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Abstract. We provide a rapid overview of the theoretical foundations
and main applications of abstract interpretation and show that it cur-
rently provides scaling solutions to achieving assurance in mission- and
safety-critical systems through verification by fully automatic, semanti-
cally sound and precise static program analysis.
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1 Abstract Interpretation

Abstract interpretation [9,10,11,12,13] is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal description of
programming languages and the inference or verification of undecidable program
properties.

The design of an inference or verification method by abstract interpretation
starts with the formal definition of the semantics of a programming language
(formally describing all possible program behaviors in all possible execution en-
vironments), continues with the formalization of program properties, and the
expression of the strongest program property of interest in fixed point form.

The theory provides property and fixed point abstraction methods than can be
constructively applied to obtain formally verified abstract semantics of the pro-
gramming languages where, ideally, only properties relevant to the considered in-
ference or verification problem are preserved while all others are abstracted away.

Formal proof methods for verification are derived by checking fixed point by
induction. For property inference in static analyzers, iterative fixed point ap-
proximation methods with convergence acceleration using widening/narrowing
provide effective algorithms to automatically infer abstract program properties
(such as invariance or definite termination) which can then be used for program
verification by fixed point checking.

Because program verification problems are undecidable for infinite systems,
any fully automatic formal method will fail on infinitely many programs and,
fortunately, also succeed on infinitely many programs. An abstraction over-
approximates the set of possible concrete executions and so may include ex-
ecutions not existing in the concrete. This is not a problem when such fake
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executions do not affect the property to be verified (e.g. for invariance the ex-
ecution time is irrelevant). Otherwise this may cause a false alarm in that the
property is violated by an inexistent execution. In this case, the abstraction must
be refined to better distinguish between actual and fake program executions.

To maximize success for specific applications of the theory, it is necessary to
adapt the abstractions/approximations so as to eliminate false alarms (when the
analysis is too imprecise to provide a definite answer to the verificationproblem) at
a reasonable cost. The choice of an abstractionwhich is precise enough to check for
specified properties and imprecise enough to be scalable to very large programs is
difficult. This can be done by refining or coarsening general-purpose abstractions.

A convenient way to adjust the precision/cost ratio of a static analyser consists
in organizing the effective abstract fixed point computation in an abstract inter-
preter (mainly dealing with control) parameterized by abstract domains (mainly
dealing with data). These abstract domains algebraically describe classes of prop-
erties and the associated logical operations, extrapolation operators (widening
and narrowing needed to over-approximate fixed points) and primitive trans-
formers corresponding to basic operations of the programming language (such
as assignment, test, call, etc).

To achieve the desired precision, the various abstract domains can combined
by the abstract interpreter, e.g. with a reduced product [28], so as to eliminate
false alarms at a reasonable cost.

Several surveys of abstract interpretation [1,7,19,21] describe this general
methodology in more details.

2 A Few Applications of Abstract Interpretation

Abstract interpretation has applications in the syntax [22], semantics [14], and
proof [20] of programming languages where abstractions are sound (no possi-
ble case is ever omitted in the abstraction) and complete (the abstraction is
precise enough to express/verify concrete program properties in the abstract
without any false alarm) but in general incomputable (but with severe addi-
tional hypotheses such as finiteness). Full automation of the verification task
requires further sound but incomplete abstractions as applied to static analy-
sis [9,30], contract inference [27], type inference [6], termination inference [23]
model-checking [8,15,16], abstraction refinement [29], program transformation
[17] (including watermarking [18]), combination of decision procedures [28], etc.

3 Applications to Assurance in Mission- and
Safety-Critical Systems

Abstract interpretation has been successful this last decade in program veri-
fication for mission- and safety-critical systems. Significant applications of ab-
stract interpretation to aerospace systems include e.g. airplane control-command
[31,34,35] and autonomous rendezvous and docking for spacecraft [5].
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An example is Astrée [1,2,3,4,24,25,26] (www.astree.ens.fr) which is a static
analyzer to verify the absence of runtime errors in structured, very large C
programs with complex memory usages, and involving complex boolean as well as
floating-point computations (which are handled precisely and safely by taking all
possible rounding errors into account), but without recursion or dynamic mem-
ory allocation. Astrée targets embedded applications as found in earth trans-
portation, nuclear energy, medical instrumentation, aeronautics and space flight,
in particular synchronous control/command such as electric flight control.

Astrée reports any division by zero, out-of-bounds array indexing, erroneous
pointer manipulation and dereferencing (null, uninitialized and dangling
pointers), integer and floating-point arithmetic overflow, violation of optional
user-defined assertions to prove additional run-time properties (similar to assert
diagnostics), code it can prove to be unreachable under any circumstances (note
that this is not necessarily all unreachable code due to over-approximations),
read access to uninitialized variables. Astrée offers powerful annotation mecha-
nisms, which enable the user to make external knowledge available to Astrée, or
to selectively influence the analysis precision for individual loops or data struc-
tures. Detailed messages and an intuitive GUI help the user understand alarms
about potential errors. Then, true runtime errors can be fixed, or, in case of a
false alarm, the analyzer can be tuned to avoid them. These mechanisms allow to
perform analyses with very few or even zero false alarms. Astrée is industrialised
by AbsInt (www.absint.com/astree).

AstréeA [32,33] is built upon Astrée to prove the absence of runtime errors and
data races in parallel programs. Asynchrony introduces additional difficulties due
to the semantics of parallelism (such as the abstraction of process interleaving,
explicit process scheduling, shared memory model, etc).

4 Conclusion

Abstract interpretation has a broad spectrum of applications from theory to
practice. Abstract interpretation-based static analysis is automatic, sound,
scalable to industrial size software, precise, and commercially supported for
proving the absence of runtime errors. It is a premium formal method to
complement dynamic testing as recommended by DO-178C/ED-12C
(http://www.rtca.org/doclist.asp).
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Astrée scale up? Formal Methods in System Design 35(3), 229–264 (2009)
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