
Lean and Agile in a Nutshell 2
Create Value, Eliminate Waste, and Adapt to Change

Agile and Lean

In Chap. 1, we started to develop the concept of “management” and “lead-

ership” that you can read on the cover of this book. Now is the time to go

into the “Agile” part of it.

In this (small) chapter, the basis of Agile and Lean will be reviewed to

establish a common understanding and framework that allows further

discussions. This book does not intend to be a comprehensive guide of

what is Agile and Lean, nor a guide on how to implement Agile/Lean in

your company, but I’ll try to highlight the main implications of this concept

for the organization and not only at the team level.

Again, this is not a book about Agile or Lean (oh my, I would need

several books to explain those concepts deeply). But you can find some

other excellent books on that topic out there. Some of the ones I recommend

are those by Mary and Tom Poppendieck (Lean Software Development

Series), Mike Cohn (specially the brilliant Succeeding with Agile), and
Henrik Kniberg (Scrum and XP from the Trenches). And of course you

can always engage in plenty of seminars and courses on the topic.

As many people (me included) consider that Agile is partly an evolution

of Lean into the field of software/product development, I’ll start with some

background on Lean production.

Aichi Prefecture, Japan, 1946. . .

Á. Medinilla, Agile Management, DOI 10.1007/978-3-642-28909-5_2,
Springer-Verlag Berlin Heidelberg 2012

19

http://dx.doi.org/10.1007/978-3-642-28909-5_1

The Japanese Revolution

In 1946, Toyota was a rather small car manufacturing plant in a country that

had been devastated by World War II. The usual raw-material supply

problems Japan had always experienced because of the fact of being an

island in the middle of the Pacific Ocean were worsened by this situation,

and the Americans transforming their mighty war production machinery

into goods manufacturing plants were not helping, as they needed to sell

those goods all around the world and were flooding markets with them

(which explains the Marshall plan and other strategies for rebuilding

Europe, but that is another story).

Furthermore, the country’s morale was almost destroyed. After two

atomic bombings, 3 million dead, 9 million homeless, the losing of the

colonies, and the surrender of the nation by the Emperor, one would have

expected the proud sons of the Samurai to commit collective ritual suicide or

Seppuku.

But this is not what happened. Not at all. The Japanese reacted to this

situation by bootstrapping the nation and devoting their millenary discipline

to transform it as they had already done during the modernization in the Meiji

period. This postwar rebirth of Japan was called the Showa era (1946–1989),

and it has been repetitively referred to as “the Japanese miracle”: building one

of the most economically powerful countries of the world out of ashes and

people’s will. To address the magnitude of the change, realize that per capita

income in Japan rose ten times between 1950 and 2008. And Toyota, for

instance, became the world’s biggest car manufacturer by 2007.

In fact, more than secret techniques, tools, or business plans, it was

actually the collective effort and motivation of the workforce inspired by

their leaders that made the whole transformation possible.

Management guru John Kotter dedicated several of his writings and

studies to the figure of Konosuke Matsushita, and in his opinion, the start

of the Japanese miracle can be traced back to the moment when, at the end

of the war, he addressed his demoralized workforce and said, “I have been

thinking about purpose.” He then described a company that would force

competitors to produce at the same outstanding levels of quality, innovation,

and low prices that they will achieve, thus eliminating poverty in Japan and

creating “a paradise on earth in the span of the next 250 years.” It is been

reported that several employees stood up in tears and said, “I think I could

dedicate my life to this.”

20 2 Lean and Agile in a Nutshell

But let’s go back to Toyota. By a similar process of continuous improve-

ment and collective effort like the one going on in Matsushita, or even in the

whole country, they designed a production system that was later studied by

the Americans and baptized “Lean production.” This system was based on a

simple set of principles and rules that, when embraced by an engaged and

empowered workforce, produced a plethora of tools, techniques, practices,

artifacts, processes, roles, etc.

Unfortunately, for a long time, western companies tried to replicate those

without really understanding the principles, which led to the rise of a set of

approaches like Six Sigma, process reengineering, total quality, and other

fads that tried to mimic the Japanese ways in a long-lasting, painful (and

profitable) way of “Cargo Cult.”

“In the South Seas there is a cargo cult of people. During the war they

saw airplanes land with lots of good materials, and they want the same

thing to happen now. So they’ve arranged to imitate things like

runways, to put fires along the sides of the runways, to make a wooden

hut for a man to sit in, with two wooden pieces on his head like

headphones and bars of bamboo sticking out like antennas – he’s the

controller – and they wait for the airplanes to land. They’re doing

everything right.

The form is perfect. It looks exactly the way it looked before. But it

doesn’t work. No airplanes land. So I call these things cargo cult

science, because they follow all the apparent precepts and forms of

scientific investigation, but they’re missing something essential,

because the planes don’t land.”

–Richard Feynman, Cargo Cult Science, 1974 Caltech

commencement address

If you ever want to be successful on a Lean approach, please take your

time to understand the basic rules and principles because those are the ones

that you really have to plant on your soil: very probably, they will become

some different kind of crop from the one the Japanese are harvesting, but it

will be the one that suits your needs.

“Copying practices without understanding the underlying principles

has a long history of mediocre results. But when the underlying

principles are understood, it is useful to copy practices that work for

similar organizations and modify them to fit your environment.”

–Mary and Tom Poppendieck, Lean Software Development

The Japanese Revolution 21

The Five Principles of Lean

The whole Lean universe can be summarized in as few as five basic

principles. Easy, right?

The first one is understand and maximize value. Very often, Lean is

described as a way of “eliminating waste,” but this is only a derivate of this

principle. The hard part is trying to see your whole system as a way to produce

value for your customer and truly understand how you provide that value.

Not everything your client pays for is value, and on many occasions,

companies are dead wrong about how their client sees the value of the

product.

For example, at a meeting on a very well-known drill-machines manu-

facturer, the CEO asked the management board “Gentlemen, what it is that

we sell to our clients here?” Everyone, as expected, replied, “The best

possible, most powerful, cheapest, highest quality drill machines in the

world.” But the CEO replied, “nonsense! You don’t understand this com-

pany! Holes! Holes in a wall is what we sell!”

The CEO understood a deep truth about what their client valued. If there

was a better way of making holes in a wall than using a drill machine, the

company was wasting its efforts on building better drill machines. Because

this is not what their clients truly valued.

Once you understand value, you can start looking at the whole company

and asking yourself “how is this activity adding value to our client?” It is a

dangerous question to make to yourself because you will realize that many

of the things lying around your plant are not directly contributing to your

client’s experience. And then, on a Lean environment, they have to be

labeled as “waste” and you have to strive to reduce them to the minimum

or even eliminate them.

For me, the magical question you have to make to identify waste is, “are

we willing to do more of this? Like, for example, double it?” With this

question, you’ll rapidly realize that meetings, managers, reports, inventories,

transportations, rework, handoffs, overproduction, delays, and many other

kinds of “wastes” are things that you have to eliminate or reduce to the

minimum – but not less than the minimum, of course.

“Make things as simple as possible, but not simpler.”

–Albert Einstein

22 2 Lean and Agile in a Nutshell

Many times managers feel discomfort when I label management as

“waste,” but be honest to yourself: if management is true “value” for your

client, are you willing to double the number of managers on your company?

Maybe triple it?

Do you prefer to fly with one company or another depending on which

one has the most managers?

No, you want to have the minimum viable number of managers that works

for your company. And then find the way to work with even less managers.

The second principle of Lean is optimize the value stream. That means

understanding how the different activities of your company contribute to

producing value and then finding the way to place them on a sequence that

shortens the production cycle, hence reducing both cycle time (time to

produce a feature from work start to end) and the lead time (elapsed time

since the feature was actually asked for by the client).

A very popular tool to implement this second principle is value stream

mapping. To implement a value stream map for your company, just take a

pencil and some paper (experts stress the importance of not using software

and doing this by hand) and start from the end, that is, the value delivery to

your customer. Then start tracing back where this value came from, how

much did it take, what effort was put into it, how much of this effort was

actually waste, and how much was value-adding activities. Then repeat and

continue until you arrive at the place where your client order was received.

If you divide the value-adding time by the total time – including queues,

delays, waiting periods, and non-value-adding activities – you’ll have a

performance ratio indicator of your process. For companies that haven’t

been through a Lean initiative, performance ratios of 9–20% are not

unusual. If you do your first Value Stream Map and you obtain something

above 50%, don’t congratulate yourself too much – you have to look twice,

possibly with the help of an expert.

Optimizing the value stream is not only a matter of mapping, measuring,

and reducing: it is a crucial exercise to understand and see your company as

a whole, not as independent black boxes each of them trying to do the best

for themselves. As systems engineering teaches us, any attempt to optimize

one part of the system will very probably suboptimize the whole.

The Five Principles of Lean 23

“The obligation of any component is to contribute its best to the

system, not to maximize its own production, profit, or sales nor any

other competitive measure. Some components may operate at a loss to

themselves in order to optimize the whole system, including the

components that take a loss.”

–Edward Deming, The New Economics

The third Lean principle is pull production. This means that new products

are only manufactured when the client needs them, reducing the need of

stocks, inventories, or in-excess production. Small stocks are maintained,

and when one piece is consumed, another one is immediately produced to

replace it. For this to work, the system must be able to change their produc-

tion and deliver very fast to react to the needs of their clients, thus embracing

change and uncertainty. Any attempt at “Manufacturing Resource Planning”

or “yearly forecasts” is an anathema for a Lean industry.

Lean skeptics will argue that some kind of planning is needed, and that is

absolutely true. But in a world where something like Facebook appears and

makes 50 million clients in less than 2 years, there is a need to react faster

than a year’s time. Planning and executing cycles must be reduced to the

minimum possible, and that is why most software industries in the Agile or

Lean startup frameworks are moving to 2-week production cycles of plan,

execute, release, and collect feedback.

For instance, the whole design and production of the Toyota Prius, a new

concept hybrid engine car, took Toyota roughly a year, when the industry

average for a new regular model of car was 4–5 years. And we are talking of

1997 here. Nowadays, the Spanish company Inditex is able to deliver

clothes to any store worldwide in 72 hours, thus reducing the need of huge

stocks at the stores and being able to react when some particular model is

selling well by increasing the production of that particular model. The

contrary is also true: if some model is not selling, the most you are losing

is 3 days of production of that model, as there is no need to produce millions

in advance without actually knowing if someone will even look at it.

For the third principle to work, the fourth principle is needed: single-piece
flow, defined as the ability of a single order or piece of work to flow

smoothly across the whole systemwithout interruptions and at the maximum

possible speed. This usually implies reducing the amount of things going on

at a particular moment, as Little’s law establishes that cycle time increases

24 2 Lean and Agile in a Nutshell

with the amount of pieces on the system. In other words, the more things you

think you are doing at the same time, the less productive you become.

This means that multitasking is a myth, as is the “total productivity.” In

his bookQuality Software Management: Systems Thinking, GeraldWeinberg

measured the performance of an individual working on several projects:

compared to working with a single project, the loss of productivity because

of context switching was as much as 40% for someone working simulta-

neously in three projects and 75% for someone at five projects! This is the

reason why Kanban systems’ main rule is to limit the work in progress

(WIP), with an ideal goal of WIP limit “one,” meaning that you don’t start

another task until this one is finished, even if it gets blocked. This idea of

“focusing on the next actionable item” and not starting anything else until

this one is finished is also one of the bases of the very popular “Getting

Things Done” or GTD personal productivity and time management system

by David Allen.

Finally, the fifth and my personal favorite Lean principle is continuous
improvement, or in Japanese “Kaizen.” – a hopeless but joyful strive for

perfection that makes us better every day. Today, better than yesterday. Tomor-

row, better than today. Amartial state ofmind thatmakes us train constantly and

never be satisfied with our current skill, no matter how high it is.

“This old man must still train and train”

–O Sensei Morihei Ueshiba, Aikido founder, declared “Sacred

National Treasure” of Japan, one of the greatest martial artists

of its time, at the age of 86, shortly before he passed away.1

Again, Lean skeptics will try to argue that “perfection is impossible” or even

say “why do we want to be better? We are just fine now. . ..” But on a Lean

environment, there is a perpetual state of discomfort with the current state. Lean

leaders will constantly push the organization out of its zone of comfort in search

of a new, higher level of quality, performance, and, overall, client satisfaction.

1Ueshiba M, Ueshiba K (1996) Budo: teachings of the Founder of Aikido Ueshiba.
Kodansha International, p 21.

The Five Principles of Lean 25

“What’s perfection good for if we will never reach it? It gives us a true

north so we keep walking on its direction”

–Anonymous banner at the 15-M revolts in Madrid, 20112

The 14 Principles of the Toyota Production System

Dr. Jeffrey Liker presented a deeper insight on Lean production systems in

his 2004 book The Toyota Way. He summarized 14 principles and behaviors

that described Toyota’s managerial approach to Lean production:

1. Base your management decisions on a long-term philosophy, even at the
expense of short-term financial goals. There is always an urge some-

where, a fire elsewhere, and something critical to be done anywhere else,

but you have to understand that there will always be. So if you start

dropping trainings, holidays, market events, innovation workshops, or

improvement programs because of delivery dates, you are investing in

short-term goals and creating an ever-growing learning debt. In a Lean

environment, provided we have enough resources to invest and provided

this investment will not ruin the company in the short term, we will

always try to invest in long-term improvement, learning, and growing,

even at the price of short-term losses.

2. Create a continuous process flow to bring problems to the surface.
Searching for new forms of waste and ways to reducing it shall not be

limited to a certain number of “Kaizen events.” A regular process must be

put in place instead, and management must make sure that all problems

detected by the workforce and tagged as “waste” or “impediments” are

urgently addressed as national emergencies, even if it means delaying

short-term projects (first principle).

3. Use “pull” systems to avoid overproduction. This was one of the five

original lean principles and was so reflected by Liker in “The Toyota

Way.” The pull and flow principles led to the revolutionary “just-in-time

production” concept, meaning that pieces and products were only deliv-

ered exactly when needed, thus reducing the need of inventories, ware-

house space, and other forms of waste.

2As seen by myself.

26 2 Lean and Agile in a Nutshell

4. Level out the workload (heijunka). Instead of bursts of work followed by
periods of lower activity, try to achieve a sustainable pace and a constant

production rate. Variability of demand can be absorbed by small produc-

tion buffers (sometimes called heijunka boxes), producing in small

batches (hence being able to adapt better to a changing demand) and

achieving low die change times (being able to change between the

production of two different pieces very quickly and at a low cost).

5. Build a culture of “stop the line,” which means that when a problem is

detected, it is more important to stop production and fix the problem,

making sure that we will never make the same mistake again, than

continuing the production and making a mental note of “we should be

fixing this later on.” Stopping the production line has a short-term cost,

but the implication in the long term is huge. Maintaining a pile of defects,

problems, impediments, and inefficiencies creates a “compound interest”

effect on quality, thus creating a “technical debt.” Some examples of

“stop the line” culture are Andon devices, a red-light signal that tells

management that a problem has been detected and the line needs to be

stopped, and Jidoka or “autonomation,” automation with a human touch,

which means that the whole product line can be stopped automatically

when a machine automatically stops and a human supervisor decides that

the problem must be addressed. In software companies, these principles

have been implemented in the form of automatic test, build, and deploy

systems that tell the programmers when something went wrong during

the automated process.

6. Standardize work, but not in the way western companies understood it

during the 1980s and the 1990s. Toyota understood standardized work as

a tool to make sure that everyone was doing things the same way, so

when they changed something, they could measure the effects of that

change and evaluate if it was a good idea or not. It was also a way for

every worker to know what he was expected to do. But workers were

responsible for constantly reviewing the standard in search of better ways

to perform, and managers were accountable for it. It is said that Taiichi

Ohno, considered one of the fathers of the Toyota Production System,

fired a manager because the standard that his team was following had not

been changed in more than a year. Please make sure you understand this:

standards must change constantly. Otherwise we are considering that

we have found the perfect way of working, which is by definition not

possible, or we consider that this way is good enough for us, which is

against the principle of continuous improvement.

The 14 Principles of the Toyota Production System 27

7. Use visual control so no problems are hidden. Again, western companies

will always come up with software tools, written reports, or electronic

dashboards to try to know what is happening, but according to the gen-

eral experience of Lean and Agile Senseis, nothing beats the simplicity of

visual controls. Kanban cards, team boards, signs, banners, Andon devices,
A3 handwritten reports, floor layout lines, or silhouetted tool boxes where

you can easily know where to place everything are typical examples of

visual management in a Lean manufacturing plant. Visual control devices

also foster team collaboration, employee empowerment, and a sense of

ownership that no electronic tool has been able to reproduce.

8. Use only reliable, thoroughly tested technology that serves your people
and processes. Align technology with your process and not the other way
round. Technology must help your people do things easier, faster, and in

a more efficient way. If the technology you are using is making people

hate it, you are probably serving some needs other than the one of your

people and your process. Or your process is darn wrong!

9. Grow leaders who thoroughly understand the work, live the philosophy,
and teach it to others. There is no better way to teach people than

personal example. Lean leaders are a living incarnation of the Lean

principles and values, who feel that their main responsibility is to make

everyone understand the company’s culture. Japanese Lean Senseis often

say that the main problem with western managers is that they want to rule

and command, not to teach.

“We must become the change we want to see in the world.”

–Mahatma Gandhi

10. Develop exceptional people and teams who follow your company’s
philosophy. Again, the Lean concept around people is to make them

responsible for the process. Empowerment and ownership are frequent

terms when describing people’s behavior in a Lean environment. As

stated in the previous principle, Lean leaders are devoted not to com-

mand and control their people but to inspire the purpose, principles, and

values that lead to the desired results.

28 2 Lean and Agile in a Nutshell

“If you want to build a ship, don’t drum up the men to gather

wood, divide the work and give orders. Instead, teach them to

yearn for the vast and endless sea.”

–Antoine de Saint-Exupery

11. Respect your extended network of partners and suppliers by challenging
them and helping them improve. The supply chain is not to be consid-

ered a zero-sum game where everything that your supplier is earning is

something that you are losing. By developing a trust relationship with

your partners and helping them improve, you are improving your own

process, and joint ventures between suppliers and clients based on this

kind of trust have proved to systematically produce amazing results and

long-term win-win situations.

12. Go and see for yourself to thoroughly understand the situation. Often
translated as “management by wandering,” Genchi Genbutsu is an

important practice for the Lean leader: don’t rely only on reports,

metrics, scorecards, and meetings. Go where the action is. Live with

your team, sit with them, and experiment by yourself what is happening

at theGemba, the place where work is being performed. Help your team

perform better and instruct them at the workplace. By the way, if you are

not able to personally train your people, you are probably not qualified

to be a true Lean leader and are working under the old Taylor paradigms

of thinking managers versus working labor instead.

13. Make decisions slowly by consensus, thoroughly considering all options,
and then implement decisions rapidly (Nemawashi). Incorporating every-
one’s opinion in the decision-making process can be hard, but once

again this short-term investment produces great long-term results: a

more committed workforce, better decisions based on a more complete

view of the system, enhanced collaboration, and less conflicts.

14. Become a learning organization through relentless reflection (Hansei)
and continuous improvement (Kaizen). The master principle of Lean:

never be satisfied with your current state, strive for perfection. Every

mistake is seen as an opportunity to improve as long as people are

empowered to take risks, make mistakes, and learn from them. Blame-

avoiding games will never make the company better, they will only

keep you safe, and trying to ignore mistakes is another form of blame

avoiding. In a Hansei-Kaizen culture, everyone feels responsible and

accountable for their decisions, and when a mistake has been made, it is

The 14 Principles of the Toyota Production System 29

more important to fix it and make sure that no one else will make the

same mistake again than trying to hide the broken glass under the carpet.

Over these 14 principles, constant improvement and respect for people

remained as the foundations to correctly implement them, and this remains

the base of Toyota’s competitive advantage.

Kanban Systems

The five master principles (Value, Value Stream, Pull, Flow, Kaizen) and the

“Toyota Way” 14 principles gave birth to a plethora of practices and tools

that have been deeply covered by the Lean literature. We’ve already men-

tioned Jidoka, Andon, Heijunka, Value Stream Mapping, Genchi Genbutsu,

Just-in-Time, Gemba Kaizen, A3 reports. . . And there is more: You can read

about Poka-Yoke or foolproof design (e.g., the USB connector that can only

be plugged one way); 5S plant maintenance systems (Sort-Set in order-

Shine-Standardize-Sustain); Single-Minute Exchange of Die, or the ability

to change from one product manufacturing to another very fast; or root cause
analysis as a way to look at problems, often combined with Ishikawa
fishbone diagrams.

As you see, we would need a whole dictionary to describe all the tools

and practices that the Lean enterprises have produced in the last decades as

forms to implement the 5 root principles and the 14 Toyota Way principles.

But one of them is especially important because of its relevance that has

been recognized recently in the IT industry: Kanban systems.

“The two pillars of the Toyota production system are just-in-time

production and automation with a human touch, or autonomation. The

tool used to operate the system is kanban.”

–Taiichi Ohno, The Toyota Production System

Modern Kanban authors like David J. Anderson make a difference

between “kanban,” a tool to manage demand, and “Kanban,” with a capital

“K,” a framework to look at production systems, spot bottlenecks, and

trigger employee empowerment and continuous improvement.

The original idea behind Kanban systems is to attach a physical card – or

kanban – to any piece of work being done at the factory and then limit the

amount of available kanbans to match the production capacity. Thus, any

order coming when no kanbans are available has to wait on a buffer until

30 2 Lean and Agile in a Nutshell

some resources are released. If demand is higher than capacity, the buffers

will start to grow, and this will be understood as a need to rearrange the

system so it is able to cope with the growing demand.

This can be achieved by adding more resources, of course, but it is

usually possible to raise the capacity also by improving the production

process, eliminating waste, removing impediments, training people,

improving quality. . . Companies that directly add more resources whenever

they have a peak of demand have ever-growing costs, and their quality

remains the same or worse, while companies that strive to improve their

system reduce their costs, raising their production capacity and their product

quality.

Kanban systems also provide a simple way to “see the whole” by

gathering all the kanban cards at a given moment and putting them on a

board that represents the production process. Measuring the time a kanban

takes to move from one production step to another, we can obtain valuable

information on cycle time (the time a single unit takes to be produced since

we start working on it) or lead time (same, but counting from the time the

order entered the system). We can also see where the kanbans are stopping

and growing queues, or even where a production cell is running out of work.

For example, look at this simple kanban board for a software develop-

ment team of four people. Every kanban represents a piece of work that has

to be designed, coded, and tested, so the flow of work is represented from

left to right. Small comic-like avatars are also used to represent the people

working at them:

Kanban Systems 31

It is easy to see that the poor guy on the test column has a lot of “code

ready” kanbans to work on. Of course we could add more testers. But maybe

the problem is that the “code ready” code is not as ready as the coders

think, so maybe we should invest our resources better by training the coders

and asking them to spend more time on their work until the quality of the

code is enough for a smooth testing. This would have both the effects of

reducing the throughput of the coders and making the tester work faster, as

he would have better quality materials to work at. So we would have

equalized the system without introducing new costs in the form of more –

demoralized – testers. As you can see, the visualization of the value

stream and the work in progress help us understand the whole and improve

the system.

A true Kanban system works with a simple set of rules:

1. Start by doing exactly what you are doing right now.

2. Map the value stream.

3. Visualize all work on the value stream by adding kanban cards.

4. Introduce work-in-progress (WIP) limits.

5. Help the system flow and improve everything.

The WIP limits are usually one of the most difficult steps when

implementing a Kanban system. We have been trained on the myth of

“multitasking”: doing several things at the same time as a way of being

more efficient. But, in fact, reality works the other way round: the less things

you are doing in parallel, the more efficiently you will perform them. When

you switch between two or more tasks, there is an inherent loss of capacity

due to context switching, and the more things you are switching between,

the longer it takes to finish every single one of them.

This has been proven by examples, mathematics, simulations, real cases,

and many other ways, but still we tend to bite more than we can chew and

open as many tasks as possible, as if it was making us more productive.

Kanban systems provide a tool to control this trend and, thus, improve both

capacity and lead time. For Kanban and WIP limits to work, a small batch

size is needed. Small batches are, hence, one of the paradigms of the Lean

production systems, allowing fast exchange of product lines, low WIP

limits, lower lead times, etc.

When you look at true Kanban systems, you realize that they address the

need to understand value, see the whole value stream, help the system flow,

work under pull events, and improve the whole. So Kanban is possibly the

simplest way to implement the five root principles of Lean with a single tool!

32 2 Lean and Agile in a Nutshell

Again, this is not a book on Agile or Lean tools, but you will find very

valuable resources on Kanban and other Lean tools at the end of this chapter.

The NUMMI Experiment: Lean Everywhere

At the beginning of the studies on the Japanese production methods, some

Lean skeptics argued that this kind of productivity was only possible in

Japanese environments, where the workforce was so alienated and submis-

sive that they will work themselves to death. Well, in fact, there is a

Japanese word for that: karoshi. . .

Some other skeptics claimed that the Japanese competitive advantage

was due to a devaluated yen, while others pointed at superior automation.

But all these arguments were silenced after the NUMMI experiment.

At the beginning of the 1980s, General Motors was having big trouble

with the NUMMI manufacturing plant in Fremont, California. It was

described by company officials as “one of the worst in the industry”: the

absenteeism was so high that sometimes the whole plant shut down because

there were not enough people to operate it, and frequently workers came

drunk to work and sabotaged the cars they were making with small

pranks, like placing beer cans inside the frame so they would rattle while

driving. Quality was awful, costs were outrageous, and capacity was

embarrassingly low.

General Motors ended up closing the plant in 1982. But in those times,

Toyota was looking for a way to better introduce their products in the United

States, and General Motors was also eager to know more about the Toyota

Production System. So the two companies reopened the plant in 1984 as a

joint venture – with 85% of the original workforce.

You can imagine the faces of the General Motors managers when, few

years later, Fremont’s NUMMI plant started assembling cars in 19 h (instead

of GM’s average of 31), with 45 defects per 100 cars (instead of GM’s

average 130), operating with 2 h of inventory (instead of GM’s average of

2 weeks), no space for rework (instead of GM’s average of 15%), and with

no absenteeism at all (instead of GM’s average of 15%).

GM was shocked. And the most shocking fact was that the whole work-

force was hired from the former NUMMI workers, but virtually no former
top manager was rehired. That means that management was Japanese and

workforce was American.

The NUMMI Experiment: Lean Everywhere 33

When Toyota Lean Senseis were asked about this fact, they simply

replied “the problem with your managers is that they want to rule, command

and control, not to teach.” Furthermore, observers described the way Japa-

nese managers collaborated with American workers as “comanagement.”

So yes, Lean can be implemented everywhere, and yes, management can

be the big difference – or the big impediment – when trying to implement

and improve a Lean system. If you tend to look around and say to yourself

“oh, that would never work here,” try to imagine a drunken American car

worker placing beer cans inside the product, and try to explain how worse is

your situation right now.

Lean in a Nutshell

Summarizing Lean in a couple of pages is a lost-in-advance battle, but I’ll

try to give some ideas on how a Lean system feels like. . ..

A Lean system is devoted to understand how we produce value from a

customer perspective and then arrange all our processes and activities in a

way that creates the most value and minimizes waste. Products are devel-

oped just in time with the minimum possible amount of time, space, and

costs. There is a constant effort in lowering production time as a way to

increase productivity and suit best the needs of the customer.

Work flows in small batches from the beginning of the production

line without stop, and bottlenecks are rapidly addressed to maintain the

line flow. The work in progress is limited to a certain amount, with “single-

piece flow” (meaning that you only work on one thing at a time) being the

ideal state.

Work is standardized not as a way to increase bureaucracy but as a

common arrangement of how things should be done. When a problem or

impediment is detected, everyone in the plant is empowered to take risks,

stop the line, and swarm around the problem to not only solve it now, but

also make sure that this problem will never rise again. Standards of work are

updated constantly to include the solutions to the detected problems, and the

whole system is constantly improved.

There are neither individual competitions nor blame-avoiding games, as

everyone is aligned in the aim of improving the whole. Errors are tolerated

and seen as an opportunity to improve, so there is no fear to take risks or

point out mistakes. Work groups self-organize to find the best way to

34 2 Lean and Agile in a Nutshell

optimize the system by experimenting and innovating in inspect-and-adapt

cycles.

Visual boards are available everywhere so the state of work and any

possible issues are detected as fast as possible and seen by everyone in the

plant. Managers are available for work groups, and they will help them

understand the job to be done and remove any impediments for them. They

will also help them raise any issue to the company level and reach their full

potential.

“The fundamental principle of successful management is to allow

subordinates to make full use of their ability”

–Kaoru Ishikawa’s What is Totally Quality Control? The Japanese
Way

Quality is seen not only as conformance to requirements that has to be

tested at the end of the line. A holistic approach to quality is embraced, and

everyone is responsible for building quality into the whole process.

Kaizen events are frequent, and everyone in the company is required to

contribute to the innovation and continuous improvement of both the product

and the system. Company strategy in the long term is honored on daily short-

term decisions, even at the expense of short-term losses, and this long-term

thinking is also applied to company development, training, improvement, and

constant reflection (Hansei).

The Pre-Manifesto Years: Agile Genealogy

Unfortunately, while the car industry was changing the world of

manufacturing into Lean production, the information technology or IT

industry was not catching up.

For decades, the paradigm of “software engineering” rested on the foun-

dation of perfectly defining what was to be built and then starting to build it,

which seems logical on a first thought. Hence, a huge number of methods

and disciplines were designed to define, estimate, and plan software devel-

opment before a single line of code was written. The worse the results, the

more the software industry tried to introduce even more documents,

specifications, timetables, schedules, processes, milestones, etc.

The Pre-Manifesto Years: Agile Genealogy 35

And the results were bad. Standish Group, a Boston-based project man-

agement and consulting firm, started to periodically release the “Chaos

Report” about the state of project management in the IT industry. The report

is based on hundreds of cases, and the underlying premise is, paraphrasing

1986’s president of Transarc Corporation Alfred Spector, that bridges are

normally built on time, on budget, and do not fall down, but, on the other

hand, software never comes in on time or on budget and, in addition, it

always breaks down.3

In fact, the numbers repetitively shown by Chaos Reports are scary:

according to the participants, in 2009, only 32% of all projects succeeded

(were delivered on time, on budget, with required features and functions),

while 44% were challenged (late, over budget, and/or with less than the

required features and functions) and 24% failed (canceled or delivered and

never used).4 Furthermore, the Standish reports consistently show as low as

50 or 60 cents of value delivered for every dollar spent on software, meaning

that half the cost of building software is what Lean Senseis call “waste.”

Still, the software industry’s standard response for three decades has been

“we have to estimate better – if we make perfect estimations, then our

projects will always be on time, on budget and will have all the required

functionality; if bridge builders can estimate, why can’t we?”

At the same time, a few IT projects were beating the industry’s average

performance by several orders of magnitude. Small teams of no more than

eight people were capable of delivering thousands of lines of working

software – every week! Experts started to trace and study those projects,

and what they found there was against all the established lore in IT project

management. These teams were self-organizing to produce working soft-

ware on short iterations, obtaining frequent feedback from the client and

then rapidly adapting and extending the working software to the new

requirements. Quality was outstanding, and several strategies were used to

automate as many parts of the process as possible, including testing, build-

ing, and deployment. A new set of practices and tools started to emerge from

those teams, including pair programming, short releases, automated build-

ing and testing, test-driven development, etc.

3 Sachs I (2011) CHAOS report. In: Performance-driven IT management: five practical
steps to business success. Government Institutes.
4 Standish Group Press release, http://www.standishgroup.com/newsroom/chaos_2009.
php

36 2 Lean and Agile in a Nutshell

http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.standishgroup.com/newsroom/chaos_2009.php

So we had some people empirically experimenting the first principles and

practices of Agile Software Development. But it was not the only path that

guided some brilliant pioneers to the concept. Some of them started by

analyzing the Lean body of knowledge and bumped into a seminal paper by

Ikujiro Nonaka and Hirotaka Takeuchi: The New New Product Development
Game.5 In this 1986 paper, Nonaka and Takeuchi proposed that it wasn’t

enough anymore to have a good product at a good price to survive – it was

also necessary to adapt to an ever-changing demand from customers who

now required companies to evolve their products constantly, and it was also

necessary to be able do it fast! Nonaka and Takeuchi found that companies

following a “waterfall” methodology of development – meaning that

requirements, design, building, testing, and delivery were sequential phases

usually performed by different groups of people – were not achieving the

best results.

Instead, cross-functional teams of people with different skill sets that

were iterating and adapting requirements, design, building, and deployment

at the same time were achieving the best results in terms of creativity,

innovation, productivity, quality, and time to market. Nonaka and Takeuchi

compared the two approaches to a relay race, where the project was the

baton and was handed from one group to another at the end of each phase,

and a rugby scrum, where the project was the rugby ball and the whole team

pushed it further.

In the 1990s, other experts started to apply Queue Theory and Theory of

Constraints to software development, dividing the project in small batches

and trying to move them through the development process as fast as they

could removing bottlenecks. This was of course inspired by the Lean

practices of flow and pull.

Simultaneously, some scientists studying complexity science theorized

that software development is a complex field, meaning that requirements

are not stable: they change when the client starts to use the product and

finds new needs or discards functionality that he originally thought he needed,

or even change because the environment and the problem constantly change

while the software is being developed, and thus, a predictive method of

requirements gathering and full solution design is not adequate: an inspect-

and-adapt or empirical method should be used to approach software

5Nonaka I, Takeuchi H (1986) The new product development game. Harvard Business
Review 65(1):137–144.

The Pre-Manifesto Years: Agile Genealogy 37

development as a complex problem, and products should be built iteratively

and incrementally.

A whole new set of methodologies and frameworks started to emerge.

Some of the most important were eXtreme Programming (XP), Scrum,

Feature-Driven Development (FDD), Crystal Methodologies, or Dynamic

Systems Development Method (DSDM).

The Agile Manifesto

In February of 2001, after more than two decades of research and practice,

17 of these experts gathered together in Utah and wrote the Agile Soft-

ware Development Manifesto.6 First seen as a countermovement against

documentation-driven, heavyweight software development processes, the

Manifesto was the foundation for a huge movement that, today, is widely

considered the better way to develop software. Even today, a decade later,

the Manifesto is still considered by many as the ultimate guide and assess-

ment to see how Agile your software development process is.

The Manifesto reads:

“We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

–Individuals and interactions over processes and tools

–Working software over comprehensive documentation

–Customer collaboration over contract negotiation

–Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.”

–Manifesto for Agile Software Development (17 signatories)

Let me give you my own view of the Manifesto.

As you see, the Manifesto starts by acknowledging the existence of many

ways of doing things, but, in the opinion of the Agilists, Agile is a better

6 http://www.agilemanifesto.org

38 2 Lean and Agile in a Nutshell

http://www.agilemanifesto.org

way. That means you can still build a great product even if you don’t use

Agile. For me, this first part of the Manifesto is what I like to call “the great

promise of Agile,” which is that no matter how bad things go, the worst

thing that can happen if you go Agile is to end up having the same results

you had in the beginning.

The Manifesto goes on stating that we are uncovering these better ways

by doing it, meaning this is not just an academic exercise, we’ve been doing

this stuff and eating our own dog food and helping others do it, which means

that this is not something that only works for us; you can do it too!

Then, the Manifesto enumerates the four foundational values of Agile

development, but please keep in mind the last phrase: we value the items on

the right! Agile is not a chaotic commune of software hippies demanding to

ban documents, processes, contracts, tools, and plans. In fact, too many

people have seen the Agile movement as a war between good developers

and bad managers, and that is absolutely not the case. You only have to read

the principles to find the need of software developers and business people to

collaborate daily on the project.

The four values start with “individuals and interactions over processes and

tools.” As said, this is not a call to ban processes and tools: software

development is a knowledge-sharing game, and the best way of managing

knowledge is through personal interactions. Processes and tools must be

designed keeping this fact in mind and they should foster communication,

interaction . . .and face-to-face communication. If they keep people out of this

kind of interactions, asking to fill timesheets, knowledge-based wikis, and a

whole bunch of procedural forms instead, then they should be redesigned.

The second value is “working software over comprehensive documenta-

tion.” Project documentation, from an Agile-Lean perspective, is waste.

More project documentation does not give more functionality or value to

the customer, so we should try to have as few documentation as possible –

but not less! Spending the first few months of a project writing documents is

not the best way of providing value to our customer, when we could be

designing prototypes, proof of concepts, or technical spikes instead and

evolving them into the full product in short client-driven iterations.

The third value is “customer collaboration over contract negotiation.” Of

course, contracts are important. But even when you are protected by a

contract, if your client finds new needs and you don’t put them into the

product because your contract does not require you to do so, you are not

providing the most possible value to your client. If both parts accept that

The Agile Manifesto 39

project will change and they are fine with that, a better way of collaborating

and building products will be reached.

This acceptance of change is also present in the fourth value: responding

to change over following a plan. Planning is important but only as far as you

understand that the plan will be outdated immediately, and you have to

constantly adapt to a changing environment. This is a basic principle of the

universe that you have to admit to be a successful manager: you can adapt

your project to reality – trying to adapt reality to your project will not work.

“In preparing for battle I have always found that plans are useless, but

planning is indispensable.”

–Dwight David Eisenhower, American 34th President (1953–1961)

Principles of Agile Development

The Agile Manifesto also lists 12 principles for Agile Software Develop-

ment, but going in depth into each of them is out of the scope of this book.

Instead, I’ll give you the 10-min abstract I used to show on my seminars

after six hours of Agile principles dissection.

Try to imagine traditional software development like this:

As you can see, you do some initial planning, come up with some

crazy estimates, draw an aggressive deadline, and start coding like there is

40 2 Lean and Agile in a Nutshell

no tomorrow. Some weeks before the deadline timid voices start to question

it, and pessimistic reports arrive asking for more time because of unexpected

events, faulty materials, wrong requirements. . . Oh, yes, and the client is

making changes. Too many changes. So you move the deadline and prepare

yourself to receive hell from both client and boss. There is nothing else to do,

except urging everyone to do long hours – it is crunch time, and now you are

on a death-march project!

This lowers morale and has a bad effect on product quality, which also

contributes to new delays, and so not only your project is doomed: your next

project will suffer from the constant interruptions, support tickets, and

trouble reports that this project will cause in the future.

Now try to imagine a different reality:

This time you started with the same estimate you had in the other case,

but now you focused on delivering the 33% of most important features (the

first ones) as soon as possible. So maybe on month 3, you had a first

prototype consisting of the three most important groups of features, or

“epics.” You realize then that they were supposed to have ended by month

2, so you clearly detect that estimates were very optimistic and it is time to

replan.

What shall we do? Well, now that we are releasing working features

regularly, there are more options. For instance, we could release “some-

thing” on the deadline (release 1.0) and then release the full product later

(release 2.0).

Principles of Agile Development 41

But if we are delivering the most important features first, then the last

features consist of the “nice to have” or “could-wish” part of the product.

Maybe the cost of extending the project 3 months past the original deadline

is not worth the business value we will get from these features.

This is a decision to be made by business people. In the worst case,

releasing a product with only 66% of the most important features will not be

acceptable to the client, but then, we would be in the first case again! So, as

promised by the Manifesto, the worst thing that can happen is to finish up

exactly as you were before implementing Agile. But, on the way, Agile has

given you a new series of options you did not have before – like start using

the 66% of the most important features before the final release.

Also, having a working product as soon as possible helps the client see

what he actually needs, thus having better information than when you ask

him to write on a document what he will need in the future. This has the

effect of reducing risks and uncertainty, usually reducing the project time

and improving the quality of the product and the satisfaction of our client.

The principles of the Manifesto describe this kind of development, where

the main metric of progress is not the time elapsed, percentage of the Gantt

chart done, or number of working hours put into the project, but working

software delivered. Working software is the primary measure of progress,

and the features we deliver are prioritized in order to satisfy our customer

needs, so the most important features are delivered first. These deliveries to

the customer are done on short time scales, from a couple of weeks to a

42 2 Lean and Agile in a Nutshell

couple of months, and the delivered product should be as close to production

state as possible. Every delivery creates an opportunity for our client to test

the software, change the requirements, and replan the whole project, some-

thing we welcome as a way to provide competitive advantage to him.

The Agile principles establish that this kind of process must be performed

by a motivated, self-organizing team of developers that is collaborating

daily with business people, works at a sustainable pace, actively seeks

face-to-face communication, strives for technical excellence, and frequently

reflects on how to improve, simplify, maximize value, and reduce waste.

Easy, right?

Again: From Values and Principles to Practices and Tools

As we saw when studying Lean, just trying to copy the practices and tools

will not take the company to a Lean state. The same happens with Agile: just

trying to put some post-it notes around and conduct daily meetings will not

make you Agile. Only the constant effort to embrace the values and the

principles will. If you guide your company through the values and the

principles in the Manifesto, it does not matter if you are doing Scrum, XP,

Kanban, Lean Software Development, or the last fancy flavor of Agile. That

is why, lately, many Agilists are urging companies to stop doing Agile and

be Agile instead.

Anyway, the implementation of the Agile values and principles, as well

as the previous work done by the Agile pioneers, has produced a well-

documented set of best practices that very possibly will help you understand

and embrace Agile. Some of them are described below, but, again, let me

stress that even if you start performing all of them, that will not necessarily

make you Agile.

From my own perspective, Agile companies must understand values and

principles first and then try to find the set of processes, roles, practices,

artifacts, and tools that help them live by those values and principles and not
the other way round. There are outstanding Agile software tools out there

that will help you manage your projects, collaborate with other developers,

automate your testing, building, and deployment, or even measure the

quality of your code. Be sure none of them will make you Agile. Here is

some advice: If you can spend some resources on the Agile adoption

process, be sure to spend it on people and not on software.

Again: From Values and Principles to Practices and Tools 43

Some Agile Practices and Tools

Please be sure to read the previous section before going on. Twice. Now,

you are encouraged to use as many of these practices as possible, as they

have proven to be very useful and rewarding, not only to help Agile

adoption but to improve team collaboration and overall performance in all

kinds of projects:

• Cross-functional teams: Instead of setting up a team of analysts, a team of

developers, and a team of testers, try to make a team of 5–9 people that

includes analysts, coders, and testers. Then ask them to collaborate and

produce working software together every couple of weeks, which will

probably force the analysts to do some testing or the testers to do some

coding. Be sure to measure and rank the team as a whole depending on

the main measure of progress: working software delivered! This will

introduce some problems with hyper-specialists or people whose skills

are seldom used and may not have enough work to do in a team of 5–9:

we will deal with this in the chapter about Agile structures.

• Iterative and incremental development: Instead of building block A, and

then block B, and then block C, only to find out that nothing really works

until block Z is in place, try to deliver a small working version of the

system as soon as possible. Try to live by the philosophy of “Release

early, release often and listen to your customers” proposed by Eric S.

Raymond in his essay “The Cathedral and the Bazaar”.7 Several

approaches have been proposed for this, including Alistair Cockburn’s

walking skeleton or the Minimum Marketable Feature Set/Minimum

Viable Product concept.

• Daily meetings: Meetings are often seen as a terrible waste of time. The

solution is not to have fewer meetings (well, maybe just a few less) but to

be more efficient in their moderation and facilitation. On the other hand,

in groups of people often called “teams,” it is not rare to find individuals

who don’t know what their colleagues are doing in any given moment and

think that they only have to worry about their personal bit of stuff. A daily

five to ten minutes face-to-face meeting where every team member

reports his activities, progress, and impediments is a great way of both

updating the information about the project, better knowing our

7 Raymond ES (1999) The cathedral and the bazaar: musings on Linux and open source
by an accidental revolutionary. O’Reilly Media.

44 2 Lean and Agile in a Nutshell

colleagues, sharing knowledge, showing some interest, fostering collab-

oration, and growing better teams.

• Feature-Driven Development: If we have to deliver working software

every 2 weeks or so, a high stress has to be put on developing working

features as a whole, instead of spending some months designing the

architecture, then another few months developing the core, then applica-

tion logic, then user interfaces. Evolving architecture can be a pain when

you’ve never done it before, but feature-driven teams can react better

to the feedback coming from the customers and reduce risks by, for

example, not investing too much on the wrong architecture or the

wrong product. Nothing is more inefficient than developing very effi-

ciently a product that nobody wants. Feature-driven cross-functional

teams will tend to be generalists, as technically specialized teams will

not be able to easily change from one feature to another as demand

changes. Feature-driven teams often use user stories as units of work to

develop, with every user story describing a feature to be incorporated to

the existing product. User stories are supposed to include a description of

who wants the feature, what does he want, why (the problem to be

solved), and how to test the feature at the end of the iteration. They are

frequently handwritten on an index card and posted on the teams’ itera-

tion board.

• Planning game: In more traditional environments, a project manager

plans the whole project, divides work, estimates effort and costs, and

then blames everyone for not following the plan and not working hard

enough. Agile teams participate as a whole in project planning, as

everyone will have valuable information in his part of the project.

Estimates are shared and discussed as a way to have more conversations

about the product we are building. Teams that share planning are also

more committed to delivery dates than those whose delivery date has

been set up by someone seen as external to the team. The use of games

like planning poker, story points, or workshops to create user story maps

is frequent in Agile teams.

• Co-location: The benefits of co-locating the cross-functional team

together have been widely explained in literature. The time to address

the person that could have the answer to your needs drops dramatically,

collaboration starts to happen naturally, and osmotic communication

takes place. Alistair Cockburn, father of the concept of osmotic commu-

nication, says that “information flows into the background hearing of

Some Agile Practices and Tools 45

members of the team, so that they pick up relevant information as though

by osmosis”.8

• Pair programming: This practice started among developers, but it is

gradually being applied by other members of the team. For example,

developers and testers are pairing, so code is easier to test. And analysts

and coders are pairing so coders better understand what they need to

solve, and also produce more readable code. When two people pair, only

one computer is used. While one of them is at the keyboard, the other

plays the navigator or observer role. Pair programming has proven to

produce better code quality, hence reducing the number of bugs and

improving performance. It is also a great way of learning and sharing

knowledge between team members.

• Visual management: Agile teams love to post things on their walls.

Iteration state, who is working on what, project progress, impediments,

definition of “Done”. . . even appreciation messages from one team

member to another. The Agile team’s “Visual War Room” has a lot of

influence on team members: it puts some peer pressure on them, while

also creating a team culture of what is important for them and what they

are striving for. A direct heritage from Lean environments, no software

tool has ever matched the subtle power of physical team boards!

• Agile coach: Agile companies have found teamwork to be the ultimate

competitive advantage. But they’ve also learned that putting some people

together, throwing a project to them, and calling them “team” will not

necessarily produce the kind of magic they are searching for. The role of

the Agile coach is both teaching Agile practices and coaching the team to

make the most out of them. This usually includes coaching individual

team members, helping the team solve their conflicts, teaching them to

communicate in a constructive way, facilitating meetings, making them

trust one another, or showing them ways to remove impediments by

themselves.

“It is teamwork that remains the ultimate competitive advantage,

both because it is so powerful and so rare.”

–Patrick Lencioni, The Five Dysfunctions of a Team

8 Cockburn A (2004) Crystal clear: a human powered methodology for small teams.
Addison-Wesley Professional.

46 2 Lean and Agile in a Nutshell

• Retrospectives: At frequent intervals, the team reflects on what is going

well, and how to spread those practices, and what is going wrong, so they

find ways to improve it. The behavior of the team is automatically

changed in order to implement the improvement plan they have designed,

and the appropriate processes and documentation are updated to show

these changes.

Agile also has a wide spectrum of technical practices for developers.

Agile developers share the ownership of the whole application, so everyone

is entitled to modify someone else’s code. Tests are written prior to the

code, and then only the code needed to pass the tests is written. Once all

tests are passing, the code is refactored to make it simpler, smaller, and more

efficient. Every piece of finished code is automatically built into the

whole application, and alarms stop the development process if the build is

broken – again, a direct heritage from Lean environments, where the Jidoka

or autonomation principle will stop the whole production line when a

problem is detected.

Agile in a Nutshell

Again, trying to summarize Agile seems a Herculean task, but I’ll try to give

an overall image of how an Agile environment feels like:

It’s Monday morning on Agile Enterprise Inc. A new project is
launching, so a User Story Mapping workshop has been set up by
the Agile Coach. Representatives from the client have come to explain
their problem to the team, and the team starts to make questions about
the desired behavior of the system they will be building. Groups of
features (epics) start to be identified and posted to the wall, and a
general skeleton of the application takes form. After several hours,
some hundred features have been defined at high level and prioritized
by the client, so the coach calls for the workshop to end. A short
retrospective of the workshop is conducted to see what can be
improved next time and how valuable was the time invested.

On Tuesday the team plans for an iteration of two weeks, and they
estimate that the first twelve features can be done by the end of the
iteration. An iteration board is designed showing the features to be
developed in “pending” state. While the iteration goes on, each
feature will be moved to “analysis,” “development,” “testing,” and
“done!” to show their progress. The team will make an effort to have

(continued)

Agile in a Nutshell 47

as few open features at a time as possible, thus reducing the work in
progress and the context switching. This will give the team better
concentration and performance, and the overall lead time will also
improve.

Every day the team will gather together standing up in front of the
board and tell the other team members what they are working at, how
much is still to be done, what they will be doing next and what
problems and impediments they are facing. The board will be updated,
so it will always show the current iteration state, and the team will go
back to work. The coach will take note of the impediments and help the
team when they find one that blocks a feature: their priority will be
always to solve the impediment, and not to abandon the feature in
favor of an easier, unblocked but less valuable and less priority item.

Exactly two weeks later, not a day after, a meeting with the client
takes place. The team managed to successfully finish ten out of the
twelve planned features. Unexpected technical issues were discovered:
fortunately enough, we are still on time to re-plan the whole project, as
only two weeks have been invested and the knowledge we have right
now, after physically working on the code for two weeks, is much
higher than the one we had when thinking and designing with pencil
and paper.

The ten features or user stories are accepted by the client, but now
that he sees and uses the features and knows how they feel, he realizes
that some new features will be needed. He also notices that some of the
features on the original backlog will not be very valuable, as the
current features cover most of the functionality that the non-developed
features will provide, so some changes and re-arrangements are made
to the feature backlog, and the team plans for a new iteration.

Before starting the new iteration, the Coach calls for an iteration
retrospective. The team is happy with their collaboration level and the
way they are reporting and managing the project, but they are a bit
upset about the technical issues they weren’t able to predict. All of
them have something to do with an arcane module of their legacy
code-base that nobody really knows how it works. So they start think-
ing about a way to refactor this module and turn it into something
more stable, bug-free, and documented. Some capacity of the team will
be spared to work on this module and, while this will drop the team’s
velocity for a couple of iterations, reducing the number of blocked
stories and impediments will probably rise the team’s throughput
later.

48 2 Lean and Agile in a Nutshell

Summary

Lean and Agile are frameworks that very often seem counterintuitive.

We’ve usually been educated on Taylor’s paradigms of man-hours, carrots

and sticks, bosses and subordinates, hyper-specialization, and Dilbertesque
office environments. While companies have fancy mission statements that

state the importance of the customer, the usual fact is that they ignore and

abuse them in order to raise their profit, and while the companies often say

that their workers are their most important asset, downsizing, offshoring,

and institutionalized abuse, harassment, and exploitation are in the order of

business.

“You are not paid to think. A mindless worker is a happy worker. Shut

up and do your job!”

–Futurama de-motivational poster

On the other hand, Lean and Agile rest on the foundation of real client

focus – maximizing value from the client’s perspective, comanagement,

teamwork, empowerment, motivation, values, pride. . . Put it this way, it is
normal that many people will say “that will never work”, but it is working. It

has been working for decades, in fact.

Lean companies are four times as productive as their market’s average,

their quality is ten times better, and their costs are less than half that of their

competitors. These rates skyrocket if we study companies based on knowl-

edge workers, where the best of their field can be 30 or 50 times better than

the average, with this number growing even more when the knowledge field

gets more complex.

Companies working by the old twentieth-century paradigms face a dra-

matic decision: if they go on trying to brute-force their business by lowering

costs, they will need to fight against the rising economies like China, Korea,

Brazil, India, or Russia, where labor costs are cheaper and people usually

work for 12 h a day, 6 days a week.

On the other hand, they can embrace Japan’s model of efficiency, quality,

and continuous improvement, but this is not possible without a committed

and aligned workforce.

Summary 49

So the question is, how can we turn our listless and individualized

workforce into a Lean-Agile set of true collaborating teams capable of

beating the heck out of the market?

This, above all, is the Agile manager’s role.

Things to Try

• Visualize your value stream. Find some books or tutorials on the topic,

and then start by mapping your whole production process backward with

the help of no more than a pencil and a notebook. Start with the deliveries

of the goods, then go back step by step until you reach the point where an

order from the client was received. Don’t trust the people’s estimate:

measure the time by tracing the orders, receipts, delivery tickets, e-mails,

and any other available information. Try to find out how much time was

spent really working on the product and how much was wasted in queues,

waiting time, handoffs, reworks. . . Identify bottlenecks and design a plan
to exploit them.

• List your main sources of waste. Read about Muda, Mura, and Muri as a

way to inspire yourself and learn to see waste around. Look carefully at

every activity and ask yourself “do we really want to do more of it?” If

not, label it as waste and try to reduce it in the future. Try to quantify the

cost this activity has in the overall production process. Make everyone

join you in this search for waste.

• Start to schedule regular Gemba Walks: go to the place where actual

value is created, the workplace, and spend some time wandering around

trying to see if help is needed. Also try to physically follow the value

stream from side to side and spot hidden sources of waste, bottlenecks,

current issues, and possible improvements. Don’t use Gemba Walks to

interrupt people and ask them about the state of work: only address

people if a problem in the system as a whole has been spotted, or if

they ask you for your help.

• Use your value stream to start a Kanban board. Gather all ongoing and

pending work and represent it on a board with all the Value Stream steps.

You can find excellent recommended tutorials on Kanban at the end of

this chapter. Note down every step the work takes and start measuring

cycle time and lead time. Use your Kanban board to encourage discussion

and reflection among teams about current issues, bottlenecks, prioritiza-

tion schemas, sources of waste, and improvements of the current process.

50 2 Lean and Agile in a Nutshell

• Start a visual management program. Organizations are as mature as the

information is free to travel across them. If people want to hide informa-

tion, there is something to be addressed there. Urge everyone to make the

information about their projects immediately visible and constantly

updated. Reinforce the visual management program with an A3 initiative:

urge everyone to design A3 forms for their reports and documents.

• Launch a Kaizen program. You can start by asking everyone to do

periodical retrospectives – every 2 or 3 weeks is a good place to start.

Ask people to list things that are working well and things that are not.

Every retrospective exercise should end with a list of proposed actions –

if not, it’s just whining!

• Ask your coworkers what problems they face in their daily jobs. If they

answer “No problem!” make them realize that “No problem” is a prob-

lem, as it hides the path to continuous improvement. Try to ask them what

they would need to double productivity with the same resources they

have right now.

• For every recurrent problem or error detected, launch a root cause

analysis workshop. Try to find the roots of the problem by asking,

“Why?” (Toyota is well known for using five why’s for every detected

problem). Learn about Ishikawa fishbone diagrams, as well as cause-

effect diagrams.

• Think of a way to work on smaller work batches more frequently. Try to

release something to your client every 2 weeks or so, gather client’s

feedback, and then replan according to the feedback received. Invite your

client to the planning meetings.

• Train your people on Agile and Lean. Then, let them figure out what parts

of Agile and Lean they could be using. Don’t try to implement the whole

set at once – you’ll inevitably fail! Start by understanding the core

principles and values instead.

• If you work at a software development or IT company, gradually intro-

duce some of the Agile practices described. Find more practices and tools

in some of the recommended readings. Even if you are not at a software

company, try to introduce some work-in-pairs time every week: you’ll be

amazed with the results! Remember to rotate the pairs in order to obtain

the best results in terms of knowledge sharing.

• Find and join some Lean or Agile practitioners group in your city. If there

is not one, join an online group. You’ll find interesting communities of

practice in Yahoo groups, Google groups, or LinkedIn.

Things to Try 51

Recommended Readings

Anderson DJ (2010) Kanban – successful evolutionary change for your technology
business. Blue Hole Press, Sequim

Beck K (1999) Extreme programming explained: embrace change. Addison-Wesley
Professional, Boston

Cockburn A (2006) Agile software development: the cooperative game. Addison-
Wesley Professional, Upper Saddle River

Cohn MW (2009) Succeeding with agile: software development using scrum. Addison-
Wesley Professional, Upper Saddle River

Dowser J (1999) Embracing defeat: Japan in the wake of WorldWar II. W.W. Norton &
Company, New York

Ishikawa K (1991) What is totally quality control? The Japanese way. Productivity
Press, Cambridge

Kniberg H, Skarin M (2010) Kanban and Scrum – making the most of both. lulu.com,
Raleigh

Liker JK (2003) The Toyota way: 14 management principles from the world’s greatest
manufacturer. McGraw-Hill, New York

Nonaka I, Takeuchi H (1995) The knowledge-creating company: how Japanese
companies create the dynamics of innovation. Oxford University Press, New York

Ohno T (1988) Toyota production system: beyond large-scale production. Productivity
Press, Portland

Ohno T (2009) Workplace management. Gemba Press, Mukilteo
Poppendieck M, Poppendieck T (2003) Lean software development: an Agile toolkit.

Addison-Wesley Professional, Boston
Poppendieck M, Poppendieck T (2006) Implementing lean software development: from

concept to cash. Addison-Wesley Professional, Boston
Poppendieck M, Poppendieck T (2009) Leading lean software development: results are

not the point. Addison-Wesley Professional, Boston
Rother M, Shook J (1999) Learning to see: value-stream mapping to create value and

eliminate Muda. Lean Enterprise Institute, Cambridge
Shingo S (2007) Kaizen and the art of creative thinking: the scientific thinking mecha-

nism. PCS Inc. and Enna Products Corporation, Vancouver
Shingo S (2009) Fundamental principles of lean manufacturing. PCS Inc. and Enna

Products Corporation, Vancouver
Tabb WK (1995) The postwar Japanese system: cultural economy and economic

transformation. Oxford University Press, New York
Womack JP, Jones DT (2003) Lean thinking: Banish waste and create wealth in your

corporation. Free Press, New York
Womack JP, Jones DT, Roos D (1991) The machine that changed the world: the story of

lean production. Harper Perennial, New York

52 2 Lean and Agile in a Nutshell

	2: Lean and Agile in a Nutshell
	Agile and Lean
	The Japanese Revolution
	The Five Principles of Lean
	The 14 Principles of the Toyota Production System
	Kanban Systems
	The NUMMI Experiment: Lean Everywhere
	Lean in a Nutshell
	The Pre-Manifesto Years: Agile Genealogy
	The Agile Manifesto
	Principles of Agile Development
	Again: From Values and Principles to Practices and Tools
	Some Agile Practices and Tools
	Agile in a Nutshell
	Summary
	Things to Try
	Recommended Readings

