
verification protocol Π between Alice and Bob such that

– F(a, b) = 1⇒ ∃w ∈ {0, 1}� Pr[Π((a, w), (b, w)) = 1] ≥ 2/3,
– F(a, b) = 0⇒ ∀w ∈ {0, 1}� Pr[Π((a, w), (b, w)) = 1] ≤ 1/3.

The MA-complexity of F, denoted MA(F), is the minimum complexity of an MA
protocol for the matrix F.

With this definition, the well-known fact (see, for example, [22]) that EQUALITY
has public coin randomized communication complexity of O(1), and our Defini-
tion 7 of OR-construction, the following lemma is easy.

Lemma 13. Suppose there is an OR-based construction of a predicate encryp-
tion scheme (A,F) using an IBE scheme (B,G). Then MA(F) = O(log κ).

Using a result due to Klauck [21] that MA(DISJOINTNESS) = Ω(
√
κ), we can

show.

Theorem 14. For some constant 0 < τ < 1, e.g., τ = 1/3, there is no OR-based
(and hence no sharing-based) construction of a τ-TPE scheme from IBE.

To derive separations among stronger predicate encryption schemes based on
sharing constructions, we need to recall definitions of languages and complex-
ity classes in two-party communication complexity, in particular, PHcc and
PSPACEcc.

Complexity classes in two-party communication complexity are defined in
terms of languages consisting of pairs of strings (a, b) such that |a| = |b|. Denote
by {0, 1}2∗ the universe {(a, b) : a, b ∈ {0, 1}∗ and |a| = |b|}. For a language
L ⊆ {0, 1}2∗, we denote its characteristic function on pairs of strings of length κ
by Lκ. The language Lκ is naturally represented as a 2κ× 2κ matrix with {0, 1}
or ±1 entries.

Definition 15. Let l1(κ), . . . , ld(κ) be nonnegative integers such that l(κ) :=∑d
i=1 li(κ) ≤ (log κ)c for a fixed constant c ≥ 0. A language L ⊆ {0, 1}2∗

is in Σcc
d if there exist l1(κ), . . . , ld(κ) as above and Boolean functions ϕ, ψ :

{0, 1}κ+l(κ) −→ {0, 1} such that (a, b) ∈ Lκ if and only if ∃u1 ∀u2 . . . Qdud
(ϕ(a, u)♦ψ(b, u)), where |ui| = li(κ), u = u1 . . . ud, Qd is ∀ for d even and
is ∃ for d odd, and, ♦ stands for ∨ if d is even and for ∧ if d is odd.

– By allowing a bounded number of alternating quantifiers, we get an analog
of the polynomial time hierarchy: PHcc =

⋃
d≥0Σ

cc
d .

– By allowing an unbounded, but at most polylog(κ) alternating quantifiers,
we get an analog of PSPACE: PSPACEcc =

⋃
c>0

⋃
d≤(log κ)c Σ

cc
d .

The following lemma shows a connection between the communication complexity
class PHcc and OR-based constructions using AC0-predicate encryption.
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Lemma 16. Suppose a predicate encryption scheme (A,F) is obtained by an
OR-based construction using an AC0-predicate encryption scheme. Then the lan-
guage given by the sequence of matrices {F}κ is in PHcc.

Proof. By hypothesis, for a given fb ∈ F, we have AC0 circuits ϕ1b, . . . , ϕqb
and for a given a ∈ A, we have α1a, . . . , αqa such that fb(a) = ∨i,jϕib(αja).
Knowing fb, Bob can compute the circuit Cb(z) ≡

∨
ij ϕiy(zj), where z =

(z1, . . . , zq), |zj| = |αj |. Knowing a, Alice can compute αa = (α1a, . . . , αqa)
on which Cb needs to be evaluated.We give a protocol with a bounded number
of alternations for F. Let the depth of Cb be d (including the top OR-gate). An
existential player will have a move for an OR gate in Cb and a universal player
will have a move for an AND gate. Their d moves will describe an accepting path
in Cb on αa. For example, assuming AND and OR gates alternate in successive
layers, ∃w1∀w2 · · ·Qdwd γ(Cb, w1, . . . , wd)(αa) describes a path in Cb – start
with the top OR gate and follow the wire w1 to the AND gate below and then
the wire w2 from this gate and so on – ending in a gate γ := γ(...) to witness
the claim that fb(a) = 1. Since Bob knows Cb, he can verify the correctness
of the path w1w2 · · ·wk in the circuit and the type of the gate γ given by the
path. He then sends the labels of the inputs and the type (AND or OR) of the
gate to Alice, who responds with γ(αa). Bob can verify that this will ensure
Cb(αa) = 1. On the other hand, if Cb(αa) = 0, then it is easy to see that the
existential player will not have a winning strategy to pass verification protocol
of Alice and Bob on their inputs a and Cb. It follows that F has a protocol with
at most d alternations and hence {F}κ ∈ PHcc. ��

This lemma enables us to show the impossibility of OR-based constructions of
predicate encryption schemes using AC0-predicate encryption. In particular,

Theorem 17. Suppose PHcc �= PSPACEcc. Then, there is no OR-based con-
struction of an NC1-PE scheme from any AC0-PE scheme. In particular, there
is an NC1-function family F (derived from so-called Sipser functions [33]) such
that (A,F) does not have an OR-based construction from any AC0-PE scheme.

However, it is a longstanding open question in communication complexity to
separate PSPACEcc from PHcc. Currently it is known that such a separation
holds if certain Boolean matrices can be shown to have high rigidity, a connection
explained in [29,25].

Corollary 18. Suppose Hadamard matrices are as highly rigid as demanded
in [29,25]. Then, predicate encryption defined by the parity functions (arising
from Inner Product mod 2 matrix) does not have an OR-based construction from
any AC0-predicate encryption scheme.

5 Separating TPE from IBE

In this section, we prove that there is no general black-box construction of thresh-
old predicate encryption schemes from identity-based encryption schemes.



On Black-Box Reductions between Predicate Encryption Schemes 453

Theorem 19. Let κ ∈ N be the security parameter. Then, there exists an oracle
O relative to which CCA secure IBE schemes exist, as per Definition 3. However,
for any constant 0 < τ < 1, there exists a query-efficient (i.e., that makes at
most poly(κ) queries to O) adversary Adv that can break even the CPA security
of any τ-TPE scheme relative to O, again as per Definition 3. Moreover, Adv
can be implemented in poly(κ)-time if given access to a PSPACE oracle, and
its success probability can be made arbitrarily close to the completeness of the
τ-TPE scheme.

We will first define our random IBE oracle, OIBE, also denoted by O for short,
(which trivially implies a CCA secure IBE as outlined in Remark 21), and then
break any τ -TPE (with a constant τ) relative to this oracle.

Construction 20 (Randomized oracle O = (g,k, id, e,d)). By Oλ we refer
to the part of O whose answers are λ bits, and O is the union of Oλ for all λ.

– The master-key generating oracle g : {0, 1}λ !→ {0, 1}λ is a random permu-
tation that takes as input a secret-key sk ∈ {0, 1}λ, and returns a public-key
pk ∈ {0, 1}λ.

– The decryption-key generating oracle k : {0, 1}2λ !→ {0, 1}λ takes as input a
secret-key sk ∈ {0, 1}λ and an identity α ∈ {0, 1}λ, and returns a decryption-
key dkα ∈ {0, 1}λ. We require k(sk, ·) to be a random permutation over
{0, 1}λ for every sk ∈ {0, 1}λ.

– The identity finding oracle id : {0, 1}2λ !→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ and a decryption-key dk ∈ {0, 1}λ, and returns the unique α
such that k(sk, α) = dk, where sk = g−1(pk).

– The encryption oracle e : {0, 1}3λ !→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ, an identity α ∈ {0, 1}λ and a message m ∈ {0, 1}λ, and returns
a ciphertext c ∈ {0, 1}λ. We require e(pk, α, ·) to be a random permutation
over {0, 1}λ for every (pk, α) ∈ {0, 1}2λ.

– The decryption oracle d : {0, 1}3λ !→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ, a decryption-key dk ∈ {0, 1}λ and a ciphertext c ∈ {0, 1}λ, and
returns the unique m such that e(pk, α,m) = c, where α = id(pk, dk).

By an IBE oracle, we refer to an oracle in the support set of O, Supp(O), and
by a partial IBE oracle we refer to a partial oracle that could be extended to an
oracle in Supp(O).

Remark 21 (CCA secure IBE relative toO).To encrypt a bit b ∈ {0, 1}under iden-
tity α and public-key pk, the encryption algorithm extends b to a λ-bit random

string:m = (b, b1, . . . , bλ−1), bi
$←{0, 1} andgets the encryption c = e(pk, α,m).To

decrypt, we decrypt c and output its first bit. By independently encrypting the bits
of amessagem = (m1, . . . ,mn), with n = poly(κ), and using a standard hybrid ar-
gument, one can generalize the scheme to arbitrarily longmessages. This construc-
tion is only CPA secure, where any adversary has advantage at most 2−Θ(κ). But,
this can easily be transformed in a blackbox manner into a CCA secure construc-
tion, without incurring any additional assumptions, using the Fujisaki-Okamoto
transform [13] in the random oracle model [4]. We note that even though O is not
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exactly a random oracle, for our purposes it suffices to use one of the sub-oracles of
O as a random oracle in the above transform.

Now we present an attack that aims to break any τ -TPE in anO-relativized world
by asking only poly(κ) queries to the random IBE oracleO, where κ is the security
parameter of the τ -TPE scheme. We prove the query-efficiency and the success
probability of our attack in the full version [16]. Similar to the attack of [9], our
attack can easily be implemented in poly(κ)-time if P = PSPACE1, and the
relativizing reductions can be ruled out by adding a PSPACE oracle to O.

We first note that any black-box construction of τ -TPE schemes from IBE
schemes can potentially call the oracle Oλ over different values of λ which are
potentially different from the security parameter of the τ -TPE scheme itself.
However, similar to [9], we assume that the τ -TPE scheme asks its queries to Oλ

only for one value of λ. This assumption is purely to simplify our presentation
of the attack and its analysis, and all the arguments below extend to the general
case (of asking queries over any parameter λ > log s) in a straightforward way.

We also assume that λ is large enough in the sense that 2λ > s for an ar-
bitrarily large s = poly(κ) that can be chosen in the description of the attack.
The reason for the latter assumption is that the adversary can always ask and
learn all the oracle queries to O that are of logarithmic length O(λ) = O(log κ),
simply because there are at most 2O(λ) = poly(κ) many queries of this form.2

Construction 22 (Adv Attacking the Scheme τ-TPEO). The parameters
are as follows. q: the total number of queries asked by the components of the
scheme τ-TPE all together, κ: the security parameter of τ-TPE, ε = 1/ poly(κ)
and s = poly(κ): input parameter to the adversary Adv, λ ≤ poly(κ): the
parameter which determines the output length of the queries asked by the compo-
nents of τ-TPE to the oracle O. It is assumed that 2λ > s for some s = poly(κ)
to be chosen later. Our adversary Adv executes the following.

1. Sampling Predicates and Attributes: Adv executes the sampling algo-
rithm Samp of Lemma 10 with the parameter ε, over the predicate structure
of τ-TPE, to get k+1 pairs (a∗, f∗), {(ai, fi)}i∈[k]. Recall that this sampling
is done only by knowing the predicate structure of τ-TPE and is indepen-
dent of the actual implementation of the scheme. It can be done, for example,
without the knowledge of PK.

2. Receiving the Keys: Adv receives from the challenger: the public-key PK
and the decryption-keys {DKi}i∈[k], where DKi is the generated decryption-
key for fi. We also assume that DK∗ is generated by the challenger, although
Adv does not receive it. Let V be the view of the algorithms executed by the
challenger so far that generated the keys PK,DK∗,DK1, . . . ,DKk. Let Q(V )
be the partial oracle consisting of the queries (and their answers) specified
in V . By writing in the bold font V, we refer to V as a random variable.

3. Encrypting Random Bits: For all i ∈ [k], Adv chooses a random bit d
$←

{0, 1}, computes the encryption Ci ← E(PK, ai, d), and then the decryption

1 A good “approximation” of the attack can also be implemented assuming P = NP.
2 In [9] a scheme that asks such queries is called “degenerate” and is handled similarly.
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D(PK,DKi, Ci). Let L0 be the partial oracle consisting of the oracle queries
(and their answers) that Adv observes in this step.

4. Learning Heavy Queries: This step consists of some internal rounds. For
j = 1, 2, . . . do the following. Let Lj be the partial oracle consisting of the
oracle queries (and their answers) that Adv has learned about O till the end
of the j’th round3 of this learning step. Let Vj = (V | Lj ,PK, {DK}i∈[k]) be
the distribution of the random variable V (also including the randomness of
O) conditioned on the knowledge of (Lj ,PK, {DK}i∈[k]). For a partial oracle

P, let P denote its closure4. Now, if there is any query x such that x �∈ Lj

but Pr[x ∈ Q(Vj)] ≥ ε, Adv asks the lexicographically first such x from the
oracle O, sets Lj+1 = Lj∪(x,O(x)), and goes to round j+1. In other words,
as long as there is any new query x that is ε-heavy to be in the closure of the
queries of the view of the key-generations, Adv asks such a query x. If no
such query exists, Adv breaks the loop and goes to the next step.

(Note that the above and the following steps may require a PSPACE-
complete oracle to be implemented efficiently.)

5. Guessing Challenger’s View: Let L be the partial oracle consisting of the
oracle queries (and their answers) that Adv learned in Steps 3 and 4 (i.e.,
L = L�, where Q(V�) had no ε-heavy queries to be learned). Let Vchal =

(V | L,PK, {DKi}i∈[k]), and sample V ′ $← Vchal. Let SK′ and DK′
∗ be in

order, the “guessed” values for the secret-key and the decryption-key of f∗
determined by the sampled V ′. We note that by definition the other keys
PK′, {DK′

i}i∈[k] determined by V ′ are the same as the ones that Adv has
received: PK, {DKi}i∈[k].

6. Receiving the Challenge and the Final Decryption: Adv receives
C∗(= EO(PK, a∗, b)) for a random bit b ∈ {0, 1}. Then, Adv uses the oracle
O′ defined below and outputs the decrypted value b′ ← DO′

(PK,DK′
∗, C∗) as

his guess about the bit b.
The Oracle O′: At the beginning of the decryption of Step 6, the partially

defined oracle O′ is equal to L∪Q(V ′), namely the learned queries (and their
answers) together with the guessed ones specified in V ′. Afterwards, if a new
query x is asked: (i) if x ∈ O′, return O′(x), otherwise (ii) if x ∈ O′, then
return y = O′(x) and add (x, y) to O′, and finally (iii) if x �∈ O′, ask x from
O and add (x,O(x)) to O′.

This finishes the description of our attack. We prove the query-efficiency and
the success probability of our attack in the full version [16].
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Abstract. We consider the problem of amplifying the “lossiness” of
functions. We say that an oracle circuit C∗ : {0, 1}m → {0, 1}∗ amplifies
relative lossiness from �/n to L/m if for every function f : {0, 1}n →
{0, 1}n it holds that

1. If f is injective then so is Cf .
2. If f has image size of at most 2n−�, then Cf has image size at most

2m−L.

The question is whether such C∗ exists for L/m � �/n. This problem
arises naturally in the context of cryptographic “lossy functions,” where
the relative lossiness is the key parameter.

We show that for every circuit C∗ that makes at most t queries to
f , the relative lossiness of Cf is at most L/m ≤ �/n + O(log t)/n. In
particular, no black-box method making a polynomial t = poly(n) num-
ber of queries can amplify relative lossiness by more than an O(log n)/n
additive term. We show that this is tight by giving a simple construction
(cascading with some randomization) that achieves such amplification.

1 Introduction

Lossy trapdoor functions, introduced by Peikert and Waters [14], are a powerful
cryptographic primitive. Soon after their introduction, they were found to be
useful for realizing new constructions of traditional cryptographic concepts, as
well as for demonstrating the feasibility of new ones. Their wide applicability,
simple definition, and realizability under a variety of cryptographic assumptions
make them a clear candidate for induction into the “pantheon” of cryptographic
primitives.

1.1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions.
Functions in the first family are injective (and can be inverted using a trapdoor),
whereas functions in the second are “lossy,” meaning that the size of their image
is significantly smaller than the size of their domain. The security requirement

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 458–475, 2012.
c© International Association for Cryptologic Research 2012
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is that the description of a function sampled from the injective family is compu-
tationally indistinguishable from the description of a function sampled from the
lossy family.

As demonstrated by Peikert and Waters, lossy trapdoor functions imply
primitives such as trapdoor functions, collision-resistant hash functions, and
oblivious transfer [14]. Amongst “higher level” applications, we can find chosen-
ciphertext secure public-key encryption [14], deterministic public-key encryp-
tion [4], OAEP-based public-key encryption [10], “hedged” public-key encryption
for protecting against bad randomness [2], security against selective opening at-
tacks [3], and non-interactive universally-composable string commitments [13].1

1.2 Relative Lossiness

A key parameter in all the applications of lossy trapdoor functions is the amount
of lossiness guaranteed in case that a lossy function was sampled. We say that
a function f : {0, 1}n → {0, 1}n is (n, �)-lossy if its image size is at most 2n−�.
Intuitively, this means that an application of f on an input x ∈ {0, 1}n loses at
least � bits of information, on average, about x. We refer to � as the absolute
lossiness of the function and to �/n as the relative lossiness of the function.

Peikert andWaters [14] showed how to obtain chosen ciphertext secure encryp-
tion assuming relative lossiness �/n = Ω(1). This was subsequently improved by
Mol and Yilek [12] who, building on work by Rosen and Segev [16], demonstrated
how to obtain the same result assuming relative lossiness of only 1/poly(n). One-
way functions and similarly trapdoor functions and oblivious transfer, can be
constructed assuming relative lossiness of 1/poly(n). Collision resistant hashing
requires relative lossiness of at least 1/2 + 1/poly(n). All other known applica-
tions of lossy trapdoor functions currently assume relative lossiness that is at
least as large as 1− o(1).

Currently, relative lossiness of 1− o(1) seems to be necessary for most “non-
traditional” applications of lossy trapdoor functions. While some of the known
instantiations are able to guarantee such a high rate of lossiness, some other
constructions fall short. Most notably, the lattice-based construction of Peikert
and Waters [14], which is the only one based on a worst-case assumption and the
only one for which no sub-exponential attack is known, only guarantees relative
lossiness of Ω(1).

High relative lossiness is also relevant for applications that do not necessitate
it. This is because the lossiness rate typically has a pronounced effect on the
efficiency of the resulting construction. Specifically, higher lossiness rate enables
the use of a smaller security parameter, and in many applications also enables
the extraction of a larger number of “information theoretic” hard-core bits from
the underlying function. This is useful, for example, for efficiently handling long
messages.

1 We note that for some of these constructions (e.g., collision-resistant hashing) the
existence of a trapdoor is not required.
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1.3 Lossiness Amplification

All of the above leads to the question of whether, given a specific construction of
lossy trapdoor functions, it is possible to apply an efficient transformation that
would result in a construction with significantly higher lossiness. It can be easily
seen that parallel evaluation of t independent copies of an (n, �)-lossy function
amplifies the absolute lossiness from � to t�. Specifically, given an (n, �)-lossy
function f : {0, 1}n → {0, 1}n the function g : {0, 1}tn → {0, 1}tn, defined as

g(x1, . . . , xt) = (f(x1), . . . , f(xt))

is (tn, t�)-lossy. However, this comes at the cost of blowing up the input size by
a factor of t and hence leaves the relative lossiness �/n unchanged. What we
are really looking for is a construction of a (m,L)-lossy function h : {0, 1}m →
{0, 1}m where L/m ( �/n. A natural candidate is sequential evaluation (also
known as “cascading”), defined as

h(x) = f(f(. . . , f(f(x)) . . .)︸ ︷︷ ︸
t times

Unfortunately, in general h might not be more lossy than f . In particular, this
is the case when f is injective on its own range. One can do a bit better though.
By shuffling the outputs in-between every invocation, using randomly chosen
r1, . . . , rt, one obtains the function

hr1,...,rt(x) = f(f(. . . , f(f(x)⊕ r1)⊕ r2) . . .⊕ rt),

for which it is possible to show that, if f is say (n, 1)-lossy, then with overwhelm-
ing probability over the choice of r1, . . . , rt, the function hr1,...,rt has relative
lossiness of Ω(log t)/n.

While already not entirely trivial, relative lossiness of Ω(log t)/n is a fairly
modest improvement over Ω(1)/n, and would certainly not be considered suffi-
cient for most applications. Still, it is not a-priori inconceivable that there exists
more sophisticated ways to manipulate f so that the relative lossiness is am-
plified in a more significant manner. In this paper, we show that an additive
gain of O(log n)/n is actually the best one can hope for, at least with respect to
black-box constructions.

1.4 Our Results

We show that no efficient black-box amplification method can additively improve
the relative lossiness of a given function f by more than O(log n)/n. To this end,
we consider a circuit C∗ : {0, 1}m → {0, 1}∗ with oracle access to a function
f : {0, 1}n → {0, 1}n such that the following hold:

1. If f is injective then so is Cf .
2. If f has image size of at most 2n−�, then Cf has image size at most 2m−L.
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Our main result is that, if � < n − ω(logn), then for every C∗ that makes at
most t queries to f , the relative lossiness, L/m, of Cf is at most (�+O(log t))/n.
The impossibility result holds regardless of whether the injective mode of f has
a trapdoor, and rules out even probabilistic constructions C∗ (i.e., ones which
amplify lossiness only with high probability over the choice of some randomness).
In Section 2 we provide a high-level overview of our approach, and in Section
3 we formally present our proof. We then show (in Section 4) how to extend
the above result to a “full fledged” cryptographic setting, in which one does
not simply get black-box access to a single lossy or injective function f . In this
setting, lossy functions are defined by a triple of algorithms {g0, g1, f}, where
one requires that a function fk is injective if the key is sampled by k ← g1, and
lossy if the key is sampled by k ← g0. Moreover, the distributions generated by
the injective and lossy key generation algorithms g0, g1 must be computationally
indistinguishable.

1.5 Relation to the Collision Problem

Closely related to our setting is the collision problem, in which one is given
black-box access to a function f : {0, 1}n → {0, 1}n and is required to distin-
guish between the case that f is injective and the case that it is 2�-to-1. A simple
argument shows that any (randomized) classical algorithm that tries to distin-
guish between the cases must make Ω(2(n−�)/2) calls to f . Kutin [11], extending
work of Aaronson and Shi [1], proves an analogous bound of Ω(2(n−�)/3) in the
quantum setting.

Lower bounds on the collision problem can be seen to directly imply a weak
version of our results. Specifically, if non-trivial lossiness amplification were pos-
sible then one could have applied it, and then invoked known upper bounds
for the collision problem (either O(2(n−�)/2) randomized classical or O(2(n−�)/3)
quantum), resulting in a violation of the corresponding lower bounds. However,
this approach will only work if the amplification circuit does not blow up f ’s
input size (specifically, only if m < n+(L− �)). In contrast, our results also hold
with respect to arbitrary input blow-up.

1.6 Related Work

Several instantiations of lossy trapdoor functions guarantee relative lossiness of
1−o(1). Peikert and Waters present constructions based on the Decisional Diffie-
Hellman assumption [14]. These are further simplified by Freeman et al, who also
present a generalization based on the d-linear assumption [6]. Boldyreva et al.
[4], and independently Freeman et al. [6], present a direct construction based on
Paillier’s Composite Residuosity assumption.

Hemenway and Ostrovsky [7] generalize the approach of Peikert and Waters,
and obtain relative lossiness of 1−o(1) from any homomorphic hash proof system
(a natural variant of hash proof systems [5]). In turn, this implies a unified
construction based on either Decisional Diffie Hellman, Quadratic Residuosity,
or Paillier’s Composite Residuosity assumptions.
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Constructions with relative lossiness Ω(1) are known based on the hardness of
the “learning with errors” problem, which is implied by the worst case hardness
of various lattice problems [14]. Kiltz et al. argue that RSA with exponent e
satisfies relative lossiness (log e)/n under the phi-hiding assumption, and that
use of multi-prime RSA increases relative lossiness up to (m log e)/n where m
is the number of prime factors of the modulus [10]. Finally, Freeman et al. [6]
propose an instantiation based on the Quadratic Residuosity assumption with
relative lossiness of Ω(1/n).

1.7 On Black-Box Separations

The use of black-box separations between cryptographic primitives was pioneered
by Impagliazzo and Rudich [9], who proved that there is no black-box con-
struction of a key-exchange protocol from a one-way permutation. Since then,
black-box separations have become the standard tool for demonstrating such
assertions. We note that our main result is “unconditional”, in the sense that it
holds regardless of any cryptographic assumption. Our “cryptographic” result,
in contrast, is more standard in that it relies on the indistinguishability property
of lossy functions (see the work of Reingold et al. [15] for an extensive discussion
on black-box separations).

Strictly speaking, it is not clear whether black-box separations should be
interpreted as strong impossibility results. Certainly not as long as non-black-
box techniques are still conceivable. Nevertheless, since as far as we know any of
the primitives could exist unconditionally (cf. [8]), it is currently not clear how
else one could have gone about proving cryptographic lower bounds . In addition,
most of the known construction and reductions in cryptography are black-box.
Knowing that no such technique can be used to establish an implication serves
as a good guideline when searching for a solution. Indeed, it would be extremely
interesting to see if non-black box techniques are applicable in the context of
lossy function amplification.

2 Overview of Our Approach

We say that a function f : {0, 1}n → {0, 1}n′
is (n, �)-lossy if its image {f(x) :

x ∈ {0, 1}n} has size at most 2n−�. We refer to � as the absolute lossiness, and
�/n as the relative lossiness of f . An (n, �)-lossy function f is balanced if f(x)
has exactly 2� preimages for every x ∈ {0, 1}n, i.e. |{z : f(z) = f(x)}| = 2�. We
denote with Fn,� the set of all balanced (n, �)-lossy functions.

Definition 2.1 (Lossiness amplification). We say that an oracle circuit C∗ :
{0, 1}m → {0, 1}m′

amplifies the relative lossiness from �/n to L/m if

1. for every injective function f0 over {0, 1}n, Cf0 is injective.
2. for every f1 : {0, 1}n → {0, 1}n with image size 2n−�, the image of Cf1 has

size at most 2m−L.
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We say C∗ weakly amplifies if C∗ is probabilistic and the second item above only
holds with probability ≥ 0.9 over the choice of C∗’s randomness.

Remark 2.2 (Permutations vs. injective functions). In order to make our
negative result as strong and general as possible, we require the oracle to be length
preserving (and thus the injective f0 is a permutation), whereas the input and
output domain of C∗ can be arbitrary.

For concreteness, in this proof sketch we only consider the case � = 1. We will
also assume that m = nk is an integer multiple of n. The basic idea of our proof
is to show that for any C∗, property 1. of Definition 2.1 implies that Cf1 has
very low collision probability if f1 ∈ Fn,1 is a randomly chosen 2-1 function.
More concretely, let t denote the number of oracle gates in C∗ and assume we
could prove that

Pr
X,Y ∈{0,1}m

[Cf1(X) = Cf1(Y )] ≤ 2−k·n+O(k log t) (1)

Such a low collision probability implies that Cf1 must have a large range and thus
cannot be too lossy. In particular, Eq. (1) implies that the absolute lossiness of
Cf1 is at most O(k log t), or equivalently, the relative lossiness is O(k log t)/kn =
O(log t)/n, which matches (ignoring the constant hidden in the big-oh) the lossi-
ness of the construction hr1,...,rt from Section 1.3. Unfortunately Eq. (1) is not

quite true. For example consider a circuit C̃∗ : {0, 1}kn → {0, 1}kn which makes
only t = 2 queries to its oracle and is defined as

C̃f (x1, x2, . . . , xk)
def
=

{
0kn if f(x1) = f(x2) and x1 �= x2

(x1, x2, . . . , xk) otherwise

If f0 : {0, 1}n → {0, 1}n is a permutation, so is C̃f0 (in fact, it’s the identity
function), thus property 1. holds. On the other hand, for any (n, 1)-lossy f1
we have f1(x1) = f1(x2) and x1 �= x2 with probability 2−n for uniform x1, x2.
Thus the probability that C̃f1 outputs 0kn on a random input is also 2−n, which
implies

Pr
X,Y ∈{0,1}m

[C̃f1(X) = C̃f1(Y )] ≥ Pr
X,Y ∈{0,1}m

[C̃f1 (X) = C̃f1(Y ) = 02k]

≥ 2−2n

contradicting Eq. (1) for k > 2.
The idea behind the counterexample C̃f is to query f on two random inputs

and check if f collides on these inputs. If this is the case, Cf “knows” that f
is not a permutation and so it must not be a permutation itself as required by
property 1, in this case mapping to some fixed output. Although Eq. (1) is wrong,
we can prove a slightly weaker statement, where we exclude inputs X where the
evaluation of Cf on X involves two invocations of f on inputs x �= x′ where
f(x) = f(x′) (we will call such bad inputs “burned”). As with high probability,
for a random (n, 1)-lossy f , most inputs are not burned, already this weaker
statement implies that Cf has large range.
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The cryptographic setting. In a cryptographic setting, one usually does not
simply get black-box access to a single lossy or injective function f , but lossy
functions are defined by a collection (indexed by a security parameter λ) of
triples of algorithms {g0, g1, f}{λ∈N}, where one requires that f(k, ·) is injective
if the key is sampled by k ← g1, and lossy if the key is sampled by k ← g0.
Moreover the distributions generated by the injective and lossy key generation
algorithms g0, g1 must be computationally indistinguishable.

In this setting one can potentially do more sophisticated amplification than
what is captured by Definition 2.1, e.g. by somehow using the key-generation
algorithms g0, g1. In Section 4 we prove that black-box lossiness amplification is
not possible in this setting either.

In a nutshell, we show that constructions which amplify collections of lossy
functions can be classified in two classes depending on whether the lossiness of
the construction depends only on the lossiness of the oracle (we call such ampli-
fiers “non-communicating”) or if the property of being lossy is somehow encoded
into the key. In the first case, the proof goes along the lines of the proof of The-
orem 3.1 (in particular, amplifiers as in Definition 2.1 are “non-communicating”
as there’s not even a key). In the second case, where the construction is “com-
municating”, we show that the output of the key-generation algorithms (of the
amplified construction) will not always be indistinguishable. This proof borrows
ideas from the work of Impagliazzo and Rudich [9] who show that one cannot
construct a key-agreement from one-way permutations. Their proof shows that
for any two parties Alice and Bob who can communicate over a public channel
and who have access to random oracle R, there exists an adversary Eve who can
with high probability make all queries to R that both, Alice and Bob, made.
As a consequence, Alice and Bob cannot use R to “secretly” communicate. In
a similar vein we show that the lossy key-generation algorithm cannot “commu-
nicate” the fact that the key it outputs is lossy to the evaluation function or we
can catch it, and thus distinguish lossy from injective keys.

3 An Upper Bound on Black-Box Lossiness Amplification

We now state our main theorem, asserting that simple sequential composition is
basically the best black-box amplification that can be achieved.

Theorem 3.1 (Impossibility of Black-Box Amplification). Consider any
n, �, t ∈ N where

n ≥ �+ 2 log t+ 2 (2)

and any oracle aided circuit C∗ : {0, 1}m → {0, 1}m′
which makes t oracle queries

per invocation, then the following holds: If C∗ weakly amplifies relative lossiness
from �/n to L/n,2 then L ≤ �+3 log t+4. More concretely, for a random f ∈ Fn,�,
the construction Cf will have relative lossiness less than (�+ 3 log t+ 4)/n with
probability at least 1/2.

2 Note that we denote the relative lossiness of C∗ by L/n, not L/m like in the previous
sections. In particular, the absolute lossiness of C∗ is Lm/n (not L).
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Remark 3.2. The bound n ≥ � + 2 log t + 2 is basically tight, as for n = � +
2 log t − O(1) one can with constant advantage p distinguish any (n, �)-lossy
function from an injective one by simply making t random queries and looking
for a collision. The exact value of p depends on the O(1) term, in particular,
replacing the O(1) with a sufficiently large constant we get a p ≥ .9 as required
by Definition 2.1. Then Cf (x) which outputs x if no such collision is found, and
some fixed value (say 0m

′
) otherwise is a weak amplifier as in Definition 2.1.

Remark 3.3 (Probabilistic C∗ vs. random f). Instead of considering a
probabilistic C∗ and constructing a particular lossy f such that Cf is not too
lossy with high probability over C∗’s randomness (as required by Definition 2.1),
we consider a deterministic C∗ and show that Cf fails to be lossy with high proba-
bility for a randomly chosen f . As f is sampled independently of (the description
of) C∗, the latter implies the former.

Below we formally define what we mean by an input being burned as already
outlined.

Definition 3.4 (Burned input). For X ∈ {0, 1}m, we denote with in(X) and
out(X) the inputs and outputs of the t invocations of f in an evaluation of
Cf (X). Consider an input X ∈ {0, 1}m and let {x1, . . . , xt} ← in(X), we say
that X is burned if for some 1 ≤ i < j ≤ t, xi �= xj and f(xi) = f(xj). φ(X)
denotes the event that X is burned.

Below is the main technical Lemma which we will use to prove Theorem 3.1
(recall that m = nk).

Lemma 3.5. For a random balanced (n, �)-lossy function f , and two random
inputs X,Y , the probability that X,Y are colliding inputs for Cf and at the
same time both are not burned can be upper bounded as

Pr
f∈Fn,�

X,Y ∈{0,1}m

[(
Cf (X) = Cf (Y )

)
∧ ¬φ(X) ∧ ¬φ(Y )

]
≤ 2−kn+k(3 log t+�) (3)

We postpone the proof of this Lemma to Section 3.1. The following simple claim
upper bounds the probability (over the choice of f ∈ Fn,�) that an input x to
Cf is burned

Claim 3.6. For any x ∈ {0, 1}m

Pr
f∈Fn,�

[φ(x)] ≤ 2�t2

2n
(4)

Proof. For i ∈ {1, . . . , t}, the probability that the ith query to f made during
the evaluation of Cf (x) provides a collision for f (assuming there’s been no

collision so far) is at most (i−1)(2�−1)
2n−i−1 . To see this, note that as f is balanced,

there are exactly (i − 1)(2� − 1) possible inputs which will lead to a collision
as each of the (i − 1) queries we did so far has 2� − 1 other preimages. As f is
random, the probability the ith query (for which there are 2n − i − 1 choices)
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will hit one of these values is (i−1)(2�−1)
2n−i−1 . The claim follows by taking the union

bound over all i

Pr
f∈Fn,�

[φ(x)] ≤
t∑

i=1

(i − 1)(2� − 1)

2n − i− 1
≤ 2�t2

2n

The second step above used t ≤ 2n/2 which is implied by Eq. (2).

Proof of Theorem 3.1. Consider a C∗ as in the statement of the theorem and
a random f ∈ Fn,�. Let Φ

def
= {x ∈ {0, 1}m : φ(x)} denote the set of inputs

which are burned (cf. Definition 3.4) and Φ = {0, 1}m \ Φ. Using the chain rule,
we can state eq.(3) as

Pr
f∈Fn,�

X,Y ∈Φ

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+�)

Pr f∈Fn,�
X,Y ∈{0,1}m

[X,Y ∈ Φ]
(5)

Using eq.(4) we can bound the expected size (over the choice of f ∈ Fn,�) of Φ
as

E[|Φ|] = |{0, 1}n| · Pr
f∈Fn,�

X∈{0,1}m

[φ(X)] ≤ 2n · 2
�t2

2n
= 2�t2

Using the Markov inequality and eq.(2), this implies that Φ is not too big, say
at most half of the domain {0, 1}m, with probability 1/2

Pr
f∈Fn,�

[|Φ| ≥ 2n−1] = Pr
f∈Fn,�

[|Φ| ≥ 2n−1−�−2 log tE[|Φ|]

≤ 1/2n−1−�−2 log t

(2)
≤ 1/2

By the above equation, |Φ| > 2n−1 with probability ≥ 1/2 over the choice of f ,
and for such a “good” f , two random X,Y are in Φ with probability at least
(1/2)2 = 1/4. Thus the denominator on the right side of eq.(5) is at least 1/8,
replacing the denominator in eq.(5) with 2−3 = 1/8 we get

Pr
f∈Fn,�

X,Y ∈{0,1}m

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+�)+3 (6)

Again using Markov, this means that for a randomly chosen f ∈ Fn,�, with
probability at least 1/2

Pr
X,Y ∈{0,1}m

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+�)+4 (7)

As two values sampled independently from a distribution with support of size u
collide with probability at least 1/u (this is tight if the distribution is flat), eq.(7)
implies that the range of Cf must be at least of size 2kn−k(3 log t+�)−4, thus the
relative lossiness (recall thatm = nk) is (k�+k3 log t+4)/kn ≤ (�+3 log t+4)/n.
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3.1 Proof of Lemma 3.5

We consider a random experiment denoted Γ where X0, Y0 ∈ {0, 1}m and
f ∈ Fn,� are chosen at random, and then Cf (X0) and Cf (Y0) are evaluated.
This evaluations result in 2t invocations of f . Let {x1, . . . , xt} ← in(X0) and
{X1, . . . , Xt} ← out(X0) denote the inputs and outputs of f in the evaluation
of Cf (X0). Analogously we define values yi, Yi occurring in the evaluation of
Cf (Y0). For I ⊆ {1, . . . t}, we define an event EI which holds if for every i ∈ I
(and only for such i), there exits a j such that yi �= xj and f(yi) = f(xj) and
yi �= yk for all k < i (i.e. we have a fresh, non-trivial collision). Γ defines a
“transcript”

vf,X0,Y0

def
= {X0, Y0, x1, . . . , xt, f(x1), . . . , f(xt), y1, . . . , yt, f(y1), . . . , f(yt)}

The values xi and yi in the transcript are redundant, i.e., they can be computed
from values X0, Y0,f(xi) and f(yi), and only are added for convenience. For
I ⊆ {1, . . . , t} we define VI as all transcripts where (1) both inputs are not
burned (2) we have a collision and (3) EI holds, i.e.

VI
def
=
{
vf,X0,Y0 : ¬φ(X0) ∧ ¬φ(Y0) ∧

(
Cf (X0) = C

f (Y0)
)
∧ EI

}
Vcol is the union of all VI , i.e.

Vcol = ∪IVI =
{
vf,X0,Y0 : ¬φ(X0) ∧ ¬φ(Y0) ∧ Cf (X0) = C

f (Y0)
}

(8)

For a set of transcripts V , we denote with PrΓ [V ] the probability that the tran-
script generated by Γ is in V . It is not hard to see3 that PrΓ [V∅] ≤ 2−nk, we
prove that this bound (up to a factor 2) holds for any VI .

Lemma 3.7. For any I ⊆ {1, . . . , t} we have (recall that m = nk)

Pr
Γ
[VI ] ≤ 2−nk+1

We postpone the proof of this main technical lemma and first prove how it implies
Theorem 3.1. But let us here give some intuition as to why Lemma 3.7 holds.
The experiment Γ generates a transcript in VI if (besides Cf (X0) = Cf (Y0)
colliding and X0, Y0 not being burnt) for every i ∈ I, the ith invocation of f
during the evaluation of Cf (Y0) produces a fresh collision. Now, conditioned
on such a collision happening, the probability of actually getting a collision
Cf (X0) = C

f (Y0) can potentially raise significantly (by something like 2n−�) as
this is a rare event, but then, the probability of having such a collision is also
around 2n−�, and if this collision does not occur, we definitely will not end up

3 We have PrΓ [V∅] ≤ PrΓ [X0 = Y0] = 2−nk. The second step follows as X0, Y0 ∈
{0, 1}nk are uniformly random. The first step follows as ¬φ(X0),¬φ(Y0) and E∅
together imply that there are no collisions in the 2t invocations of f , and thus f is
“consistent” with being a permutation. But in this case, Cf (X0) = Cf (Y0) implies
X0 = Y0.
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with a transcript in VI . These two probabilities even out, and we end up with
roughly the same probability for a transcript VI as we had for V∅.

Before we can prove the theorem we need one more lemma, which bounds the
probability of Γ generating a transcript with lots (k or more) collisions.

Lemma 3.8 ∑
I:|I|≥k

Pr
Γ
[VI ] ≤

∑
I:|I|≥k

Pr
Γ
[EI ] ≤ 2k(�+2 log t−(n−1)) (9)

Proof. The first step of Eq. (9) follows as VI implies EI . Let E
+
I denote the

event which holds if EI′ holds for any I ′ ⊇ I. We have

Pr
Γ
[E+

I ] ≤
(
(2� − 1)t

2n − 2t

)|I|

≤
(

2�t

2n−1

)|I|

(10)

To see this, note that to get E+
I , in every step i ∈ I, xi must be fresh, and

then f(yi) must “hit” one of the at most t distinct f(xi). As f is a random 2�-1
function evaluated on at most 2t inputs, this probability can be upper bounded
by (2�− 1)t/(2n− 2t) as at most (2�− 1)t of the at least 2n− 2t fresh inputs can
“hit” as described above. The probability that we have such a “hit” for all i ∈ I
is the |I|’th power of this probability. The number of different I where |I| = k
can be upper bounded by 2k log t, using this and Eq. (10) we get∑

I:|I|≥k

Pr
Γ
[EI ] ≤

∑
I:|I|=k

Pr
Γ
[E+

I ]

≤ 2k log t

(
2�ktk

2(n−1)k

)
= 2k(�+2 log t−(n−1))

Proof of Lemma 3.5. Lemma 3.5 states that PrΓ [Vcol] ≤ 2−kn+O(k log(t)), which
we can write as

Pr
Γ
[Vcol]

Eq.(8)
=

∑
I:|I|<k

Pr
Γ
[VI ] +

∑
I:|I|≥k

Pr
Γ
[VI ]

Using Lemma 3.7 and 3.8 and the fact that there are
(

t
k−1

)
< tk different I’s

with |I| < k, we get∑
I:|I|<k

Pr
Γ
[VI ] +

∑
I:|I|≥k

Pr
Γ
[VI ] ≤ tk · 2−nk+1 + 2k(�+2 log t−(n−1))

≤ 21+k(�+2 log t−(n−1))

< 2−nk+k(3 log t+�)
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Proof of Lemma 3.7. For any I, we consider a new random experiment ΓI .
This experiment will define a distribution X ′

t ∈ {0, 1}m, Y ′
t ∈ {0, 1}m ∪⊥. We’ll

show that
Pr
ΓI

[X ′
t = Y

′
t ] ≤ 2−m (11)

and
Pr
Γ
[VI ] ≤ 2 · Pr

ΓI

[X ′
t = Y

′
t ] (12)

Note that the two equations above imply Lemma 3.7. The experiment ΓI is
defined as follows

1. We sample random X ′
0, Y

′
0 ∈ {0, 1}m and a random permutation g over

{0, 1}n.
2. Let x′1, . . . , x

′
t be the inputs to g in the evaluation of Cg(X ′

0). Let X
′
t

def
=

Cg(X ′
0).

3. Now evaluate Cg(Y ′
0) in steps (one invocation of g per step), where for any

i ∈ I do the following:
– if y′i is “fresh” (that is y′i �= x′j for any 1 ≤ j ≤ t and y′i �= y′j for any

1 ≤ j < i). we change the value of g(y′i) and set it to some uniformly
random value zi ∈U {0, 1}n (note that g is no longer a permutation).

– If yi is no fresh set Y ′
t = ⊥ and stop.

We will first prove Eq. (11). Let’s consider a new random experiment Γ ∗
I which

will define outputs X ′′
t , Y

′′
t ∈ {0, 1}m. This experiment is defined exactly as the

experiment ΓI defining X ′
t, Y

′
t , but when y

′
i is not fresh we nonetheless redefine

g(y′i) to a random zi (instead of setting Y ′
t = ⊥ and aborting). As the two

experiments only differ when Y ′
t = ⊥, but X ′

t cannot be ⊥, we have.

Pr
ΓI

[X ′
t = Y

′
t ] ≤ Pr

Γ∗
I

[X ′′
t = Y ′′

t ]

MoreoverX ′′
t = Cg(X ′′

0 ) is uniformly random (as X ′′
0 is uniform and Cg is a per-

mutation) and Y ′′
t is independent of X ′′

t (the reason we consider the experiment
Γ ∗
I is because in ΓI we don’t have this independence), thus

Pr
Γ∗
I

[Y ′′
t = X ′′

t ] = 2−m

The two equations above imply Eq. (11). Now we show Eq. (12), i.e.

Pr
Γ
[VI ] ≤ 2 · Pr

Γ ′
[X ′

t = Y
′
t ] (13)

We will show a stronger statement, namely that for every transcript v̂ ∈ VI we
have

Pr
Γ
[v̂] ≤ 2 · Pr

ΓI

[v̂] (14)

This implies (13) as

Pr
Γ
[VI ] =

∑
v̂∈VI

Pr
Γ
[v̂] ≤ 2 ·

∑
v̂∈VI

Pr
ΓI

[v̂] = 2 · Pr
ΓI

[VI ] ≤ 2 · Pr
ΓI

[X ′
t = Y

′
t ]
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We’ll use the following notation for the transcript v̂ and the transcripts generated
by Γ and ΓI , respectively.

v̂
def
= {X̂0, Ŷ0, x̂1, . . . , x̂t, a1, . . . , at, ŷ1, . . . , ŷt, b1, . . . , bt}

v
def
= {X0, Y0, x1, . . . , xt, f(x1), . . . , f(xt), y1, . . . , yt, f(y1), . . . , f(yt)}

v′
def
= {X ′

0, Y
′
0 , x

′
1, . . . , x

′
t, g(x

′
1), . . . , g(x

′
t), y

′
1, . . . , y

′
t, g(y

′
1), . . . , g(y

′
t)}

As X̂0, Ŷ0, X0, Y0, X
′
0, Y

′
0 are uniformly random, we have

Pr[(X̂0, Ŷ0) = (X0, Y0)] = Pr[(X̂0, Ŷ0) = (X ′
0, Y

′
0)] = 2−2m

Further

Pr
Γ
[(x̂1, . . . , x̂t, a1, . . . , at) = (x1, . . . , xt, f(x1), . . . , f(xt)) | (X̂0, Ŷ0) = (X0, Y0)] ≤

Pr
ΓI

[(x̂1, . . . , x̂t, a1, . . . , at) = (x′1, . . . , x
′
t, g(x

′
1), . . . , g(x

′
t)) | (X̂0, Ŷ0) = (X ′

0, Y
′
0)]

Using the chain rule, the above is implied by

t∏
i=1

Pr
Γ
[ai = f(xi)| . . .] ≤

t∏
i=1

Pr
ΓI

[ai = g(x
′
i)| . . .] (15)

where here and below we use the convention that “. . .” always means that the
transcript defined up to this point is consistent with the transcript v̂. E.g. on
the left side of eq.(15) the “. . .” stands for

(X̂0, Ŷ0) = (X0, Y0) , ∀j = 1 . . . i− 1 : f(xj) = aj (16)

Note that we don’t have to explicitly require ∀j = 1 . . . i− 1 : xj = x̂j as this is
already implied by (16).4

For i = 1, . . . , 2t we will denote with qi ≤ i the number of distinct elements
that appeared as inputs to f in the first i queries. I.e., for i ≤ t qi = |{x̂1, . . . , x̂i}|
and for t < i ≤ 2t, qi = |{x̂1, . . . , x̂t, ŷ1, . . . , ŷi−t}|.

To see that Eq. (15) holds, note that for any i where x̂i is not fresh (i.e.
xi = xj for some j < i) we have

Pr[ai = f(xi)| . . .] = Pr[ai = g(x
′
i)| . . .] = 1

For i’s where xi is fresh, let qi denote the number of distinct elements in
x̂1, . . . , x̂i−1. A g is a random permutation and ai �= g(x′j) for j < i because
¬φ(X0), we have

Pr
ΓI

[g(x′i) = ai| . . .] =
1

2n − qi
4 If the inputs (X̂0, Ŷ0) = (X0, Y0) are identical, and all the oracle queries so far gave
the same outputs, also all intermediate values (including the next oracle query) will
be the same.
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On the other hand

Pr
Γ
[f(xi) = ai| . . .] ≤

1

2n − qi
To see this note that PrΓ [f(xi) = ai| . . .] is exactly 1

2n−qi
if one additionally

conditions on the fact that f(xi) �= aj for all j < i. Not conditioning on this
event can only decrease the probability as ai �= aj for j < i as ¬φ(X0).

Now we come to the second part of the transcript. Here we will show that

Pr
Γ
[(ŷ1, . . . , ŷt, a1, . . . , at) = (y1, . . . , yt, f(y1), . . . , f(yt)) | . . .] ≤

2 · Pr
ΓI

[(ŷ1, . . . , ŷt, a1, . . . , at) = (y′1, . . . , y
′
t, g(y

′
1), . . . , g(y

′
t)) | . . .]

The proof is almost identical as for the first part, except that now for fresh y′i
we have a slightly smaller probability

Pr
ΓI

[g(y′i) = bi| . . .] = 2−n

that g maps to the right value bi in the experiment ΓI , as by definition of ΓI
the output of g is assigned a uniformly random value in this case. Using the fact
that t ≤ 2−n/4 this difference is covered by the extra factor 2.

4 Extension to Collections of Lossy Functions

By Theorem 3.1 no circuit C∗ (of size polynomial in n) can amplify relative
lossiness better than sequential composition. That is, if Cf is injective for any
permutation f : {0, 1}n → {0, 1}n, then there exists an (n, �)-lossy f (i.e. it has
relative lossiness �/n) such that Cf has relative lossiness only (�+O(log n))/n. In
fact, a random (n, �)-lossy f will have this property with very high probability.
In a cryptographic setting, lossy functions are not given as a single function, but
by a collection of triple of algorithms as defined below.

Definition 4.1 (Collection of Lossy Functions). Let λ ∈ N denote a se-
curity parameter and n = n(λ), n′ = n′(λ), � = �(λ) be functions of λ. A
collection of (n, n′, �)-lossy function is a sequence (indexed by λ) of functions
π = {g0, g1, f}λ∈N where g0, g1 are probabilistic key-generation functions, such
that

1. Evaluation of lossy functions: For every function index σ ← g0(1
λ),

f(σ, ·) is a function fσ : {0, 1}n → {0, 1}n′
whose image is of size at most

2n−�.
2. Evaluation of injective functions: For every function index σ ← g1(1

λ),
the function f(σ, ·) computes an injective function fσ : {0, 1}n → {0, 1}n′

.
3. Security: The ensembles

{
σ : σ ← g0(1

λ)
}
λ∈N

and
{
σ : σ ← g1(1

λ)
}
λ∈N

are
computationally indistinguishable.

We refer to � as the absolute lossiness of π, and to �/n as the relative lossiness
of π.
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Definition 4.2 (Black-Box Amplification of Lossy Collection). A triple
of probabilistic polynomial-time oracle algorithms Π∗ = {G∗

0,G
∗
1,F

∗} is a black-
box amplification for relative lossiness from α = α(λ) to β = β(λ) (β > α) if
for every oracle π = {g0, g1, f}λ∈N that implements a (n, n, αn)-lossy collection,
Ππ is a (m,m′, βm)-lossy collection (where m = m(λ),m′ = m′(λ)).

Note that if π is efficient (i.e. can be implemented by polynomial time algo-
rithms), so is Ππ. We will prove the following theorem.

Theorem 4.3 (Impossibility of Black-Box Amplification). Let t, �, n be
functions of λ such that n(λ) ≤ �(λ)+2 log(t(λ))+ω(λ). If each of the algorithms
in Π∗ = {G∗

0,G
∗
1,F

∗} makes at most t = t(λ) oracle queries per invocation
and Π∗ amplifies relative lossiness from α(λ) = �/n to β(λ) = L/n then L =
�+O(log t).

To save on notation, we will identify the security parameter λ with the domain
size n of the lossy-function we try to amplify (which will be given as an oracle).

To prove Theorem 4.3, we will show that for any constructionΠ∗, if we choose
a random (n, �)-lossy πn = {g0, g1, f} (“random” to be defined in Section 4.1),
then with overwhelming probability either the outputs of Gπn

0 and Gπn
1 can be

distinguished relative to πn, or for a random lossy key k ← Gπn
0 , the function

Fπn(k, ·) has very small collision probability and thus cannot be too lossy.

4.1 The Random π = {g0, g1, f}
For n, � ∈ N let Ln,� denote the set of triples of functions g0, g1 : {0, 1}n−1 →
{0, 1}n, f : {0, 1}n → {0, 1}n where the range of g0, g1 covers all of {0, 1}n (note
this means that the range of g0 and g1 are disjoint) and (with Fn,� as defined in
the first paragraph of Section 2)

∀x ∈ {0, 1}n−1 : f(g0(x), ·) ∈ Fn,� and f(g1(x), ·) ∈ Fn,0

Claim 4.4. For �(n) ≤ n − ω(n), let π = {πn}n∈N where πn = {g0, g1, f} is
chosen uniformly in Ln,� (for every n ∈ N.) Then with overwhelming probability
π is (n, �)-lossy even relative to an EXPTIME-complete oracle.

4.2 (Non-)Communicating Π∗

Consider a Π∗ = {G∗
0,G

∗
1,F

∗} as in Definition 4.2. We will classify such Π∗ in
two classes, depending on whether Π∗ is close to being “non-communicating” or
not. Intuitively, we say Π∗ is non-communicating if the lossiness of Ππ comes
entirely from the lossiness of π, that is, if π is not lossy, then also Ππ will not
be lossy.

Definition 4.5 ((close to) non-communicating). Π∗ is non-communicating
if for every n ∈ N and πn ∈ Ln,0 the function computed by Fπ(k, ·) is injective
for every k ← Gπ

0 (1
n). In addition, Π∗ is close to being non-communicating if



Lossy Functions Do Not Amplify Well 473

for all but finitely many n ∈ N, with probability 1/2 over the choice of a random
πn ∈ Ln,0, for at least 1/2 of the keys k ← Gπn

0 , there’s a subset Mk ⊆ {0, 1}m
of size at least 2m/2 such Fπn(k, x) is injective on Mk (i.e. for x, x′ ∈ Mk,
Fπn(k, x) = Fπ(k, x′) implies x = x′).

In order to prove that Theorem 4.3 holds for some particular construction Π∗,
we will use a different argument depending on whether Π∗ is close to being non-
communicating or not. The proof for the first case is almost identical to that of
Theorem 3.1, where we rely on the fact that C∗ is injective for any injective key
k. The proof for the second case relies on the indistinguishability of injective and
lossy functions, and requires new ideas. More specifically, in this case we prove
the following lemma:

Lemma 4.6. If Π∗ (as in the statement of Theorem 4.3) is far (i.e. not close)
from being non-communicating, then for infinitely many n ∈ N the following
holds. For a random πn ∈ Ln,� the outputs of Gπn

0 and Gπn
1 can be distinguished

with constant advantage making poly(t, n) oracle queries to πn (and one query
to an EXPTIME oracle).

Due to space limitations in the remainder of this section we describe a high-level
outline for the proof of Lemma 4.6, and refer the reader to the full version for
the formal proof.

Proof outline. For b ∈ {0, 1} consider a key k ← Gπn

b (R) and let Qk denote
all the queries that Gπn

b (R) made to its oracle πn during sampling this key
using randomness R. Now consider a (n, 0)-lossy π̂n ∈ Fn,0 which is sampled at
random except that we require it to be consistent with the queries in Qk. As π̂n
is consistent with πn on Qk, we have Gπn

b (R) = Gπ̂n

b (R) = k. Thus if

– b = 1, then k is a valid injective key relative to π̂n and thus Fπ̂n(k, ·) has
image size 2m.

– b = 0, then k is a valid lossy key relative to π̂n. As Π
∗ is far from being

non-communicating, with constant probability Fπ̂n(k, ·) will have an image
size of ≤ 2m−1 despite the fact that π̂n is not lossy at all.

Using the above two observations, here’s a way to distinguish the case b = 0
from b = 1 (i.e. lossy from injective keys) with constant advantage given Qk

and access to an EXPTIME oracle: query the oracle on input k,Qk and ask for
the image size of Fπ̂n(k, ·) for a π̂n randomly sampled as described above. If the
image size is ≤ 2m−1, guess b = 0, guess b = 1 otherwise.

Unfortunately we are only given the key k, but not Qk. What we’ll do is con-
sider a random πn which is consistent with πn on a set of inputs/outputs Qsam

k,q

to πn which is sampled by invoking Fπn(k, ·) on q = poly(n, t) random inputs
(i.e. Qsam

k,q contains all inputs/outputs to πn made during these q invocations).

We will prove that for such a πn the image size of F(k, ·)πn is still close to
2m if b = 1, but with constant probability ) 2m if b = 0, so we can use our
EXPTIME oracle to distinguish these cases by sending k,Qsam

k,q (which, unlike
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Qk, we do have) to the EXPTIME oracle asking for the image size of F(k, ·)πn

when πn ∈ Fn,0 is chosen at random but consistent with Qsam
k,q .

The reason it is good enough to consider a πn that is consistent with Qsam
k,q

and not Qk, is that for sufficiently many samples q = poly(n, t), Qsam
k,q will with

high probability contain all “heavy” queries in Qk, where we say a query is heavy
if there’s a good probability that Fπn(k, ·) will make that query if invoked on a
random input.

So for most inputs x, Fπn(k, x) will not query πn on a query which is inQk (i.e.
which was made during key-generation), but is not in Qsam

k,q . As a consequence,

Fπn(k, ·) “behaves” differently from what we would get by using π̂n (which is
consistent with all of Qk) instead of πn only for a small fraction of the inputs.
In particular, the image size is close to what we would have gotten by using π̂n.

Acknowledgements. We would like to thank Oded Goldreich and Omer Rein-
gold for discussions at an early stage of this project, and Scott Aaronson for
clarifications regarding the collision problem.
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Abstract. If we have a problem that is mildly hard, can we create a
problem that is significantly harder? A natural approach to hardness am-
plification is the “direct product”; instead of asking an attacker to solve
a single instance of a problem, we ask the attacker to solve several inde-
pendently generated ones. Interestingly, proving that the direct product
amplifies hardness is often highly non-trivial, and in some cases may be
false. For example, it is known that the direct product (i.e. “parallel rep-
etition”) of general interactive games may not amplify hardness at all.
On the other hand, positive results show that the direct product does
amplify hardness for many basic primitives such as one-way functions,
weakly-verifiable puzzles, and signatures.

Even when positive direct product theorems are shown to hold for
some primitive, the parameters are surprisingly weaker than what we
may have expected. For example, if we start with a weak one-way func-
tion that no poly-time attacker can break with probability > 1

2
, then the

direct product provably amplifies hardness to some negligible probability.
Naturally, we would expect that we can amplify hardness exponentially,
all the way to 2−n probability, or at least to some fixed/known negligible
such as n− log n in the security parameter n, just by taking sufficiently
many instances of the weak primitive. Although it is known that such pa-
rameters cannot be proven via black-box reductions, they may seem like
reasonable conjectures, and, to the best of our knowledge, are widely be-
lieved to hold. In fact, a conjecture along these lines was introduced in a
survey of Goldreich, Nisan and Wigderson (ECCC ’95). In this work, we
show that such conjectures are false by providing simple but surprising
counterexamples. In particular, we construct weakly secure signatures
and one-way functions, for which standard hardness amplification re-
sults are known to hold, but for which hardness does not amplify beyond
just negligible. That is, for any negligible function ε(n), we instantiate
these primitives so that the direct product can always be broken with
probability ε(n), no matter how many copies we take.

1 Introduction

Hardness amplification is a fundamental cryptographic problem: given a “weakly
secure” construction of some cryptographic primitive, can we use it to build a

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 476–493, 2012.
c© International Association for Cryptologic Research 2012
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“strongly secure” construction? The first result in this domain is a classical con-
version from weak one-way functions to strong one-way function by Yao [32] (see
also [13]). This result starts with a function f which is assumed to be weakly
one-way, meaning that it can be inverted on at most (say) a half of its inputs.
It shows that the direct-product function F (x1, . . . , xk) = (f(x1), . . . , f(xk)), for
an appropriately chosen polynomial k, is one-way in the standard sense, mean-
ing that it can be inverted on only a negligible fraction of its inputs. The above
result is an example of what is called the direct product theorem, which, when
true, roughly asserts that simultaneously solving many independent repetitions
of a mildly hard task yields a much harder “combined task”.1 Since the result
of Yao, such direct product theorems have been successfully used to argue se-
curity amplification of many other important cryptographic primitives, such as
collision-resistant hash functions [8], encryption schemes [12], weakly verifiable
puzzles [7,20,22], signatures schemes/MACs [11], commitment schemes [18,9],
pseudorandom functions/generators [11,26], block ciphers [24,27,25,30], and var-
ious classes of interactive protocols [5,28,19,17].

Direct product theorems are surprisingly non-trivial to prove. In fact, in some
settings, such as general interactive protocols [5,29], they are simply false and
hardness does not amplify at all, irrespective of the number of repetitions. Even
for primitives such as one-way functions, for which we do have “direct product
theorems”, the parameters of these results are surprisingly weaker than what
we may have expected. Let us say that a cryptographic construction is weakly
secure if no poly-time attacker can break it with probability greater than 1

2 .
Known theorems tell us that the direct product of k = Θ(n) independent in-
stances of a weakly secure construction will become secure in the standard sense,
meaning that no poly-time attacker can succeed in breaking security with better
than some negligible probability in the security parameter n. However, we could
naturally expect the direct product of k instances will amplify hardness expo-
nentially, ensuring that no poly-time attacker can break security with more than
2−k probability. Or, we would at least expect that a sufficiently large number
of k = poly(n) repetitions can amplify hardness to some fixed/known negligible

probability such as ε(n) = 2−nδ

for some constant δ > 0, or even less ambitiously,
ε(n) = n− logn. We call such expected behavior amplification beyond negligible.

Limitation of Existing Proofs. One intuitive reason that the positive re-
sults are weaker than what we expect is the limitation of our reduction-based
proof techniques. In particular, assume we wanted to show that the k-wise
direct product amplifies hardness down to some very small probability ε. Then
we would need an efficient reduction that uses an adversary A breaking the se-
curity of the k-wise direct product with probability ε, to break the security of a
single instance with a much larger probability, say one half. Unfortunately, the

1 A related approach to amplifying the hardness of decisional problems is the “XOR
Lemma” which roughly asserts the hardness of predicting an XOR of the challenge
bits of many independent instances of a decisional problem will amplify. In this
work, we will focus of “search” problems such as one-way functions and signatures
and therefore only consider amplification via direct product.
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reduction cannot get “anything useful” from the attacker A until it succeeds at
least once. And since A only succeeds with small probability ε, the reduction is
forced to run A at least (and usually much more than) 1/ε times, since otherwise
A might never succeed. In other words, the reduction is only efficient as long
as ε is an inverse polynomial. This may already be enough to show that the
direct product amplifies hardness to some negligible probability, since the success
probability of A must be smaller than every inverse polynomial ε. But it also
tells us that black-box reductions cannot prove any stronger bounds beyond neg-
ligible, since the reduction would necessarily become inefficient.2 For example,
we cannot even prove that the k-wise direct product of a weak one-way function
will amplify hardness to n− logn security (where n is the security parameter), no
matter how many repetitions k we take.

Our Question. The main goal of this work is to examine whether the limi-
tations of current hardness amplification results are just an artifact our proof
technique, or whether they reflect reality. Indeed, we may be tempted to ignore
the lack of formal proofs and nevertheless make the seemingly believable conjec-
ture that hardness does amplify beyond negligible. In more detail, we may make
the following conjecture:

Conjecture (Informal): For all primitives for which standard direct product
theorems hold (e.g., one-way functions, signatures etc.), the k-wise direct product
of any weakly secure instantiation will amplify hardness all the way down to
some fixed negligible bound ε(n), such as ε(n) = 2−Ω(n), or, less ambitiously,
ε(n) = n− logn, when k = poly(n) is sufficiently large.

To the best of our knowledge, such a conjecture is widely believed to hold.
The survey of Goldreich et al. [14] explicitly introduced a variant of the above
conjecture in the (slightly different) context of the XOR Lemma and termed it
a “dream version” of hardness amplification which, although seemingly highly
reasonable, happens to elude a formal proof.

Our Results. In this work, we show that, surprisingly, the above conjecture
does not hold, and give strong counterexamples to the conjectured hardness
amplification beyond negligible. We do so in the case of signature schemes and
one-way functions for which we have standard direct-product theorems showing
that hardness amplifies to negligible [32,11]. Our result for the signature case,
explained in Section 3, relies on techniques from the area of stateless (resettably-
secure) multiparty computation [6,3,10,16,15]. On a high level, we manage to
embed an execution of a stateless mutliparty protocol Π into the design of our
signature scheme, where Π generates a random instance of a hard relation R,
and the signer will output its secret key if the message contains a witness for R.
The execution of Π can be driven via carefully designed signing queries. Since
Π is secure and R is hard, the resulting signature scheme is still secure by itself.

2 This “folklore” observation has been attributed to Steven Rudich in [14].
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However, our embedding is done in a way so as to allow us to attack the direct
product of many independent schemes by forcing them to execute a single cor-
related execution of Π resulting in a common instance of the hard relation R.
This allows us to break all of the schemes simultaneously by breaking a single
instance of R, and thus with some negligible probability ε(n), which is indepen-
dent of the number of copies k. Indeed, we can make ε(n) an arbitrarily large
negligible quantity (say, n− logn) by choosing the parameters for the relation R
appropriately.

One may wonder whether such counterexamples are particular to signature
schemes. More specifically, our above counterexample seems to crucially rely
on the fact that the security game for signatures is highly interactive (allow-
ing us to embed an interactive MPC computation) and that the communication
complexity between the challenger and attacker in the security game can be ar-
bitrarily high (allowing us to embed data from all of the independent copies of
the scheme into the attack on each individual one). Perhaps hardness still am-
plifies beyond negligible for simpler problems, such as one-way functions, where
the security game is not interactive and has an a-priori bounded communication
complexity. Our second result gives strong evidence that this too is unlikely, by
giving a counterexmaple for one-way functions. The counterexample relies on a
new assumption on a hash functions called Extended Second Preimage Resistance
(ESPR), which we introduce in this paper. Essentially, this assumption says that
given a random challenge x, it is hard to find a bounded-length Merkle path that
starts at x, along with a collision on it. To break many independent copies of this
problem, the attacker takes the independent challenges x1, . . . , xk and builds a
Merkle tree with them as leaves. If it manages to find a single collision at the
root of tree (which occurs with some probability independent of k), it will be
able to find a witness (a Merkle path starting at xi with a collision) for each of
the challenges xi. So far, this gives us an amplification counterexample for a hard
relation based on the ESPR problem (which is already interesting), but, with
a little more work, we can also convert it into a counterexample for a one-way
function based on this problem. For the counterexample to go through, we need
the ESPR assumption to hold for some fixed hash function (not a family), and
so we cannot rely on collision resistance. Nevertheless, we argue that the ESPR
assumption for a fixed hash function is quite reasonable and is likely satisfied
by existing (fixed) cryptographic hash functions, by showing that it holds in a
variant of the random oracle model introduced by Unruh [31], where an attacker
gets arbitrary “oracle-dependent auxiliary input”. As argued by [31], such model
is useful for determining which security properties can be satisfies by a single
hash function rather than a family.

Overall, our work gives strong indications that the limitations of our reduc-
tionist proofs for the direct product theorems might actually translate to real
attacks for some schemes.

Related Work. Interestingly, a large area of related work comes from a
seemingly different question of leakage amplification [2,1,23,21]. These works
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ask the following: given a primitive P which is resilient to � bits of leakage on
its secret key, is it true that breaking k independent copies of P is resilient
to almost L = �k bits of leakage? At first sight this seems to be a completely
unrelated question. However, there is a nice connection between hardness and
leakage-resilience: if a primitive (such as a signature or one-way function) is
hard to break with probability ε, then it is resilient to log(1/ε) bits of leakage.
This means that if some counter-example shows that the leakage bound L does
not amplify with k, then neither does the security. Therefore, although this
observation was never made, the counterexamples to leakage amplification from
[23,21] seem to already imply some counterexample for hardness. Unfortunately,
both works concentrate on a modified version of parallel repetition, where some
common public parameters are reused by all of the instances and, thus, they are
not truly independent. Indeed, although showing counterexamples for (the harder
question of) leakage amplification is still interesting in this scenario, constructing
ones for hardness amplification becomes trivial.3 However, the work of [21] also
proposed that a variant of their counterexample for leakage amplification may
extend to the setting without common parameters under a highly non-standard
assumption about computationally sound (CS) proofs. Indeed, this suggestion
led us to re-examine our initial belief that such counterexamples should not exist,
and eventually resulted in this work. We also notice that our counterexample for
signature schemes (but not one-way functions) can be easily extended to give a
counterexample for leakage amplification without common parameters.

2 Hardness Amplification Definitions and Conjectures

In this work, we will consider a non-uniform model of computation. We equate
entities such as challengers and attackers with circuit families, or equivalently,
Turing Machines with advice. We let n denote the security parameter. We say
that a function ε(n) is negligible if ε(n) = n−ω(1).

We begin by defining a general notion of (single prover) cryptographic games,
which captures the security of the vast majority of cryptographic primitives,
such as one-way functions, signatures, etc.

Definition 1 (Games). A game is defined by a probabilistic interactive chal-
lenger C. On security parameter n, the challenger C(1n) interacts with some
attacker A(1n) and may output a special symbol win. If this occurs, we say that
A(1n) wins C(1n).

We can also define a class C of cryptographic games C ∈ C. For example the
factoring problem fixes a particular game with the challenger CFACTOR that
chooses two random n-bit primes p, q, sends N = p · q to A, and outputs win
iff it gets back p, q. On the other hand, one-way functions can be thought of
as a class of games COWF , where each candidate one-way function f defines

3 E.g., the hard problem could ask to break either the actual instance or the common
parameter. While such an example does not necessarily contradict leakage amplifi-
cation, it clearly violates hardness amplification.
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a particular game Cf ∈ COWF . So far, this definition of games and classes of
games such as one-way function is purely syntactic and we now define what it
means for a game to be hard.

Definition 2 (Hardness). We say that the game C is (s(n), ε(n))-hard if, for
all sufficiently large n ∈ N and all A(1n) of size s(n), we have

Pr[A(1n) wins C(1n)] < ε(n).

We say that the game C is (poly, ε(n))-hard if it is (s(n), ε(n))-hard for all polyno-
mial s(n). We say that the game C is (poly, negl)-hard if it is (s(n), 1/p(n))-hard
for all polynomials s(n), p(n).

Definition 3 (Direct Product). For a cryptographic game C we define the
k-wise direct-product game Ck, which initializes k independent copies of C and
outputs the win symbol if and only if all k copies individually output win.

Finally, we are ready to formally define what we mean by hardness amplification.
Since we focus on negative results, we will distinguish between several broad
levels of hardness amplification and ignore exact parameters. For example, we
do not pay attention to the number of repetitions k needed to reach a certain
level of hardness (an important parameter for positive results), but are more
concerned with which levels of hardness are or are not reachable altogether.

Definition 4 (Hardness Amplification). For a fixed game C, we say that
hardness amplifies to ε = ε(n) if there exists some polynomial k = k(n) such
that Ck is (poly, ε)-hard. We say that hardness amplifies to negligible if there
exists some polynomial k = k(n) such that Ck is (poly, negl)-hard. For a class C
of games, we say that:

1. The hardness of a class C amplifies to negligible if, for every game C ∈ C

which is (poly, 12 )-hard, the hardness of C amplifies to negligible.
2. The hardness of a class C amplifies to ε(n) if, for every game C ∈ C which

is (poly, 12 )-hard, the hardness of C amplifies to ε(n).
3. The hardness of a class C amplifies beyond negligible if there exists some

global negligible function ε(n) for the entire class, such that the hardness of
C amplifies to ε(n).

Remarks on Definition. The standard “direct product theorems” for classes
such as one-way functions/relations and signatures show that the hardness of
the corresponding class amplifies to negligible (bullet 1). For example, if we take
any (poly, 1/2)-hard function f , then a sufficiently large direct product fk will be
(poly, negl)-hard.4 However, what “negligible” security can we actually get? The
result does not say and it may depend on the function f that we start with.5 One

4 The choice of 1/2 is arbitrary and can be replaced with any constant or even any
function bounded-away-from 1. We stick with 1/2 for concreteness and simplicity.

5 It also seemingly depends on the exact polynomial size s(n) of the attackers we are
trying to protect against. However, using a result of Bellare [4], the dependence on
s(n) can always be removed.
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could conjecture that there is some fixed negligible ε(n) such that a sufficiently
large direct product of any weak instantiation will amplify its hardness to ε(n).
This is amplification beyond negligible (bullet 3). More ambitiously, we could

expect that this negligible ε(n) is very small such as ε(n) = 2−nΩ(1)

or even
2−Ω(n). We explicitly state these conjectures below.

Dream Conjecture (Weaker): For any class of cryptographic games C for
which hardness amplifies to negligible, it also amplifies beyond negligible.

Dream Conjecture (Stronger): For any class of cryptographic games C for

which hardness amplifies to negligible, it also amplifies to ε(n) = 2−nΩ(1)

.
Our work gives counterexamples to both conjectures. We give two very dif-

ferent types counterexamples: one for the classes of signature schemes (Section
3) and one for the class of one-way functions (Section 4). Our counterexam-
ples naturally require that some hard instantiations of these primitives exist to
begin with, and our counterexamples for the weaker versions of the dream con-
jecture will actually require the existence of exponentially hard versions of these
primitives. In particular, under strong enough assumptions, we will show that
for every negligible function ε(n) there is stand-alone scheme which is already
(poly, negl)-hard, but whose k-wise direct product is not (poly, ε(n))-hard, no
matter how large k is.

2.1 Hard and One-Way Relations

As a component of both counterexamples, we will rely on the following definition
of hard relations phrased in the framework of cryptographic games:

Definition 5 (Hard Relations). Let R ⊆
⋃

n∈N {0, 1}
n × {0, 1}p(n) be an NP

relation consisting of pairs (y, w) with instances y and wintesses w of polynomial
size p(|y|). Let L = { y : ∃ w s.t. (y, w) ∈ R} be the corresponding NP language.
Let y ← SamL(1n) be a PPT algorithm that samples values y ∈ L. For a relation
R = (R,SamL), we define the corresponding security game where the challenger
C(1n) samples y ← SamL(1n) and the adversary wins if it outputs w s.t. (y, w) ∈
R. By default, we consider (poly, negl)-hard relations, but we can also talk about
(s(n), ε(n))-hard relations.

Note that, for hard relations, we only require that there is an efficient algorithm
for sampling hard instances y. Often in cryptography we care about a sub-class
of hard relations, which we call one-way relations, where is it also feasible to
efficiently sample a hard instance y along with a witness w. We define this below.

Definition 6 (One-Way Relation). Let R be an NP relation and L be the
corresponding language. Let (y, w)← SamR(1n) be a PPT algorithm that sam-
ples values (y, w) ∈ R, and define y ← SamL(1n) to be a restriction of SamR
to its first output. We say that (R,SamR) is a one-way relation if (R,SamL) is
a hard relation.
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3 Counterexample for Signature Schemes

3.1 Overview

The work of [11] shows that the direct product of any stateless signature scheme
amplifies hardness to negligible. We now show that it does not (in general) am-
plify hardness beyond negligible. In fact, we will give a transformation from any
standard signature scheme (Gen, Sign, Verify) into a new signature scheme (Gen,
Sign, Verify) whose hardness does not amplify (via a direct product) beyond
negligible. We start by giving an informal description of the transformation to
illustrate our main ideas. In order to convey the intuition clearly, we will first
consider a simplified case where the signing algorithm Sign of the (modified)
scheme (Gen, Sign, Verify) is stateful, and will then discuss how to convert
the stateful signing algorithm into one that is stateless.6

Embedding MPC in Signatures. Let (Gen, Sign, Verify) be any standard signature
scheme. Let F = {Fk}k∈N be a randomized k-party “ideal functionality” that
takes no inputs and generates a random instance y of a hard relation R =
(R,SamL) according to the distribution SamL. Further, let Π = {Πk}k∈N be a
multi-party computation protocol that securely realizes the functionality F for
any number of parties k. Then, the new signature scheme (Gen, Sign, Verify)
works as follows.

Algorithms Gen and Verify are identical to Gen and Verify respectively. The
signing algorithm Sign is essentially the same as Sign, except that, on receiving a
signing queries of a “special form”, Sign interprets these as “protocol messages”
for Πk and (in addition to generating a signature of them under Sign) also
executes the next message function of the protocol and outputs its response as
part of the new signature. A special initialization query specifies the number of
parties k involved in the protocol and the role Pi in which the signing algorithm
should act. The signing algorithm then always acts as the honest party Pi while
the user submitting signing queries can essentially play the role of the remaining
k − 1 parties. When Πk is completed yielding some output y (interpreted as
the instance of a hard relation R) the signing algorithm Sign will look for a
signing query that contains a corresponding witness w, and, if it receives one,
will respond to it by simply outputting its entire secret key in the signature. The
security of the transformed signature (Gen, Sign, Verify) immediately follows
from the security of the MPC protocol Πk against all-but-one corruptions, the
hardness of the relation R and the security of the original signature scheme.

Attacking the Direct-Product. Let us briefly demonstrate an adversary A for
the k-wise direct product. Very roughly, A carefully chooses his signing queries

6 We note that in the setting of stateful signatures, hardness fails to amplify even
to negligible since we can embed the counterexamples of [5,29] into the signature
scheme. Nevertheless our initial description of our counterexample for the stateful
setting will clarify the main new result, which is a counterexample for the stateless
setting.
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so as to force Sign1, . . . ,Signk to engage in a single execution of the protocol
Πk, where each Signi plays the role of a different party Pi, while A simply
acts as the “communication link” between them. This results in all component
schemes Signi generating a common instance y of the hard relation. Finally, A
simply “guesses” a witness w for y at random and, if it succeeds, submits w
as a signing query, thereby learns the secret key of each component signature
scheme thereby breaking all k of them! Note that the probability of guessing w
is bounded by some negligible function in n and is independent of the number
of parallel repetitions k.

Stateful to Stateless. While the above gives us a counterexample for the case
where Sign is a stateful algorithm, (as stated above) we are mainly interested
in the (standard) case where Sign is stateless. In order to make Sign a stateless
algorithm, we can consider a natural approach where we use a modified ver-
sion Π ′

k of protocol Πk: each party Pi in Π
′
k computes an outgoing message in

essentially the same manner as in Πk, except that it also attaches an authenti-
cated encryption of its current protocol state, as well as the previous protocol
message. This allows each (stateless) party Pi to “recover” its state from the
previous round to compute its protocol message in the next round. Unfortu-
nately, this approach is insufficient, and in fact insecure, since an adversarial
user can reset the (stateless) signing algorithm at any point and achieve the
effect of rewinding the honest party (played by the signing algorithm) during
the protocol Πk. To overcome this problem, we leverage techniques from the
notion of resettably-secure computation. Specifically, instead of using a stan-
dard MPC protocol in the above construction, we use a recent result of Goyal
and Maji [15] which constructs an MPC protocol that is secure against reset at-
tacks and works for stateless parties for a large class of functionalities, including
“inputless” randomized functionalities (that we will use in this paper).

The above intuitive description hides many details of how the user can actually
“drive” the MPC execution between the k signers within the direct-product game
where all signers respond to a single common message. We proceed to make this
formal in the following section.

3.2 Our Signature Scheme

We now give our transformation from any standard signature scheme into one
whose hardness does not amplify beyond negligible. We first establish some no-
tation.

Notation. Let n be the security parameter. Let (Gen, Sign, Verify) be any stan-
dard signature scheme. Further, let (R,SamL) be a hard relation as per Defini-
tion 5. Let {PRFK : {0, 1}poly(n) → {0, 1}poly(n)}K∈{0,1}n} be a pseudo-random
function family.

Stateless MPC. We consider a randomized k-party functionality F = {F}k∈N

that does not take any inputs; F simply samples a random pair y ← SamL(1n)
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and outputs y to all parties. Let {Πk}k∈poly(n) be a family of protocols, where
each Πk = {P1, . . . , Pk} is a k-party MPC protocol for computing the function-
ality F in the public state model. This model is described formally in the full
version, and we only give a quick overview here. Each party Pi is completely de-
scribed by the next message function NMi, which takes the following four values
as input: (a) a string πj−1 that consists of all the messages sent in any round
j − 1 of the protocol, (b) the public state statei of party Pi, and (c) the secret
randomness ri. On receiving an input of the form πj−1‖statei‖ri, NMi outputs
Pi’s message in round j along with the updated value of statei. We assume that
an attacker corrupts (exactly) k − 1 of the parties. In the real-world execution,
the attacker can arbitrarily call the next-message function NMi of the honest
party Pi with arbitrarily chosen values of the public state statei and arbitrary
message πj−1 (but with an honestly chosen and secret randomness ri). Never-
theless, the final output of Pi and the view of the attacker can be simulated in
the ideal world where the simulator can “reset” the ideal functionality. In our
case, that means that the attacker can adaptively choose one of polynomially
many honestly chosen instances y1, . . . , yq of the hard relation which Pi will then
accept as output.

The Construction. We describe our signature scheme (Gen,Sign,Verify).

Gen(1n): Compute (pk, sk) ← Gen(1n). Also, sample a random tape K ←
{0, 1}poly(n) and a random identity id ∈ {0, 1}n. Output PK = (pk, id) and
SK = (sk,K, id).

Sign(SK,m): To sign a message m using secret key SK = (sk,K, id), the signer
outputs a signature σ = (σ1, σ2) where σ1 ← Sign(sk,m). Next, if m does
not contain the prefix “prot”, then simply set σ2 = {0}. Otherwise, parse
m = (“prot”‖IM‖πj‖state‖w), where IM = k‖id1‖ . . . ‖idk such that state =
state1‖ . . . ‖statek, then do the following:

– Let i ∈ [k] be such that id = idi. Compute ri = PRFK(IM). Then, apply the
next message function NMi of (stateless) party Pi in protocol Πk over the
string πj‖statei‖ri and set σ2 to the output value.7

– Now, if σ2 contains the output y of protocolΠk,
8 then further check whether

(y, w) ∈ R. If the check succeeds, set σ2 = SK.

Verify(PK,m, σ): Given a signature σ = (σ1, σ2) on message m with respect
to the public key PK = (pk, id), output 1 iff Verify(pk,m, σ1) = 1.

7 Note that here σ2 consists of party Pi’s protocol message in round j + 1, and its
updated public state statei.

8 Note that this is the case when j is the final round in Πk. Here we use the prop-
erty that the last round of Πk is the output delivery round, and that when NMi is
computed over the protocol messages of this round, it outputs the protocol output.
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This completes the description of our signature scheme. In the full version, we
prove the following theorem showing that the signature scheme satisfies basic
signature security.

Theorem 1. If (Gen, Sign, Verify) is a secure signature scheme, {PRFK} is a
PRF family, R is a hard relation, and Πk is a stateless MPC protocol for func-
tionality F , then the proposed scheme (Gen,Sign,Verify) is a secure signature
scheme.

3.3 Attack on the Direct Product

Theorem 2. Let (Gen,Sign,Verify) be the described signature scheme and
let R = (SamL, R) be the hard relation used in the construction. Assume that for

any y
$← SamL(1n) , the size of the corresponding witness w is bounded by |w| =

p(n). Then, for any polynomial k = k(n), there is an attack against the k-wise
direct product running in time poly(n) with success probability ε(n) = 2−p(n).

We will prove Theorem 2 by constructing an adversary A that mounts a key-
recovery attack on any k-wise direct product of the signature scheme (Gen,
Sign, Verify).

k-wise Direct Product. Let (Gen, Sign, Verify) denote the k-wise direct
product of the signature scheme (Gen, Sign, Verify), described as follows.
The algorithm Gen runs Gen k-times to generate (PK1, SK1),. . . ,(PKk, SKk).
To sign a message m, Sign computes σi ← Sign(SKi,m) for every i ∈ k and
outputs σ = (σ1, . . . , σk). Finally, on input a signature σ = (σ1, . . . , σk) on
message m, Verify outputs 1 iff ∀i ∈ k, Verify(PKi,m, σi) = 1.

Description of A. We now describe the adversary A for (Gen, Sign, Verify).
Let (PK1, . . . , PKk) denote the public key that A receives from the challenger
of the signature scheme (Gen, Sign, Verify), where each PKi = (pki, idi). The
adversary A first sends a signing query m0 of the form “prot”‖IM‖π0‖state‖w,
where IM = k‖id1‖ . . . ‖idk, and π0 = state = w = {0}. Let σ = (σ1, . . . , σk) be
the response it receives, where each σi = σ

1
i , σ

2
i . A now parses each σ2i as a first

round protocol message πi1 from party Pi followed by the public state statei of
Pi (at the end of the first round) in protocol Πk.
A now prepares a new signing query m1 of the form “prot”‖IM‖π1‖state‖w,

where IM and w are the same as before, but π1 = π11‖ . . . ‖πk1 , and state =
state1‖ . . . ‖statek. On receiving the response, A repeats the same process as
above to produce signing queries m2, . . . ,mt−1, where t is the total number of
rounds in protocol Πk. (That is, each signing query m2, . . . ,mt−1 is prepared in
the same manner as m1.)

Finally, let σ = (σ1, . . . , σk) be the response to the signing querymt−1. A now
parses each σ2i as the round t protocol message πit from party Pi followed by the
state statei of Pi. Now, since the final round (i.e., round t) of protocol Πk is the
output delivery round, and further, Πk satisfies the publicly computable output
property,A simply computes the protocol output y from the messages π1t , . . . , π

k
t .
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Now, A guesses a p(n)-sized witness w∗ $← {0, 1}p(n) at random and, if (y, w∗) ∈
R(x), it now sends the final signing query mt =“prot”‖IM‖πt‖state‖w, where
IM is the same as before, πt = π1t ‖ . . . ‖πkt , state = state1‖ . . . ‖statek, and w =
w∗. Thus, A obtains SK1, . . . , SKk from the challenger and can forge arbitrary
signatures for the direct product scheme. It’s clear that its success probability
is at least 2−p(n).

Corollary 1. Assuming the existence hard relations and a general stateless MPC
compilers, the hardness of signature schemes does not amplify to any ε(n) =

2−nΩ(1)

. This gives a counterexample to the strong dream conjecture. If we, in
addition, assume the existence of (2Ω(n), 2−Ω(n))-hard relations with witness size
p(n) = O(n), then there exist signature schemes whose hardness does not amplify
beyond negligible. This gives a counterexample to the weak dream conjecture.

Proof. For the first result, assume that the witness size of the relation R is
bounded by p(n) = O(nc) for some constant c. Given any constant δ > 0, we
can simply instantiate the signature scheme (Gen,Sign,Verify) used in our
counterexample with the hard relation R’ that uses security parameter m(n) =
nδ/c so that its witness size is p′(n) = p(m) = O(nδ). It’s clear that R’ is still
(poly(n), negl(n))-secure but, by Theorem 2, the k-wise direct product can be

broken in poly(n) time with probability ε(n) = 2−O(nδ). Therefore security does

not amplify 2n
δ

for any δ > 0. The second part of the theorem follows in the
same way, except that, for any fixed negligible function δ(n) we set m(n) =
− log(δ(n)).

4 Counterexample for One-Way Relations and Functions

In Section 3, we proved that there exist signature schemes whose hardness does
not amplify. This already rules out the general conjecture that “for any game for
which hardness amplifies to negligible, hardness will also amplify to exponential
(or at least beyond negligible)”. Nevertheless, one might still think that the
conjecture hold for more restricted classes of games. Perhaps the simplest such
class to consider is one-way functions. Note that, unlike the case for signature
schemes, the one-wayness game does not allow interaction and has bounded
communication between attacker and challenger. Thus, the general strategy we
employed in Section 3 of embedding a multiparty computation inside signature
queries, will no longer work. In this section, we propose an alternate strategy for
showing that one-way relation hardness does not amplify beyond negligible.

4.1 Our Construction

We begin by giving a counterexample for hard relations. We then extend it to
counterexamples for one-way relations and and one-way functions. Our construc-
tions are based on a new (non-standard) cryptographic security assumption on
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hash functions. Let h : {0, 1}2n !→ {0, 1}n be a hash function. We define a Merkle
path of length � to be a tuple of the form

p� = (x0, (b1, x1), . . . , (b�, x�)) : bi ∈ {0, 1}, xi ∈ {0, 1}n.

Intuitively, x0 could be the leaf of some Merkle tree of height �, and the values
x1, . . . , x� are the siblings along the path from the leaf to the root, where the
bits bi indicate whether the sibling xi is a left or right sibling. However, we can
also talk about a path p� on its own, without thinking of it as part of a larger
tree. Formally, if p� is a Merkle path as above, let p�−1 be the path with the last
component (b�, x�) removed. The value of a Merkle path p� as above is defined
iteratively via:

h̄(p�) =

⎧⎨⎩h(h̄(p�−1), x�) � > 0, b� = 1
h(x�, h̄(p�−1)) � > 0, b� = 0
x0 � = 0

We call x0 the leaf of the path p�, and z = h̄(p�) is its root. We say that

y = (xL, xR) ∈ {0, 1}2n is the known preimage of the path p� if xL, xR are
the values under the root, so that either xL = x�, xR = h̄(p�−1) if b� = 0,
or xL = h̄(p�−1), xR = x� if b� = 1. Note that this implies h(y) = h̄(p�). We

say that y′ ∈ {0, 1}2n is a second preimage of the path p� if y′ �= y is not
the known preimage of p�, and h(y

′) = h̄(p�). We are now ready to define the
extended second-preimage resistance (ESPR) assumption. This assumption says
that, given a random challenge x0 ∈ {0, 1}n, it is hard to find a (short) path p�
containing x0 as a leaf, and a second-preimage y′ of p�.

Definition 7 (ESPR). Let h : {{0, 1}2n !→ {0, 1}n}n∈N be a poly-time com-
putable hash function. We define the Extended Second Preimage Resistance
(ESPR) assumption on h via the following security game between a challenger
and an adversary A(1n):

1. The challenger chooses x0
$← {0, 1}n at random and gives it to A.

2. A wins if it outputs a tuple (p�, y
′), where p� is a Merkle path of length � ≤ n

containing x0 as a leaf, and y′ is a second-preimage of p�.

Discussion. In the above definition, we want h to be a single fixed hash function
and not a function family. The notion of ESPR security seems to lie somewhere
in between second-preimage resistance (SPR) and collision resistance (CR), im-
plying the former and being implied by the latter.9 Unfortunately, collision resis-
tance cannot be achieved by any fixed hash function (at least w.r.t non-uniform
attackers), since the attacker can always know a single hard-coded collision as
auxiliary input. Fortunately, there does not appear to be any such trivial non-
uniform attack against ESPR security, since the attacker is forced to “incor-
porate” a random leaf x0 into the Merkle path on which it finds a collision.
Therefore, in this regard, it seems that ESPR security may be closer to SPR

9 A hash function is SPR if, given a uniformly random y, it’s hard to find any y′ �= y
such that h(y) = h(y′). It is CR if it is hard to find any y �= y′ s.t. h(y) = h(y′).
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security, which can be achieved by a fixed hash function (if one-way functions
exist). Indeed, in Section 4.2, we give a heuristic argument that modern (fixed)
cryptographic hash functions already satisfy the ESPR property, even against
non-uniform attackers. We do so by analyzing ESPR security in a variant of the
random-oracle model, where the attacker may observe some “oracle-dependent
auxiliary input”. This model, proposed by Unruh [31], is intended to capture the
properties of hash functions that can be achieved by fixed hash functions, rather
than function families.

A Hard Relation from ESPR. Given a hash function h we can define the NP
relation Rh with statements x ∈ {0, 1}n and witnesses w = (p�, y

′) where p� is a
Merkle path of length � ≤ n containing x as leaf, and y′ is a second-preimage of

p�. The corresponding NP language is defined as Lh
def
= {x : ∃ w s.t. (x,w) ∈

Rh }. We say that h is slightly regular, if for every z ∈ {0, 1}n there exist at
least two distinct pre-images y �= y′ such that h(y) = h(y′) = z. If this is the
case, then Lh = {0, 1}∗ is just the language consisting of all bit strings. Now,

we can define the distribution x ← SamL(1n) which just samples x
$← {0, 1}n

uniformly at random. It is easy to see that, if h is an (s(n), ε(n))-hard ESPR
hash function, then Rh = (Rh,SamL) is an (s(n), ε(n))-hard relation.

Hardness Non-Amplification. We now show our counterexample to the hardness
amplification for the hard relation Rh. The main idea is that, given k random
and independent challenges x(1), . . . , x(k), the attacker builds a Merkle tree with
the challenges as leaves. Let z be the value at the top of the Merkle tree. Then
the attack just guesses some value y′ ∈ {0, 1}2n at random and, with probability
≥ 2−2n, y′ will be a second-preimage of z (i.e. h(y′) = z and y′ is distinct from
the known preimage y containing the values under the root). Now, for each leaf
x(i), let pi� be the Merkle path for the leaf x(i). Then the witness wi = (y′, pi�) is
good witness for x(i). So, with probability≥ 2−2n with which the attack correctly
guessed y′, it breaks all k independent instances of the relation Rh, no matter
how large k is! By changing the relation Rh = (Rh,SamL) so that, on security

parameter n, the sampling algorithm SamL(1n) chooses x
$← {0, 1}m with m =

m(n) being some smaller function of n such asm(n) = nδ for a constant δ > 0 or
evenm(n) = log2(n), we can get more dramatic counterexamples where hardness

does not amplify beyond ε(n) = 2−nδ

or even ε(n) = n− logn. We now summarize
the above discussion with a formal theorem.

Theorem 3. Let h be a slightly regular, ESPR-secure hash function and let
Rh = (Rh,SamL) be the corresponding (poly, negl)-hard relation. Then, for any
polynomial k = poly(n), the k-wise direct product of Rh is not (poly, 2−2n)
secure. That is, for any polynomial k, there is a poly-time attack against the
k-wise direct product of Rh having success probability 2−2n.

Proof. We first describe the attack. The attacker gets k independently gener-
ated challenges x(1), . . . , x(k). Let � be the unique value such that 2�−1 < k ≤ 2�,
and let k∗ = 2� be the smallest power-of-2 which is larger than k. Let us define
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additional “dummy values” x(k+1) = . . . = x(k
∗) := 0n. The attack constructs a

Merkle Tree, which is a full binary tree of height �, whose k∗ leaves are associ-
ated with the values x(1), . . . , x(k

∗). The value of any non-leaf node v is defined
recursively as val(v) = h(val(vL), val(vR)) where vL, vR are the left and right
children of v respectively. For any leaf v(i) associated with the value x(i), let
(v1 = v(i), v2, . . . , v�, r) be the nodes on the path from the leaf v1 to the root r in
the Merkle tree. The Merkle path associated with the value x(i) is then defined

by p
(i)
� = (x(i), (x1, b1), . . . , (x�, b�)) where each xj is the value associated with

the sibling of vj , and bj = 0 if vj is a right child and 1 otherwise. Note that,
if r is the root of the tree and z = val(r) is the value associated with it, then

h̄(p
(i)
� ) = z for all paths p

(i)
� with i ∈ {1, . . . , k∗}. Furthermore let us label the

nodes vL, vR to be the children of the root r, the values xL, xR be the values
associated with them, and set y := (xL, xR). Then y is the known preimage such

that h(y) = z, associated with each one of the paths p
(i)
� .

The attack guesses a value y′
$← {0, 1}2n at random and, outputs the k-tuple

of witnesses (w1, . . . , wk) where wi = (p
(i)
� , y

′). With probability at least 2−2n, y′

is a second-preimage of z with h(y′) = z and y′ �= y (since h is slightly regular,
such second preimage always exists). If this is the case, then y′ is also a second

preimage of every path p
(i)
� . Therefore, with probability ≥ 2−2n the attack finds

a witness for each of the k instances and wins the hard relation game for the
direct product relation Rk

h.

Corollary 2. Assuming the existence of a slightly regular (poly, negl)-hard ESPR

hash functions, the hardness of hard relations does not amplify to 2−nΩ(1)

, giv-
ing a counterexample to the stronger dream conjecture. If we instead assume
the existence of (2Ω(n), 2−Ω(n))-hard ESPR hash functions, then the hardness of
hard relations does not amplify beyond negligible, giving a counterexample to the
weaker dream conjecture.

Proof. Let h be the ESPR hash-function. We define a modified relation Rm
h =

(Rh,SamL) where the sampling algorithm SamL(1n) samples an instance x
$←

{0, 1}m where m = m(n) is some function of n. For the first part of the corollary,
let δ > 0 be any constant, and set m(n) = nδ/2. Then Rm

h is still a (poly, negl)-
hard relation. However, by appplying Theorem 3 with m replacing n, we see
that for any k = poly(m) = poly(n), there is an attack against the k-wise di-

rect product which succeeds with probability ≥ 2−2m = 2−nδ

. In other word,
for any δ > 0, there is a (poly, negl)-hard relation whose direct product is not

(poly, 2−nδ

)-hard, no matter how large k is. This proces the first part of the
corollary. The second part of the corollary works the same way as the first part
but, for any fixed negligible function δ(n) we setm(n) = − 1

2 log(δ(n)). Assuming

that h is a (2Ω(n), 2−Ω(n))-hard ESPR hash function, the relation Rm
h is then

still (poly, negl)-hard, but it’s direct product is not (poly, δ(n))-hard. This proves
the second part of the corollary.
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Extension to One-Way Relations. We can get essentially the same results as
above for one-way relations rather than just hard relations. Assume that Row =
(Row,SamRow) is any one-way relation, and Rh = (Rh,SamLH) is the hard re-
lation used in our counterexample. Define the OR relation Ror = (Ror,SamRor)
via:

Ror
def
= {(y1, y2), (w1, w2) : (y1, w1) ∈ RH or (y2, w2) ∈ Row}

SamRor(1
n) : Sample y1 ← SamLh(1

n), (y2, w2)← SamRow(1
n)

Output: ((y1, y2), (0, w2)).

Then Theorem 3 applies as-is to the one-way relation Ror replacing RH and
Corollary 2 applies to one-way relations as well.

Extension to One-Way Functions. We can also extend the above counterexample

to one-way functions. Let i(n) ≥ n be a polynomial and f : {{0, 1}i(n) →
{0, 1}n }n∈N be a regular one-way function so that, for x

$← {0, 1}i(n), the
output f(x) is uniformly random over {0, 1}n. Let R = (R,SamL) be the hard
relation for which we have a counterexample, with witness-size bounded by u(n).

We define F : ({0, 1}i(n) × {0, 1}n × {0, 1}u(n) × {0, 1}n)→ {0, 1}n via:

F (x, y, w, z)
def
=

{
y If (y, w) ∈ R ∧ z = 0n

f(x) Otherwise.

Note that the distribution of F (x, y, w, z) is statistically close to that of f(x)
since the probability of z = 0n is negligible. The preimage of any y ∈ {0, 1}n
is either of the form (·, y, w, ·) where (y, w) ∈ R or of the form (x, ·, ·) where
f(x) = y, and hence breaking the one-wayness of F is no easier then breaking
that of f or breaking the hard relation R. On the other hand, it is possible to
break the k-wise direct product of F just by breaking the k-wise direct product
of the hard relation R. Therefore, the results of Corollary 2 apply to one-way
relations as well, if we also assume the existence of a (fixed) regular one-way
function f (and an exponentially secure one for the counterexample to the weaker
conjecture). In the full version of this work, we also show how to instantiate f
using the ESPR function h so as to get the results of Corollary 2 for one-way
functions, without needing any additional assumptions.

4.2 Justifying the ESPR Assumption

We now give some justification that ESPR hash functions may exist by show-
ing how to construct them in in a variant of the random-oracle (RO) model. Of
course, constructions in the random-oracle model do not seem to offer any mean-
ingful guarantees for showing that the corresponding primitive may be realized
by a fixed hash function: indeed the RO model immediately implies collision
resistance which cannot be realized by a fixed hash function. Rather, the RO
model is usually interpreted as implying that the given primitive is likely to be
realizable by a family of hash functions. Therefore, we will work with a variant



492 Y. Dodis et al.

of the RO model in which the attacker is initialized with some arbitrary “oracle-
dependent auxiliary input”. This model was proposed by Unruh [31] with the
explicit motivation of capturing properties the can be satisfied by a fixed hash
function. For example, the auxiliary input may include some small number of
fixed collisions on the RO and therefore collision-resistance is unachievable in
this model. By showing that ESPR security is achievable, we provide some jus-
tification for this assumption.

Let O : {0, 1}2n !→ {0, 1}n be a fixed length random oracle. Following [31],
we define “oracle-dependent auxiliary input” of size p(n) as an arbitrary function

z : {{0, 1}2n !→ {0, 1}n} !→ {0, 1}p(n) which can arbitrarily “compresses” the
entire oracle O into p(n) bits of auxiliary information z(O). When considering
security games in the oracle-dependent auxiliary input model, we consider at-
tackers AO(z(O)) which are initialized with polynomial-sized oracle-dependent
auxiliary input z(·). In the full version, we show that the ESPR security game
is hard in the random oracle model with auxiliary input.

Theorem 4. Let O be modeled as a random oracle, and consider the ESPR
game in which h is replaced with O. Then, for any attacker AO(z(O)) with
polynomial-sized auxiliary input z(·) and making at most polynomially many
queries to O, its probability of winning the ESPR game is at most ε = 2−Ω(n).
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Abstract. Two central notions of Zero Knowledge that provide strong,
yet seemingly incomparable security guarantees against malicious
verifiers are those of Statistical Zero Knowledge and Resettable Zero
Knowledge. The current state of the art includes several feasibility and
impossibility results regarding these two notions separately. However, the
question of achieving Resettable Statistical Zero Knowledge (i.e., Reset-
table Zero Knowledge and Statistical Zero Knowledge simultaneously)
for non-trivial languages remained open. In this paper, we show:

– Resettable Statistical Zero Knowledge with unbounded prover: un-
der the assumption that sub-exponentially hard one-way functions
exist, rSZK = SZK. In other words, every language that admits a
Statistical Zero-Knowledge (SZK) proof system also admits a Re-
settable Statistical Zero-Knowledge (rSZK) proof system. (Further,
the result can be re-stated unconditionally provided there exists a
sub-exponentially hard language in SZK). Moreover, under the as-
sumption that (standard) one-way functions exist, all languages L
such that the complement of L is random self reducible, admit a
rSZK; in other words: co-RSR ⊆ rSZK.

– Resettable Statistical Zero Knowledge with efficient prover: efficient-
prover Resettable Statistical Zero-Knowledge proof systems exist for
all languages that admit hash proof systems (e.g., QNR, QR, DDH,
DCR). Furthermore, for these languages we construct a two-round
resettable statistical witness-indistinguishable argument system.

The round complexity of our proof systems is Õ(log κ), where κ is the
security parameter, and all our simulators are black-box.

1 Introduction

The notion of a Zero-Knowledge (ZK, for short) Proof System introduced by
Goldwasser, Micali and Rackoff [19] is central in Cryptography. Since its intro-
duction, the concept of a ZK proof has been extremely influential and useful
for many other notions and applications (e.g., multi-party computation [18],
CCA encryption [27]). Moreover, the original definition has been then extended
under several variations, trying to capture additional security guarantees. Well

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 494–511, 2012.
c© International Association for Cryptologic Research 2012



Resettable Statistical Zero Knowledge 495

known examples are the notions of non-malleable ZK [14] introduced by Dolev,
Dwork and Naor, which concerns security against man-in-the-middle attacks, of
ZK arguments introduced by Brassard, Chaum and Crepeau [4] where sound-
ness is guaranteed only with respect to probabilistic polynomial-time adversarial
provers, and of concurrent ZK [16] introduced by Dwork, Naor and Sahai, which
concerns security against concurrent malicious verifiers. Another important vari-
ant is that of Statistical Zero Knowledge [19,3,33], where it is guaranteed that
a transcript of a proof will remain zero knowledge even against computationally
unbounded adversaries.

An important model of security against malicious verifiers, known as Reset-
table Zero-Knowledge, was introduced by Canetti, Goldreich, Goldwasser and
Micali in [5]. In this setting, the malicious verifier is allowed to reset the prover,
and make it re-use its randomness for proving new theorems. Indeed, one of
the main motivations for studying resettable ZK was to understand the conse-
quences of re-using limited randomness on the zero-knowledge property. In [5], it
was shown that computational zero-knowledge for all of NP is possible even in
this highly adversarial setting. Although resettable zero knowledge has received
considerable attention since its inception (see for example [1,24,13,39,12,8,35]),
almost all the work has been focused on the computational setting.

In this work, we continue the line of research on resettable ZK by investigat-
ing the question of resettability when the zero-knowledge property is required
to be statistical, i.e., Resettable Statistical Zero Knowledge. This model con-
strains the prover strategy severely: not only should the prover somehow re-use
its limited randomness, it must do so in a way that makes the transcript of the
proof statistically secure. Known solutions in the setting of computational reset-
table ZK involve converting prover’s bounded randomness to unbounded pseudo-
randomness by using pseudo-random functions (PRF). However, this approach
fails in our case, as an unbounded adversary can break the PRF and gain critical
information, breaking zero knowledge. In this paper, we develop a new technique
to handle this problem. Using this technique, we study resettable statistical zero
knowledge in the form of following two distinct questions.

– Do there exist efficient-prover resettable statistical ZK proofs? This question
is motivated by practical applications of resettable ZK, for example, in smart
cards. If a prover is to be implemented in a small device like a smart card,
it is essential that the prover strategy is polynomial-time.

– What languages in SZK have resettable statistical ZK proofs? The class
SZK is the class of problems which admit statistical zero-knowledge proofs.
This question is purely theoretical in nature, and tries to ascertain the
difficulty of achieving resettability where statistical zero-knowledge already
exists. In this setting we consider prover’s which are forced into giving mul-
tiple proofs using the same limited random coins. This work can be thought
of a natural extension of the recent work on Concurrent Statistical Zero-
Knowledge (cSZK) [25,30].
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1.1 Our Contribution

In this paper we address the above questions and present the following results.
We stress that our techniques may be of independent interest.

Resettable Statistical Zero Knowledge with efficient prover. We show the exis-
tence of efficient-prover resettable statistical ZK proof systems for all languages
in SZK that admit hash proof systems [10] (e.g., Quadratic Non-Residuosity
(QNR), Decisional Diffie-Hellman (DDH), Decisional Composite Residuosity
(DCR)). Therefore, our techniques show that efficient-prover resettable statisti-
cal ZK proof systems also exist for non-trivial languages (like DDH) where each
instance is associated to more than one witness, where intuitively reset attacks
are harder to deal with.1 Furthermore, using our techniques, for these languages
we also construct a two-round resettable statistical witness-indistinguishable ar-
gument system.

Resettable Statistical Zero Knowledge with unbounded prover. We show that
if a family of sub-exponentially hard one-way functions exists then rSZK =
SZK, i.e., all languages that admit a statistical ZK proof systems also admit a
resettable statistical ZK proof system. If there exists an SZK language L which
is (worst-case) sub-exponentially hard for all input length2 then rSZK = SZK
without any additional assumptions, as it already implies the existence of sub-
exponentially hard one-way functions [29]. Informally, a sub-exponentially hard
one-way function is a one-way function that is secure against sub-exponential
(2κ

ε

for some 0 < ε < 1) size circuits. Moreover, we show that if a family of
(standard) one-way functions exists (or, if there are languages which are hard
on the average and admit statistical zero-knowledge proofs [29]) then co-RSR ⊆
rSZK. Our results are achieved through a novel use of instance-dependent (ID,
for short) commitment schemes, a new simulation technique, and a coin-tossing
protocol that is secure under reset attacks that we build on top of a new ID
commitment for all SZK.

Our simulators are black-box and the round complexity of all our constructions
is Õ(log κ) which is optimal considering the lower bounds achieved so far for
black-box concurrent ZK [6,26].

We stress that since the very introduction in [5] of the notion of resettable
ZK, our results are the first in establishing Resettable Statistical Zero Knowledge.

1 When there are multiple witnesses that can prove membership of an instance in
a language, in a reset attack we allow the adversarial verifier to force the prover
to reuse the same randomness for proving the same instance but using a different
witness. We therefore achieve a stronger definition of resettability than the one used
in previous work.

2 If there exists a language L ∈ SZK such that for infinite sequence of input lengths,
the worst-case decision problem for L is sub-exponentially-hard, Ostrovsky showed
that there exists a non-uniform sub-exponentially hard one-way functions for that
sequence of input length [29].



Resettable Statistical Zero Knowledge 497

We finally leave open an interesting question of proving that SZK = rSZK un-
conditionally or under relaxed complexity-theoretic assumptions and of estab-
lishing whether resettable statistical ZK arguments are achievable for all NP .

As a final note, we remark upon the complexity of the verifiers in our proto-
cols. Historically, the notion of SZK was developed with bounded verifiers (and
unbounded distinguishers), for example, see [3,37]. Moving in the same direc-
tion, we obtain our results in this model, where the verifiers are computationally
bounded. In subsequent literature on SZK, the stronger notion of statistical
zero-knowledge against unbounded verifiers was developed. In this scenario, the
notion of resettability seems hard to achieve: unbounded verifiers can compute
statistical correlations on the fly by making multiple reset queries to the prover.
We leave the question of constructing such protocols or showing impossibility in
a setting with unbounded verifiers as an open problem for future work.

1.2 Technical Difficulties and New Techniques

We begin by asking the general question: “Why is the problem of constructing re-
settable statistical zero-knowledge proof systems hard?” The problem lies in the
fact that the prover has limited randomness and can be reset. Therefore, prover’s
messages are essentially a deterministic function of the verifier’s messages, and
the verifier can probe this function by resetting the prover and thereby obtaining
information that might be useful for an unbounded distinguisher. We highlight
the issues by demonstrating why existing techniques fail. The most well studied
way of achieving resettable computational zero-knowledge proofs [5], is by using
a pseudorandom function. In particular, very informally, using this technique the
prover applies a pseudorandom function on the common input and the verifier’s
first messages (this message is called the determining message), which fixes all
future messages of verifier, and uses the output as its random tape. Now, when
the verifier resets and changes its determining message, prover’s random tape
changes, and thus, intuitively, the verifier does not gain any advantage by re-
setting the prover. However, for our goal of obtaining resettable statistical zero
knowledge, this approach is not sufficient. In fact, intuitively, any protocol (as
far as we know) in which there exists a message computed using both the wit-
ness and the randomness, where the randomness is fixed but the witnesses could
change with theorem statements, can not be statistically “secure” in presence of
reset attacks. Indeed, an adversarial verifier could interact multiple times with
provers that use a fixed randomness but different statements and witnesses. This
information can be used by an unbounded distinguisher to establish certain cor-
relations among the values used in different executions, ultimately breaking the
statistical ZK property. Because of these restrictions, previously known tech-
niques, which were sufficient for resettable [5,1] and statistical ZK [25,20,21]
independently, turn out to be insufficient for achieving both of them simultane-
ously.

In light of the intuition above resettable statistical ZK for non-trivial lan-
guages at first sight might be considered impossible to achieve. But, on the con-
trary we develop a new technique that overcomes the above problems.
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We demonstrate this new technique by first considering a toy version of our
protocol. The protocol consists of three phases. In the first phase the verifier
sends a “special” instance-dependent non-interactive (ID, for short) commit-
ment of a random string m to the prover. (In this commitment, if the prover
is lying and x �∈ L, then m will be undefined, while if x ∈ L, then m will be
unique.) The second phase consists of a PRS preamble [32]. Very roughly, in the
PRS preamble the verifier commits to random shares of m, which are opened
depending on the provers challenges. Finally, the prover is required to send m
to the verifier. The prover can obtain m by extracting it from the commitment
either efficiently using a witness in case of efficient-prover proofs, or running in
exponential time in case of unbounded-prover proofs. We stress that when the
theorem being proved is true the message m that can be extracted is unique.

First, the protocol just described has the following property: every message
sent by the prover is public coin3 except its last message, which is uniquely de-
termined by the first message of the verifier (we use [5] terminology and refer
to it as the determining message). Most importantly, no message depends on
the witness of the prover. It is this property that allows a simulator to generate
a transcript that is statically close to the transcript generated in the interac-
tion with a real prover. An honest prover uses a pseudorandom function on the
common input and the determining message and uses the output as its random
tape. A simulator can sample the messages from the same distribution as the
real prover. Finally, the simulator will be able to obtain m by using rewinding
capabilities, through a variation of a PRS rewinding strategy [32]. The need for
the variation arises from the fact that a simulator that uses pseudo-random coins
does not gain anything by rewinding (i.e., after a rewind it would re-send the
same message). We deal with this problem by having the simulator use pseu-
dorandom coins for some messages while using pure random coins for others.
We elaborate on this in § 4. This toy version, described above, illustrates the
key ideas that we use in achieving simultaneously both resettable and statisti-
cal zero knowledge. To transform our toy version into a full proof system, for
even the most basic languages that we consider in this paper, we need an extra
instance-dependent primitive. But we defer this discussion to § 3 and § 5.

Second, our protocol also has the property that if the theorem is false then
the prover has almost no chance (in the information-theoretic sense) of sending
an accepting last message. This follows from the fact that the ID commitment
from verifier is statistically hiding. This property guarantees soundness.

Unfortunately, the above ideas are insufficient to prove that rSZK = SZK.
This is because statistically hiding non-interactive ID commitments, introduced
by Chailloux, Ciocan, Kerenidis and Vadhan [7] for SZK are “honest-sender.” To
force the sender into using purely random coins we need a coin-flipping protocol
secure against resetting senders. For this coin-flipping protocol an ID commit-
ment scheme which is computationally binding with respect to a resetting sender
for instances in the language and statistically hiding for instances not in the lan-
guage, suffices. We will use some techniques introduced by Barak, Goldreich,

3 Looking ahead, we will use a pseudorandom function to generate these messages.
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Goldwasser and Lindell in [1] on top of a previous result of Ong and Vadhan [28]
for obtaining such an ID commitment scheme.

However the more subtle problem arises in the use of pseudorandom func-
tions. To obtain security against reset attacks, the coin-flipping message played
by the receiver of the commitment must be computed by using a pseudoran-
dom function. This again turns out to be insufficient for our analysis since the
use of the pseudorandom function does not guarantee that the outcome of the
coin-flipping protocol is a uniform string to be used in the honest-sender non-
interactive ID commitment scheme. In order to solve this additional problem,
we use sub-exponentially hard pseudorandom functions (constructed from sub-
exponentially hard one-way functions). These stronger primitives have the addi-
tional property that they are secure against sub-exponential size circuits. This
technique is referred to as complexity leveraging, and has been previously used in
various applications (e.g., [5,23,2,11,9,31,38]). However, we stress that in all our
constructions, the simulator runs in expected polynomial time, and the above
assumptions play a role only inside our security proof.

Before concluding this section, we point out an important difference between
our approach and ideas developed by Micciancio, Ong, Sahai and Vadhan in [25],
where the authors give unconditional constructions of concurrent statistical zero-
knowledge proofs for many non-trivial problems. Like their construction we use
similar ID commitments but our general approach and overall protocol is dif-
ferent from their approach. In [25], a compiler is constructed that (using ID
commitments) provides a generic way to construct statistical zero-knowledge
protocols. But, as pointed earlier, such a compiling technique along with stan-
dard resettability techniques [5] is not sufficient for us. Therefore, we develop our
zero-knowledge protocol from scratch. This is needed because obtaining resetta-
bility along with statistical zero knowledge is different and (as pointed earlier)
harder than obtaining concurrent statistical zero knowledge. We further note
that in fact our techniques imply that SZK = cSZK unconditionally. We refer
the reader to the full version [17] for further discussion on this.

Road map. We start by giving some preliminary definitions in § 2. We use three
ID primitives in this paper. We elaborate on those in § 3. In § 4 we construct a
resettable statistical ZK proof secure against partially honest verifiers. Then in
§ 5 we remove this limitation for certain classes of languages. In § 6, we construct
the proof system that works for all language in SZK.

2 Notation and Tools

We say that a function is negligible in the security parameter κ if it is asymptoti-
cally smaller than the inverse of any fixed polynomial. Otherwise, the function is
said to be non-negligible in κ. We say that an event happens with overwhelming
probability if it happens with a probability p(κ) = 1 − ν(κ) where ν(κ) is a
negligible function of κ. In this section, we provide an overview of the primitives
used in this paper. Formal definitions can be found in the full version [17].



500 S. Garg et al.

Resettable/Statistical Zero Knowledge. In this paper we consider resettable [5]
and statistical [19,3,33] notions of zero-knowledge. The notion of resettability
requires that a protocol remains zero-knowledge even if the verifier can reset
the prover. The notion of statistical zero knowledge provides security guarantees
against unbounded distinguishers. This paper constructs resettable statistical
zero-knowledge proof systems. In other words we try to achieve both the reset-
tability and the statistical guarantees simultaneously.

PRS Preamble from [32]. A PRS preamble is a protocol between a committer C
and a receiver R that consists of two main phases, namely: 1) the commitment
phase, and 2) the challenge-response phase.

Let k be a parameter that determines the round-complexity of the protocol.
Then, in the commitment phase, very informally, the committer commits to
a secret string σ and k2 pairs of its 2-out-of-2 secret shares. The challenge-
response phase consists of k iterations, where in each iteration, very informally,
the committer “opens” k shares, one each from k different pairs of secret shares
as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind and
extract the “preamble secret” σ with overwhelming probability. In the concurrent
setting, rewinding can be difficult since one may rewind to a time step that pre-
cedes the start of some other protocol [16]. However, as it has been demonstrated
in [32], there is a fixed “time-oblivious” rewinding strategy that the simulator can
use to extract the preamble secrets from every concurrent cheating committer,
except with negligible probability. Moreover this works as long as k = Ω̃(log κ)
for some positive ε. We refer to this as the PRS rewinding strategy or the PRS
simulation strategy. We refer the reader to [32] for more details.

Sub-exponentially hard one-way functions. A sub-exponentially hard one-way
function is a one-way function that is hard to invert even by sub-exponential (2κ

ε

for some 1 > ε > 0) size circuits. They imply the existence of sub-exponentially
hard pseudorandom functions. We stress that we need this assumption only for
proving that SZK = rSZK.

3 Instance-Dependent Commitments and Proofs

In this section we construct three instance-dependent primitives, that we use in
this paper: (1) a non-interactive instance-dependent commitment scheme, (2) an
interactive instance-dependent commitment scheme, and finally (3) an instance-
dependent argument system.

Non-Interactive Instance-Dependent Commitment Scheme. An important tool
that we will re-define, construct and use in our proof systems, is that of “spe-
cial” non-interactive instance-dependent (ID, for short) commitment schemes. A
commitment scheme allows one party (referred to as the sender) to commit to
a value while keeping it hidden, with the ability to reveal the committed value
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later. Commitments also have the property that once the sender commits to a
value, it can not change its mind later. This property is refereed to as the binding
property. In certain settings, commitment schemes for which these properties are
not required to hold simultaneously, suffice. Such schemes are parameterized by
a value x and a language L and either the binding or the hiding property holds
depending upon the membership of x in L. These schemes are referred to as
ID commitment schemes [7]. Typically, the ID commitment schemes that have
been considered in the literature require hiding property to hold when x ∈ L
and binding property to hold otherwise. We actually need the reverse properties,
i.e., we need hiding property when x �∈ L and binding property otherwise.

In particular we consider an ID commitment scheme with further special
properties. We require that the commitment scheme be statistically binding for
x ∈ L and statistically hiding otherwise. In other words we want binding and
hiding properties to hold against unbounded adversaries. Also we require that
our ID commitment scheme be secure against a resetting sender. This always
holds when the commitment scheme is non-interactive. All the non-interactive
ID commitments that we consider are statistically hiding. So to simplify nota-
tion we refer to a non-interactive instance-dependent commitment scheme with
perfect (binding holds with probability 1) binding and statistical hiding as a
perfect non-interactive ID commitment. Similarly, we refer to a non-interactive
instance-dependent commitment scheme with statistical binding and statistical
hiding as a statistical non-interactive ID commitment.

Since the commitment is statistically binding, when x ∈ L, the committed
value can always (with overwhelming probability) be extracted in exponential
time. Extractability instead becomes tricky when the extractor has to run in
polynomial time. We will call an ID commitment scheme efficiently extractable
if when x ∈ L then there exists an extractor that takes as input a witness for
the membership of x in L and the commitment, and outputs in polynomial-time
the committed message.

It turns out that perfect non-interactive ID commitment schemes are actually
known to exist for all languages in co-RSR [22,36,34]. co-RSR is the class
of languages such that the complement of each of these languages is random
self-reducible. Another class of languages that is amenable to our techniques is
the class of languages that are in SZK and that admit a hash proof system.
Observing that these languages imply instance-dependent primitives that are
analogous to ID commitments described above, we get efficient-prover resettable
statistical ZK proof systems for this interesting class. In particular, for DDH
(the language that consists of all Diffie-Hellman quadruples and that admits two
different witnesses for proving the membership of a quadruple to the language),
we give a separate ID commitment scheme highlighting how our techniques work
with multiple witnesses.

We notice that for the whole SZK we only know a weak form of statistical non-
interactive ID commitment scheme where statistical binding holds with respect
to honest senders only. The details have been provided in the full version.
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We will denote the extractable perfect (or, statistical) non-interactive ID com-
mitment scheme by COM. The commitment function for a value x and language
L will be denoted by CL,x. Also we use the notation CL,x(m; r) for the function
used to generate the commitment to message m ∈ {0, 1}�0 using random coins
r ∈ {0, 1}�1. The extractability property of these commitments is very important
for our constructions.

Interactive ID Commitment Scheme. We use an interactive ID commitment
scheme COML,x = (Sx, Rx), where Sx and Rx are the sender and the receiver
respectively, with common input x. This ID commitment scheme is computation-
ally binding against a resetting sender when the instance x is in the language,
and is statistically hiding otherwise. Very roughly, we construct such a scheme
by using the constant-round public-coin ID commitment scheme of [28]. This
scheme has statistical binding and statistical hiding properties. We make it se-
cure under resetting senders by having the receiver determine its messages by
applying a pseudo-random function (similarly to Proposition 3.1 in [1]) to the
transcript so far. Because of this, the statistical binding property is degraded to
computational4 binding. We stress that unlike the non-interactive ID commit-
ment described earlier, we will not need any extractability from these commit-
ments. We obtain this new ID commitment scheme for all of SZK under the
assumption that one-way functions exist. The details have been provided in the
full version.

Instance-Dependent Argument System 〈PrsSWIx,VrsSWIx〉. We will need an
instance-dependent argument system 〈PrsSWIx, VrsSWIx〉 where PrsSWIx and
VrsSWIx are the prover and the verifier respectively, with common inputs x and
a statement ξ. When5 x is in the language, we want that 〈PrsSWIx,VrsSWIx〉 be
a resettably sound argument of knowledge for NP . In this case, very roughly,
〈PrsSWIx,VrsSWIx〉 has the additional property that the soundness holds even
when the prover can reset the verifier. If instead x is not in the language then
〈PrsSWIx,VrsSWIx〉 must be statistical witness indistinguishable. We construct
this argument system by instantiating Blum’s Hamiltonicity protocol with the
constant-round public-coin ID commitment scheme of [28]. We make it resettably
sound by using a pseudorandom function [1]. Details, definition and construc-
tions are given in the full version.

4 However, looking ahead we note that, computational binding will be sufficient for our
applications since the role of the sender will be played by a polynomially bounded
party.

5 In general, in proof systems when an ID commitment is used, it is parameterized by
the theorem statement ξ being proven. In our case the ID commitment is actually
parameterized by a different value x. Looking ahead, x would be the theorem state-
ment of an interactive proof system that uses the sub-protocol 〈PrsSWIx,VrsSWIx〉
to prove the NP statement ξ.
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4 Resettable Partially Honest-Verifier Statistical Zero
Knowledge

We aim at constructing a resettable statistical zero-knowledge proof system. We
start by building a simpler protocol which is resettable statistical zero knowledge
only against a restricted class of adversarial verifiers. In subsequent sections, we
build upon this simpler protocol to achieve our general results. The adversarial
verifiers that we consider here are restricted to “act honestly” but only in a
limited manner. We call such verifiers partially honest. As pointed out in § 3, we
use a non-interactive ID commitment scheme. Looking ahead, in our protocol this
commitment is used by the verifier to commit to certain messages. A partially
honest verifier is required to behave honestly when computing the commitment
function, using pure randomness to commit to messages. Besides this it can
cheat in any other way. We state this restriction more concretely after we have
described the protocol.

We begin by construction a concurrent statistical zero-knowledge proof system
secure against such partially honest adversaries, and then transform it into a
resettable statistical zero-knowledge proof system under the same restricted class
of adversarial verifiers.

Concurrent Partially Honest-Verifier SZK. We start by informally describing
the protocol cpHSZK of Fig. 1. It consists of three phases. The first phase, called
the Determining Message Phase, consists of the verifier sending a commitment to
a string m to the prover. We use the extractable non-interactive ID commitment
scheme described earlier. The second phase is roughly a PRS preamble [32]
and we refer to it as the PRS Phase. Note that some commitments are made
in the PRS preamble, but we lump these with the commitment to m, in the
Determining Message Phase itself. Finally the prover sends to the verifier the
valuem. This is referred to as the Final Message. An adversarial verifier, denoted
by V ∗, is called a partially honest verifier if it generates the non-interactive ID
commitments of the Determining Message Phase “honestly.” This requires that
these ID commitments are: (1) “well-formed” and (2) have unique6 openings
(except with negligible probability).

We begin by briefly sketching why cpHSZK is a concurrent statistical zero-
knowledge proof system for L. Full details of the proof are in the full version.
Completeness follows from binding property of COM: when x ∈ L, the commit-
ments in the Determining Message Phase are statistically binding with unique
openings with overwhelming probability. Thus, the prover can extract the unique
message m and make the verifier accept in the Final Message Phase. For sound-
ness, note that when x /∈ L, the commitments in the first phase are statistically
hiding. Thus, m committed to in the Determining Message Phase is informa-
tion theoretically hidden from a cheating prover (also shares received during the

6 It follows from the description in the full version, that a perfectly non-interactive
ID commitment always has a unique opening. On the other hand an honest sender
statistical non-interactive ID commitment, has a unique opening with overwhelming
probability, for honest senders only.
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Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ) and n = poly(κ), for a security
parameter κ..
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message (V → P ) V chooses message m randomly from
{ 0, 1 }�0 , and computes α = CL,x(m; ρ0) for some random ρ0 ∈ {0, 1}�1 . For
1 ≤ i ≤ k and 1 ≤ j ≤ k, V randomly chooses σ0

i,j and σ1
i,j such that

σ0
i,j ⊕ σ1

i,j = m. For each (i, j, b), where 1 ≤ i ≤ k, 1 ≤ j ≤ k and b ∈
{ 0, 1 }, V randomly chooses ρbi,j ∈ {0, 1}�1 computes the commitment αb

i,j :=
CL,x(σ

b
i,j ; ρ

b
i,j). Finally, V sends all the commitments α, α0

1,1, α
1
1,1, . . . , α

1
k,k to

the prover.
2. PRS Phase (V ⇔ P ) For 1 ≤ l ≤ k:

(a) P sends bl chosen randomly in {0, 1}k to V .

(b) Let bil be the ith bit of bl. V sends the openings of α
b1l
l,1, . . . , α

bkl
l,k.

(c) If the opening sent by the verifier is invalid, then P sends ABORT to
verifier, and aborts the protocol.

3. Final Message (P → V ) P runs the extractor associated to the ID com-
mitment of the Determining Message Phase. If the extractor aborts then P
aborts, else P sends the output of the extractor m′ to V , who accepts if
m′ = m.

Fig. 1. Concurrent Partially Honest-Verifier Statistical Zero-Knowledge Proof System:
cpHSZK

preamble do not give any information), and therefore, it can convince the verifier
only with negligible probability.

To argue zero knowledge, we use the rewinding strategy of [32]. Using the
PRS rewinding strategy we can construct a simulator that obliviously rewinds
the verifier and is guaranteed (except with negligible probability) to obtain the
opening m committed to in the Determining Message Phase, before the end of
the PRS Phase for every session (except with negligible probability) initiated by
the cheating verifier. Once the cpHSZK simulator knows the message m commit-
ted in the Determining Message Phase, it can play it back to the verifier in the
Final Phase.

Note that to prove zero knowledge, we crucially use the fact that the verifier
is partially honest. First, we need that the commitment sent by the verifier are
correctly formed. This is to make sure that the commitments are done in accor-
dance with the specifications for the first message of PRS preamble. Secondly,
we need that these commitments have unique openings with overwhelming prob-
ability. If, for example, verifier’s commitment to m in the Determining Message
Phase has two openings, then the simulation would fail. Indeed, an unbounded
prover unable to decide which is the right opening, would always abort while the
simulator would still extract some message from the PRS Phase and send that
to the verifier in the Final Phase. The case of an efficient prover instead would
result in extracting a message that could depend on the witness used, while
the one obtained by the simulator would not depend on the witness, therefore
potentially generating a distinguishable deviation in the transcript.
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Resettable Partially Honest-Verifier SZK. We now exploit a key property of
cpHSZK and transform it into a resettable statistical zero-knowledge proof sys-
tem secure against partially honest verifiers. We note that the final message of
cpHSZK depends only on the first message of the verifier. In particular, it de-
pends neither on the random tape of the prover, nor on its witness. Also messages
of the prover in the PRS phase are just random strings. Thus, very informally,
an adversarial verifier can not obtain any advantage by resetting the prover, as
after every reset, the verifier will get the same message back in the final round.
This is a crucial fact that allows us to achieve resettability.

Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security
parameter κ.
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message Same as in Fig. 1.
2. PRS Phase (V ⇔ P ) P chooses a random seed s, and sets ω =

fs(x, α, α
0
1,1, . . . , α

1
k,k). Now P divides ω into k blocks of k-bits each, i.e.,

ω = ω1 ◦ . . . ◦ ωk. For 1 ≤ l ≤ k,
(a) P sends ωl to V .
(b) Same as Fig. 1 Step 2b.
(c) Same as in Fig. 1 Step 2c.

3. Final Message Same as in Fig. 1.

Fig. 2. Resettable Statistical Partially Honest Verifier Zero-Knowledge Proof System
rpHSZK

The transformed protocol, called rpHSZK (Fig. 2), is the same as cpHSZK,
except for one difference: in the PRS Phase, instead of sending random challenges
in Step 2(a), the prover uses pseudorandom challenges. The prover chooses a
random seed s for selecting a function from a PRF family { fs }s∈{0,1}∗ , and sets
ω as the output of fs() evaluated on the message received during the Determining
Message Phase. The prover uses this ω as its random tape for the PRS phase. A
modification of the PRS simulation where the simulator uses both pseudorandom
and random messages during the preamble, along with other known tricks [5]
allows us to prove that this protocol is a resettable statistical zero-knowledge
proof system with respect to partially honest verifiers.

5 Resettable Statistical ZK from Perfect Non-interactive
ID Commitments

In this section we consider languages that admit perfect non-interactive ID com-
mitments and we construct a resettable statistical ZK proof system which is
secure against all malicious verifiers.
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Let L be a language that admits a perfect non-interactive ID commitment
scheme. We extend the proof system rpHSZK for L to handle arbitrary malicious
verifiers. The main idea is to enforce “partially honest behavior” on the malicious
verifier. We recall that the partially honest restriction on a verifier required that
the verifier generates commitments honestly. More specifically, we required that
these commitments have unique openings and are correctly constructed. A fully
malicious verifier however can deviate and compute commitments that do not
have the prescribed form. Therefore, the only concern we have is to make sure
that commitments are correctly generated. We enforce this by modifying rpHSZK
and adding an extra step to it. This step requires that the verifier proves to the
prover that shares constructed in Step 1 (as part of the Determining Message)
are correct. If this proof is accepted then the prover can conclude that the first
message of the verifier is indeed honestly generated and the malicious verifier
is forced into following the desired partially honest behavior. In our protocol
the verifier uses an instance-dependent argument system 〈PrsSWIx,VrsSWIx〉
such that: when x ∈ L, 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument
of knowledge, while when x �∈ L, 〈PrsSWIx,VrsSWIx〉 is statistically witness
indistinguishable. Since the protocol is resettably sound the malicious verifier
can not go ahead with incorrect commitments even when it can reset the prover.
For the protocol see Fig. 3.

Sub-protocol: 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument of knowledge
when x ∈ L and a statistical witness indistinguishable argument when x �∈ L.
Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security
parameter κ.
Secret Input to P a: Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message: Same as in Fig. 2.
2. Proof of Consistency: (V ⇔ P ) V and P run 〈PrsSWIx,VrsSWIx〉, where

V plays the role of PrsSWIx, and P plays the role of VrsSWIx. V proves to P
knowledge of m,σb

i,j , ρ0, ρ
b
i,j for 1 ≤ i, j,≤ k, b ∈ { 0, 1 }, such that:

(a) α = CL,x(m,ρ0), and,
(b) αb

i,j = CL,x(σ
b
i,j ; ρ

b
i,j) for each 1 ≤ i, j ≤ k and b ∈ { 0, 1 }, and,

(c) σ0
i,j ⊕ σ1

i,j = m for 1 ≤ i, j ≤ k.
3. PRS Phase: Same as in Fig. 2.
4. Final Message: Same as in Fig. 2.

a P aborts the protocol in case any proof from the verifiers does not accept or
some message is not well formed.
Notice that P uses two different seeds for the PRF f (one in Step 2 and the
other one in Step 3).

Fig. 3. Resettable Statistical Zero-Knowledge from Perfect Non-Interactive ID Com-
mitments: rSZK
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Application to co-RSR and hash proof systems. Languages in co-RSR and
DDH have perfect non-interactive ID commitment schemes. Thus, from the
discussion above, it follows that these languages have resettable statistical zero-
knowledge proofs. For languages in SZK that admit hash proof systems, a minor
modification of our resettable statistical zero-knowledge protocol suffices. The
details are provided in the full version [17].

6 Resettable Statistical ZK for All Languages in SZK
In this section we construct the general proof system which is actually resettable
statistical zero knowledge for all languages that have a statistical zero knowledge
proof. Just like in previous section, we start with a resettable partially honest
verifier statistical ZK proof system. But we look at all languages in SZK and
construct a resettable statistical ZK proof system which is secure against all
malicious verifiers.

Let L be a language that admits an honest sender statistical non-interactive
ID commitment scheme COM. We extend the proof system rpHSZK for L to
handle arbitrary malicious verifiers. The main idea is to enforce “partially honest
behavior” on the malicious verifier. We recall that the partially honest restric-
tion on a verifier required that the verifier uses COM to generate commitments
honestly. More specifically, we required that these commitments are correctly
constructed and have unique openings. The first requirement can be handled
in a way just like in previous section, i.e. by having the verifier prove to the
prover that shares constructed in Step 1 (as part of the Determining Message)
are correct. We use the ID argument system 〈PrsSWIx,VrsSWIx〉 to achieve this.
The problem of uniqueness is more tricky, and we discuss that next.

The difficulty lies in the fact that the statistical non-interactive ID commit-
ment scheme for all languages in SZK [7], only works with respect to honest
senders. Indeed, if the sender chooses the randomness for the commitment uni-
formly, then, with overwhelming probability, the computed commitment has a
unique valid opening. However a malicious sender could focus on a set of neg-
ligible size, B, of bad random strings r, such that CL,x(m; r) does not have a
unique opening. If a malicious verifier (that plays as sender of this commitment
scheme) is able to pick random strings from B, then the real interaction and the
simulation can be easily distinguished. In the real protocol, the prover tries to
invert the commitment α, finds it does not have a unique opening, and aborts.
In the simulation, the simulator extracts some message m from the PRS phase,
and sends m as the final message. As the simulator is polynomially bounded,
it can not detect if the commitment has a unique opening or not. To use this
commitment scheme, we must somehow ensure that the verifier does not use bad
randomness for its commitments. We do this by adding a special coin-flipping
subprotocol at the beginning of the protocol. However, because of reset attacks,
the coin-flipping subprotocol introduces several technical problems.

We begin by describing our coin-flipping protocol. The coin-flipping protocol
requires a commitment scheme such that computational binding holds against
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resetting senders when x ∈ L and statistical hiding holds when x �∈ L. We use
the interactive ID commitment scheme COML,x = (Sx, Rx). The coin flipping
proceeds as follows: first the verifier commits to a random string r1. Let the
transcript of the interactive commitment be c. Then prover applies the sub-
exponentially hard PRF fs(c) and obtains r2 that is sent to the verifier. The
randomness that the verifier will use for the non-interactive ID commitment
is r1 ⊕ r2. For technical reasons, the verifier also needs to prove knowledge of
r1 after it has committed to r1. We use the interactive ID argument system
〈PrsSWIx,VrsSWIx〉 for this.

Next we highlight the reasons behind the use of sub-exponentially hard pseu-
dorandom (PRF) functions for our construction. Let α be the statistical non-
interactive ID commitment of some message m sent by the verifier. There are
two ways in which α might not have a unique opening. In the first case, a mali-
cious V ∗, after looking at prover’s response r2, might use an opening of c such
that r1 ⊕ r2 ∈ B. This however would violate the computational binding of the
interactive ID commitment scheme secure against resetting senders used in the
coin flipping, thus this event occurs with negligible probability. The second case
is more subtle. It might be possible that performing reset attacks, the verifier
can study the behavior of the PRF, and then can be able to succeed in obtaining
that r1 ⊕ r2 ∈ B with non-negligible probability (even though the polynomial-
time V ∗ does not know the two openings). In this case, we can not construct
a polynomial-time adversary that breaks fs, as we can not efficiently decide if
r ∈ B. This is where we need the sub-exponential hardness of the one-way func-
tion and in turn of the PRF. As |B| is only 2� while the size of the set of all
random strings is 2L, where l = o(L), we can give the entire set B as input to the
sub-exponential size circuit that aims at breaking the PRF. The circuit can now
check if the string r is a bad string or not, by searching through its input. Notice
that one can give as input to the circuit the whole B for each of the polynomial
number of statements (since for each x there can be a different B) on which the
reset attack is applied. This sub-exponential size circuit has still size o(L) and
breaks the PRF which contradicts the sub-exponential hardness of the PRF.

Completeness follows from the fact that when x ∈ L, with overwhelming
probability, the commitment α in the determining message will have a unique
opening. Thus, the prover will be able to extract the committed message and
send it as the final message to the verifier, that will accept.

Statistical resettable zero knowledge property of our protocol also follows the
same argument. Indeed, when x ∈ L even a resetting verifier can not cheat during
the proofs in Steps 1(c) and 3. Moreover, the above discussion about the security
of the coin-flipping protocol implies that a resetting adversarial verifier is forced
into following partially honest behavior when computing the non-interactive ID
commitments.

Finally, we look at soundness. Note that when x /∈ L non-interactive ID
commitments are statistically hiding and the protocol 〈PrsSWIx,VrsSWIx〉 is
statistical WI in Steps 1(c) and 3. Also note that only a single share is revealed in
the PRS phase. From this it follows that the prover’s view when verifier commits
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message m is statistically close to its view when verifier commits to m′, where
m �= m′. Thus, the probability that it replies with the correct final message is
negligible. The complete protocol and proof appear in the full version [17].

7 2-Round Statistical Witness Indistinguishability

In this section, we highlight the applicability of our techniques, and construct
a simple two-round resettable statistical witness-indistinguishable argument for
languages that have efficiently extractable perfectly binding instance-dependent
commitment schemes. As discussed before, this class contains, in particular, all
languages that admit hash proof systems. We note that all results in this section
hold in the stronger model of statistical zero-knowledge where the verifier is
computationally unbounded.

Informally, the two-round WI argument consists of the verifier committing
to a randomly chosen message m using the instance-dependent commitment
scheme for that language. The prover, using the witness and the efficient extrac-
tor, extracts a message m′ from the commitment and sends it to the verifier.
The verifier accepts if m = m′. Intuitively, as long as verifier’s commitment is
well-formed, this protocol is a perfect WI, as irrespective of the witness and ran-
domness, the prover always extracts the same message (in fact, prover’s strategy
is deterministic). Thus, the only complication is to ensure that verifier’s com-
mitment is well-formed in a round efficient manner. We enforce this by making
the verifier provide a non-interactive WI proof (i.e., a one-round ZAP [21,15])
of “well-formedness” in the first round.

For lack of space, details of the protocol and proof of security can be found
in the full version of this paper.
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Abstract. We investigate the concrete security of black-box zero-
knowledge protocols when composed in parallel. As our main result, we
give essentially tight upper and lower bounds (up to logarithmic factors
in the security parameter) on the following measure of security (closely
related to knowledge tightness): the number of queries made by black-box
simulators when zero-knowledge protocols are composed in parallel. As a
function of the number of parallel sessions, k, and the round complexity
of the protocol, m, the bound is roughly k1/m.

We also construct a modular procedure to amplify simulator-query
lower bounds (as above), to generic lower bounds in the black-box con-
current zero-knowledge setting. As a demonstration of our techniques,
we give a self-contained proof of the o(log n/ log log n) lower bound for
the round complexity of black-box concurrent zero-knowledge protocols,
first shown by Canetti, Kilian, Petrank and Rosen (STOC 2002). Addi-
tionally, we give a new lower bound regarding constant-round black-box
concurrent zero-knowledge protocols: the running time of the black-box
simulator must be at least nΩ(log n).

Keywords: Zero-Knowledge, Knowledge Tightness, Concrete Security,
Concurrent Zero-Knowledge Lower Bounds.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff
[GMR89] are paradoxical constructions allowing one player (called the prover)
to convince another player (called the verifier) of the validity of a mathematical
statement x ∈ L, while providing no additional knowledge to the verifier. In
addition to being an independent construction of interest, zero-knowledge have
become an extremely useful tool in construction of numerous cryptographic pro-
tocols.
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A fundamental question regarding zero-knowledge protocols is whether their
composition remains zero-knowledge. In theoretical constructions as well as in
practice, a zero-knowledge protocol is sometimes composed in parallel (to amplify
soundness or to improve efficiency, for example). It is well-known that the defi-
nition of zero-knowledge (ZK) is not closed under parallel composition [GK96b].
Nevertheless, we know numerous constructions of constant-round zero-knowledge
protocols that are secure when composed in parallel [FS90, GK96a, Gol02]. As a
result, the subject of ZK with respect to parallel composition is widely considered
closed.

We turn our attention to another fundamental question regarding zero-
knowledge: its knowledge tightness. In its original definition, the zero-knowledge
property is formalized by requiring that the view of any probabilistic polynomial
time (PPT) verifier V in an interaction with a prover can be “indistinguishably
reconstructed” by a PPT simulator S that interacts with no one. Since whatever
V “sees” in the interaction can be reconstructed by the simulator, the interaction
does not yield any knowledge to V that V can already compute by itself. Because
the simulator is allowed to be an arbitrary PPT machine, this traditional notion
of ZK only guarantees that the class of PPT verifiers learn nothing.

To more concretely measure the knowledge gained by a particular verifier,
Goldreich, Micali and Wigderson [GMW91] (see also [Gol01]) put forward the
notion of knowledge tightness : informally, the “tightness” of a simulation is the
ratio of the (expected) running-time of the simulator, divided by the (worst-case)
running-time of the verifier. Thus, in a knowledge-tight ZK proof, the verifier is
expected to gain no more knowledge than what it could have computed in time
closely related to its worst-case running-time. In addition to theoretical inter-
ests, the knowledge tightness of a zero-knowledge protocol is a helpful aid for
setting the security parameter in practice. It is easy to check that the original
zero-knowledge protocols [GMR89, GMW91, Blu86] all enjoy constant knowl-
edge tightness. The aforementioned protocols secure under parallel composition
[FS90, GK96a, Gol02] also enjoy constant knowledge tightness when executed
in isolation; however, when composed in parallel, the tightness of these proto-
cols seem increase/loosen linearly (sometimes even quadratically) with respect
to the number of parallel sessions (based on the currently known analysis of their
simulators)!

Since we do want to execute zero-knowledge protocols in parallel (for instance
in the application of secure multi-party computation), a natural question is to
ask: how does the knowledge tightness of a protocol vary when we increase the
number of parallel repetitions?

1.1 Our Results

In this work we give essentially tight upper and lower bounds to the above
question. Our results focus on black-box zero-knowledge and “simulator queries”,
which we explain below.

Informally, a protocol is black-box zero-knowledge if there exists a universal
simulator S, called the black-box simulator, such that S generates the view of
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any adversarial verifier V ∗ if S is given black-box access to V ∗. Essentially all
known constructions of zero-knowledge (with the notable exception of [Bar01])
and all practical zero-knowledge protocols are black-box zero-knowledge. Given
a black-box simulator S, we focus on bounding the number of black-box queries
made by S to a given adversarial verifier V ∗; we refer to this as the simulator-
query complexity. It is easy to see that the number of queries made by a black-
box simulator is closely related to knowledge tightness; in fact, for the case of
constant round protocols, they are asymptotically equivalent.

We state our main theorems below:

Theorem 1. Let n be the security parameter. For any m = m(n), there exists a
2m+ 7-round black-box zero-knowledge argument Π for all of NP based on one-
way functions, with perfect completeness and negligible soundness error, such
that for any polynomially bounded k = k(n), the parallel composition of k-copies
of the protocol, Πk, remains black-box zero-knowledge with simulator-query com-
plexity O(mk1/m log2 n).

The above theorem can be extended to proofs assuming the existence of collision-
resistant hash-functions. We complement Theorem 1 with a lower bound:

Theorem 2. Let n be the security parameter, L be a language, and m = m(n) ∈
O
(

log n
log logn

)
. Suppose Π is a m(n)-round black-box zero-knowledge argument for

L with perfect completeness and negligible soundness error, and suppose there
exist a polynomially bounded k(n) ≥ n such that the parallel composition of
k-copies of the protocol, Πk, remains black-box zero-knowledge with simulator-
query complexity O(k1/m/(log2 n)). Then, L ∈ BPP.

For protocols with sub-logarithmic number of rounds, Theorem 1 and 2 are tight
up to logarithmic factors in the security parameter; essentially, the simulator-
query complexity is asymptotically close to k1/m (in most cases, think of k
as a low polynomial in n). We mention that one can achieve simulator-query
complexity O(m) (independent of k) when m = ω(logn).

Briefly, our results show that the concrete security of constant-round black-
box zero-knowledge protocols actually decays polynomially in the number of
parallel sessions. Fortunately, this decay can be significantly slowed if we consider
protocols with more rounds (even if we simply use a large constant m).

1.2 Related Works

While we are unaware of any past work that explicitly studies the knowledge
tightness of parallelized zero-knowledge protocols, there are numerous related
publications that focus on the composition of zero-knowledge protocols, or on the
concrete security of zero-knowledge simulator. Dwork, Naor and Sahai [DNS04]
introduces the notion of concurrent zero-knowledge protocols; these protocols
must stay zero-knowledge even when composed arbitrarily (a strengthening over
parallel composition). Micali and Pass [MP06] introduces the notion of precision;
in a precise zero-knowledge protocol, the running time of the simulator should



The Knowledge Tightness of Parallel Zero-Knowledge 515

be closely related to the running time of the adversarial verifier, on a view by
view basis1 (a strengthening over knowledge tightness).

Even with these stronger requirements, Pandey et. al. [PPS+08] is able to con-
struct protocols that are simultaneously precise and (black-box) concurrent zero-
knowledge. Note that our results are incomparable with the result of [PPS+08]
for many reasons, one of which being that black-box concurrent zero-knowledge
protocols require logarithmically many rounds [CKPR01], while our setting is
mainly interesting for sub-logarithmic-round protocols. Interestingly, [PPS+08]
actually gives a construction of a family of precise concurrent zero-knowledge
protocols, with trade-offs between round-complexity and precision, much like
our observed trade-off between round-complexity and knowledge tightness for
the case of parallelized zero-knowledge.

1.3 Connection to Concurrent Zero-Knowledge

We also present a connection from simulator-query lower bounds for zero-
knowledge, to round-complexity lower bounds for concurrent zero-knowledge
(cZK). Due to lack of space we postpone the result on concurrent zero-knowledge
to the full version. We briefly discuss the ideas as follows.

We start by describing the common framework for all known black-box zero-
knowledge lower bounds (e.g., [KPR98, Ros00, CKPR01, BL02, Kat08, HRS09]).
Let Π be a protocol for a language L. To show that Π cannot be zero-knowledge
unless the language L is trivial (i.e., L ∈ BPP), we start by constructing a
decision procedure for L. Let S be the black-box zero-knowledge simulator of
Π , and let V ∗ be some “hard to simulate” adversarial verifier, and consider the
following decision procedure D: on input x, D(x) accepts if and only if SV ∗

(x)
generates an accepting view of V ∗(x). Usually, the completeness of D follows
easily from the zero-knowledge property; to show that D is sound often requires
more work. Our query-complexity lower bounds (Theorem 2) also follow the same
framework. That is, we construct some adversarial verifier V ∗

para that schedules
multiple sessions in parallel, and show that for any zero-knowledge simulator S
with appropriately bounded query-complexity, if x /∈ L, then SV ∗

para(x) cannot
generate an accepting view of V ∗

para(x).
Inspired by the work of Canetti, Kilian, Petrank and Rosen [CKPR01], we next

present a modular construction of a concurrent adversarial verifier V ∗
conc whose

purpose is to amplify query-complexity lower bounds of more basic verifiers. For
example, consider V ∗

para, an adversarial verifier that is restricted to parallel com-
position. Our modular construction would take V ∗

para as input, and output an ad-
versarial verifier V ∗

conc = V ∗
conc(V

∗
para) that, among other things, nests multiple

incarnations of V ∗
para in a way that takes full advantage of the concurrent schedul-

ing. Under appropriate parameters, our analysis would conclude that for any zero-
knowledge simulator S with polynomially bounded query-complexity, if x /∈ L,
1 For example, to achieve precision 2, if the simulator S generates a view of V ∗ and
the running time of V ∗ on that view is T , then the simulator S must have run in
time 2T .
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then SV ∗
conc(x) cannot generate an accepting view of V ∗

conc(x) (recall again that
this is the key step for most zero-knowledge lower bounds).

To demonstrate our framework, we re-prove the result of [CKPR01] — a
o(logn/ log logn) round-complexity lower bound for black-box concurrent zero-
knowledge (the currently best known round-complexity lower bound); we believe
the resulting analysis is quite clean. We also give a second lower bound concern-
ing constant-round cZK protocols:

Theorem (Informal). Let L be a non-trivial language, and let Π be a constant-
round black-box concurrent zero-knowledge protocol with a potentially possibly
super-polynomial time simulator. Then the simulator must run in time nΩ(logn).

Incidentally, Pass and Venkitasubramaniam [PV08] do construct constant-round
black-box concurrent zero-knowledge protocols for all of NP in the model where
both the simulator and the adversarial verifier runs in quasi-polynomial time
npoly(logn).

We also find our modular framework satisfying on a philosophical level: it
serves as an framework in which lower bounds for restricted compositions of
zero-knowledge (in this example parallel composition) can be transformed into
lower bounds for zero-knowledge in the fully concurrent setting. A similar and
celebrated example occurs in the work of Goldreich [Gol02], where it is shown
that constructions of zero-knowledge protocols secure under parallel composition
directly leads to constructions of concurrent zero-knowledge protocols secure in
the timing model.

2 Preliminaries

We use N to denote the natural numbers {0, 1, . . .}, [n] to denote the set {1, . . . , n},
and |x| to denote the length of a string x ∈ {0, 1}∗. By ngl(n), we mean a function
negligible in n (i.e., 1/nω(1)). We assume familiarity with indistinguishability.

Interactive Protocols. An interactive protocol Π is a pair of interactive Turing
machines, (P, V ), where V is probabilistic polynomial time (PPT). P is called
the prover, while V is called the verifier. 〈P, V 〉 (x) denotes the random variable
(over the randomness of P and V ) representing V ’s output at the end of the
interaction on common input x. If additionally V receives auxiliary input z, we
write 〈P (x), V (x, z)〉 to denote V ’s output. We assumeWLOG thatΠ starts with
a verifier message and ends with a prover message, and sayΠ has k rounds if the
prover and verifier each sends k messages alternately. A full or partial transcript
of Π is a sequence of alternating verifier and prover messages, (v1, p1, . . . ), where
v denotes verifier messages and p denotes prover messages.

We may compose an interactive proof in parallel. Let Πk = (P k, V k) be the
parallel composition of k copies ofΠ ; that is, each prover and verifier message
in Πk is just concatenation of k independent copies of the corresponding message
in Π . Upon completion, V k accepts if and only if all k sessions are accepted by
V . We note that an adversarial verifier may choose to abort in one session but
not another.
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Zero Knowledge Protocols. In the setting of zero knowledge, we consider an
adversarial verifier that attempts to “gain knowledge” by interacting with an
honest prover. An adversarial verifier V ∗ is a probabilistic polynomial time
machine that, on common input x and auxiliary input z, interacts with the
prover P . Let ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗

in an interaction with P (this includes the random coins of V ∗ and the messages
received by V ∗).

A black-box simulator S is a probabilistic polynomial time machine that
is given black-box access to V ∗ (written as SV∗

). Formally, S fixes the random
coins r of V ∗ a priori, and S is allowed to specify a valid partial transcript
τ = (v1, p1, . . . , pi) of V

∗
r , and query V ∗

r for the next verifier message vi+1. Here,
τ is valid if it is consistent with V ∗

r , i.e., each verifier message vj in τ is what
V ∗
r would have responded given the previous prover messages p1, . . . , pj−1 and

the fixed random tape r. Note that S is allowed to “rewind” V ∗ by querying V ∗

with different partial transcripts that shares a common prefix.
Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any

adversarial verifier V ∗ can be generated by a simulator. The formal definition
follows.

Definition 3 (Black-Box Zero-Knowledge [GMR89, GO94]). Let Π =
〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-
box zero-knowledge if there exists a black-box simulator S such that for every
common input x, auxiliary input z and every adversary V ∗, SV∗(x,z)(x) runs
in time polynomial in |x|, and the ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and

{SV∗(x,z)(x)}x∈L,z∈{0,1}∗ are computationally indistinguishable as a function of
|x|.

Other Primitives. In our construction of zero-knowledge arguments we use a few
other primitives including Witness-Indistinguishable (WI) Proofs [FS90], Proofs
of Knowledge (POK) [FS90, BG02], and Special-Sound (SS) Proofs [CDS94].
Due to lack of space, we refer the readers to the full version of this paper for a
more detailed description of these primitives.

3 Construction

We define a zero-knowledge argument ParallelZK in Section 3.1, and show
that it satisfies Theorem 1 in Section 3.2.

3.1 The Protocol

Our ZK argument ParallelZK (also used in [PV08, PTV10]) is a slight variant
of the precise ZK protocol of [MP06], which in turn is a generalization of the
Feige-Shamir protocol [FS89]. The protocol for language L ∈ NP proceeds in
three stages, given a security parameter n, a common input statement x ∈
{0, 1}n, and a round-parameter m:
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Stage Init: The verifier picks two random strings r1, r2 ∈ {0, 1}n and sends
their images c1 = f(r1), c2 = f(r2) through a one-way function f to the
prover. The verifier then acts as the prover in m parallel instances of a 4-
round witness indistinguishable and special sound proof of knowledge (WI
and SS-POK) of the NP statement “c1 or c2 is in the image set of f” (a
witness here would be a pre-image of c1 or c2). All but the last two messages
of each SS-POK is exchanged in this stage; we denote their partial transcripts
by (α1,α2, . . . ,αm).

Stage 1: m rounds of message exchanges occur in Stage 1. In the jth round,
the prover sends βj , a random second last message of the jth SS-POK, and
the verifier replies with the last message γj of the proof. These m rounds are
called slots. Slot i is convincing if the verifier produces an accepting proof
(i.e., the transcript (αi, βi, γi) is accepting). If there is ever an unconvincing
slot, the prover aborts the whole session.

Stage 2: The prover provides a 4-round witness indistinguishable proof of knowl-
edge (WI-POK) of knowledge of the statement “x ∈ L, or one of c1 or c2 is
in the image set of f”.

Completeness and soundness follows directly from the proof of Feige and Shamir
[FS89]; in fact, the protocol is an instantiation of theirs. Intuitively, to cheat in
the protocol a prover must “know” an inverse to c1 or c2 (because Stage 2 is an
argument of knowledge), which requires the prover to invert the one-way function
f (it is shown in [FS90] that Stage Init and Stage 1 of the protocol cannot aid
the prover in inverting f). A formal description of protocol ParallelZK is shown
in Figure 1.

Remark 4. We note that here we use multiple slots to improve the knowledge
tightness of parallel zero knowledge, whereas previously, multiple slots was typi-
cally used to achieve concurrent zero knowledge and ω(logn) slots were consid-
ered. In contrast, we show that in the context of parallel zero knowledge, using
even constant number of slots improves the knowledge tightness significantly. In-
deed, both our simulation technique and its analysis presented in the next section
are new, where we rewind each slot to resolve all sessions in parallel (as opposed
to previous works that focused on one session at a time).

3.2 The Simulator

To show that protocol Π = ParallelZK satisfies Theorem 1, given any poly-
nomially bounded k = k(n), we need to construct a black-box zero-knowledge
simulator S = Sk for protocol Πk (ParallelZK repeated k times in parallel).
On a very high-level, our simulator follows that of Feige and Shamir [FS90]:
after fixing the SS-POK prefixes in Stage Init, the simulator rewinds one of the
“slots” in Stage 1 (the last two messages of the SS-POKs). If the verifier responds
with two convincing slots, the simulator uses the special-soundness property to
extract a “fake witness” r such that f(r) = c1 or c2, and uses this fake witness
to simulate Stage 2 of the protocol.
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Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage Init:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P: c1 = f(r1), c2 = f(r2).
V ↔ P: Exchange in parallel (interactively) all but the last two messages

α1, . . . ,αm of m WI and SS-POKs on common input (c1, c2) with respect
to the witness relation:

RL′(c1, c2) = {r : f(r) = c1 or c2}
Note that V acts as the prover in these SS-POK’s.

Stage 1: For j = 1 to m, exchange the ith “slot”
P → V: The second last message βi of the ith SS-POK.
V → P: The last message γi of the ith SS-POK.
P aborts if (αi, βi, γi) is not a valid SS-POK.

Stage 2:
P ↔ V: a 4-round computational-WI proof of knowledge from P to V on common

input (c1, c2, x) with respect to the witness relation:

RL′∨L(c1, c2, x) = {(r, w) : r ∈ RL′(c1, c2) or w ∈ RL(x)}

Fig. 1. ParallelZK: a ZK argument for NP with round parameter m

Given an adversarial verifier V ∗ (for protocol Πk) and a common input x ∈
{0, 1}n, the simulator SV ∗

(x) does the following:

1. The simulator S interacts with V ∗, following the honest prover strategy,
until the end of Stage 1. We call this the reference simulation.

2. The simulator S attempts to resolve all k parallel sessions in the reference
simulation by extracting a fake witness r from the SS-POKs for each non-
aborting session; aborted sessions are automatically considered resolved (and
no fake witnesses are needed). To do so, S repeats the following step (called
a rewinding pass) as many times as necessary, until all sessions are resolved.

3. A rewinding pass. For each slot i, the simulator rewinds the reference
simulation back to the beginning of slot i, sends V ∗ a fresh random message
β′i, and receives a new reply γ′i (of course this is done in parallel for all
k sessions). Note that for each unresolved session j, S already knowns an
accepting transcript (αi, βi, γi) of SS-POK from the reference simulation.
If session j does not abort during slot i in this rewinding pass, then S
learns another accepting transcript (αi, β

′
i, γ

′
i) of SS-POK. In this case, S

can resolve the session j by extracting a fake witness using the special-sound
property.

4. S completes the reference simulation using extracted fake witnesses to sim-
ulate the Stage 2 proof (only needed in each parallel session that did not
abort). S outputs the view of V ∗ on the reference simulation and this com-
pletion.
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For simplicity, we assume that for sessions that did not abort in the reference
simulation, the extraction of fake witnesses always succeeds whenever S receives
an accepting slot in a rewinding pass (i.e., we assume that S never sends the
same value for β twice). This assumption can be made without loss of generality
by the following modifications of the simulation strategy.

– Let the simulator S performs at most 2n rewinding passes. If there exist
any unsolved sessions j after 2n rewinding passes, S resolves the session by
brute force, i.e., by directly inverting the one-way function f to obtain a fake
witness of length n. This modification increases the running time (but not
the number of queries) of S by at most a poly(n) factor (multiplicatively),
and makes sure that S makes at most poly(2n) queries to V ∗.

– Let the final verifier challenge in the SS-POK have length |β| = n2. In this
case, the probability of S ever querying V ∗ with the same value of β twice
is poly(2n) · 2−n2

= 2−Ω(n2), definitely negligible in n.

We now show two lemmas regarding S that together show that ParallelZK is
zero-knowledge when composed in parallel.

Lemma 5. S runs in expected polynomial time, and makes O(mk1/m log2 n)
queries in expectation.

Lemma 6. On common input x ∈ L, the output of S is indistinguishable from
the real view of V ∗.

We give a sketch of proof of Lemma 6 first, and then prove Lemma 5 by bounding
the expected number of rewinding passes before S extracts all necessary fake
witnesses.

Proof (Proof Sketch of Lemma 6). The output of S up to the end of Stage 1
(i.e., the reference simulation) is identical to the view of V ∗, because S follows
the honest prover strategy. The output of S in Stage 2 of the protocol is com-
putationally indistinguishable from the view of V ∗ because the Stage 2 proof is
witness indistinguishable. Formally, this can be shown with a hybrid argument
where we incrementally exchange each of the k parallel Stage 2 proofs from using
“fake witnesses” r such that f(r) = c1 or c2 (the simulator strategy), to a real
witnesses w for x ∈ L (the honest prover strategy).

Proof of Lemma 5. We proceed to prove Lemma 5 by bounding the expected
number of rewinding passes in an execution of S. Let R be a random variable
that denotes the number of rewinding passes. We will show that:

E[R] = E[# rewinding passes ] ≤ O(k1/m · log2 n).

This then implies Lemma 5 because outside of rewinding passes, SV ∗(x) makes
only O(m) queries to V ∗ and runs in polynomial time.

Before presenting our analysis for the general case of m slots, we revisit the
classical analysis for the case of single slot for intuition.
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The case of single slot. The analysis is very simple. For every j ∈ [k], let Rj

denote the number of rewinding passes to resolve session j, and let pj be the
probability that session j does not abort during the single slot. Recall that
session j is resolved if it aborts in the reference simulation, and otherwise, the
simulator needs to rewind the slot several times until session j does not abort
again. Hence, the expected number of rewinding passes to resolve session j is

E[Rj ] = (1− pj) · 0 + pj ·
1

pj
= 1.

By linearity of expectation, the expected number of rewinding passes is

E[R] =
∑
j

E[Rj ] = k ≤ O(k · log2 n).

We note that the above simple analysis is tight. Consider the case where during
the slot, each session aborts independently with probability (1 − 1/k). It is not
hard to see that in this case, with constant probability, at least one session
does not abort during the slot, and the simulator needs to rewind k times in
expectation to resolve the survival session. Therefore, the expected number of
rewinding passes is Ω(k).

In fact, it is instructive to note that the following natural generalization of the
above example is essentially the worse-case example for the general case of m
slots: during each slot i ∈ [m], each survival session j aborts independently with
probability (1 − k−1/m). In this case, each session does not abort during the m
slots with probability (k−1/m)m = 1/k, and hence with constant probability, at
least one session survives after m slots. Resolving the survival session requires
k1/m/m rewinding passes in expectation, and hence the expected number of
rewinding passes is Ω(k1/m/m).

We note that although in the above example, each session aborts during each
slot independently, in general, the aborting probability of each session at each
slot can depends arbitrarily on the history and correlated arbitrarily.

The general case of m slots. To analyze the expected number of rewinding
passes, we define the following [0, 1]-valued random variables based on the refer-
ence simulation generated in Step 1. Let hi denote the partial transcript of the
reference simulation before slot i. For every slot i ∈ [m] and session j ∈ [k], we
define random variable pi,j as follows.

– If session j is already aborted at the end of slot i, then we define pi,j � 1.
– Otherwise, we define pi,j to be the conditional probability

pi,j � Pr[ session j does not abort during slot i | hi].

For intuition, pi,j is essentially the probability that S can resolve session j by
rewinding slot i. Now consider the best slot for each session — the slot with the
highest pi,j value (this is the slot that S wants to rewind). We record this value
as

p∗j = max
i
pi,j
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Note that for a session j that aborts in the reference simulation, we have p∗j = 1,
indicating that sessions j is already resolved and matching the above intuition.
Finally, the number of rewinding passes depends heavily on the worst session —
the session with the worst p∗j value (the “worst best slot”). We record this value
as the critical probability:

p∗ = min
j
p∗j .

To see how the critical probability p∗ plays an important role in the expected
number of rewinding passes, note that on one hand, S needs roughly 1/p∗ rewind-
ing passes to resolve the worse-case session; on the other hand, the chance of
having a reference simulation with small critical probability (say, p∗ ≤ p) is rare
(at most pm). Therefore, to upper bound E[R], we define the following events,
which partition the probability space according to the critical probability. For
every t ∈ N, let

αt
def
=

(
1

2t · k1/m

)
– Let A0 be the event that p∗ ≥ α0 = k−1/m, and for every t ∈ N, let At be

the event that
αt ≤ p∗j < αt−1.

Similarly for every session j ∈ [k],

– Let A0,j be the event that p∗j ≥ α0 = k−1/m, and for every t ∈ N, let At,j

be the event that
αt ≤ p∗j < αt−1.

We can now express the expectation of the number of rewinding passes as follows.

E[R] =
∑
t≥0

Pr[At] · E[R | At]

≤ Pr[A0] · E[R | A0] +
∑
t≥1

⎛⎝ k∑
j=1

Pr[At,j ]

⎞⎠ · E[R | At],

where the last inequality follows by At ⊆ ∪jAt,j (which follows from definition).
We proceed to bound each term. For A0, we use trivial bound Pr[A0] ≤ 1. For
general t ≥ 1 and every j ∈ [k], we first observe that when At,j happens, session
j does not abort all of its m slots in the reference simulation (since otherwise,
p∗j = 1). This happened despite the fact that each slot i in session j in the
reference simulation could have only survived (not aborted) with probability
pi,j ≤ αt−1. Thus,

Pr[At,j ] ≤ αmt−1 =

(
1

2t−1 · k1/m

)m

=
1

2m(t−1) · k ,

and,
k∑

j=1

Pr[At,j ] ≤ k ·
1

2m(t−1) · k =
1

2m(t−1)
.
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It remains to bound E[R | At], which is given in the follow lemma.

Lemma 7. For every t ≥ 0, we have

E[R | At] ≤ O
(
2t · k1/m · log2 n

)
.

We apply Lemma 7 to upper bound E[R] first.

E[R] ≤ E[R | A0] +
∑
t≥1

1

2m(t−1)
· E[R | At]

≤ O
(
k1/m · log2 n

)
+
∑
t≥1

2t

2m(t−1)
· O

(
k1/m · log2 n

)
≤ O

(
k1/m · log2 n

)
.

This completes the proof of Lemma 5.

Proof (Proof of Lemma 7). The event At means that in the reference simulation,
for every non-aborting session j, there exists a useful slot i ∈ [m] such that

Pr[ session j is not aborted after slot i | hi] = pi,j ≥ αt.

Therefore, in each rewinding pass, the simulator S may learn an (additional)
accepting transcript of SS-POK in session j with probability at least αt, allowing
it to extract a fake witness.

Fix a non-aborting session j, and define

q =

(
10 · log2 n

αt

)
= O

(
2t · k1/m · log2 n

)
,

Because the rewinding passes are independent, we have

Pr[session j is resolved after q rewinding passes] = 1− (1− αt)q ≥ 1− ngl(n).

Since there are at most k survival sessions, by the union bound,

Pr[all sessions are resolved after q rewinding passes] ≥ 1− ngl(n).

In other words, every q rewinding passes can solve all the sessions with proba-
bility at least 1− ngl(n). It follows that

E[R | At] ≤ (1− ngl(n)) · q + ngl(n) (1− ngl(n)) · 2q + · · ·

≤ O(q) = O
(
2t · k1/m · log2 n

)
.
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4 Lower Bound

The proof of Theorem 2 follows a well-known framework (e.g., [GK96b, CKPR01]).
Let S be a black-box zero-knowledge simulator for Πk = (P k, V k) that makes
less than q = O(k1/m/ log2 n) queries, and let V k∗ be a particular adversarial
verifier to be specified later. We define D, a BPP decision procedure for L by

combining S and V k∗: on input instance x, D(x) accepts if and only if SV k∗
(x)

outputs an accepting view of V k∗ (i.e., all k sessions of V k∗ accept). Using the
zero-knowledge property, it is easy to show (see for example [GK96b]) that if
the modified protocol Πk∗ = (P k, V k∗) is complete for L (based on our choice
of V k∗), then D is complete for L as well. The main effort of the proof is to
show that D is sound; this relies both on the choice of V k∗ and the fact that S
makes less than q queries to V k∗. We discuss our choice of V k∗ in Section 4.1,
and analyze the soundness of D in Section 4.2.

4.1 The Random Termination Verifier V k∗

In this section, we define a verifier V k∗ for the parallelized protocol with two
goals in mind: the protocol Πk∗ = (P k, V k∗) should be complete (so that D
is complete), and V k∗ should be sound against any rewinding simulator S that
makes less than q queries to V k∗ (so that D is sound).

Just as [CKPR01], we define V k∗ to follow the honest verifier strategy V k

with one extra property: random termination.2 Whenever the prover P k or the
rewinding simulator S makes a query to V k∗, V k∗ determines, with independent
and fresh randomness,3 whether or not to terminate immediately and accept with
probability ρ ∈ [0, 1], a parameter to be specified later; this is done independently
for each of the k parallel sessions (i.e., one session may be terminated while other
sessions continue). Due to this independence among parallel sessions, we often
treat V k∗ as k machines, (V ∗

1 , . . . , V
∗
k ), each responsible for making the decision

to terminate and generating the verifier messages for one session. Note that
the fresh randomness is only used to decide whether to terminate or not; V k∗

generates protocol messages using its default random tape that is kept the same
between rewinds (as expected by following the honest verifier strategy).

Clearly, Πk∗ = (P k, V k∗) is still complete. It remains to show that V k∗ is

“sound” against the rewinding S; that is, on input x /∈ L, SV k∗
is unlikely to

2 The term “random termination” was first used by Haitner [Hai09], but the random
termination verifier we considered already appeared in the earlier work of [CKPR01].

3 We use a well-known technique (see for example [GK96b, CKPR01]) to generate fresh
independent randomness on the fly for each query from the simulator S, despite the
fact that S may rewind V k∗ between queries and force V k∗ to use the same random
tape. Let H be a family of q-wise independent hash-functions, and let V k∗ sample
one hash-function h ← H in the very beginning. Then whenever V k∗ receives a query
(from P k or S), V k∗ applies h to the current protocol transcript (the sequence of
messages exchanged in the protocol so far) and use the output as a fresh random
tape. Since S makes at most q queries to V k∗, the output distribution of the hash-
function is truly uniformly random.
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generate an accepting transcript of V k∗. From now on we drop the common
input x /∈ L. Intuitively, by randomly terminating, V k∗ can better protect its
randomness against S’s rewinds (when V k∗ terminates, S learns nothing about
V k∗’s fixed random tape), thus ensuring soundness. To make this intuition more
concrete, suppose for example that S made q queries τ1, . . . , τq to V k∗, and
without loss of generality outputs the view of V k∗ on a subset of size m of those
queries4, T = {τi1 , . . . , τim}. Further suppose that there exists a parallel session
j ∈ [k] such that V k∗ does not terminate on the queries in T , but terminates on
all remaining queries. Then intuitively, S’s rewinding does not help S convince
V k∗ in session j, and the soundness of the original protocol Π should imply that
V k∗ rejects with overwhelming probability in session j (and therefore rejects
overall).

The core of our proof is to show that, with high probability, for every subset
of size m of queries T = {τi1 , . . . , τim} made by S, there exists a session j ∈ [k]
with overwhelming probability such that rewinds are “not helpful” for session j
with respect to T in the above manner. We make this possible by setting the
termination probability to ρ = (1− 1/q).

We now state the formal lemmas. Let n be the security parameter and L be

a language. Suppose there exists a m(n) ∈ O
(

logn
log logn

)
-round argument Π =

(P, V ) for L with perfect completeness and negligible soundness error. For any
polynomially bounded k(n) ≥ n, let S be a black-box zero-knowledge simulator
of the parallelized protocol Πk = (P k, V k) that makes at most

q = k1/m/(log2 n)

queries, and let V k∗ be a random termination verifier of the parallelized protocol
with termination probability

ρ =

(
1− 1

q

)
=

(
1− 1

k1/m
· (log2 n)

)
.

(These parameters passes the following sanity checks: q is polynomially bounded
and q ≥ m — the simulator queries V k∗ at least once for each round of the
protocol. It is also useful later to know that

(
q
m

)
≤ qm ≤ k.) Then:

Lemma 8. On input x ∈ L, D(x) accepts with probability 1, i.e., SV k∗
(x) out-

puts an accepting view of V k∗ with probability 1− ngl(n).

Lemma 9. On input x /∈ L, the probability that SV k∗
(x) generates an accepting

view of V k∗ is negligible, i.e., D has negligible soundness error.

We sketch the proof of Lemma 8 now, and give the proof of Lemma 9 in the
next section.
4 Without loss of generality, we may assume that before S outputs a view of V k∗,
S first queries V k∗ with the messages in the view (if S hasn’t already). This may
increase the number of queries by m, and thus weaken the resulting lower bound
from q to q−m. Nevertheless, this does not change our lower bound since q = ω(m)
in Theorem 2.
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Proof (Proof Sketch). Using the zero-knowledge property, the output of S is
indistinguishable from the view of V k∗ in an execution with P k. Therefore it is
enough to show that

〈
P k, V k∗〉 (x) accepts with probability 1. In each parallel

session j ∈ [k], V ∗
j accepts by definition if it decides to terminate in some protocol

round. Otherwise, Vj∗ is identical to V and would still accept with probability 1
because the original protocol Π = (P, V ) has perfect completeness.

4.2 Soundness of D
Proof (Proof of Lemma 9). We prove Lemma 9 with a reduction. Suppose for the
sake of contradiction that S convinces V k∗ on some input x /∈ L with probability
more than 1/p(n) for some polynomial p. Using S, we construct a cheating prover
P ∗ for the original protocol Π = (P, V ) that convinces V with non-negligible
probability.

Before we start, assume without loss of generality that S makes exactly q
queries, and that before S outputs a view of V k∗, S would first query V k∗ on
all previous messages in the view. For technical convenience, we let V k∗ make
a fresh decision to terminate for each query and each session, even if V k∗ has
already terminated previously in the same session. I.e., regardless of history or
message content, for each query and each parallel session, V k∗ always terminates
independently with probability ρ.

Our P ∗ is a natural extension of the classic reduction of [GK96b] — P ∗

guesses a session j0 ∈ [k] and m indices T0 = {i1, . . . , im} ⊆ [q] uniformly at
random, and interacts with an outside honest V by internally simulating an
interaction of (S, V k∗) with V embedded in session j0, queries τi1 , . . . , τim of
V k∗. In comparison, the idea of guessing a random query subset is exactly as
in [GK96b]. The difference is that the reduction in [GK96b] is for single session
protocols, and in contrast, we reduce from parallel protocols to single session
protocols. Hence, our reduction P ∗ guesses a random session as well.

In more details, P ∗ runs S and V k∗ internally. It simulates k − 1 sessions of
V k∗ honestly (except V ∗

j0
). When simulating V ∗

j0
for the ith query where S queries

τi, P
∗ first simulates (with fresh randomness) V ∗

j0 ’s decision on termination. If
V ∗
j0

decides to terminate but i ∈ T0 or if V ∗
j0

does not terminate but i /∈ T0, P ∗

aborts (in both these cases, the termination decision of V ∗
j0

is incompatible with
P ∗’s choice of queries to forward). If the forwarded queries (index set T0) are not
“consistent” (e.g., if they query for the same round of the protocol more than
once, or the query contains inconsistent transcript), P ∗ aborts as well. Note that
if P ∗ does not abort, then V k∗ is perfectly simulated (even in session j0).

Now consider the following best case scenario. Suppose that at the end of the
simulation, S successfully outputs an accepting view of V k∗. Moreover, suppose
that the accepting view consists exactly of the queries in index set T0 (this au-
tomatically guarantees that the forwarded queries are consistent), and suppose
that P ∗ does not abort (i.e., termination decisions are compatible with the for-
warded queries). Then, P ∗ will have successfully convinced the outside honest
V . The rest of the proof is devoted to show that this best case scenario occurs
with noticeable probability (roughly 1/(p · k2)).
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Let T ⊂ [q] denote an index set {i1, . . . , im} of size m. For an index set
T ⊂ [q] and a session j ∈ [k], we define A(T, j) to be the event that, on session
j, V k∗ terminates session j on query τi iff i /∈ T . Referring back to our intuition
earlier, A(T, j) denotes the event that for session j, S’s rewinds are not helpful
with respect to the queries indexed by T . If event A(T, j) holds, and S uses the
queries indexed by T to form an accepting view of V k∗, and P ∗ guesses both
T0 = T and j0 = j in the beginning, then P ∗ will have successfully convinced
the outside honest V .

We claim that by the setting of parameters, we have

Pr[∀T ⊂ [q], ∃j ∈ [k] s.t. A(T, j)] ≥ 1− ngl(n) (1)

where ngl(n) denotes a negligible quantity in n. In words, with overwhelming
probability, for every possible index set T of size m that S may use to output a
view of V k∗, there exists a session j such that S’s rewinds are not helpful with
respect to the queries indexed by T .

Before proving (1), we first use the claim to show that P ∗ convinces V with
noticeable probability. Recall that S outputs an accepting view of V k∗ with
probability 1/p. By a union bound, we have

Pr[(S outputs accepting view of V k∗) ∧ (∀T ⊂ [q], ∃j ∈ [k] s.t. A(T, j))]

≥ (1/p)− ngl(n).

Note that when the above event holds, there exist a unique index T̂ of m queries
used by S to form an accepting view of V k∗, and there exists a session ĵ ∈ [k]
such that A(T̂ , ĵ) holds. As mentioned earlier, if P ∗ guesses j0 = ĵ and T0 =
T̂ correctly, P ∗ will have successfully convinced V . Since P ∗ guesses j and T
uniformly at random and independent of the interaction between S and V k∗, we
have

Pr[P ∗ convinces V ]

≥ Pr[(S convinces V k∗) ∧ (∀T ⊂ [q], ∃j ∈ [k] s.t. A(T, j))

∧ (P ∗ guesses T̂ and ĵ correctly)]

≥ (1/p− ngl(n))

k ·
(
q
m

) ≥ 1

p · k2 ,

where in the last line we used
(
q
m

)
≤ qm ≤ k. This contradicts to the fact that

Π has negligible soundness error and completes our analysis.
It remains to show (1). By definition, each session j terminates on each query

τi with probability exactly ρ, independent from any other session or query. Hence,
for any session j and index set T of size m, the probability that event A(T, j)
holds is

Pr[A(T, j)] = ρq−m · (1− ρ)m ≥
(
1− 1

q

)q

·
(
1

q

)m

≥ Ω
(
1

k
· (log2m n)

)
.
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It follows that

Pr[∃j ∈ [k] s.t. A(T, j)] ≥ 1−
(
1− Ω

(
1

k
· (log2m n)

))k

≥ 1− e−Ω(log2m n).

Finally, by a union bound, we have

Pr[∀T ⊂ [q], ∃j ∈ [k] s.t. A(T, j)] ≥ 1− e−Ω(log2m n) ·
(
q

m

)
≥ 1− ngl(n),

as claimed.

As with most lower bounds for black-box zero-knowledge, a careful reading re-
veals that Theorem 2 also applies to more liberal definitions of zero-knowledge,
such as ε-zero-knowledge and zero-knowledge with expected polynomial time
simulators. Additionally, note that the proof of Lemma 9 never assume that
S is a zero-knowledge simulator, and works just as well for any PPT oracle
machine S.

Remark 10. By examining the technical inner workings of the proof of Canetti,
Kilian, Petrank and Rosen [CKPR01] (which also uses a random termination
verifier), we discovered that part of their analysis implicitly presents a lower
bound for the number of queries made by black-box simulators for parallel zero-
knowledge protocols. Compared with Theorem 2 and our analysis, the result of
[CKPR01] establishes a weaker bound (and is arguably more complicated); this
is not surprising, since establishing a parallel lower bound was not their goal.

Specifically, [CKPR01] implicitly establishes a logω(1)(k) lower bound on the
number of simulator queries, whereas we were able to establish a lower bound of
k1/m/(log2 n). Nevertheless, we believe that by adapting our parameters (which
may seem strange for their setting), their analysis could be strengthened to match
our lower bounds (we have not verified all the details, however).

Acknowledgments. We thank to Iftach Haitner and Johan H̊astad for useful
discussion in the early stage of this research.
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Abstract. In this work, we study simultaneously resettable arguments
of knowledge. As our main result, we show a construction of a constant-
round simultaneously resettable witness-indistinguishable argument of
knowledge (simresWIAoK, for short) for any NP language. We also
show two applications of simresWIAoK: the first constant-round simul-
taneously resettable zero-knowledge argument of knowledge in the Bare
Public-Key Model; and the first simultaneously resettable identification
scheme which follows the knowledge extraction paradigm.

1 Introduction

Interaction and private randomness are the two fundamental ingredients in Cryp-
tography. They are especially important for achieving zero-knowledge proofs [15].
In [7] Canetti, Goldreich, Goldwasser and Micali showed that when private ran-
domness is limited and re-used in multiple instances of a proof system, it is still
possible to preserve the zero-knowledge requirement. The setting proposed by [7]
is of a malicious verifier that resets the prover, therefore forcing the prover to
run several protocol executions using the same randomness. This setting applies
to protocols where the prover is implemented by a stateless device. Therefore,
a prover can only count on the limited (hardwired) randomness while it can
be adaptively reset any polynomial number of times. The resulting security no-
tion against such powerful verifiers is referred to as resettable zero knowledge
(rZK) and is provably harder to achieve than concurrent zero knowledge [11,18].
Feasibility results have been achieved in [7,17] in the standard model with the
following round-complexity: polylogarithmic for rZK and constant for resettable
witness indistinguishability (rWI, in short). Since then, it was also shown how
to achieve resettable zero knowledge in the Bare Public-Key (BPK) model, in-
troduced by Canetti et al. [7], where one can obtain better round complexity and
assumptions [19,10,1,22,21]. Very recently, it has been shown [13] that resettable
statistical zero knowledge for non-trivial languages is possible.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 530–547, 2012.
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The “reverse” of the above question has been considered by Barak, Goldreich,
Goldwasser and Lindell [4] where a malicious prover resets a verifier, called
resettable soundness. In [4], it has been shown how to obtain resettable soundness
along with ZK in a constant number of rounds.

Barak et al. [4] proposed the challenging simultaneous resettability conjecture,
where one would like to prove that a protocol is secure against both a reset-
ting malicious prover and a resetting malicious verifier. The existing machinery
turned out to be insufficient, and a definitive answer required almost a decade.
In the work of Deng, Goyal and Sahai [9] they showed a resettably sound rZK
argument for NP with polynomial round complexity. Very recently, results in
the BPK model for simultaneous resettability have been obtained in [8,2] with
a constant number of rounds.

Arguments of knowledge under simultaneous resettability. Argument systems are
often used with a different goal than proving membership of an instance in a
language. Indeed, it is commonly required to prove knowledge (possession) of a
witness instead of the truthfulness of a statement. Since arguments of knowledge
serve as major building blocks in Cryptography (e.g., in identification schemes1),
it is an interesting question whether the previous results for arguments of mem-
bership extend to arguments of knowledge. Unfortunately, arguments of knowl-
edge have been achieved so far only when one party can reset. That is, we have
rZK arguments of knowledge [7] and, separately, resettably sound ZK arguments
of knowledge [4]. Instead, when reset attacks are possible in both directions, no
result is known even when only rWI with resettable argument of knowledge is
desired.

It is important to note that resettable security for ZAPs comes almost for
free because of the minimal round complexity (1 or 2 rounds). However, it is
not known how to accommodate for knowledge extraction, unless one relies on
non-standard (e.g., non-falsifiable) assumptions. For the case of resettably sound
rZK, all the above results [9,8,2] critically use an instance-dependent technique
along with ZAPs: when the statement is true (i.e., when proving rZK), the
prover/simulator can run ZAPs which allow the use of multiple witnesses. Such
use of multiple witnesses gives some flexibility that turns out to be very useful
to prove resettable zero knowledge. Instead, when the statement is false, the
protocols are designed so that adversarial malicious prover must stick with some
fixed messages during the execution of protocol. Therefore, rewinding capabil-
ities do not help the resetting malicious prover since he can not change those
fixed messages. This is critically used in the proofs of resettable soundness in or-
der to reach a contradiction when a prover proves a false statement. It is easy to
see that the above approach fails when arguments of knowledge are considered.
Indeed, when the malicious resetting prover proves a true statement, the same
freedom that allows one to prove rZK/rWI, also gives extra power to the mali-
cious prover. Consequently, designing an extractor appears problematic and new

1 Bellare et al. in [5] gave various definitions for identification schemes when the ad-
versary can also reset the proving device.
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techniques seem to be needed so that the simultaneous resettability conjecture
is resolved even when we consider knowledge extraction.

Our results. Our main result is the first construction of a constant-round simul-
taneously resettable witness-indistinguishable argument of knowledge2 (in short,
simresWIAoK) for any NP language. Our protocol is based on the novel use of
ZAPs and resettably sound zero-knowledge arguments, which improves over the
techniques previously used in [9,8] as well as concurrent and independent work3

of [16].
We show several applications of our main result. First, we show that by com-

bining two executions of our protocol for simresWIAoK, we obtain a constant-
round simultaneously resettable zero-knowledge argument of knowledge in the
BPK model. This improves the results of [8,2] which do not enjoy witness ex-
traction with respect to adversarial resetting provers.

As another application of our main protocol, we also consider the question of
secure identification under simultaneous resettability and show how to use the
above simresWIAoK to obtain the first simultaneously resettable identification
scheme which follows the knowledge extraction paradigm. We describe it by
extending the work of Bellare, et al. [5].

In addition, in the full version of this paper, we show how to obtain a constant-
round resettably sound concurrent zero knowledge argument of knowledge in the
BPK model by relying on collision-resistant hash functions only (CRHFs, for
short) (i.e., we do not require ZAPs, and thus trapdoor permutations).

Notation. We denote by n ∈ N the security parameter and by PPT the property
of an algorithm of running in probabilistic polynomial-time. A function ε is
negligible in n (or just negligible) if for every polynomial p(·) there exists a
value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n). We denote
by x ← D the sampling of an element x from the distribution D. We also
use x

$← A to indicate that the element x is sampled from set A according to
the uniform distribution. Let P ,V be interactive Turing machines, we denote
by 〈P(·),V(·)〉(x) the random variable representing the local output of V when
interacting with P where x is the common input and the randomness of each
machine is uniformly and independently chosen.

Blum’s protocol. We will use the 3-round WIPoK protocol of Blum [6] for the
NP-complete language Graph Hamiltonicity (HC) as main ingredient of our
construction. We refer to Blum’s protocol as BL and to BL1, BL2, BL3 its three
rounds.

2 In this work, we will never consider the case of resettable soundness along with
non-resettable argument of knowledge. Therefore, each time we mention together
resettable soundness and argument of knowledge, we mean that both soundness and
witness extraction hold against a malicious resetting prover.

3 In a very recent and independent work [16], Goyal and Maji achieved simultaneously
resettable secure computation. Their work achieves (with simulation-based security)
simultaneous resettability with polynomial round complexity assuming also the ex-
istence of lossy trapdoor encryption.
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2 Resettably Sound rWI Arguments of Knowledge

Our goal is to obtain a construction that is resettably-sound resettable WI and
a resettable argument of knowledge in a constant number of rounds. The only
known constant-round simultaneously-resettable WI protocol is rZAP which is
not an argument of knowledge and as discussed previously there is not much
hope to transform it in an argument of knowledge (even without considering
resettability).

A typical paradigm: determining message and consistency proof. Typically, pro-
tocols dealing with a resetting adversary ([7,4,9]) rely on the following paradigm:
the resetting party is required to provide a special message (called determining
message) that determines her own action for the rest of the protocol. Namely,
for each protocol message the resetting party is required to prove that such mes-
sage is consistent with the determining message (we call this proof a consistency
proof). Moreover, the actual randomness used by the honest party in the pro-
tocol depends on the determining message (typically the honest party applies
a pseudorandom function (PRF) on it). The combination of the randomness
depending on the determining message and the consistency proof given by the
resetting party, suppresses the resetting power of the adversary. Indeed, due to
the consistency proof, the resetting party can not change a message previously
played without first having changed the determining message (unless she is able
to fake the consistency proof). However, if she changes the determining message,
then the honest party plays the protocol with (computationally) fresh random-
ness (unless the pseudo-randomness of the PRF is violated). We will follow this
paradigm to construct our simultaneously resettable witness indistinguishable
argument of knowledge as well. Recall that as specified above, we do not know
how to from rZAPs that are already simultaneously resettable and try to trans-
form them in arguments of knowledge. Our starting point is Blum’s proof of
knowledge [6]. In the following discussion we show incrementally how to trans-
form such protocol to enjoy resettable witness indistinguishability and resettable
soundness (this transformation is already known in literature) to finally present
our novel technique to obtain also resettable argument of knowledge.

Resettable WI and stand-alone argument of knowledge [4]. When the verifier
can reset the prover, following the above paradigm, it is easy to construct a
resettable WI system starting from Blum’s protocol. In Blum’s protocol the
only message from V to P is the challenge. The modified resettable version
requires that V sends a statistically binding commitment of the challenge as
determining message. The only other protocol message of V is the opening of
the commitment which, due to the binding property, is itself a proof that the
message is consistent with the determining message. Note that such modified
protocol is no longer an argument of knowledge since the extractor has the same
power of the malicious verifier. In order to allow only the extractor to cheat, the
next step is to avoid the opening as a proof of consistency. Instead of the actual
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opening of the commitment, V is required to send the challenge along with a res-
sound (non-black-box) ZK argument ([3]). The (non-black box) extractor can
send an arbitrary challenge and prove consistency with the determining message
by using the (stand-alone) non-black-box simulator (recall that only V might
reset here). The resulting protocol is resettableWI and (stand-alone) argument
of knowledge (rWIAoK for short) and it is known from [4].

We use a modified version of such protocol. We require that the commitment
sent by the verifier is statistically hiding (instead of statistically binding), and
we use the statistical zero-knowledge argument of knowledge of [20].

Achieving Resettable Soundness and Resettable Argument of Knowledge: existent
solutions do not work. We now deal with the case in which also the prover can
reset. By the BGGL compiler [4], we know that any constant-round public-
coin WI argument system can be upgraded to resettable soundness by simply
requiring the honest verifier to apply a PRF on the first message received from
the prover. However, since our aim is to obtain simultaneous resettability, we
need to start from the rWIAoK protocol shown before, which is not public coin.
Thus, following the paradigm and the technique of [9], we require that as first
message, P sends the commitment of the randomness that will be used in the
protocol: this is the determining message. Then upon each protocol message P
proves that the message is honestly computed using the randomness committed
in the determining message: this is the consistency proof. Since we are now in
the setting in which both parties can reset each other the consistency proof must
be provided with a simultaneous resettable tool. For this purpose we use rZAPs
that are constant-round simultaneously resettable WI proofs. We denote the
theorem to be proved with rZAP as “consistency theorem”, since P proves that
a message is honestly computed and consistent with the randomness committed
in the determining message.

The technical problem using rZAPs is that since guarantee WI, the theorem
being proved is required to have more than one witness (note that the simul-
taneously resettable protocol of [9] can not be used here since we aim to a
constant-round construction). Recall that we want to use rZAP to provide the
proof of consistency with the determining message. If the determining message is
a statistically binding commitment of the randomness, then there exists a unique
opening, which implies the existence of only one witness. On the other hand, if
we use a statistically hiding commitment, then any opening is a legitimate wit-
ness, the theorem is always true and the benefit of the determining message
vanishes. The solution to overcome this problem is to change the theorem to be
proved with rZAP so that it admits more than one witness.

In [9] the consistency theorem is augmented with the theorem “x ∈ L” that
we call “trapdoor theorem” recalling FLS paradigm [12] but with a different pur-
pose. We call it trapdoor to stress out that it is an escape for the prover that
can pass the consistency proof essentially having freedom to change messages
among resets. Hence in [9,8], along with each protocol message, P is required to
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prove that either the protocol message is computed honestly with the randomness
committed in the determining message, (i.e., the “consistency theorem”) or x ∈ L
(i.e., the “trapdoor theorem”).

This solution can be seen as an instance-dependent technique. Indeed, it is
easy to see that a malicious prover can play messages inconsistently with the
determining message and still pass the consistency check, therefore exploiting its
resetting power, only when x ∈ L. Instead, when proving soundness, since x /∈ L,
the trapdoor theorem is false, hence due to soundness of rZAPs, the malicious
prover is forced to play according to the determining message therefore honestly
following the protocol specifications.

Unfortunately, such an instance-dependent solution suffices to prove resettable
soundness but fails completely when one would like to prove witness extraction
(i.e., the argument of knowledge property). The reason is that, when proving
witness extraction, we have to construct an extractor that works against any
malicious prover, even one who uses the witness of the trapdoor theorem when
proving consistency of the protocol messages. This possible behavior harms the
extractor in two ways (recall that the witness can be computed from two distinct
transcripts of Blum’s protocol that have the same first message): 1) upon seeing
the challenge of the verifier/extractor,P resets it and changes the first message of
Blum’s protocol according to the challenge; 2) P acts as a resetting verifier in the
non-black-box ZK protocol, therefore preventing the extractor to use the stand-
alone non-black-box simulator. Even though this is not harmful for the soundness
property (a malicious prover can perform this attack only when x ∈ L), this
attack kills the existence of the extractor. Therefore the above construction is
only resettable WI and resettable sound. Concluding, the instance-dependent
technique of [9] inherently prevents the existence of any extractor. New ideas are
required to solve the problem.

Achieving Resettable Argument of Knowledge: the new technique. We propose
a new “trapdoor” theorem that forces the resetting prover to honestly follow the
protocol regardless of whether x ∈ L or not.

The idea is the following. We require P to run two parallel executions of the
rWIAoK shown above, that we denote as subprotocols π0,π1. In the determining
message, in addition to the commitment of the random tape that will be used
to run each sub-protocol, we require that P commits to a single bit. Then, the
trapdoor theorem in sub-protocol πd will be the following: “d is the bit committed
in the determining message”. Since in the determining message there is only one
bit committed (the other two are commitments of random tapes), due to the
statistical binding property of the commitment, the trapdoor theorem is true in
only one sub-protocol. Hence, in at least one of the sub-protocols the trapdoor
theorem is false regardless of whether x ∈ L or not, and in such sub-protocol P
is forced to honestly follow the rWIAoK protocol, playing consistently with the
determining message.

More specifically, the final protocol goes as follows. P first sends the deter-
mining message which consists of the statistically binding commitment of the
random tapes that will be used in each sub-protocol and of a single bit. Each
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sub-protocol is augmented with rZAPs sent by P to V in which P proves consis-
tency with the determining message. Therefore, in each sub-protocol πd, along
with each message of the rWIAoK protocol, P provides a rZAP for the follow-
ing compound theorem: either the message is honestly computed and consistent
with the determining message, or d is the bit committed in the determining mes-
sage. Finally, the verifier will accept the proof if and only if both sub-protocol
executions are accepting.

It is easy to see that any malicious prover can not escape from following the
determining message in at least one of the subprotocols. Indeed, let b be the
bit committed in the determining message. If on one hand, in sub-protocol πb,
a malicious P is not forced to be honest and can then use the resetting power
to prove any false theorem (indeed among resets P can change the protocol
messages without changing the determining message), on the other hand, in
sub-protocol πb̄, the trapdoor theorem is false, thus the only way to provide
an accepting rZAP is to follow the honest behavior playing messages derived
from the determining message. Therefore, in sub-protocol πb̄, the extractor is
guaranteed that 1) for sessions starting with the same determining message, the
first round of Blum’s protocol does not change, so that playing with two distinct
challenges yields the extraction of the witness; 2) the extractor can run the
stand-alone non-black-box ZK simulator without being detected. Hence we have
the following: sub-protocol πb̄ is resettably-sound and resettable argument of
knowledge, while sub-protocol πb is not sound. Note that in both sub-protocols,
the resettable WI property is still preserved.

2.1 Formal Construction of simresWIAoK

We formally describe how to build a constant-round simultaneously resettable
WI AoK (simresWIAoK) starting from Blum’s protocol (BL protocol). We de-
note by SHCom, a two-round statistically hiding commitment scheme. We denote
by SBCom the commitment procedure of a non-interactive statistically binding
commitment scheme. We denote by c← SBCom(v, s) (resp. SHCom) the output
of the commitment of the value v computed with randomness s. We use the
resettably-sound statistical (non-black-box) ZK AoK of [20] that we denote by
resSZK. In our construction, we require that P , at each round of the protocol
(except the last that is the opening of commitments as required by BL protocol),
provides a proof that either the messages are honestly computed according to
the randomness committed in the first round, or the “trapdoor” condition is sat-
isfied. Formally, P provides rZAPs for the following NP languages (except the
language ΛSHCom that is proved only by V using resSZK protocol).

ΛBL1: correctness and consistency of the first round of Blum’s protocol (BL1). A
tuple (x, m, crb

, cb) ∈ ΛBL1 if there exist (rb, sb) such that crb
= SBCom(rb, sb)

and m is honestly computed according to BL1 for the graph x using random-
ness frb

(cb).
ΛV: correctness and consistency of verifier’s messages of the protocol resSZK.

A tuple (mP , mV , crb
, cb) ∈ ΛV if there exist (rb, sb) such that crb

=
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SBCom(rb, sb) and mV is honestly computed according to the verifier’s pro-
cedure of the protocol resSZK having in input prover’s message mP (mP

corresponds to the concatenation of all messages played by the prover so
far) using randomness frb

(cb).
Λtrap: trapdoor theorem (true only for sub-protocol b). The pair (cs, b) ∈ Λtrap

if there exists s such that cs = SBCom(b, s).
ΛSHCom: validity of the opening (proved by V). The pair (cs, m) ∈ ΛSHCom if there

exists s such that cs = SHCom(m, s). Note that for a statistically hiding
commitment scheme, any pair (cs, m) is actually in ΛSHCom. Nevertheless, V
proves this theorem using the argument of knowledge resSZK.

Protocol simresWIAoK consists of two phases (see Fig. 1). In the first phase, P
and V generate the random tapes that they will use to run the sub-protocols.
P sends V the commitments cr0 , cr1 of two random strings r0, r1 and the com-
mitment cs of a random bit b. This message is the determining message on
which V applies a PRF to generate a pseudo-random tape (to be used to exe-
cute the sub-protocols). The second phase consists of a parallel execution of π0

and π1 (see Fig. 2). P runs each sub-protocol on theorem x, randomness r0, r1,
and the witnesses for computing the rZAPs as inputs (i.e., the opening of the
commitments of the determining message). V runs each sub-protocol using the
pseudo-random tapes determined by the determining message received from P .
Each sub-protocol is resettable WI, while only one of the two sub-protocols is
resettably-sound and a resettable AoK. Since V accepts the proof only if both
executions are accepting, the final protocol is also a resettably-sound resettable
AoK.

Protocol simresWIAoK

Inputs: common input x ∈ HC.
P ’s input: witness y, randomness ω. V’s input: randomness r.

P: b
$← {0, 1}; r0, r1, s0, s1

$← {0, 1}n.
Send cr0 ← SBCom(r0, s0), cr1 ← SBCom(r1, s1), cs ← SBCom(b, s).
Run in parallel πP

0 (x, y, r0, s0); πP
1 (x, y, r1, s1).

V : upon receiving dm = (cr0 , cr1 , cs) from P .
RV0 ← fr(x||cr0 ||cs); RV1 ← fr(x||cr1 ||cs);
Run in parallel πV

0 (x, RV0); πV
1 (x, RV1).

Fig. 1. Simultaneously Resettable Argument of Knowledge

The sub-protocol πd is described in Fig. 2. We omit the first round of the rZAP
and the first round of the statistically hiding commitment scheme SHCom. rZAPs
are computed with independent randomness. We stress out that the determining
message for V is the first prover’s message: dm = (cr0 , cr1 , cs). The determining
message for P is the first verifier’s message: (c0, c1).
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Sub-protocol: πd = 〈πP
d (x, y, rd, sd), πV

d (x, RVd)〉.
Inputs: common input: x (∈ HC). P ’s input: witness y for RHC; witness (rd, sd) to
prove rZAP’s consistency theorem. V’s input: randomness RVd. Protocols BL [6] and
resSZK [20] are used as sub-protocols.

– V: Pick challenge for BL protocol: chd
$← {0, 1}n. Send cd ← SHCom(chd) to P .

– P : upon receiving cd (this is the determining message for P):
1. Generate randomness RPd ← frd(x||cd).
2. Compute the step BL1 for the instance x using randomness RPd. Let us

denote the output as mBL1d.
3. Send mBL1d to V along with the rZAP for theorem: ((x,mBL1d, crd , cd) ∈

ΛBL1 ∨ (cs, d) ∈ Λtrap).
– V: if rZAP is accepting send chd to P .

Prove theorem (cd, chd) ∈ ΛSHCom using resSZK protocol. Let md
Prszk

be the
prover’s message of sub-protocol resSZK (sent by V to P) and md

Vrszk
be the

verifier’s message of resSZK (sent by P to V):
1. (P → V) at each round of the protocol resSZK, upon receiving md

Prszk
from

V, P computes md
Vrszk

using randomness RPd and sends md
Vrszk

to V along
with an rZAP for the theorem ((md

Prszk
, md

Vrszk
, crd , cd) ∈ ΛV ∨ (cs, d) ∈ Λtrap).

2. (V → P) at each round of the protocol resSZK upon receiving md
Vrszk

from
P , if rZAP is accepting V computes the next resSZK’s prover message and
sends it to P . Otherwise it aborts.

– P : upon successfully completing the resSZK protocol compute step BL3 and
send the message mBL3d to V.

– If mBL3d is the correct third message of BL protocol V outputs accept, else
outputs abort.

Fig. 2. Sub-protocol πd = (πP
d (·), πV

d (·))

2.2 Security Proof

In this section we provide the high-level proof of the simultaneous resettable
witness indistinguishability property and the resettable argument of knowledge
property of the protocol depicted in Fig. 1.

Resettable-soundness. Towards showing resettable soundness we start with the
following observations. Recall that by dm we denote the determining message
sent by P∗ in the first round consisting of the commitment of two random seeds
and the commitment of a bit (let us call the bit committed b).

1. The randomness used by V depends on dm. In a resetting attack, malicious
prover P∗ activates V by selecting theorem and randomness, denoted by
(x, j) which forces V to run with the same randomness rj among several
executions. However, the randomness actually used by V at each session is
determined by the output of the PRF on seed rj and input (x, dm). Thus,
even if activated with the same random tape rj , when receiving a new de-
termining message, V executes the protocol with a fresh pseudo-random tape.



Simultaneously Resettable Arguments of Knowledge 539

Note that, due to the computational indistinguishability of the PRF, sound-
ness holds against a computationally bounded adversary.

2. In sub-protocol πb, the resetting power of P∗ is effective since P∗ can hon-
estly prove the trapdoor theorem of the rZAP. Therefore, P∗ is not forced
to use the randomness committed in the determining message among mul-
tiple resetting attacks. Specifically, P∗ can mount the following attack. P∗

initiates a session labelled by (x, j, dm). In the sub-protocol πb, upon the
reception of challenge chb from V , P∗ resets V (while keeping the same de-
termining message) back to the second round (the point after V has sent
the commitment of the challenge). Then, P∗ changes the message mBL1b

according to the challenge chb previously seen. This is possible using the
trapdoor theorem, therefore P∗ does not need to stick with the randomness
committed in the determining message. Since the determining message is the
same as before the reset, V will use the same challenge in the sub-protocol
πb. Thus, in this sub-protocol, P∗ can prove any theorem by obtaining the
challenge in advance and thus πb is not resettable sound.

3. In sub-protocol πb̄, the trapdoor theorem is always false, thus resetting V
is ineffective. Indeed, in order to provide an accepting transcript, P∗ must
provide an rZAP that only exists when the “consistency” theorem is true, that
is, each of P∗’s message is honestly computed according to the randomness
committed in the determining message. By the statistically binding property
of SBCom (there exists only one opening for the commitments cs and crb̄

) and
the soundness of rZAP (any unbounded P∗ cannot prove a false theorem),
P∗ must be consistent with the randomness committed in the determining
message. Therefore, πb̄ is resettably sound.

Assume that there exists a PPT malicious prover P∗ and a pair (x, j) such that
V accepts x with non-negligible probability for some x /∈ HC. By observation
1, such a transcript is indexed by determining message dm. Thus, the accepting
transcript can be labelled by triple (x, j, dm). By observation 2, for the same
determining message dm, there are polynomially many distinct transcripts for
sub-protocol πb (P∗ can reset V polynomially many times and change the proto-
col messages). All these (partial) transcripts of πb can be accepting for x /∈ HC
since soundness does not hold for πb. However, by observation 3, for a fixed triple
(x, rj , dm), there exists only one possible accepting transcript for sub-protocol
πb̄ since P∗ is forced to honestly follow the BL protocol according to the ran-
domness committed in the determining message. Therefore the soundness of BL
is preserved when P∗ resets V in πb̄. Since V accepts if and only if the executions
of both sub-protocols are accepting, protocol simresWIAoK is resettably sound.

Resettable argument of knowledge. To prove resettable argument of knowledge we
show an expected PPT extractor that extracts the witness from any malicious
prover P∗ with probability that is negligibly close to the probability that P∗

convinces an honest verifier. Let (x, j, dm) be the label of the session in which P∗

provides an accepting proof. The goal of the extractor is to obtain two accepting
transcripts with the same BL1 message and two distinct challenges (for at least
one sub-protocol) for the same label.



540 C. Cho et al.

Our extractor consists of two phases. In the first phase it follows the honest
verifier procedure. When P∗ has completed its execution, if there exists an ac-
cepting session labeled by (x, j, dm) that we call “target session”, the extractor
proceeds to the second phase. In the second phase, the extractor obtains a dis-
tinct accepting transcript for the target session by cheating in the “opening” of
the commitment by sending a challenge that is distinct from the one sent in the
first phase and simulating the zero knowledge proof given by the verifier.

The crucial step of this phase is to detect the sub-protocol in which P∗ is stuck
with the randomness committed in dm and must follow the protocol honestly.
Indeed, in such sub-protocol, the extractor can use the stand-alone simulator
and open the statistically hiding commitment to any challenge. Note that the
non-black-box simulator of the protocol resSZK takes as input the code of the
malicious verifier. Thus, in order to use the simulator, the extractor must care-
fully prepare a machine which internally handles the interaction with P∗ and
forwards to the simulator only the messages belonging to the resSZK protocol
played in one of the sub-protocol. One of the tasks of such machine is detecting
the sub-protocol in which P is forced to be honest. Once the right sub-protocol
has been detected, by the statistically-hiding property of SHCom, and by the
statistical zero-knowledge property of protocol resSZK run by V instead of the
opening, we are guaranteed that upon each rewind, P∗ provides another accept-
ing transcript for the target session with the same probability of the first phase.
Finally, by the proof of knowledge property of Blum’s protocol, collecting two
distinct transcripts allows the extractor to compute the witness. The actual ex-
tractor requires an intermediate estimation step (as shown in [14]) in which the
probability of having another accepting transcript for the label (x, j, dm) is esti-
mated. More details on the formal description of the extractor, the augmented
machine and the formal proof can be found in the full version of this work.

Resettable witness indistinguishability. Recall that the protocol mainly consists
of a single message from P to V , the determining message (cr0 , cr1 , cs), and the
parallel execution of π0 and π1. Such protocol can be seen as a parallel repetition
of (Π0, Π1) where Πb is the protocol πb augmented with the message (cs, crb

)
sent from P to V and b = 0, 1.

Assume that there exists a resetting PPT distinguisher V∗ for (Π0, Π1). That
is, V∗ distinguishes whether P runs both protocols using witnesses sampled from
distribution Y0 = {ȳ0(x̄)}x̄ or from distribution Y1 = {ȳ1(x̄)}x̄. Let us denote by
H0,0 the experiment in which P uses witnesses sampled from Y0 when running
both protocols (Πb, Πb̄), where b is the bit committed in cs, and by H1,1 the
experiment in which P uses witnesses sampled from Y1 in both (Πb, Πb̄). We
prove by hybrid arguments that experiments H0,0 and H1,1 are computationally
indistinguishable. Let n denote the number of theorems and t the bound on the
prover’s random tapes. Consider the following hybrids.

H1,0: In this hybrid, in each session, P uses witnesses sampled from Y1 to run
protocol Πb and the bit b is committed in the determining message in such
session. The only difference between experiment H1,0 and H0,0 is in the
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witness used in Πb. Assume that there exists a distinguisher between hy-
brids H0,0 and H1,0 then it is possible to construct an adversary V∗

BL for
the WI property of sub-protocol BL of Πb. Note that, when b is the bit
committed in the determining message, the trapdoor theorem is true in Πb.
V∗

BL, on input (x̄, Y0, Y1), runs V∗ as sub-routine and honestly executes the
protocol Πb̄ using the witness belonging to Y0. Instead for the execution of
Πb it forwards the messages received from V∗ and belonging to BL protocol
to the external prover, while it simulates the remaining messages belong-
ing to Πb. The first difficulty in such reduction seems to be the fact that
V∗ can mount a reset attack asking the prover of Πb to run with the same
randomness while changing the challenge of BL protocol. Instead, V∗

BL can
only mount a concurrent attack against the external BL’s prover. Neverthe-
less, V∗

BL can replicate the same attack of V∗ for the following reasons. The
randomness of the honest prover executing protocol Πb is computed on the
determining message (the commitment of BL’s challenge) received from V∗.
Due to the pseudo-randomness of PRF, when V∗ changes the determining
message the prover of Πb plays with fresh randomness. By the resettably-
sound argument of knowledge property of the resSZK protocol and by the
computational binding property of SHCom we have that V∗ can not maintain
the same determining message and query the prover with two distinct BL’s
challenges. Thus the resetting power is suppressed and V∗

BL can replicate the
same attack as V∗. The second difficulty is that for each protocol message
the honest prover of Πb is required to send a rZAP proving that the messages
are consistent with the randomness committed in the determining message.
However, in the reduction V∗

BL forwards the messages received by an external
prover of BL’s protocol, therefore it can not prove the consistency with the
determine message. Nevertheless, since we are in the case in which the trap-
door theorem is true, V∗

BL can forward the external messages and computes
the rZAPs using the witness of the trapdoor theorem. Due to the resettable
WI property of rZAP such deviation from the honest prover is not detected
by any PPT V∗. Then, by the WI of BL protocol hybrids H0,0 and H1,0 are
computationally indistinguishable.

Hi,j
0,1 (with 1 ≤ i ≤ n, 1 ≤ j ≤ t): In hybrid Hi,j

0,1, in session (i, j), P runs protocol
Πb̄ using the witness sampled from Y1, while protocol Πb is run by using a
witness sampled from Y0, and b is the bit committed in the determining
message of such session. The only difference between experiment Hi,j

0,1 and
Hi−1,j−1

0,1 is that in experiment Hi,j
0,1, in session (i, j), the witness is sampled

from Y1 in the sub-protocol where the trapdoor theorem is false. Note that
H0,0

0,1 = H1,0. Assume that there exists a distinguisher between Hi,j
0,1 and

Hi−1,j−1
0,1 then it is possible to construct an adversary for the hiding of the

commitment scheme SBCom. The reduction works as follows. A playing in
the hiding experiment obtains the challenge commitment C. Then it runs V∗

as sub-routine and simulates the honest prover P as in experiment Hi−1,j−1
0,1 ,

except that in session (i, j) it proceeds as follows. It computes cr0 , cr1 as the
honest prover, while it sets cs = C, and sends the first round to V∗. Then
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A uniformly chooses a bit b and executes the protocol πb using a witness
sampled from distribution Y1 and protocol πb̄ using the witness sampled from
distribution Y0. Note that A can run both sub-protocols without knowing
the opening of C since also the honest P never uses such witness in the
protocol execution. When V∗ terminates its execution, A hands the output
of V∗ to the distinguisher and outputs whatever the distinguisher outputs.
If C is a commitment of b then the experiment simulated by A is distributed
identically to experiment Hi−1,j−1

0,1 . Else if C is a commitment of b̄ then the
experiment is distributed as experiment Hi,j

0,1. By the computational hiding
of SBCom we have that experiments Hi,j

0,1 and Hi−1,j−1
0,1 are computational

indistinguishable.
H1,1: In this hybrid, P uses a witness sampled from Y1 to run protocol Πb

and the bit b is committed in the determining message. The only differ-
ence between experiment Hn,t

0,1 and experiment H1,1 is in the witness used
to run sub-protocol Πb. By the same arguments put forth in proving the
indistinguishability of hybrid H1,0 and H0,0, experiments Hn,t

0,1 and H1,1 are
computational indistinguishable. This completes the proof.

Theorem 1. If trapdoor permutations and collision-resistant hash functions ex-
ist, then the protocol shown in Fig. 1 is a Simultaneously Resettable Witness
Indistinguishable Argument of Knowledge.

3 Application in the BPK Model

Here we show that by combining two instances of simresWIAoK we obtain the
first constant-round simultaneously resettable ZK AoK (simresZKAoK) in the
BPK model.

High-level overview of protocol and proof. The construction is very simple since
it takes advantage of the properties guaranteed by the protocol simresWIAoK.
We use it twice, once for a proof given by the verifier and once for a proof
given by the prover. First, the verifier uses simresWIAoK to prove knowledge of
its secret key (one out of two possible sets of pre-images of a OWF), then the
prover commits to its witness and finally uses simresWIAoK to prove that the
committed message is either a witness for the theorem x ∈ L or a secret key. The
intuition of why the protocol works is the following. First of all, the secret key of
the verifier is protected by the one-wayness of the OWF, by the rWI property
of the simresWIAoK given by the verifier and by the resettable argument of
knowledge of the simresWIAoK given by the prover. Indeed, we will be able to
prove that the witness extracted from the proof given by the prover can only
be a witness for x ∈ L, otherwise we break either the hardness of the OWF or
the rWI property of simresWIAoK. Instead, the security for the prover comes
from the existence of a simulator against any resetting verifier. Indeed, we can
design a simulator as follows: the simulator starts a main thread that is always
updated with new messages until the simulator is stuck. This event happens when
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the simulator is supposed to commit to a witness and to then play the second
simresWIAoK. At this point, the simulator suspends the main thread and starts
some rewinding threads in order to extract the secret key used by the adversarial
verifier in that session. Once this is done, the simulator continues the main thread
since it is not stuck anymore (i.e., it can simply commit to the extracted secret
and use it as witness in the second simresWIAoK). Since the number of identities
of possible verifiers in the BPK model is polynomially bounded, we have that the
simulator has to start only an expected polynomial number of rewinding threads,
and thus its expected running time is polynomial. The indistinguishability of the
view comes from the hiding of the commitment scheme and the rWI property of
the second simresWIAoK. Instead the resettable argument of knowledge of the
first simresWIAoK (i.e., the one given by the verifier) is helpful for guaranteeing
the expected running time of the simulator. The commitment played in between
the two executions of the simresWIAoK plays an important role in breaking a
possible malleability attack of the malicious sender.

The formal description of the protocol is provided in Fig. 3. For underlying
primitives, we use a non-interactive statistically binding commitment scheme,
denoted by SBCom, and a one-way function g : {0, 1}∗ → {0, 1}∗. In the protocol
we use the following two NP relations: 1) a pair ((y, g), x) ∈ RΛow if x is such
that y = g(x); 2) a pair ((c, m), r) ∈ RSBCom if the string r is such that c =
SBCom(m, r).

Theorem 2. If trapdoor permutations and collision-resistant hash functions ex-
ist, then protocol simresZKAoK is a constant-round simultaneously resettable
zero-knowledge argument of knowledge in the BPK model.

For lack of space, the formal proof can be found in the full version of this paper.

4 Simultaneously Resettable Identification Schemes

In this section, we present the second application of our main protocol, the first
construction of a simultaneously resettable identification scheme. Identification
schemes represent one of the most successful practical applications of crypto-
graphic protocols. The basic goal of an identification scheme is to prevent an
adversary A from impersonating a honest user P to another honest user V .
However, this is not sufficient for some applications. Indeed, consider the case
in which V provides a service to P , and the service is restricted only to a small
community controlled by V . Then, P could give to another party T that is not in
the small community, some partial information about his secret that is sufficient
for T to obtain the service from V , while still T does not know P ’s secret. The
proof of knowledge property allows us to do secure identification as well as pre-
venting the attack described above. When the identification protocol is a proof
of knowledge, the sole fact that T convinces V is sufficient to claim that one can
extract the whole secret from T . This implies that T obtained P ’s secret key cor-
responding to his identity, and this is unlikely to happen in scenarios where the
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Protocol simresZKAoK

Ingredients: One-way function g, statistically binding commitment scheme
SBCom, sub-protocol simresWIAoK.
Key-Registration Phase:
V chooses a pair of secrets (sk0, sk1) where skb ∈ {0, 1}n and b ∈ {0, 1}. Then
V generates the corresponding public key (pk0, pk1) such that pkb = g(skb) for
b ∈ {0, 1}. V publishes (pk0, pk1) in public file F and stores skb as its secret trapdoor
information with b

$← {0, 1}. We assume that the i-th verifier V has public key
(pki

0, pki
1) and secret key ski

b.
Main-Execution Phase:
Common input: NP-statement x ∈ L and the verifier’s identity i. Hence, prover
P knows public key (pki

0, pki
1) in F, chosen by V.

Input for P: Witness w such that (x, w) ∈ RL and randomness rP .
Input for V: Randomness rV , secret key ski

b.

– P : Obtain a sufficiently long pseudo-random tape r
′
P ← frP (x||pki

0||pki
1). From

now on, P uses r
′
P for the execution in the rest of protocol. For convenience,

we assume that r
′
P consists of four partitions, r

′
P (1), r

′
P (2), r

′
P (3) and r

′
P (4).

– (V → P): V proves, by using simresWIAoK, the following statement:
There exists ski

b such that ((pki
0, g), ski

b) ∈ RΛow ∨ ((pki
1, g), ski

b) ∈ RΛow .
For the execution of simresWIAoK, P uses random tape r

′
P (1).

– (P → V) : If the above proof is rejecting, then P aborts. Otherwise, P commits
to w and 0n as c0 ← SBCom(w, r

′
P (2)) and c1 ← SBCom(0n, r

′
P (3)). Then, P

sends c0 and c1 to V.
– (P → V): P by using simresWIAoK and random tape r

′
P (4) proves to V the

following statements:
1. ∃ (w, r) such that (x, w) ∈ RL ∧ ((c0, w), r) ∈ RSBCom OR
2. ∃ (sk, r) such that ((pki

0, g), sk) ∈ RΛow ∧ ((c1, sk), r) ∈ RSBCom OR
3. ∃ (sk, r) such that ((pki

1, g), sk) ∈ RΛow ∧ ((c1, sk), r) ∈ RSBCom.
– V: output "accept" if and only if the proof provided by P is accepting.

Fig. 3. Constant-Round Simultaneously Resettable ZKAoK in the BPK Model

same secret key is used for other critical tasks such as digital signatures. As dis-
cussed in the introduction, our simultaneously resettable identification scheme
follows the above proof of knowledge paradigm. This extends the previous work
of Bellare et al. [5] to a setting in which every party can be reset. We emphasize
that our simultaneously resettable identification scheme is easily obtained from
our main protocol simresWIAoK, so achieving a constant round complexity.

Identification protocols secure against reset attacks. We introduce the notion of
Reset-Reset-1 security as a generalization of the Concurrent-Reset-1 CR1 notion
introduced in [5]. CR1 considers an adversary I, called impersonator, that plays
in two phases. In the first phase, it interacts with a prover as a resetting verifier
(Reset phase). In the second phase, it has no access to the prover anymore, but
it tries to impersonate such a prover to an honest verifier (Concurrent phase).
In the second phase, I is not allowed to reset the verifier. In our new definition
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Reset-Reset-1 (RR1) the impersonator is allowed to reset in both phases. The
formal definition is a straightforward extension of the one given in [5] and can
be found in the full version of this work.

The protocol ID. Let f : {0, 1}n → {0, 1}∗ be a one-way function, let n be
the security parameter. The public key of P is the pair (pk0, pk1), the secret
key is xd for a randomly chosen bit d, such that pk0 = f(xd) ∨ pk1 = f(xd).
The protocol simply consists in P running the simresWIAoK protocol with V
to prove that it knows the preimage of either pk0 or pk1. Formally, let ΛID be
the following language ΛID = {(y0, y1): there exists x ∈ {0, 1}n s.t. y0 = f(x) ∨
y1 = f(x)}, then the identification scheme consists of P proving the statement
(pk0, pk1) ∈ ΛID using simresWIAoK.

Theorem 3. If a constant-round simultaneously resettable WIAoK protocol ex-
ists and one-way functions exist, then the above protocol is constant-round and
secure in the RR1 setting.

Proof. Let pk = (pk0, pk1) be the public key of a player P . Assume that there
exists a PPT adversary I playing the RR1 experiment, that succeeds in imper-
sonating an honest P with non-negligible probability. This means that I is able
to prove to an honest V that her identity is pk = (pk0, pk1). Then we show
that I can be used to construct an adversary against the one-wayness of f , or a
distinguisher for the resettableWI property of the simresWIAoK protocol. The
resettable argument of knowledge property of simresWIAoK protocol is crucial
to put forth both reductions.

Recall that, in the RR1 game, I plays the first phase interacting as a resetting
verifier V∗ with P and in the second phase interacts as resetting prover P∗ with
V trying to impersonate P .

First we show an adversary A that breaks the one-wayness of f . A has in
input a challenge y that is the output of f(x) for some unknown x. The reduction
works as follows. A picks d ∈ {0, 1}, xd ∈ {0, 1}n and computes pkd = f(xd)
and pkd̄ = y. Then it runs I as subroutine, in the first phase A simulates the
honest prover playing the simresWIAoK protocol with witness xd. In the second
phase, A simulates the honest verifier to I. If I provides an accepting proof,
then A runs the extractor of the simresWIAoK protocol and, by the resettable
argument of knowledge property, except with negligible probability, it obtains
the witness used by I in the proof. In order to run the extractor, A prepares an
augmented machine that internally contains all messages belonging to the first
phase so that they can be internally played with I, while the messages sent by
I in the second phase are forwarded to the extractor. Now note that during the
extraction process the extractor rewinds the machine several times changing the
protocol messages (of the second phase), therefore I could change her messages
accordingly. Note that however, since there is a separation between the first
phase and the second phase, this does not require to re-play messages of the first
phase. Since, by assumption f is a one-way function, the probability that the
witness extracted corresponds to a pre-image of y is negligible.
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Now, assume that the witness extracted from I is xd. Then we can construct
a distinguisher AWI for the resettable witness indistinguishability property of
simresWIAoK. AWI works as follows. It computes pk0 = f(x0), pk1 = f(x1)
and activates an external prover for the simresWIAoK protocol with inputs
((pk0, pk1), (x0, x1)). In the first phase, when I runs as a verifier, AWI for-
wards all messages to the external prover of the simresWIAoK. In the second
phase, when I runs as a prover, AWI follows the procedure of the honest veri-
fier. Then, if I provides an accepting proof, then AWI runs the extractor of the
simresWIAoK protocol. Finally by the resettable argument of knowledge prop-
erty, except with negligible probability, it obtains the witness used by I in the
proof, i.e. it obtains x0 or x1. Now notice that in the previous experiment, when
we tried to invert the one-way function, the witness extracted corresponded to
the one used in the first phase, while I was verifying the proof. Since this second
experiment is identical to the previous one, it is again true that the extracted
witness corresponds to the one used by the prover. Since the prover now is the
external prover of simresWIAoK, we have that the above adversary AWI breaks
the rWI property of simresWIAoK. By the rWI property of simresWIAoK, this
event happens with negligible probability only and thus I wins the RR1 game
with negligible probability.
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Subspace LWE

Krzysztof Pietrzak�
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Abstract. The (decisional) learning with errors problem (LWE) asks
to distinguish “noisy” inner products of a secret vector with random
vectors from uniform. The learning parities with noise problem (LPN)
is the special case where the elements of the vectors are bits. In recent
years, the LWE and LPN problems have found many applications in
cryptography.

In this paper we introduce a (seemingly) much stronger adaptive as-
sumption, called“subspace LWE”(SLWE), where the adversary can learn
the inner product of the secret and random vectors after they were pro-
jected into an adaptively and adversarially chosen subspace. We prove
that, surprisingly, the SLWE problem mapping into subspaces of dimen-
sion d is almost as hard as LWE using secrets of length d (the other
direction is trivial.)

This result immediately implies that several existing cryptosystems
whose security is based on the hardness of the LWE/LPN problems are
provably secure in a much stronger sense than anticipated. As an illustra-
tive example we show that the standard way of using LPN for symmetric
CPA secure encryption is even secure against a very powerful class of re-
lated key attacks.

1 Introduction

The (search version of the) learning with errors problem (LWE) is specified by
parameters �, q ∈ N and an error distribution χ over Zq. It asks to find a secret
vector s ∈ Z�

q given any number of “noisy” inner products of s with random
vectors. Formally, these products are samples from a distribution Λχ,�(s) over

Z�+1
q which is defined by sampling a uniform r

$← Z�
q and an error e ← χ, and

outputting (r, rTs+ e) (where multiplications and additions are all modulo q.)
An important special case of this problem is Regev’s LWE problem [Reg05]

where χ is a so called discrete Gaussian distribution and q is polynomial or
exponential in a security parameter. Another important case is the learning
parities with noise problem (LPN) where q = 2.

The decisional version of the LWE problem asks to distinguish samples of
the form Λχ,�(s) from uniform (which might be easier than to actually output s
as required by the computational version of the problem). The decisional LWE

� Supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Starting Grant (259668-PSPC).

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 548–563, 2012.
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problem has been proven polynomially equivalent to the computational version
if q is prime [Reg05], and in particular for LPN [BFKL94, KS06]. In this paper
we will always consider the decisional version of the problem, and we also only
prove the main result for the case where q is prime.

Regev’s LWE. The LWE problem has proven to be extremely useful to con-
struct cryptographic schemes. One reason is its versatility, pretty much any cryp-
tographic primitive known to date can be based on LWE. Another reason is its
hardness. The best known algorithms against Regev’s LWE (where χ is a dis-
crete Gaussian and q = poly(�)) need time and space 2Θ(�) [BKW00] to recover
s ∈ Z�

q,
1 and unlike for most other assumptions on which public-key crypto can

be based, no faster quantum algorithms for the problem are known. But most
strikingly, Regev’s LWE is as hard as worst-case (standard) lattice assumptions
[Reg05, Pei09].

An incomplete list of cryptosystems whose security can be reduced to LWE is
public-key encryption secure against chosen plaintext [Reg05, KTX08, PVW08]
and chosen ciphertext attacks [PW08, Pei09], circular-secure encryption [ACPS09],
identity-based encryption [GPV08, CHKP10, ABB10a, ABB10b], oblivious trans-
fer [PVW08], collision-resistant hash functions [PR06, LMPR08] and public-key
identification schemes [Lyu08, Lyu09].

LPN. The learning parity with noise (LPN) problem [BFKL94, BKW00, Kea93]
is the special case of the LWE problem where q = 2 (i.e. we work over bits) and
the error distribution is the Bernoulli distribution for some constant parameter
τ, 0 < τ < 1/2, denoted Berτ , and defined as Pr[x = 1 ; x← Berτ ] = τ . The LPN
problem is closely related to the problem of decoding random linear codes,2 a well
studied question in coding theory. The LPN problem seems less versatile than
the general LWE problem, and so far only “minicrypt”primitives (i.e. primitives
known to be equivalent to one-way functions) were constructed under the LPN
assumption. Alekhnovich [Ale03] constructs a public-key encryption scheme from
a relaxed LPN assumption where the error τ is not constant but upper bounded
as a function of � as τ = O(1/

√
�).

The Appeal of the LPN problem comes from the fact that LPN based schemes
can be extremely efficient, just requiring relatively few bit-level operations to
compute an inner product of two bit-vectors. Constructions from LPN include
PRGs [FS96] and encryption schemes [GRS08, ACPS09] and public-key authen-
tication schemes [Ste94], but by far most work has been done on efficient LPN
based authentication schemes which we’ll discuss in more detail in Section 4.

Subspace LWE. The LWE problem has been shown to be very robust with
respect to leakage. Distinguishing LWE samples remains hard even if we the ad-
versary can learn a function f(s) about the secret s as long as f(.) is compressing

1 This is slightly better than a trivial brute-force search which takes time ≈ 2� log q =
2Θ(� log �) but only linear space.

2 The only difference is that in the decoding problem one is given a fixed number of
samples (typically a small multiple of the length of the secret), whereas in the LPN
problem the adversary can ask for arbitrary many samples.



550 K. Pietrzak

[AGV09] or hard to invert [DKL09, DGK+10, GKPV10]. In this paper we show
that the LWE problem is also very robust to tampering with the secret vector s
and the randomness vector r (albeit not with the noise e.)

We define a (seemingly) much stronger adaptive version of LWE which we
call “Subspace LWE”, or SLWE for short. In the SLWE problem the adversary
is not restricted to just ask for samples r, rT.s + e from Λχ,�(s) as in LWE, but
has access to a more powerful oracle which she can query adaptively. The oracle
takes as input the description of two affine mappings φr, φs : Z�

q → Z�
q and

outputs a sample

r, φr(r)
T.φs(s) + e where r

$← Z�
q , e← χ

An affine mapping φr : Z�
q → Z�

q (similarly φs) is given by a matrix and a vector

φr = [Xr ∈ Z�×�
q ,xr ∈ Z�

q] and its evaluation is defined as

φr(r) = Xr.r+ xr

Without additional restrictions, the SLWE problem as just defined is easy to
break. By choosing the input to the oracle appropriately,3 one can e.g. learn
samples of the form s[i] + e , e ← χ (s[i] denotes the ith element of s.) For
distributions χ as used in LPN or Regev’s LWE one can efficiently learn s[i]
(and thus the entire s) from just a few such samples.

We prove that the SLWE problem (using secrets in Z�
q and error distribution

χ) is almost as hard as the standard (q, χ, d)-LWE problem with secrets of length
d ≤ � if the adversary is restricted in the sense that she is only allowed to query
φr, φs which “overlap” in an d+ δ (or more) dimensional subspace where δ ∈ N

is a statistical security parameter. Formally this means XT
r .Xs must have rank

at least d + δ. We call this the (q, χ, �, d + δ)-SLWE problem. Let us mention
that the other direction – showing that (q, χ, �, d)-SLWE is at most as hard as
(q, χ, d)-LWE – is trivial.

The precise statement of our result asserts that for any �, d, δ ∈ N, d+ δ ≤ �,
the (q, χ, �, d+ δ)-SLWE problem is at most an additive term 2/qδ+1 easier than
the standard (q, χ, d)-LWE problem. For large fields, where q is superpolynomial,
2/qδ+1 is negligible already for δ = 0. For small fields, in particular the important
case q = 2 as used in LPN, we must choose some δ to be a statistical security
parameter.

The above formulation of SLWE is somewhat redundant, in the sense that an
adversary who is restricted to always choose φs to be the identity function, is
as powerful (i.e. can learn exactly the same distribution from the SLWE oracle)
as the adversary described above. We chose to explicitly allow the adversary to
choose affine mappings for the randomness and the secret separately, as for the
applications it is sometimes more convenient to think of the adversary being able
to apply a mapping to the secret key (like in the setting of related key attacks
we’ll discuss), or to the randomness (e.g. to show that LWE is hard, even if the
randomness comes from a bit-fixing source.)

3 Set xr = xs = 0� and Xr,Xs the zero matrix with a single one in the ith diagonal
element. The oracle will output r, r[i]s[i] + e, the last element is s[i] + e if r[i] = 1.
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When q is not Prime. The reduction from SLWE to LWE assumes that q is
prime, as we use the fact that Zq is a field and Zm

q is a vector space.4 We believe
that the proof of the reduction can be adapted to the case where q is composite.

The case where q is prime covers the cryptographically most interesting cases
of LPN and Regev’s LWE. Also the reduction from the search to decision version
of LWE [Reg05] only works for prime q (of polynomial size.) But the case where
q is not prime has found cryptographic applications too. In particular, the case
where q = pe for a prime p and e > 1 has been used in the construction of
an encryption scheme with circular security [ACPS09]. The case where q is a
product of distinct, small primes has been used in [Pei09].

Applications of SLWE. In Section 4 we’ll discuss some applications of the
SLWE problem. In particular, the fact that SLWE is equivalent to LWE implies
stronger security notions – like security against related-key attacks – that one
can give for existing schemes whose security is reduced to the LWE problem.
In subsequent work, the hardness of SLPN has been used to construct efficient
authentication schemes and even MACs from LPN. These schemes differ sig-
nificantly from previous schemes which all were extensions of the Hopper-Blum
protocol.

Outline. In Section 2 we first define the LWE and the new subspace LWE
(SLWE) problem. In Section 3 we state and prove our main technical result
(Theorem 1) which bounds the hardness of the SLWE problem in terms of the
hardness of he standard LWE problem. In Section 4 we describe in more detail
some applications of this result which were already mentioned in the introduc-
tion.

2 Hard Learning Problems

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. We will use normal,
bold and capital bold letters like x, x, X to denote single elements, vectors and
matrices over Zq, respectively. For x ∈ Z�

q, |x| = � denotes the length and
wt(x) denotes the Hamming weight of the vector x, i.e. the number of indices
i ∈ {1, . . . , |x|} where x[i] �= 0. For v ∈ Zm

2 we denote with v its inverse, i.e.
v[i] = 1 − v[i] for all i. For a distribution χ, x ← χ denotes sampling a value

x with distribution χ. For a set S, x $← S denotes sampling a value x with the
uniform distribution over S.

x↓v,X↓v : For two vectors v ∈ Z�
2 and x ∈ Z�

q, we denote with x↓v the vector
(of length wt(v)) which is derived from x by deleting all the bits x[i] where

v[i] = 0. If X ∈ Z�×m
q is a matrix, then X↓v ∈ Z

wt(v)×m
q denotes the

submatrix we get by deleting the ith row if v[i] = 0.

4 The fact that Zm
q is a vector space is e.g. used in the proof of Lemma 1.
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xv,Xv : For x,X,v as in the previous item, xv denotes the vector where the
ith entry is x[i] ∧ v[i]. Think of xv as x where all entries of x where v is 0
are set to 0. Xv denotes the matrix X where the ith row is set to all 0 if
v[i] = 0.

2.2 The (Subspace) LWE Problem

The (search version of the) learning with errors (LWE) problem is specified by
parameters �, q ∈ N and an error distribution χ over Zq. It asks to find a secret
vector s ∈ Z�

q given any number of “noisy” inner products of s with random
vectors.

Formally, let Λχ,�(s) be the distribution over Z�+1
q where a sample is given by

(r, rT.s+ e)← Λχ,�(s) where r
$← Z�

q , e← χ

Let Um
q denote the uniform distribution over Zm

q and Uq = U1
q . The decisional

LWE problem asks to distinguish samples from Λχ,�(s) with a uniform s from
a random oracle (outputting U �+1

q samples.) For any s, ΛUq,�(s) is the same as

the uniform distribution U �+1
q . It will be convenient for the proof to think of the

random oracle as outputting samples from ΛUq,�(s) for some random s instead
of U �+1

q .

Definition 1 (Decisional Learning with Errors Problem (LWE)). The
(decisional) (q, χ, �)-LWE problem is (t, Q, ε) hard if for every distinguisher D
running in time t and making Q oracle queries,∣∣Pr [s $← Z�

q : DΛχ,�(s) = 1
]
− Pr

[
s

$← Z�
q : DΛUq,�(s) = 1

]
︸ ︷︷ ︸

Pr[DU
�+1
q =1]

∣∣ ≤ ε. (1)

Usually one defines the LWE problem by considering a distinguisher who gets a
polynomial number of samples as input and not access to an oracle (which doesn’t
take inputs anyway.) We use this oracle based definition so it is more similar to
the SLWE problem we define below, where the oracle does take adaptively chosen
inputs.

An affine projection φ : Z�
q → Z�

q is given by a matrix/vector tuple X ∈
Z�×�
q ,x ∈ Z�

q and defined as φ(v)
def
= XTv + x.

For s ∈ Z�×�
q and affine projections φr = [Xr,xr], φs = [Xs,xs] we define the

distribution Γχ,�,d(s, φr, φs) over Z
�+1
q ∪ ⊥ as

⊥ ← Γχ,�,d(s, φr, φs) if rank(XT
rXs) < d

and

[ r , φr(r)
T.φs(s) + e ]← Γχ,�,d(s, φr, φs) where r

$← Z�
q , e← χ

otherwise. With Γχ,�,d(s, .) we denote the oracle which on input φr, φs outputs
a sample of Γχ,�,d(s, φr, φs).
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Definition 2 (Subspace Learning with Errors Problem (SLWE)). The
(decisional) (q, χ, �, d)-SLWE problem is (t, Q, ε) hard if for every distinguisher
D running in time t and making Q oracle queries,∣∣∣Pr [s $← Z�

q : DΓχ,�,d(s,.) = 1
]
− Pr

[
s

$← Z�
q : DΓUq,�,d(s.,) = 1

]∣∣∣ ≤ ε. (2)

Note that by definition the ΓUq,�,d(s., ) oracle outputs ⊥ if the input satisfies
rank(XT

rXs) < d and a uniform sample U �+1
q otherwise. In particular, like

ΛUq,�(s), the output distribution of ΓUq ,�,d(s., ) is independent of s.

3 The Hardness of SLWE

Theorem 1 below is the main technical result stating that the SLWE problem
mapping into subspaces of dimension d is almost as hard as the standard LWE
problem with secrets of length d. But let’s first look at the (easy) other direction
as stated by Claim 1 below.

Claim 1 ((q, χ, �, d)-SLWE at most as hard as (q, χ, d)-LWE). If (q, χ, �, d)-
SLWE is (s, t, ε) hard then (q, χ, d)-LWE is (s′, t, ε) hard where s′ = s−poly(t, �).

Proof (of Claim). To prove this claim we will show how, for any error distribution
χ′, one can efficiently generate (q, χ′, d)-LWE samples which have distribution
Λχ′,d(s

′) (for some uniform s′ ∈ Zd
q) given access to a (q, χ′, �, d)-SLWE oracle

Γχ′,�,d(s, .) (for some uniform s ∈ Z�
q.) We do so without known knowing the

distribution χ′ or s.
Given such a transformation, we then can use any distinguisher D who breaks

the (q, χ, d)-LWE assumption with advantage ε as defined in eq.(1), to break the
(q, χ, �, d)-SLWE assumption as in eq.(2) with the same advantage by simply
transforming the SLWE samples (where the oracle uses either the error distri-
bution χ′ = χ or χ′ = U �+1

q , but we don’t know which) to LWE samples (with
the same unknown error distribution χ′) before forwarding them do D.

Let v
def
= 1d‖0�−d. To generate samples as described above, query Γχ′,�,d(s, .)

so it outputs samples Λχ′,d(s
′) where s′ ∈ Zd

q consists of, say, the first d elements

of s ∈ Z�
q, i.e. s

′ := s↓v. This can be done by making q queries Xs,Xr,xs,xr

to Γχ′,�,d(s, .) where xs = xr = 0� and Xs = Xr is 1 in the first d diagonal
entries and 0 everywhere else. The output of the SLWE oracle on these queries
are samples of the form

r, (Xrr+ xr)
T︸ ︷︷ ︸

rT↓v

(Xss+ xs)︸ ︷︷ ︸
s↓v

+e where e← χ′ , r
$← Z�

q

from which we then get an Λχ′,d(s↓v) sample r↓v, r
T
↓vs↓v + e by replacing r with

r↓v. Note that these samples have the right distribution, which means s↓v and
the q r↓v’s are uniformly random as required. This is easy to see recalling that
s and the q r’s are uniform. ��
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In the proof of Theorem 1, we’ll need the following simple technical Lemma:

Lemma 1. For q, d, δ ∈ N, let Δ(q, d, δ) denote the probability that a random

matrix in Z
(d+δ)×d
q has rank less than d, then

Δ(q, d, δ) ≤ 2

qδ+1
.

Proof. Assume we sample the d columns of a matrix M ∈ Z
(d+δ)×d
q one by one.

For i = 1, . . . , d let Ei denote the event that the first i columns are linearly
independent, then

Pr[¬Ei|Ei−1] =
qi−1

qd+δ
= qi−1−d−δ

as ¬Ei happens iff the ith column (sampled uniformly from a space of size qd+δ)
falls into the space (of size qi−1) spanned by the first i − 1 columns. We get
further

Δ(q, d, δ) = Pr[¬Ed] ≤
d∑

i=1

Pr[¬Ei|Ei−1] =

d∑
i=1

qi−1−d−δ ≤ 2

qδ+1

��

Theorem 1 ((q, χ, �, d)-SLWE almost as hard as (q, χ, d)-LWE)
For q, d, δ, � ∈ N. If the (q, χ, d)-LWE problem is (s, t, ε) hard, then the (q, χ, �, d+
δ)-SLWE problem is (s′, t, ε′) hard where

s′ = s− poly(�, t) ε′ = ε +
2t

qδ+1

Proof (of Theorem 1). To prove the theorem we will show how to sample out-
puts of an SLWE oracle Γχ′,�,d+δ(ŝ, .) for some uniformly random ŝ ∈ Z�

q and
adversarially chosen inputs, given only standard LWE samples Λχ′,d(s) for some
uniform s ∈ Zd

q . This sampling is done without knowing s or the error distribu-
tion χ′.

Given such a transformation, we then can use any distinguisher D who breaks
the (q, χ, �, d + δ)-SLWE assumption with advantage ε to break the standard
(q, χ, d)-LWE assumption with the same advantage, minus the probability that
the transformation will fail (which, unlike in the previous claim, is non-zero.)

Recall that an LWE sample Λχ′,d(s ∈ Zd
q) is of the form

r, rT.s+ e where e← χ′ r
$← Zd

q (3)

For Xr,Xs ∈ Z�×�
q , xs,xr ∈ Z�

q, we’ll show how to transform such a sample

into a an SLWE sample Γχ′,�,d+δ(ŝ, [Xr,xr,Xs,xs]). If rank(X
T
r .Xs) < d+δ this

sample is simply ⊥, so from now one we assume that this rank is at least d+ δ,
in this case the sample has the form

r̂, (Xr.r̂+ xr)
T(Xs.ŝ+ xs) + e where e← χ′ r̂

$← Z�
q (4)
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In our transformation, the SLWE secret ŝ ∈ Z�
q is defined as a function of the

LWE secret s ∈ Zd
q as follows

R
$← Z�×d

q b
$← Z�

q ŝ = R.s+ b (5)

Note that we only know R,b (which we sampled), but will not get ŝ as we don’t
know s. Also note that ŝ is uniformly random as it is blinded with a uniform
b. Define the set L ⊆ Z�

q, which is the set of solutions to a system of linear
equations, as

L = {y : y.XT
r .Xs.R = rT − xT

r .Xs.R}. (6)

If XT
r .Xs.R has rank at least d, then L is not empty as the linear equation

considered in eq.(6) is (over)defined (we will bound the probability that the
rank is d later.) In this case the LWE sample is transformed into an SLWE
sample as

r, rT.s+ e︸ ︷︷ ︸
LWE Sample (3)

→ r̂, rT.s+ z + e︸ ︷︷ ︸
SLWE Sample (4)

where r̂
$← L (7)

and the z is computed from known values as

z
def
= (r̂T.XT

r + xT
r ).Xs.b+ (Xr .r̂+ xr)

T.xs

It follows from the three claims below that this sampling gives the right distri-
bution.

Claim. If T
def
= XT

r .Xs.R has rank ≥ d then r̂
$← L is uniformly random (given

xs,xr,X
T
s ,X

T
r ,R,b.)

Proof (of Claim). Fix some t ∈ Z�
2 of weight wt(t) = d such that T↓t has full

rank. Such a t exists as T has rank d.
By eq.(6), r̂

$← L is a random solution to the equation

r̂.T = rT − xT
r .Xs.R

or equivalently (using r̂.T = r̂↓t.T↓t + r̂↓t.T↓t)

r̂↓t.T↓t = rT − xT
r .Xs.R− r̂↓t.T↓t (8)

Now sampling a random r̂ can be done as follows. First sample r̂↓t
$← Z�−d

q

uniformly. The remaining d positions r̂↓t ∈ Zd
q are then uniquely determined by

r and given by the solution to the equation (8).
As T↓t is a full rank square matrix eq.(8) defines a bijection between r̂↓t and

r. As r is chosen uniformly at random, also r̂↓t is uniformly random. Thus the
entire r̂ is uniform as claimed. ��

Claim. The r̂, rT.s + z + e as sampled in (7) is an SLWE sample for secret ŝ,
randomness r̂ and error e.
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Proof (of Claim).

r̂, (Xr.r̂+ xr)
T.(Xs.ŝ+ xs) + e (SLWE sample)

= r̂, (Xr.r̂+ xr)
T.(Xs.ŝ) + (Xr .r̂+ xr)

T.xs + e

(5)
= r̂, (Xr.r̂+ xr)

T.(Xs.(R.s+ b)) + (Xr.r̂+ xr)
T.xs + e

= r̂, (r̂T.XT
r + xT

r ).(Xs.R.s) + (r̂T.XT
r + xT

r ).Xs.b+ (Xr .r̂+ xr)
T.xs︸ ︷︷ ︸

z

+e

(6)
= r̂, rT.s+ z + e

��

We have shown how to simulate an SLWE oracle Γχ′,�,d+δ(ŝ, .) from standard
LWE samples Λχ′,d(s). This simulation goes well as long as we never get a query
containing Xr,Xs where rank(XT

r .Xs) ≥ d+ δ (so the sample is not just ⊥) but
where rank(XT

r .Xs.R) < d (in this case L can be empty.) The following claims
bounds the probability of this happening.

Claim. Consider any X ∈ Z�×�
q with rank(X) ≥ d + δ, then (with Δ as defined

in Lemma 1)

Pr[rank(X.R) < d : R
$← Z�×d

q ] ≤ Δ(q, d, δ)

Proof (of Claim). Since the matrix X has rank at least d + δ, without loss of
generality, we can assume that the first d+δ rows of X are linearly independent.
Since R is a random matrix, the upper (d+δ)×d submatrix of X.R is a random

matrix in Z
(d+δ)×d
q and (by definition) such a matrix has rank strictly less than

d with probability at most Δ(q, d, δ). Thus X.R has rank strictly less than d
with at most the same probability. ��

Using the union bound, we can upper bound the probability that for any of
the t queries the matrix X = XT

r .Xs chosen by the distinguisher D will satisfy
rank(X.R) < d by

t ·Δ(q, n, d) ≤ 2 · t
qδ+1

This error probability is thus an upper bound on the gap of the success probabil-
ity ε′ of D (in breaking SLWE) and the success probability ε we get in breaking
LWE using the transformation.

Above we ignored the fact that D can choose its queries, and thus the matrix
X = XT

r .Xs, adaptively. To show that adaptivity does not help in picking an X
where X.R has rank < d we must show that the view of D is independent of
R (except for the fact that so far no query was made where rank(X.R) < d.)
To see this first note that ŝ = s.R + b is independent of R as it is blinded
with a uniform b. In fact, the only reason we use this blinding is to enforce this
independence. The r̂ are independent as they are uniform given R as shown in
the first Claim in the proof of this theorem. ��
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4 Applications

In this section we discuss some consequences and applications which use the fact
that the new subspace LWE problem is as hard as the classical LWE problem.

4.1 Security against Related Key Attacks

Theorem 1 implies that many existing schemes whose security is based on the
standard LWE/LPN assumption are secure against attacks not anticipated by
the designers of the schemes.

As an illustrative example below we discuss the simple construction of sym-
metric CPA secure secure encryption from LPN [GRS08]. We show that this
simple scheme is not only CPA secure, but it’s even secure against powerful
related key-attacks. The scheme from [GRS08] is defined as follows

Public Parameters
– Constants 0 < τ < 0.5 , δ > 0 , � ∈ N.
– An error correcting code E : Zm

2 → Zn
2 , D : Zn

2 → Zm
2 , where D can

correct up to (τ + δ)� errors.

Key Generation: KG(�) samples and outputs s
$← Z�

2.

Encryption: Enc(K,m) samples R
$← Z�×n

2 , e
$← Bernτ and outputs the ci-

phertext (R,RT.s⊕ e⊕ E(m)).
Decryption: Dec(K, (R, z)) outputs D(z⊕RT.s).

Correctness. To see that this scheme is correct, note that on input a correctly
generated ciphertext (R,RT .s ⊕ e ⊕ E(m)), the decryption algorithm outputs
D(e⊕E(m)), which is equal to m unless the error vector e has weight more than
(τ + δ)�. As the bits of e are i.i.d. with each bit being one with probability τ ,
the probability of e having such high weight can be upper bounded (using the
Chernoff bound) by an exponentially small probability 2−γ·� (for some γ > 0
which depends on τ, δ).

CPA Security. Recall that an encryption scheme is IND-CPA secure if no
efficient adversary A can win the following game with probability noticeably
better than 1/2:

1. We sample a key s
$← Z�

2 and a bit b
$← {0, 1}.

2. A gets access to an oracle Encb(s, .) where
– Enc0(s,m) = Enc(s,m) (encrypt m)
– Enc1(s,m) = Enc(s, 0|m|) (encrypt dummy message)

3. A outputs b′ and wins if b = b′.

The IND-CPA security of the [GRS08] encryption scheme follows quite easily
from the LPN assumption, i.e. the fact that samples (R,RT.s + e) are pseudo-
random.
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RKA Security. Classical security notions, like IND-CPA security, model the
encryption scheme as a “black-box”, where an adversary can only observe the
legitimate input-output behavior of the scheme. Unfortunately, in the last decade
it became evident that such idealized models fail to capture many real-world
attacks where an adversary can attack an actual physical implementation of the
scheme. An important example is direct leakage from the secret state, typically
by side-channel attacks or malware. To deal with this issue, in the last years many
“intrusion-resilient” and “leakage-resilient” schemes have been proposed [ISW03,
MR04, Dzi06, DP07, DP08, ADW09, Pie09, CDD+07, KV09, DW09, DKL09].

But the key can also leak indirectly, for example due to key-dependentmessages
[BRS03, HK07, BHHO08, HU08, ACPS09, BHHI10, BG10, ABBC10]. Here, as
the name suggest, one considers a setting where the encryptedmessage can depend
on the secret key. Another important setting are related-key attacks (RKA). In an
RKA attack on a encryption scheme the adversary can not only ask for encryp-
tions under the secret key s, but also under“related”keys. RKA attacks were first
considered by Biham [Bih94] and Knudsen [Knu92], and were extensively stud-
ied in the last decade [Luc04, BDK06, BDK08, FKL+00, JD04, ZZWF07, BC10].
Bellare and Kohno [BK03] initiated a formal study of RKA attacks. All this works
consider RKA security of deterministic primitives, usually block-ciphers.

Very recently [AHI11] initiated a formal study of RKA security for probabilis-
tic encryption [GM84]. As in [BK03], they define RKA with respect to related-
key-deriving functions (RKD) Φ. Φ-RKA-IND-CPA security of an encryption
scheme is then defined almost like standard IND-CPA security, but where the
adversary can additionally apply any function φ ∈ Φ to the secret key s, i.e.

1. We sample a key s
$← Z�

2 and a bit b
$← {0, 1}.

2. A gets access to an oracle EncΦb (s, ., .) where
– EncΦ0 (s,m, φ ∈ Φ) = Enc(φ(s),m) (encrypt m)
– EncΦ1 (s,m, φ ∈ Φ) = Enc(φ(s), 0|m|) (encrypt dummy message)

3. A outputs b′ and wins if b = b′.

In [AHI11] it is shown that [GRS08] is Φ⊕-RKA-IND-CPA secure where Φ⊕ is
the class of XOR relations. This class contains, for every Δ ∈ Z�

2, the function

φΔ(s)
def
= s⊕Δ.

This is an interesting class of relations as (1) it captures realistic RKA and
(2) many existing schemes (mostly block-ciphers) have actually been shown to
be insecure against Φ⊕-RKA. Unfortunately Φ⊕-RKA security does not imply
any security in the realistic scenario where an adversary can not only flip, but
set some of the bit of the secret key. Neither does it cover the case where the
adversary can exchange the position of the key bits.

Using Theorem 1 we can show that the scheme is in fact secure against a
much more powerful class of “affine relations”, which as special cases contains
the relations just mentioned. Let Φaff

d be the class which contains the functions

φX,x(s) = XT .s⊕ x

for every X ∈ Z�×�
2 ,x ∈ Z�

2 where rank(X) ≥ d.
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Proposition 1. Under the (decisional) (τ, �, d)-SLPN assumption5 (which by
Theorem 1 is equivalent to the standard LPN assumption), the encryption scheme
from [GRS08] is Φaff

d -RKA-IND-CPA secure.

Proof. For any φ ∈ Φaff
d , samples of the from R,RT.φ(s) + e are pseudorandom

by assumption. So the outputs of both Enc
Φaff

d
0 (s, ., .) and Enc

Φaff
d

1 (s, ., .) are pseu-
dorandom and thus indistinguishable. ��

Φaff
d is a very powerful class of relations, and captures many realistic settings. It

contains Φ⊕, but also the class of relations Φset
d ⊂ Φaff

d which allows to overwrite
all but d bits of the input, and the class Φperm ⊂ Φaff

0 which allows to permute
the key bits.6 Previous to our work no scheme was known to be provably secure
against Φaff

d , or even just for one of the special cases Φset
d (for d > 0) or Φperm.

In fact, no deterministic encryption scheme can be secure against Φperm, and no
“natural”7 deterministic scheme can be secure against Φset

1 .

4.2 Weak Randomness and New Constructions

The RKA security example from the previous section used the fact that an
adversary can apply any affine function to the LWE secret. There are also natural
implications from the fact that she can apply a mapping to the randomness r. For
example, it implies that LWE is hard, even if the randomness r used to generate
the samples rTs+e is not uniform, but comes from a bit-fixing source [CGH+85].
Let us stress that the (comparably small) amount of randomness necessary to
sample the error e must be uniform.

Theorem 1 not only has implications for existing constructions, but in subse-
quent work has inspired completely new constructions, most notably the authen-
tication schemes and message authentications codes proposed in [KPC+11].
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Abstract. In this work, we show how to construct IBE schemes that
are secure against a bounded number of collusions, starting with under-
lying PKE schemes which possess linear homomorphisms over their keys.
In particular, this enables us to exhibit a new (bounded-collusion) IBE
construction based on the quadratic residuosity assumption, without any
need to assume the existence of random oracles. The new IBE’s public
parameters are of size O(tλ log I) where I is the total number of identi-
ties which can be supported by the system, t is the number of collusions
which the system is secure against, and λ is a security parameter. While
the number of collusions is bounded, we note that an exponential number
of total identities can be supported.

More generally, we give a transformation that takes any PKE satis-
fying Linear Key Homomorphism, Identity Map Compatibility, and the
Linear Hash Proof Property and translates it into an IBE secure against
bounded collusions. We demonstrate that these properties are more gen-
eral than our quadratic residuosity-based scheme by showing how a sim-
ple PKE based on the DDH assumption also satisfies these properties.

1 Introduction

The last decade in the lifetime of cryptography has been quite exciting. We are
witnessing a paradigm shift, departing from the traditional goals of secure and
authenticated communication and moving towards systems that are simultane-
ously highly secure, highly functional, and highly flexible in allowing selected
access to encrypted data. As part of this development, different “types” of en-
cryption systems have been conceived and constructed to allow greater ability to
meaningfully manipulate and control access to encrypted data, such as bounded
and fully homomorphic encryption (FHE), identity-based encryption (IBE), hier-
archical identity-based encryption (HIBE), functional encryption (FE), attribute
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based encryption (ABE), and others. As is typical at any time of rapid innova-
tion, the field is today at a somewhat chaotic state. The different primitives of
FHE, IBE, HIBE, FE, and ABE are being implemented based on different com-
putational assumptions and as of yet we do not know of general constructions.

One way to put some order in the picture is to investigate reductions between
the various primitives. A beautiful example of such a result was recently shown by
Rothblum [29], who demonstrated a simple reduction between any semantically
secure private key encryption scheme which possesses a simple homomorphic
property over its ciphertexts to a full-fledged semantically secure public key
encryption scheme. The homomorphic property requires that the product of a
pair of ciphertexts c1 and c2, whose corresponding plaintexts are m1 and m2,
yields a new ciphertext c1 · c2 which decrypts to m1 +m2 mod 2.

In this paper, we continue this line of investigation and show how public-key
encryption schemes which posses a linear homomorphic property over their keys
as well as hash proof system features with certain algebraic structure can be
used to construct an efficient identity-based encryption (IBE) scheme that is
secure against bounded collusions. The main idea is simple. In a nutshell, the
homomorphism over the keys will give us a way to map a set of public keys
published by the master authority in an IBE system into a new user-specific
public key that is obtained by taking a linear combination of the published keys.
By taking a linear combination instead of a subset, we are able to achieve smaller
keys than a strictly combinatorial approach would allow. Our constructions allow
the total number of potential identities to be exponential in the size of the
public parameters of the IBE. The challenge will be to prove that the resulting
cyptosystem is secure even in the presence of a specified number of colluding
users. For this, we rely on an algebraic hash proof property.

To explain our results in the context of the known literature, let us quickly
review some relevant highlights in the history of IBEs. The Identity-Based En-
cryption model was conceived by Shamir in the early 1980s [30]. The first con-
structions were proposed in 2001 by Boneh and Franklin [6] based on the hard-
ness of the bilinear Diffie-Hellman problem and by Cocks [13] based on the
hardness of the quadratic residuosity problem. Both works relied on the random
oracle model. Whereas the quadratic residuosity problem has been used in the
context of cryptography since the early eighties [22], computational problems
employing bilinear pairings were at the time of [6] relative newcomers to the
field. Indeed, inspired by their extensive usage within the context of IBEs, the
richness of bilinear group problems has proved tremendously useful for solving
other cryptographic challenges (e.g. in the area of leakage-resilient systems).

Removing the assumption that random oracles exist in the construction of
IBEs and their variants was the next theoretical target. A long progression of
results ensued. At first, partial success for IBE based on bilinear group assump-
tions was achieved by producing IBEs in the standard model provably satisfying
a more relaxed security condition known as selective security [11,4], whereas
the most desirable of security guarantees is that any polynomial-time attacker
who can request secret keys for identities of its choice cannot launch a successful
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chosen-ciphertext attack (CCA) against a new adaptively-chosen challenge iden-
tity. Enlarging the arsenal of computational complexity bases for IBE, Gentry,
Peikert, and Vaikuntanathan [21] proposed an IBE based on the intractability
of the learning with errors (LWE) problem, still in the random oracle model. Ul-
timately, fully (unrelaxed) secure IBEs were constructed in the standard model
(without assuming random oracles) under the decisional Bilinear Diffie-Hellman
assumption by Boneh and Boyen [5] and Waters [34], and most recently under
the LWE assumption by Cash, Hofheinz, Kiltz, and Peikert [12] and Agrawal,
Boneh, and Boyen [1]. Constructing a fully secure (or even selectively secure)
IBE without resorting to the random oracle model based on classical number
theoretic assumptions such as DDH in non-bilinear groups or the hardness of
quadratic residuosity assumptions remains open.

A different relaxation of IBE comes up in the work of Dodis, Katz, Xu, and
Yung [16] in the context of their study of the problem of a bounded number of se-
cret key exposures in public-key encryption. To remedy the latter problem, they
introduced the notion of key-insulated PKE systems and show its equivalence to
IBEs semantically secure against a bounded number of colluding identities. This
equivalence coupled with constructions of key-insulated PKE’s by [16] yields a
generic combinatorial construction which converts any semantic secure PKE to
a bounded-collusion semantic secure IBE, without needing a random oracle.

New Results. The goal of our work is to point to a new direction in the con-
struction of IBE schemes: the utilization of homomorphic properties over keys of
PKE schemes (when they exist) to obtain IBE constructions. This may provide
a way to diversify the assumptions on which IBEs can be based. In particular,
we are interested in obtaining IBE constructions based on quadratic residuosity
in the standard model.

In recent years, several PKE schemes were proposed with interesting homo-
morphisms over the public keys and the underlying secret keys. These were
constructed for the purpose of showing circular security and leakage resilience
properties. In particular, for both the scheme of Boneh, Halevi, Hamburg, and
Ostrovski [8] and the scheme of Brakerski and Goldwasser [9], it can be shown
that starting with two valid (public-key, secret-key) pairs (pk1, sk1), (pk2, sk2),
one can obtain a third valid pair as (pk1 · pk2, sk1 + sk2).

We define properties of a PKE scheme allowing homomorphism over keys
that suffice to transform the PKE into an IBE scheme with bounded collusion
resistance. As examples of our general framework, we show how to turn the
schemes of [8] and a modification of [9] into two IBE schemes in the standard
model (that is, without random oracles), which are CPA secure against bounded
collusions. Namely, security holds when the adversary is restricted to receive t
secret keys for identities of its choice for a pre-specified t. We allow the adversary
to choose its attack target adaptively. The security of the scheme we present here
is based on the intractability of the quadratic residuosity problem. In the full
version of this paper, we also present a second scheme with security based on the
intractability of DDH. Letting the public parameters of the IBE be of size O(nλ)
where λ is a security parameter, the new DDH-based IBE will be secure as long
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as the adversary is restricted to receive t secret keys for adaptively chosen ID’s
where t = n − 1. The QR-based IBE will be secure as long as the adversary is
restricted to receive t secret keys for t = n

log I − 1, where I is the total number

of users (or identities) that can be supported by the system. There is no upper
bound on I, which can be exponential in the size of public parameters.

Let us compare what we achieve to the constructions obtained by [16]. In
their generic combinatorial construction, they start with any PKE and obtain
a bounded-collusion IBE, requiring public parameters to be of size O(t2 log I)
times the size of public keys in the PKE scheme and secret keys to be of size
O(t log I) times the size of secret keys in the PKE scheme for t collusions and I
total identities supported. Their approach employs explicit constructions of sets
S1, . . . , SI of some finite universe U such that the union of any t of these does not
cover any additional set. There is a public key of the PKE scheme generated for
each element of U , and each set Si corresponds to a set of |Si| PKE secret keys.
There are are intrinsic bounds on the values of I, |U |, t for which this works, and
[16] note that their values of |U | = Θ(t2 log I) and |Si| = Θ(t log I) for each i
are essentially optimal. In contrast, by exploiting the algebraic homomorphisms
over the keys, we require public parameters of size roughly O(t · log I) times the
size of public keys and secret keys which are O(λ) (within a constant times the
size of PKE secret keys) for our quadratic residuosity based scheme. (This is
assuming a certain relationship between the security parameter λ and n. See the
statement of Theorem 2 for details.)

In [16], they also provide a DDH-based key-insulated PKE scheme which is
more efficient than their generic construction. It has O(tλ) size public parameters
and O(λ) size secret keys. Viewing their scheme in the identity based context
results in, perhaps surprisingly, the DDH based scheme we obtain by exploiting
the homomorphism over the keys in BBHO [8]. In the full version of this paper,
we describe this scheme and show it can be proved secure against t collusions
using our framework.

1.1 Overview of the Techniques

The basic idea is to exploit homomorphism over the keys in a PKE system Π .
The high-level overview is as follows.

Start with a PKE Π with the following properties:

1. The secret keys are vectors of elements in a ring R with operations (+, ·)
and the public keys consist of elements in a group G.

2. If (pk1, sk1) and (pk2, sk2) are valid keypairs of Π and a, b ∈ R, then ask1+
bsk2 is also a valid secret key of Π , with a corresponding public key that
can be efficiently computed from pk1, pk2, a, b. For the schemes we present,
this public key is computed as pka1 · pkb2.

We note that many existing cryptosystems have this property, or can be made
to have this property with trivial modifications, including [8], [9], and [14].

The trusted master authority in an IBE will then choose n pairs of (pki, ski)
(i = 1, ..., n) using the key generation algorithm of Π , publish the n pki values,
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and keep secret the corresponding n ski’s. Each identity is mapped to a vector
id1...idn in Rn (we abuse terminology slightly here since R is only required to be
a ring and not a field, but we will still call these “vectors”). The secret key for
the identity is computed as a coordinate-wise linear combination of the vectors
sk1, . . . , skn, with coefficients id1, . . . , idn respectively, i.e.

SKID :=

n∑
i=1

(ski · idi)

where all additions take place in R.
Anyone can compute the matching public key PKID using the key homomor-

phism and the published pki values. Since by the key homomorphism (PKID,
SKID) is still a valid key pair for the original PKE, encryption and decryption
can function identically to before. The encryptor simply runs the encryption
algorithm for Π using PKID, and the decryptor runs the decryption algorithm
for Π using SKID.

We refer to the combination of a PKE scheme with this homomorphic property
over keys and a mapping for identities as having the linear key homomorphism
and identity map compatibility properties. To prove security for the resulting
bounded-collusion IBE construction, one can intuitively see that we need the
map taking identities to vectors to produce linearly independent outputs for any
distinct t + 1 identities. This is required to ensure that any t colluding users
will not be able to compute a secret key for another user as a known linear
combination of their own secret keys. To obtain our full security proof, we define
an algebraic property of the PKE scheme in combination with the identity map,
called the linear hash proof property, which encompasses this requirement on any
t+1 images of the map and more. The definition of this property is inspired by the
paradigm of hash proof systems (introduced by Cramer and Shoup [14]), though
it differs from this in many ways. We define valid and invalid ciphertexts for our
systems, where valid ciphertexts decrypt properly and invalid ciphertexts should
decrypt randomly over the set of many secret keys corresponding to a single
public key. We require that valid and invalid ciphertexts are computationally
indistinguishable. So far this is quite similar to the previous uses of hash proof
systems. However, the identity-based setting introduces a further challenge in
proving security by changing to an invalid ciphertext, since now the adversary’s
view additionally includes the secret keys that it may request for other identities.
Hence, we must prove that an invalid ciphertext decrypts randomly over the
subset of secret keys that are consistent not only with the public keys, but also
with the received secret keys.

Controlling the behavior over this set of consistent keys in the QR-based set-
ting is particularly challenging, where the mathematical analysis is quite subtle
due to the fact that secret keys must be treated as integers in a bounded range
while public keys are elements of a subgroup of ZN . To prove the linear hash
proof property for our QR-based system, we employ technical bounds concerning
the intersection of a shifted lattice in Zn with a “bounding box” of elements of
Zn whose coordinates all lie within a specified finite range.
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1.2 Other Related Work

In addition to those referenced above, constructions of IBE schemes in the stan-
dard model in the bilinear setting were also provided by Gentry [20] under the
q-ABHDE assumption, and by Waters [35] under the bilinear Diffie-Hellman and
decisional linear assumptions. Another construction based on quadratic residu-
osity in the random oracle model was provided by Boneh, Gentry, and Hamburg
[7]. Leakage-resilient IBE schemes in various models have also been constructed,
for example by Alwen, Dodis, Naor, Segev, Walfish, and Wichs [2], by Brak-
erski, Kalai, Katz, and Vaikuntanathan [10], and by Lewko, Rouselakis, and
Waters [26].

The property we require for our PKE schemes in addition to key homomor-
phism is a variant of the structure of hash proof systems, which were first in-
troduced by Cramer and Shoup as a paradigm for proving CCA security of
PKE schemes [14]. Hash proof systems have recently been used in the context
of leakage-resilience as well ([28], for example), extending to the identity-based
setting in [2]. We note that the primitive of identity-based hash proof systems
introduced in [2] takes a different direction than our work, and the instantiation
they provide from the quadratic residuosity assumption relies on the random
oracle model.

The relaxation to bounded collusion resistance has also been well-studied in
the context of broadcast encryption and revocation schemes, dating back to
the introduction of broadcast encryption by Fiat and Naor [17]. This work and
several follow up works employed combinatorial techniques [31,32,33,18,25,19].
Another combinatorial approach, the subset cover framework, was introduced by
Naor, Naor, and Lopspeich [27] to build a revocation scheme. In this framework,
users are associated with subsets of keys. The trusted system designer can then
broadcast an encrypted message by selecting a family of subsets which covers all
the desired recipients and none of the undesired ones. An improvement to the
NNL scheme was later given by Halevy and Shamir [24], and these techniques
were then extended to the public key setting by Dodis and Fazio [15].

2 Preliminaries

2.1 IND-CPA Security for Bounded-Collusion IBE

We define IND-CPA security for bounded-collusion IBE in terms of the follow-
ing game between a challenger and an attacker. We let t denote our threshold
parameter for collusion resistance. The game proceeds in phases:

Setup Phase. The challenger runs the setup algorithm to produce the public
parameters and master secret key. It gives the public parameters to the attacker.

Query Phase I. The challenger initializes a counter to be 0. The attacker may
then submit key queries for various identities. In response to a key query, the
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challenger increments its counter. If the resulting counter value is ≤ t, the chal-
lenger generates a secret key for the requested identity by running the key gen-
eration algorithm. It gives the secret key to the attacker. If the counter value is
> t, it does not respond to the query.

Challenge Phase. The attacker specifies messages m0,m1 and an identity ID∗

that was not queried in the preceding query phase. The challenger chooses a ran-
dom bit b ∈ {0, 1}, encrypts mb to identity ID∗ using the encryption algorithm,
and gives the ciphertext to the attacker.

Query Phase II. The attacker may again submit key queries for various identities
not equal to ID∗, and the challenger will respond as in the first query phase. We
note that the same counter is employed, so that only t total queries in the game
are answered with secret keys.

Guess. The attacker outputs a guess b′ for b.

We define the advantage of an attacker A in the above game to be AdvA =∣∣Pr[b = b′]− 1
2

∣∣. We say a bounded-collusion IBE system with parameter t is
secure if any PPT attacker A has only a negligible advantage in this game.

2.2 Complexity Assumption

We formally state the QR assumption. We let λ denote the security parameter.

Quadratic Residuosity Assumption. We let N = pq where p, q are random λ-bit
primes. We require p, q ≡ 3 (mod 4), i.e. N is a Blum integer. We let JN denote
the elements of Z∗

N with Jacobi symbol equal to 1, and we let QRN denote the
set of quadratic residues modulo N . Both of these are multiplicative subgroups

of Z∗
N , with orders φ(N)

2 and φ(N)
4 respectively. We note that φ(N)

4 is odd, and
that −1 is an element of JN , but is not a square modulo N . As a consequence,
JN is isomorphic to {+1,−1} × QRN . We let u denote an element of QRN

chosen uniformly at random, and h denote an element of JN chosen uniformly
at random. For any algorithm A, we define the advantage of A against the QR
problem to be:

AdvAN |Pr [A(N, u) = 1]− Pr [A(N, h) = 1]| .

We further restrict our choice of N to values such that QRN is cyclic. We note
that this is satisfied when p, q are strong primes, meaning p = 2p′ + 1, q =
2q′+1, where p, q, p′, q′ are all distinct odd primes. This restriction was previously
imposed in [14], where they note that this restricted version implies the usual
formulation of the quadratic residuosity assumption if one additionally assumes
that strong primes are sufficiently dense. We say that the QR assumption holds
if for all PPT A, AdvAN is negligible in λ.

Furthermore, we note that this definition is equivalent to one in which A
receives a random element h of JN\QRN instead of JN .
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2.3 Mapping Identities to Linearly Independent Vectors

To employ our strategy of transforming PKE schemes with homomorphic prop-
erties over keys into IBE schemes with polynomial collusion resistance, we first
need methods for efficiently mapping identities to linearly independent vectors
over various fields. This can be done using generating matrices for the Reed-
Solomon codes over Zp and dual BCH codes over Z2. The proofs of the following
lemmas can be found in the full version.

Lemma 1. For any prime p and any t + 1 < p, there exists an efficiently-
computable mapping f : Zp → Zt+1

p such that for any distinct x1, x2, ...xt+1 ∈ Zp,
the vectors f(x1), f(x2), ...f(xt+1) are linearly independent.

Lemma 2. For any positive integer k and any t + 1 < 2k, there exists an
efficiently-computable mapping f : {0, 1}k → {0, 1}(t+1)k such that for any dis-
tinct x1, x2, ...xt+1 ∈ {0, 1}k, the vectors f(x1), f(x2), ...f(xt+1) are linearly in-
dependent over Z2.

3 From PKE to Bounded Collusion IBE: General
Conditions and Construction

We start with a public key scheme and an efficiently computable mapping f
on identities that jointly have the following useful properties. We separate the
public keys of the PKE into public parameters (distributed independently of the
secret key) and user-specific data; the latter is referred to as the “public key”.

3.1 Linear Key Homomorphism

We say a PKE has linear key homomorphism if the following requirements hold.
First, its secret keys are generated randomly from d-tuples of a ring R for some
positive integer d, with a distribution that is independent and uniform in each
coordinate over some subset R′ of R. Second, starting with any two secret keys
sk1, sk2 each in Rd and any r1, r2 ∈ R, the component-wise R-linear combination
formed by r1sk1+r2sk2 also functions as a secret key, with a corresponding public
key that can be computed efficiently from r1, r2 and the public keys pk1 and pk2
of sk1 and sk2 respectively, fixing the same public parameters. We note that
r1sk1+ r2sk2 may not have all entries in R′, but it should still function properly
as a key.

3.2 Identity Map Compatibility

We say the identity mapping f is compatible with a PKE scheme with linear
key homomorphism if f maps identities into n-tuples of elements of R. Letting
I denote the number of identities, the action of f can be represented by a I × n
matrix with entries in R. We denote this matrix by F and its rows by f1, . . . ,f I .
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3.3 Linear Hash Proof Property

We now define the strongest property we require, which we call the linear hash
proof property. This property is inspired by the paradigm of hash proof systems,
but we deviate from that paradigm in several respects. In hash proof systems,
a single public key corresponds to many possible secret keys. There are two en-
cryption algorithms: a valid one and an invalid one. Valid ciphertexts decrypt
properly when one uses any of the secret keys associated to the public key, while
invalid ciphertexts decrypt differently when different secret keys are used. Our
linear hash proof property will consider several public keys at once, each corre-
sponding to a set of many possible secret keys. The adversary will be given these
public keys, along with some linear combinations of fixed secret keys correspond-
ing to the public keys. We will also have valid and invalid encryption algorithms.
Our valid ciphertexts will behave properly. When an invalid ciphertext is formed
for a public key corresponding to a linear combination of the secret keys that
is independent of the revealed combinations, the invalid ciphertext will decrypt
“randomly” when one chooses a random key from the set of secret keys that are
consistent with the adversary’s view.

To define this property more formally, we first need to define some additional
notation. We consider a PKE scheme with linear key homomorphism which
comes equipped with a compatible identity map f and an additional algorithm
InvalidEncrypt which takes in a message and a secret key sk and outputs a ci-
phertext (note that the invalid encryption algorithm does not necessarily need to
be efficient). The regular and invalid encryption algorithms produce two distri-
butions of ciphertexts. We call these valid and invalid ciphertexts. Correctness
of decryption must hold for valid ciphertexts.

We let (sk1, pk1), (sk2, pk2), . . . , (skn, pkn) be n randomly generated key pairs,
where all of sk1, . . . , skn are d-tuples in a ring R (here we assume that the key
generation algorithm chooses R, d and then generates a key pair. We fix R and
then run the rest of the algorithm independently n times to produce the n key
pairs). We define S to be the n × d matrix with entries in R whose ith row
contains ski.

Fix any t + 1 distinct rows of the matrix of identity vectors F , denoted by
f i1 , . . . ,f it+1 . We let skIDit+1

denote the secret key f it+1 ·S and pkIDit+1
denote

the corresponding public key (computed via the key homomorphism). We let
KerR(f i1 , . . . ,f it) denote the kernel of the t × n submatrix of F formed by
these rows; that is, it consists of the vectors v ∈ Rn such that f ij · v = 0 for all
j from 1 to t.

Now we consider the set of possible secret key matrices given the public
and secret key information available to an adversary who has queried identi-
ties i1, ..., it. We letW denote the set of matrices in Rn×d whose columns belong
to KerR(f i1 , . . . ,f it) and whose rows wi satisfy that ski + wi has the same
public key as ski for all i. Since W ’s columns are orthogonal to the identity
vectors f i1 , . . . ,f it , adding an element of W to S does not change any of the
secret keys fijS. Furthermore, by construction, adding an element of W to S
does not change the public keys associated with the scheme.
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We define the subset S̃ of Rn×d to be the set of all matrices in S +W :=
{S +W0|W0 ∈W}, intersected with the set of all matrices of n secret keys that
can be generated by the key generation algorithm (i.e. those with components in
R′). Intuitively, S̃ is the set of all possible n×d secret key matrices that are “con-
sistent” with the n public keys pk1, . . . , pkn and the t secret keys f i1 ·S, . . . ,f it ·S.
In other words, after seeing these values, even an information-theoretic adversary
cannot determine S uniquely - only the set S̃ can be determined.

We say that a PKE scheme with linear key homomorphism is a linear
hash proof system with respect to the compatible map f if the following
two requirements are satisfied. We refer to these requirements as uniform decryp-
tion of invalid ciphertexts and computational indistinguishability of valid/invalid
ciphertexts.

Uniform Decryption of Invalid Ciphertexts. With all but negligible probability
over the choice of sk1, pk1, . . . , skn, pkn and the random coins of the invalid
encryption algorithm, for any choice of distinct rows f i1 , . . . ,f it+1 of F , an
invalid ciphertext encrypted to pkIDit+1

must decrypt to a message distributed
negligibly close to uniform over the message space when decrypted with a secret
key chosen at random from f it+1 · S̃. More precisely, an element of S̃ is chosen
uniformly at random, and the resulting matrix is multiplied on the left by f it+1

to produce the secret key.

Computational Indistinguishability of Valid/Invalid Ciphertexts. Second, we re-
quire valid and invalid ciphertexts are computationally indistinguishable in the
following sense. For any fixed (distinct) f i1 , . . . ,f it+1 , we consider the following
game between a challenger and an attacker A:

Gamehp: The challenger starts by sampling (sk1, pk1), . . . , (skn, pkn) as above,
and gives the attacker the public parameters and pk1, . . . , pkn. The attacker may
adaptively choose distinct rows f i1 , . . . ,f it+1 in F in any order it likes. (For
convenience, we let f it+1 always denote the vector that will be encrypted under,
but we note that this may be chosen before some of the other f i’s.) Upon setting
an f ij for j �= t + 1, the attacker receives f ij · S. When it sets f it+1 , it also
chooses a message m. At this point, the challenger flips a coin β ∈ {0, 1}, and
encrypts m to the public key corresponding to f it+1 · S as follows. We let pkch
denote the public key corresponding to f it+1 · S. If β = 0, it calls Encrypt with
m, pkch. If β = 1, it calls InvalidEncrypt with m,f it+1 · S. It gives the resulting
ciphertext to the attacker, who produces a guess β′ for β.

We denote the advantage of the attacker by AdvhpA =
∣∣P[β = β′]− 1

2

∣∣ . We

require that AdvhpA be negligible for all PPT attackers A.

3.4 Construction

Given a PKE scheme (KeyGen, Encrypt, Decrypt) and an identity mapping f
having the properties defined above, we now construct a bounded-collusion IBE
scheme. We let t denote our collusion parameter, and n will be the dimension of
the image of f .
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Setup(λ)→ PP,MSK. The setup algorithm for the IBE scheme calls the key gen-
eration algorithm of the PKE scheme to generate n random sk1, pk1, . . . , skn, pkn
pairs, sharing the same public parameters. The public parameters PP of the IBE
scheme are defined to be these shared public parameters as well as pk1, . . . , pkn.
The master secret key MSK is the collection of secret keys sk1, . . . , skn.

KeyGen(ID,MSK) → SKID. The key generation algorithm takes an identity
in the domain of f and first maps it into Rn as f(ID) = (id1, . . . , idn). It then
computes SKID as an R-linear combination of sk1, . . . , skn, with coefficients
id1, . . . , idn: SKID =

∑n
i=1 idiski.

Encrypt(m,PP, ID)→ CT. The encryption algorithm takes in a message in the
message space of the PKE scheme. From the public parameters PP, it computes a
public key corresponding to SKID using the linear key homomorphism property
(we note that the mapping f is known and efficiently computable). It then runs
the PKE encryption algorithm on m with this public key to produce CT.

Decrypt(CT, SKID) → m. The decryption algorithm runs the decryption algo-
rithm of the PKE, using SKID as the secret key.

3.5 Security

Theorem 1. When a PKE scheme (KeyGen, Encrypt, Decrypt) with linear
key homomorphism and a compatible identity mapping f satisfy the linear hash
proof property, then the construction defined in Section 3.4 is a secure bounded-
collusion IBE scheme with collusion parameter t.

Proof. We first change from the real security game defined in Section 2.1 to
a new Game′ in which the challenger calls the invalid encryption algorithm to
form an invalid ciphertext. We argue that if the adversary’s advantage changes
by a non-negligible amount, this violates the computational indistinguishabil-
ity of valid/invalid ciphertexts. To see this, we consider a PPT adversary A
whose advantage changes non-negligibly. We will construct a PPT adversary A′

against Gamehp. The challenger for Gamehp gives A′ the public parameters and
pk1, . . . , pkn, which A′ forwards to A. When A requests a secret key for an iden-
tity corresponding to f ij , A′ can forward f ij to its challenger and obtain the
corresponding secret key. When A declares m0,m1 and some ID∗ corresponding
to f it+1 , A′ chooses a random bit b ∈ {0, 1} and sends mb,f it+1 to its chal-
lenger. It receives a ciphertext encrypting mb, which it forwards to A. We note
here that the t+1 distinct identities chosen by A correspond to distinct rows of
F . If the challenger for A′ is calling the regular encryption algorithm, then A′

has properly simulated the real security game for A. If it is calling the invalid
encryption algorithm, then A′ has properly simulated the new game, Game′.
Hence, if A has a non-negligible change in advantage, A′ can leverage this to
obtain a non-negligible advantage in Gamehp.
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In Game′, we argue that information-theoretically, the attacker’s advantage
must be negligible. We observe that in our definition of the linear hash proof
property, the subset S̃ of Rn×d is precisely the subset of possible MSK’s that
are consistent with the public parameters and requested secret keys that the
attacker receives in the game, and each of these is equally likely. Since the invalid
ciphertext decrypts to an essentially random message over this set (endowed with
the uniform distribution), the attacker cannot have a non-negligible advantage
in distinguishing the message.

4 QR-Based Construction

We now present a PKE scheme with linear key homomorphism and a compatible
identity mapping f such that this is a linear hash proof system with respect to
f under the quadratic residuosity assumption.

QR-based PKE Construction. We define the message space to be {−1, 1}. The
public parameters of the scheme are a Blum integer N = pq, where primes
p, q ≡ 3 mod 4 and QRN is cyclic, and an element g that is a random quadratic
residue modulo N . Our public keys will be elements of ZN , while our secret keys
are elements of the ring R := Z. We define the subset R′ to be [ρ(N)]. We will
later provide bounds for appropriate settings of ρ(N).

– Gen(1λ): The generation algorithm chooses an element sk uniformly at ran-
dom in [ρ(N)]. This is the secret key. It then calculates the public key as
pk = gsk.

– Encpk(m): The encryption algorithm chooses an odd r ∈ [N2] uniformly at
random, and calculates Enc(m) = (gr,m · pkr).

– Decsk(c1, c2): The decryption algorithm computes m = c2 · (csk1 )−1.

We additionally define the invalid encryption algorithm:

– InvalidEncsk(m): The invalid encryption algorithm chooses a random h ∈
JN\QRN (i.e. a random non-square). It produces the invalid ciphertext as
h,m · hsk.

Key Homomorphism. Considering N , g as global parameters and only pk = gsk

as the public key, we have homomorphism over keys through multiplication and
exponentiation in G for public keys and arithmetic over the integers for secret
keys.

For secret keys sk1, sk2 ∈ Z and integers a, b ∈ Z, we can form the secret key
sk3 := ask1 + bsk2 and corresponding public key pk3 = pka1 · pkb2 in G.

4.1 Compatible Mapping and Resulting IBE Construction

Our compatible map f is obtained from Lemma 2 (Section 2.3). We may assume
that our identities are hashed to {0, 1}k for some k using a collision-resistant
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hash function, so they are in the domain of f . The image of each identity under
f is a vector with 0,1 entries of length n = k(t + 1), where t is our collusion
parameter. For every t+1 distinct elements of {0, 1}k, their images under f are
linearly independent (over Z2 as well as Q).

A formal description of our construction follows. This is an instance of the
general construction in Section 3.4, but we state it explicitly here for the reader’s
convenience. We assume that messages to be encrypted are elements of {−1,+1},
and identities are elements of {0, 1}k. For each identity ID, we let IDT denote
the row vector of length n over {0, 1} obtained by our mapping from {0, 1}k to
binary vectors of length n.

Setup. The setup algorithm chooses a Blum integer N such that QRN is cyclic
and a random element g ∈ QRN . It then generates n key pairs of the PKE
((pk1, sk1), (pk2, sk2), ...(pkn, skn)) using the common g, and publishes the public
keys (along with N , g) as the public parameters. The master secret key consists
of the corresponding secret keys, sk1, . . . , skn. These form an n×1 vector S with
entries in [ρ(N)] (the ith component of S is equal to ski for i = 1 . . . n).

KeyGen(ID). The key generation algorithm receives an ID ∈ {0, 1}k. By
Lemma 2 (Section 2.3), we then have a mapping f that takes this ID to a vector
(id1, id2, ...idn), such that the vectors corresponding to t+ 1 different ID’s are
linearly independent. The secret key for ID will be an element of Z, which is
computed as a linear combination of the values sk1, . . . , skn, with coefficients

id1, . . . , idn respectively. We express this as SKID :=
n∑

i=1

(ski · idi), where the

sum is taken over Z. Since the mapping f provided in Section 2.3 produces vec-
tors (id1, . . . , idn) with 0,1 entries, the value of SKID is at most ρ(N)n. Since n
will be much less than ρ(N), this will require roughly log ρ(N) bits to represent.

Encrypt(ID,m,PP). We let PKID :=

n∏
i=1

(pkidi

i ). Anyone can compute this using

the multiplicative key homomorphism and the published pki values. Since by the
key homomorphism (PKID, SKID) is still a valid keypair for the original PKE,
encryption and decryption can function as for the PKE. In other words, the
encryptor runs the encryption algorithm for the PKE scheme with PKID as the
public key to produce the ciphertext CT.

Note that for ciphertexts, we now have

EncPKID (m) = (gr,m · ((PKID)r))

=

(
gr,m ·

n∏
i=1

(pkidi·r
i )

)
=

(
gr,m ·

n∏
i=1

gidi·ski·r

)
.

All arithmetic here takes place modulo N .

This can alternately be expressed as:EncPKID (m) =
(
gr,m · g(ID)TSr

)
where

S = (ski)n×1 is a vector over Z containing the n PKE secret keys of the master
secret key.
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Decrypt(CT, SKID). The decryption algorithm runs the decryption algorithm
of the PKE with SKID as the secret key.

4.2 Security of the IBE

We now prove security of IBE scheme up to t collusions. This will follow from
Theorem 1 and the theorem below.

Theorem 2. Under the QR assumption, the PKE construction in Section 4 is a
linear hash proof system with respect to f when ρ(N) is sufficiently large. When
log(N) = Ω(n2 logn), ρ(N) = N � for some constant � suffices.

We note that when ρ(N) = N �, our secret keys are of size O(logN) = O(λ). We
prove this theorem in two lemmas.

Lemma 3. Under the QR assumption, computational indistinguishability of valid
and invalid ciphertexts holds.

Proof. We suppose there exists a PPT adversary A with non-negligible advan-
tage in Gamehp. We will create a PPT algorithm B with non-negligible advan-
tage against the QR assumption. We simplify/abuse notation a bit by letting
f1, . . . ,f t+1 denote the distinct rows of f that are chosen adaptively by A during
the course of the game (these were formerly called f i1 , . . . ,f it+1).
B is given (N, h), where N is a Blum integer such that QRN is cyclic and h is

either a random element of JN\QRN or a random element of QRN . Crucially, B
does not know the factorization of N . B sets g to be a random element of QRN .

It chooses an n × 1 vector S = (ski), whose entries are chosen uniformly
at random from [ρ(N)]. For each i from 1 to n, the ith entry of S is denoted
by ski. It computes pki = gski mod N and gives the public parameters PP =
(N, g, pk1, . . . , pkn) to A. We note that B knows the MSK = S, so it can compute
f1 ·S, . . . ,f t ·S and give these to A whenever A chooses the vectors f1, . . . ,f t.

At some point, A declares a message m and a vector f t+1 corresponding to

identity ID∗. B encrypts m using the following ciphertext:
(
h,m · h(ID∗T)S

)
.

We consider two cases, depending on the distribution of h.

Case 1: h is random in QRN . When h is a random square modulo N , we claim
that the ciphertext is properly distributed as a valid ciphertext. More precisely,
we claim that the distribution of h and the distribution of gr for a random odd
r ∈ [N2] are negligibly close. This follows from the fact that QRN is cyclic of

order φ(N)
4 , and the reduction of a randomly chosen odd r ∈ [N2] modulo φ(N)

4
will be distributed negligibly close to uniform.

Case 2: h is random in JN\QRN . In this case, B has followed the specification
of the invalid encryption algorithm.

Thus, if A has a non-negligible advantage in distinguishing between valid and
invalid ciphertexts, then B can leverage A to obtain non-negligible advantage
against the QR assumption.
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Lemma 4. Uniform decryption of invalid ciphertexts holds when ρ(N) is suf-
ficiently large. When log(N) = Ω(n2 logn), ρ(N) = N � for some constant �
suffices.

Proof. We choose S with uniformly random entries in [ρ(N)]. We then fix any
t+1 distinct rows of F , denoted by f1, . . . ,f t+1. We must argue that the value
of f t+1 ·S modulo 2 is negligibly close to uniform, conditioned on f1 ·S, . . . ,f t ·S
and S modulo φ(N)

4 . To see why this is an equivalent statement of the uniform
decryption of invalid ciphertexts property for our construction, note that the
decryption of an invalid ciphertext is computed as follows. We let sk denote the
secret key the ciphertext was generated with, and sk∗ denote another secret key
for the same public key used for decryption:Dec(sk∗, (h,mhsk)) = m(−1)sk−sk∗

,
since sk ≡ sk∗ mod φ(N)/4 in order to both have the same public key. If we think
of S as fixed and S̃ as the set of vectors with entries in [ρ(N)] that yield the

same values of f1 · S, . . . ,f t · S and S modulo φ(N)
4 , we can restate our goal as

showing that the distribution of f t+1 · S′ mod 2 is negligibly close to uniform,
where S′ is chosen uniformly at random from S̃.

We know by Lemma 2 that the vectors f1, . . . ,f t+1 are linearly independent
as vectors over Z2. This implies that these vectors are linearly independent as
vectors over Q as well. We let KerQ(f1, . . . ,f t) denote the (n− t)-dimensional
kernel of these vectors as a subspace of Qn.

Our strategy is to prove that this space contains a vector p with integer entries

that is not orthogonal to f t+1 modulo 2. Then, for every S′ in S+W , S′+ φ(N)
4 p

is also in S+W . Here we are using the notation from Section 3 where we defined
W . In this instance, S+W is the set of vectors yielding the same values as S for

f1 · S, . . . ,f t · S and S modulo φ(N)
4 . S̃ is then the intersection of S +W with

the set of vectors having all of their entries in [ρ(N)].
To complete the argument, we need to prove that for most elements of S′ ∈ S̃

(all but a negligible proportion), S′ + φ(N)
4 p will also be in S̃ (i.e. have entries

in [ρ(N)]). This will follow from showing that there exists a p with reasonably
bounded entries, and also that the set S̃ contains mostly vectors whose entries
stay a bit away from the boundaries of the region [ρ(N)].

We will use the following lemmas. The proof the second can be found in the
full version.

Lemma 5. Let A be a t×n matrix of rank t over Q with entries in {0, 1}. Then
there exists a basis for the kernel of A consisting of vectors with integral entries
all bounded by n

t
2 t

t
4 .

Proof. This is an easy consequence of Theorem 2 in [3], which implies the exis-
tence of a basis with entries all bounded in absolute value by

√
det(AAT). We

note that AAT is a t× t matrix with integral entries between 0 and n. Dividing
each row by n, we obtain a matrix with rational entries between 0 and 1, and
can then apply Hadamard’s bound [23] to conclude that the determinant of this
rational matrix has absolute value at most t

t
2 . Thus, the determinant of AAT

has absolute value at most ntt
t
2 . Applying Theorem 2 in [3], the lemma follows.
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Lemma 6. We suppose that M is d×n matrix with integral entries all of abso-
lute value at most B and rank d over Q. Then there exists another d×n matrix
M ′ with integral entries of absolute value at most 2d−1B that has the same rows-
pan as M over Q and furthermore remains rank d when its entries are reduced
modulo 2.

Combining these two lemmas, we may conclude that there exists a basis for
KerQ(f1, . . . ,f t) with integral entries all having absolute value at most C :=

2n−t−1n
t
2 t

t
4 that remains of rank n − t when reduced modulo 2. Now, if all of

these basis vectors are orthogonal to f t+1 modulo 2, then these form a (n− t)-
dimensional space that is contained in the kernel of the (t+1)-dimensional space
generated by f1, . . . ,f t,f t+1 in Zn

2 . This is a contradiction. Thus, at least one
of the basis vectors is not orthogonal to f t+1 modulo 2. Since it is orthogonal
to f1, . . . ,f t over Q and has integral entries of absolute value at most C, this is
our desired p.

Now, the set of vectors S̃ can be described as the intersection of the set

S +
φ(N)

4
KerZ(f1, . . . ,f t)

with the set of vectors with coordinates all in [ρ(N)], where KerZ(f1, . . . ,f t)
denotes the vectors in KerQ(f1, . . . ,f t) with integral entries. Since we have a
bound C on the size of entries an integer basis for the kernel, we can argue
that if the coordinates of S are sufficiently bounded away from 0 and ρ(N),
then there will be many vectors in S̃, negligibly few of which themselves have

entries outside of (φ(N)
4 C, ρ(N) − φ(N)

4 C). Both this bound and the probability
that S is indeed sufficiently bounded away from 0 and ρ(N) depend only on the
relationship between n and ρ(N). In the full version of this paper, we prove the
following lemma:

Lemma 7. With ρ(N), n,p,S, and S̃ defined as above, when logN = Ω(n2 logn),
we can set ρ(N) = N � for some constant � so that the fraction of S′ ∈ S̃ such that

S′ + φ(N)
4 p is not also in S̃ is negligible with all but negligible probability over the

choice of S.

Thus, ignoring negligible factors, we can consider S̃ as partitioned into pairs

of the form S′ and S′ + φ(N)
4 p. For each S′, the values of f t+1 · S′ and f t+1 ·(

S′ + φ(N)
4 p

)
modulo 2 are different. Thus, the distribution of f t+1 · S′ mod 2

over S′ ∈ S̃ is sufficiently close to uniform.

5 Open Problems

It remains to find additional constructions within this framework based on other
assumptions; in particular, lattice-based constructions may be possible. It would
also be interesting to extend this framework to accommodate stronger secu-
rity requirements, such as CCA-security. Finally, constructing a fully collusion-
resistant IBE from the QR assumption in the standard model remains a chal-
lenging open problem.
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Abstract. We propose a general construction of deterministic encryp-
tion schemes that unifies prior work and gives novel schemes. Specifically,
its instantiations provide:

– A construction from any trapdoor function that has sufficiently many
hardcore bits.

– A construction that provides “bounded” multi-message security from
lossy trapdoor functions.

The security proofs for these schemes are enabled by three tools that are
of broader interest:

– A weaker and more precise sufficient condition for semantic security
on a high-entropy message distribution. Namely, we show that to es-
tablish semantic security on a distribution M of messages, it suffices
to establish indistinguishability for all conditional distribution M |E,
where E is an event of probability at least 1/4. (Prior work required
indistinguishability on all distributions of a given entropy.)

– A result about computational entropy of conditional distributions.
Namely, we show that conditioning on an event E of probability p
reduces the quality of computational entropy by a factor of p and its
quantity by log2 1/p.

– A generalization of leftover hash lemma to correlated distributions.

We also extend our result about computational entropy to the average
case, which is useful in reasoning about leakage-resilient cryptography:
leaking λ bits of information reduces the quality of computational en-
tropy by a factor of 2λ and its quantity by λ.

1 Introduction

Public-key cryptosystems require randomness: indeed, if the encryption oper-
ation is deterministic, the adversary can simply use the public key to verify
that the ciphertext c corresponds to its guess of the plaintext m by encrypt-
ing m. However, such an attack requires the adversary to have a reasonably
likely guess for m in the first place. Recent results on deterministic public-key
encryption (DE) (building on work in the information-theoretic symmetric-key
setting [38,17,14]) have studied how to achieve security when the randomness
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comes only from m itself [3,5,7,27,8,40]. DE has a number of practical applica-
tions, such as efficient search on encrypted data and securing legacy protocols
(cf. [3]). It is also interesting from a foundational standpoint; indeed, its study
has proven useful in other contexts: Bellare et al. [4] showed how it extends to
a notion of “hedged” public-key encryption that reduces dependence on exter-
nal randomness for probabilistic encryption more generally, and Dent et al. [13]
adapted its notion of privacy to a notion of confidentiality for digital signatures.

However, our current understanding of DE is somewhat lacking. The construc-
tions of [3,5,7,27], as well as their analysis techniques, are rather disparate, and
some natural questions arise from them. Namely, does the scheme of [5] inher-
ently require using the Goldreich-Levin hardcore bit? Can it be made to work
with trapdoor functions rather than permutations? Is the single-message security
achieved by [5,7,27] an inherent limitation of standard model (i.e., non-random-
oracle) schemes? In this work our main goal is to provide a unified framework
for the construction of DE and to shed light on these questions.

1.1 Our Results

A scheme based on trapdoor functions. We propose a general Encrypt-
with-Hardcore (EwHCore) construction of DE from trapdoor functions (TDFs),
which generalizes the basic idea behind the schemes of [3,5] and leads to a unified
framework for the construction of DE. Let f be a TDF with a hardcore function
hc, and let E be any probabilistic public-key encryption algorithm. Our scheme
encrypts an input message x by computing y = f(x) and then encrypting y
using E with hc(x) as the coins; that is, the encryption of x is E(f(x); hc(x)).

Intuitively, this scheme requires that the output of hc be sufficiently long to
provide enough random coins for E (in fact, it need only be sufficiently long to be
used as a seed for a psuedorandom generator), and that it not reveal any partial
information about x (because E does not necessarily protect the privacy of its
random coins). There are two nontrivial technical steps needed to make intuition
precise. First, we define a condition required of hc (which we call “robustness”)
and show that it is sufficient for security of the resulting DE. Second, through
a computational entropy argument, we show how to make any sufficiently long
hc robust by applying a randomness extractor.

This general scheme admits a number of instantiations depending of f and
hc. For example, when f is any trapdoor function and hc is a random oracle
(RO), we obtain the construction of [3]1. When f is an iterated trapdoor per-
mutation (TDP) and hc is a collection Goldreich-Levin (GL) [23] bits extracted
at each iteration, we obtain the construction of [5]. When f is a lossy trapdoor
function (LTDF) [35] and hc is a pairwise-independent hash, we get a variant
of the construction of [7] (which is less efficient but has a more straightforward
analysis). We also obtain a variant of the construction of Hemenway et al. [27]

1 Technically, this construction does not even need a TDF because of the random
oracle model; however, it may be prudent to use a TDF because then it seems more
likely that the instantiation of the random oracle will be secure as it may be hardcore
for the TDF.
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under the same assumption as they use (see Section 5.2 for details). Note that in
all but the last of these cases, the hardcore function is already robust (without
requiring an extractor), which shows that in prior work this notion played an
implicit role.

Moreover, this general scheme not only explains past constructions, but also
gives us new ones. Specifically, if f is a trapdoor function with enough hardcore
bits, we obtain:

• DE that works on the uniform distribution of messages;

• DE that works on any distribution of messages whose min-entropy is at
most logarithmically smaller than maximum possible;

• assuming sufficient hardness distinguishing the output of hc from uniform
(so in particular of inverting f), DE that works on even-lower entropy mes-
sage distributions.

Prior results require more specific assumptions on the trapdoor function (such as
assuming that it is a permutation or that it is lossy—both of which imply enough
hardcore bits) in order to get constructions that work even just on the uniform
distribution of messages. Furthermore, our results yield more efficient schemes
(though sometimes under stronger assumptions) even in the permutation case,
by avoiding iteration.

Notably, we obtain the first DE scheme without random oracles based on the
hardness of syndrome decoding using the Niederreiter trapdoor function [32],
which was shown to have linearly many hardcore bits by Freeman et al. [19]
(and moreover to be “correlated input” secure) but is not known to be lossy. (A
scheme in the random oracle model follows from [3].) Additionally, the RSA [37]
and Paillier [34] trapdoor permutations have linearly many hardcore bits un-
der certain computational assumptions (the “Small Solutions RSA” [39] and
“Bounded Computational Composite Residuosity” [9] assumptions respectively).
Therefore, we can use these TDPs to instantiate our scheme efficiently under the
same computational assumptions. Before our work, DE schemes from RSA and
Paillier either required many iterations [5] or decisional assumptions that imply
lossiness of these TDPs [30,19,7].

Security for multiple messages: definition and construction. An im-
portant caveat is that, as in [5,7], we can prove the above standard-model DE
schemes secure only for the encryption of a single high-entropy plaintext, or,
what was shown equivalent in [7], an unbounded number of messages drawn
from a block source [10], where each subsequent message brings “fresh” entropy.
On the other hand, the strongest and most practical security model for DE in-
troduced by [3] considers the encryption of an unbounded number of plaintexts
that have individual high entropy but may not have any conditional entropy.
In order for EwHCore to achieve this, the hardcore function hc must also be ro-
bust on correlated inputs. (A general study of correlated-input security for the
case of hash functions rather than hardcore functions was concurrently initiated
in [25].) In particular, it follows from the techniques of [3] that a RO hash satis-
fies such a notion. This leads to a multi-message secure scheme in the RO model



A Unified Approach to Deterministic Encryption 585

(as obtained in [3]). We thus have a large gap between what is (known to be)
achievable with random oracles versus in the standard model.

To help bridge this gap, we propose a notion of “q-bounded” security for DE,
where up to q high-entropy but arbitrarily correlated messages may be encrypted
under the same public key (whose size may depend polynomially on q). We feel
that if one is limited to the standard model, this notion is useful. Indeed, it seems
that the requirement of previous results in the standard model—that messages
come from a block source—may be difficult to guarantee: all that’s needed to
violate it is a single message that has low conditional entropy. Following [7], we
also extend our security definition to unbounded multi-message security where
messages are drawn from what we call a “q-block source” (essentially, a block
source where each “block” consists of q messages which may be arbitrarily cor-
related but have individual high entropy); Theorem 4.2 of [7] extends to show
that q-bounded multi-message security and unbounded multi-message security
for q-block sources are equivalent for a given min-entropy.

Using our EwHCore construction and a generalization of the leftover hash
lemma discussed below, we show q-bounded DE schemes (for long enough mes-
sages), for any polynomial q, based on LTDFs losing an 1 − O(1/q) fraction
of the input. It is known how to build such LTDFs from the decisional Diffie-
Hellman [35], d-linear [19], and decisional composite residuosity [7,19] assump-
tions.

1.2 Our Tools

Our results are enabled by three tools that may be of more general applicability.

A more precise condition for security of DE. We revisit the definitional
equivalences for DE proven by [5] and [7]. At a high level, they showed that
the semantic security style definition for DE (called PRIV) introduced in the
initial work of [3], which asks that a scheme hides all public-key independent2

functions of messages drawn from some distribution is in some sense equivalent
to an indistinguishability based notion for DE, which asks that it is hard to
distinguish ciphertexts of messages drawn from one of two possible distributions.
Notice that while PRIV can be meaningfully said to hold for a given message
distribution, IND inherently talks of pairs of distributions. The works of [5,7]
compensated for this by giving an equivalences in terms of min-entropy. That
is, they showed that PRIV for all message distributions of min-entropy μ is
implied by indistinguishability with respect to all pairs of plaintext distributions
of min-entropy slightly less than μ.

We demonstrate a more precise equivalence that, for a fixed distribution M,
identifies a class of pairs of distributions such that if IND holds on those pairs,
then PRIV holds on M. By re-examining the equivalence proof of [5], we show
that PRIV onM is implied by IND on all pairs of “slightly induced” distributions
of M | E, where E is an arbitrary event of probability at least 1/4.

2 As shown in [3], the restriction to public-key independent functions is inherent here.
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This first tool is needed to argue that “robustness” of hc is sufficient for
security EwHCore (essentially, a robust hardcore function is one that remains
hardcore on a slightly induced distribution3).

Conditional computational entropy. We investigate how conditioning re-
duces computational entropy of a random variable X . Suppose you have a distri-
bution that has computational entropy (such as the pair f(r), hc(r) for a random
r). Suppose you condition that distribution on an event E of probability p. How
much computational entropy is left?

To make this question more precise, we should note that computational en-
tropy is parameterized by quality (how distinguishable is X from a variable Z
that has true entropy) and quantity (how much true entropy is there in Z).

We prove an intuitively natural result: conditioning on an event of probability
p reduces the quality of metric entropy by a factor of p and the quantity of metric
entropy by log2 1/p (note that this means that the reduction in quantity and
quality is the same, because the quantity of entropy is measured on log scale).
Naturally, the answer becomes so simple only once the correct notion of entropy
is in place. Our result holds for Metric∗ entropy (defined in [2,18]). This entropy
is convertible (with some loss) to HILL entropy [26,2], which can then be used
with randomness extractors to get pseudorandom bits.

Our result improves the bounds of Dziembowski and Pietrzak [18, Lemma 3],
where the loss in the quantity of entropy was related to its original quality. The
use of metric entropy simplifies the analogous result of Reingold et al. [36, The-
orem 1.3] for HILL entropy. (See [20] for information on other related work [22,
Lemma 3.1] and [11, Lemma 16].)

We use this result to show that randomness extractors can be used to convert
a hardcore function into a robust one, through a computational entropy argu-
ment for slightly induced distributions. The result is also applicable to leakage-
resilient cryptography, as demonstrated by [18]. To make the result useful in
more contexts, we also provide an average-case entropy formulation, which can
be helpful in situations in which not all leakage is equally informative. For the
information-theoretic case, it is known that leakage of λ bits reduces the average
entropy by at most λ ([15, Lemma 2.2]). We show essentially the same4 for the
computational case: if λ bits of information are leaked, then the amount of com-
putational Metric∗ entropy decreases by at most λ and its quality decreases by
at most 2λ (again, this entropy can be converted to HILL entropy and be used
in randomness extractors [15,28]).

(Crooked) Leftover hash lemma for correlated distributions. We
show that the leftover hash lemma (LHL) [26, Lemma 4.8], as well its generalized
form [15, Lemma 2.4] and the “crooked” LHL [16]) extend in a natural way to

3 One could alternatively define robustness as one that remains hardcore on inputs of
slightly lower entropy; however, in our proofs of robustness we would then need to
go through an additional argument that distributions of lower entropy are induced
by distributions of higher entropy.

4 In case of randomized leakage, the information-theoretic result of [15, Lemma 2.2(b)]
gives better bounds.
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“correlated” distributions. That is, suppose we have t random variables (sources)
X1, . . . , Xt, where each Xi individually has high min-entropy but may be fully
determined by the outcome of some other Xj (though we assume Xi �= Xj for all
i �= j). We would like to apply a hash function H such that H(X1), . . . , H(Xt)
is indistinguishable from t independent copies of the uniform distribution on the
range of H (also over the choice of the key for H , which is made public). We
show that this is the case assuming H is 2t-wise independent. (The standard
LHL is thus t = 1; previously, Kiltz et al. [31] showed this for t = 2.) Naturally,
this requires the output size of H to be about a 1/t fraction of its input size, so
there is enough entropy to extract.

2 Preliminaries

We omit standard cryptographic definitions (see the full version for precise defi-
nitions [20]). The security parameter is denoted by k, and 1k denotes the string
of k ones. Vectors are denoted in boldface, for example x. For convenience, we
extend algorithmic notation to operate on each vector of inputs component-

wise. For example, if A is an algorithm and x,y are vectors then z
$← A(x,y)

denotes that z[i]
$←A(x[i],y[i]) for all 1 ≤ i ≤ |x|. We write PX for the distribu-

tion of random variable X and PX(x) for the probability that X puts on value
x ∈ X , i.e., PX(x) = Pr[X = x]. Denote by |X | the size of the support of X ,
i.e., |X | = |{x s.t. PX(x) > 0}|. We often identify X with PX when there is no
danger of confusion. For a function f : X → R, we denote the expectation of f

over X by E f(X)
def
= Ex∈X f(x)

def
=
∑

x∈X PX(x)f(x).
We will use the notions of min-entropy and average min-entropy (defined

in [15]). For vector-valued X the min-entropy is the minimum of the compo-
nents (see [3,5]). We use the standard notions of collision probability of X de-
noted Col(X) and statistical distance of X and Y denoted Δ(X,Y ). We denote
the computational distance between two random variables X,Y with respect to
a distinguisher D as δD(X,Y ).

Dodis et al. [15, Lemma 2.2] characterized the effect of auxiliary informa-
tion on average min-entropy, namely, H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − |B| ≥
H̃∞(A|C) − |B|.

We will use extractors (defined in [33]) and average-case extractors (defined
in [15, Section 2.5]) and denote both by ext.

For a (probabilistic) public-key encryption scheme, which is a triple of algo-
rithms Π = (K, E ,D) defined in the usual way, we will use the standard notion
of IND-CPA security as defined in [24].

We use the standard definition of a lossy trapdoor function (LTDF) genera-
tor (defined in [35]) which we denote as a pair LTDF = (F ,F ′) of algorithms.

Computational Entropy. We use the standard notion of HILL entropy as de-
fined in [26]. Additionally, we use a notion known as “metric-star” entropy (this
notion was used in [18,21]):
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Definition 1. A distribution X has Metric∗ entropy at least k, denoted
HMetric∗

ε,s (X) ≥ k if for all deterministic distinguishers D of size at most s, with

outputs in [0, 1], there exists a distribution Y with H∞(Y ) ≥ k and δD(X,Y ) ≤ ε.

Equivalence (with a loss in quality) between Metric∗ and HILL entropy was
shown in [2, Theorem 5.2]. Extractors can be applied to distributions with com-
putational entropy to obtain pseudorandom outputs. This is well-known for HILL
entropy, but the only known way to extract from Metric∗ entropy is first to con-
vert Metric∗ to HILL entropy by using [2, Theorem 5.2]. Conditional entropy
has been extended to the computational case (for both HILL [28] and Metric
entropy [21]). Conditional Metric∗ can be defined similarly, by making the dis-
tinguisher deterministic with outputs in [0, 1]. The Metric∗ to HILL conversion
can be extended to the computational case as shown in [11, Lemma 18], [21, The-
orem 2.7]. Average-case extractors can be used on distributions with conditional
Metric∗ entropy by first using applying [21, Theorem 2.7].

2.1 Deterministic Encryption

An encryption scheme Π = (K, E ,D) is deterministic if E is deterministic.

Semantic security of DE.We recall the semantic-security style PRIV notion
for DE from [3]. (More specifically, it is a “comparison-based” semantic-security
style notion; this was shown equivalent to a “simulation-based” formulation
in [5].) To encryption scheme Π = (K, E ,D), an adversary A = (A0, A1, A2),
and k ∈ N we associate the left-most and middle experiments in Figure 1. We
require that there are functions v = v(k), � = �(k) such that (1) |x| = v, (2)
|x[i]| = � for all 1 ≤ i ≤ v, and (3) the x[i] are all distinct with probability 1

over (x, t)
$←A1(state) for any state output by A0. (Since in this work we only

consider the definition relative to deterministic Π requirement (3) is without loss
of generality.) In particular we say A outputs vectors of size v for v as above.
Define the PRIV advantage of A against Π as

Advpriv
Π,A(k) = Pr

[
Exppriv-1

Π,A (k)⇒ 1
]
− Pr

[
Exppriv-0

Π,A (k)⇒ 1
]
.

Let M be a class of distributions on message vectors. Define AM to be the class
of adversaries {A = (A0, A1, A2)} such that for each A ∈ AM there is a M ∈M

for which x has distribution M over (x, t)
$← A1(state) for any state output by

A0. We say that Π is PRIV secure for M if Advpriv
Π,A(·) is negligible for any PPT

A ∈ AM. Note that (allowing non-uniform adversaries as usual) we can without
loss of generality consider only those A with “empty” A0, since A1 can always
be hardwired with the “best” state. However, following [5] we explicitly allow
state because it greatly facilitates some proofs.

Indistinguishability of DE. Next we recall the indistinguishability-based
formulation of security for DE [5,7]. To an encryption scheme Π = (K, E ,D),
an adversary D = (D1, D2), and k ∈ N we associate the right-most experi-
ment in Figure 1. We make the analogous requirements on D1 as on A1 in the
PRIV definition. Define the IND advantage of D against Π as Advind

Π,D(k) =
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2 ·Pr
[
Expind

Π,D(k)⇒ 1
]
− 1. Let M∗ be a class of pairs of distributions on mes-

sage vectors. Define DM∗ to be the class of adversaries {D = (D1, D2)} such that
for each D ∈ DM∗ , there is a pair of distributions (M 0,M1) ∈ M

∗ such that

for each b ∈ {0, 1} the distribution of x
$←D1(b) is M b. We say that Π is IND

secure for M∗ if Advind
Π,D(·) is negligible for any PPT D ∈ DM∗ .

Expr Exppriv-1
Π,A (k):

(pk, sk)
$←K(1k)

state
$←A0(1

k)

(x1, t1)
$← A1(state)

c
$←E(pk,x1)

g
$←A2(pk, c, state)

If g = t1 ret 1 else ret 0

Expr Exppriv-0
Π,A (k):

(pk, sk)
$←K(1k)

state
$←A0(1

k)

(x1, t1), (x0, t0)
$←A1(state)

c
$←E(pk,x0)

g
$←A2(pk, c, state)

If g = t1 ret 1 else ret 0

Expr Expind
Π,A(k):

(pk, sk)
$←K(1k)

b
$←{0, 1} ; (x, t) $←D1(b)

c
$←E(pk,x)

d
$←D2(pk, c)

If b = d ret 1 else ret 0

Fig. 1. Security experiments for deterministic encryption

3 Our Tools

3.1 A Precise Definitional Equivalence for DE

While the PRIV definition is meaningful with respect a single message distri-
bution M , the IND definition must inherently talk of pairs of different message
distributions. Thus, in proving an equivalence between the two notions, the best
we can hope to show is that PRIV security for a message distribution M is
equivalent to IND security for some class of pairs of message distributions (de-
pending on M). However, prior works [5,7] did not provide such a statement.
Instead, they showed that PRIV security on all distributions of a given entropy μ
is equivalent to IND security on all pairs of distributions of slightly less entropy.

Induced distributions. To state our result we first give some definitions relat-
ing to a notion of “induced distributions.” Let X,X ′ be distributions (or random
variables) on the same domain. For α ∈ N, we say that X ′ is an α-induced dis-
tribution of X if X ′ is a conditional distribution X ′ = X | E for an event E such
that Pr [ E ] ≥ 2−α. We call E the corresponding event to X ′. We require that the
pair (X,E) is efficiently samplable. Define X [α] to be the class of all α-induced
distributions of X . Furthermore, let X0, X1 be two α-induced distributions of
X with corresponding events E0,E1 respectively. Define X∗[α] = {(X0, X1)} to
be the class of all pairs (X0, X1) for which there is a pair (X ′

0, X
′
1) of α-induced

distributions of X such thatX0 (resp. X1) is statistically close to X ′
0 (resp. X

′
1).

5

The equivalence.We are now ready to state our result. The following theorem
captures the “useful” direction that IND implies PRIV:

5 We need to allow a negligible statistical distance for technical reasons. Since we
will be interested in indistinguishability of functions of these distributions this will
not make any appreciable difference, and hence we mostly ignore this issue in the
remainder of the paper.
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Theorem 1. Let Π = (K, E ,D) be an encryption scheme. For any distribution
M on message vectors, PRIV security of Π with respect to M is implied by
IND security of Π with respect to M∗[2]. In particular, let A ∈ AM be a PRIV
adversary against Π. Then there is a IND adversary D ∈ DM∗[2] such that for
all k ∈ N

Advpriv
Π,A(k) ≤ 162 ·Advind

Π,D(k) +

(
3

4

)k

.

Furthermore, the running-time of D is the time for at most that for k executions
of A (but 4 in expectation).

The theorem essentially follows from the techniques of [5]; details are given
in [20]. Thus, our contribution here is not in providing any new technical tools
used in proving this result but rather in extracting it from the techniques of [5].
In particular, our more precise statement allows us to use results about en-
tropy of conditional distributions, which we explain next. Looking ahead, it also
simplifies proofs for schemes based on one-wayness, because it is easy to argue
that one-wayness is preserved on slightly induced distributions (the alternative
would require an argument that distributions of lower entropy are induced by
distributions of higher entropy).

To establish a definitional equivalence; that is, also show that PRIV implies
IND, we need to further restrict the latter to pairs (that are statistically close
to pairs) of complementary 2-induced distributions of M (which we did not do
above for conceptual simplicity), where we callX0, X1 complementary if E1 = E0.
We stress that this further restriction is not needed for the “useful” implication
above and for our security proofs.

3.2 Measuring Computational Entropy of Induced Distributions

We study how conditioning a distribution reduces its computational entropy.
This result is used later in the work to show that randomness extractors can
convert a hardcore function into a robust one; it also applicable to leakage-
resilient cryptography. This result is simplest to understand when stated in
terms of Metric∗ computational entropy (defined in [18]) It is easy to see that
conditioning on an event E with probability PE reduces (information-theoretic)
min-entropy by at most logPE. We show that the same holds for the computa-
tional notion of Metric∗ entropy if one considers reduction in both quantity and
quality:

Lemma 1. Let X,Y be discrete random variables. Then

HMetric∗
ε/PY (y),s′(X |Y = y) ≥ HMetric∗

ε,s (X)− log 1/PY (y) where s
′ ≈ s.

The use of Metric∗ entropy and an improved proof allow for a simpler and
tighter formulation than results of [18, Lemma 3] and [36, Theorem 1.3] (see the
full version for a comparison [20]). The proof is similar to [36] and can be found
in the full version [20].
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If we now consider averaging over all values of Y , we obtain the following
simple formulation that expresses how much average entropy is left in X from
the point of view of someone who knows Y . (This scenario naturally occurs in
leakage-resilient cryptography, as exemplified in [18]).

Theorem 2. Let X,Y be discrete random variables. Then

HMetric∗
ε|Y |,s′ (X |Y ) ≥ HMetric∗

ε,s (X)− log |Y |, where s′ ≈ s.

This statement is similar to the statement in the information-theoretic case
(where the reduction is only in quantity) from [15, Lemma 2.2]. In the full
version [20], we compare the theorem to [11, Lemma 16] and [22, Lemma 3.1].

To apply a randomness extractor, we must convert conditional Metric∗ to
conditional HILL entropy using [21, Theorem 2.7], this conversion loses some
quality. Thus, the conversion should be applied only when necessary (for in-
stance, repeated conditioning is best measured in Metric∗ entropy, and then
converted to HILL entropy once at the end). Here we provide a “HILL-to-HILL”
formulation of Lemma 1.

Corollary 1. Let X be a discrete random variable over χ and let Y be a discrete
random variable. Then,

HHILL
ε′,s′ (X |Y = y) ≥ HHILL

ε,s (X)− log 1/PY (y)

where ε′ = ε/PY (y) +
3

√
log |χ|

s , and s′ = Ω( 3
√
s/ log |χ|).

The Corollary follows by combining Lemma 1, [2, Theorem 5.2], and setting
εHILL = 3

√
log |χ|/s (see the full version for justification of parameters [20]).

3.3 A (Crooked) Leftover Hash Lemma for Correlated Distributions

The following generalization of the (Crooked) LHL to correlated input distribu-
tions will be very useful to us when considering bounded multi-message security
in Section 6. Since our generalization of the classical LHL is a special case of our
generalization of the Crooked LHL, we just state the latter here.

Lemma 2. (CLHL for Correlated Sources) Let H : K × D → R be a 2t-
wise δ-dependent function for t > 0 with range R, and let f : R → S be a
function. Let X = (X1, . . . , Xt) where the Xi are random variables over D such
that H∞(Xi) ≥ μ for all 1 ≤ i ≤ n and moreover Pr [Xi = Xj ] = 0 for all
1 ≤ i �= j ≤ t. Then

Δ((K, f(H(K,X))), (K, f(U))) ≤ 1

2

√
|S|t(t22−μ + 3δ)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and indepen-

dent over R (recall that functions operate on vectors X and U component-wise).
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One can further extend Lemma 2 to the case of average conditional min-entropy
using the techniques of [15]. Note that the lemma implies the corresponding
generalization of the classical LHL by taking H to have range S and f to be
the identity function. The proof of the lemma, which extends the proof of the
Crooked LHL in [7], is given in the full version [20].

4 Encrypt-with-Hardcore Scheme from Robust HCFs

We define a new notion of robust HCFs. Intuitively, robust HCFs are those that
remain hardcore when the input is conditioned on any event that occurs with
good probability.

Definition 2. Let F be a TDF generator and let hc be a HCF such that hc is
hardcore for F with respect to a distribution X on input vectors. For α = α(k),
we say hc is α-robust for F on X if hc is also hardcore for F with respect to the
class X[α] of α-induced distributions of X.

Discussion. Robustness is interesting even for the classical definition of hard-
core bits, where hc is boolean and a single uniform input x is generated in the
security experiment. Here robustness means that hc remains hardcore even when
x is conditioned on an event that occurs with good probability. It is clear that
not every hardcore bit in the classical sense is robust — note, for example, that
while every bit of the input to RSA is well-known to be hardcore assuming RSA
is one-way [1], they are not even 1-robust since we may condition on a particular
bit of the input being a fixed value.

The scheme. Let Π = (K, E ,D) be a probabilistic encryption scheme, F be
a TDF generator, and hcf be a HCF. Assume that hc outputs binary strings
of the same length as the random string r needed by E . Define the associated
“Encrypt-with-Hardcore” deterministic encryption scheme EwHCore[Π,F , hc] =
(DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Alg DK(1k):
(pk, sk)

$←K(1k)
(f, f−1)

$←F(1k)
Return ((pk, f), (sk, f−1))

Alg DE((pk, f), x):
r ← hcf (x)
c← E(pk, f(x); r)
Return c

Alg DD((sk, f−1), c):
y ← D(sk, c)
x← f−1(y)
Return x

Security analysis. To gain some intuition, suppose hc is hardcore for F on
some distribution X on input vectors. One might think that PRIV security of
EwHCore = EwHCore[Π,F , hc] on X then follows by IND-CPA security of Π .
However, this is not true. For example, hc may be a “natural” hardcore function
(i.e., that outputs some bits of the input), and E may output some of its coins
in the clear. This is how our notion of robustness comes into play, giving us the
following theorem (for a proof and further discussion, see [20]):

Theorem 3. Suppose Π is IND-CPA secure, hc is 2-robust for F on a distri-
bution M on input vectors. Then EwHCore[Π,F , hc] is PRIV-secure on M .
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5 Single-Message Instantiations of EwHCore

5.1 Getting Robust Hardcore Functions

Augmented trapdoor functions. In order to describe the conversion pro-
cedure, it is useful to introduce the notion of an “augmented” version of a TDF,
which augments the description of the TDF with keying material for a HCF.
More formally, let F be a trapdoor function generator and let H be a keyed
function with keyspace K. Define the H-augmented version of F , denoted F [H ],

that on input 1k returns (f,K), (f−1,K) where (f, f−1)
$←F(1k) and K

$←K;
evaluation is defined for x ∈ {0, 1}k as f(x) (i.e., evaluation just ignores K) and
inversion is defined analogously.

Making any large hardcore function robust. We show that by applying
a randomness extractor in a natural way, one can convert any large hardcore
function in the standard sense to one that is robust (with some loss in parame-
ters). However, while the conversion procedure is natural, proving that it works
turns out to be non-trivial.

Let F be a TDF generator, and let hc : {0, 1}k → {0, 1}� be an HCF for F
on an input distribution X such that H∞(X) ≥ μ. Let ext : {0, 1}�× {0, 1}d →
{0, 1}m×{0, 1}d be a strong average-case (�−α, εext)-extractor for α ∈ N. (Here
we view ext as a keyed function with the second argument as the key.) Define
a new “extractor-augmented” HCF hc[ext] for F [ext] such that hc[ext]s(x) =
ext(hc(x), s) for all x ∈ {0, 1}k and s ∈ {0, 1}d. The following characterizes the
α-robustness of hc[ext].

Lemma 3. Fix X ′ ∈ X [α], and suppose there is a distinguisher D′ against
hc[ext] on X ′. Then there is a distinguisher D against hc on X such that for
all k ∈ N

Advhcf
F ,X′,hc[ext],D′(k) ≤ O

(
3

√
Advhcf

F ,X,hc,D(k) + 2α ·Advhcf
F ,X,hc,D(k)

)
+ εext .

Furthermore, the running-time of D is O((tD′ (k+�))3), where tD′ is the running-
time of D.

Note that when α = log(k) the security loss in the reduction is polynomial (in
our application we just need α = 2). The proof, which appears in the full version
[20], relies crucially on Corollary 1.

The above conversion procedure notwithstanding, we give specific examples
of hardcore functions that are already robust.

Robust Goldreich-Levin bits for any TDF. In [20] we show that the
Goldreich-Levin [23] (GL) hardcore function is robust. Specifically, if the function
that extracts i-many independent GL bits is hardcore for F , then it is also
O(log k)-robust for F .
Robust bits for any LTDF. Peikert and Waters [35] showed that LTDFs
admit a simple, large hardcore function, namely a pairwise-independent hash
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function (the same argument applies also to universal hash functions or, more
generally, randomness extractors). By using average conditional min-entropy,
in [20] we show that this hardcore function is O(log k) robust.

5.2 Putting It Together

Equipped with the above results, we describe instantiations of the Encrypt-with-
Hardcore scheme that both explain prior constructions and produce novel ones.

Using an iterated trapdoor permutation. The prior trapdoor permuta-
tion based DE scheme of Bellare et al. [5] readily provides an instantiation of
EwHCore by using an iterated trapdoor permutation as the TDF. LetF be a TDP
and hc be a hardcore bit for F . For i ∈ N denote by F i the TDP that iterates F
i-many times. Define the Blum-Micali-Yao (BMY) [6,41] hardcore function for
F i via BMYi[hc](f, x) = hc(x)‖hc(f(x))‖ . . . ‖hc(f i−1). Bellare et al. [5] used
the specific choice of hc = GL (the Goldreich-Levin bit) in their scheme, which is
explained by the fact that the GL bit is robust, and one can show that BMY it-
eration expands one robust hardcore bit to many (on a non-uniform distribution,
the bit should be hardcore on all “permutation distributions” of the former).

However, due to our augmentation procedure to make any large hardcore
function robust, we are no longer bound to any specific choice of hc. For example,
we may choose hc to be a natural hardcore bit. In fact, it may often be the
case that F has many simultaneously hardcore natural bits, and therefore our
construction will require fewer iterations of the TDP than the construction of [5].

Using a lossy TDF. Using the fact that extractors are robust hardcore func-
tions for LTDFs, we get an instantiation of the Encrypt-with-Hardcore scheme
from LTDFs that is an alternative to the prior scheme of Boldyreva et al. [7] and
the concurrent work of Wee [40]. Our scheme requires an LTDF with residual
leakage s ≤ H∞(X)−2 log(1/ε)−r, where r is the number of random bits needed
in E (or the length of a seed to a pseudorandom generator that can be used to
obtain those bits).

Using 2-correlated product TDFs. Hemenway et al. [27] show a construc-
tion of DE from a decisional 2-correlated product TDF, namely where F has the
property that f1(x), f2(x) is indistinguishable from f1(x1), f2(x2) where x1, x2
are sampled independently (in both cases for two independent public instances
f1, f2 of F). They show such a trapdoor function is a secure DE scheme for
uniform messages. To obtain an instantiation of EwHCore under the same as-
sumption, we can use F as the TDF, and an independent instance of the TDF
as hc. When a randomness extractor is applied to the latter, robustness follows
from Lemma 3, taking into account that the lemma holds even if the output of
the hardcore function is not uniform, as long as it has high HILL entropy.

Using any TDF with a large HCF. Our most novel instantiations in the
single-message case come from considering TDFs that have a sufficiently large
HCF but are not necessarily lossy or an iterated TDP. Let us first consider in-
stantiations on the uniform message distribution Freeman et al. [19] shown that
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the Niederreiter TDF [32] has linearly many (simultaneous) hardcore bits un-
der the “Syndrome Decoding Assumption (SDA)” and “Indistinguishability As-
sumption (IA)” (as defined in [19, Section 7.2]). Furthermore, the RSA [37] and
Paillier [34] TDPs have linearly many hardcore bits under certain computational
assumptions, namely the “Small Solutions RSA (SS-RSA) Assumption” [39] and
the “Bounded Computational Composite Residuosity (BCCR) Assumption” [9]
respectively. Because these hardcore functions are sufficiently long, they can be
made robust via Lemma 3 and give us a linear number of robust hardcore bits—
enough to use as randomness for E (expanded by a pseudorandom generator if
necessary). Thus, by Theorem 3, we obtain:

Corollary 2. Under SDA+IA for the Niederreiter TDF, DE for the uniform
message distribution exists. Similarly, under SS-RSA the RSA TDP or BCCR
for the Paillier TDP respectively, DE for the uniform message distribution exists.

In particular, the first statement provides the first DE scheme without random
oracles based on the hardness of syndrome decoding. (A scheme in the random
oracle model follows from [3].) Moreover, the schemes provided by the second
statement are nearly as efficient as the ones obtained from lossy TDFs (since they
do not use iteration), and the latter typically requires decisional assumptions (in
contrast to the computational assumptions used here).

If we do not wish to rely on specific assumptions, we can also get DE from
strong but general assumptions, such as sub-exponential hardness. We can also
obtain DE for nonuniform message distributions (the strength of the assumption
needed will depend on how far the entropy of the message space is from the
maximum). See [20] for details.

6 Bounded Multi-message Security and its Instantiations

6.1 The New Notion and Variations

The new notion. Our notion of q-bounded multi-message security (or just q-
bounded security) for DE is quite natural, and can be viewed as analogous to
other forms of “bounded” security (see e.g. [12]). In a nutshell, it asks for security
on up to q arbitrarily correlated but high-entropy messages (where we allow
the public-key size to depend on q). Fix an encryption scheme Π = (K, E ,D).
For q = q(k) and μ = μ(k), let Mq,μ be the class of distributions on message
vectors Mμ,q = (Mμ,q

1 , . . . ,Mμ,q
q ) where H∞(Mμ,q

i ) ≥ μ and for all 1 ≤ i ≤ q
and Mμ

1,q, . . . ,M
μ
q,q are distinct with probability 1. We say that Π is q-bounded

multi-message PRIV (resp. IND) secure for μ-sources if it is PRIV (resp. IND)
secure for Mq,μ. By Theorem 1, PRIV on Mq,μ is equivalent to IND on Mq,μ−2.

Unbounded multi-message security for q-block sources. We also con-
sider unbounded multi-message security for what we call a q-block source, a
generalization of a block-source [10] where every q-th message introduces some
“fresh” entropy. Fix an encryption scheme Π = (K, E ,D). For q = q(k), n =
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n(k), and μ = μ(k), let Mq,n,μ be the class of distributions on message vectors
M q,n,μ = (M

q,n,μ
1 , . . . ,M q,n,μ

qn ) such that H∞(Xqi+j | X1 = x1, . . . , Xqi−1 =
xqi−1) ≥ μ for all 1 ≤ i ≤ n, all 0 ≤ j ≤ q − 1, and all outcomes x1, . . . , xqi−1

of X1, . . . , Xqi−1. We say that Π is q-bounded multi-message PRIV (resp. IND)
secure for (μ, n)-block-sources if Π is PRIV (resp. IND) secure on Mq,n,μ. Using
a similar argument to [7, Theorem 4.2], one can show equivalence of PRIV on
Mq,n,μ to IND on Mq,n,μ.

6.2 Our Basic Scheme

We cannot trivially achieve q-bounded security by running, say, q copies of a
scheme secure for one message in parallel (and encrypting the i-th message under
the i-th public key), since this approach would lead to a stateful scheme. The
main technical tool we use to achieve the notion is Lemma 2. Combined with [15,
Lemma 2.2], this tells us that a 2q-wise independent hash function is robust on
correlated input distributions of sufficient min-entropy:

Proposition 1. For any q, let LTDF = (F ,F ′) be an LTDF generator with
input length n and residual leakage s, and let H : K ×D → R where r = log |R|
be a 2q-wise independent hash function. Then H is a 2-robust hardcore function
for F on any input distribution X = (X1, . . . , Xq) such that H∞(X) ≥ q(s +
r) + 2 log q + 2 log(1/ε)− 2 for negligible ε.

By Theorem 3, we obtain a q-bounded DE scheme based on lossy trapdoor func-
tions that lose a 1−O(1/q) fraction of its input. Specifically, we can use the DDH-
based construction of Peikert and Waters [35], the Paillier-based one of [7,19],
or the one from d-linear of [19] for any polynomial q.

6.3 Our Optimized Scheme

We show that by extending some ideas of [7], we obtain a more efficient DE
scheme meeting q-bounded security that achieves better parameters.

Intuition and preliminaries. Intuitively, for the optimized scheme we mod-
ifying the scheme of [7] to first pre-process an input message using a 2q-wise
independent permutation (instead of pairwise as in [7]). However, there are two
issues to deal with here. First, for q > 1 such a permutation is not known to
exist (in an explicit and efficiently computable sense). Second, Lemma 2 applies
to t-wise independent functions rather than permutations.

To solve the first problem, we turn to 2q-wise “δ-dependent” permutations
(as constructed in e.g. [29]). Namely, say that a permutation H : K×D → D is
t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

Δ((H(K,x1), . . . , H(K,xt)), (P1, . . . , Pt)) ≤ δ ,

where K
$←K and P1, . . . , Pt are defined iteratively by taking P1 to be uniform

on D and, for all 2 ≤ i ≤ t, taking Pi to be uniform on R \ {p1, . . . , pi−1} where
p1, . . . , pi−1 are the outcomes of P1, . . . , Pi−1 respectively.
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To solve the second problem, we show that a t-wise δ-dependent permutation
is a t-wise δ′-dependent function where δ′ is a bit bigger than δ (see [20] for
details, where we also restate Lemma 2 in terms of δ-dependent permutations).

The construction. We now detail our construction. Let LTDF = (F ,F ′) be
an LTDF and let P : K × {0, 1}k → {0, 1}k be an efficiently invertible family of
permutations on k bits. Define the associated deterministic encryption scheme
Π [LTDF,P ] = (DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Alg DK(1k):
(f, f−1)

$←F(1k) ; K $←K
Return ((f,K), (f−1,K))

Alg DE((f,K), x):
c← f(P(K,x))
Return c

Alg DD((sk, f−1), c):
x← f−1(P−1(K, c))
Return x

We have the following result:

Theorem 4. Suppose LTDF is a lossy trapdoor function on {0, 1}n with residual
leakage s, and let q, ε > 0. Suppose P is a 2q-wise δ-dependent permutation on
{0, 1}n for δ = t2/2n. Then for any q-message IND adversary B ∈ DMq,μ with
min-entropy μ ≥ qs + 2 log q + log(1/ε) + 5, there is an LTDF distinguisher D
such that for all k ∈ N

Advind
Π[LTDF,P],B(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running-time of D is the time to run B.

An efficiently invertible 2q-wise δ-dependent permutation on {0, 1}n for δ =
t2/2n can be obtained from [29] using key length nt+ log(1/δ) = n(t+ 1)− 2t.
Comparing the above to Proposition 1, we see that we have dropped the r in
the entropy bound (indeed, there is no hardcore function here).
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Abstract. We consider pseudorandom generators in which each output
bit depends on a constant number of input bits. Such generators have
appealingly simple structure: they can be described by a sparse input-
output dependency graph G and a small predicate P that is applied at
each output. Following the works of Cryan and Miltersen (MFCS ’01)
and by Mossel et al (FOCS ’03), we ask: which graphs and predicates
yield “small-bias” generators (that fool linear distinguishers)?

We identify an explicit class of degenerate predicates and prove the
following. For most graphs, all non-degenerate predicates yield small-bias
generators, f : {0, 1}n → {0, 1}m, with output length m = n1+ε for some
constant ε > 0. Conversely, we show that for most graphs, degenerate
predicates are not secure against linear distinguishers, even when the
output length is linear m = n + Ω(n). Taken together, these results
expose a dichotomy: every predicate is either very hard or very easy, in
the sense that it either yields a small-bias generator for almost all graphs
or fails to do so for almost all graphs.

As a secondary contribution, we give evidence in support of the view
that small bias is a good measure of pseudorandomness for local func-
tions with large stretch. We do so by demonstrating that resilience to
linear distinguishers implies resilience to a larger class of attacks for such
functions.

Keywords: small-bias generator, dichotomy, local functions, NC0.

1 Introduction

In recent years there has been interest in the study of cryptographic primitives
that are implemented by local functions, that is functions in which each output
bit depends on a constant number of input bits. This study has been in large
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part spurred by the discovery that, under widely accepted cryptographic as-
sumptions, local functions can achieve rich forms of cryptographic functionality,
ranging from one-wayness and pseudorandom generation to semantic security
and existential unforgeability [6].

Local functions have simple structure: they can be described by a sparse
input-output dependency graph and a sequence of small predicates applied at
each output. Besides allowing efficient parallel evaluation, this simple structure
makes local functions amenable to analysis, and gives hope for understanding
their computational properties. Given that the cryptographic functionalities that
local functions can achieve are quite complex, it is very interesting and appeal-
ing to try to understand which properties of local functions (namely, graphs and
predicates) are necessary and sufficient for them to implement such functionali-
ties.

In this work we focus on the study of local pseudorandom generators with large
stretch. We give evidence that for most graphs, all but a handful of “degenerate”
predicate types yield pseudorandom generators with output length m = n1+ε for
some constant ε > 0. Conversely, we show that for almost all graphs, degenerate
predicates are not secure even against linear distinguishers. Taken together, these
results expose a dichotomy: every predicate is either very hard or very easy, in
the sense that it either yields a small-bias generator for almost all graphs or fails
to do so for almost all graphs.

1.1 Easy, Sometimes Hard, and Almost Always Hard Predicates

Recall that a pseudorandomgenerator is a length-increasing function f : {0, 1}n →
{0, 1}m such that no efficiently computable test can distinguish with noticeable
advantage between the value f(x) and a randomly chosen y ∈ {0, 1}m, when
x ∈ {0, 1}n is chosen at random. The additive stretch of f is defined to be the
difference between its output length m and its input length n.

In the context of constructing local pseudorandom generators of superlinear
stretch, we may assume without loss of generality that all outputs apply the same
predicate P : {0, 1}d → {0, 1}.1 We are interested in understanding which d-local
functions fG,P : {0, 1}n → {0, 1}m, described by a graph G and a predicate P ,
are pseudorandom generators. For a predicate P , we will say

– P is easy if fG,P is not pseudorandom for every G (against a given class of
adversaries),

– P is sometimes hard if fG,P is pseudorandom for some G, and
– P is almost always hard if fG,P is pseudorandom for a 1 − o(1) fraction of

graphs G.2

1 If this is not the case, project on the outputs labeled by the most frequent predicate.

This decreases the stretch only by a constant factor as there are only 22
d

different
predicates.

2 One cannot hope for always hard predicates, for which fG,P is pseudorandom for
all graphs, as there are simple examples of “easy” graphs G for which fG,P fails to
be pseudorandom regardless of P .
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Cryan and Miltersen [17] and Mossel et al. [27] identified several classes of pred-
icates that are easy for polynomial time algorithms when the stretch is a suffi-
ciently large linear function. These include four types of predicates:

1. linear predicates, i.e., P (w) = b+Σiwi (mod 2) where b ∈ {0, 1},
2. unbalanced predicates, i.e., Prw[P (w) = 1] �= 1

2 ,
3. predicates that are biased towards one input, i.e., Prw[P (w) = wi] �= 1

2 ,
4. predicates that are biased towards a pair of inputs, i.e., Prw[P (w) = wi+wj

(mod 2)] �= 1
2 .

We call such predicates degenerate. It turns out that all predicates of locality at
most 4 are degenerate.

On the positive side, Mossel et al. [27] also gave examples of 5-bit predicates
that are sometimes (exponentially) hard against linear distinguishers. Apple-
baum et al. [5] show that when the locality is sufficiently large, almost always
hard predicates against linear distinguishers exist.

Pseudorandomness against linear distinguishers means that there is no subset
of output bits whose XOR has noticeable bias. This notion, due to Naor and
Naor [28], was advocated in the context of local pseudorandom generators by
Cryan and Miltersen [17]. A bit more formally, for a function f : {0, 1}n →
{0, 1}m, we let

bias(f) = max
L
|Pr[L(f(Un)) = 1]− Pr[L(Um) = 1]| ,

where the maximum is taken over all affine functions L : Fm
2 → F2. A small-bias

generator is a function f for which bias(f) is small (preferrably negligible) as a
function of n.

1.2 Our Results

We fully classify predicates by showing that all predicates that are not known
to be easy, are almost always hard.

Theorem 1 (Non-degenerate predicates are hard). Let P : {0, 1}d →
{0, 1} be any non-degenerate predicate. Then, for every ε < 1/4 and m = n1+ε:

Pr
G
[bias(fG,P ) ≤ δ(n)] > 1− o(1),

where δ(n) = exp(−Ω(n1/4−ε)) and G is randomly chosen from all d-regular hy-
pergraphs with n nodes (representing the inputs) and m hyperedges (representing
the outputs).

The theorem shows that, even when locality is large, the only easy predicates
are degenerate ones, and there are no other “sources of easiness” other than ones
that already appear in predicates of locality 4 or less.

Conversely, we show that degenerate predicates are easy for linear distinguish-
ers (as opposed to general polynomial-time distinguishers).
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Theorem 2 (Linear tests break degenerate predicates). For every m =
n+Ω(n), and every degenerate predicate P : {0, 1}d → {0, 1}

Pr
G
[bias(fG,P ) > Ω(1/ log(n))] > 1− o(1),

where G is randomly chosen from all d-regular hypergraphs with n nodes and m
hyperedges.

The proof of Theorem 2 mainly deals with degenerate predicates that are cor-
related with a pair of their inputs; In this case, we show that the non-linear
distinguisher which was previously used in [27] and was based on a semi-definite
program for MAX-2-LIN [21] can be replaced with a simple linear distinguisher.
(The proof for other degenerate predicates follows from previous works).

Taken together, Theorems 1 and 2 expose a dichotomy: a predicate can be
either easy (fail for almost all graphs) or hard (succeeds for almost all graphs).
One possible interpretation of our results is that, from a designer point of view,
a strong emphasis should be put on the choice of the predicate, while the choice
of the input-output dependency graph may be less crucial (since if the predicate
is appropriately chosen then most graphs yield a small-bias generator). In some
sense, this means that constructions of local pseudorandom generators with large
stretch are robust: as long as the graph G is “typical,” any non-degenerate
predicate can be used (our proof classifies explicitly what is a typical family of
graphs and in addition shows that even a mixture of different non-degenerate
predicates would work).

1.3 Why Polynomial Stretch?

While Applebaum et al. [6] give strong evidence that local pseudorandom gen-
erators exist, the stretch their construction achieves is only sublinear, that is
m = n + n1−ε. (This stretch can be achieved even for 4-local predicates which
are necessarily degenerate.) In contrast, the regime of large (polynomial or even
linear) stretch is not as well understood, and the only known constructions are
based on non-standard assumptions. (See Section 1.5.)

Local generators of large stretch have several applications in cryptography and
complexity, such as secure computation with constant overhead [24] and strong
(average-case) inapproximability results for constraint-satisfaction problems [7].
These results are not known to follow from other (natural) assumptions. It should
be mentioned that it is possible to convert small polynomial stretch of m =
n1+ε into arbitrary (fixed) polynomial stretch of m = nc at the expense of
constant blow-up in the locality. (This follows from standard techniques, see [4]
for details). Hence, it suffices to focus on the case of m = n1+ε for some fixed ε.

The proof of Theorem 1 yields exponentially small bias when m = O(n), and
sub-exponential bias for m = n1+ε where ε < 1/4. We do not know whether this
is tight, but it can be shown that some non-degenerate predicates become easy
(to break on a random graph) when the output length is m = n2 or even m =
n3/2. In general, it seems that when m grows the number of hard predicates of



604 B. Applebaum, A. Bogdanov, and A. Rosen

locality d decreases, till the point m� where all predicates become easy. (By [27],
m� ≤ nd/2.) It will be interesting to obtain a classification for larger output
lengths, and to find out whether a similar dichotomy happens there as well.

1.4 Why Small-Bias?

Small-bias generators are a strict relaxation of cryptographic pseudorandom gen-
erators in that the tests L : Fm

2 → F2 are restricted to be affine (as opposed to
arbitrary efficiently computable functions). Even though affine functions are,
in general, fairly weak distinguishers, handling them is a necessary first step to-
wards achieving cryptographic pseudorandomness. In particular, affine functions
are used extensively in cryptanalysis and security against them already rules out
an extensive class of attacks.

For local pseudorandom generators with linear stretch, Cryan and Miltersen
conjectured that affine distinguishers are as powerful as polynomial-time distin-
guishers [17]. In Section 5, we attempt to support this view by showing that
resilience against small-bias, by itself, leads to robustness against other classes
of attacks.

Small-bias generators are also motivated by their own right being used as build-
ing blocks in constructions that give stronger forms of pseudorandomness. This in-
cludes constructions of local cryptographic pseudorandom generators [7,4], as well
as pseudorandom generators that fool low-degree polynomials [14], small-space
computations [23], and read-once formulas[11].

1.5 Related Work

The function fG,P was introduced by Goldreich [22] who conjectured that when
m = n, one-wayness should hold for a random graph and a random predicate.
This view is supported by the results of [22,29,3,16,26,20,25] who show that a
large class of algorithms (including ones that capture DPLL-based heuristics)
fail to invert fG,P in polynomial-time.

At the linear regime, i.e., when m = n+Ω(n), it is shown in [12] that if the
predicate is degenerate the function fG,P can be inverted in polynomial-time.
(This strengthens the results of [17,27] who only give distinguishers.) Recently,
a strong self-amplification theorem was proved in [13] showing that for m =
n + Ωd(n) if fG,P is hard-to-invert over tiny (sub-exponential small) fraction
of the inputs with respect to sub-exponential time algorithm, then the same
function is actually hard-to-invert over almost all inputs (with respect to sub-
exponential time algorithms).

Pseudorandom generators with sub-linear stretch can be implemented by 4-
local functions based on standard intractability assumptions (e.g., hardness of
factoring, discrete-log, or lattice problems) [6], or even by 3-local functions based
on the intractability of decoding random linear codes [8]. However, it is unknown
how to extend this result to polynomial or even linear stretch since all known
stretch amplification procedures introduce a large (polynomial) overhead in the
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locality. In fact, for the special case of 4-local functions (in which each out-
put depends on at most 4 input bits), there is a provable separation: Although
such functions can compute sub-linear pseudorandom generators [6] they cannot
achieve polynomial-stretch [17,27].

Alekhnovich [1] conjectured that for m = n + Θ(n), the function fG,P is
pseudorandom for a random graph and when P is a randomized predicate which
computes z1 ⊕ z2 ⊕ z3 and with some small probability p < 1

2 flips the result.
Although this construction does not lead directly to a local function (due to the
use of noise), it was shown in [7] that it can be derandomized and transformed
into a local construction with linear stretch. (The restriction to linear stretch
holds even if one strengthen Alekhnovich’s assumption to m = poly(n).)

More recently, [4] showed that the pseudorandomness of fG,P with respect
to a random graph and output length m, can be reduced to the one-wayness of
fH,P with respect to a random graphH and related output lengthm′ (for certain
settings of the stretch and security parameters). The current paper complements
this result as it provides a criteria for choosing the predicate P .

2 Techniques and Ideas

In this section we give an overview of the proof of Theorem 1. Let f : {0, 1}n →
{0, 1}m be a d-local function where each output bit is computed by applying some
d-local predicate P : {0, 1}d → {0, 1} to a (ordered) subset of the inputs S ⊆ [n].
Any such function can be described by a list ofm d-tuples G = (S1, . . . , Sm) and
the predicate P . Under this convention, we let fG,P : {0, 1}n → {0, 1}m denote
the corresponding d-local function.

We view G as a d-regular hypergraph with n nodes (representing inputs) and
m hyperedges (representing outputs) each of size d. (We refer to such a graph
as an (m,n, d)-graph.) Since we are mostly interested in polynomial stretch we
think of m as n1+ε for some fixed ε > 0, e.g., ε = 0.1.

We would like to show that for almost all (m,n, d)-graphsG, the function fG,P

fools all linear tests L, where P is non-degenerate. Following [27], we distinguish
between light linear tests which depend on less than k = Ω(n1−2ε) outputs, and
heavy tests which depend on more than k outputs.

From our definition of non-degenerate predicates, it immediately follows that
such predicates P satisfy two forms of “non-linearity”: (1) (2-resilience) P is
uncorrelated with any linear function in two or fewer inputs; and (2) (algebraic
nonlinearity) P is not linear as a polynomial over F2. Both properties are classical
design criteria which are widely used in practical cryptanalysis (cf. [30]). We use
the fist property to fool light linear tests (tests that depend on a small number
of outputs) and the second one to fool heavy linear tests (tests that depend on
a large number of outputs).

2.1 Fooling Light Tests

Our starting point is a result of [27] which shows that if the predicate is the
parity predicate ⊕ and the graph is a good expander, the output of fG,⊕(Un)
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perfectly fools all light linear tests. In terms of expectation, this can be written
as

E
x
[L(fG,⊕(x)) = 0],

where we think of {0, 1} as {±1}, and let L : {±1}m → {±1} be a light linear
test. Our key insight is that the case of a general predicate P can be reduced to
the case of linear predicates.

More precisely, let ξ denote the outcome of the test L(fG,P (x)). Then, by
looking at the Fourier expansion of the predicate P , we can write ξ as a con-
vex combination over the reals of exponentially many summands of the form
ξi = L(fGi,⊕(x)) where the Gi’s are subgraphs of G in the sense that the j-th
hyperedge of Gi is a subset of the j-th hyperedge of G. (The exact structure of
Gi is determined by the Fourier representation of P .) When x is uniformly cho-
sen, the random variable ξ is a weighted sum (over the reals) of many dependent
random variables ξi’s. However, if all the subgraphs are good expanders, the
expectation of each summand ξi is zero, and so, by the linearity of expectation,
the expectation of ξ is also zero.

It turns out that when the predicate is 2-resilient the size of each hyperedge
of Gi is at least 3, and therefore if every 3-uniform subgraph of G is a good
expander fG,P (perfectly) passes all light linear tests. Fortunately, it turns out
that most graphs G satisfy this property. We emphasize that the argument cru-
cially relies on the perfect bias of XOR predicates, as there are exponentially
many summands. (See Section 3.1 for full details.)

2.2 Fooling Heavy Tests

Consider a heavy test which involves t ≥ k outputs. Switching back to zero-one
notation, assume that the test outputs the value ξ = P (xS1) + . . . + P (xSt)

(mod 2) where x
R← Un. Our goal is to show that ξ is close to a fair coin. For

this it suffices to show that the sum ξ can be rewritten as the sum (over F2) of
� random variables

ξ = ξ1 + . . .+ ξ� (mod 2), (1)

where each random variable ξi is an independent non-constant coin, i.e., Pr[ξi =
1] ∈ [2−d, 1− 2−d]. In this case, the statistical distance between ξ and a fair coin
is exponentially small (in �), and we are done as long as � is large enough.

In order to partition ξ, let us look at the hyperedges S1, . . . , St which are
involved in the test. As a first attempt, let us collect � distinct “independent”
hyperedges that do not share a single common variable. Renaming the edges, we
can write ξ as

(P (xT1 ) + . . .+ P (xT�
)) +

(
P (xS�+1

) + . . .+ P (xSt)
)

(mod 2),

where the first � random variables are indeed statistically independent. However,
the last t− � hyperedges violate statistical-independence as they may be corre-
lated with more than one of the first � hyperdges. This is the case, for example,
if Sj has a non-empty intersection with both Ti and Tr.
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This problem is fixed by collecting � “strongly-independent” hyperedges T1,
. . . , T� for which every Sj intersects at most a single Ti. (Such a large collection
is likely to exist since t is sufficiently large.) In this case, for any fixing of the
variables outside the Ti’s, the random variable ξ can be partitioned into � inde-
pendent random variables of the form ξi = P (xTi) +

∑
P (xSj ), where the sum

ranges over the Sj ’s which intersects Ti. This property (which is a relaxation of
Eq. 1) still suffices to achieve our goal, as long as the ξi’s are non-constant.

To prove the latter, we rely on the fact that P has algebraic degree 2. Specif-
ically, let us assume that Si and Tj have no more than a single common input
node. (This condition can be typically met at the expense of throwing a small
number of the Ti’s.) In this case, the random variable ξi = P (xTi) +

∑
P (xSj )

cannot be constant, as the first summand is a degree 2 polynomial in xTi and
each of the last summands contain at most a single variable from Ti. Hence, ξi
is a non-trivial polynomial whose degree is lower-bounded by 2. This completes
the argument. Interestingly, non-linearity is used only to prove that the ξi’s are
non-constant. Indeed, linear predicates fail exactly for large tests for which the
ξi’s become fixed due to local cancelations. (See Section 3.2 for details.)

2.3 Proving Theorem 2

When P is a degenerate predicate and G is random, the existence of a linear
distinguisher follows by standard arguments. The cases of linear or biased P
are trivial, and the case of bias towards one input was analyzed by Cryan and
Miltersen. When P is biased towards a pair of inputs, say the first two, we think
of P as an “approximation” of the parity x1 ⊕ x2 of its first two inputs. If P
happened to be the predicate x1 ⊕ x2, one could find a short “cycle” of output
bits that, when XORed together, causes the corresponding input bits to cancel
out. In general, as long as the outputs along the cycle do not share any additional
input bits, the output of the test will be biased, with bias exponential in the
length of the cycle. In Section 4 we show that a random G is likely to have such
short cycles, and so the corresponding linear test will be biased.

3 Non-degenerate Predicates Are Hard

In this section we prove Theorem 1. We follow the outline described in Section 2
and handle light linear tests and heavy linear tests separately.

3.1 Fooling Light Tests

In this section we show that if the predicate P is 2-resilient (see definition below)
and the graph G is a good expander, the function fG,P is k-wise independent,
and in particular fools linear tests of weight smaller than k. We will need the
following definitions.
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Super expansion. Let G be an (m,n, d)-graph. A graph H is (k, a) subgraph of
G if it can be constructed by choosing � ≤ k distinct hyperedges of G and for
each selected hyperedge Sj removing some of the nodes while leaving bj ≥ a
nodes. We say that G is (k, a) super-expander if the hyperedges T = T1, . . . , T�
of every (k, a)-subgraph H of G touch more than b�/2 nodes where b =

∑
|Tj | /�

is the average cardinality of the hyperedges of H . We say that G is (k, a)-linear
if the hyperedges of every (k, a)-subgraph of G are linearly independent viewed
as vectors in Fn

2 .

Fourier coefficients. For a set T ⊆ [d], let χT : {±1}d → {±1} be the Parity
function defined by (x1, . . . , xd) !→ (−1)

∑
t∈T xt . It is well known that every

predicate P : {±1}d → {±1} can be expressed as a convex combination of
parities, i.e., P (x) =

∑
T⊆[d] αTχT (x) where αT ∈ R. The predicate is a-resilient

if αT is zero for every set T of size smaller or equal to a.

The following lemma shows that resiliency combined with (k, a)-linearity leads
to k-wise independence.

Lemma 1. If P is (a−1)-resilient and the (m,n, d)-graph G is (k, a)-linear then
fG,P is k-wise independent generator, i.e., the m r.v.’s (y1, . . . , ym) = fG,P (Un)
are k-wise independent.

Proof. Fix an � ≤ k outputs of fG,P , and let S1, . . . , S� be the corresponding
hyperedges. We should show that Ex[

∏
i P (xSi)] = 0. For every x ∈ {0, 1}n we

have:

�∏
i=1

P (xSi) =

�∏
i=1

∑
T⊆[d],|T |≥a

αTχT (xSi) =
∑

T=(T1,...,T�),|Ti|≥a

∏
i

αTiχSi,Ti
(x),

where Si,{K1,...,Kb} denotes the set {Si,K1 , . . . , Si,Kb
} and Si,j denotes the j-th

entry of the tuple Si. Hence, by the linearity of expectation, it suffices to show
that

E
x

[∏
i

χSi,Ti
(x)

]
= 0,

for every (T1, . . . , T�) where Ti ⊆ [d], |Ti| ≥ a. (Recall that the αTi ’s are constants
and thus can be ignored.) Observe that

∏
i χSi,Ti

(x) is just a parity function,
which, by (k, a)-linearity, is non-constant. Since every non-constant parity func-
tion is balanced (guaranteed to have zero expectation value), the claim follows.

��
Next, we show that (k, a)-linearity is implied by super-expansion, and that a
random graph is likely to be super-expanding.

Lemma 2. Let d ≥ 3 be a constant. Let Δ ≤
√
n/ logn and 3 ≤ a ≤ d.

1. Every (Δn, n, d)-graph which is (k, a)-super-expander is also (k, a)-linear.
2. A random (Δn, n, d)-graph is whp an (αn/Δ2, a)-super-expander where α is

a constant that depends on a, d.3

3 With high probability (whp) means with probability 1− o(1) as n gets large.
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Proof. The proof of the first item parallels the standard relation between lossless-
expansion and unique/odd-expansion. Let G be a (k, a)-super-expander. Observe
that if G is not (k, a)-linear then there must be (k, a)-subgraph H whose edges
sum-up to zero (over Fn

2 ). We argue that G cannot have such a subgraph. In-
deed, by counting edges, in each (k, a)-subgraph H the average degree of the
participating nodes is smaller than 2, and so there exists at least one node which
participates in a single hyperedge. Hence, the sum of the hyperedges (over Fn

2 )
is non-zero.

To prove the second item, we calculate the probability that a random (Δn, n, d)-
graph fails to be (k, a)-super-expander. First we bound the probability that there
exists a subgraph H with � hyperedges and average degree b ≥ a that violates
expansion. This probability is bounded by

(
Δn

�

)
· 2d� ·

(
n

b�/2

)
·
(
b�

2n

)b�

<

(
eΔn

�
· 2d ·

(
2en

b�

)b/2 (
b�

2n

)b
)�

=

(
e2d

(
be

2

)b/2

Δ

(
�

n

)b/2−1
)�

≤
(
cd,aΔ

(
�

n

)a/2−1
)�

where cd,a is a constant which depends on d and a, and the second inequal-
ity is due to a ≤ b ≤ d. Let us denote the above quantity by p�,n,Δ,a,d. By
a union-bound G fails to be (k, a)-super-expander with probability at most∑

2≤�≤k p�,n,Δ,a,d.

Let us fix a ≥ 3, and assume that Δ ≤ n
1
2 / logn and k = αn/Δ2 where

α = 1/(2cd,a)
2 is a constant. Indeed, in this case

p� ≤
(
cd,a

Δ
√
�√
n

)�

≤
(
cd,a

√
�

logn

)�

.

Observe that for � = 1, 2, 3, the quantity p� is o(1), for 4 ≤ � ≤ 10 logn the
quantity p� ≤ O(1/ log2 n) and for 10 logn ≤ � ≤ αn/Δ2 the quantity p� is at
most O(1/n10). It follows that each of these three intervals contributes o(1) to
the overall failure probability. ��

By combining the lemmas, we obtain the following corollary.

Corollary 1. If P is 2-resilient and m = Δn for constant Δ, then whp over
the choice of an (m,n, d)-graph G, the function fG,P is k-wise independent for
k = Ω(n). If Δ = nε, the above holds with k = Ω(n1−2ε).

By taking ε < 1/4, 2-resiliency suffices for ω(
√
n)-wise independence whp.
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3.2 Fooling Heavy Tests

In this section we show that if the predicate P is non-linear and the graph G has
large sets of “independent” hyperedges, the function fG,P fools linear tests of
weight larger than k. Formally, we will need the following notion of independence.

(k, �, b)-independence. Let S be a collection of k distinct hyperedges. A subset
T ⊆ S of � distinct hyperedges is an (�, b)-independent set of S if the following
two properties hold: (1) Every pair of hyperedges (T, T ′) ∈ T are of distance at
least 2, namely, for every pair Ti �= Tj ∈ T and S ∈ S,

Ti ∩ S = ∅ or Tj ∩ S = ∅;

and (2) For every Ti ∈ T and S �= Ti in S we have

|Ti ∩ S| < b.

A graph is (k, �, b)-independent if every set of hyperedges of size larger than k
has an (�, b)-independent set.

Our key lemma shows that good independence and large algebraic degree
guarantee resistance against heavy linear tests.

Lemma 3. If G is (k, �, b)-independent and P has an algebraic degree of at least

b, then every linear test of size at least k has bias of at most 1
2e

−2�/2d .

Proof. Fix some test S = (S1, . . . , Sk) of size k, and let T = (T1, . . . , T�) be an
(�, b)-independence set of S. Fix an arbitrary assignment σ for all the input vari-
ables which do not participate in any of the Ti’s and choose the other variables
uniformly at random. In this case, we can partition the output of the test y to
� summands over � disjoint blocks of variables, namely

y =
∑
i∈[k]

P (xSi) =
∑
i∈[�]

zi(xTi),

where the sum is over F2 and

zi(xTi ) = P (xTi) +
∑

S:Ti �=S,S∩Ti �=∅
P (xS∩Ti , σS\Ti

).

We need two observations: (1) the random variables zi’s are statistically inde-
pendent (as each of them depends on a disjoint block of inputs); and (2) the
r.v. zi is non-constant and, in fact, it takes each of the two possible values with
probability at least 2−d. To prove the latter fact it suffices to show that zi(x) is
a non-zero polynomial (over F2) of degree at most d. Indeed, recall that zi is the
sum of the polynomial P (xTi) whose degree is in [b, d], and polynomials of the
form P (xS∩Ti , σS\Ti

) whose degree is smaller than b (as |S ∩ Ti| < b). Therefore
the degree of zi is in [b, d].

To conclude the proof, we note that the parity of � independent coins, each
with expectation in (δ, 1− δ), has bias of at most 1

2 (1− 2δ)�. (See, e.g., [27]). ��
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We want to show that a random graph is likely to be (k, �, 2)-independent.

Lemma 4. For every positive ε and δ. A random (n1+ε, n, d)-graph is, whp,
(n2ε+δ, nδ/2, 2) independent.

Proof. We will need the following claim. Call a hyperedge S b-intersecting if
there exists another hyperedge S′ in the graph for which |S′ ∩ S| ≥ b. We first
bound the number of b-intersecting hyperedges.

Claim. Let b be a constant. Then, in a random (m = n1+ε, n, d)-graph, whp,
the number of b-intersecting hyperedges is at most n2(1+ε)−b logn.

Hence, whp, at most O(n2ε logn) of the hyperedges are 2-intersecting, and for
ε < 1/4 there are at most o(

√
n) such hyperedges.

Proof (of Claim). Let X be the random variable which counts the number of
b-intersecting hyperedges. First, we bound the expectation of X by m2d2b/nb =
d2b · n2(1+ε)−b. To prove this, it suffices to bound the expected number of pairs
Si, Sj which b-intersects. Each such pair b-intersects with probability at most
d2b/nb, and so, by linearity of expectation, the expected number of of intersect-
ing pairs is at most m2d2b/nb. Now, by applying Markov’s inequality, we have
that Pr[X > logn

d2b E[X ]] < d2b/ logn = o(1), and the claim follows. (A stronger
concentration can be obtained via a martingale argument.) ��
We can now prove Lemma 4. Assume, without loss of generality, that ε > 1
(as if the claim holds for some value of ε it also holds for smaller values). First
observe that, whp, all the input nodes in G have degree at most 2nε. As by
a multiplicative Chernoff bound, the probability that a single node has larger
degree is exponentially small in nε. We condition on this event and the event
that there are no more than r = n2ε logn 2-intersecting edges. Fix a set of
k = n2ε+δ hyperedges. We extract an (�, 2)-independent set by throwing away
the 2-expanding edges, and then by iteratively inserting an hyperedge T into the
independent set and removing all the hyperedges S that share with T a common
node, and the hyperedges which share a node with an edge, that shares a node
with T . At the beginning we removed at most r edges, and in each iteration
we remove at most (d2nε)2 edges, hence there are at least � ≥ k−r

4d2n2ε > nδ/2

hyperedges in the independent set. ��
Combining the lemmas together we get:

Corollary 2. Fix some positive ε and δ. If P has an algebraic degree of at
least 2 and m = n1+ε, then, whp over the choice of a random (m,n, d)-graph,
the function fG,P has at most sub-exponential bias (i.e., exp(−Ω(nδ))) against
linear tests of size at least n2ε+2δ.

By combining Corollaries 1 and 2, we obtain Theorem 1.

4 Linear Tests Break Degenerate Predicates

In this section we prove Theorem 2; That is, we show that the assumptions that
P is non-linear and 2-resilient are necessary for P to be a hard predicate. Clearly
the assumption that P is non-linear is necessary even when m = n+ 1.
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When m ≥ Kn for a sufficiently large constant K (depending on d), it follows
from work of Cryan and Miltersen [17] that if P is not 1-resilient, then for
any f : {±1}n → {±1}m, the output of f is distinguishable from uniform with
constant advantage by some linear test. When P is 1-resilient but not 2-resilient,
Mossel, Shpilka, and Trevisan show that f is distinguishable from uniform by a
polynomial-time algorithm, but not by one that implements a linear test.

Here we show that if P is not 2-resilient, then the output of fG,P is distin-
guishable by linear tests with non-negligible advantage with high probability
over the choice of G.

Claim. Assume P is unbiased and 1-resilient but |E[P (z)z1z2]| = α > 0. Then
for every � = o(log n), with probability 1 − (2−Ω(�) + d�/n) over the choice of
G, there exists a linear test that distinguishes the output of fG,P from random
with advantage α�.

Proof. Let H be the directed graph with vertices {1, . . . , n} where every hyper-
edge (i1, i2, . . . , id) in G induces the edge (i1, i2) in H .

Let � be the length of the shortest directed cycle in H and without loss of
generality assume that this cycle consists of the inputs 1, 2, . . . , � in that order.
Let zi be the name of the output that involves inputs i and i+1 for i ranging from
1 to � (where i is taken modulo �) and Si the corresponding hyperedge. With
probability at least 1−d�/n, input i does not participate in any hyperedge besides
Si and Si+1 and all other inputs participate in at most one of the hyperedges
S1, . . . , S�.

We now calculate the bias of the linear test that computes z1 ⊕ . . . ⊕ z�.
For simplicity, we will assume that d = 3; larger values of d can be handled
analogously but the notation is more cumbersome. We will denote the entries in
Si by i, i+ 1 and i′. Then the fourier expansion of zi(xSi) has the form

zi(xSi) = αxixi+1 + βxixi′ + γxi+1xi′ + δxixi+1xi′

The Fourier expansion of the expression E[z1(xS1) . . . z�(xS�
)] can be written as

a sum of 4� products of different monomials participating in the above terms.
The only monomial that does not vanish is the one containing all the α-terms,
namely

E
[∏n

i=1
αxixi+1

]
= α�.

All the other products of monomials contain at least one unique term of the
form xi′ , and this causes the expectation to vanish.

It remains to argue that with high probability � is not too large. We show
that with probability 1−O((4/K)�), H has a directed cycle of length �, as long
as � < log2K(n/4). Let X denote the number of directed cycles of length � in H .
The number of potential directed cycles of length in H is n(n−1) . . . (n−�+1) ≥
(n− �)�. Each of these occurs uniquely in H with probability

(Kn)(Kn− 1) . . . (Kn− �+ 1)
( 1

n(n− 1)

)�(
1− 1

n(n− 1)

)Kn−�

≥
(Kn− �

n2

)�
.
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Therefore E[X ] ≥ (K/4)�. The variance can be upper bounded as follows. The
number of pairs of cycles of length � that intersect in i edges is at most

(
�
i

)
n2�−i−1,

and the covariance of the indicators for these cycles is at most (K/n)2�−i. Adding
all the covariances up as i ranges from 1 to �, it follows that

Var[X ] ≤ E[X ] +

�∑
i=1

(
�

i

)
n2�−i−1

(K
n

)2�−i

≤ E[X ] +
2�K2�

n
.

By Chebyshev’s inequality,

Pr[X = 0] ≤ Var[X ]

E[X ]2
<

2

E[X ]

as long as � < log2K(n/4). ��

5 Small Bias vs. Cryptographic Security for Local
Functions

It is not difficult to come up with examples of generators that have (expo-
nentially) small bias against linear distinguishers but are not cryptographically
secure. However, we do not know of any such examples of generators that are
local and have at least linear stretch: To the best of our knowledge, all local
functions of linear stretch that are known to implement small-biased generators
could be pseudorandom generators against all polynomial-time adversaries.

Therefore it may be plausible to conjecture that if P is almost always hard
against linear adversaries, then P is almost always hard against polynomial-
time adversaries. While this conjecture cannot be proven without resolving the
existence of pseudorandom generators, we give evidence in support of it: We
show that if P is almost always hard against linear adversaries, then fG,P is not
only small-biased but (1) it is k-wise independent and (2) it cannot be inverted
by myopic backtracking algorithms.

First, we observe that for local functions the small-bias property immediately
implies k-wise independence. (This is in general false for non-local functions.)

Lemma 5. Let f : {0, 1}n → {0, 1}m be a d-local function which is 2−kd-biased.
Then it is also k-wise independent.

Proof. Assume towards a contradiction that f is not k-wise independent. Then,
there exists a set of k outputs T and a linear distinguisher L for which ε =
|Pr[L(yT ) = 1]− Pr[L(u) = 1]| > 0, where y = f(x) for a uniformly random x
and u is a uniformly random string of length k. Since f is d-local, yT is sampled
by using fewer than kd bits of randomness and therefore ε ≥ 2−kd. ��

Recall that the proof of our main theorem, Theorem 1, establishes k-wise inde-
pendence as an intermediate step (Section 3.1). However, the above lemma is
stronger in the sense that it holds for every fixed graph and every output length
including ones that are not covered by the main theorem.
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By plugging in known results about k-wise independent distributions, it im-
mediately follows that if a local function is sufficiently small-biased, then it is
pseudorandom against AC0 circuits [15], linear threshold functions over the re-
als [18], and degree-2 threshold functions over the reals [19].

Attacks on local functions, which are actively studied at the context of algo-
rithms for constraint-satisfaction problems, appear to be based mainly on “local”
heuristics (DPLL, message-passing algorithms, random-walk based algorithms)
or linearization [9]. Hence, it appears that in the context of local functions, the
small-bias property already covers all “standard” attacks. We support this intu-
ition by showing that if P is non-degenerate, then the outputs of fG,P are not
merely min-wise independent, but have a stronger property: Even after reading
an arbitrary set of t-outputs, the posterior distribution on every set of � inputs,
while not uniform, still has large min-entropy. We call this property robustness.

The notion of robustness was used by Cook et al. [16] to prove that myopic
backtracking algorithms cannot invert fG,P in polynomial time when m = n. We
now argue that for fG,P , robustness is almost always a consequence of small bias,
and conclude that fG,P cannot be inverted by myopic backtracking algorithms
even when m = n1+ε, ε < 1/4, as long as P is non-degenerate. (The analysis
of [16] also applies to some degenerate predicates.)

5.1 Robustness and Myopic Backtracking Algorithms

Robustness. Let f : {0, 1}n → {0, 1}m. Let L ⊂ [n] be a set of inputs, and
t, h ∈ [m]. We say that f is (t, L, h)-robust if for every set of outputs T ⊂ [m]
of size t and every string z ∈ {0, 1}t the following holds. Let x ∈ {0, 1}n be a
uniformly chosen string conditioned on the event f(x)T = z, i.e., the outputs
which are indexed by T equal to z. Then the random variable xL = (xi)i∈L has
min-entropy of h, namely, for every fixed w ∈ {0, 1}|L|, Pr[xL = w] ≤ 2−h. The
function is (t, �, h)-robust if it is (t, L, h)-robust for every �-size input set L.

In the full version of this work, we prove that if fG,P is k-wise independent
with respect to random graph, then it is also robust for shorter output length.

Lemma 6. Suppose that P is a predicate for which fG,P : {0, 1}n → {0, 1}m is
k-wise independent, whp over the choice of a random (m,n, d) graph G. Then,
whp over the choice of a random (m − r, n, d) graph H, the function fH,P :
{0, 1}n → {0, 1}m−r is (t, �, h)-robust, where h = min

(
�, r · (�/n)d/2, k − t

)
.

In the case of linear stretch, m = n + O(n), where k is linear as well (Corol-
lary 1), one can get (t, �, h)-robustness with linear parameters at the expense of
linear decrease in the output length (e.g., r = m/2). When the output is polyno-
mial m = n1+ε (for ε < 1/4), we get (t, �, h)-robustness for inverse-polynomial
parameters, again at the expense of a linear decrease in the output length (e.g.,
r = m/2).

Robustness is especially useful if the actual number of preimages of y =
fG,P (x) is relatively small compared to 2h. In this case, an algorithm which
attempts to guess � bits of a preimage x based on t outputs is likely to be wrong
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(obtain a partial assignment that does not correspond to any preimage of y.) We
show that in our setting of parameters (when the output length is large) most
inputs have a small number of siblings under fG,P (where G is random). The
proof of the following lemma is given in the full version.

Lemma 7. Let P be any nonconstant predicate. For every η > 0 there exists a
constant M such that when m > 2Mdn logn,

Pr
G,x

[
|{x′ | x′ is a preimage of fG,P (x)}| < M

]
> 1− η.

Myopic DPLL algorithms. We now show how the simple statistical properties
proved in the above lemmas yield lower-bounds for DPLL algorithms who attack
fG,P . The high-level argument is similar to the one used in [3,16] and it is only
sketched here. Consider the following myopic backtracking DPLL algorithm,
whose input consists of y = fG,P (x) where x is uniformly chosen. The algorithm
is allowed to read the entire graphG, but it reads the values of y in an incremental
way. Specifically, in each iteration the algorithm adaptively chooses an input
variable xi and asks to reveal r new output bits of y. Then it guesses the value
of xi based on its current state and on the output bits that were already revealed
(including the ones that were revealed in previous iterations). If the algorithm
reaches a contradiction, i.e., its partial assignment to x is consistent with some
output it backtracks.

Suppose that fG,P satisfies Lemmas 6 and 7. Since fG,P is k-wise indepen-
dent the algorithm does not backtrack in the first k/r steps (as some patrial
assignment is consistent with every value of k outputs). Since f is (r · �, �, h)-
robust and the number of siblings of a random x is at most M whp, the partial
assignment chosen by the algorithm after � < k steps is likely to be globally
inconsistent (there are 2h locally consistent assignments while there are only
M ) 2h globally consistent assignments). Hence, with all but negligible proba-
bility, the algorithm will err during the first � steps, and therefore will backtrack
at some point after more than k steps. It can be shown (by standard lower-
bound on resolution [10,2]) that, for a random graph, the backtracking phase
takes super-polynomial time. (By plugging in the exact parameters the lower-
bound is exponential 2Ω(n) when m = O(n) or sub-exponential exp(nδ) when
m = n1+ε.)
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Abstract. We initiate a study of randomness condensers for sources
that are efficiently samplable but may depend on the seed of the con-
denser. That is, we seek functions Cond : {0, 1}n×{0, 1}d → {0, 1}m such
that if we choose a random seed S ← {0, 1}d, and a source X = A(S)
is generated by a randomized circuit A of size t such that X has min-
entropy at least k given S, then Cond(X;S) should have min-entropy at
least some k′ given S. The distinction from the standard notion of ran-
domness condensers is that the source X may be correlated with the seed
S (but is restricted to be efficiently samplable). Randomness extractors
of this type (corresponding to the special case where k′ = m) have been
implicitly studied in the past (by Trevisan and Vadhan, FOCS ‘00).

We show that:

– Unlike extractors, we can have randomness condensers for samplable,
seed-dependent sources whose computational complexity is smaller
than the size t of the adversarial sampling algorithm A. Indeed, we
show that sufficiently strong collision-resistant hash functions are
seed-dependent condensers that produce outputs with min-entropy
k′ = m−O(log t), i.e. logarithmic entropy deficiency.

– Randomness condensers suffice for key derivation in many crypto-
graphic applications: when an adversary has negligible success proba-
bility (or negligible “squared advantage” [3]) for a uniformly random
key, we can use instead a key generated by a condenser whose output
has logarithmic entropy deficiency.

– Randomness condensers for seed-dependent samplable sources that
are robust to side information generated by the sampling algorithm
imply soundness of the Fiat-Shamir Heuristic when applied to any
constant-round, public-coin interactive proof system.
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1 Introduction

Randomness extractors — functions that convert sources of biased and/or cor-
related bits into almost uniformly distributed bits — have a wide variety of
applications in cryptography and other parts of theoretical computer science.
However, to extract randomness from rich models of sources, e.g. sources for
which we only have a lower bound on their min-entropy (or even sources where
each bit is mildly unpredictable given the previous ones), deterministic functions
cannot be randomness extractors [30]. Thus the general definition of randomness
extractor by Nisan and Zuckerman [27] allows the extractor to be probabilistic
— the extractor is given a uniformly random seed that it can use as a catalyst
for extraction.

The need for a seed, however, is a problem in some applications of randomness
extractors. First, if the reason for extraction is lack of access to high-quality
random bits, then we may not have any way to generate the seed.1 (In algorithmic
applications of randomness extractors, it is often possible to try all possible seeds,
and combine the results obtained for each extractor output. But this does not
work in most cryptographic applications. Even one bad seed can compromise
one’s secrets, and thus eliminate security.) Second, even if we can generate a
uniformly random seed, it is crucial that the weak random source from which
we extract is independent from the seed. This means that it is problematic
to generate the seed once and for all (perhaps using an expensive source of
randomness) in hope that it can be used for all future randomness extractions.
If there is any chance that the future weak sources can be influenced by the seed,
then the extractor guarantees will be lost. For example, if the seed is stored in
some hardware random number generator (RNG) that extracts from physical
sources of randomness within the computer (e.g. timing of various events), these
sources may be affected by the internal computations of the RNG itself and thus
we have correlations between the seed and the sources.

Such considerations and others have motivated a revival in the study of de-
terministic extractors over the past decade, i.e. extractors that do not require a
seed. Since deterministic extraction is impossible for general weak sources of ran-
domness, this body of work has sought to identify the richest classes of sources
for which deterministic extraction is possible, and construct explicit extractors
for those sources. Most of the studied models of such “extractable sources”
(e.g. bit-fixing sources [9], discrete control sources [26] or multiple independent
sources [8]) implicitly or explicitly require independence between different por-
tions of the source. To avoid this, Trevisan and Vadhan [34] suggested study-
ing the class of samplable sources, sources generated by efficient algorithms, e.g.
polynomial-sized circuits. They showed that for every t, there exist (non-explicit)
deterministic extractors for sources generated by circuits of size t, provided that
the min-entropy of the source is ω(log t). Moreover, this result is based on a prob-
abilistic argument, and can be viewed as giving an explicit seeded extractor that

1 Actually, using 2-source extractors [8,11], the seed can also be weakly random, but
it still needs to be independent from the source.
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works for seed-dependent sources in the following sense. We generate once and
for all a random seed S for the extractor, then an adversary A of size t generates
a source X = A(S) (using additional randomness) with the property that X has
enough min-entropy given S, and our extractor Ext(X ;S) produces an output
that is statistically close to uniform given S. (We remark that [34] also gave
an explicit and seedless extractor for samplable sources having min-entropy rate
close to 1 based on some strong complexity assumptions, and subsequent works
have given explicit and seedless extractors for sources sampled by weaker mod-
els of computation, such as small-space algorithms [24,25,23] and constant-depth
circuits [35].)

A deficiency of the above extractors is that their computational complexity is
poly(t) — larger than the complexity of the adversary generating the source. As
observed in [34], this is inherent. If the adversary has more resources than the
extractor, then it can randomly generate inputs on which the first few bits of
the extractor’s output is constant (and this will be a high min-entropy source).
More precisely, if the adversary’s running time is larger than the extractor’s by
a factor of t, it can fix roughly log t bits of the output (and generate a source on
n bits of min-entropy approximately n− log t).

The starting point for our paper is the observation that the above attack is not
so bad. If the adversary can only reduce the min-entropy of the extractor’s output
by a logarithmic number of bits, we have still achieved something very nontrivial
and useful. Indeed, we will have what is called a randomness condenser [28,29]
— which takes an n-bit source with at least some k bits of min-entropy and
outputs an m-bit source with at least some k′ bits of min-entropy. Randomness
condensers are nontrivial when the output entropy deficiency m− k′ is smaller
than the input entropy deficiency n − k (otherwise we could condense just by
truncating the source). They have been extensively studied in the literature as a
building block towards constructing randomness extractors (starting with [29],
and continuing in some of the latest extractors [20]), as well as bipartite expander
graphs [33,7].

Here we note that condensers are useful in their own right. If the entropy
deficiency of the output is at most β, then any event that occurs with probability
p under a uniformly random string can occur under the condenser’s output with
probability at most p′ = 2β ·p. For example, if p is negligible and β is logarithmic,
then p′ is also negligible.

Motivated by the above, we initiate a study of condensers for samplable sources.

Defining seed-dependent randomness condensers. We define a con-
denser for seed-dependent samplable sources to be a function Cond : {0, 1}n ×
{0, 1}d → {0, 1}m with the following property. If S ← Ud, and X = A(S) is a
source with (min-)entropy at least k given S, generated by a randomized circuit
A of size at most t, then we require that Cond(X ;S) should be (close to) a
source with min-entropy at least k′ given S. We provide a number of variants of
this definition, using different measures of conditional entropy, and also consider
the case that A generates side information along with X (to be discussed more
below).
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Condensers from CR hashing. We show that sufficiently strong collision-
resistant hash functions provide good seed-dependent condensers for samplable
sources. Here the seed is simply a description of a hash function h from the
family, and Cond(x;h) = h(x). We show that if efficient algorithms can find
collisions in the hash functions with probability at most 2β/2m, then the con-
denser output will have min-entropy k′ ≈ m − β given the seed (for sources of
min-entropy larger than m). Note that a birthday attack will find collisions with
probability O(t2/2m) in time t. If time t algorithms cannot do much better, e.g.
the probability of finding collisions is at most poly(t)/2m, then we can achieve
entropy deficiency β = O(log t), within a constant factor of the lower bound
mentioned above.

Condensers and key derivation. We formalize the applicability of seed-
dependent condensers to key derivation. Specifically, we consider using the out-
put of a condenser as a key in a cryptographic application, and show that for
“unpredictability” applications (where an adversary can win in a security game
with at most negligible probability), security is preserved if the output entropy
deficiency β is small enough (e.g. logarithmic). For indistinguishability applica-
tions, we follow [3] and show that security is preserved if the “squared advan-
tage” is negligible, which can be achieved for a number of applications. These
results provide the first formal evidence that when seed-dependent sources arise
in practice [21] security is not immediately compromised.

Condensers and Fiat–Shamir. We investigate seed-dependent condensers
for adversaries A(S) that generate some side information Z in addition to X
(with the requirement that X has min-entropy at least k given S and Z), anal-
ogously to the notion of average-case extractors introduced by [12]. We observe
that the most natural generalization of our condenser definition to this setting,
namely requiring that Cond(X ;S) has min-entropy at least k′ given S and Z, is
impossible to achieve: the adversary A(S) can simply compute Z = Cond(X ;S)
as its side information. However, it seems plausible to have good condensers
if we provide the side information also as input to the condenser. While this
may not be feasible in some applications (because we do not know the side in-
formation), we show that condensers satisfying this definition can be used to
obtain a sound implementation of the Fiat–Shamir Heuristic for all constant-
round, public-coin interactive proof systems (ones with statistical soundness),
and hence show that such protocols cannot be zero knowledge (by connections
established by Dwork et al. [14]). This novel connection between the Fiat–Shamir
Heuristic and randomness condensing is obtained by observing a close relation
between seed-dependent condensers for samplable sources tolerating side infor-
mation and some conjectures of Barak, Lindell, and Vadhan [4] (made in the
study of zero knowledge and Fiat–Shamir). In fact, this connection only requires
condensers for “leaky sources” — ones that are uniform prior to conditioning on
the adversary’s side information — and we show that such condensers are also
necessary for soundness of the Fiat–Shamir Heuristic. It remains an intriguing
open problem to give a construction of condensers for leaky sources based on
some more well-studied complexity assumptions.
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2 Definitions and Preliminaries

Entropy and Statistical Distance. We start by defining the relevant no-
tions of entropy that we use, which are min-entropy, collision (also known as
Renyi) entropy and Shannon entropy. The Shannon entropy and min-entropy

of a random variable X are defined as H1(X)
def
= Ex←X [− logPr[X = x]] and

H∞(X)
def
= − log(maxx Pr[X = x]). We also define average (aka conditional)

Shannon entropy and average min-entropy of a random variable X conditioned

on another random variable Z byH1(X |Z) def
=E(x,z)←(X,Z) [− logPr[X=x|Z=z]]

and H∞(X |Z) def
= − log (Ez←Z [ maxx Pr[X = x|Z = z] ]) respectively, where

Ez←Z denotes the expected value over z ← Z.

The collision probability of a random variable X is defined as Col(X)
def
=∑

x Pr[X = x]2, and the collision entropy of X is H2(X) = log(1/Col(X)).
It is easy to see that for any X , H∞(X) ≤ H2(X) ≤ H1(X) and H2(X) ≤
2H∞(X). We can also define average collision probability and collision en-
tropy of a random variable X conditioned on another random variable Z by
Col(X |Z) = Ez←Z [Col(X |Z = z)] and H2(X |Z) = log(1/Col(X |Z)). Once
again, H∞(X |Z) ≤ H2(X |Z) ≤ H1(X |Z) and H2(X |Z) ≤ 2H∞(X |Z).

We denote with distD(X,Y ) the advantage of a function D in distinguishing

the random variables X,Y : distD(X,Y )
def
= | Pr[D(X) = 1] − Pr[D(Y ) = 1] |.

The statistical distance between two random variables X,Y is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
D

distD(X,Y )

We say that X and Y are ε-close if SD(X,Y ) ≤ ε. We also note that any tuple
(X,Z) is ε-close to (X ′, Z) such that H∞(X ′|Z) ≥ H2(X |Z)− log (1/ε), which
is often much better than bounding H∞(X |Z) ≥ 1

2 ·H2(X |Z).

3 Seed-Dependent Condensers

We now generalize the notion of a condenser to the seed-dependent setting, in
which the adversarial sampler A of size t can depend on the seed S. As we
will see, seed-dependent condensers are useful for important applications such
as cryptographic key derivation.

Definition 3.1 (Seed-Dependent Condenser). Let c, c′ ∈ {1, 2,∞}. An ef-
ficient function Cond : {0, 1}n × {0, 1}d → {0, 1}m is a seed-dependent ([Hc ≥
k]→ε [Hc′ ≥ k′], t)-condenser if for all probabilistic adversaries A of size at most
t who take a random seed S ← {0, 1}d and output (using more coins) a sample
X ← A(S) of entropy Hc(X |S) ≥ k, the joint distribution (S,Cond(X ;S)) is
ε-close to some (S,R), where Hc′(R|S) ≥ k′.

The quantity β
def
= m− k′ is called the entropy deficit of the condenser. When

c = c′ is clear from the context, we say that Cond is a seed-dependent (k →ε k
′, t)-

condenser. We omit the reference to ε and/or t when ε = 0 and/or t = ∞,
respectively.
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A notion for traditional condensers arises by replacing A in the definition above
with an unbounded circuit that does not take the seed S as input. Unlike with
traditional condensers, seed-dependent condensers require that A be efficient.
Otherwise, an inefficient A can, by repeatedly evaluating the condenser using
the seed S, always find a high entropy distribution of inputs that map to a
low entropy output distribution. Second, while a seed-dependent extractor can
be defined as a special case of the definition above corresponding to k′ = m,
Proposition 3.3 below implies that it is impossible to build a (non-trivial) seed-
dependent extractor.

The following lemma (see proof in [13]) will be useful in several of our later
results.

Lemma 3.2. Let c ∈ {1, 2,∞}. Then,
• “Output (∞→ 2→ 1)”: If c′ ≥ c′′ and Cond is a seed-dependent (([Hc ≥
k]→ε [Hc′ ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc ≥
k]→ε [Hc′′ ≥ k′]), t)-condenser.

• “Output (2 → ∞)”: For any γ > 0, if Cond is seed-dependent (([Hc ≥
k]→ε [H2 ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc ≥
k] →ε+γ [H∞ ≥ k′ − log(1/γ)]), t)-condenser and also a seed-dependent
(([Hc ≥ k]→ε [H∞ ≥ k′/2]), t)-condenser.

• “Input (1 → 2 → ∞)”: If c′ ≤ c′′ and Cond is seed-dependent (([Hc′ ≥
k]→ε [Hc ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc′′ ≥
k]→ε [Hc ≥ k′]), t)-condenser.

Thus, it is somewhat preferable (but also the hardest) to build a seed-dependent
([H2 ≥ k] →ε [H∞ ≥ k′]) condenser, since it implies ([Hc ≥ k] →ε [Hc′ ≥ k′])-
condenser for any c, c′ ∈ {2,∞}. In contrast, it is preferable to base a security
of a given application on a ([H∞ ≥ k] →ε [H2 ≥ k′])-condenser, since such
condensers are likely to have slightly better parameters k and k′.

The following negative result shows that the output entropy deficiency β =
m − k′ must be at least roughly log t to work for samplers computable in time
t, if the condenser is computable in time significantly less than t. In particular,
we cannot hope for a seed-dependent extractor (i.e. β = 0) that is computable
in time significantly less than t, generalizing an observation of Trevisan and
Vadhan [34] about deterministic extractors for samplable sources.

Proposition 3.3. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be computable by a
circuit of size t′, and let β ∈ [0,m], ε, δ ∈ (0, 1/2). Then for Cond to be a
(([H∞ ≥ n− α] →ε [H1 ≥ m− β]), t)-condenser for α = *(β + 1)/(1− ε− δ)+,
it must be that α ≥ log t− log t′ −O(log(1/δ)) or α ≥ m.

Note that as ε, δ → 0, the ratio between α and β approaches 1. Thus, the propo-
sition says that if we want to decrease the entropy deficiency by any significant
factor, we must settle for output entropy deficiency β ≈ α that is at least roughly
log t.
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Handling Side Information. One can naturally generalize the notion of
(regular) extractors and condensers to handle some side information Z about
the source X , yielding the notion of average-case extractors/condensers [12].
Formally, the adversarial samplerA produces a pair (X,Z) such thatHc(X |Z) ≥
k, and one requires that the joint distribution (Z, S,Ext(X ;S)) is ε-close to
(Z, S, Um) (for condensers, that (Z, S,Cond(X ;S)) is ε-close to (Z, S,R) where
Hc′(R|(S,Z)) ≥ k′).

However, things become a bit trickier in the seed-dependent case that we in-
troduce in this work. Naturally, the sampler A now takes the seed S to produce
the pair (X,Z). Unfortunately, this means that A can now run the condenser
Cond(X ;S) and simply record all or part of this output in the side information Z.
This still leaves the entropy of X high enough (say, if k is noticeably larger than
m), but now the output entropy k′ drops to 0. Thus, to make a meaningful but
satisfiable definition in the case of side information, we will relax the syntax of
the condenser Cond to also take the side information Z as part of its input. While
less convenient for some applications, now the previous attack no longer applies,
since the sampler A(S) has to choose Z before R = Cond((X,Z);S) is derived,
making it much harder to “correlate” R and Z. Therefore we say that a con-
denser is a average-case, seed-dependent ([Hc ≥ k] →ε [Hc′ ≥ k′], t)-condenser
if (Z, S,Ext((X,Z);S)) is ε-close to (Z, S,R) where S ← {0, 1}d, (X,Z)← A(S)
with Hc(X |(S,Z)) ≥ k, and Hc′(R|(S,Z) ≥ k′). A formal definition can be
found in the full version [13].

We notice that Lemma 3.2 clearly extends to the average-case setting. Also,
when Z is empty, this still generalizes the “worst-case” seed-dependent condenser
from Definition 3.1. However, the introduction of side information makes the
notion of seed-dependent condenser very non-trivial to satisfy even when the
source X is perfectly uniform, but some side information Z = f(X) is “leaked”
to the attacker. Indeed, we show in Section 6 that this special case of average-
case condensers (see Definition 6.1) is exactly what is needed to instantiate the
Fiat-Shamir heuristic.

Finally, an equivalent way to think about average-case condensers is to inter-
pret the output (X,Z) of the sampler as a single (variable-length) source X ′, so
that the condenser is simply applied to X ′, but a subset of (known) physical bits
Z of X ′ is leaked to the attacker/distinguisher.

4 Condensers from Collision Resistance

In this section we show that a sufficiently strong collision-resistant hash function
(CRHF) gives a good seed-dependent (but not average-case) ([H2 ≥ k]→0 [H2 ≥
k′]) condenser, which also implies non-trivial bounds for other input/output en-
tropy settings when c, c′ ∈ {2,∞}, by Lemma 3.2.

Definition 4.1. A family of hash function H = {h : {0, 1}∗ → {0, 1}m} is
(t, δ)-collision-resistant if for any (non-uniform) attacker B of size at most t,
Pr[H(X1) = H(X2) ∧X1 �= X2] ≤ δ where H ← H and (X1, X2)← B(H).
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The proof of the following theorem appears in the full version [13].

Theorem 4.2. Fix any β > 0. If H is a (2t, 2β−1/2m)-collision-resistant hash

function family, then Cond(X ;H)
def
= H(x) for H ← H is a seed-dependent

(([H2 ≥ m− β + 1] → [H2 ≥ m− β]), t)-condenser with entropy deficit β and
no error.

In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥
m− β]), t)-condenser and (([H∞ ≥ m− β + 1] →ε [H∞ ≥ m− β + log ε]), t)-
condenser.

Parameters. To obtain good entropy deficit β as a function on the sampler’s
complexity t, we need to understand the best possible (2t, δ)-collision-resistant
security of H. Clearly, a birthday attack (essentially) implies that δ = Ω(t2/2m),
since the attacker can pick t random points, evaluate h on them, and hope for
some collision. Conversely, this bound is tight in the random oracle model, and
state-of-the-art hash functions more or less assume that the “birthday attack” is
the only possible attack on a good CRHF design. For example, birthday attacks
are currently the best known attacks on many popular hash functions, such as
SHA-256, SHA-512, and the new SHA-3 functions, as well as discrete-log based
CRHFs over many elliptic curve groups (c.f., [32]). Thus, under such (strong
but reasonable) assumptions, all the above popular hash functions achieve δ =
O(t2/2m), which means that we can set 2β−1 = O(t2) resulting in β = 2 log t+
O(1). More generally, if the best collision-finding attack has success probability
δ = poly(t)/2m, then β = O(log t).

Corollary 4.3. Assuming the existence of (t, O(t2)
2m )-collision-resistant hash

functions, there exists a seed-dependent (([H2 ≥ m−β + 1]→ [H2 ≥ m− β]), t)-
condenser with entropy deficit β = 2 log t+O(1) and no error.

In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥
m− β]), t)-condenser with entropy deficit β = 2 log t + O(1) and no error, and
(([H∞ ≥ m− β + 1] →ε [H∞ ≥ m− β − log (1/ε)]), t)-condenser with entropy
deficit β′ = (2 log t+ log (1/ε) +O(1)) and error ε.

Average-Case Setting? Unfortunately, the proof of Theorem 4.2 does not
extend to average-case seed-dependent condensers. The problem is that when
estimating the value Col(H(X,Z)|(H,Z)), one already needs to sample two
sources X1 and X2 corresponding to the same side information Z, which seems
to be hard. A bit more formally, a natural attempt to define a collision-finding
adversary B would be to first let B(H) run A(H) to produce a tuple (X1, Z1),
and then run A(H) several more times to try to produce a second tuple (X2, Z2)
with the hope that Z2 = Z1. But this will not be guaranteed to be efficient
unless Z is very short (e.g., just a few bits). In some sense, the difficulty of
handling side information might be expected, since we show that average-case
seed-dependent condensers are enough to instantiate the random oracle in the
Fiat-Shamir heuristic (see Section 6), which is a long-standing open problem.
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5 Application to Key Derivation

Consider any cryptographic primitive P (e.g., digital signatures, encryption,
etc.), which uses randomness R ∈ {0, 1}m to derive its secret (and, public, if
needed) key(s). Without loss of generality, we can assume that R itself is the
secret key. In the “ideal” setting, R ← {0, 1}m is chosen uniformly at random,
and the attacker B against P obtains no knowledge about the choice of R, except
for what is revealed by P . In practice, however, R is not perfectly uniform. For
example, it may be the output of a system random number generator (RNG)
that attempts to extract uniform bits from a source of entropy. To guarantee
security for the widest range of settings, we ask for the key-derivation to be se-
cure even against seed-dependent2, adversarially-manipulated sources. However,
Proposition 3.3 shows that, at least in general, no extractors exist that work
for such a strong adversarial model. We therefore turn to seed-dependent con-
densers, showing that these yield strong positive results about the security of
key-derivation.

Towards this, we model the “real” seed-dependent setting as follows. Let
S ← {0, 1}d be a random seed that is chosen and X ← A(S) is sampled by an ad-
versarial samplerA. Finally, the cryptographic primitive P usesR← Cond(X ;S)
as the key. While the above model is the one of greatest most direct practical
interest, we will actually consider the more general case of average-case condens-
ing, in which an attacker B against P obtains part of the input to the condenser,
the side-information Z. The resulting real/ideal settings for deriving the key for
P are formalized by the procedures Real(A) and Ideal(A):

Real(A):

S ← {0, 1}d
(X,Z) ← A(S)
R ← Cond((X,Z);S)
Return (R,S, Z)

Ideal(A):

S ← {0, 1}d
(X,Z) ← A(S)
R ← {0, 1}m
Return (R,S, Z)

The two procedures are parameterized by a sampler A that on input the seed
S outputs a pair (X,Z). We assume that the sampler A has size at most t
and produces a source X of (conditional) min-entropy H∞(X |(S,Z)) ≥ k, for
some parameters t and k. We call such samplers (t, k)-bounded. Sometimes, to
emphasize the dependence on the sampler complexity t and source min-entropy
k, we will refer to the above two settings as the (t, k)-real and (t, k)-ideal models,
respectively.

The side information Z naturally models information about the random source
X that may be leaked to an adversary via a side channel. However, in most or all
practical scenarios, our assumption that the value of Z is known and available to
the condenser is unrealistic. Thus, we will also state our results for the analogous
models without side information, meaning we omit Z in both the real and ideal
models.

2 For example the Linux RNG folds back into its entropy pool prior outputs [21].
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Defining Real/Ideal Security. We assume that the security of the cryp-
tographic primitive P is defined via an interactive game between a probabilistic
attacker B(s, z) and a probabilistic challenger C(r). Here one should think of s
and z as particular values of the seed and the side information, respectively, and
r as a particular value used by the challenger in the key generation algorithm
of P . We note that C only uses the secret key r and does not directly depend
on s and z. In particular, in the ideal model, the values s and z are not re-
ally useful to the actual attacker B, since the key r used by the challenger C is
chosen completely independently from these values. Still, we include them for
consistency.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that the
attacker “won the game”. Since C is fixed by the definition of P (e.g., C runs the
unforgeability game for signature or the semantic security game for encryption,
etc.), we denote by DB(r, s, z) the (abstract) distinguisher which simulates the
entire game between B(s, z) and C(r) and outputs the bit b. We also let

AdvB(r, s, z)
def
= Pr[DB(r, s, z) = 1]− c

be the advantage of B(s, z) to win the game against C(r), where c = 0 for
unpredictability applications (one-way functions, signatures, etc.) and c = 1/2
for indistinguishability applications (encryption, pseudorandom functions, etc.).
Thus, AdvB(·) ∈ [0, 1] for unpredictability applications and AdvB(·) ∈ [− 1

2 ,
1
2 ]

for indistinguishability applications. When B is clear from the context, we simply
write Adv(r, s, z).

In the following security definition for P , we will use the letter T to denote
the maximum allowable resources of B, which include all the efficiency measures
we might care about in the corresponding application, such as the circuit size,
number of oracle queries, etc. We say that such a B is T -limited.

Definition 5.1. Given a sampler A and an attacker B, we define their ideal

advantage Δ(A,B) def
= | E[AdvB(Ideal(A))] | . We say that P is (T, δ)-secure

in the (t, k)-ideal model if for any (t, k)-bounded sampler A and any T -limited
attacker B, Δ(A,B) ≤ δ. Similarly, given A and B, we define their real advan-

tage Δ̃(A,B) def
= | E[AdvB(Real(A))] | . We say that P is (T ′, δ′)-secure in the

(t, k)-real model if for any (t, k)-bounded sampler A and any T ′-limited attacker

B, Δ̃(A,B) ≤ δ′.

5.1 Simple Bound for Unpredictability Applications

As our first attempt, we would like to argue that if P is (T, δ)-secure in the
ideal setting, then P is also (T ′, δ′)-secure in the real setting, where T ′ is not
much lower than T , and, more importantly, δ′ is not much larger than δ. With
traditional extractors, this is done by arguing that the derived real key R is
(statistically) ε-close to Um, even conditioned on S and Z. This means that
δ′ ≤ δ + ε. Unfortunately, in the seed-dependent settings it is impossible to
achieve statistical extraction, as shown by Proposition 3.3. In this section, we
observe that is not strictly necessary to argue statistical extraction: if the original
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ideal security δ is low enough, a good enough condenser (achievable even in
the seed-dependent setting) might result in “real” security δ′ not much larger
than the “ideal” security δ. At least, we show that this intuition is true for
unpredictability applications (where, recall,Adv(·) ≥ 0) in the following lemma.

Lemma 5.2. Assume P is some unpredictability application which is (T, δ)-
secure in the (t, k)-ideal model, and Cond is an average-case seed-dependent
(([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser with entropy deficit β = m− k′. Then
P is (T, δ′)-secure in the (t, k)-real model, where .δ′ ≤ ε+δ·2β .. If instead Cond is
an (non-average-case) seed-dependent (([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser,
then P is (T, δ′)-secure in the (t, k)-real model without side information.

Parameters. In essence, Lemma 5.2 states that the security δ degrades ex-
ponentially with the entropy deficit β of our seed-dependent condenser. Recall
that β = O(log t) is the best we can hope for (by Proposition 3.3); this would
give a meaningful security guarantee δ′ ≈ δ · poly(t), as long as δ ) 1/poly(t).

For example, for the non-average-case setting, we can combine the bound in
Lemma 5.2 with the construction from Corollary 4.3 to show that a O(t2)/2m-
collision-resistant hash function suffices for real model security.

5.2 General Bound through Squared Advantage

The bound of Lemma 5.2 only holds for unpredictability applications, and also
requires seed-dependent condensers guaranteeing the min-entropy of the ex-
tracted key R. In this section we show a more general bound which also holds for
indistinguishability applications, has better dependence on the entropy deficit
of the condenser, and needs a slightly weaker type of seed-dependent condenser
for collision entropy. However, the small price we pay for such improvements is
that we can no longer directly relate the real-security δ′ of our application to its
ideal security δ. Rather, we use the notion of the squared advantage Δ2(A,B),
and will relate Δ̃(A,B) to Δ2(A,B), which will in turn relate δ′ to the “square-
security” σ which we define below. This notion of squared advantage/security
was implicitly introduced by Barak et al. [3] in the “seed-independent” setting
(to improve the entropy loss of the Leftover Hash Lemma), who also showed that
for many important applications the value σ is not “too much worse” than δ (see
the full version for more details [13]).

Definition 5.3. Given a sampler A and an attacker B, we define their (ideal)

square advantage Δ2(A,B) def
= E[AdvB(Ideal(A))2] . We say that P is (T, σ)-

square-secure in the (t, k)-ideal model if for any (t, k)-bounded sampler A and
any T -limited attacker B, Δ2(A,B) ≤ σ.

We can now state our improved bound, and then compare it to our previous
bound from Lemma 5.2. The proof appears in the full version [13].

Lemma 5.4. Assume P any application which is (T, σ)-square-secure in the
(t, k)-ideal model, and Cond is an average-case seed-dependent (([H∞ ≥ k] →ε
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[H2 ≥ k′]), t)-condenser with entropy deficit β = m − k′. Then P is (T, δ′)-

secure in the (t, k)-real model, where .δ′ ≤ ε +
√
σ · 2β .. If instead Cond is an

(non-average-case) seed-dependent (([H∞ ≥ k] →ε [H∞ ≥ k′]), t)-condenser,
then P is (T, δ′)-secure in the (t, k)-real model without side information.

Using Corollary 4.3, we obtain a nearly optimal security degradation in the real
model with no side information:

Corollary 5.5. Assuming the existence of (t, O(t2)
2m )-collision-resistant hash

functions, if P is (T, σ)-square-secure in the (t,m − 2 log t + O(1))-ideal model
with no side information, then using a collision-resistant function as a condenser
makes P to be (T, δ′)-secure in the (t,m− 2 log t+O(1))-real model with no side
information, where δ′ ≤ O(t ·

√
σ) .

6 Side-Information and Fiat-Shamir

One of the earliest and most influential applications of the Random Oracle Model
in cryptography (predating its formalization by Bellare and Rogaway [5]) was
to analyze the Fiat-Shamir Heuristic [15]. In the Fiat–Shamir Heuristic, a hash
function is used to eliminate interaction in constant-round public-coin protocols,
replacing the verifier’s random challenges with hashes of the transcript so far. If
the hash function is modeled as a random oracle, then this heuristic is known
to preserve soundness of the underlying protocol (up to a factor polynomial in
the number of queries made by the adversary to the random oracle). However,
there are no natural examples of protocols for which the Fiat–Shamir Heuristic
has been proven sound when the hash function is implemented by an efficiently
computable family of functions.

The original motivation for the Fiat–Shamir Heuristic was as a method to
convert identification schemes into digital signature schemes, and the method
gave rise to many efficient digital signature schemes in practice [15,31,19] (albeit
with only a proof in the Random Oracle Model). Another compelling motivation
for understanding the soundness of the Fiat–Shamir Heuristic is its close con-
nection to the zero-knowledge property of the underlying protocols, as pointed
out by Dwork, Naor, Reingold, and Stockmeyer [14]. Dwork et al. showed that
the soundness of the Fiat–Shamir Heuristic on a given protocol is essentially
equivalent to that protocol not being (auxiliary-input) zero knowledge unless
the underlying language is in BPP.3 There are many constant-round public-coin
protocols whose zero knowledge status is a long-standing open problem (e.g.
ones obtained by starting some underlying basic zero-knowledge protocol and

3 The forward direction is shown as follows: if there is an efficiently computable family
of hash functions for which the Fiat–Shamir heuristic is sound, then it is infeasible
to simulate a verifier that has a random hash function from the family as auxiliary
input, and obtains its challenges by applying the hash function to the transcript
so far. Indeed, an efficient simulator would constitute a prover strategy that gener-
ates accepting proofs for the Fiat-Shamir-collapsed protocol, which would only be
possible for inputs in the language.
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applying parallel repetition to make the soundness error negligible). While these
protocols cannot be black-box zero knowledge (for nontrivial languages) [16], they
may still be non-black-box (auxiliary-input) zero knowledge.

Indeed, Barak [2] constructed a constant-round, public-coin (non-black-box)
zero-knowledge argument system for NP (assuming the existence of collision-
resistant hash functions), thereby yielding a natural protocol on which the Fiat–
Shamir heuristic is unsound (for any efficiently computable family of hash func-
tions). Goldwasser and Kalai [17] extended Barak’s techniques to construct 3-
message public-coin identification schemes on which the Fiat–Shamir Heuristic
is unsound. In both of these counterexamples to the Fiat–Shamir Heuristic, the
initial interactive protocol is only computationally sound, and the results seem
to use this in an essential way.

Thus, Barak, Lindell, and Vadhan [4] conjectured that there is a sound im-
plementation of the Fiat–Shamir Heuristic for any statistically sound interactive
proof of language membership (and thus that there can be no constant-round
public-coin zero-knowledge proof system with negligible soundness for a language
outside BPP). Indeed, they provided a plausible property for a family of hash
functions that suffices for it to provide a sound implementation of Fiat–Shamir
on proof systems. While they conjectured that such hash families exist, it re-
mains open to construct one based on a standard complexity assumption.

The significance of statistical soundness for reducing interaction was further
highlighted by the recent work of Kalai and Raz [22], who showed that a method
proposed by Aiello et al. [1] (based on Private Information Retrieval) can be
used to convert (statistically sound) interactive proofs into 2-message argument
systems. However, this construction does not subsume Fiat–Shamir, because the
2-message argument system it produces is private coin (so the verifier’s first
message cannot be published as a CRS and shared by all verifiers, as needed for
the application to digital signatures) and it does not have the connection to zero
knowledge mentioned above.

Here we show that condensers for seed-dependent samplable sources that can
handle side information (i.e. average-case condensers) imply hash functions for
which the Fiat–Shamir Heuristic is sound for proof systems. In fact, we only
require condensers for the case that the initial source X is uniform and the
adversary’s side-information Z consists of a bounded-length “leakage” f(X,S)
on the source and seed, for an efficiently computable leakage function f . We also
show a partial converse — some form of such condensers are also necessary for
the Fiat–Shamir heuristic to be sound for all proof systems.

Our results are inspired by a similarity between the definition of condensers for
samplable sources and the aforementioned conjectures of Barak et al. [4]. While
the existence of such condensers and hash functions remains an open problem, the
connection between randomness condensing and the Fiat–Shamir Heuristic, along
with our construction of condensers without side information (Theorem 4.2), seem
to yield a clearer picture of what is needed for the Fiat–Shamir Heuristic to work.
(In particular, we find the definition of a seed-dependent average-case condenser
more natural than the conjectures in [4].)
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We begin by defining the restricted form of average-case condensers that we
relate to the Fiat–Shamir heuristic:

Definition 6.1 (Condensers for Leaky Sources). Let c, c′ ∈ {1, 2,∞}. An
efficient function Cond : {0, 1}n × {0, 1}α → {0, 1}m is an (ε, [Hc′ ≥ k′], t)-
condenser for leaky sources if for all probabilistic adversaries A of size at most
t who take a random source X ← {0, 1}n and output a string Z := A(X)
of length α, the joint distribution (Z,Cond(X,Z)) is ε-close to (Z,R), where
Hc′(R|Z) ≥ k′.

When ε = 0, we will refer to Cond as an ([Hc′ ≥ k′], t)-condenser for leaky

sources. The quantity β
def
= m− k′ is called the entropy deficit of the condenser.

Thus, instead of allowing an arbitrary efficiently samplable source X that has
high entropy given the adversary’s side information Z, we restrict toX ← {0, 1}n
and Z of bounded length α. For natural measures of conditional entropy, this
implies that H(X |Z) ≥ n−α, so an average-case condenser for entropy k = n−α
is also condenser for leaky sources according to Definition 6.1. Note that in the
case of leaky sources, we do not provide the condenser with a seed; that is
because any seed can be viewed as part of the uniformly random source X .
Indeed, average-case condensers with seeds imply seedless condensers for leaky
sources; further discussion and formal results are in the full version [13].

Now we define the Fiat–Shamir heuristic more precisely. Let (P, V ) be a
public-coin interactive protocol, where the parties receive no inputs (except a
security parameter κ), there are 2r+1 messages exchanged starting with P . We
denote the lengths of P ’s messages by � = �(κ) and the lengths of V ’s messages
by m = m(κ).

Definition 6.2. For a language L = L(κ) ⊆ {0, 1}�, we say that (P, V ) is a
(t, ε)-sound interactive argument for L iff there is no prover strategy P ∗ of circuit
size at most t that convinces V to accept on a transcript whose first message is
not in L with probability greater than ε.

We say that (P, V ) is an ε-sound interactive proof for L iff it is an (∞, ε)
interactive argument for L (i.e. it holds for computationally unbounded prover
strategies P ∗).

Ordinarily, interactive proofs are formulated with the input x (whose member-
ship in L is being determined) being provided separately as a common input
to P and V . However, incorporating x into the first message of the protocol is
notationally more convenient for us.

Fiat and Shamir [15] suggested a way to remove the interaction from protocols
as above, by replacing the verifier’s messages with hashes of the transcript:

Definition 6.3. For an interactive protocol (P, V ) as above, α = r·�+(r−1)·m,
and a family of hash functions H = H(κ) = {h : {0, 1}α → {0, 1}m}, the Fiat-
Shamir collapse of (P, V ) using H is the 2-message public-coin protocol (P ′, V ′)
defined as follows:

(1) V ′ sends P ′ a random hash function H ← H,
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(2) P ′ sends V ′ a tuple (M1,M2, . . . ,Mr+1) ∈ ({0, 1}�)r+1,

(3) V ′accepts iff V accepts on the transcript (M1, R1,M2, R2, . . . ,Mr, Rr,Mr+1)

where Ri
def
= H(M1, R1, . . . ,Mi−1, Ri−1,Mi) for each i ∈ [r].

We say that the Fiat-Shamir heuristic using H is (t, ε′)-sound on (P, V ) iff
(P ′, V ′) is a (t, ε′)-sound interactive argument for the language L′ = {(M1, . . . ,
Mr+1) :M1 ∈ L}.

Now we prove that we can use condensers for leaky sources to construct hash
functions for which the Fiat–Shamir heuristic is secure:

Theorem 6.4. Let (P, V ) be an interactive protocol as above, and let α = r ·�+
(r−1) ·m. Given Cond : {0, 1}n×{0, 1}α→ {0, 1}m, define H = {hx : {0, 1}α →
{0, 1}m}x∈{0,1}n by hx(z) = Cond(x, z).

Then if (P, V ) is an ε1-sound interactive proof for some language L and Cond
is an (ε2, [H∞ ≥ m − β], t)-condenser for leaky sources, then the Fiat-Shamir
heuristic is (t′, ε′)-sound on (P, V ), for t′ = t− (r − 1) · tCond −O(n) and

ε′ = 2rβ · ε1 +
2rβ − 1

2β − 1
· ε2 ≤ 2rβ · (ε1 + ε2).

For intuition about the parameters, consider the standard, polynomial-time
asymptotic setting. Here all length parameters of the proof system (�, m) are
some fixed polynomial in the security parameter κ, and we are interested in
protocols whose soundness error ε1 is negligible, i.e. ε1 = κ−ω(1). We focus on
constant-round proof systems, so r = O(1). We take the length n = poly(κ)
of the condenser source to be significantly larger than m + α = r · (� + m).
This means that the condenser should work for sources with entropy at least
k = n− α, which is significantly larger than m. By analogy with Theorem 4.2,
we can hope for the output to have min-entropy deficiency β = O(log t), which
is O(log κ) for any polynomial t = t(κ), possibly with some negligible statistical
difference ε2 = κ−ω(1). Thus the new soundness error satisfies

ε′ ≤ 2rβ · (ε1 + ε2) = 2O(log κ) · (κ−ω(1) + κ−ω(1)) = κ−ω(1),

which is still negligible.
For intuition about the proof, consider a cheating prover strategy, that given

the description X of a random hash function from the family, tries to construct
a transcript (M1, R1, . . . ,Mr, Rr,Mr+1) such that M1 /∈ L, the original verifier
accepts, and each Ri is the hash of the prefix preceding it, i.e.

Ri = hX(M1, R1, . . . ,Mi) = Cond(X, (M1, R1, . . . ,Mi)).

Viewing Zi = (M1, R1, . . . ,Mi) as the adversary’s side information (which is of
length at most r ·�+(r−1)·m), the condenser property says that Ri is ε2-close to
having min-entropy deficiency at most β given the prefix M1, R1, . . . ,Mi. Com-
pared to Ri being uniform and independent of the prefix, this should increase
the soundness error by an additive ε2 and a multiplicative 2β . Incurring this
blow up for each of the rounds i yields the bound in the theorem. The formal
proof is given in the full version [13].
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Many interactive proofs of interest have only three messages (i.e. r = 1 above)
and have optimal soundness ε1 = 1/2m, meaning that for every initial prover
message not in L, there is at most 1 verifier challenge that can lead to an ac-
cepting transcript. Examples include parallel repetitions of Blum’s Hamiltonicity
protocol [6], the Goldwasser-Micali-Rackoff Quadratic Residuosity Protocol (to
which Fiat-Shamir was originally applied) [18], and any Σ protocol [10]. Setting
r = 1 and ε1 = 1/2m, we see that the resulting soundness error is ε′ = 2β/2m+ε2,
which is small even for entropy deficiency β that is quite close to m, i.e. the out-
put entropy of the condenser need only be k′ = m − β = log(1/ε3) to achieve
soundness error ε2 + ε3:

Corollary 6.5. Let Cond, H, and (P, V ) be as in Theorem 6.4. Suppose further
that (P, V ) has 3 messages (i.e. r = 1), and has soundness ε1 = 1/2m, where m
is the length of the verifier’s challenge.

Then if Cond is a (ε2, [H∞ ≥ log(1/ε3)], t)-condenser for leaky sources com-
putable in time tCond, it follows that the Fiat-Shamir heuristic is (t′, ε′)-sound
on (P, V ), for t′ = t−O(n) and ε′ = ε2 + ε3.

Theorem 6.4 and Corollary 6.5 are stated using average min-entropy as the en-
tropy measure for the output of the condenser. We now discuss their extensions
to other entropy measures.

If the condenser output is only guaranteed to have high collision entropy
given the seed and the adversary’s side information, we can deduce that it is
statistically close to having high average-min-entropy. Indeed, if H2(A|B) ≥ k,
then for every γ > 0, (A,B) is γ-close to some (A′, B) such that H2(A

′|B) ≥
k− log(1/γ). Thus we can switch from min-entropy to collision entropy at a price
of increasing the entropy deficiency by at most log(1/γ) and increasing ε by at
most γ.

If the condenser output is only guaranteed to have high Shannon entropy, we
can only deduce that the Fiat–Shamir Heuristic has soundness error bounded
by a constant. This is still quite nontrivial, and indeed the soundness error can
be made negligible without adding interaction by repeating the heuristic with
several independent hash functions. This case (obtaining constant error using
condensers for Shannon entropy) actually follows from the results in [4] and
the connection between condensers for leaky sources and the conjectures in [4].
Moreover, in the full version [13], we give a converse, that soundness of the
Fiat-Shamir transform implies the existence of condensers for leaky sources.
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Abstract. Verifiable random functions (VRFs) are pseudorandom func-
tions with the additional property that the owner of the seed SK can
issue publicly-verifiable proofs for the statements “f(SK , x) = y”, for
any input x. Moreover, the output of VRFs is guaranteed to be unique,
which means that y = f(SK , x) is the only image that can be proven
to map to x. Despite their popularity, constructing VRFs seems to be a
challenging task and only a few constructions based on specific number-
theoretic problems are known. Basing a scheme on general assumptions
is still an open problem. Towards this direction, Brakerski et al. showed
that verifiable random functions cannot be constructed from one-way
permutations in a black-box way.

In this paper we continue the study of the relationship between VRFs
and well-established cryptographic primitives. Our main result is a sepa-
ration of VRFs and adaptive trapdoor permutations (ATDPs) in a black-
box manner. This result sheds light on the nature of VRFs and is inter-
esting for at least three reasons:

– First, the separation result of Brakerski et al. gives the impression
that VRFs belong to the “public-key world”, and thus their rela-
tionship with other public-key primitives is interesting. Our result,
however, shows that VRFs are strictly stronger and cannot be con-
structed (in a black-box way) form primitives like e.g., public-key en-
cryption (even CCA-secure), oblivious transfer, and key-agreement.

– Second, the notion of VRFs is closely related to weak verifiable ran-
dom functions and verifiable pseudorandom generators which are
both implied by TDPs. Dwork and Naor (FOCS 2000) asked whether
there are transformation between the verifiable primitives similar to
the case of “regular” PRFs and PRGs. Here, we give a negative
answer to this problem showing that the case of verifiable random
functions is essentially different.

– Finally, our result also shows that unique signatures cannot be in-
stantiated from ATDPs. While it is well known that standard sig-
nature schemes are equivalent to OWFs, we essentially show that
the uniqueness property is crucial to change the relations between
primitives.
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1 Introduction

Verifiable random functions (VRF) were introduced by Micali, Rabin, and Vad-
han [1]. VRFs are random functions with the additional property that they
provide a proof verifying the input-output relationships. Formally, a VRF is
defined by a key pair (SK ,PK ) such that: the secret seed SK allows the evalu-
ation of the function y←F (SK , x) on any input x and the generation of a proof
π. This proof is publicly verifiable i.e., given the public key PK one can effi-
ciently verify (using π) that the statement “F (SK , x) = y” holds. For security,
VRFs must satisfy two properties: pseudorandomness and uniqueness. Roughly
speaking, pseudorandomness states that the function looks random at any input
x for which no proof has been issued. Uniqueness guarantees that for any x,
there exists only one image y for which a valid proof can be produced (even for
maliciously chosen public keys).

In some sense a VRF can be seen as the public-key equivalent of a pseudoran-
dom function. This fascinating primitive has many applications, both theoretical
and practical: 3-rounds resettable zero-knowledge [2], non-interactive lottery sys-
tems and micropayment schemes [3], a verifiable transaction escrow scheme [4],
and updatable zero-knowledge sets [5]. However, despite their popularity, con-
structing VRFs seems to be challenging. In particular, only a few schemes are
known so far, e.g., [1,6,7,8,9,10] (see Section 1.3 for a brief description of these
works). Furthermore, all known schemes are based on specific number-theoretic
problems such as RSA or different assumptions relying on bilinear maps. Con-
structing a VRF based on general assumptions is still an open problem.

Inmodern cryptography, almost all cryptographic primitives base their security
on unproven computational assumptions that are considered reasonable by the
community1. In particular, the existence of one-way functions (OWF) is one of
the major open problems in cryptography. A common methodology for proving
the security of a cryptographic primitive, and for better understanding its relation
to other primitives, are black-box reduction techniques that can be described as
follows. Let P andQ be two primitives. A construction of P fromQ is black-box if
the primitive P has only oracle access toQ (i.e., P does not have access to the code
of this primitive, but can evaluate it). A security reduction of P toQ is black-box if
for any (efficient) adversaryA that breaksP there exists an (efficient) algorithm S
that has black-box access to A and breaks Q. This approach has been extensively
formalized by Reingold et al. who gave different “flavors” of black-box reductions
depending on the “degree” of black-box access [11].

Black-box constructions and black-box proofs give clearly a limited view on
the relation between the different primitives as no conclusions beyond the black-
box access can be made. Nevertheless, the approach is well established as most
of the cryptographic proofs are black-box and it is strong enough to show that
many cryptographic primitives, such as pseudorandom functions, digital signa-
tures, private-key encryption, are equivalent to the existence of one-way functions

1 If one makes exception of a few cases that are proven secure in an information-
theoretic sense.
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(OWFs), which is considered to be one of the most basic assumptions. On the
other hand, other primitives (e.g., public-key encryption) are believed to exist
only under stronger assumptions (e.g., the existence of trapdoor permutations).
Though such primitives and/or assumptions look different, it might be possible
that many of them are related or even equivalent. Therefore, identifying the min-
imal assumptions on which one can base the security of a primitive is considered
one of the most important goals for a better and deeper understanding of the
cryptography world.

On the negative side, Impagliazzo and Rudich introduced a methodology for
proving separations between primitives in the sense of black-box constructions,
e.g., proving that Q does not imply P in a black-box way [12]. In their work
they ruled out any black-box construction of key-agreement protocols (KA)
from one-way functions. Gertner et al. show that the breakthrough result of
Impagliazzo and Rudich can be seen as defining two separated worlds in which
the cryptographic primitives can be divided: the “private cryptography” world
that contains all those primitives that are equivalent to OWFs, and private-key
encryption; the “public cryptography” world that contains harder primitives
such as trapdoor permutations, public-key encryption (PKE), KA and oblivious
transfer (OT) [13].

It is worth to mention that another methodology, called meta-reductions, for
separating primitives in a black-box sense is known. Since we do not follow this
approach, we refer the reader to e.g., [14,15,16].

1.1 Our Results

We investigate the relationship between verifiable random functions and well-
studied cryptographic primitives. The first step towards this goal was recently
given by Brakerski, Goldwasser, Rothblum, and Vaikuntanathan who separated
VRFs from one-way permutations [17]. The authors introduce the notion of weak
verifiable random functions (wVRFs) that can be seen as the public key ana-
logue to weak-PRFs: pseudorandomness only holds with respect to randomly
chosen inputs. Moreover, they construct wVRFs from (enhanced) trapdoor per-
mutations and show that wVRFs are essentially equivalent to non-interactive
zero knowledge proof (NIZK) systems in the common reference string model.
In the private key setting, it is well known that “regular” PRFs can be con-
structed from weak PRFs in a black-box way [18,19]. Thus, a natural direc-
tion to study the relation between the primitives is to build a VRF out of any
wVRF.

Another work that is closely related to this topic is the study of verifiable pseu-
dorandom generators (VPRGs) due to Dwork and Naor [20]. Roughly speaking,
a VPRG is a pseudorandom generator that allows the owner of the seed to prove
the correctness of subsets of the generated bits while the other bits remain indis-
tinguishable from random. Dwork and Naor constructed VPRGs from trapdoor
permutations. Again, in the case of “regular” PRFs we know how to turn a PRG
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into a PRF in a black-box way [21]. Dwork and Naor left open the question if a
similar transformation can be found in the public key setting [20], namely:

Is it possible to construct a VRF from VPRGs and/or weak-VRFs in a
black-box way?

In this paper, we give a negative answer to this question and, more generally,
we show that no black-box constructions of VRFs from (enhanced) trapdoor
permutations exist.

Theorem 1 (informal). There exists no black-box reduction of verifiable ran-
dom functions to trapdoor permutations.

Our result is actually more general than the above indicates; it separates the
weaker primitive of verifiable unpredictable functions (VUFs) from the stronger
primitive of adaptive trapdoor functions. The difference between VRFs and
VUFs is that in the latter the output should be unpredictable instead of pseu-
dorandom. Therefore, VUFs can also be seen as “unique signatures”, where, for
every public key, each message can have at most one valid signature2.

Adaptive trapdoor functions (ATDFs), recently introduced by Kiltz, Mohas-
sel, and O’Neill in [22], are essentially strictly stronger than trapdoor functions
as the adversary is given access to an inversion oracle.

Implications of Our Result. Our result sheds light on the nature of VRFs
and explains why this primitive seems so hard to construct. First, given the
separation result of Brakerski et al., one can naturally think of VRFs as though
they belong to the “public cryptography” world. Then, if we consider the rela-
tionship between VRFs and the other public-key primitives, our result highlights
that VRFs are much stronger as they cannot be implied by most of the primitives
in this world: basically everything which is implied by TDPs, e.g. semantically-
secure public-key encryption, oblivious transfer, key-agreement. Moreover, since
ATDPs imply CCA-secure PKE [22], then VRFs are separated even from it.
On the positive side we observe that we can obtain a construction of VRFs
from identity-based encryption with unique key derivation following the idea of
Abdalla et al. [9]3. Combining this positive result with our impossibility result
confirms the impossibility result of IBE from TDPs [23].

Second, our result points out the hardness of achieving the uniqueness prop-
erty in the context of digital signatures: While signature schemes are equivalent
to OWFs, unique signatures cannot be instantiated from (adaptive) TDPs in a
black-box way.

Finally, since both weak-VRFs and VPRGs are implied by TDPs, our result
rules out the possibility of constructing VRFs from weak-VRFs and/or VPRGs

2 At this stage, it is interesting to observe unique and deterministic signatures are
two distinct primitives. Consider for example the signature σ = σ′‖0 where σ′ is
deterministic and the verification algorithm ignores the last bit. Then it is obvious
that uniqueness could be easily violated by flipping the last bit.

3 Precisely, the unique key derivation algorithm immediately implies a VUF, which
can then be turned into a VRF using the original idea of Micali, Rabin and Vadhan.
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(in a black-box way). Thus, it seems that there is no hope that the approaches
used in the private key world to build PRFs from weak-PRFs and PRGs can
be adopted to the case of the public verifiable primitives. This shows that the
verifiable analogous of these primitives are essentially different.

1.2 Overview of the Techniques

Our starting point is the so-called “two oracles” technique of Hsiao and Reyzin
[24]. The main idea of this technique is to construct two oracles, say O and B,
such that O is used in the constructions, whereas both oracles O and B can
be accessed by the adversaries. This approach is slightly weaker than the single
oracle technique because it “only” rules out fully-black-box reductions (instead
of any black-box reduction).

Our Oracles. In our case the oracle O is an ideal random trapdoor permutation
oracle that is modeled as a triple of random functions (g, e, d) such that: g(·)
maps trapdoors to public keys; e(ek, ·) is a random permutation for every public
key ek and d(td, ·) is the inverse of e(ek, ·) when g(td) = ek. Due to the fact
that O is truly random, O is secure even in the sense of adaptive trapdoor
permutations. The oracle B is designed to break any black-box construction of
VUF based on O.

Therefore, the core of our separation theorem is the definition of the weakening
oracle B. The proof then consists of two main parts:

(i) showing an efficient adversary that can break the unpredictability of the
VUF by making a polynomial number of queries to B;

(ii) showing an ATDP construction that is secure against any adversary that
makes at most polynomially-many oracle queries.

The design of B is rather technical. In particular, the main difficulty is to prevent
an attacker from exploiting B to break the one-wayness of the ATDP. A näıve
construction would be an oracle that takes as input a VUF public key and returns
y∗←F (SK , x∗), i.e., the evaluation of the function on a random point x∗. This
oracle would clearly break the unpredictability of the VUF, but it would also
be too strong. Consider, for instance, an adversary A that is given as input a
public key ek∗ of a trapdoor permutation and that is challenged to invert it on
a random point b∗. Now, A might encode (ek∗, b∗) into PK in such a way that
the evaluation of F (SK , x∗) requires to invert b∗. But then the attacker would
learn all informations about b∗’s inverse. To prevent these “dangerous” queries
we modify B such that it takes as input a certain number of triples (xi, yi, πi),
where πi is a valid proof for “F (SK , xi) = yi”. The idea follows from the intuition
that the attacker can encode b∗ (and ek∗) into PK in only two ways:

(i) F (SK , ·) needs to invert b∗ on a large fraction of the inputs,
(ii) F (SK , ·) needs to invert b∗ only on a negligible fraction of the inputs.

Now, suppose that A encodes b∗ into PK as defined in the first case. In order
to query the oracle, A has to provide valid proofs. But if A can compute all
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proofs, then the attacker must already know b∗’s inverse. Otherwise, if b∗ is
encoded into PK as described in the second case, then the probability that
evaluating F (SK , x∗) on a random input x∗ requires to invert b∗ is negligible.
Hence, returning y∗ does not reveal any useful informations to A. Although this
idea seems very promising, it raises another issue. In fact A might overcome this
limitation by choosing all the xi’s from the small fraction that does not require
to invert b∗. We solve this issue by defining a two-steps oracle B = (B1,B2) such
that B1 chooses the values xi’s and B2 is the actual oracle as described above,
such that it works properly only if the inputs xi’s are chosen by B1.

Finally, an important detail towards the definition of B is that it simulates
the run of FO(SK , x∗) using a different oracle O′ and a different secret key
SK ′ such that SK ′ still corresponds to PK under O′. The idea is that, if O′ is
close enough to O (as it should be the case while trying to break the VUF), then
evaluating FO′

(SK ′, x∗) produces the same output as FO(SK , x∗). On the other
hand, with high probability O and O′ are not close when an ATDP adversary
invokes B.

1.3 Other Related Work

Verifiable Random Functions. Goldwasser and Ostrovsky introduce the no-
tion of unique signatures (calling them invariant signatures) and they show that
in the common random string model they are equivalent to non-interactive zero-
knowledge proofs [25]. Later, Micali, Rabin and Vadhan formally define VRFs
and propose a construction (in the plain model) [1]. The authors follow two main
steps: (1) they construct a verifiable unpredictable function (VUF) based on the
RSA problem and then (2) they show a generic transformation to convert a VUF
into a VRF using the Goldreich-Levin theorem [26] (that extracts one random
bit from polynomially-many unpredictable bits). The hope of this two-steps ap-
proach is that a VUF should be easier to realize than a VRF, but the second
step is very inefficient. Finally, Lysyanskaya proposes a VUF relying on a strong
version of the Diffie-Hellman assumption [6].

The subsequent works suggest direct and (more) efficient constructions of
VRFs without relying on the Goldreich-Levin transformation. Dodis suggests
an instantiation on the sum-free generalized DDH assumption [7], and Dodis
and Yampolskiy give a construction based on the bilinear Diffie-Hellman inver-
sion assumption [8]. Abdalla, Catalano, and Fiore show the relationship between
VRFs and a certain class of identity-based encryption schemes [9]. Moreover, the
authors propose a construction based on the weak bilinear Diffie-Hellman inver-
sion assumption. All the schemes mentioned so far share the limitation of sup-
porting only a small domain (i.e., of superpolynomial size). The only exception
is the recent scheme by Hohenberger and Waters, who give the first construction
having a large input space [10]. Another closely related work is one of Dodis and
Puniya who construct NIZK from verifiable random permutations (VRPs), that
are the verifiable analog of pseudorandom permutations [27]. The author also
show how to convert a VRF into a VRP.
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Black-Box Separations. After the seminal result of Impagliazzo and Rudich
many follow up works studied the relation between different primitives, such as,
e.g., [13,28,29,30,23,23,31,32]. We discuss these works in the full version [14].

2 Preliminaries

Adaptive Trapdoor Permutations. Adaptive trapdoor permutations (AT-
DPs) are defined similar to a trapdoor permutation, but in the security definition
the adversary is provided with an oracle that inverts the function on arbitrary
images (except on the challenge value). A formal definition is given in [22,14].

Verifiable Random Functions.Verifiable random functions (VRF) are similar
to pseudorandom functions, but differ in two main aspects: Firstly, the output of
the function is publicly verifiable, i.e., there exists an algorithm Π that returns
a proof π which shows that y is the output of the function on input x. Secondly,
the output of the function is unique, i.e., no two images (and proofs) exist that
verify under the same preimage.

Definition 1 (Verifiable Random Functions). A family of functions F =
{fs : {0, 1}n(λ) → {0, 1}m(λ)}s∈{0,1}seed(λ) is a family of Verifiable Random Func-
tions if there exists a tuple of algorithms (KG,F,Π, V ) with the following func-
tionalities:

KG(1λ) outputs a pair of keys (PK , SK ).
F (SK , x) is a deterministic algorithm that evaluates fs(x).
Π(SK , x) is an algorithm that outputs a proof π related to x.
V (PK , x, y, π) outputs 1 if π is a valid proof for “fs(x) = y”, else it outputs 0.

A tuple (KG,F,Π, V ) is said to be a VRF if it satisfies the following properties:

Domain Range Correctness For all values x ∈ {0, 1}n(λ), over the choices
of (PK , SK ), we have that F (SK , x) ∈ {0, 1}m(λ) holds with all but negligible
probability.

Completeness For all x ∈ {0, 1}n(λ) if Π(SK , x) = π and F (SK , x) = y then
V (PK , x, y, π) outputs 1 with overwhelming probability (over the choices of
(PK , SK ) and the coin tosses of V ).

Uniqueness There exist no values (PK , x, y1, y2, π1, π2), unless with negligible
probability over the coin tosses of V , such that for distinct y1 and y2 it holds
that V (PK , x, y1, π1) = V (PK , x, y2, π2) = 1.

Pseudorandomness For all PPT adversaries A = (A1,A2) we require that

the probability A succeeds in the experiment pseudofA is at most 1
2 + negl(λ),

where the experiment is defined in Figure 1.

Verifiable unpredictable functions (VUF) are similar to VRFs, except that un-
predictability must hold instead of pseudorandomness:

Definition 2 (Verifiable Unpredictable Functions). A tuple (KG,F,Π, V )
is a verifiable unpredictable function if the probability that any PPT adversary A
succeeds in the experiment predictfA, defined in Figure 1, is at most negligible.
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Experiment pseudofA
(PK ,SK )←KG(1λ);

(x∗, state)←AFunc(SK ,·)
1 (PK )

b
$← {0, 1};

y0←F (SK , x); y1
$← {0, 1}m(λ)

b′←AFunc(SK ,·)
2 (state, yb)

Output 1 iff b′ = b
and x∗ was not asked
to the Func(SK , ·) oracle.

Experiment predictfA
(PK ,SK )←KG(1λ);

(x∗, y∗)←AFunc(SK ,·)(PK )
Output 1 iff y∗ = F (SK , x∗) and

x∗ was not asked
to the Func(SK , ·) oracle.

Fig. 1. This Figure show the experiment of pseudorandomness and unpredictability. In
both experiments the oracle Func(SK , ·) computes F (SK , ·) and Π(SK , ·) and returns
their output.

3 The Black-Box Separation

We first give a high-level overview of the main ideas of our proof before going
into the details afterwards. Our starting point is the “two oracles” separation
technique of Hsiao and Reyzin [24]. In the context of VRFs, we have to construct
two oracles O and B relative to which ATDPs exist while VUFs do not. In
particular, the constructions are restricted to have black-box access only to O,
while the adversary may access both O and B.

The core of our separation are the two oracles,O and B. The oracleO = (g, e, d)
realizes a random trapdoor permutation (we give a formal definition in Section
3.2). The second oracle is a weakening oracle such that relative to 〈O,B〉 a se-
cure construction of adaptive trapdoor permutations exists while any given candi-
date (and correct) VUF construction (KGO, FO, ΠO, V O) is insecure4. To prove
this result, we build an adversary that wins the unpredictability game with non-
negligible probability. Since the description of the oracle B is rather technical, we
first describe the high-level intuitions that guides us to the design of B.

3.1 Towards the Definition of B
Towards the definition of such B, the main difficulty is to design an oracle that is
strong enough to help predicting a value of the VUF while simultaneously being
too weak to invert the ATDP.

A näıve approach for B would be the one that immediately breaks the VUF,
by taking the VUF’s public key PK and a value x as input; it then would return
FO(SK , x). Of course, any VUF construction breaks down in the presence of
such oracle. So, it would remain to show that an ATDP is still secure in the
presence of such 〈O,B〉, which unfortunately is not the case. To see this, consider
the following VUF defined through KGO, FO, ΠO, V O (where ΠO(SK , ·) =
FO(SK , ·)): The KGO algorithm queries ek←g(td) on a random td ∈ {0, 1}λ
and sets PK = ek and SK = td. The function evaluation algorithm on input x

4 By 〈O,B〉 we mean that the algorithm A〈O,B〉 gets access to both oracles.
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obtains y←d(td, x) and outputs y. V (PK , x, y) simply checks that e(ek, y) = x.
Observe that this construction is sound and unique (but trivially insecure). Now,
we construct an adversary A against the ATDP that exploits the above defined
B to invert the challenge (ek∗, b∗). This attacker inverts the challenge by simply
submitting (PK = ek∗, x = y∗) to B! This means that the oracle B that we
sketched before is too strong and reveals too much information.

As one can guess, the problem are those queries to B that are “danger-
ous” in the sense that they extract too much useful information to invert the
ATDP. Starting from this (toy) example we modify B to prevent such “danger-
ous queries”. The first important observation is that our adversary against the
unpredictability only needs to predict some value, rather than a specific one.
This means, the attacker only needs to find y∗ for a fresh x∗ ∈ {0, 1}n. There-
fore, our first modification consists of changing the input that is provided to B.
Basically, we let B choose x∗ on which it evaluates y∗←FO(SK , x∗). This new
definition of B still allows us to break the security of the VUF and it also avoids
direct inversion queries as the attack can no longer query x directly to B.

However, this modification is not sufficient to avoid that an ATDP adversary
exploits the access to B. The problem is that an attacker A might encode its
challenge (ek∗, b∗) into the public key PK . For instance, A could create and
submit a public key such that any function evaluation will require to invert b∗

according to the permutation e(ek∗, ·). We show how to prevent such queries
starting from the following basic intuition.

Assume that a value b ∈ {0, 1}λ is (somehow) encoded into the public key
PK and recall that we denote by x the input of FO(SK , ·). Then we have two
mutually exclusive cases:

1. FO(SK , ·) inverts b on a large fraction of the x’s;
2. FO(SK , ·) inverts b only on a negligible fraction of the x’s (even on no x in

the most extreme case).

Now, recall that a VUF attacker is allowed to query the function (and see the cor-
responding proofs) for inputs of her choice. Therefore, if A queries the function
oracles on a sufficiently large number of the x’s, then A will learn the inverses
of all the “frequent” b’s of type 1 with high probability. On the other hand, for
any b of type 2, the probability that running FO(SK , x) on a random x asks to
invert b is negligible.

Ensuring A Has Access to the Function Oracles. The above intuition sug-
gests that any algorithm querying B must provide as additional input sufficiently
many triples (xi, yi, πi) such that πi is a valid proof for “FO(SK , xi) = yi”. This
way, if a ATDP adversary embeds a “type 1” b into PK , then it must know its in-
verse in order to provide the above triples. Or, if a “type 2” b is encoded into PK ,
then with high probability the attacker A will not gain any further information
on its inverse from seeing the evaluation of FO(SK , x∗) for a random x∗.

Although such restriction seems to capture the right intuition, we observe
that it is not sufficient to prevent the adversary from exploiting B. To see this,
assume that A encodes its challenge (ek∗, b∗) into PK such that b∗ is of type
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1, namely FO(SK , x) queries d(td∗, b∗) on a large fraction of the x’s. Then, if
the attacker A is allowed to choose the inputs x1, . . . , x� provided to B, then it
might take all of them from the small fraction that does not require to invert b∗.
In this case our previous argument would fail.

Therefore, in order to prevent these dangerous queries, we deny A choosing
the inputs x1, . . . , x�. That is, we define a two-steps oracle B = (B1,B2) where
B1 chooses � random inputs, and B2 evaluates the VUF only if it gets as input
values and proofs for x’s that were chosen by B1. For this we will require that
B1 is essentially a random function that, given as input a VUF public key and
a collection of oracle circuits implementing a VUF, outputs � random strings.

Furthermore, observe that this restriction is not a problem for the attacker
that we build against the VUF, because it has access to the function oracles,
F (SK , ·) and Π(SK , ·), that compute these values and proofs for her. On the
other hand, an ATDP adversary now has restricted power as it does not know
b∗’s inverse.

Avoiding Malicious Keys. Finally, the last type of dangerous queries that
we have to handle are those where the attacker A queries B on an “invalid”
public key PK . By “invalid” we mean that PK is not the output of an honest
execution of the key generation algorithm KGO(SK ). The problem is again
that an evaluation of FO(SK , x) can reveal “sensitive” informations about the
trapdoor permutation. Indeed, observe that an execution of FO must use the
d(·, ·) oracle in a significant way or the VUF cannot be secure.5 Thus, one may
think about designing B in such a way that it rejects any queries that involve
invalid public keys. However, this solution is still dangerous as B might be used
to test the validity of public keys. We solve the issue by defining B such that
it computes the answer using a different key SK ′ and a different oracle O′′ but
that the new function FO′′

(SK ′, ·) behaves in almost all cases as the original one
FO(SK , ·). More precisely, the oracle B evaluates FO′′

(SK ′, ·) using a key SK ′

(that is most likely different from SK ) and an oracle O′′ which is also different
from the real oracle O. The key SK ′ is computed such that it corresponds to
the “real” key PK under O′′ (i.e., PK←KGO′′

(SK ′)). The idea is to construct
O′′ such that is close to O. Then we can show that evaluating FO′′

(SK ′, x) is
basically the same as evaluating FO(SK , x).

The hope is that O′′ differs from O in the points that may represent dangerous
queries. If this is the case, then we are done as computing FO′′

(SK ′, x) will
not reveal sensitive informations on the real ATDP. More precisely, our oracle
B selects uniformly at random a secret key SK ′ and an oracle O′′ such that
PK = KGO′′

(SK ′) and O′′ agrees with O on those points that are already
known to the adversary.

Discovering All ATDP Public Keys. In order to correctly simulate a run
of FO′′

it is important that our oracle has discovered all the ATDP public keys
ek that may be needed while running FO′′

. More precisely it needs to know all

5 For instance, if FO does not use the oracles, then an exponentially-strong adversary
could always evaluate the circuit associated to F .
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the public keys that were generated during the honest execution of KGO(SK ).
So, to discover these public keys we define B such that it runs V O on all the
received triples (xi, yi, πi) and collect all the queries made by the algorithm.
Since by Assumption 1, the algorithm KG generates at most q of such ek’s, it is
sufficient to repeat the above step on sufficiently many triples, say qc for some
constant c that we will specify later. This allows us to discover all the public
keys with high probability.

3.2 The Formal Separation Theorem

In this section we formalize the techniques that we use to prove our result. The
core of our proof is the description of two oracles O and B. The first oracle
O = (g, e, d) implements a perfectly random trapdoor permutation and it is
obvious that a secure ATDP exists relative to O (where the security follows from
the randomness of the function). Therefore, we follow the strategy of defining a
“weakening” oracle B whose main task is to break the security of a given VUF
construction. This approach is formalized in the following theorem:

Theorem 1 (formally restated). Let O = (g, e, d) be a random trapdoor per-
mutation oracle. Then, there exists an oracle B such that for every VUF con-
struction (KGO, FO, ΠO, V O) which is correct and unique we have:

(i) there is an adversary A such that A〈O,B〉 breaks the security of the VUF with
non-negligible probability;

(ii) there exists an ATDP construction (GO, EO, DO) relative to O such that no
adversary A〈O,B〉 can break its security with non-negligible probability.

We formally prove this theorem defining the oracles O and B in the following
paragraphs. Afterwards, we prove the theorem by stating two separate lemmata.
The first one, given in Section 4, shows the insecurity of the VUF, whereas the
second lemma (Section 5) proves the existence of a secure ATDP.

The Oracle O. We prove our separation in a relativized model where each
algorithm has access to a random trapdoor permutation oracle O = (g, e, d)
where g, e and d are sampled uniformly at random from the set of all functions
with the following conditions:

– g : {0, 1}λ → {0, 1}λ takes a trapdoor key td and outputs a public key ek.
– e : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that takes in input a public key
ek and a value a and outputs b. For every ek ∈ {0, 1}λ, e(ek, ·) is required
to be a permutation over {0, 1}λ.

– d : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input a pair (td, b)
outputs the unique a ∈ {0, 1}λ such that e(g(td), a) = b.

Since the permutation is defined over {0, 1}λ, it is easy to see that the oracle is
also an enhanced TDP.
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Notation. We write AO to denote that an algorithm A is given access to
an oracle O. We will use square brackets to denote queries and mappings. For
instance, we write [e(ek, a)] to denote a query to e with input ek and a. Otherwise
e(ek, a) refers the actual value of the function e on the given input. We write
[e(ek, a) = b] to denote that there is a mapping between a and b in the function
e(ek, ·). Also, for ease of presentation, we will sometimes abuse the notation and
write O(α) to denote the answer of O on a query α which depends on the type
of α. For example if α = [e(ek, a)], then O(α) = e(ek, a).

Let Ok (with k ∈ {1, 2}) be a partial (aka suboracle) oracle. We define the
set of all public keys that are contained into the queries of Ok as

Z(Ok) = {ek : [g(·) = ek] ∈ Ok or [e(ek, ·) = ·] ∈ Ok}.

Suboracles. Let O1 and O2 be two (possibly partial) trapdoor permutation
oracles. We write O1 -c O2 to denote the oracle that answers with O1 only
if O2 is not defined. Otherwise, it answers with O2. If O1 = (g1, e1, d1) and
O2 = (g2, e2, d2) are two trapdoor permutation oracles as defined above, then
its composition is defined by composing each algorithm, namely:

O1 -c O2 = (g1 -c g2, e1 -c e2, d1 -c d2)

This definition needs some more explanation. We want that the oracle obtained
from the composition of two oracles preserves the properties of the two individual
oracles. In particular, we require that (e1 -c e2)(ek, ·) is a permutation for any
valid ek. The problem is that the permutations e1 and e2 may contain collisions,
namely there exist ek and two distinct values a, a′ ∈ {0, 1}λ such that e2(ek, a) =
e1(ek, a

′). To handle such collisions we use the same technique suggested in [33].
We define e = e1 -c e2 as follows: let ek, a, b be values such that [e2(ek, a) = b] ∈
O2. We set e(ek, a) = b. If there exists a value a′ �= a such that [e1(ek, a

′) = b] ∈
O1, then let b′ = e1(ek, a) and set e(ek, a′) = b′. The composition d = d1 -c d2
is defined to be consistent with g and e.

VUF in the Presence of Our Oracle. For a simpler exposition we make some
general assumptions on any VUF construction with access to the oracle O =
(g, e, d). First, we consider a slightly relaxed definition of the VUF algorithms
(KG,F,Π, V ) as follows. The algorithm KG(SK ) takes as input a secret key
SK ∈ {0, 1}n and outputs PK ∈ {0, 1}n. The input of F and Π are the secret
key SK and a value x ∈ {0, 1}n. The output of F is the function value y ∈ {0, 1}n,
whereas the output from Π is the corresponding π, respectively. Finally, V is
given in input the public key PK , an input x, an output y and a proof π and
outputs 1 if it accepts the proof, or 0 otherwise. In the above description n is a
function of the security parameter λ.

Recall that we assume towards contradiction that there exists a black-box
reduction of VUFs to ATDPs. Then we denote by (KGO, FO, ΠO, V O) the
corresponding VUF construction. According to our notation, each algorithm has
access to the (g, e, d) oracles and they have to use them in a “significant” way
to implement a secure primitive. Also, by definition of black-box reduction, this
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construction is a correct VUF implementation, that satisfies completeness and
uniqueness according to Definition 1.

Assumption 1. For a simpler exposition, in our proofs we use the following
assumptions:

– each algorithm is unbounded, but makes at most q = poly(λ) oracle queries
during its execution;

– every query d(td, ·) is followed by a query g(td);
– the proof algorithm is deterministic;
– the verification algorithm is deterministic;
– the completeness of the VUF holds in a perfect sense.

Before proceeding with the description of the breaking oracle, we briefly justify
these assumptions. The first condition is reasonable because we consider only ef-
ficient constructions and moreover, it allows us to easily quantify the advantage
of our adversaries. The second one avoids queries of the adversary to d(·, ·) using
a trapdoor key without knowing the corresponding public key. This assumption
is also common and has been previously used in e.g., [23]. Assuming that the
proof algorithm is deterministic is not a restriction as we can turn any VRF
with a probabilistic proof algorithm into one having a deterministic algorithm
by applying a PRF to the input and the private seed of the VRF to derive the
randomness. Completeness and uniqueness follow easily from the VRF (note
that uniqueness only holds w.r.t. to the output of the function and not w.r.t. the
proof). The rest follows easily applying a standard hybrid argument. The as-
sumptions on deterministic verification and perfect completeness have already
been addressed in [17], hence we omit the discussion here.

A Formal Definition of B. Here, we provide a formal description of our oracle
B, which is composed by the following two algorithms (B1,B2):

Algorithm B1:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) imple-

menting a VUF, and a VUF public key PK
Output: x1, . . . , x� ∈ {0, 1}n.
Computation: To each input (V UFO,PK ), the algorithm B1 associates

a random function f : {0, 1}n → {0, 1}n. For i = 1 to �, it computes
xi = f(i), and finally it returns x1, . . . , x�.

Algorithm B2:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) imple-

menting a VUF, a VUF public key PK and a set {(xi, yi, πi)}�i=1 such
that xi ∈ {0, 1}n, yi ∈ {0, 1}m, and πi is in the range of Π(·, ·).

Output: x∗ ∈ {0, 1}n, y∗ ∈ {0, 1}m.
Computation: The oracle performs the following computation:

– Step 1: Invoke (x′1, . . . , x
′
�) ← B1(V UF

O,PK ) and check that the
values x1, . . . , x� received as input are equal to (x′1, . . . , x

′
�) returned

by B1. Otherwise, output ⊥.
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– Step 2: For all i = 1 to � run the algorithm V O(PK , xi, yi, πi) and
collect into a partial oracle OQ all the queries that are made during
each run. If there is some j such that the verification algorithm does
not accept, stop and output ⊥.

– Step 3: Find a secret key SK ′ and a partial oracle O′ such that:
1. KGO′

(SK ′) = PK , FO′
(SK ′, xi) = yi and Π

O′
(SK ′, xi) = πi.

2. O′ ⊇ OQ and |O′| ≤ |OQ|+ q where q is the same value defined
in Assumption 1.

– Step 4: Define O′′ = O -c O′

– Step 5: Choose x∗ uniformly at random in {0, 1}n such that x∗ �= xi
for all i = 1 to �. Run y∗←FO′′

(SK ′, x∗) and π∗←ΠO′′
(SK ′, x∗).

– Step 6: Run V O′′
(PK , x∗, y∗, π∗). If V O′′

asks a query α such that
O′′(α) �= O(α), then return ⊥. Otherwise output y∗.

Complexity of B. Based on Assumption 1, we evaluate the cost of each query
to B in terms of queries to the oracle O. Since the function f chosen by B1 is
completely independent of O, we do not count its cost. Instead a query to B2

counts �q+3q+ |O′| queries to O in total. This cost is obtained as follows: Step
2 makes �q queries as it evaluates V � times, Step 3 is made offline, Step 4 counts
|O′| queries that are needed to perform the -c operation and finally Step 5 and
Step 6 require 2q and q queries respectively.

4 Insecurity of VUFs Relative to Our Oracles

In this section we formally show that for every candidate black-box construction
(KGO, FO, ΠO, V O) of a VUF from ATDP there is an efficient adversaryA that
breaks the unpredictability of the VUF with non-negligible probability 1− δ by
making a polynomial number of oracle queries to 〈O,B〉.

Let q be the maximum number of oracle queries that can be made by the
VUF algorithms (according to Assumption 1) and c ∈ N be a sufficiently large
constant specified below. Without loss of generality, in the following proof we
assume q ≥ 2 and we fix c such that δ ≤ 3

eqc−1 and our adversary has non-
negligible advantage at least 1− δ. Also we set � = qc.

Our adversary A works as follows:

Input: A public key PK and access to the function oracles F (SK , ·), Π(SK , ·).
Output: x∗, y∗ ∈ {0, 1}n.
Algorithm: Our algorithm performs the following steps:

1. Query B1 on input (KGO, FO, ΠO, V O),PK and obtain x1, . . . , x�.
2. Query the VUF oracles F (SK , ·), Π(SK , ·) on xi for all i = 1 to �. Let
{y1, π1, . . . , y�, π�} be the values obtained from such queries.

3. Query B2 on input (KGO, FO, ΠO, V O),PK , {x1, y1, π1, . . . , x�, y�, π�}.
4. If B2 returns ⊥, then halt and fail. Otherwise, if B2 returns (x

∗, y∗), then
output (x∗, y∗).
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Then we are able to state the following lemma:

Lemma 1. The adversary A defined above with input PK and oracle access to
〈O,B〉 wins the unpredictability experiment with probability at least 1− 3

eqc−1 and

makes at most 2qc+1 + 4q oracle queries.

The proof is given in the full version [14].

5 Security of ATDPs Relative to Our Oracles

In this section we show the existence of a trapdoor permutation (GO, EO, DO)
that is adaptively one-way even against adversaries that have access to B. The
construction is straightforward as each algorithm forwards its input to the corre-
sponding oracle, namely: GO(td) = g(td), EO(ek, a) = e(ek, a) and DO(td, b) =
d(td, b).

By the randomness of the oracleO, it is easy to see that the above construction
is a secure ATDP when the adversary is given access only to O. Therefore, in
order to prove its security relative to the oracle B, we will show that B does not
help to break the one-wayness of (GO, EO, DO), namely that B can be simulated
to the adversary A. Now we can state the following lemma:

Lemma 2. Let (GO, EO, DO) be an adaptive trapdoor permutation where each
algorithm forwards its input to g, e, and d respectively. Then, for every adver-
sary A that has access to 〈O,B〉 and makes at most q oracle queries, there is
a sufficiently large λ such that the probability that A succeeds in the adaptive
one-wayness experiment against the above construction is at most negligible.

5.1 Defining the Simulator

Recall that the main idea is to show that A can simulate the oracle B locally. To
do so, we show that for every A, there exists a simulator S that gets the same
input as A, but which does not have access to B. We then show that the success
probability of S is close to that of A.
Intuition for the Simulator. In the first step, the simulator generates a ran-
dom trapdoor permutation oracle OS locally, except for the portion concerning
the permutation e(ek∗, ·). In particular OS is defined progressively by choosing
its answers uniformly at random. Moreover, we construct S such that it collects
into a partial oracle O∗ all the queries of the form [e(ek∗, ·)] that A makes dur-
ing the simulation. This way, S knows all the trapdoors of all the public keys
(but ek∗) and is therefore able to evaluate all inversion queries d(td, ·) where
g(td) �= ek∗.

The first three steps of the algorithm B2 can easily be simulated as in the real
case. The first difference comes up into Step 4 where S has to define the oracle
O′′.The difficulty here is that the simulator does not know the entire O and thus
it cannot compute the composition O-cO′. We solve this problem using an idea
similar to the one used in [33]. Namely, we define O′′ such that it is consistent
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with the partial oracles that are known to S so far (i.e., OS ,O∗ and O′) and
we forward all other queries to O. This solves most of the problematic cases due
to the fact that the adversary A only knows queried mappings (which are also
known to S since it has stored all of them).

One remaining issue are those queries [d(td′, b)] such that td′ is the trapdoor
that is “virtually” associated to ek∗ (i.e., [g(td′) = ek∗] ∈ O′) and there is no
known mapping [e(ek∗, ·) = b] in O∗. Indeed, recall that the simulator does not
know the real trapdoor td∗ such that [g(td∗) = ek∗] ∈ O, and also notice that
forwarding these unknown queries to O would inevitably lead to an inconsistent
mapping. Assume for example that α = [d(td′, b)] is answered with O(α) = a.
Then we have a mapping [e(ek∗, a) = b] ∈ O′′, but it is very unlikely that
[e(ek∗, a) = b] is in O. Such inconsistencies could potentially be discovered in
Step 6 which would cause the simulation to output ⊥ while it should not.

Fortunately, we show how to handle such queries by using the external in-
version oracle I(ek∗, ·). Finally, the last remaining problem is the query α =
[d(td′, b∗)]. We cannot answer this query correctly (at least as long as the inverse
of b∗ has not been discovered before), however we will show that this case only
happens with negligible probability. The main idea is that either A cannot pro-
vide an accepting input to B2 or (in the case that we have passed all the checks
and have reached Step 5) the probability that this query cannot be answered is
very small.

The full description of the simulator and the proof are provided in the full
version [14].
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16. Fischlin, M., Schröder, D.: On the Impossibility of Three-Move Blind Signature
Schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

17. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak Ver-
ifiable Random Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 558–576. Springer, Heidelberg (2009)

18. Naor, M., Reingold, O.: Synthesizer and their applications to the parallel con-
struction of pseudo-random functions. Journal of Computer and System Sciences
58 (1999)
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