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Abstract. This paper reviews the experience of introducing formal mo-
del-based design and code generation by means of the Simulink/Stateflow
platform in the development process of a railway signalling manufacturer.
Such company operates in a standard-regulated framework, for which the
adoption of commercial, non qualified tools as part of the development
activities poses hurdles from the verification and certification point of
view. At this regard, three incremental intermediate goals have been de-
fined, namely (1) identification of a safe-subset of the modelling language,
(2) evidence of the behavioural conformance between the generated code
and the modelled specification, and (3) integration of the modelling and
code generation technologies within the process that is recommended by
the regulations.

These three issues have been addressed by progressively tuning the
usage of the technologies across different projects. This paper summarizes
the lesson learnt from this experience. In particular, it shows that formal
modelling and code generation are actually powerful means to enhance
product safety and cost effectiveness. Nevertheless, their adoption is not
a straightforward step, and incremental adjustments and refinements are
required in order to establish a formal model-based process.

Introduction

The adoption of formal and semi-formal modelling technologies into the dif-
ferent phases of development of software products is constantly growing within
industry [4,29,27]. Designing model abstractions before getting into hand-crafted
code helps highlighting concepts that can hardly be focused otherwise, enabling
greater control over the system under development. This is particularly true in
the case of embedded safety-critical applications such as aerospace, railway, and
automotive ones. These applications, besides dealing with code having increas-
ing size and therefore an even more crucial role for safety, can often be tested
only on the target machine or on ad-hoc expensive simulators.
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Within this context, recent years have seen the diffusion of graphical tools to
facilitate the development of the software before its actual deployment. Tech-
nologies known as model-based design [32] and code generation started to be
progressively adopted by several companies as part of their software process.

The development of safety-critical software shall conform to specific interna-
tional standards (e.g., RTCA/DO-178B [30] for aerospace, IEC-61508 [22] for au-
tomotive and CENELEC/EN-50128 [7] for railway signalling in Europe). These
are a set of norms and methods to be used while implementing a product having
a determined safety-related nature. In order to certify a product according to
these standards, companies are required to give evidence to the authorities that
a development process has been followed that is coherent with the prescriptions
of the norms.

Introducing model-based design tool-suites and the code generation technol-
ogy within a standard-regulated process is not a straightforward step. The code
used in safety-critical systems shall conform to specific quality standards, and
normally the companies use coding guidelines in order to avoid usage of improper
constructs that might be harmful from the safety point of view. When modelling
is adopted, the generated code shall conform to the same standard asked to the
hand-crafted code. Concerning the tools, the norms ask for a certified or proven-
in-use translator: in absence of such a tool, a strategy has to be defined in order
to assess the equivalence between the model and the generated code behaviour.
The modelling and code generation technologies are then required to be inte-
grated with the established process, that shall maintain its coherence even if
changes are applied.

With the aim of establishing guidelines for a formal model-based development
process, in this paper we review a series of relevant experiences done in collabo-
ration with a railway signalling manufacturer operating in the field of Automatic
Train Protection (ATP) systems. Inside a long-term effort of introducing formal
methods to enforce product safety, indeed the company decided to adopt the
Simulink/Stateflow tool-suite to exploit formal model-based development and
code generation within its own development process [2,15]. The decision was fol-
lowed by four years of incremental actions in using commercial tools to build a
formal model-based process focused on code generation. Details of these actions,
have been published elsewhere [15,17,18,16]. We are here interested instead to
give a global view of the overall experience.

The paper is structured as follows. In Sect. 1 some background is given con-
cerning formal methods, model-based design and the existing approaches inte-
grating the two technologies. In Sect. 2 the research problem of introducing
code generation from formal models in a safety-critical domain is expressed and
discussed. In Sect. 3 the projects where formal model-based development has
been employed are presented, together with the goals progressively achieved
with respect to the main research problem. In Sect. 4 the advantages and the
critical aspects of code generation are evaluated. Sect. 5 draws final conclusions
and remarks.
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1 Formal Model-Based Design

In 1995, Bowen and Hinchey published the Ten Commandments of Formal Meth-
ods [5], a list of guidelines for applying formal techniques, edited according to
their experience in industrial projects [20]. Ten years later, the authors review
their statements, and they witness that not so much have changed [6]: the indus-
trial applications that demonstrate the feasibility and the effectiveness of formal
methods are still limited, though famous projects exist, which show that the
interest in these methods is not decreased. Among them, it is worth citing the
Paris Metro onboard equipment [3], where the B method has been employed,
and the Maeslant Kering storm surge barrier control system [33], where both
the Z and the Promela notations have been used.

The comprehensive survey of Woodcock et al. [35] confirms that industries are
currently performing studies on formal methods applications, but still perceive
them as experimental technologies.

While formal methods have struggled for more than twenty years for a role in
the development process of the companies, the model-based design [32] paradigm
has gained ground much faster. The defining principle of this approach is that
the whole development shall be based on graphical model abstractions, from
which an implementation can be manually or automatically derived. Tools sup-
porting this technology allow simulations and tests of the system models to be
performed before the actual deployment. The objective is not different from the
one of formal methods, which is detecting design defects before the actual imple-
mentation. However, while formal methods are perceived as rigid and difficult,
model-based design is regarded as closer to the needs of the developers, which
consider graphical simulation more intuitive than formal verification.

This trend has given increasing importance to tools such as the SCADE
suite [11], a graphical modelling environment mostly used in aerospace and based
on the Lustre synchronous language, Scicos [23], an open source platform for
modelling and simulating control systems, and the two tools ASCET [14] and
AutoFocus [21], both oriented to automotive systems and using block notations
for the representation of distributed processes.

In this scenario, the safety-critical industry has progressively seen the clear
establishment of the Simulink/Stateflow [25] platform as a de-facto standard for
modelling and code generation. The Simulink language uses a block notation
for the definition of continuous-time dynamic system. The Stateflow notation
is based on Harel’s Statecharts [19] and supports the modelling and animation
of event-based discrete-time applications. The integration of the two languages
allows a flexible representation of hybrid systems, while tools such as Simulink
Coder [25] and TargetLink [12] support automatic source code generation from
the models. These features, strengthened by the large amount of associated tool-
boxes to analyse the different aspects of an application, has enabled a cross-
domain spread of the platform.

Nevertheless, since the languages and tool-suite are not formally based, their
full employment for the development of safety-critical applications poses chal-
lenges from the verification and certification point of view: how to ensure that
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the generated code is compliant with the modelled application? How to inte-
grate model-based practices with traditional certified processes? These are all
questions that started pushing industries and researchers toward an integration
between model-based design and formal techniques [1,29]. The main goal is to
take profits from the flexibility of the first and the safety assurance of the latter,
going toward the definition of formal model-based design methods.

Large size companies have been the first to employ formal model-based prac-
tices. Already in 2006, Honeywell started defining an approach for the translation
of Simulink models into the input language of the SMV model checker [26]. Air-
bus has used the model checking capabilities of the SCADE suite for ten years
in the development of the controllers for the A340-500/600 series [4]. The most
complete, integrated methodology is probably the one currently practiced by
Rockwell Collins [27]. The process implemented by this company of the avionic
sector starts from Simulink/Stateflow models to derive a representation in the
Lustre formal language. Then, formal verification is performed by means of dif-
ferent engines, such as NuSMV and Prover, followed by code generation in C
and ADA.

The main contribution of the current paper with respect to the related work
is the in-depth focus on the code generation aspect, together with the evaluation
of the advantages given by the introduction of this technology in a medium-size
company. Our objective is to give a clear picture of how the adoption of code
generation affects the overall development process.

2 Problem Statement

The company considered in this paper operates in the development of safety-
related railway signalling systems. Inside an effort of adopting formal methods
within its own development process, the company decided to introduce system
modelling by means of the Simulink/Stateflow tools [2], and in 2007 decided to
move to code generation [15].

Formal modelling with automatic code generation were seen as breakthrough
technologies for managing projects of increasing size, and for satisfying the re-
quirements of a global market in terms of product flexibility.

In order to achieve this goal, the company contacted experts from academia,
expected to give guidance and support along this paradigm-shift in the devel-
opment process. This paper reviews a series of experiences done in this collabo-
ration, inside a four year reasearch activity started at the end of 2007, with the
aim to address the following:

Problem Statement

Define and implement a methodology for the adoption of the code generation
technology from formal models by a railway signalling company

During the research activity, the problem statement has been decomposed into
the following sub-goals.
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Goal 1 - modelling language restriction. The code used in safety-critical
systems shall conform to specific quality standards, and normally the com-
panies use coding guidelines in order to avoid usage of improper constructs
that might be harmful from the safety point of view. When modelling and
auto-coding are adopted, the generated code shall conform to the same stan-
dard asked to the hand-crafted code. Hence, the identification of a safe sub-
set of the adopted modelling language is required for the production of code
compliant with the guidelines and that can be succesfully integrated with
the existing one.

Goal 2 - generated code correctness. Safety-critical norms ask for a certi-
fied or proven-in-use translator. In absence of such a tool, like in the case
of the available code generators for Simulink/Stateflow, a strategy has to be
defined in order to ensure that the code behaviour is fully compliant to the
model behaviour, and no additional improper functions are added during the
code synthesis phase. The objective is to perform the verification activities
at the level of the abstract model, minimizing or automating the operations
on the code.

Goal 3 - process integration. Product development is performed by compa-
nies by means of processes, which define a framework made of tasks, arti-
facts and people. Introduction of new technologies in an established process
requires adjustments to the process structure, which shall maintain its co-
herence even if changes are applied. This is particularly true in the case of
safety-critical companies, whose products have to be validated according to
normative prescriptions. Hence, a sound process shall be defined in order to
integrate modelling and code generation within the existing process.

3 Projects and Achievements

Addressing the problem statement issued above started with the objective of
introducing model-based design and code generation within the development
process of the company. The specific projects, summarized in the following, were
subsequently selected as test-benches for the incremental introduction of such
technologies. Each goal expressed in Sect. 2 is evaluated according to its pro-
gressive refinement during the projects.

The first experiments have been performed during Project 1, involving the
development of a simple Automatic Train Protection (ATP) system.

ATP systems are typically embedded platforms that enforce the rules of sig-
naling systems by adding an on-board automatic control over the speed limit
imposed to trains along the track. In case of dangerous behaviour acted by the
driver (e.g., speed limit or signalling rules violation) the system is in charge of
regulating the speed by enforcing the brakes until the train returns to a safe
state (i.e., the train standing condition or a speed below the imposed limit).

During Project 1, an ATP system was developed from scratch with the sup-
port of the Simulink/Stateflow tool-suite. A Stateflow model was designed in
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collaboration with the customer in order to define and assess the system re-
quirements [2]. This experience, completed with the successful deployment of
the system, allowed the assessment of the potentials of modelling for prototype
definition and requirements agreement.

The actual research on code generation started when the hand-crafted sys-
tem was already deployed and operational. The Stateflow model, formerly em-
ployed for requirements agreement, has been used as a prototype platform for
the definition of a first set modelling language restrictions in the form of mod-
elling guidelines [15]. The model passed through a refactoring path according to
the guidelines defined, and proper code synthesis of the single model units was
achieved through the Stateflow Coder1 tool.

At the end of 2007, the system evolved in a new version. The refactored model
substituted the original one for the definition of the new system specifications.
Still, code generation was not employed in the actual development process, and
the product remained an hand-crafted system also in its new version, since a
proper V&V process for its certification against regulations was not defined yet.

Project 2, involved an ATP system about ten times larger in terms of fea-
tures compared with Project 1. With this project, the company put into prac-
tice its acquired experience with code generation. The set of internal guidelines
edited during Project 1 has been integrated with the public MAAB recommen-
dations2 [24] for modelling with Simulink/Stateflow.

Furthermore, a preliminary process for code verification has been defined [18].
The defined process was structured as follows. First, an internally developed tool
was used to check modelling standard adherence, a sort of static analysis per-
formed at model level. Then, functional unit-level verification was performed by
means of a two-phase task made of model-based testing [13] and abstract inter-
pretation [9]. The first step checks for functional equivalence between model and
code. The second step, supported by the Polyspace tool [10,25], is used to assess
the absence of runtime errors. Due to the timing of the project, both guidelines
verification and model-based testing have been only partially employed. The
process had to be adjusted with ad-hoc solutions, mostly based on traditional
code testing, in order to address the problem of a non-certified code generator.

Project 3, concerning an ATP system tailored for metro signalling, has been
the first complete instance of a formal development process [17,16]. Besides the
already adopted technologies, a hierarchical derivation approach has been em-
ployed. Simulink and Stateflow are proper tools to represent the low-level aspects
of a system, while they offer poor support for reasoning at the software archi-
tecture level. Therefore, we resorted to adopt the UML notation to model the
software architecture of the system. The approach starts from such an UML

1 The tool is currently distributed as part of Simulink Coder.
2 Set of guidelines developed in the automotive domain for modelling with
Simulink/Stateflow. The current version of the MAAB recommendations is 2.2, is-
sued in 2011. The project adopted the 2.0 version, issued in 2007.
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representation, and requires deriving unit-level requirements and a formal rep-
resentation of them in the form of Stateflow diagrams. During the project, the
modelling guidelines have been updated with a set of restrictions particularly
oriented to define a formal semantics for the Stateflow language (see Sect. 3.1).
These restrictions have enforced the formal representation of the requirements.

A new code generator, Real Time Workshop Embedded Coder3, has been
introduced, which permitted to generate also the integration code between the
different generated units. With the previously adopted Stateflow Coder, code
integration was performed manually. The adoption of the new generator allowed
a further automation and speed-up of the development.

Within the project, the goal of ensuring correctness of the generated code in
absence of a certified translator has been addressed by combining a model-based
testing approach known as translation validation [8] with abstract interpretation.
Translation validation has been performed with an internally developed frame-
work. This framework supports back-to-back [34] model-code execution of unit
level tests, and the assessment of consistency between model and code cover-
age. Abstract interpretation with Polyspace has been performed with a strategy
analogous to the one already applied for Project 2.

Project 3 has also marked the start of the first structured experiments with
formal verification by means of Simulink Design Verifier [25]. The evaluation was
particularly oriented to verify whether this technology, employed at the level of
the model units, could actually replace model-based unit testing with a substan-
tial cost reduction. The first results have been encouraging. The experiments
have shown that about 95% of the requirements can be verified with the tool to
achieve a cost reduction of 50% to 66% in terms of man/hours [16]. The remain-
ing requirements, for which this cost gain cannot be achieved, can be verified
through model-based testing. The company is currently devising strategies to
systematically employ formal verification in the development process.

Many of the development, verification and certification issues related to formal
model-based development appeared only during its actual deployment: the goals
planned at the beginning of the research have been addressed after progressive
tuning of the strategy across the different projects. Table 1 summarizes the
technologies incrementally introduced during the projects. Italics indicate partial
adoption of a technology or partial achievement of a goal.

3.1 Goal 1 - Modelling Language Restriction

The first goal was to identify a proper subset of the Simulink/Stateflow lan-
guage: the idea was that C code generated from models in this subset would
be compliant with the guidelines defined by the company in accordance with
the quality standard required by the norms. With Project 1, this problem was
addressed by first analysing the violations of the quality standard issued by the
code generated from the original model. Then, sub-models have been defined,
on which the evaluation could be performed more easily. The translation of

3 Currently renamed Simulink Coder.
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Table 1. Summary of the results achieved during the projects

Year Project Technologies (Full or Partial Adoption) Goal

2007-2008 Project 1 Modelling guidelines (25) 1
Code generation (Stateflow Coder R2007b)

2008-2010 Project 2

Modelling guidelines + MAAB (43) 1
Code generation (Stateflow Coder R2007b) 2
Guidelines verification 3
Model-based testing
Abstract interpretation (Polyspace 7.0)

2009-2011 Project 3

Modelling guidelines + MAAB (43) 1
Semantics restrictions 2
UML + hierarchical derivation 3
Code generation (RTW Embedded Coder R2010a)
Translation Validation
Abstract interpretation (Polyspace 8.0)
Formal Verification (Simulink Design Verifier R2010a)

single graphical constructs, and of combination of them, have been evaluated
and classified. Proper modelling guidelines have been defined in order to avoid
the violations experienced. The activity led to the definition of a preliminary set
of 25 guidelines for creating models targeted for code generation [15].

With Project 2, where code generation has been actually employed for the de-
velopment of the whole application logic software, a more systematic study has
been performed. The preliminary set of guidelines had in fact the limit of being
derived from a specific model, and could lack of generality. A comparison with
the experience of other safety-critical domains was needed. Actually, in the au-
tomotive sector a set of accepted modelling rules equivalent to the MISRA [28]
ones for C code had emerged, that is, the MAAB guidelines [24], defined by
OEMs4 and suppliers of the automotive sector to facilitate model exchange and
commissioning. The preliminary set was extended by adapting the MAAB guide-
lines to the railway domain. This new set, composed of 45 guidelines in total,
prompted further restrictions. These restrictions were not only limited to en-
force generation of quality code, but were also oriented to define well-structured
models.

A further step was performed during Project 3: in order to ease a formal anal-
ysis and a formal representation of the requirements, it was decided to complete
the modelling style guidelines by restricting the Stateflow language to a seman-
tically unambiguous set. To this end, the studies of Scaife et al. [31], focused on
translating a subset of Stateflow into the Lustre formal language, have been used.
These studies brought to the definition of a formal semantics for Stateflow [17],
which constrains the language to an unambiguous subset. A set of guidelines has
been defined for enforcing the development of design models in accordance to
this subset of the language. The models produced are semantically independent
from the simulation engine, and a formal development process could actually
take place.

4 Original Equipment Manufacturers.
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3.2 Goal 2 - Generated Code Correctness

The second goal was to address the problem of a non-certified, neither proven-in-
use, translator. The objective was to ensure the code to be fully compliant with
the model behaviour, and to guarantee that no additional improper functions
are added during the code synthesis phase. The approach adopted, preliminar-
ily defined during Project 2, but refined and fully applied only on Project 3,
consisted in implementing a model-based testing approach known as transla-
tion validation [8], and completing it with static analysis by means of abstract
interpretation [9].

Translation validation consists of two steps: (1) a model/code back-to-back
execution of unit tests, where both the model and the corresponding code are
exercised using the same scenarios as inputs and results are checked for equiva-
lence; (2) a comparison of the structural coverage obtained at model and at code
level. The first step ensures that the code behaviour is compliant with the model
behaviour. The second one ensures that no additional function is introduced in
the code: tests are performed until 100% of decision coverage is obtained on
the models. If lower values are obtained for the code, any discrepancy must be
assessed and justified.

Model-based testing with translation validation ensures equivalence between
model and code, but cannot cover all the possible behaviours of the code in terms
of control-flow and data-flow. In particular, it lacks in detecting all those runtime
errors that might occur only with particular data sets, such as division by zero
and buffer overflow. For this reason, translation validation has been completed
with abstract interpretation by means of the Polyspace tool. The main feature
of the tool is to detect runtime errors by performing static analysis of the code.

Since the correctness of the source is not decidable at the program level, the
tools implementing abstract interpretation work on a conservative and sound
approximation of the variable values in terms of intervals, and consider the state
space of the program at this level of abstraction. Finding errors in this larger ap-
proximation domain does not imply that the bug also holds in the program. The
presence of false positives after the analysis is actually the drawback of abstract
interpretation that hampers the possibility of fully automating the process.

Already within Project 2, a two-steps procedure has been defined for the usage
of the tool to address the problem of false positives: (1) a first analysis step is
performed with a large over-approximation set, in order to discover systematic
runtime errors and identify classes of possible false positives that can be used
to restrict the approximation set; (2) a second analysis step is performed with a
constrained abstract domain, derived from the first analysis, and the number of
uncertain failure states to be manually reviewed is drastically reduced.

3.3 Goal 3 - Process Integration

The third goal was integrating the modelling and code generation technologies
into a coherent development process. Also concerning this issue, a sound process
was finally achieved only with Project 3, after incremental adjustments. The
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introduction of modelling and the need to ensure consistency between models
and code, has prompted changes also to the verification and validation activities,
which had to be tailored according to the new technology. On the other hand, it
has allowed working on a higher level of abstraction, and different methods and
tools have been combined to achieve a complete formal development.

The final process is an enhanced V-based development model, as depicted
in Fig. 1. The process embeds two verification branches: one for the activities
performed on the models, the other for the tasks concerning source code and
system.

Fig. 1. Overview of the formal model-based development process adopted

From system-level software requirements, tests are defined to be perfomed both
at model-integration level and at system-level (SW Requirements Phase).
Then, a UML architecture is defined in the form of a component diagram. The dia-
gram is then manually translated into a Simulink architecture (ModelArchitec-
ture Phase). During the design phase, system requirements are decomposed into
unit requirements apportioned to the single architectural components. Further-
more, the Stateflow models are defined according to these unit requirements, fol-
lowing the style-guidelines and the semantics restrictions (Model Module De-
sign Phase).

Functional unit testing (Model Module Test Phase) and system testing
(Model Validation Phase) are performed on the models by using the Simulink
simulator before generating code throughRTWEmbedded Coder (CodePhase).
After code generation, translation validation is performed, followed by static anal-
ysis bymeans of abstract interpretation (SWModuleTestPhase). The applica-
tion code is then integrated with operating system and drivers (SW Integration



34 A. Ferrari, A. Fantechi, and S. Gnesi

Phase), and hardware-in-the-loop (HIL) is used to perform system tests according
to the system requirements (SW Validation Phase). The whole process is sup-
ported by coherent documentation: this is auto-generated by means of Simulink
Report Generator, a Simulink toolbox, using the comments edited by the develop-
ers on the models.

4 Lessons Learnt

Code generation was introduced following the intuition that defining a formal
model of the specifications, and automatically producing code, allows speeding-
up the development, while ensuring greater correctness of the code at the same
time. The intuition has been actually confirmed by the practice. The modelling
and code generation showed the following advantages with respect to hand-
crafted code.

Abstraction. Models require working at a higher level of abstraction, and they
can be manipulated better than code. The model-based testing approach, in
the two versions put into practice during Project 2 and Project 3, gives the
advantage of defining test scenarios at component level without disrupting
the model structure.

Expressiveness. Graphical models are closer to the natural language require-
ments. At the same time, they are an unambiguous mean to exchange or
pass artefacts among developers. This observation has been enlightened by
the Project 3 experience, where the project passed from the hands of its first
main developer to another developer within one month only

Cohesion & Decoupling. The generated software is composed by modules
with higher internal cohesion and better decoupling. Interfaces among func-
tionalities are based solely on data, and the control-flow is simplified since
there is no cross-call among different modules. Decoupling and well-defined
interfaces have helped in easing the model outsourcing, which is a relevant
aspect when developing with time-to-market constraints.

Uniformity. The generated code has a repetitive structure, which facilitates the
automation of the verification activities. When strict modelling guidelines are
defined, one could look at the generated code as if it would be the software
always written by the same programmer. Therefore, any code analysis task
can be tailored on the artificial programmer’s design habits. As a witness
for this observation, consider that the full two-step Polyspace procedure (see
Sect. 3.2) resulted profitable on the generated code only, since systematic
analysis on hand-crafted code was made harder by its variable structure and
programming style.

Traceability. Software modules are directly traceable with the corresponding
blocks of the modelled specification. Traceability is a relevant issue in the
development of safety-critical systems, since any error has to be traced back
to the process task, or artefact defect, that produced it. The formal devel-
opment approach introduced, with the support of RTW Embedded Coder,
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has allowed defining navigable links between the single code statements and
the requirements.

Control. The structured development has given greater control over the com-
ponents, producing in the end software with less bugs already before the
verification activities, as witnessed by the bug reduction evaluation mea-
sured during Project 3 (from 10 to 3 bugs per module) [17].

Verification Cost. When passing from traditional code unit testing based on
structural coverage objectives, to testing based on functional objectives aided
with abstract interpretation, it was possible to reduce the verification cost of
about 70% [18]. The recent experiments with formal verification have shown
that this cost can be further reduced by 50-66% [16].

The main drawback encountered in introducing code generation has been the
size and overall complexity of the resulting software. Though these aspects were
not complicating the verification activities, they posed challenges from the per-
formance point of view.

ATP systems do not have hard real-time constraints, however they are reactive
systems that, might a failure occur, shall activate the brakes in a limited amount
of time in order to reach the safe state. The reaction time is influenced by the
main execution time, which resulted four times higher in the first experiments. In
the discussed case, the hardware upgrade actually solved the problem. However,
with the design of new, more complex systems, this issue has to be taken into
account while defining the hardware architecture.

The hardware designer shall consider that the code is larger in size, and there
is less flexibility in terms of optimizations at source level (we recall that opti-
mizations at compiler level are not recommended for the development of safety-
critical systems): when designing the platform, a larger amount of memory has
to be planned if one wants to employ code generation.

Though consistent cost improvements have been achieved on the verification
activities, manual test definition is still the bottleneck of the process, requiring
about 60-70% of the whole unit-level verification cost.

Preliminary experiments with formal verification applied at unit-level have
shown that this technology might considerably reduce the verification cost for
the majority of the requirements. However, further analysis is required before
introducing formal verification as part of the process.

Some lessons have been learned also from the knowledge transfer point of view.
The research activity has been performed according to the following research
management model.

On one side there is a research assistant who comes from the university and is
fully focused on the technology to be introduced. On the other side there is an
internal development team, which puts the research into practice on real projects
when the exploratory studies are successful.

The results obtained across these four years would have not been possible
through intermittent collaborations only. Moreover, they would have been hardly
achieved if just an internal person would have been in charge of the research. In
order to separate the research from the time-to-market issues, the independence
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of the research assistant from the development team has to be preserved. Large
companies can profit from dedicated internal research teams, or even entire re-
search divisions. Instead, medium-size companies often have to employ the same
personnel for performing research explorations, which are always needed to stay
on the market, and for takeing care of the day-by-day software development. We
argue that the research management model adopted in the presented experience,
based on an academic researcher independently operating within a company, can
be adapted to other medium-size companies with comparable results.

5 Conclusion

The research activity reported in this paper started with the objective of intro-
ducing the formal design and code generation technologies within the develop-
ment process of a railway signalling manufacturer. At the end of the experience,
these techniques have radically changed the whole process in terms of design
tasks and in terms of verification activities. In particular, formal model-based
design has opened the door to model-based testing, has facilitated the adop-
tion of abstract interpretation, and has allowed performing the first successful
experiences with formal verification.

This methodology shift required four years and three projects to be defined
and consolidated. Most of the implications of the introduction of code genera-
tion could not be foreseen at the beginning of the development, but had to be
addressed incrementally. This tuning has been facilitated by the flexibility of
the toolsuite adopted: given the many toolboxes of Matlab, there was no need to
interface the tool with other platforms to perform the required software process
tasks (e.g., test definition, tracing of the requirements, document generation)5.

However, we believe that the success of the experience has been mainly driven
by the research management model followed. The presence of an independent re-
seacher operating within the company has been paramount to ensure that research
was performed without pressure, while research results were properly transferred
to the engineering team. The experience showed that also for medium-size com-
panies, such as the one considered in this paper, it is possible to perform research
when a proper model is adopted.

Research is essential to address the new market requirements. Along with the
experience reported here, the company started to enlarge its business, previously
focused in Italy, towards foreign countries, such as Sweden, China, Kazakhstan
and Brazil, and the introduction of formal model-based development had actually
played a relevant role to support this evolution.

The considerations made in this paper have mainly concerned a formal model-
based design process based on commercial tools, in a given application domain.

5 The reader can note that most of the tool support referred in this paper comes from a
single vendor. It is not at all the intention of the authors to advertise for such vendor.
However, we have to note that interfacing with a single vendor is a preferential factor
for industry, and in this case has influenced the choice of the tools.
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Assuming different tools and different application domains, it is not so imme-
diate that the same considerations still hold. As future work, we are launching
the study of a similar development process based on UML-centered tools: in this
case the flexibility will not be given by an integrated toolsuite, but by the Uni-
fied Modelling notation itself, even if open-source or free tools will be adopted.
Different application domains will be addressed as well.
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