
Some Steps into Verification

of Exact Real Arithmetic�

Norbert Th. Müller1 and Christian Uhrhan2

1 Abteilung Informatik, FB IV, Universität Trier, Germany
2 Universität Siegen, Faculty IV, Germany

Abstract. The mathematical concept of real numbers is much richer
than the double precision numbers widely used as their implementation
on a computer. The field of ‘exact real arithmetic’ tries to combine the
elegance and correctness of the mathematical theories with the speed of
double precision hardware, as far as possible. In this paper, we describe
an ongoing approach using the specification language ACSL, the tool suite
Frama-C (with why and jessie) and the proof assistant Coq to verify
central aspects of the iRRAM software package, which is known to be a
fast C++ implementation of ‘exact’ reals numbers.

1 Introduction

The verification of programs using double precision numbers often is very compli-
cated: the semantics of this number format does not coincide with the semantics
of real numbers, i.e. with the definitions and results found in textbooks on cal-
culus. On the other hand, it is possible to implement ‘exact’ real numbers in
software ([BK08, OS10, Mue01, Les08, Lam07], to name a few), so here verifi-
cation should be a lot easier and could concentrate on mathematical aspects of
the problem and not on the peculiarity of the double precision numbers.

Some of these ‘exact’ implementations have already been verified themselves:
[Les08] used Haskell/PVS, [OS10] used Haskell/Coq, and [BK08, Bau08] used
OCaml/Coq. Unfortunately, these implementations are much slower in general
than simple computations with double precision, and also much slower than
other implementations for real numbers like [Mue01, Lam07]. So what we would
like to have is one implementation of real numbers that is exact, fast and proven
to be correct at the same time.

This motivates an ongoing project started in 2010 where we try to verify at
least central aspects of the iRRAM software package [Mue01], which is known to
be a fast C++ implementation of exact reals numbers. Unfortunately, we do not
know of any tools for direct verification of C++ programs, so we took the following
approach: Using the specification language ACSL, we specify the semantics of
core routines of the package, then we use the tool suite Frama-C (with why and
jessie) as well as the proof assistant Coq in order to verify versions of these
routines that have been manually transformed from C++ to C. Currently, we

� This work was partially supported by the DFG project 446 CHV 113/240/0-1.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 168–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Some Steps into Verification of Exact Real Arithmetic 169

use frama-c-Nitrogen-20111001, why-2.30 and Coq 8.3pl2; some proofs have
already partly been rewritten to use why3-0.71 instead of why-2.30. Automatic
provers like Alt-Ergo or CVC3 could be used to verify some conditions of our
test examples, but none of them could do a complete verification.

There are two objectives behind the project: the internal goal is just to verify
correctness of the iRRAM package, while the external goal is to develop verification
tools for other users of exact real arithmetic.

Our approach works in 4 levels, that are treated in parallel:

1. core level: arbitrarily precise floating-point numbers (mainly internal use)

2. interval level: interval arithmetic (mainly internal use)

3. basic arithmetic level: basic operations on real numbers (mainly internal use)

4. application level: non-basic operations and user tools (mainly external use)

As an example consider the multiplication x∗y of real numbers: although level 3
(basic arithmetic) is not yet fully proven, we can already use the multiplication
as an exact operation on level 4 (applications). In this paper we will describe
parts of this level 4, so basic real operations are assumed to be working correctly.

In section 2, we will briefly describe the background of exact real arithmetic,
which will motivate why we emphasize the correct behavior of the verified rou-
tines concerning exception handling. Chapters 3 and 4 describe the tools we use,
section 5 contains a detailed example and section 6 gives a short summary.

We estimate that until now about 5% of the complete package have been
proven: The package consists of about 800 functions and 12000 lines of code,
30 central functions have been considered so far. As the specifications on the
different levels are mutually dependent, both specifications and proofs might
have to be readjusted later.

2 Exact Real Arithmetic

As the set IR of real numbers is not countable, implementing real numbers must
be significantly different from an implementation of countable sets like the nat-
ural or even rational numbers. The theoretical background here is usually called
‘computable analysis’ or ‘type-2-theory of effectivity’, see [BHW07, We00]: a real
number x is represented as a sequence (rn)n∈IN of rational numbers rn with a
known rate of convergence. Usually this convergence is expressed as a constraint
‘∀n : |x − rn| ≤ 2−n’, i.e. x represented as a converging sequence (In)n∈IN of
intervals, where In := {y ∈ IR : |y − rn| ≤ 2−n}. ‘Exact real arithmetic’ now
tries to use similar concepts to implement real numbers on real-world computers.

Functional languages are ideal candidates here, and there exist quite many
prototypical implementations based on this programming paradigm: [OS10],
[BK08], [Les08], just to name a few. Unfortunately, the performance of these
approaches is usually very bad and they can only be used for academic exam-
ples. Newer functional based implementations try to improve the performance
using ‘stateful’ functional programming (e.g., [BK08] using monads in OCAML).

170 N.T. Müller and C. Uhrhan

Imperative or object-oriented programming languages, as a different paradigm,
first have to be enhanced with mechanisms to work with infinite objects like se-
quences. This is often done by explicit construction of computation diagrams,
see e.g. [Lam07]. The performance already increased dramatically, compared to
the functional approaches. Unfortunately, the diagrams need a lot of memory.

Already in 1996, the iRRAM package was presented, where computation dia-
grams were avoided. Instead, iterations of the underlying numerical algorithm
are used. This can easily be achieved using the concept of exceptions in C++:
The algorithm under consideration is executed with interval arithmetic where
each real number is represented by a single (initially quite imprecise) interval. If
during the computation these intervals grow too large to get satisfactory results,
an exception is thrown and the algorithm is executed with smaller intervals.
This is repeated until the results are precise enough, i.e. until the algorithm
finishes without throwing any exceptions. Although this idea seems to waste
computation time, it turned out to be amazingly fast and the memory impact is
neglectable compared to approaches previously mentioned: the iRRAM can some-
times perform a billion of dependant operations in a few seconds, where the size
of the computation diagrams alone would easily amount to more than 100GB.

In this paper, the main focus is on how we deal with this aspect of exceptions.

3 Verification of C Programs

To verify the iRRAM we use a combination of the proof assistant Coq and the
frameworks Frama-C and Why. Coq is a theorem prover which can be used to
formulate and proof theories. Frama-C is a static analysis framework for the C

programming language which for example provides tools for dead code elimi-
nation (Spare Code) but also for formal verification of C programs through a
plugin called jessie. The framework Why can be seen as a general verification
condition generator. It takes an annotated program as input and is able to gen-
erate verification conditions for that input for several proof assistants including
Coq.

In order to verify a C program we first have to provide a formal specification of
the program. For that we give a formal (predicative) description of the semantics
of the C program using the so called ANSI C Specification Language (ACSL). As
a C program usually consists of a large collection of functions, each of them has
to be annotated with a so called ‘function contract’.

Next, the annotated C program serves as input to the jessie plugin and then
to Why, which is generating the verification conditions in Coq. Having done that
we then have to prove that our program in fact is correct with respect to its
specification.

4 From C++ to C

First we have to translate the C++ code to C code for the purpose of verification.
In fact our specifications and even the resulting correctness proofs should easily

Some Steps into Verification of Exact Real Arithmetic 171

be adaptable as soon as there is a verification tool for C++ programs (e.g. as an
extension to the jessie plugin) since the semantical description should differ
only slightly (e.g. to describe that a function may throw an exception).

We had to consider the following C++ concepts in order to get a reliable trans-
lation from C++ to C: (a) classes, (b) constructors and destructors, (c) operator
overloading, and (d) exceptions.

(a) Classes can be translated to structs in C. Of course, classes are equipped
with a collection of methods for manipulating instances of objects. Additionally,
the visibility modifiers like private do not have a counterpart in C. Currently,
we simply treat everything to be public.

Taking into account that methods implicitly have access to the ’this’-pointer,
every method of n parameters is actually a function with n+1 parameters, where
the first parameter is a pointer to the object itself:

// C++ c l a s s f o r r e a l numbers
c l a s s REAL {
p u b l i c :
doub l e a s d oub l e (con s t i n t p) con s t ;
. . .

// t r a n s l a t i o n to C
typ ed e f s t r u c t REAL { . . . } ∗REAL ;
. . .
doub l e a s d oub l e (con s t REAL t h i s ,

con s t i n t p) ;

(b) The C language does not have constructors and destructors. Fortunately
it is easy to detect where constructors are called, so we can replace them by
corresponding C functions. Destructors are much harder to handle, as they are
almost always called implicitly at the end of a lifetime of objects. Currently we
simply ignore the destructors (and rely on a hypothetical garbage collection).

(c) Operator overloading is very useful to keep syntactical structures simple.
This especially holds for mathematical software, where writing x · y · z simply
as x*y*z instead of mul(mul(x,y),z) can significantly improve readability and
reduce errors at the same time. The translation, however, is tedious but quite
trivial, as soon as we know the involved classes. Since C does not support over-
loading we have to define a function with a name of its own:

// C++ v e r s i o n
f r i e n d REAL ope r a to r

∗ (con s t REAL& x , con s t REAL& y) ;
f r i e n d REAL ope r a to r

∗ (con s t REAL& x , con s t i n t& y) ;

// t r a n s l a t i o n to C

REAL REALREAL mul (REAL x , REAL y) ;

REAL REALint mul (REAL x , i n t y) ;

(d) The exception mechanism is the most complicated aspect. For JAVA, e.g.
the Krakatoa tool[MPMU04] contains a signals construct for the functions
contracts to represent exceptions. C itself does not have exceptions, so ACSL does
not have any support for exception handling. So currently we have no option for
an easy specification of the (vital) exceptions.

We choose to model exceptions by extending the source code: A global pointer
exception is introduced in the C version carrying the information about any
thrown exceptions. As long as this pointer remains 0, no exception occurred. So
using a multiplication z=x*y can be modeled in fact as

{REAL tmp = REALREAL mul (x , y) ; i f (e x c e p t i o n != 0) r e t u r n 0 ; z=tmp ;}

On the application level, this is sufficient for verification, as these exceptions
are not caught by the application but by the runtime environment of the iRRAM

172 N.T. Müller and C. Uhrhan

(which is still unverified). To verify this runtime environment, however, we will
really need to translate all aspects of the exceptions, maybe using the C functions
setjmp and longjmp (that are not yet supported in Frama-C).

5 Example

As an example for a verified function we consider the power function computing
xn with x ∈ R and n ∈ N, n ≥ 0. A working implementation in the iRRAM is:

REAL power (con s t REAL& x , i n t n) {
REAL y=1;
f o r (i n t k=0; k<n ; k=k+1) { y=y∗x ; }
r e t u r n y ; }

Translated to C we get:

REAL REALint power (con s t REAL x , i n t n) {
REAL y ;
{ REAL tmp = REAL from int32 (1) ; i f (e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}
f o r (i n t k=0;k<n ; k=k+1)

{ REAL tmp = REALREAL mul (y , x) ; i f (e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}
r e t u r n y ; }

The corresponding function contract in ACSL is build as follows: With requires,
we express that the caller has to ensure that x points to a valid (i.e. correctly
constructed) data structure for real numbers and that n is non-negative. The
assigns part describes the side effects which may happen by calling the function:
in our case both the result of the function as well as the exception pointer
might be modified. Finally the ensures part expresses that in the program
state immediately after returning from the function the result points to a valid
real object and represents the n-th power of x, unless an exception was thrown.

/∗@
r e q u i r e s va l i d REAL (x) && n >= 0 ;
a s s i g n s \ r e s u l t , e x c e p t i o n ;
e n s u r e s e x ce p t i o n==0 ==> (va l i d REAL (\ r e s u l t)

&& real of iRRAM REAL (\ r e s u l t) == \pow(real of iRRAM REAL (x) , n)) ;
∗/
REAL REALint power (con s t REAL x , i n t n) ;

The last part of the ensures clause is very important here: This is the mathe-
matical statement we want to prove, i.e. that the result is the n-th power of x.
The function real_of_iRRAM_REAL is actually a logical defined function map-
ping iRRAM REALs to the ideal reals Coq knows about, and pow is mapped
to Coqs power function. As every interpretation of the value of REAL data will
happen via similar mappings, REAL is an implementation of real numbers.

What remains to be done for our example is the formal proof in Coq, for which
we enhance the source code with the following loop invariant in ACSL:

/∗@
loop i n v a r i a n t va l i d REAL (y) && 0 <= k <= n &&

real of iRRAM REAL (y) == \pow(real of iRRAM REAL (x) , k) ;
l oop v a r i a n t n−k ;
∗/

f o r (i n t k=0;k<n ; k=k+1)
{ REAL tmp = REALREAL mul (y , x) ; i f (e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}

Some Steps into Verification of Exact Real Arithmetic 173

The variant expresses that the (non-negative) value n−k is decreasing, so that
we are able to prove that the loop eventually terminates. Having done this we
were able to finish the proof of correctness for our example.

6 Summary

As the example showed, the mathematical part of the verification of iRRAM

algorithms on the application level turns out to be quite easy, as we can rely
on the exactness of the operations (unless exceptions occur) and we can use the
knowledge already present in Coqs libraries on real numbers. Meanwhile, we are
also quite certain that the conversion from C++ to C could be done automatically,
e.g. by some suitable pre-compilation, at least as far as we need it.

Currently, we would like to concentrate first on other parts of the whole veri-
fication: one important task here will be to replace 32- or 64-bit integers almost
everywhere by a fast (and verified) datatype for Z using a similar concept as for
real numbers: either operations are correct in the mathematical sense (so with-
out any overflow), or an exception has to be thrown. Then our power operator
would not just be correct for 32-bit numbers but for arbitrary n ∈ Z.

A far goal is to address total correctness, i.e. to identify those cases where no
exceptions will be thrown. This will be much harder to do, as equality of real
numbers is not decidable. Additionally, out-of-memory errors will be very hard
to predict, as they depend on the necessary precision in a computation.

References

[Bau08] Bauer, A.: Efficient computation with Dedekind reals. In: 5th International
Conference on Computability and Complexity in Analysis, CCA 2008, Ha-
gen, Germany, August 21-24 (2008)

[BK08] Bauer, A., Kavkler, I.: Implementing real numbers with rz. Electron. Notes
Theor. Comput. Sci. 202, 365–384 (2008)

[BHW07] Brattka, V., Hertling, P., Weihrauch, K.: A Tutorial on Computable Anal-
ysis. In: Barry Cooper, S., Löwe, B., Sorbi, A. (eds.) New Computational
Paradigms: Changing Conceptions of What is Computable, pp. 425–491.
Springer, New York (2008)

[Lam07] Lambov, B.: Reallib: An efficient implementation of exact real arithmetic.
Mathematical Structures in Computer Science 17(1), 81–98 (2007)

[Les08] Lester, D.R.: Theworld’s shortest correct exact real arithmetic program? In:
Proc. 8th Conference on Real Numbers and Computers, pp. 103–112 (2008)

[MPMU04] Marché, C., Paulin-Mohring, C., Urbain, X.: The krakatoa tool for certi-
fication of java/javacard programs annotated in jml. J. Log. Algebr. Pro-
gram. 58(1-2), 89–106 (2004)

[Mue01] Müller, N.T.: The iRRAM: Exact Arithmetic in C++. In: Blank, J., Brat-
tka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252.
Springer, Heidelberg (2001)

[OS10] O’Connor, R., Spitters, B.: A computer-verified monadic functional imple-
mentation of the integral. Theor. Comput. Sci. 411(37), 3386–3402 (2010)

[We00] Weihrauch, K.: Computable analysis: An introduction. Springer-Verlag
New York, Inc. (2000)

	Some Steps into Verification of Exact Real Arithmetic
	Introduction
	Exact Real Arithmetic
	Verification of C Programs
	From C++ to C
	Example
	Summary
	References

