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Preface

This publication contains the proceedings of the 4th NASA Formal Methods
Symposium (NFM 2012), held April 3–5, 2012, in Norfolk, VA, USA. The NASA
Formal Method Symposium is a forum for theoreticians and practitioners from
academia, industry, and government, with the goal of identifying challenges and
providing solutions to achieving assurance in mission- and safety-critical sys-
tems. Within NASA, for example, such systems include autonomous robots,
separation assurance algorithms for aircraft, Next Generation Air Transporta-
tion (NextGen), and autonomous rendezvous and docking for spacecraft. Rapidly
increasing code size and emerging paradigms, such as automated code generation
and safety cases, bring new challenges and opportunities for significant improve-
ment. Also gaining increasing importance in NASA applications is the use of
more rigorous software test methods and code analysis techniques, founded in
theory.

The focus of the symposium is understandably on formal methods, their
foundation, current capabilities, as well as their current limitations. The NASA
Formal Methods Symposium is an annual event that was created to highlight the
state of the art in formal methods, both in theory and practice. The series was
originally started as the Langley Formal Methods Workshop, and was held under
that name in 1990, 1992, 1995, 1997, 2000, and 2008. In 2009, the first NASA
Formal Methods Symposium was organized by NASA Ames Research Center,
and took place at Moffett Field, CA. This year, the symposium was organized
by NASA Langley Research Center, and held in Norfolk, VA.

The topics covered by NFM 2012 included but were not limited to: theorem
proving, symbolic execution, model-based engineering, real-time and stochastic
systems, model checking, abstraction and abstraction refinement, compositional
verification techniques, static and dynamic analysis techniques, fault protection,
cyber security, specification formalisms, requirements analysis, and applications
of formal techniques.

Two types of papers were considered: regular papers describing fully devel-
oped work and complete results or case studies, and short papers describing
tools, experience reports, and work in progress or preliminary results. The sym-
posium received 93 submissions (66 regular papers and 27 short papers), of which
the committee selected 36 papers (26 regular papers and 10 short papers). All
submissions went through a rigorous review process.

In addition to the refereed papers, the symposium featured three invited
talks and a panel session. The invited talks were presented by Andrew Appel
from Princeton University, on “Verified Software Toolchain,” Patrick Cousot
from École Normale Supérieure, Paris, and New York University, on “Formal
Verification by Abstract Interpretation,” and Cesare Tinelli from the Univer-
sity of Iowa, on “SMT-Based Model Checking.” The panel, composed of Mike
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Lowry (NASA Ames), Klaus Havelund (NASA/JPL), and Ricky Butler (NASA
Langley), discussed the history and current application of formal methods at
NASA.

The organizers are grateful to the authors for submitting their work to NFM
2012 and to the invited speakers for sharing their insights. NFM 2012 would
not have been possible without the collaboration of the Steering Committee,
Program Committee, and external reviewers, and the general support of the
NASA Formal Methods community. Special thanks go to Raymond Meyer for
the graphical design of NFM 2012 visual material and the NFM 2012 website,
which can be found at http://shemesh.larc.nasa.gov/nfm2012/index.html.

January 2012 Alwyn Goodloe
Suzette Person
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SMT-Based Model Checking

Cesare Tinelli�

Department of Computer Science
The University of Iowa

cesare-tinelli@uiowa.edu

It is widely recognized that the field of model checking owes much of its great
success and impact to the use of symbolic techniques to reason efficiently about the
reachable states of a hardware or software system. Traditionally, these techniques
have relied on propositional encodings of transition systems and on propositional
reasoning engines such as BDDs and SAT solvers.More recently, a number of these
techniques have been adapted, and new ones have been devised, based instead on
first-order encodings and reasoners for Satisfiability Modulo Theories (SMT).

SMT is an area of automated deduction that studies methods for checking
the satisfiability of first-order formulas with respect to some logical theory T of
interest. For being theory-specific and restricting their language to certain classes
of formulas (such as quantifier-free formulas), these specialized methods can be
implemented in solvers that are in practice more powerful than SAT solvers and
more efficient than general-purpose theorem provers. The most sophisticated
SMT solvers combine together and integrate in a fast propositional engine several
theory solvers, decision procedures each focused on checking the satisfiability
of conjunctions of literals in a particular theory—such as, for instance, linear
integer or rational arithmetic, the theory of equality over uninterpreted function
symbols, of bit-vectors, of arrays, and so on.

SMT encodings of model checking problems provide several advantages over
propositional encodings. For instance, they are more natural and close to the
level of abstraction of the original system; they allow one to model finite-state
systems compactly; and they can be used to model infinite-state systems directly,
without resorting to finite state abstractions. At the same time, they largely fall
within logical fragments that are efficiently decidable.

This talk will highlight a few model checking approaches and techniques based
on SMT encodings and relying on SMT solvers as their main reasoning engine.
We will see that SMT-based model checking methods blur the line between
traditional (propositional) model checking and traditional (first or higher order)
deductive verification. More crucially, they combine the best features of both by
offering the scalability and scope of deductive verification while maintaining the
high level of automation of propositional model checking.

� The author’s research on this subject is largely the result of past and on-going
collaborations with C. Barrett, M. Deters, G. Hagen, P.-L. Garoche, Y. Ge, T. Kah-
sai, S. Miller, and M. Whalen, and was made possible in part by the support of
grant #FA9550-09-1-0517 from the Air Force Office of Scientific Research and grants
#1049674 and #0551646 from the National Science Foundation.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Verified Software Toolchain

Andrew W. Appel

Princeton University

Abstract. The software toolchain includes static analyzers to check assertions
about programs; optimizing compilers to translate programs to machine language;
operating systems and libraries to supply context for programs. Our Verified Soft-
ware Toolchain verifies with machine-checked proofs that the assertions claimed
at the top of the toolchain really hold in the machine-language program, running
in the operating-system context, on a weakly-consistent-shared-memory machine.

Our verification approach is modular, in that proofs about operating systems
or concurrency libraries are oblivious of the programming language or machine
language, proofs about compilers are oblivious of the program logic used to verify
static analyzers, and so on. The approach is scalable, in that each component is
verified in the semantic idiom most natural for that component.

Finally, the verification is foundational: the trusted base for proofs of observ-
able properties of the machine-language program includes only the operational
semantics of the machine language, not the source language, the compiler, the
program logic, or any other part of the toolchain—even when these proofs are
carried out by source-level static analyzers.

In this paper I explain the construction of a a verified toolchain, using the
Coq proof assistant. I will illustrate with shape analysis for C programs based on
separation logic.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Formal Verification by Abstract Interpretation

Patrick Cousot

CIMS NYU, New York, USA
CNRS–ENS–INRIA, Paris, France

Abstract. We provide a rapid overview of the theoretical foundations
and main applications of abstract interpretation and show that it cur-
rently provides scaling solutions to achieving assurance in mission- and
safety-critical systems through verification by fully automatic, semanti-
cally sound and precise static program analysis.

Keywords: Abstract interpretation, Abstraction, Aerospace, Certifica-
tion, Cyber-physical system, Formal Method, Mission-critical system,
Runtime error, Safety-critical system, Scalability, Soundness, Static
Analysis, Validation, Verification.

1 Abstract Interpretation

Abstract interpretation [9,10,11,12,13] is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal description of
programming languages and the inference or verification of undecidable program
properties.

The design of an inference or verification method by abstract interpretation
starts with the formal definition of the semantics of a programming language
(formally describing all possible program behaviors in all possible execution en-
vironments), continues with the formalization of program properties, and the
expression of the strongest program property of interest in fixed point form.

The theory provides property and fixed point abstraction methods than can be
constructively applied to obtain formally verified abstract semantics of the pro-
gramming languages where, ideally, only properties relevant to the considered in-
ference or verification problem are preserved while all others are abstracted away.

Formal proof methods for verification are derived by checking fixed point by
induction. For property inference in static analyzers, iterative fixed point ap-
proximation methods with convergence acceleration using widening/narrowing
provide effective algorithms to automatically infer abstract program properties
(such as invariance or definite termination) which can then be used for program
verification by fixed point checking.

Because program verification problems are undecidable for infinite systems,
any fully automatic formal method will fail on infinitely many programs and,
fortunately, also succeed on infinitely many programs. An abstraction over-
approximates the set of possible concrete executions and so may include ex-
ecutions not existing in the concrete. This is not a problem when such fake

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 3–7, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



4 P. Cousot

executions do not affect the property to be verified (e.g. for invariance the ex-
ecution time is irrelevant). Otherwise this may cause a false alarm in that the
property is violated by an inexistent execution. In this case, the abstraction must
be refined to better distinguish between actual and fake program executions.

To maximize success for specific applications of the theory, it is necessary to
adapt the abstractions/approximations so as to eliminate false alarms (when the
analysis is too imprecise to provide a definite answer to the verificationproblem) at
a reasonable cost. The choice of an abstractionwhich is precise enough to check for
specified properties and imprecise enough to be scalable to very large programs is
difficult. This can be done by refining or coarsening general-purpose abstractions.

A convenient way to adjust the precision/cost ratio of a static analyser consists
in organizing the effective abstract fixed point computation in an abstract inter-
preter (mainly dealing with control) parameterized by abstract domains (mainly
dealing with data). These abstract domains algebraically describe classes of prop-
erties and the associated logical operations, extrapolation operators (widening
and narrowing needed to over-approximate fixed points) and primitive trans-
formers corresponding to basic operations of the programming language (such
as assignment, test, call, etc).

To achieve the desired precision, the various abstract domains can combined
by the abstract interpreter, e.g. with a reduced product [28], so as to eliminate
false alarms at a reasonable cost.

Several surveys of abstract interpretation [1,7,19,21] describe this general
methodology in more details.

2 A Few Applications of Abstract Interpretation

Abstract interpretation has applications in the syntax [22], semantics [14], and
proof [20] of programming languages where abstractions are sound (no possi-
ble case is ever omitted in the abstraction) and complete (the abstraction is
precise enough to express/verify concrete program properties in the abstract
without any false alarm) but in general incomputable (but with severe addi-
tional hypotheses such as finiteness). Full automation of the verification task
requires further sound but incomplete abstractions as applied to static analy-
sis [9,30], contract inference [27], type inference [6], termination inference [23]
model-checking [8,15,16], abstraction refinement [29], program transformation
[17] (including watermarking [18]), combination of decision procedures [28], etc.

3 Applications to Assurance in Mission- and
Safety-Critical Systems

Abstract interpretation has been successful this last decade in program veri-
fication for mission- and safety-critical systems. Significant applications of ab-
stract interpretation to aerospace systems include e.g. airplane control-command
[31,34,35] and autonomous rendezvous and docking for spacecraft [5].
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An example is Astrée [1,2,3,4,24,25,26] (www.astree.ens.fr) which is a static
analyzer to verify the absence of runtime errors in structured, very large C
programs with complex memory usages, and involving complex boolean as well as
floating-point computations (which are handled precisely and safely by taking all
possible rounding errors into account), but without recursion or dynamic mem-
ory allocation. Astrée targets embedded applications as found in earth trans-
portation, nuclear energy, medical instrumentation, aeronautics and space flight,
in particular synchronous control/command such as electric flight control.

Astrée reports any division by zero, out-of-bounds array indexing, erroneous
pointer manipulation and dereferencing (null, uninitialized and dangling
pointers), integer and floating-point arithmetic overflow, violation of optional
user-defined assertions to prove additional run-time properties (similar to assert
diagnostics), code it can prove to be unreachable under any circumstances (note
that this is not necessarily all unreachable code due to over-approximations),
read access to uninitialized variables. Astrée offers powerful annotation mecha-
nisms, which enable the user to make external knowledge available to Astrée, or
to selectively influence the analysis precision for individual loops or data struc-
tures. Detailed messages and an intuitive GUI help the user understand alarms
about potential errors. Then, true runtime errors can be fixed, or, in case of a
false alarm, the analyzer can be tuned to avoid them. These mechanisms allow to
perform analyses with very few or even zero false alarms. Astrée is industrialised
by AbsInt (www.absint.com/astree).

AstréeA [32,33] is built upon Astrée to prove the absence of runtime errors and
data races in parallel programs. Asynchrony introduces additional difficulties due
to the semantics of parallelism (such as the abstraction of process interleaving,
explicit process scheduling, shared memory model, etc).

4 Conclusion

Abstract interpretation has a broad spectrum of applications from theory to
practice. Abstract interpretation-based static analysis is automatic, sound,
scalable to industrial size software, precise, and commercially supported for
proving the absence of runtime errors. It is a premium formal method to
complement dynamic testing as recommended by DO-178C/ED-12C
(http://www.rtca.org/doclist.asp).
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1 RWTH Aachen University, Germany
2 University of Oxford, UK

3 Saarland University, Germany

Abstract. This paper presents new algorithms and accompanying tool
support for analyzing interactive Markov chains (IMCs), a stochastic
timed 1 1

2
-player game in which delays are exponentially distributed.

IMCs are compositional and act as semantic model for engineering for-
malisms such as AADL and dynamic fault trees. We provide algorithms
for determining the extremal expected time of reaching a set of states,
and the long-run average of time spent in a set of states. The prototypical
tool Imca supports these algorithms as well as the synthesis of ε-optimal
piecewise constant timed policies for timed reachability objectives. Two
case studies show the feasibility and scalability of the algorithms.

1 Introduction

Continuous-time Markov chains (CTMCs) are perhaps the most well-studied
stochastic model in performance evaluation and naturally reflect the random
real-time behavior of stoichiometric equations in systems biology. LTSs (labeled
transition systems) are one of the main operational models for concurrency and
are equipped with a plethora of behavioral equivalences like bisimulation and
trace equivalences. A natural mixture of CTMCs and LTSs yields so-called in-
teractive Markov chains (IMCs), originally proposed as a semantic model of
stochastic process algebras [18,19]. As a state may have several outgoing action-
transitions, IMCs are in fact stochastic real-time 1 1

2 -player games, also called
continuous-time probabilistic automata by Knast in the 1960’s [21].

IMC usage. The simplicity of IMCs and their compositional nature —they are
closed under CSP-like parallel composition and restriction— make them attrac-
tive to act as a semantic backbone of several formalisms. IMCs were developed for
stochastic process algebras [18]. Dynamic fault trees are used in reliability engi-
neering for safety analysis purposes and specify the causal relationship between
failure occurrences. If failures occur according to an exponential distribution,
which is quite a common assumption in reliability analysis, dynamic fault trees
are in fact IMCs [4]. The same holds for the standardized Architectural Analysis
and Design Language (AADL) in which nominal system behavior is extended
with probabilistic error models. IMCs turn out to be a natural semantic model

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 8–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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for AADL [5]; the use of this connection in the aerospace domain has recently
been shown in [26]. In addition, IMCs are used for stochastic extensions of State-
mate [3], and for modeling and analysing industrial GALS hardware designs [12].

IMC analysis. The main usage of IMCs so far has been the compositional gen-
eration and minimization of models. Its analysis has mainly been restricted to
“fully probabilistic” IMCs which induce CTMCs and are therefore amenable to
standard Markov chain analysis or, alternatively, model checking [1]. CTMCs
can sometimes be obtained from IMCs by applying weak bisimulation minimiza-
tion; however, if this does not suffice, semantic restrictions on the IMC level
are imposed to ensure full probabilism. The CADP toolbox [11] supports the
compositional generation, minimization, and standard CTMC analysis of IMCs.
In this paper, we focus on the quantitative timed analysis of arbitrary IMCs,
in particular of those, that are non-deterministic and can be seen as stochastic
real-time 1 1

2 -player games. We provide algorithms for the expected time analysis
and long-run average fraction of time analysis of IMCs and show how both cases
can be reduced to stochastic shortest path (SSP) problems [2,15]. This com-
plements recent work on the approximate time-bounded reachability analysis of
IMCs [27]. Our algorithms are presented in detail and proven correct. Prototyp-
ical tool support for these analyses is presented that includes an implementation
of [27]. The feasibility and scalability of our algorithms are illustrated on two
examples: A dependable workstation cluster [17] and a Google file system [10].
Our Imca tool is a useful backend for the CADP toolbox, as well as for analysis
tools for dynamic fault trees and AADL error models.

Related work. Untimed quantitative reachability analysis of IMCs has been han-
dled in [11]; timed reachability in [27]. Other related work is on continuous-time
Markov decision processes (CTMDPs). A numerical algorithm for time-bounded
expected accumulated rewards in CTMDPs is given in [8] and used as build-
ing brick for a CSL model checker in [7]. Algorithms for timed reachability in
CTMDPs can be found in, e.g. [6,24]. Long-run averages in stochastic decision
processes using observer automata (“experiments”) have been treated in [14],
whereas the usage of SSP problems for verification originates from [15]. Finally,
[25] considers discrete-time Markov decision processes (MDPs) with ratio cost
functions; we exploit such objectives for long-run average analysis.

Organization of the paper. Section 2 introduces IMCs. Section 3 and 4 are de-
voted to the reduction of computing the optimal expected time reachability and
long-run average objectives to stochastic shortest path problems. Our tool Imca
and the results of two case studies are presented in Section 5. Section 6 concludes
the paper.

2 Interactive Markov Chains

Interactive Markov chains. IMCs are finite transition systems with action-labeled
transitions and Markovian transitions which are labeled with a positive real num-
ber (ranged over by λ) identifying the rate of an exponential distribution.
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Definition 1 (Interactive Markov chain). An interactive Markov chain is
a tuple I = (S,Act, −→ ,=⇒, s0) where S is a nonempty, finite set of states with
initial state s0 ∈ S, Act is a finite set of actions, and

– −→ ⊆ S ×Act× S is a set of action transitions and
– =⇒ ⊆ S × R>0 × S is a set of Markovian transitions.

We abbreviate (s, α, s′) ∈ −→ by s α−−→ s′ and (s, λ, s′) ∈ =⇒ by s
λ

=⇒ s′. IMCs
are closed under parallel composition [18] by synchronizing on action transitions
in a TCSP-like manner. As our main interest is in the analysis of IMCs, we
focus on so-called closed IMCs [20], i.e. IMCs that are not subject to any fur-
ther synchronization. W.l.o.g. we assume that in closed IMCs all outgoing action
transition of state s are uniquely labeled, thereby naming the state’s nondeter-
ministic choices. In the rest of this paper, we only consider closed IMCs. For
simplicity, we assume that IMCs do not contain deadlock states, i.e. in any state
either an action or a Markovian transition emanates.

Definition 2 (Maximal progress). In any closed IMC, action transitions
take precedence over Markovian transitions.

The rationale behind the maximal progress assumption is that in closed IMCs,
action transitions are not subject to interaction and thus can happen immedi-
ately, whereas the probability for a Markovian transition to happen immediately
is zero. Accordingly, we assume that each state s has either only outgoing action
transitions or only outgoing Markovian transitions. Such states are called inter-
active and Markovian, respectively; we use IS ⊆ S andMS ⊆ S to denote the sets
of interactive and Markovian states. Let Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−−→ s′ }
be the set of enabled actions in s, if s ∈ IS and Act(s) = {⊥} if s ∈ MS.
In Markovian states, we use the special symbol ⊥ to denote purely stochastic
behavior without any nondeterministic choices.
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s9

s10

s5 s4

s7s6
α2
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2 4

β1

β2

γ1
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κ1

κ3

4 6
κ2
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Fig. 1. An example IMC

Example 1. Fig. 1 depicts an IMC I, where solid and dashed lines represent
action and Markovian transitions, respectively. The set of Markovian states is
MS = {s1, s3, s5, s7, s8}; IS contains all other states. Nondeterminism between
action transitions appears in states s0, s2, s4, and s9.

A sub-IMC of an IMC I = (S,Act, −→ ,=⇒, s0), is a pair (S′,K) where S′ ⊆ S
and K is a function that assigns each s ∈ S′ a set ∅ �= K(s) ⊆ Act(s) of actions

such that for all α ∈ K(s), s α−−→ s′ or s
λ

=⇒ s′ imply s′ ∈ S′. An end component
is a sub-IMC whose underlying graph is strongly connected; it is maximal w.r.t.
K if it is not contained in any other end component (S′′,K).
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Example 2. In Fig. 1, the sub-IMC (S′,K) with state space S′ = {s4, s5, s6, s7}
and K(s) = Act(s) for all s ∈ S′ is a maximal end component.

IMC semantics. An IMC without action transitions is a CTMC; if =⇒ is empty,
then it is an LTS. We briefly explain the semantics of Markovian transitions.

Roughly speaking, the meaning of s
λ

=⇒ s′ is that the IMC can switch from
state s to s′ within d time units with probability 1 − e−λd. The positive real
value λ thus uniquely identifies a negative exponential distribution. For s ∈MS,

let R(s, s′) =
∑
{λ | s λ

=⇒ s′} be the rate to move from state s to state s′. If
R(s, s′) > 0 for more than one state s′, a competition between the transitions of
s exists, known as the race condition. The probability to move from such state
s to a particular state s′ within d time units, i.e. s =⇒ s′ wins the race, is

R(s, s′)

E(s)
·
(
1− e−E(s)d

)
, (1)

where E(s) =
∑

s′∈S R(s, s′) is the exit rate of state s. Intuitively, (1) states
that after a delay of at most d time units (second term), the IMC moves prob-
abilistically to a direct successor state s′ with discrete branching probability

P(s, s′) = R(s,s′)
E(s) .

Paths and schedulers. An infinite path π in an IMC is an infinite sequence:

π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ s2
σ2,t2−−−−→ . . .

with si ∈ S, σi ∈ Act or σi = ⊥, and ti ∈ R≥0. The occurrence of action α in

state si in π is denoted si
α,0−−−→ si+1; the occurrence of a Markovian transition

after t time units delay in si is denoted si
⊥,t−−−→ si+1. For t ∈ R≥0, let π@t denote

the set of states that π occupies at time t. Note that π@t is in general not a single
state, but rather a set of states, as an IMC may exhibit immediate transitions
and thus may occupy various states at the same time instant. Let Paths and
Paths� denote the sets of infinite and finite paths, respectively.

Nondeterminism appears when there is more than one action transition en-
abled in a state. The corresponding choice is resolved using schedulers. A sched-
uler (ranged over by D) is a measurable function which yields for each finite
path ending in some state s a probability distribution over the set of enabled
actions in s. For details, see [27]. A stationary deterministic scheduler is a map-
ping D : IS → Act. The usual cylinder set construction yields a σ-algebra FPaths

of subsets of Paths ; given a scheduler D and an initial state s, FPaths can be
equipped with a probability measure [27], denoted Prs,D.

Zenoness. The time elapsed along an infinite path π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ . . . up
to state n is

∑n−1
i=0 ti. Path π is non-Zeno whenever

∑∞
i=0 ti diverges to infinity;

accordingly, an IMC I with initial state s0 is non-Zeno if for all schedulers D,
Prs0,D

{
π ∈ Paths |

∑∞
i=0 ti = ∞

}
= 1. As the probability of a Zeno path in a

finite CTMC —thus only containing Markovian transitions— is zero [1], IMC I
is non-Zeno if and only if no strongly connected component with states T ⊆ IS
is reachable from s0. In the rest of this paper, we assume IMCs to be non-Zeno.
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Stochastic shortest path problems. The (non-negative) SSP problem considers
the minimum expected cost for reaching a set of goal states in a discrete-time
Markov decision process (MDP).

Definition 3 (MDP).M = (S,Act,P, s0) is a Markov decision process, where
S, Act and s0 are as before and P : S×Act×S → [0, 1] is a transition probability
function such that for all s ∈ S and α ∈ Act,

∑
s′∈S P(s, α, s′) ∈ {0, 1}.

Definition 4 (SSP problem). A non-negative stochastic shortest path prob-
lem (SSP problem) is a tuple P = (S,Act,P, s0, G, c, g), where (S,Act,P, s0) is
an MDP, G ⊆ S is a set of goal states, c : S \G×Act→ R≥0 is a cost function
and g : G→ R≥0 is a terminal cost function.

The infinite sequence π = s0
α0−−→ s1

α1−−→ s2
α2−−→ . . . is a path in the MDP if

si ∈ S and P(si, αi, si+1) > 0 for all i � 0. Let k be the smallest index such
that sk ∈ G. The accumulated cost along π of reaching G, denoted CG(π), is∑k−1

j=0 c(sj , αj) + g(sk). The minimum expected cost reachability of G starting

from s in the SSP P , denoted cRmin(s,♦G), is defined as

cRmin(s,♦G) = inf
D

Es,D(CG) = inf
D

∑
π∈Pathsabs

CG(π) · Prabss,D(π),

where Pathsabs denotes the set of (time-abstract) infinite paths in the MDP
and Prabss,D the probability measure on sets of MDP paths that is induced by

schedulerD and initial state s. The quantity cRmin(s,♦G) can be obtained [2,13]
by solving the following linear programming problem with variables {xs}s∈S\G:
maximize

∑
s∈S\G xs subject to the following constraints for each s ∈ S \G and

α ∈ Act:

xs � c(s, α) +
∑

s′∈S\G
P(s, α, s′) · xs′ +

∑
s′∈G

P(s, α, s′) · g(s′).

3 Expected Time Analysis

Expected time objectives. Let I be an IMC with state space S and G ⊆ S a
set of goal states. Define the (extended) random variable VG : Paths → R∞

≥0

as the elapsed time before first visiting some state in G, i.e. for infinite path

π = s0
σ0,t0−−−→ s1

σ1,t1−−−→ · · · , let VG(π) = min {t ∈ R≥0 | G ∩ π@t �= ∅} where
min(∅) = +∞. The minimal expected time to reach G from s ∈ S is given by

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫
Paths

VG(π) Pr
s,D

(dπ).

Note that by definition of VG, only the amount of time before entering the first
G-state is relevant. Hence, we may turn all G-states into absorbing Markovian
states without affecting the expected time reachability. Accordingly, we assume

for the remainder of this section that for all s ∈ G and some λ > 0, s
λ

=⇒ s is
the only outgoing transition of state s.
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Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

E(s)
+

∑
s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
s

α−−→ s′
v(s′) if s ∈ IS \G

0 if s ∈ G.

Intuitively, Thm. 1 justifies to add the expected sojourn times in all Markovian
states before visiting aG-state. Any non-determinism in interactive states (which
are, by definition, left instantaneously) is resolved by minimizing the expected
reachability time from the reachable one-step successor states.

Computing expected time probabilities. The characterization of eTmin(s,♦G) in
Thm. 1 allows us to reduce the problem of computing the minimum expected
time reachability in an IMC to a non-negative SSP problem [2,15].

Definition 5 (SSP for minimum expected time reachability). The SSP
of IMC I = (S,Act, −→ ,=⇒, s0) for the expected time reachability of G ⊆ S is
PeTmin(I) = (S,Act ∪ {⊥} ,P, s0, G, c, g) where g(s) = 0 for all s ∈ G and

P(s, σ, s′) =

⎧⎪⎨
⎪⎩

R(s,s′)
E(s)

if s ∈ MS ∧ σ = ⊥
1 if s ∈ IS ∧ s σ−−→ s′

0 otherwise, and

c(s, σ) =

{
1

E(s)
if s ∈ MS \G ∧ σ = ⊥

0 otherwise.

Intuitively, action transitions are assigned a Dirac distribution, whereas the prob-
abilistic behavior of a Markovian state is as explained before. The reward of a
Markovian state is its mean residence time. Terminal costs are set to zero.

Theorem 2 (Correctness of the reduction). For IMC I and its induced
SSP PeTmin(I) it holds:

eTmin(s,♦G) = cRmin(s,♦G)

where cRmin(s,♦G) denotes the minimal cost reachability of G in SSP PeTmin(I).

Proof. According to [2,15], cRmin(s,♦G) is the unique fixpoint of the Bellman
operator L′ defined as:

[L′(v)] (s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G
P(s, α, s′) · v(s′) +

∑
s′∈G

P(s, α, s′) · g(s′).

We prove that the Bellman operator L from Thm. 1 equals L′ for SSP PeTmin(I).
By definition, it holds that g(s) = 0 for all s ∈ S. Thus

[L′(v)] (s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G
P(s, α, s′) · v(s′).
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For s ∈ MS, Act(s) = {⊥}; if s ∈ G, then c(s,⊥) = 0 and P(s,⊥, s) = 1 imply
L′(v)(s) = 0. For s ∈ IS and α ∈ Act(s), there exists a unique s′ ∈ S such that
P(s, α, s′) = 1. Thus we can rewrite L′ as follows:

[
L′(v)

]
(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(s,⊥) +
∑

s′∈S\G
P(s,⊥, s′) · v(s′) if s ∈ MS \G

min
s

α−→s′
c(s, α) + v(s′) if s ∈ IS \G

0 if s ∈ G.

(2)

By observing that c(s,⊥) = 1
E(s) if s ∈ MS \ G and c(s, σ) = 0, otherwise, we

can rewrite L′ in (2) to yield the Bellman operator L as defined in Thm. 1. �

Observe from the fixpoint characterization of eTmin(s,♦G) in Thm. 1 that in
interactive states—and only those may exhibit nondeterminism—it suffices to
choose the successor state that minimizes v(s′). In addition, by Thm. 2, the
Bellman operator L from Thm. 1 yields the minimal cost reachability in SSP
PeTmin(I). These two observations and the fact that stationary deterministic
policies suffice to attain the minimum expected cost of an SSP [2,15] yields:

Corollary 1. There is a stationarydeterministic scheduler yielding eT min(s,♦G).

The uniqueness of the minimum expected cost of an SSP [2,15] now yields:

Corollary 2. eTmin(s,♦G) is the unique fixpoint of L (see Thm. 1).

The uniqueness result enables the usage of standard solution techniques such as
value iteration and linear programming to compute eTmin(s,♦G).

4 Long-Run Average Analysis

Long-run average objectives. Let I be an IMC with state space S and G ⊆ S
a set of goal states. We use IG as an indicator with IG(s) = 1 if s ∈ G and 0,
otherwise. Following the ideas of [14,22], the fraction of time spent in G on an
infinite path π in I up to time bound t ∈ R≥0 is given by the random variable

(r. v.) AG,t(π) = 1
t

∫ t

0
IG(π@u) du. Taking the limit t→∞, we obtain the r. v.

AG(π) = lim
t→∞

AG,t(π) = lim
t→∞

1

t

∫ t

0

IG(π@u) du.

The expectation ofAG for schedulerD and initial state s yields the corresponding
long-run average time spent in G:

LraD(s,G) = Es,D(AG) =

∫
Paths

AG(π) Prs,D(dπ).

The minimum long-run average time spent in G starting from state s is then:

Lramin(s,G) = inf
D

LraD(s,G) = inf
D

Es,D(AG).
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For the long-run average analysis, we may assume w.l.o.g. that G ⊆ MS, as
the long-run average time spent in any interactive state is always 0. This claim
follows directly from the fact that interactive states are instantaneous, i.e. their
sojourn time is 0 by definition. Note that in contrast to the expected time anal-
ysis, G-states cannot be made absorbing in the long-run average analysis.

Theorem 3. There is a stationary deterministic scheduler yielding Lramin(s,G).

In the remainder of this section, we discuss in detail how to compute the mini-
mum long-run average fraction of time to be in G in an IMC I with initial state
s0. The general idea is the following three-step procedure:

1. Determine the maximal end components {I1, . . . , Ik} of IMC I.
2. Determine Lramin(G) in maximal end component Ij for all j ∈ {1, . . . , k}.
3. Reduce the computation of Lramin(s0, G) in IMC I to an SSP problem.

The first phase can be performed by a graph-based algorithm [13] which has
recently been improved in [9], whereas the last two phases boil down to solving
linear programming problems. In the next subsection, we show that determining
the LRA in an end component of an IMC can be reduced to a long-run ratio
objective in an MDP equipped with two cost functions. Then, we show the
reduction of our original problem to an SSP problem.

4.1 Long-Run Averages in Unichain IMCs

In this subsection, we consider computing long-run averages in unichain IMCs,
i.e. IMCs that under any stationary deterministic scheduler yield a strongly
connected graph structure.

Long-run ratio objectives in MDPs. LetM = (S,Act,P, s0) be an MDP. Assume
w.l.o.g. that for each state s there exists α ∈ Act such that P(s, α, s′) > 0. Let
c1, c2 : S× (Act∪{⊥}) → R�0 be cost functions. The operational interpretation
is that a cost c1(s, α) is incurred when selecting action α in state s, and similar
for c2. Our interest is the ratio between c1 and c2 along a path. The long-
run ratio R between the accumulated costs c1 and c2 along the infinite path
π = s0

α0−−→ s1
α1−−→ . . . in the MDP M is defined by1:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)∑n−1
j=0 c2(sj , αj)

.

The minimum long-run ratio objective for state s of MDP M is defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑
π∈Pathsabs

R(π) · Prabss,D(π).

1 In our setting, R(π) is well-defined as the cost functions c1 and c2 are obtained
from non-Zeno IMCs, as explained below. This entails that for any infinite path π,
c2(sj , αj) > 0 for some index j.
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From [13], it follows that Rmin(s) can be obtained by solving the following linear
programming problem with real variables k and xs for each s ∈ S: Maximize k
subject to the following constraints for each s ∈ S and α ∈ Act:

xs � c1(s, α)− k · c2(s, α) +
∑
s′∈S

P(s, α, s′) · xs′ .

Reducing LRA objectives in unichain IMCs to long-run ratio objectives in MDPs.
We consider the transformation of an IMC into an MDP with 2 cost functions.

Definition 6. Let I = (S,Act, −→ ,=⇒, s0) be an IMC and G ⊆ S a set of goal
states. The induced MDP is M(I) = (S,Act∪{⊥},P, s0) with cost functions c1
and c2, where

P(s, σ, s′) =

⎧⎪⎨
⎪⎩

R(s,s′)
E(s)

if s ∈ MS ∧ σ = ⊥
1 if s ∈ IS ∧ s σ−−→ s′

0 otherwise,

c1(s, σ) =

{
1

E(s)
if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{
1

E(s)
if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average residence time in state s
whereas c1 only does so for states in G. The following result shows that the long-
run average fraction of time spent in G-states in the IMC I and the long-run
ratio objective Rmin in the induced MDP M(I) coincide.
Theorem 4. For unichain IMC I, LRAmin(s,G) equals Rmin(s) in MDPM(I).
Proof. Let I be a unichain IMC with state space S and G ⊆ S. Consider a
stationary deterministic schedulerD on I. As I is unichain,D induces an ergodic

CTMC (S,R, s0), where R(s, s′) =
∑
{λ | s λ

=⇒ s′}, and R(s, s′) = ∞ if s ∈ IS

and s D(s)−−−−→ s′.2 The proof now proceeds in three steps.

〈1〉 According to the ergodic theorem for CTMCs [23], almost surely:

Esi

(
lim
t→∞

1

t

∫ t

0

I{si}(Xu) du
)

=
1

zi ·E(si)
.

Here, random variable Xt denotes the state of the CTMC at time t and
zi = Ei(Ti) is the expected return time to state si where random variable Ti

is the return time to si when starting from si. We assume 1
∞ = 0. Thus, in

the long run almost all paths will stay in si for
1

zi·E(si)
fraction of time.

〈2〉 Let μi be the probability to stay in si in the long run in the embedded
discrete-time Markov chain (S,P′, s0) of CTMC (S,R, s0). Thus μ ·P′ = μ
where μ is the vector containing μi for all states si ∈ S. Given the probability
μi of staying in state si, the expected return time to si is

zi =

∑
sj∈S μj ·E(sj)

−1

μi
.

2 Strictly speaking, ∞ is not characterizing a negative exponential distribution and is
used here to model an instantaneous transition. The results applied to CTMCs in
this proof are not affected by this slight extension of rates.
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〈3〉 Gathering the above results now yields:

LraD(s,G) = Es,D

(
lim
t→∞

1

t

∫ t

0

IG(Xu) du
)
= Es,D

(
lim
t→∞

1

t

∫ t

0

∑
si∈G

I{si}(Xu) du
)

=
∑
si∈G

Es,D

(
lim
t→∞

1

t

∫ t

0

I{si}(Xu) du
) 〈1〉

=
∑
si∈G

1

zi ·E(si)

〈2〉
=

∑
si∈G

μi∑
sj∈S μjE(sj)−1

· 1

E(si)
=

∑
si∈G μiE(si)

−1

∑
sj∈S μjE(sj)−1

=

∑
si∈S IG(si) · μiE(si)

−1

∑
sj∈S μjE(sj)−1

=

∑
si∈S μi · (IG(si) ·E(si)

−1)∑
sj∈S μj · E(sj)−1

(�)
=

∑
si∈S μi · c1(si, D(si))∑
sj∈S μj · c2(sj , D(sj))

(��)
= Es,D(R)

Step (�) is due to the definition of c1, c2. Step (��) has been proven in [13].

By definition, there is a one-to-one correspondence between the schedulers of I
and its MDP M(I). Together with the above results, this yields that Lramin =
infD LraD(s) in IMC I equals Rmin(s) = infD Es,D(R) in MDP M(I). �

To summarize, computing the minimum long-run average fraction of time that
is spent in some goal state in G ⊆ S in unichain IMC I equals the minimum
long-run ratio objective in an MDP with two cost functions. The latter can be
obtained by solving an LP problem. Observe that for any two states s, s′ in
a unichain IMC, Lramin(s,G) and Lramin(s′, G) coincide. In the sequel, we
therefore omit the state and simply write Lramin(G) when considering unichain
IMCs. In the next subsection, we consider IMCs that are not unichains.

4.2 Reduction to a Stochastic Shortest Path Problem

Let I be an IMC with initial state s0 and maximal end components {I1, . . . , Ik}
for k > 0 where IMC Ij has state space Sj. Note that being a maximal end
component implies that each Ij is also a unichain IMC. Using this decomposition
of I into maximal end components, we obtain the following result:

Lemma 1. Let I = (S,Act, −→ ,=⇒, s0) be an IMC, G ⊆ S a set of goal
states and {I1, . . . , Ik} the set of maximal end components in I with state spaces
S1, . . . , Sk ⊆ S. Then

Lramin(s0, G) = inf
D

k∑
j=1

Lramin
j (G) · PrD(s0 |= ♦Sj),

where PrD(s0 |= ♦Sj) is the probability to eventually reach some state in Sj

from s0 under scheduler D and Lramin
j (G) is the long-run average fraction of

time spent in G ∩ Sj in unichain IMC Ij.
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We finally show that the problem of computing minimal LRA is reducible to a
non-negative SSP problem [2,15]. This is done as follows. In IMC I, each maximal
end component Ij is replaced by a new state uj. Formally, let U = {u1, . . . , uk}
be a set of fresh states such that U ∩ S = ∅.

Definition 7 (SSP for long run average). Let I, S, G ⊆ S, Ij and Sj be as
before. The SSP induced by I for the long-run average fraction of time spent in

G is the tuple PLRAmin(I) =
(
S \
⋃k

i=1 Si ∪ U,Act ∪ {⊥} ,P′, s0, U, c, g
)
, where

P′(s, σ, s′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(s, σ, s′), if s, s′ ∈ S \
⋃k

i=1 Si∑
s′∈Sj

P(s, σ, s′) if s ∈ S \
⋃k

i=1 Si ∧ s′ = uj , uj ∈ U

1 if s = s′ = ui ∈ U ∧ σ = ⊥
0 otherwise.

Here, P is defined as in Def. 6. Furthermore, g(ui) = Lramin
i (G) for ui ∈ U

and c(s, σ) = 0 for all s and σ ∈ Act ∪ {⊥}.

The state space of the SSP consists of all states in the IMC I where each maximal
end component Ij is replaced by a single state uj which is equipped with a ⊥-
labeled self-loop. The terminal costs of the new states ui are set to Lramin

i (G).
The transition probabilities are defined as in the transformation of an IMC into
an MDP, see Def. 6, except that for transitions to uj the cumulative probability
to move to one of the states in Sj is taken. Note that as interactive transitions
are uniquely labeled (as we consider closed IMCs), P′ is indeed a probability
function. The following theorem states the correctness of the reduction.

Theorem 5 (Correctness of the reduction). For IMC I and its induced
SSP PLRAmin(I) it holds:

Lramin(s,G) = cRmin(s,♦U)

where cRmin(s,♦U) is the minimal cost reachability of U in SSP PLRAmin(I).

Example 3. Consider the IMC I in Fig. 1 and its maximal end components I1
and I2 with state spaces S1 = {s4, s5, s6, s7} and S2 = {s3, s8, s9, s10}, respec-
tively. Let G = {s7, s8} be the set of goal states. For the underlying MDP
M(I), we have P(s4, γ1, s5) = 1, c1(s4, γ1) = c2(s4, γ1) = 0, P(s7,⊥, s4) = 1

2 ,
c1(s7,⊥) = c2(s7,⊥) = 1

10 , and P(s5,⊥, s7) = 1 with c1(s5,⊥) = 0 and
c2(s5,⊥) = 1

20 . Solving the linear programming problems for each of the maxi-

mal end components I1 and I2, we obtain Lramin
1 (G) = 2

3 , Lra
max
1 (G) = 4

5 , and

Lramax
2 (G) = Lramin

2 (G) = 9
13 . The SSP PLRAmin(I) for the complete IMC I is

obtained by replacing I1 and I2 with fresh states u1 and u2 where g(u1) =
2
3 and

g(u2) =
9
13 . We have P′(s1,⊥, u1) =

1
3 , P

′(s2, β2, u2) = 1, etc. Finally, by solving

the linear programming problem for PLRAmin(I), we obtain Lramin(s0, G) = 80
117

by choosing α1 in state s0 and γ1 in state s4. Dually, Lramax(s0, G) = 142
195 is

obtained by choosing α1 in state s0 and γ2 in state s4.
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5 Case Studies

5.1 Tool Support

What is Imca? Imca (Interactive Markov Chain Analyzer) is a tool for the
quantitative analysis of IMCs. In particular, it supports the verification of IMCs
against (a) timed reachability objectives, (b) reachability objectives, (c) expected
time objectives, (d) expected step objectives, and (e) long-run average objectives.
In addition, it supports the minimization of IMCs with respect to strong bisim-
ulation. Imca synthesizes ε-optimal piecewise constant timed policies for (a)
timed reachability objectives using the approach of [27], and optimal positional
policies for the objectives (b)–(e). Measures (c) and (e) are determined using
the approach explained in this paper. Imca supports the plotting of piecewise
constant policies (on a per state basis) and incorporates a plot functionality for
timed reachability which allows to plot the timed reachability probabilities for
a state over a given time interval.

Input format. Imca has a simple input format that facilitates its usage as a
back-end tool for other tools that generate IMCs from high-level model specifi-
cations such as AADL, DFTs, Prism reactive modules, and so on. It supports
the bcg-format, such that it accepts state spaces generated (and possibly mini-
mized) using the CADP toolbox [11]; CADP supports a LOTOS-variant for the
compositional modeling of IMCs and compositional minimization of IMCs.

Implementation Details. A schematic overview of the Imca tool is given in Fig. 2.
The tool is written in C++, consists of about 6,000 lines of code, and exploits
the GNU Multiple Precision Arithmetic Library3 and the Multiple Precision
Floating-Point Reliable Library4 so as to deal with the small probabilities that
occur during discretization for (a). Other included libraries are QT 4.6 and LP-
solve5 5.5. The latter supports several efficient algorithms to solve LP problems;
by default it uses simplex on an LP problem and its dual.

Fig. 2. Tool functionality of Imca

3 http://gmplib.org/
4 http://www.mpfr.org/
5 http://lpsolve.sourceforge.net/



20 D. Guck et al.

Table 1. Computation times for the workstation cluster

eTmax(s,�G) Prmax(s,�G) Lramax(s,G)
N # states # transitions |G| time (s) time (s) time (s)

1 111 320 74 0.0115 0.0068 0.0354
4 819 2996 347 0.6418 0.1524 0.3629
8 2771 10708 1019 3.1046 1.8222 11.492
16 8959 36736 3042 35.967 18.495 156.934
32 38147 155132 12307 755.73 467.0 3066.31
52 96511 396447 30474 5140.96 7801.56 OOM

5.2 Case Studies

We study the practical feasibility of Imca’s algorithms for expected time reach-
ability and long-run averages on two case studies: A dependable workstation
cluster [17] and a Google file system [10]. The experiments were conducted on a
single core of a 2.8 GHz Intel Core i7 processor with 4GB RAM running Linux.

Workstation cluster. In this benchmark, two clusters of workstations are con-
nected via a backbone network. In each cluster, the workstations are connected
via a switch. All components can fail. Our model for the workstation cluster
benchmark is basically as used in all of its studies so far, except that the inspec-
tion transitions in the GSPN (Generalized Stochastic Petri Net) model of [17] are
immediate rather than —as in all current studies so far— stochastic transitions
with a very high rate. Accordingly, whenever the repair unit is available and
different components have failed, the choice which component to repair next is
nondeterministic (rather than probabilistic). This yields an IMC with the same
size as the Markov chain of [17]. Table 1 shows the computation times for the
maximum expected reachability times where the set G of goal states depends on
the number N of operational workstations. More precisely, G is the set of states
in which none of the operational left (or right) workstations connected via an
operational switch and backbone is available. For the sake of comparison, the
next column indicates the computation times for unbounded reachability prob-
abilities for the same goal set. The last column of Table 1 lists the results for
the long-run average analysis; the model consists of a single end component.

Google file system. The model of [10] focuses on a replicated file system as used
as part of the Google search engine. In the Google file system model, files are
divided into chunks of equal size. Several copies of each chunk reside at several
chunk servers. The location of the chunk copies is administered by a single master
server. If a user of the file system wants to access a certain chunk of a file, it
asks the master for the location. Data transfer then takes place directly between
a chunk server and the user. The model features three parameters: The number
M of chunk servers, the number S of chunks a chunk server may store, and the
total number N of chunks. In our setting, S = 5000 and N = 100000, whereasM
varies. The set G of goal states characterizes the set of states that offer at least
service level one. We consider a variant of the GSPN model in [10] in which the
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Table 2. Computation times for Google file system (S = 5000 and N = 100000)

eTmin(s,�G) Prmin(s,�G) Lramin(s,G)
M # states # transitions |G| time (s) time (s) time (s)

10 1796 6544 408 0.7333 0.9134 4.8531
20 7176 27586 1713 16.033 48.363 173.924
30 16156 63356 3918 246.498 271.583 2143.79
40 28736 113928 7023 486.735 1136.06 4596.14
60 64696 202106 15933 765.942 1913.66 OOM

probability of a hardware or a software failure in the chunk server is unknown.
This aspect was not addressed in [10]. Table 2 summarizes the computation
times for the analysis of the nondeterministic Google file system model.

6 Conclusions

We presented novel algorithms, prototypical tool support in Imca, and two
case studies for the analysis of expected time and long run average objectives
of IMCs. We have shown that both objectives can be reduced to stochastic
shortest path problems. As IMCs are the semantic backbone of engineering for-
malisms such as AADL error models [5], dynamic fault trees [4] and GALS
hardware designs [12], our contribution enlarges the analysis capabilities for
dependability and reliability. The support of the compressed bcg-format al-
lows for the direct usage of our tool and algorithms as back-end to tools like
CADP [11] and CORAL [4]. The tool and case studies are publicly available at
http://moves.rwth-aachen.de/imca. Future work will focus on the generaliza-
tion of the presented algorithms to Markov automata [16], and experimentation
with symbolic data structures such as multi-terminal BDDs by, e.g. exploiting
Prism for the MDP analysis.
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Abstract. This paper reviews the experience of introducing formal mo-
del-based design and code generation by means of the Simulink/Stateflow
platform in the development process of a railway signalling manufacturer.
Such company operates in a standard-regulated framework, for which the
adoption of commercial, non qualified tools as part of the development
activities poses hurdles from the verification and certification point of
view. At this regard, three incremental intermediate goals have been de-
fined, namely (1) identification of a safe-subset of the modelling language,
(2) evidence of the behavioural conformance between the generated code
and the modelled specification, and (3) integration of the modelling and
code generation technologies within the process that is recommended by
the regulations.

These three issues have been addressed by progressively tuning the
usage of the technologies across different projects. This paper summarizes
the lesson learnt from this experience. In particular, it shows that formal
modelling and code generation are actually powerful means to enhance
product safety and cost effectiveness. Nevertheless, their adoption is not
a straightforward step, and incremental adjustments and refinements are
required in order to establish a formal model-based process.

Introduction

The adoption of formal and semi-formal modelling technologies into the dif-
ferent phases of development of software products is constantly growing within
industry [4,29,27]. Designing model abstractions before getting into hand-crafted
code helps highlighting concepts that can hardly be focused otherwise, enabling
greater control over the system under development. This is particularly true in
the case of embedded safety-critical applications such as aerospace, railway, and
automotive ones. These applications, besides dealing with code having increas-
ing size and therefore an even more crucial role for safety, can often be tested
only on the target machine or on ad-hoc expensive simulators.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 24–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.isti.cnr.it/


Adoption of MDB 25

Within this context, recent years have seen the diffusion of graphical tools to
facilitate the development of the software before its actual deployment. Tech-
nologies known as model-based design [32] and code generation started to be
progressively adopted by several companies as part of their software process.

The development of safety-critical software shall conform to specific interna-
tional standards (e.g., RTCA/DO-178B [30] for aerospace, IEC-61508 [22] for au-
tomotive and CENELEC/EN-50128 [7] for railway signalling in Europe). These
are a set of norms and methods to be used while implementing a product having
a determined safety-related nature. In order to certify a product according to
these standards, companies are required to give evidence to the authorities that
a development process has been followed that is coherent with the prescriptions
of the norms.

Introducing model-based design tool-suites and the code generation technol-
ogy within a standard-regulated process is not a straightforward step. The code
used in safety-critical systems shall conform to specific quality standards, and
normally the companies use coding guidelines in order to avoid usage of improper
constructs that might be harmful from the safety point of view. When modelling
is adopted, the generated code shall conform to the same standard asked to the
hand-crafted code. Concerning the tools, the norms ask for a certified or proven-
in-use translator: in absence of such a tool, a strategy has to be defined in order
to assess the equivalence between the model and the generated code behaviour.
The modelling and code generation technologies are then required to be inte-
grated with the established process, that shall maintain its coherence even if
changes are applied.

With the aim of establishing guidelines for a formal model-based development
process, in this paper we review a series of relevant experiences done in collabo-
ration with a railway signalling manufacturer operating in the field of Automatic
Train Protection (ATP) systems. Inside a long-term effort of introducing formal
methods to enforce product safety, indeed the company decided to adopt the
Simulink/Stateflow tool-suite to exploit formal model-based development and
code generation within its own development process [2,15]. The decision was fol-
lowed by four years of incremental actions in using commercial tools to build a
formal model-based process focused on code generation. Details of these actions,
have been published elsewhere [15,17,18,16]. We are here interested instead to
give a global view of the overall experience.

The paper is structured as follows. In Sect. 1 some background is given con-
cerning formal methods, model-based design and the existing approaches inte-
grating the two technologies. In Sect. 2 the research problem of introducing
code generation from formal models in a safety-critical domain is expressed and
discussed. In Sect. 3 the projects where formal model-based development has
been employed are presented, together with the goals progressively achieved
with respect to the main research problem. In Sect. 4 the advantages and the
critical aspects of code generation are evaluated. Sect. 5 draws final conclusions
and remarks.
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1 Formal Model-Based Design

In 1995, Bowen and Hinchey published the Ten Commandments of Formal Meth-
ods [5], a list of guidelines for applying formal techniques, edited according to
their experience in industrial projects [20]. Ten years later, the authors review
their statements, and they witness that not so much have changed [6]: the indus-
trial applications that demonstrate the feasibility and the effectiveness of formal
methods are still limited, though famous projects exist, which show that the
interest in these methods is not decreased. Among them, it is worth citing the
Paris Metro onboard equipment [3], where the B method has been employed,
and the Maeslant Kering storm surge barrier control system [33], where both
the Z and the Promela notations have been used.

The comprehensive survey of Woodcock et al. [35] confirms that industries are
currently performing studies on formal methods applications, but still perceive
them as experimental technologies.

While formal methods have struggled for more than twenty years for a role in
the development process of the companies, the model-based design [32] paradigm
has gained ground much faster. The defining principle of this approach is that
the whole development shall be based on graphical model abstractions, from
which an implementation can be manually or automatically derived. Tools sup-
porting this technology allow simulations and tests of the system models to be
performed before the actual deployment. The objective is not different from the
one of formal methods, which is detecting design defects before the actual imple-
mentation. However, while formal methods are perceived as rigid and difficult,
model-based design is regarded as closer to the needs of the developers, which
consider graphical simulation more intuitive than formal verification.

This trend has given increasing importance to tools such as the SCADE
suite [11], a graphical modelling environment mostly used in aerospace and based
on the Lustre synchronous language, Scicos [23], an open source platform for
modelling and simulating control systems, and the two tools ASCET [14] and
AutoFocus [21], both oriented to automotive systems and using block notations
for the representation of distributed processes.

In this scenario, the safety-critical industry has progressively seen the clear
establishment of the Simulink/Stateflow [25] platform as a de-facto standard for
modelling and code generation. The Simulink language uses a block notation
for the definition of continuous-time dynamic system. The Stateflow notation
is based on Harel’s Statecharts [19] and supports the modelling and animation
of event-based discrete-time applications. The integration of the two languages
allows a flexible representation of hybrid systems, while tools such as Simulink
Coder [25] and TargetLink [12] support automatic source code generation from
the models. These features, strengthened by the large amount of associated tool-
boxes to analyse the different aspects of an application, has enabled a cross-
domain spread of the platform.

Nevertheless, since the languages and tool-suite are not formally based, their
full employment for the development of safety-critical applications poses chal-
lenges from the verification and certification point of view: how to ensure that
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the generated code is compliant with the modelled application? How to inte-
grate model-based practices with traditional certified processes? These are all
questions that started pushing industries and researchers toward an integration
between model-based design and formal techniques [1,29]. The main goal is to
take profits from the flexibility of the first and the safety assurance of the latter,
going toward the definition of formal model-based design methods.

Large size companies have been the first to employ formal model-based prac-
tices. Already in 2006, Honeywell started defining an approach for the translation
of Simulink models into the input language of the SMV model checker [26]. Air-
bus has used the model checking capabilities of the SCADE suite for ten years
in the development of the controllers for the A340-500/600 series [4]. The most
complete, integrated methodology is probably the one currently practiced by
Rockwell Collins [27]. The process implemented by this company of the avionic
sector starts from Simulink/Stateflow models to derive a representation in the
Lustre formal language. Then, formal verification is performed by means of dif-
ferent engines, such as NuSMV and Prover, followed by code generation in C
and ADA.

The main contribution of the current paper with respect to the related work
is the in-depth focus on the code generation aspect, together with the evaluation
of the advantages given by the introduction of this technology in a medium-size
company. Our objective is to give a clear picture of how the adoption of code
generation affects the overall development process.

2 Problem Statement

The company considered in this paper operates in the development of safety-
related railway signalling systems. Inside an effort of adopting formal methods
within its own development process, the company decided to introduce system
modelling by means of the Simulink/Stateflow tools [2], and in 2007 decided to
move to code generation [15].

Formal modelling with automatic code generation were seen as breakthrough
technologies for managing projects of increasing size, and for satisfying the re-
quirements of a global market in terms of product flexibility.

In order to achieve this goal, the company contacted experts from academia,
expected to give guidance and support along this paradigm-shift in the devel-
opment process. This paper reviews a series of experiences done in this collabo-
ration, inside a four year reasearch activity started at the end of 2007, with the
aim to address the following:

Problem Statement

Define and implement a methodology for the adoption of the code generation
technology from formal models by a railway signalling company

During the research activity, the problem statement has been decomposed into
the following sub-goals.
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Goal 1 - modelling language restriction. The code used in safety-critical
systems shall conform to specific quality standards, and normally the com-
panies use coding guidelines in order to avoid usage of improper constructs
that might be harmful from the safety point of view. When modelling and
auto-coding are adopted, the generated code shall conform to the same stan-
dard asked to the hand-crafted code. Hence, the identification of a safe sub-
set of the adopted modelling language is required for the production of code
compliant with the guidelines and that can be succesfully integrated with
the existing one.

Goal 2 - generated code correctness. Safety-critical norms ask for a certi-
fied or proven-in-use translator. In absence of such a tool, like in the case
of the available code generators for Simulink/Stateflow, a strategy has to be
defined in order to ensure that the code behaviour is fully compliant to the
model behaviour, and no additional improper functions are added during the
code synthesis phase. The objective is to perform the verification activities
at the level of the abstract model, minimizing or automating the operations
on the code.

Goal 3 - process integration. Product development is performed by compa-
nies by means of processes, which define a framework made of tasks, arti-
facts and people. Introduction of new technologies in an established process
requires adjustments to the process structure, which shall maintain its co-
herence even if changes are applied. This is particularly true in the case of
safety-critical companies, whose products have to be validated according to
normative prescriptions. Hence, a sound process shall be defined in order to
integrate modelling and code generation within the existing process.

3 Projects and Achievements

Addressing the problem statement issued above started with the objective of
introducing model-based design and code generation within the development
process of the company. The specific projects, summarized in the following, were
subsequently selected as test-benches for the incremental introduction of such
technologies. Each goal expressed in Sect. 2 is evaluated according to its pro-
gressive refinement during the projects.

The first experiments have been performed during Project 1, involving the
development of a simple Automatic Train Protection (ATP) system.

ATP systems are typically embedded platforms that enforce the rules of sig-
naling systems by adding an on-board automatic control over the speed limit
imposed to trains along the track. In case of dangerous behaviour acted by the
driver (e.g., speed limit or signalling rules violation) the system is in charge of
regulating the speed by enforcing the brakes until the train returns to a safe
state (i.e., the train standing condition or a speed below the imposed limit).

During Project 1, an ATP system was developed from scratch with the sup-
port of the Simulink/Stateflow tool-suite. A Stateflow model was designed in
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collaboration with the customer in order to define and assess the system re-
quirements [2]. This experience, completed with the successful deployment of
the system, allowed the assessment of the potentials of modelling for prototype
definition and requirements agreement.

The actual research on code generation started when the hand-crafted sys-
tem was already deployed and operational. The Stateflow model, formerly em-
ployed for requirements agreement, has been used as a prototype platform for
the definition of a first set modelling language restrictions in the form of mod-
elling guidelines [15]. The model passed through a refactoring path according to
the guidelines defined, and proper code synthesis of the single model units was
achieved through the Stateflow Coder1 tool.

At the end of 2007, the system evolved in a new version. The refactored model
substituted the original one for the definition of the new system specifications.
Still, code generation was not employed in the actual development process, and
the product remained an hand-crafted system also in its new version, since a
proper V&V process for its certification against regulations was not defined yet.

Project 2, involved an ATP system about ten times larger in terms of fea-
tures compared with Project 1. With this project, the company put into prac-
tice its acquired experience with code generation. The set of internal guidelines
edited during Project 1 has been integrated with the public MAAB recommen-
dations2 [24] for modelling with Simulink/Stateflow.

Furthermore, a preliminary process for code verification has been defined [18].
The defined process was structured as follows. First, an internally developed tool
was used to check modelling standard adherence, a sort of static analysis per-
formed at model level. Then, functional unit-level verification was performed by
means of a two-phase task made of model-based testing [13] and abstract inter-
pretation [9]. The first step checks for functional equivalence between model and
code. The second step, supported by the Polyspace tool [10,25], is used to assess
the absence of runtime errors. Due to the timing of the project, both guidelines
verification and model-based testing have been only partially employed. The
process had to be adjusted with ad-hoc solutions, mostly based on traditional
code testing, in order to address the problem of a non-certified code generator.

Project 3, concerning an ATP system tailored for metro signalling, has been
the first complete instance of a formal development process [17,16]. Besides the
already adopted technologies, a hierarchical derivation approach has been em-
ployed. Simulink and Stateflow are proper tools to represent the low-level aspects
of a system, while they offer poor support for reasoning at the software archi-
tecture level. Therefore, we resorted to adopt the UML notation to model the
software architecture of the system. The approach starts from such an UML

1 The tool is currently distributed as part of Simulink Coder.
2 Set of guidelines developed in the automotive domain for modelling with
Simulink/Stateflow. The current version of the MAAB recommendations is 2.2, is-
sued in 2011. The project adopted the 2.0 version, issued in 2007.
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representation, and requires deriving unit-level requirements and a formal rep-
resentation of them in the form of Stateflow diagrams. During the project, the
modelling guidelines have been updated with a set of restrictions particularly
oriented to define a formal semantics for the Stateflow language (see Sect. 3.1).
These restrictions have enforced the formal representation of the requirements.

A new code generator, Real Time Workshop Embedded Coder3, has been
introduced, which permitted to generate also the integration code between the
different generated units. With the previously adopted Stateflow Coder, code
integration was performed manually. The adoption of the new generator allowed
a further automation and speed-up of the development.

Within the project, the goal of ensuring correctness of the generated code in
absence of a certified translator has been addressed by combining a model-based
testing approach known as translation validation [8] with abstract interpretation.
Translation validation has been performed with an internally developed frame-
work. This framework supports back-to-back [34] model-code execution of unit
level tests, and the assessment of consistency between model and code cover-
age. Abstract interpretation with Polyspace has been performed with a strategy
analogous to the one already applied for Project 2.

Project 3 has also marked the start of the first structured experiments with
formal verification by means of Simulink Design Verifier [25]. The evaluation was
particularly oriented to verify whether this technology, employed at the level of
the model units, could actually replace model-based unit testing with a substan-
tial cost reduction. The first results have been encouraging. The experiments
have shown that about 95% of the requirements can be verified with the tool to
achieve a cost reduction of 50% to 66% in terms of man/hours [16]. The remain-
ing requirements, for which this cost gain cannot be achieved, can be verified
through model-based testing. The company is currently devising strategies to
systematically employ formal verification in the development process.

Many of the development, verification and certification issues related to formal
model-based development appeared only during its actual deployment: the goals
planned at the beginning of the research have been addressed after progressive
tuning of the strategy across the different projects. Table 1 summarizes the
technologies incrementally introduced during the projects. Italics indicate partial
adoption of a technology or partial achievement of a goal.

3.1 Goal 1 - Modelling Language Restriction

The first goal was to identify a proper subset of the Simulink/Stateflow lan-
guage: the idea was that C code generated from models in this subset would
be compliant with the guidelines defined by the company in accordance with
the quality standard required by the norms. With Project 1, this problem was
addressed by first analysing the violations of the quality standard issued by the
code generated from the original model. Then, sub-models have been defined,
on which the evaluation could be performed more easily. The translation of

3 Currently renamed Simulink Coder.
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Table 1. Summary of the results achieved during the projects

Year Project Technologies (Full or Partial Adoption) Goal

2007-2008 Project 1 Modelling guidelines (25) 1
Code generation (Stateflow Coder R2007b)

2008-2010 Project 2

Modelling guidelines + MAAB (43) 1
Code generation (Stateflow Coder R2007b) 2
Guidelines verification 3
Model-based testing
Abstract interpretation (Polyspace 7.0)

2009-2011 Project 3

Modelling guidelines + MAAB (43) 1
Semantics restrictions 2
UML + hierarchical derivation 3
Code generation (RTW Embedded Coder R2010a)
Translation Validation
Abstract interpretation (Polyspace 8.0)
Formal Verification (Simulink Design Verifier R2010a)

single graphical constructs, and of combination of them, have been evaluated
and classified. Proper modelling guidelines have been defined in order to avoid
the violations experienced. The activity led to the definition of a preliminary set
of 25 guidelines for creating models targeted for code generation [15].

With Project 2, where code generation has been actually employed for the de-
velopment of the whole application logic software, a more systematic study has
been performed. The preliminary set of guidelines had in fact the limit of being
derived from a specific model, and could lack of generality. A comparison with
the experience of other safety-critical domains was needed. Actually, in the au-
tomotive sector a set of accepted modelling rules equivalent to the MISRA [28]
ones for C code had emerged, that is, the MAAB guidelines [24], defined by
OEMs4 and suppliers of the automotive sector to facilitate model exchange and
commissioning. The preliminary set was extended by adapting the MAAB guide-
lines to the railway domain. This new set, composed of 45 guidelines in total,
prompted further restrictions. These restrictions were not only limited to en-
force generation of quality code, but were also oriented to define well-structured
models.

A further step was performed during Project 3: in order to ease a formal anal-
ysis and a formal representation of the requirements, it was decided to complete
the modelling style guidelines by restricting the Stateflow language to a seman-
tically unambiguous set. To this end, the studies of Scaife et al. [31], focused on
translating a subset of Stateflow into the Lustre formal language, have been used.
These studies brought to the definition of a formal semantics for Stateflow [17],
which constrains the language to an unambiguous subset. A set of guidelines has
been defined for enforcing the development of design models in accordance to
this subset of the language. The models produced are semantically independent
from the simulation engine, and a formal development process could actually
take place.

4 Original Equipment Manufacturers.
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3.2 Goal 2 - Generated Code Correctness

The second goal was to address the problem of a non-certified, neither proven-in-
use, translator. The objective was to ensure the code to be fully compliant with
the model behaviour, and to guarantee that no additional improper functions
are added during the code synthesis phase. The approach adopted, preliminar-
ily defined during Project 2, but refined and fully applied only on Project 3,
consisted in implementing a model-based testing approach known as transla-
tion validation [8], and completing it with static analysis by means of abstract
interpretation [9].

Translation validation consists of two steps: (1) a model/code back-to-back
execution of unit tests, where both the model and the corresponding code are
exercised using the same scenarios as inputs and results are checked for equiva-
lence; (2) a comparison of the structural coverage obtained at model and at code
level. The first step ensures that the code behaviour is compliant with the model
behaviour. The second one ensures that no additional function is introduced in
the code: tests are performed until 100% of decision coverage is obtained on
the models. If lower values are obtained for the code, any discrepancy must be
assessed and justified.

Model-based testing with translation validation ensures equivalence between
model and code, but cannot cover all the possible behaviours of the code in terms
of control-flow and data-flow. In particular, it lacks in detecting all those runtime
errors that might occur only with particular data sets, such as division by zero
and buffer overflow. For this reason, translation validation has been completed
with abstract interpretation by means of the Polyspace tool. The main feature
of the tool is to detect runtime errors by performing static analysis of the code.

Since the correctness of the source is not decidable at the program level, the
tools implementing abstract interpretation work on a conservative and sound
approximation of the variable values in terms of intervals, and consider the state
space of the program at this level of abstraction. Finding errors in this larger ap-
proximation domain does not imply that the bug also holds in the program. The
presence of false positives after the analysis is actually the drawback of abstract
interpretation that hampers the possibility of fully automating the process.

Already within Project 2, a two-steps procedure has been defined for the usage
of the tool to address the problem of false positives: (1) a first analysis step is
performed with a large over-approximation set, in order to discover systematic
runtime errors and identify classes of possible false positives that can be used
to restrict the approximation set; (2) a second analysis step is performed with a
constrained abstract domain, derived from the first analysis, and the number of
uncertain failure states to be manually reviewed is drastically reduced.

3.3 Goal 3 - Process Integration

The third goal was integrating the modelling and code generation technologies
into a coherent development process. Also concerning this issue, a sound process
was finally achieved only with Project 3, after incremental adjustments. The
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introduction of modelling and the need to ensure consistency between models
and code, has prompted changes also to the verification and validation activities,
which had to be tailored according to the new technology. On the other hand, it
has allowed working on a higher level of abstraction, and different methods and
tools have been combined to achieve a complete formal development.

The final process is an enhanced V-based development model, as depicted
in Fig. 1. The process embeds two verification branches: one for the activities
performed on the models, the other for the tasks concerning source code and
system.

Fig. 1. Overview of the formal model-based development process adopted

From system-level software requirements, tests are defined to be perfomed both
at model-integration level and at system-level (SW Requirements Phase).
Then, a UML architecture is defined in the form of a component diagram. The dia-
gram is then manually translated into a Simulink architecture (ModelArchitec-
ture Phase). During the design phase, system requirements are decomposed into
unit requirements apportioned to the single architectural components. Further-
more, the Stateflow models are defined according to these unit requirements, fol-
lowing the style-guidelines and the semantics restrictions (Model Module De-
sign Phase).

Functional unit testing (Model Module Test Phase) and system testing
(Model Validation Phase) are performed on the models by using the Simulink
simulator before generating code throughRTWEmbedded Coder (CodePhase).
After code generation, translation validation is performed, followed by static anal-
ysis bymeans of abstract interpretation (SWModuleTestPhase). The applica-
tion code is then integrated with operating system and drivers (SW Integration
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Phase), and hardware-in-the-loop (HIL) is used to perform system tests according
to the system requirements (SW Validation Phase). The whole process is sup-
ported by coherent documentation: this is auto-generated by means of Simulink
Report Generator, a Simulink toolbox, using the comments edited by the develop-
ers on the models.

4 Lessons Learnt

Code generation was introduced following the intuition that defining a formal
model of the specifications, and automatically producing code, allows speeding-
up the development, while ensuring greater correctness of the code at the same
time. The intuition has been actually confirmed by the practice. The modelling
and code generation showed the following advantages with respect to hand-
crafted code.

Abstraction. Models require working at a higher level of abstraction, and they
can be manipulated better than code. The model-based testing approach, in
the two versions put into practice during Project 2 and Project 3, gives the
advantage of defining test scenarios at component level without disrupting
the model structure.

Expressiveness. Graphical models are closer to the natural language require-
ments. At the same time, they are an unambiguous mean to exchange or
pass artefacts among developers. This observation has been enlightened by
the Project 3 experience, where the project passed from the hands of its first
main developer to another developer within one month only

Cohesion & Decoupling. The generated software is composed by modules
with higher internal cohesion and better decoupling. Interfaces among func-
tionalities are based solely on data, and the control-flow is simplified since
there is no cross-call among different modules. Decoupling and well-defined
interfaces have helped in easing the model outsourcing, which is a relevant
aspect when developing with time-to-market constraints.

Uniformity. The generated code has a repetitive structure, which facilitates the
automation of the verification activities. When strict modelling guidelines are
defined, one could look at the generated code as if it would be the software
always written by the same programmer. Therefore, any code analysis task
can be tailored on the artificial programmer’s design habits. As a witness
for this observation, consider that the full two-step Polyspace procedure (see
Sect. 3.2) resulted profitable on the generated code only, since systematic
analysis on hand-crafted code was made harder by its variable structure and
programming style.

Traceability. Software modules are directly traceable with the corresponding
blocks of the modelled specification. Traceability is a relevant issue in the
development of safety-critical systems, since any error has to be traced back
to the process task, or artefact defect, that produced it. The formal devel-
opment approach introduced, with the support of RTW Embedded Coder,
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has allowed defining navigable links between the single code statements and
the requirements.

Control. The structured development has given greater control over the com-
ponents, producing in the end software with less bugs already before the
verification activities, as witnessed by the bug reduction evaluation mea-
sured during Project 3 (from 10 to 3 bugs per module) [17].

Verification Cost. When passing from traditional code unit testing based on
structural coverage objectives, to testing based on functional objectives aided
with abstract interpretation, it was possible to reduce the verification cost of
about 70% [18]. The recent experiments with formal verification have shown
that this cost can be further reduced by 50-66% [16].

The main drawback encountered in introducing code generation has been the
size and overall complexity of the resulting software. Though these aspects were
not complicating the verification activities, they posed challenges from the per-
formance point of view.

ATP systems do not have hard real-time constraints, however they are reactive
systems that, might a failure occur, shall activate the brakes in a limited amount
of time in order to reach the safe state. The reaction time is influenced by the
main execution time, which resulted four times higher in the first experiments. In
the discussed case, the hardware upgrade actually solved the problem. However,
with the design of new, more complex systems, this issue has to be taken into
account while defining the hardware architecture.

The hardware designer shall consider that the code is larger in size, and there
is less flexibility in terms of optimizations at source level (we recall that opti-
mizations at compiler level are not recommended for the development of safety-
critical systems): when designing the platform, a larger amount of memory has
to be planned if one wants to employ code generation.

Though consistent cost improvements have been achieved on the verification
activities, manual test definition is still the bottleneck of the process, requiring
about 60-70% of the whole unit-level verification cost.

Preliminary experiments with formal verification applied at unit-level have
shown that this technology might considerably reduce the verification cost for
the majority of the requirements. However, further analysis is required before
introducing formal verification as part of the process.

Some lessons have been learned also from the knowledge transfer point of view.
The research activity has been performed according to the following research
management model.

On one side there is a research assistant who comes from the university and is
fully focused on the technology to be introduced. On the other side there is an
internal development team, which puts the research into practice on real projects
when the exploratory studies are successful.

The results obtained across these four years would have not been possible
through intermittent collaborations only. Moreover, they would have been hardly
achieved if just an internal person would have been in charge of the research. In
order to separate the research from the time-to-market issues, the independence
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of the research assistant from the development team has to be preserved. Large
companies can profit from dedicated internal research teams, or even entire re-
search divisions. Instead, medium-size companies often have to employ the same
personnel for performing research explorations, which are always needed to stay
on the market, and for takeing care of the day-by-day software development. We
argue that the research management model adopted in the presented experience,
based on an academic researcher independently operating within a company, can
be adapted to other medium-size companies with comparable results.

5 Conclusion

The research activity reported in this paper started with the objective of intro-
ducing the formal design and code generation technologies within the develop-
ment process of a railway signalling manufacturer. At the end of the experience,
these techniques have radically changed the whole process in terms of design
tasks and in terms of verification activities. In particular, formal model-based
design has opened the door to model-based testing, has facilitated the adop-
tion of abstract interpretation, and has allowed performing the first successful
experiences with formal verification.

This methodology shift required four years and three projects to be defined
and consolidated. Most of the implications of the introduction of code genera-
tion could not be foreseen at the beginning of the development, but had to be
addressed incrementally. This tuning has been facilitated by the flexibility of
the toolsuite adopted: given the many toolboxes of Matlab, there was no need to
interface the tool with other platforms to perform the required software process
tasks (e.g., test definition, tracing of the requirements, document generation)5.

However, we believe that the success of the experience has been mainly driven
by the research management model followed. The presence of an independent re-
seacher operating within the company has been paramount to ensure that research
was performed without pressure, while research results were properly transferred
to the engineering team. The experience showed that also for medium-size com-
panies, such as the one considered in this paper, it is possible to perform research
when a proper model is adopted.

Research is essential to address the new market requirements. Along with the
experience reported here, the company started to enlarge its business, previously
focused in Italy, towards foreign countries, such as Sweden, China, Kazakhstan
and Brazil, and the introduction of formal model-based development had actually
played a relevant role to support this evolution.

The considerations made in this paper have mainly concerned a formal model-
based design process based on commercial tools, in a given application domain.

5 The reader can note that most of the tool support referred in this paper comes from a
single vendor. It is not at all the intention of the authors to advertise for such vendor.
However, we have to note that interfacing with a single vendor is a preferential factor
for industry, and in this case has influenced the choice of the tools.
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Assuming different tools and different application domains, it is not so imme-
diate that the same considerations still hold. As future work, we are launching
the study of a similar development process based on UML-centered tools: in this
case the flexibility will not be given by an integrated toolsuite, but by the Uni-
fied Modelling notation itself, even if open-source or free tools will be adopted.
Different application domains will be addressed as well.
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Abstract. The paper introduces a technique to symbolically execute hi-
erarchically composed models based on communicating state machines.
The technique is modular and starts with non-composite models, which
are symbolically executed. The results of the execution, symbolic execu-
tion trees, are then composed according to the communication topology.
The composite symbolic execution trees may be composed further reflect-
ing hierarchical structure of the analyzed model. The technique supports
reuse, meaning that already generated symbolic execution trees, compos-
ite or not, are used any time they are required in the composition. For
illustration, the technique is applied to analyze UML-RT models and the
paper shows several analyses options such as reachability checking or test
case generation. The presentation of the technique is formal, but we also
report on the implementation and we present some experimental results.

1 Introduction

This paper is concerned with the analysis of models of reactive systems in the
context of Model-Driven Development (MDD). In MDD, development is cen-
tered around the creation and successive refinement of models until code can be
generated from them automatically. MDD has been used in different domains,
but has been most successful for the development of reactive systems. Several
MDD tools exist including IBM Rational R©Software Architect - Real Time Edi-
tion (IBM RSA RTE)1 [2] and IBM Rational Rhapsody R© [1] and Scade Suite [3]
from Esterel Technologies. However, more research into MDD is needed, e.g., to
determine how to best support MDD with suitable model analyses.

The use of symbolic execution for model analysis has already been suggested.
For instance, the work in [18,8,23,5] considers state machines, one of the most
important model types in the MDD of reactive systems. In this work we extend
the use of symbolic execution from individual state machines [26] to collections
of communicating and possibly hierarchically composed state machines. More

1 IBM, Rational and Rhapsody are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 39–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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precisely, we are interested in models that are structured as shown in Figure 1.
Every model has a state machine defining its (top-level) behavior; models may
contain submodels (called parts) along with ports and connectors that define how
models may communicate with each other.

Using a particular MDD technique (UML-RT [21] introduced in Section 2),
this paper presents an approach for the symbolic execution of the composite
models (in Section 3), shows how the resulting execution trees can be used for
analysis, and briefly describes a prototype implementation and its use on three
sample models (in Section 4). In our approach, symbolic execution proceeds
recursively over the structure of the model shown in Figure 1. Symbolic exe-
cution trees for non-composite models are obtained as described in [26], while
symbolic execution trees for composite models are obtained by composing the
symbolic execution trees of their parts in such a way that their communication
topology and thus their ability to asynchronously exchange messages (signals)
is fully respected. The compositional nature of the execution not only avoids
any structure-destroying “flattening” operation, but also allows leveraging the
repeated occurrence of any parts of the model: analysis is sped up by storing and
reusing execution trees of repeated parts. Although our formalization, implemen-
tation, and examples target UML-RT, the approach should also be applicable
to other modeling languages as long as a tool for the symbolic execution of
non-composite models is available.

While some work on the symbolic execution of models exists (also shown
in Section 5), symbolic execution of programs and source code is much more
thoroughly researched. For instance, recent work has produced many different
versions of symbolic program execution and some even have proved success-
ful in industrial contexts [19]. Modular approaches have also been suggested to
deal with, e.g., calls to external modules [14,24], concurrency [9,12], or distri-
bution [13]. Of these approaches, only the last is based on the combination of
symbolic execution trees.

2 UML-RT Models and Their Symbolic Execution

2.1 Overview of the UML-RT Modeling Language

The UML-RT modeling language is used to model real-time and embedded sys-
tems [21] and is one of UML 2 [4] profiles. The development of UML-RT models
is supported by IBM RSA RTE [2], which also allows automatic code generation.

Fig. 1. Hierarchical organization of models
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(a) UML-RT structure diagram

(b) UML-RT State Machine

Fig. 2. Capsule TrafficController with its structure (a) and state machine (b). La-
bels of transitions are of the forms: port signal or port signal/action code

A UML-RT model consists of capsules. A capsule (referred as a model in
Figure 1) is an entity which communicates with other capsules only by sending
and receiving signals and only through its ports. Each port has a type specified
with a protocol, which identifies signals sent or received by implementing ports.
Ports may be connected with connectors and connected ports must implement
the same protocol. Capsules are organized hierarchically and each capsule may
contain a number of instances of other capsules, called parts.

The behavior of a capsule is specified with UML-RT State Machines [21]. The
state machines in UML-RT are a special case of UML 2 State Machines [4] with
some simplifications (e.g., no orthogonal states) and some additional refinements
(e.g., to support executability). A UML-RT State Machine has hierarchical states
and guarded transitions, which are triggered by signals received on ports; action
code is used to send signals (send() method), to set timers (informIn() method)
and to get values of input parameters of signals (using *rtdata).

Example 1. Figure 2 presents the structure and the behavior of the capsule
TrafficController, which models a control system of traffic lights. Figure 2(a)
shows the structure of the capsule, which consists of two parts: carL (instance of
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(a) WalkLights state ma-
chine

(b) CarLights state machine

Fig. 3. UML-RT State Machines for parts in capsule TrafficController in Figure 2
(labels of transitions as in Figure 2)

capsule CarLights) and walkL (instance of capsule WalkLights) that are responsi-
ble for car and pedestrian lights, respectively. Additionally, the capsule has pro-
tected ports (carManage and walkManage that connect it to the parts), an external
port manageContr and a timer carsTimer. The behavior of TrafficController is
shown in Figure 2(b). After the default transition, the carL part is initialized
in the entry code of the NoneReady state by sending the start() signal over the
carManage port. This signal is received through the connected port manage in the
CarLights capsule (Figure 3(b)).

The behaviors of CarLights and WalkLights capsules are given in Figure 3. The
internal structure of these capsules (not shown) is straightforward including only
timers (cLightsTimer and wLightsTimer).

2.2 Symbolic Execution of UML-RT Capsules

Symbolic execution of UML-RT models, such as the one in Example 1, can
be performed for a model as a whole or it can use the inherent modularity
of the models. In this paper we use the latter approach, which goes beyond
the analysis of non-composite state machines (as in [8,23,5]). Our approach is
outlined in Algorithm 1. Initially, the UML-RT State Machine of a capsule is
symbolically executed producing symbolic execution tree SETC . If the capsule
is non-composite, then SETC (and the updated map Trees) is the result (line
4). However, if the capsule contains parts then the tree for each capsule Ci of
the part must be provided. Such tree is either retrieved from the Trees map
(line 8) or if it is the first occurrence of the capsule, the capsule is symbolically
executed in a recursive call (line 9). When all trees are gathered then the commu-
nication topology in the capsule is determined (line 11) and trees are composed
(line 12). The algorithm returns a tree CSET and an updated map of all trees
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Algorithm 1. Symbolic execution of a UML-RT capsule
Require: a capsule C with a set parts of n parts and a state machine SMC

Require: a map Trees : Capsules → SET
Ensure: CSET = SET (SETC ,SET1, ...,SETn)
Ensure: Trees is a compued map Capsules → SET

SETC ← perform symbolic execution of SMC

if n=0 then
3: Trees[C ← SETC ]

return SETC , Trees
else

6: for all parti ∈ parts do
Ci ← capsule of parti
SET i ← Trees(Ci)

9: if SETi is not computed then
SETi ← perform symbolic execution of Ci using Trees

conn ← get connectors between ports from the structure of C
12: CSET ← composeconn(SETC ,SET ′

1, ...,SET ′
N )

Trees[C ← CSET ]
return CSET , Trees

Trees . The composed tree CSET satisfies the requirements of the composition
SET (SETC , SET 1, ..., SETn) as stated in Definition 6. In the algorithm nested
capsules are dealt with by the composition operation, the communication topol-
ogy is represented by the relation conn (both explained in Section 3) and reuse
of symbolic execution trees is achieved via the Trees map.

The following section provides the details of composing trees, that is, line
12 in Algorithm 1. The details of the method to symbolically execute UML-RT
State Machines (line 1) is presented elsewhere [26] and is omitted here. Moreover,
the following sections do not aim to provide formal semantics of the UML-RT
modeling language, since it is out of scope for the work presented here.

3 Symbolic Execution of Communicating State Machines
and Their Hierarchies

In this section we define the symbolic execution tree for a state machine, then
we introduce composite trees.

3.1 Symbolic Execution Tree (SET) for a State Machine

We assume here that a state machine has states (called locations) and each tran-
sition between states is labeled with an input action and a sequence of output
actions. Both types of actions can have variables associated with them. Addi-
tionally, each transition may be guarded and may update values of attributes,
that is, variables accessible during the entire execution of a state machine.

During symbolic execution, variables (inputs, outputs or attributes) are
mapped to symbolic values, which are first-order logic terms [22] that involve
the operators available for the type of variable. For a set of variables we define
a symbolic valuation as in Definition 1.
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Definition 1. For a set of variables X = {X1, ..., XN} a symbolic valuation is
a function val s : X → Φ that maps each variable Xi to a term Φi that has the
type of Xi. The set of all possible valuations of X is denoted with Vals[X ].

Beside the symbolic valuation of variables, we use first-order formulas as path
constraints PC. These constraints need to be satisfied for a particular execution
path in a state machine to be feasible.

Definition 2 (Symbolic Execution Tree SET). Let SM be a state machine
with locations (states) L, input and output actions AI and AO with their vari-
ables AVI and AVO and with attributes A. For such a state machine its symbolic
execution tree is a tuple SET (SM ) = (Ss, InVarss, T rs, ss0,≺s), where:

- Ss is a set of symbolic states, and each state is a tuple containing a location,
a valuation of attributes A and a set of path constraints, that is, Ss ⊆
(L × Vals[A] × P(PC)) (P denotes the powerset operation). For a symbolic
state s = (l, val, pc) the following projection is defined: pc(s) = pc,

- InVarss is a set of mappings that assign a unique variable (different from
all other variables) to each input variable of some input action ai ∈ AI .
This variable is a symbolic value that represents the input in the sym-
bolic execution. Each mapping is a special kind of symbolic valuation, i.e.,
InVarss ⊆ Vals[AV ′

I ] with AV ′
I ⊆ AVI . We will denote all symbolic values

(variables) from InVarss with sv(InVarss) = {vsi : ∃iv ∈ InVarss.∃vi ∈
AVI : iv(vi) = vsi }. For a mapping iv ∈ InVarss let iv−1 be the inverse
mapping, i.e., the one that assigns an input variable to a symbolic value
(variable),

- Trs is a transition relation Trs ⊆ (Ss×AI×InVarss×Seq(AO×Vals[AV ′
O ])×

Ss), where AV ′
O ⊆ AVO , Seq is a possibly empty sequence of pairs (ao, valo),

with ao ∈ AO an output action and valo a symbolic valuation of the variables
in ao. Each transition (s, ai, val i, seq, s

′) ∈ Trs is obtained from a transition
in SM ,

- ss0 ∈ Ss is the initial symbolic state (l0, v0, ∅) with l0 being an initial location
and v0 an initial valuation in SM ,

- ≺s is a subsumption relation ≺s⊆ (Ss × Ss). For s1 = (l1, v
s
1, pc1) and s2 =

(l2, v
s
2, pc2) we say that s2 subsumes s1, (s1, s2) ∈≺s, if both have the same

location l1 = l2 and the same symbolic valuation vs1 = vs2 and all path
constraints of s2 are included in those of s1, i.e., pc2 ⊆ pc1.

The details of generating a SET for a UML-RT State Machine are in [26]. In the
technique presented there we used the following assumptions:

- action code in transitions and locations is represented in a compact way with
functions, which result from symbolic execution of code,

- loops in the action code are executed to some predefined bounds, therefore
for models with loops the resulting SET might not be exhaustive,

- a subsumption relation ≺s is used to make the SET finite, even in the pres-
ence of cyclic behavior in the UML-RT State Machines.
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Fig. 4. Part of the symbolic execution tree (SETCarLights) for a state machine in
Figure 3(b)

Example 2. Figure 4 presents a part of a symbolic execution tree for the UML-
RT State Machine given in Figure 3(b). After a default action there is a symbolic
state for the location Ready and then, after receiving the start signal, for the
location Red. From this state two actions are possible: delaySet, which changes
the attribute lightsDelay, and toGreen. With the second action a symbolic input
variable toGreenvar0 is received. If it is greater than zero, then it is used as a
delay for yellow-red lights (setting the timer cLightsTimer).

3.2 Composing Symbolic Execution Trees

The goal of composing symbolic execution trees is to symbolically represent an
execution of models structured as in Figure 1. Such models, beside the behavioral
specification given with a state machine, contain a set of parts P , a function p
that maps those parts to a model (which indicates the type of a part) and a
connection relation (in Definition 3). Due to space limitations the formalization
of this notion of models is omitted here, but we introduce the concepts necessary
to show their symbolic execution.

In order to represent connections between parts of a model, a relation conn is
defined. To avoid unnecessary details, mappings between variables of input and
output actions that a connection gives rise to are not presented (it is assumed
that such mappings are inferred from the relation between actions).

Definition 3 (Connection relation). Let P = {P1, ..., Pn} be a set of parts
in some model M . Each part Pi ∈ P is mapped to a model with a state machine
SM i, which has sets of actions AIi, AOi for i = 0, 1, ..., n (with SM 0 being a state
machine ofM). A connection is a relation conn ⊆ (

⋃
iAOi)×((

⋃
i AIi)×P∪{σ}),
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where σ denotes ,,self”. We say that an output and an input action are connected
(a1, (a2, p)) ∈ conn iff a1 ∈ AOk ⇒ (a2 ∈ AIl∧ (p = Pl∨p = σ)∧k �= l) for some
k, l ∈ {0, 1, ..., n}. conn is a one-to-one partial function, hence, an action can be
connected to at most one other action. We will define a set opn (abbreviates
“open”) to include all input actions that are not targeted in the relation conn.
That is, opn = {a ∈

⋃
iAIi : ∀(a1, (a2, p)) ∈ conn : a2 �= a}.

Queues are used to store actions waiting to be handled by the appropriate
model. Hence, a queue is a sequence of tuples consisting of an input action,
a symbolic valuation of its input variables, which represents symbolic values
received with a connected output action, and a receiving tree.

Definition 4 (Queue). Let P+ be a set of parts of some model M and re-
cursively of parts of those parts and so on. Let AI be the set of input actions
in all state machines and AVI be the set of their input variables. A queue is a
sequence of triples (ai, val, p), where ai ∈ AI , val ∈ Vals[AV ′

I ] with AV ′
I ⊆ AVI ,

and p ∈ P+ . Let the set of all possible queues be denoted by Queues. For
q ∈ Queues, we assume operations to add: q′ = enq(q, (ai, val, p)) and to re-
move: (q′, (ai, val, p)) = deq(q) an element from a queue.

A state of an execution of the model structured as illustrated in Figure 1 includes
an execution state of its state machine along with execution states of all its parts.
To this end, Definition 5 defines a composite symbolic execution state to contain
the current execution state of the state machine with the queue and a function
that maps parts to their respective execution states. In the definition we use
a replacement operator [s|val ] for a symbolic state s and a symbolic valuation
val ∈ Vals[X ]. It returns a new symbolic state in which all occurrences (in path
constraints and in a symbolic valuation of attributes) of a variable x ∈ X are
replaced with its symbolic value val(x). We assume that the operator is also
defined for formulas.

Definition 5 (Composite Symbolic State). Let M be a model with a set
of parts P and let SET = (Ss, InVarss, T rs, ss0,≺s) be the symbolic execution
tree of its state machine SM . A composite symbolic state is a tuple (s, q, sm),
where:

- s ∈ Ss∗ is the current symbolic execution state of SM , which either occurs
explicitly in Ss or is a state s∗ obtained by replacing some input variables
with their received symbolic values. That is, Ss∗ = Ss∪{s∗ : s∗ = [s|val]∧s ∈
Ss ∧ val ∈ Vals[AV s

I ]},
- q is the current contents of the queue for the model M ,
- sm is a mapping: sm : P → Ss where Ss are composite symbolic states
defined for models of parts.

For each composite symbolic state (s, q, sm) we assume that the union of the
path constraints in s and all states referred to in sm is not contradictory. So the
formula pc(s) ∧

∧
i pc(sm(SET i)) is satisfiable. Additionally, we will define an

extended mapping ¯sm(p) defined over P ∪ {σ} that returns (s, q, sm) if p = σ
and sm(p) if p ∈ P .
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(a) A symbolic execution tree of the state machine of the Controller

capsule (with two states SetTo5, SetTo10 and the send action on the
transition between states, which updates lightsDelay of CarLights)

(b) A composite symbolic execution tree for the Controller capsule. In each state, the
currently active state in SETController is given in the first line, lines 2 and 3 show the
queues obtained from states, line 4 shows the active state of the included part cLights.

Fig. 5. A composition of symbolic execution trees

Example 3. Figure 5(b) shows composite symbolic states for the Controller cap-
sule (SET of its state machine is in Figure 5(a)). The second state contains: a
current state s = (SetTo5, ∅, ∅), the empty queue q = ∅, and the mapping sm
of its only part sm(cLights) = ((Ready, lightsDelay=5, ∅), [(manage.start(),∅,
cLights)], ∅). In this composite symbolic state both included symbolic states
are taken from SETs without any changes.

In a given composite state, when a transition from a tree of some part is taken,
it may contain a sequence of output actions. These actions must be placed in
appropriate queues. To achieve this, an update operation snd is defined, which
takes a composite state along with an output sequence and returns a new com-
posite state, that is: cs′ = snd(cs, seq). The new composite state cs′ results from
taking each pair (ao, vo) in seq and if ao is connected, i.e., (ao, (ai, p)) ∈ conn,
updating the receiving queue q(sm(p)) = enq(q(sm(p)), (ai, vi, p)). The valua-
tion vi is obtained from a valuation vo by mapping output variables to their
input counterparts. If there is no connection for ao, then cs′ = cs.

Example 4. Consider the transition between the first and the second composite
symbolic state in Figure 5(b) (denoted with cs and cs′, respectively). Initially,
queues in cs are empty. We apply cs′ = snd(cs, [(manageContr.start, ∅ )]). The
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action manageContr.start() is connected to the input action manage.start(), that
is, in conn there is a pair: (manageContr.start(), (manage.start(), cLights)), so
the receiving part is cLights. Therefore, the new composite state cs′ contains a
queue for cLights with contents: [(manage.start(),∅, cLights )].

A symbolic execution tree for communicating state machines has states as in
Definition 5 and transitions that are derived from the included trees as given by
the rules below.

Definition 6 (Composite Symbolic Execution Tree CSET)
Let P = {P1, ..., Pn} be parts of some model M and let SM be its state machine.
The symbolic execution tree of SM is given as SET 0 and symbolic execution
trees of parts are SET 1, ..., SETn. Let SET = {SET 0, SET 1, ..., SETn} and
conn be the connection relation. A composite symbolic execution tree of M is a
tuple CSET (M) = (Scs, SVarscs, T rcs, sccs0 ,≺cs), where:

- Scs is a set of composite symbolic states (see Definition 5),
- SVarscs ⊆ Vals[AV s

I ] is a set of symbolic valuations assigning symbolic
values (received with output actions) to variables, which are used in some
SETi to symbolically represent input values, so AV s

I ⊆
⋃

i sv(InVars
s
i ),

- Trcs is a transition relation Trcs ⊆ (Scs×(AI∪Un(AI))×SVarscs×Seq(AO×
Vals[AV ′

O])×Scs), where AI are all input actions, AO are all output actions,
AV ′

O ⊆ AVO and Un(AI) is a set that contains una ∈ Un(AI) for each a ∈ AI

(una indicates that the action a has not been received),
- sccs0 ∈ Scs is an initial composite symbolic state sccs0 = (s0, q0, sm0), where
s0 is an initial state in SET 0, q0 is an empty queue and sm0 is a function
such that sm0(Pi) = ss0i for all SET i,

- ≺cs⊆ (Scs × Scs) is a subsumption relation between composite symbolic
states. Composite symbolic states subsume one another, if they have the
same symbolic states and their queues have the same contents. That is,
for cs1 = (s1, q1, sm1) and cs2 = (s2, q2, sm2) we have (cs1, cs2) ∈≺cs iff
s1 ≺S

0 s2 and q1 is the same as q2 and ∀k = 1...n : sm1(Pk) ≺s
k sm2(Pk).

The transition relation Trcs is defined by the following rules:
1) Matching - applies if a queue q (or a queue for some part p ∈ P ) has the first
element (a, v, σ) (or (a, v, p)) and if the currently active state s (or sm(p)) has
an outgoing transition with the action a and output o. In this case the sequence
of actions o is used to update queues and the valuation v received with the input
action is used in a replace operation on the target state cs′′ of the transition.
According to Definition 5 path constraints in cs′′ must not be contradictory.

∃p ∈ P ∪ {σ} : ((q′, (a, v, p)) = deq(q( ¯sm(p))) ∧ (sp, qp, smp) = ¯sm(p)∧

∃(sp, a, iv, o, s′p) ∈ Trsp : v′ = (iv−1 ◦ v) ∧ ¯sm′(p) = ([s′p|v
′], q′, smp) ∧ ¯sm′′(p) = snd( ¯sm′(p), o)

(s, q, sm)
a,v′,o−→ (s′′, q′′, sm′′)

where iv−1◦v is the function that maps input symbolic variables (from a mapping
iv) to the symbolic values (in a valuation v) received with an output action.
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2) Unreceived - applies if a queue q (or a queue for some part p) has the first
element (a, v, σ) (or (a, v, p)) and either there is no outgoing transition with the
action a or a new composite state cannot be created due to contradictory path
constraints. In this case, the above element is removed from the queue, the state
and the state mapping remains the same and the action is marked as unreceived
using una.

∃p ∈ P ∪ {σ} : ((q′p, (a, v, p)) = deq(q( ¯sm(p))) ∧ (sp, qp, smp) = ¯sm(p)∧

¬∃(sp, a, iv, o, s′p) ∈ Tr
s
p : (v

′
= (iv

−1 ◦ v) ∧ ¯sm
′
(p) = ([s

′
p|v

′
], q

′
p, smp)))

(s, q, sm)
una,v′,∅−→ (s, q

′
, sm

′
)

3) Open - applies if for the current state s (or some part p and its current state
sm(p)) there is an outgoing transition with an input action in the opn set as in
Definition 3 (in the UML-RT models this means that a signal is received on an
external port, such as manageContr in Figure 2). In this case, the state is updated
and the queues are updated only to account for output actions.

∃p ∈ P ∪ {σ} : (sp, qp, smp) = ¯sm(p) ∧ ∃(sp, a, v, o, s′p) ∈ Trsp : (a ∈ opn ∧ ¯sm′(p)=snd( ¯sm(p), o))

(s, q, sm)
ao,v,o−→ (s′, q′, sm′)

The definition of CSET is similar to the definition of non-composite trees, so we
can extend the definition such that both types of trees are composed.

Example 5. Figure 5(b) presents an example of a composite symbolic execution
tree composed from the trees in Figure 4 and Figure 5(a). It is assumed that the
trees have separate queues and all actions are connected (i.e., opn is empty).

4 Implementation and Case Studies

4.1 Implementation

The prototype implementation2 [25] follows Algorithm 1, in which the composi-
tion of trees (line 12) is performed according to themethod outlined in Section 3.2,
while non-composite capsules are symbolically executed using the prototype dis-
cussed in [26]. The implementation is an extension of the IBM RSA RTE [2] tool.

The prototype (just like the theory shown in Section 3) makes several as-
sumptions. Among those assumptions the most important one is the exclusion
of dynamic bindings and dynamic instantiations of capsules. The first feature
allows the dynamic creation and destruction of connectors between ports. To
support dynamic bindings in the technique, the relation conn must be also made
dynamic. Dynamic instantiation enables the creation and destruction of parts of
a given capsule at runtime. The support of this feature would require usage of
‘create’ and ‘destroy’ signals that would activate and deactivate symbolic exe-
cution trees as required. Our symbolic execution inherits also the limitations of

2 Version 0.1.0 available at http://cs.queensu.ca/~mase/software.html

http://cs.queensu.ca/~mase/software.html
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the symbolic execution of non-composite described in [26]. These limitations lie
mostly in the supported action language: we currently assume that this language
is based on the subset of C++ with assignments, if and while statements. We
also require that the UML-RT State Machines do not include history states.

4.2 Using Symbolic Execution Trees for Analysis

The composite symbolic execution tree generated for TrafficController intro-
duced in Example 1 has 25 composite states. Besides representing all possible
execution paths, the tree has been used to perform the analyses that are similar
to the ones possible for non-composite models introduced in [26]:

1. Invariants checking checks whether the path constraints provide sufficient
restrictions to satisfy invariants that relate attributes of a capsule.

2. Actions analysis makes it possible to check which outputs are generated and
which values output variables have.

3. Reachability analysis is based on the reachable locations of included state
machines in the generated symbolic execution tree. Firstly, it can be deter-
mined which locations of all state machines are not reachable. Secondly, it
can be checked whether a given configuration of parts and their locations is
reachable from some other configuration.

4. A symbolic execution tree can be also used to generate test cases, which are
all paths that lead to leaves in the tree and which have concrete values for
variables, such that they satisfy the path constraints.

Besides analyses similar to the ones possible for non-composite symbolic execu-
tion trees, there are analyses specific for composite trees. For instance:

1. Tree projection allows extracting from the composite tree states and tran-
sitions that are from a given part. For instance, the composite tree of the
TrafficController capsule can be projected to the part cLights. Such a pro-
jected tree has only 9 states (as opposed to 29 in the unconstrained tree in
Figure 4), which illustrates how the communication topology restricts the
interactions between capsules to the ones allowed by other capsules.

2. Unreceived actions analysis makes it possible to show paths to transitions
with actions that are unreceived. In this way it can be checked that all
important signals are not dropped.

4.3 Case Studies

In order to evaluate the presented method and its implementation we experi-
mented with 3 UML-RT models using two scenarios. In the first scenario, called
“modular”, each capsule was executed only once even if it was used as a part
more than once. In the second scenario, “non-modular”, each capsule was exe-
cuted every time it has been encountered as a part.

Table 1 gathers the results of the experiments (performed on a standard PC
with 4GB of RAM and Intel Core i7 CPU, 2.93 GHz) with 3 UML-RT models.
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The first one (traffic lights controller) is presented in Figure 2. The second model
(Intersection controller) builds on the first one and combines 2 traffic lights in
an intersection of two streets. The last model (Street controller), combines 2
intersections to represent their sequence on a street (e.g., to synchronize green
lights). The analysis of other models is reported in [26,25].

Table 1. Performance of generating composite symbolic execution trees (CSET) and
test cases (TC)

UML-RT
model

number of
states in
CSET

Generation time in seconds JVM memory usage in MB

modular
non

modul. TCs modular
non

modul.

Traffic lights
controller

25 0.38 0.31 0.01 133 134

Intersection
controller

287 0.43 0.67 0.01 133 150

Street controller 78338 133.5 157.7 3.9 564 773

The results of the experiments given in Table 1 show that the increase in
complexity due to the parallel and hierarchical combination of capsules is sub-
stantial. For the street controller model, in which capsules of intersections (each
of which contains two traffic controllers) may behave independently, the com-
posite symbolic execution, as well as time to generate it, is quite large.

Table 1 also compares the modular and non-modular scenarios. In the case
of the first model all capsules are used only once so there is no gain from the
modular approach. However, in the last model there are a total of 15 parts and
only 5 different capsules and in this case there is 18% less time required. The
difference is not larger, because even in the modular case symbolic execution
trees must be copied (line 11 in Algorithm 1). The memory usage in both cases
is comparable and is only the result of more complex processing of the non-
modular approach.

5 Related Work

Following the traditional approach [17], there has recently been much interest
in the area of symbolic execution of programs, usually aiming at test case gen-
eration [19]. In some of these works the emphasis is put on the generation of
test cases that cover all reachable code, especially for complex data structures in
Java [6]. In another popular approach, dynamic (concrete) testing is combined
with static (symbolic) execution [16].

Symbolic execution has also been explored as the analysis method for models.
For example, symbolic execution trees have been used for model checking of reac-
tive models IOSTSs (Input Output Transition Systems) [20]. In another approach,
symbolic execution forms the basis for proving correctness for Statecharts [23] and
UML State Machines [8]. Symbolic execution for models with timing constraints
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has been proposed for Modecharts [18]. An approach incorporating ideas from [15]
has been presented also for Simulink/Stateflowmodels [5]. As opposed to our work
the above approaches deal with non-composite (atomic) models only.

Compositional methods to symbolic execution have been proposed for source
code to deal with module calls. For instance in [14,7] functions are represented
using summaries that are logical formulas. Compositions are also considered
for parallel systems. In [9,12] it is shown how to formally prove the correct-
ness of parallel programs, but symbolic execution is performed globally for all
components. The inclusion of communication enables a more modular approach.
In [13], which is the most similar to the work presented here, symbolic execu-
tion of hierarchically composed modules is proposed. Modules are represented
with reusable designs, which communicate through typed ports. Although close,
there are several differences to our work. Firstly, we use state machines to specify
behavior as opposed to the high-level language used in [13]. Secondly, we sup-
port asynchronous communication, whereas in [13] synchronous communication
is assumed. Finally, our work reports also on a prototype implementation.

The work presented in this paper does not aim at formalization of the UML-
RT language, which is treated in other works (e.g. [11,10]). Finally, we note that
the current model analysis capabilities of the IBM RSA RTE [2] are quite limited
and do not support the analyses enabled by the symbolic execution.

6 Conclusions

This paper presents a modular technique to symbolically execute UML-RT mod-
els. The technique combines symbolic execution trees of components contained
in such models based on their communication topology. In this way it is pos-
sible to analyze complex and hierarchical structures of UML-RT capsules. The
method is formally introduced and the algorithm to build composite symbolic
execution trees is presented. The paper also includes some details of the pro-
totype implementation. Using a running example we show, how the composite
trees can be used to verify some properties of UML-RT models.

In future work we will use abstraction techniques during the computation of
symbolic execution tree to improve the applicability of our approach to large
models, without compromising the usability of the trees for analysis. Moreover,
we are investigating more general reasoning techniques for symbolic execution
trees based on ,e.g., temporal logic.

Acknowledgment. Authors wish to acknowledge the support of NSERC, IBM
Canada, and Malina Software.
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Abstract. Abstract interpretation for proving safety properties summa-
rizes concrete traces into abstract states, thereby trading the ability to
distinguish traces for tractability. Given a violation of a safety property,
it is thus unclear which trace led to the violation. Moreover, since part
of the abstract state is over-approximate, such a trace may not exist at
all. We propose a novel backward analysis that is based on abduction of
propositional Boolean logic and that only generates legitimate traces that
reveal actual defects. The key to tractability lies in modifying an existing
projection algorithm to stop prematurely with an under-approximation
and by combining various algorithmic techniques to handle loops finitely.

1 Introduction

Model checking has the attractive property that, once a specification cannot
be verified, a trace illustrating a counterexample is returned which can be in-
spected by the user. These traces have been highlighted as invaluable for fixing
the defect [9]. In contrast, abstract interpretation for asserting safety properties
typically summarizes traces into abstract states, thereby trading the ability to
distinguish traces for computational tractability. Upon encountering a violation
of the specification, it is then unclear which trace led to the violation. Moreover,
since the abstract state is an over-approximation of the set of actually reachable
states, a trace leading to an erroneous abstract state may not exist at all.

Given a safety property that cannot be proved correct, a trace to the beginning
of the program would be similarly instructive to the user as in model checking.
However, obtaining such a trace is hard as this trace needs to be constructed by
going backwards step-by-step, starting at the property violation. One approach
is to apply the abstract transfer functions that were used in the forward analy-
sis in reverse [28]. However, these transfer functions over-approximate. Thus, a
counterexample computed using this approach may therefore be spurious, too.
However, spurious warnings are the major hinderance of many static analyses,
except those crafted for a specific application domain [11]. It has even been
noted that unsound static analyses might be preferable over sound ones because
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the number of false positives can be traded off against missed bugs, thereby
delivering tools that find defects rather than prove their absence [3].

Rather than giving up on soundness, we propose a practical technique to find
legitimate traces that reveal actual defects, thereby turning sound static analyses
into practical bug-finding tools. We use the results of an approximate forward
analysis to guide a backward analysis that builds up a trace from the violation
of the property to the beginning of the program. At its core, it uses a novel
SAT-based projection algorithm [6] that has been adapted to deliver an under-
approximation of the transition relation in case the exact solution would be too
expensive to compute. Furthermore, assuming that the projection is exact, if the
intersection between a backward propagated state and the states of the forward
analysis is empty on all paths, the analysis has identified a warning as spurious.
Hence our analysis has the ability to both, find true counterexamples and to
identify warnings as spurious. To our knowledge, our work is the first to remove
spurious warnings without refining or enhancing the abstract domain.

One challenge to the inference of backward traces is the judicious treatment
of loops. Given a state s′ after a loop, it is non-trivial to infer a state s that is
valid prior to entering the loop. In particular, it is necessary to assess how often
the loop body needs to be executed to reach the exit state s′. This problem
is exacerbated whenever analyzing several loops that are nested or appear in
sequence. Our solution to this issue is to summarize multiple loop iterations in
a closed Boolean formula and to use iterative deepening in the number of loop
executions across all loops until a feasible path between s to s′ is found.
The practicality of our approach is based on the following technical contributions:

– We use an over-approximating affine analysis between the backward propa-
gated state s′ after the loop and the precondition s of the loop inferred by
the forward analysis to estimate the number of loop iterations. If an affine
relationship exists, we derive a minimum number of loop iterations that the
state s′ has to be transformed by the loop.

– We synthesize a relational Boolean loop transformer f2i , which expresses
2i executions of a loop, given f2i−1 . These loop transformers are then used
to construct fn for arbitrary n, thereby providing the transfer function to
calculate an input state from the given output state of the loop in log2(n)
steps for n iterations. This approach can also be applied to nested loops.

– We provide a summarization technique, which describes 0, . . . , 2n iterations
of a loop as one input/output relation. This method combines the Boolean
transfer functions f2n with a SAT-based existential elimination algorithm.
The force of this combination is that we can modify the elimination algorithm
to generate under-approximate state descriptions — any approximated result
thus still describes states which are possible in a concrete execution.

The remainder of the paper is structured as follows: After the next section details
our overall analysis strategy, Sect. 3 illustrates the three contributions in turn.
Section 4 details the modifications to the projection algorithm to allow under-
approximations which Sect. 5 evaluates in our implementation. Section 6 presents
related work before Sect. 7 discusses possible future work and concludes.
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x=min(x,200); r=2

x=max(x,0); r=1
S1

S2

S4

S5
x<100

x 100

x=x-r

x>0

x 0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

i 0 1 2 3 4 5 6 7 8

Si =
{

x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S′
i =

{
x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S′′
i =

{
x
r

[101, 125]
2 ⊥ [101, 125]

2
[101, 125]

2
[1, 125]

2

2 Backward Analysis Using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are or-
chestrated by a strategy that tries to find a path to the beginning of the program
with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise. The
abstract states S0, . . . S8 inferred by a forward analysis (here based on intervals)
are stored for each tip of an edge where an edge represents either a guard or
some assignments. The resulting states of the forward analysis are listed in Ta-
ble 1. Since S8 violates the assertion x = 0, we propagate the negated assertion
x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis consti-
tutes a sound over-approximation of the reachable states, we may intersect the
assumption with S8, leading to the refined assumption S′

8 in Table 1. We follow
the flow backwards by applying the guard x ≤ 0 which has no effect on S′

8.
At this point, we try to continue backwards without entering the loop. This

strategy ensures that the simplest counterexample is found first. However, in this
case S′

8 conjoined with S5 yields an empty state, indicating that the chosen path
cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
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For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i and express the semantics of 0, . . . , 2i

iterations as ϕi+1 = ϕi ∨ ϕi ◦ f2i with ϕ0 being defined as the identity. For each
i = 1, 2, . . ., we unroll all loops that we have encountered so far until we manage
to propagate the resulting state further backwards. For instance, in the example
we unroll the loop once by propagating the state S′

8 backwards through the loop,
yielding S′

7 = S′
8 and S′

6 = {x �→ r − 1 ∈ [0, 1], r �→ [1, 2]}. Applying the guard
x > 0 yields a non-empty S′

5 = {x �→ [1, 1], r �→ [2, 2]}. However, S′
5 	 S2 = ∅

and S′
5 	 S4 = ∅ and hence the loop must be unrolled further. After five more

iterations, we find S′′
5 = ϕ5(S′

5) = {x �→ 2n − 1 ∧ n ∈ [1, 63], r �→ 2} which has a
non-empty intersection with S4, leading to S′′

4 = {x �→ 2n − 1 ∧ n ∈ [51, 63], r �→
2} = S′′

3 = S′′
0 , thereby providing a counterexample that violates the assertion.

Interestingly, the above construction can also be used to identify a warning
as false positive: If during the unrolling of a loop ϕi+1(S) |= ϕi(S) then further
unrolling does not add any new states. If propagating this fixpoint beyond a cer-
tain point p in the program is impossible (it drops to bottom) then the warning
is spurious and the forward analysis lost precision between p and the assertion.

However, calculating ϕi can become very expensive and a fixpoint might be
impossible to obtain. The source of the complexity is the elimination of ex-
istentially quantified variables that tie the input of a function to the output.
For instance, the Boolean formula (o = f2(i)) ≡ ∃t : (o = f(t) ∧ t = f(i)) in-
troduces fresh variables t that must be removed in order to avoid exponential
growth of the formula when calculating f2n = fn ◦ fn. Further intermediate
variables are required in ϕi to express that the result is either o or t.

In order to reduce the cost of the calculation, we employ a simple pre-analysis
that infers a minimal number of loop iterations 2m that are required to proceed
past the initialization in the loop header. In case m > 0, we calculate the formula
fm ◦ ϕi−m that does not consider cases in which the loop exits in the first 2m

iterations and which is cheaper to calculate than ϕi for i ≥ m. Moreover, rather
than examining all ϕi with i ≥ m+1 at once, we fix i = 0 in fm◦ϕi−m for all loops
in the program. If no trace can be found, we retry for each i. The two heuristics
square with the observation that, usually, an error trace through a loop exists for
small k, unless a loop iterates m times where m is constant, which is addressed by
composing ϕi with fm. If calculating fn ◦ ϕi−m is still too expensive, we apply
an algorithm that can under-approximate the elimination of the existentially
quantified variables. Once under-approximation is used, traces may be missed
and an inferred error cannot be shown to be a false positive. However, any trace
found using under-approximation is still a valid counterexample.

In summary, if loops must be unrolled, our approach uses an iterative deep-
ening approach where in each step the number of iterations that are considered
is doubled. It also applies a heuristic that unrolls a loop by n iterations if it is
clear that the loop cannot exit earlier. These techniques are applied in the next
section to eliminate false positives. For complex loops and many iterations, we
under-approximate the existential elimination in a well-motivated fashion. This
approach is detailed in the context of inferring counterexamples in Sect. 4.
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1 unsigned int l og2 ( unsigned char c ) {
2 unsigned char i = 0 ;
3 i f ( c==0) return 0 ; else c−−;
4 while ( c > 0) {
5 i = i + 1 ;
6 c = c >> 1 ;
7 }
8 a s s e r t ( i <= 7 ) ;
9 return i ;

10 }

Fig. 2. Computation of the log2 of an unsigned integer c; even though the code is cor-
rect, abstract interpreters based on domains such as convex polyhedra emit a warning

3 Eliminating False Positives

Consider the program in Fig. 2, which computes the logarithm to the base 2
of an unsigned character c (a bit-vector of length 8) and stores the result in i.
Clearly, i should hold a value less than 8, which is formulated in terms of an
assertion. The assertion is valid, yet most abstract interpreters emit a warning;
typical domains fail to capture the relation between i, which is used in the
assertion, and c, which specifies the termination condition. We build towards
our technique, which proves the non-existence of a defective path, in three steps.

3.1 Concrete Relational Semantics in Boolean Logic

To mark the warning as spurious, our analysis thus attempts to exclude all
paths that lead to a state satisfying the invariant ι = (0 ≤ i ≤ 255 ∧ 0 ≤ c ≤
0) produced by the forward analysis for line 8, and at the same time violates
0 ≤ i ≤ 7. We express the concrete relational semantics of each block in the
program in Boolean logic. The values of i on entry and exit of each basic block
are represented using bit-vectors i and i′, respectively. Likewise, use bit-vectors c
and c′ to represent c. In the following, let 〈x〉 =

∑7
i=0 2i·x[i] denote the unsigned

value of a bit-vector x, and let x[j] denote the jth bit of x. Let the notation �·�
encode an arithmetic constraint as Boolean formula. Then, fI(V , V ′) := �i′ =
0, c �= 0, c′ = c − 1� encodes the initialization block of the function over inputs
V = {c, i} and outputs V ′ = {c′, i′}. In a similar fashion, fL(V , V ′) encodes
the loop body:

fI(V , V ′) =
{ ∧7

j=0 ¬i′[j] ∧ ∨7
j=0 c′[j] ∧ ((

∧7
j=0 c[j] ↔ (c′[j] ⊕ ∧j−1

k=0 c′[k])

fL(V , V ′) =

{
(
∨7

j=0 c[j]) ∧ ¬c′[7] ∧ (
∧6

j=0 c′[j] ↔ c[j + 1])∧
(
∧7

j=0 i′[j] ↔ (i[j] ⊕ ∧j−1
k=0 i[k])

In order to find a path to a state that satisfies ι and violates the assertion,
encode ι in Boolean logic as �ι� =

∧7
j=0 ¬c[j]. Furthermore, let �0 ≤ 〈i〉 ≤ 7� =∧7

j=4 ¬i[j] encode the assertion. The error state g(V ) after the loop is given as:
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g(V ) = �ι� ∧ ¬�0 ≤ 〈i〉 ≤ 7�
= �(0 ≤ 〈i〉 ≤ 255) ∧ (〈c〉 = 0)� ∧ �8 ≤ 〈i〉 ≤ 255�
= �(8 ≤ 〈i〉 ≤ 255) ∧ (〈c〉 = 0)�
=

∧7
j=0 ¬c[j] ∧ ∨7

j=4 i[j]

We commence by testing the shortest trace to the erroneous state g(V ), i.e.,
the trace going through the initialization block followed directly by an assertion
violation. This path is feasible if fI(V , V ′)∧g(V ′) is satisfiable; since the formula
is unsatisfiable, this path cannot be part of a counterexample. A valid trace thus
traverses the loop n ≥ 1 times. One way to discover n, and thus a trace to the
loop-entry state ω = (〈i〉 = 0)∧ (0 ≤ 〈c〉 ≤ 255), is to iteratively unroll the loop.
However, instead of composing n functions fL (each representing one iteration),
we infer an m ≤ n using affine abstraction and derive fm

L in log2(m) steps.

3.2 Lower Bounds on the Number of Loop Iterations

The first step of computing a lower bound on the number of loop iterations
is to abstract fL(V , V ′) using a conjunction of affine equalities [16], which re-
late symbolic bounds V �,u = {c�, cu, i�, iu} on entry of the block to symbolic
bounds V ′

�,u = {c′
�, c′

u, i′
�, i′

u} on exit. Here, c�, cu, c′
�, and c′

u are bit-vectors
representing the lower and upper bounds of c, respectively; similarly for i. Ap-
plying the abstraction scheme from [5, Sect. 3] yields the following system of
affine equations:

� =
{ 〈c�〉 = 0 ∧ 〈cu〉 = 2 · (〈c′

u〉 + 1) − 1 ∧
〈i�〉 = 〈i′

�〉 − 1 ∧ 〈iu〉 = 〈i′
u〉 − 1

}

We transform g(V ) to express affine constraints on the outputs V ′
�,u by auto-

matically lifting the characterization over program variables to relations over
range variables (see [5, Sect. 3.2] for further details of this operation):

gaff(V ′) =
{ 〈i′

�〉 = 8 ∧ 〈i′
u〉 = 255 ∧

〈c′
�〉 = 0 ∧ 〈c′

u〉 = 0

}

Then, applying � to gaff(V ′) yields

�(gaff(V ′)) =
{ 〈i�〉 = 7 ∧ 〈iu〉 = 254 ∧

〈c�〉 = 0 ∧ 〈cu〉 = 1)

}

which, in turn, gives (7 ≤ 〈i〉 ≤ 254) ∧ 0 ≤ 〈c〉 ≤ 1). The intersection with the
precondition �ω� yields ⊥; thus a single loop iteration does not suffice. In the next
iteration, we summarize two executions of the loop using relational composition
◦Lin of two affine systems �1 and �2. This amounts to renaming the outputs of
�1 and the inputs of �2 to the same temporary variables, and eliminating these
from the conjunction of both systems using projection [19,27]. The projection,
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in turn, has a straightforward implementation using Gauss elimination. In the
example, two iterations of the loop are characterized by:

�2 = � ◦Lin � =
{ 〈c�〉 = 0 ∧ 〈cu〉 = 4 · (〈c′

u〉 + 1) − 1 ∧
〈i�〉 = 〈i′

�〉 − 2 ∧ 〈iu〉 = 〈i′
u〉 − 2

}

Again, we get �2(gaff(V )) 	 �ω� = ⊥. Likewise, compute:

�4 = �2 ◦Lin �2 =
{ 〈c�〉 = 0 ∧ 〈cu〉 = 16 · (〈c′

u〉 + 1) − 1 ∧
〈i�〉 = 〈i′

�〉 − 4 ∧ 〈iu〉 = 〈i′
u〉 − 4

}

�8 = �4 ◦Lin �4 =
{ 〈c�〉 = 0 ∧ 〈cu〉 = 256 · (〈c′

u〉 + 1) − 1 ∧
〈i�〉 = 〈i′

�〉 − 8 ∧ 〈iu〉 = 〈i′
u〉 − 8

}

Observe that

�8(gaff(V ′)) =
{ 〈c�〉 = 0 ∧ 〈cu〉 = 255 ∧

〈i�〉 = 0 ∧ 〈iu〉 = 247

}

describes states that satisfy the invariant �ω� prior to the loop. Thus, the mini-
mum number of loop iterations is 5 ≤ m ≤ 8. Using binary search, we determine
which �m is the first to satisfy �ω�. This gives m = 8. Observe that, due to
abstraction, this bound is not necessarily exact (though it is in this example) in
that any counterexample trace must traverse the loop at least eight times.

3.3 Summarizing a Number of Iterations

We now face the task of efficiently calculating input-output behavior of eight
loop iterations as a Boolean formula f8

L which is later used to compute the pre-
image of f8

L subject to g(V ). Analogous to the construction of composing affine
transformers, we incrementally double the number of iterations summarized in
a single formula, thus finessing the need to unroll the loop. Specifically, put:

f0
L(V , V ′) = id(V , V ′) f2

L(V , V ′) = ∃V ′′ : f1(V , V ′′) ∧ f1(V ′′, V ′)
f1

L(V , V ′) = fL(V , V ′) f4
L(V , V ′) = ∃V ′′ : f2(V , V ′′) ∧ f2(V ′′, V ′)

Each f i
L describes an input-output relation for exactly i applications of fL. To

eliminate V ′′ from the formulae, we apply a SAT-based projection algorithm [6].
This construction suffices to test �ω� ∧ f8

L(V , V ′) ∧ g(V ′) for satisfiability, i.e.,
to check if the erroneous state g(V ′) can be reached with exactly eight iterations
starting in �ω�. If unsatisfiable, it is necessary to unroll the loop further. Again,
we construct a summary ϕi of m + 2i iterations, where m is the lower bound on
the number of iterations. Then, ϕi describes all states reachable after m, . . . , m+
2i iterations whereas fm+2i

L describes exactly m + 2i iterations.

3.4 Summarizing a Range of Iterations

Formally, let ϕi(V ) = ∃V ′ : ∃V ′′ : (
∨2i

j=0 f j
L(V , V ′))∧fm

L (V ′, V ′′)∧g(V ′′), that
is, erroneous states expressed over V ′′ being backpropagated m times around
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1 unsigned int hamDist ( int x , int y ) {
2 unsigned int d = 0 ;
3 unsigned int v = x ˆ y ;
4 while ( v != 0) {
5 d = d + 1 ;
6 v = v & ( v − 1 ) ;
7 }
8 a s s e r t (d < 3 2 ) ;
9 return d ;

10 }
Fig. 3. Erroneous hamming distance calculation; the assertion in line 8 does not hold

the loop giving V ′, which are, in turn, j = 0, . . . , 2i times transformed into con-
straints over V . Rather than recalculating each ϕi(V ) from scratch, we compute
ϕi(V ) based on the following inductive definition, allowing us to reuse ϕi−1(V )
to compute ϕi(V ) and requiring only i instead of 2i steps:

ϕi(V ) =
{ ∃V ′ : fm

L (V , V ′) ∧ g(V ′) : i = 0
ϕi−1(V ) ∨ (∃V ′ : f2i(V , V ′) ∧ ϕi−1(V ′)) : otherwise

Note that, due to monotonicity, there exists an i ≥ 0 with ϕi(V ) |= ϕi−1(V ). In
the example, since ϕ4(V ) |= ϕ3(V ) and ϕ3(V ) ∧ �ω� is unsatisfiable, we deduce
that no trace from �ω� to the erroneous state g(V ) exists that iterates more than
eight times. Hence, the warning emitted by the forward analysis is spurious. In
certain cases, calculating ϕi can become too costly, which is addressed next.

4 Finding Counterexamples

Although the iterative deepening heuristic reduces the complexity of the gener-
ated formulae, exact state spaces cannot always be computed since calculating
∃V ′ : f2i(V , V ′) ∧ ϕi−1(V ′) may result in an exponentially sized formula. How-
ever, if the aim is to only find a counterexample rather than eliminating false
positives, an under-approximation of the projection ∃V ′ : ψ suffices. In order
to illustrate the idea, consider Fig. 3 which presents a function to calculate the
Hamming distance of two integers x and y. Once more, we bit-blast the con-
crete semantics of both, loop body and loop pre-condition. Here, ⊕ denotes the
Boolean exclusive-or and u is an auxiliary bit-vector that captures the interme-
diate value of v-1:

fI(V , V ′) =
{ ∧31

j=0 ¬d′[j] ∧ ∧31
j=0 v′[i] ↔ x[j] ⊕ y[j]

fL(V , V ′) =

{
(
∧31

j=0 d′[j] ↔ (d[j] ⊕ ∧j−1
k=0 d[k])) ∧ (

∨31
j=0 v[j])∧

(
∧31

j=0 v[j] ↔ (u[j] ⊕ ∧j−1
k=0 u[k])) ∧ (

∧31
j=0 v′[j] ↔ (v[j] ∧ u[j]))

As before, let ι = (〈v〉 = 0 ∧ 〈d〉 = �) describe the invariant derived at the
assertion which was inferred during the forward analysis and let ω = (〈d〉 =
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0 ∧ 〈v〉 = 〈x〉 ⊕ 〈y〉) represent the state at loop entry. The erroneous state after
the loop is thus characterized as g(V ) = �ι� ∧ ∨31

j=5 d[j] in Boolean logic.

4.1 Lower Bounds on the Number of Loop Iterations

Again, to compute a lower bound on the number of loop iterations required to
reach the erroneous state g(V ) from the pre-condition V ′ defined by fI(V , V ′),
we derive an abstraction of the loop transfer function fL(V , V ′) in terms of a
conjunction of affine equalities. This operation gives:

� =
{ 〈d�〉 = 〈d′

�〉 − 1 ∧ 〈du〉 = 〈d′
u〉 − 1

}
Note that v = v & (v - 1) is non-affine, hence the lack of an affine constraint
over v. We transform g(V ) to express affine constraints on the outputs as per
[5]:

gaff(V ′) =
{ 〈d′

�〉 = 32 ∧ 〈d′
u〉 = 232 − 1

}
Applying � to gaff(V ′) yields �(gaff(V ′)) =

{〈d�〉 = 31 ∧ 〈du〉 = 232 − 2
}

which,
in turn, gives 31 ≤ 〈d〉 ≤ 232 − 2. The intersection with the state ω = (〈d〉 = 0)
that the forward analysis inferred for the loop entry yields �31 ≤ 〈d〉 ≤
232 − 2� 	 �ω� = ⊥; thus a single loop iteration does not suffice. Follow-
ing the strategy discussed in Sect. 3.2, we compute �2(gaff(V ′)), �4(gaff(V ′)),
�8(gaff(V ′)), �16(gaff(V ′)), and �32(gaff(V ′)). It is only �32(gaff(V ′)) that sat-
isfies �32(gaff(V ′)) 	 �ω� �= ⊥. Consequently, the minimum number of loop iter-
ations is 17 ≤ m ≤ 32. Using binary search, we determine which �m is the first
to satisfy �ω�. This gives m = 32 as the minimum number of iterations.

4.2 Under-Approximating a Range of Iterations

As in Sect. 3.3, we face the task of summarizing the execution of 32 con-
secutive loop iterations. To find a backward trace, compute f0

L(V , V ′) and
f1

L(V , V ′) as before. Rather than computing f i
L(V , V ′) exactly by enumerating

all of the projection space, we preempt the computation of f2
L(V , V ′) = ∃V ′′ :

f1(V , V ′′) ∧ f1(V ′′, V ′) prematurely after, say, 100 models have been enumer-
ated (though in our implementation, we have used a heuristic based on the struc-
ture of the erroneous goal state g(V ) rather than one that is based solely on the
number of models, see Sect. 5). This tactic yields a formula h2

L(V , V ′) in CNF
that entails f2

L(V , V ′). In other words, every of model h2
L(V , V ′) is also a model

of f2
L(V , V ′), i.e., the formula is easier to compute and under-approximates

f2
L(V , V ′). Based on h2

L(V , V ′), we compute h4(V , V ′′) = ∃V ′′ : h2
L(V , V ′′) ∧

h2
L(V ′′, V ′). Likewise compute h8

L(V , V ′), h16
L (V , V ′) and h32

L (V , V ′). This
under-approximating strategy may decrease the size of the formulae exponen-
tially.

4.3 Failing to Derive a Counterexample Trace

Suppose now that the summary of states ϕ0(V ) = ∃V ′ : h32
L (V , V ′) ∧ g(V ′)

yields a state description such that ϕ0(V ) ∧ �ω� is unsatisfiable and that
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ϕi(V ) |= ϕ0(V ) for any i ≥ 1. Then the under-approximated transfer
function h32

L (V , V ′) is insufficient to reach a loop-entry state. Hence, it is
necessary to compute a greater under-approximation ĥ32

L (V , V ′) such that
h32

L (V , V ′) |= ĥ32
L (V , V ′). Doing so necessitates computing ĥ2

L(V , V ′) such
that h2

L(V , V ′) |= ĥ2
L(V , V ′); likewise for ĥ4

L(V , V ′), ĥ8
L(V , V ′), ĥ16

L (V , V ′),
and ĥ32

L (V , V ′). Based on the enlarged under-approximation ĥ32
L (V , V ′), we

compute ϕ̂0(V ) = ∃V ′ : ĥ32
L (V , V ′) ∧ g(V ′), which by monotonicity satisfies

ϕ0(V ) |= ϕ̂0(V ). Suppose that ϕ̂0(V ) ∧ �ω� is satisfiable, producing a model
m |= ϕ̂0(V ) ∧ �ω� defined as follows:

m =

⎧⎨
⎩

d[0] �→ 0, d[1] �→ 0, d[2] �→ 0, d[3] �→ 0, . . . , d[31] �→ 0
x[0] �→ 0, x[1] �→ 1, x[2] �→ 0, x[3] �→ 1, . . . , x[31] �→ 1
y[0] �→ 1, y[1] �→ 0, y[2] �→ 1, y[3] �→ 0, . . . , y[31] �→ 0

⎫⎬
⎭

This model entails that we successfully applied an under-approximate loop trans-
former to find a trace that executes 32 iterations. Bit-vectors x = 〈0101 . . .01〉
and y = 〈1010 . . . 10〉 then indicate values that give a Hamming distance of 32 and
therefore violate the assertion. We have thus computed a definite counterexample.

5 Experiments

We have integrated the techniques described in this paper into the [mc]square
framework, which is written in Java. Several programs have been analyzed that
contain at least one loop each. The benchmarks shown in Tab. 2 include Wegner’s
bit-counting bit-cnt, the algorithm in Fig. 3 ham-dist, consecutive loops that
shift and add inc-lshift, the algorithm in Fig. 2 log, parity calculation parity,
parity mit, bit-reversal randerson, swapping of bytes swap and two interdepen-
dent, nested loops. The running times were obtained on a 2.4 GHz MacBook
Pro equipped with 4 GB of RAM. The programs are written in Instruction List,
a language used in Programmable Logic Controllers. The semantics of these pro-
grams are translated into bit-vector relations, similarly to the examples in Sect. 3
and Sect. 4. This translation and the calculation of the affine loop transformers
is written in Java using Sat4J. In none of the benchmark do these calculations
take more than 0.1s of the runtimes. The Boolean summarization of loop iterations
and the counterexample generation are implemented in C++ using MiniSat and
Cudd. MiniSat frequently outperforms Sat4J by a factor of 5-10 and was thus
chosen for the more demanding transfer function synthesis.

Table 2 presents the timings for different analysis strategies. In the simplest
strategy, the post-condition state that violates the assertion g is propagated
through ϕn, the fixpoint of the input/output behavior of a loop. The times to
calculate the loop transfer function ϕn is given in column “Runtime (Full) / TF”
whereas propagating the state g through ϕn is given in column “Runtime (Full)
/ CE”. Note that these two phases are interleaved and that the table presents the
accumulated times spent in each phase. The next sections discuss the impact of
pre-computing a minimal number of unrollings of a loop using affine abstractions
and of restricting the post-condition g to find a counterexample quicker.
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5.1 Affine Estimation of Iterations

Inferring a lower bound on the number of loop iterations follows the algorithm
presented in [4, Sect. 3.2]. The affine relationships on the bounds of the vari-
ables are inferred by asking for an initial solution to the loop transfer function
f , yielding an assignment for the input and output variables. These assignments
form a linear equation system. By using cheap incremental SAT solving, different
assignments are queried and joined into the equation system by calculating the
affine hull which, in turn, reduces to Gauss elimination. This process will termi-
nate after at most n + 1 queries to the SAT solver for n input/output variables.
Each query is rather trivial by current standards. If an affine relationship exists,
a minimal number of loop iterations can be calculated by composing the affine
transfer function repeatedly with itself using the ◦Lin operation which, again,
reduces to cheap Gauss elimination. Indeed, these steps contribute less than 0.1s
for each benchmark and we therefore omitted this phase from the table. All our
examples contain at least one variable that increases with each loop iteration
such that the estimated minimal number of iterations is exactly the number of
iterations it takes to exit the loop. This minimum number of iterations n allows
us to reduce the size of the formula by those conjuncts that model that the loop
may be exited after i < n unrollings, thereby alleviating the SAT solver from
proving this fact at the binary level. The speedup due to unrolling is minor (and
thus omitted from the table). Still, it shows that proving the exit condition in
MiniSat is more costly than Gauss elimination in Java and querying Sat4J.

5.2 Focussing the Search for Counterexamples

According to Table 2, the dominant part of the backwards analysis is the phase of
calculating and composing loop transformers, which hinges on the performance
of projection. In our experiments, we used model enumeration [6] and combined
it with BDDs so as to derive a quantifier-free CNF formula [22]. Cudd v2.4.2
was used since it offers direct support for enumerating a compact CNF formula.
Although this combination of data structures for representing Boolean formulae
during projection is the best we could find, there naturally exist problems that
result in large (intermediate) formulae. Indeed, McMillan [26], amongst others,
has observed that no Boolean structure (such as BDDs or CNF) exists which is
suitably small for all kinds of inputs; indeed, some problems exist where the CNF
is exponential in the size of the respective BDD, and vice versa. However, the
projection algorithm of [6] enumerates prime implicants, i.e., a Boolean formula
that contains a minimum number of literals, thereby covering as many models as
possible. This observation is relevant for the task of inferring counterexamples
(rather than eliminating false positives where the state space has to be enumer-
ated exhaustively): The algorithm enumerates prime implicants, which entailed
that stopping the projection early means that a maximum number of models of
the Boolean formula is propagated backwards. In principle, this means that the
largest number of states, which also has the simplest representation, is tried first
when resorting to under-approximation. Unfortunately, not every model of the
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Table 2. Experimental results for PLC benchmarks

Benchmark # Instr. Runtime (Full) Runtime (Simp.)
TF CE TF CE

bit-cnt 26 4.1s 0.9s 0.4s 0.4s
ham-dist 19 4.8s 1.7s 0.8s 0.3s
inc-lshift 14 3.2s 2.7s 0.8s 0.6s
log 22 1.9s 1.3s 0.3s 0.3s
parity 28 8.3s 1.2s 1.2s 0.4s
parity mit 17 6.2s 2.6s 1.5s 1.2s
randerson 23 8.0s 2.4s 4.2s 0.6s
swap 15 5.9s 1.8s 0.9s 0.5s
loops 207 43.6s 8.0s 13.1s 5.8s

formula has the same probability to constitute a counterexample trace. Consider
the erroneous target g(V ) = �ι� ∧ ∨31

j=5 d[j] from Sect. 4. The prime implicant
that captures the maximum number of states is d[31], i.e., the formula stating
that the most significant bit of d is set. This choice is in contrast to the intuition
that many errors are off-by-one errors and thus happened close to those numeric
values d ∈ [0, 31] that do not violate the assertion.

Hence, we employ a heuristic that constrains g(V ) so that a sub-range of target
values are considered that lie close to the feasible state, extending the sub-range
to the next power of two iff the given under-approximation is insufficient for find-
ing a counterexample. This is a straightforward extension considering the bit-level
encodings of integer values. For the example in Sect. 4, this strategy is applied as
follows: The goal-state requires 25 ≤ 〈d〉 ≤ 232 − 1. In the first iteration, our
strategy tries to find values that satisfy 25 ≤ 〈d〉 ≤ 26. If no counterexample is
found, we proceed with 25 ≤ 〈d〉 ≤ 27, and so forth. This focusses model enu-
meration to regions that are more likely to contain an actual trace. These simpler
models also reduce the runtime of computing projection. The difference is shown
in the columns “Runtime (Simp.)”, showing significant speed-ups to find coun-
terexamples compared to the “Full” column where g is used without restrictions.
Depending on the problems, counterexamples can be found up to 10 times faster
by searching near states that do not violate the assertion.

5.3 Discussion

Using Boolean functions to represent a program state has obvious limits. How-
ever, when trading the ability to remove false positives for the aspiration of finding
backwards traces, under-approximation can yield useful results, even on complex
loops. Interestingly, each prime implicant and each sub-range can be tested for
feasibility in parallel, which squares with the advent of multi-core processors and
may allow the search for counterexamples on larger computer clusters.

6 Related Work
A sound static analysis, usually expressed using the abstract interpretation frame-
work [10], is bound to calculate an over-approximate result to elude undecidability.
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Due to over-approximation, a safety property may not be verifiable even though
it holds. In this case, the emitted warning is a so-called false positive [3] which
cannot a priori be distinguished from an actual defect in the software. While an
analysis with zero false positives is possible [11], it is crucial to understand the ori-
gin of each alarm in order to either refine the analysis or to fix the defect. Thus,
analyzing warnings which are emitted poses two related questions: firstly, is the
warning legitimate?, and if so, how can the error state be reached in terms of a con-
crete execution? The difficulty of answering the first has led to approaches that
rank warnings based on the likelihood of being actual defects. Statistical classifi-
cations have been based on error correlation [20] or bayesian filtering [15]. Recent
work [23] clusters defects, allowing to eliminate dependent defects if a master de-
fect is shown to be spurious (defects can be proven legitimate, too).

An exact answer to both questions is required in counterexample-guided ab-
straction refinement (CEGAR) in model checking [8]. However, deciding if a warn-
ing is legitimate is strictly easier in the context of CEGAR than in a general static
analysis as the model checker produces an abstract counterexample. A concrete
counterexample may then be inferable by replaying the trace in the concrete pro-
gram [21]. If successful, the concrete trace can be used afterwards for, e.g., error
localization [2]. If constructing the trace fails at a certain program point, a new
predicate can be introduced to refine the abstract model [1]. In the context of nu-
meric analysis, Gulavani and Rajamani [14] propose to refine a pre-analysis, based
on a fixed point computation with widening, by introducing predicates using so-
called hints. Later, they extended their technique to combine widening with in-
terpolants between verification conditions and the inferred state [13]. Yet, neither
work is concerned with computing the backward trace but assumes that it has
been inferred by a theorem prover. Our approach can infer a set of traces that
could provide additional hints as to what new predicates are needed, thus extend-
ing their work [13,14]. Finitization, as performed by our techniques, also appears
in bounded model checking [7]. There, the state space of the system is explored in
a breadth-first fashion in forward direction, up to a given depth k. By way of com-
parison, our approach unrolls the program back-to-front, implementing strategies
to minimize the unrolling depth k during the generation of a counterexample on
an under-approximate description of each block.

For static analyses that operate on the semantics of the actual program, no
model program exists in which the trace can be inferred, and backward reasoning
from the warning to the program entry is required [28]. Backward reasoning, in
turn, amounts to solving the following abduction problem: Given B and C, com-
pute a non-empty A in (A ∧ B) ⇒ C. Here, A and C can be thought of as states
before and after a guard B, respectively. When A, B and C are elements of an ab-
stract domain then A �= ⊥ is called the pseudo-complement of B relative to C if
it is the largest unique element with (A	B) |= C. A domain in which each pair of
elements has a pseudo-complement is called a Heyting domain. Few classes of lin-
ear constraints allow abduction [24] and no single numeric domain commonly used
in forward analyses is Heyting, nor is the combination of Heyting domains neces-
sarily a Heyting domain [25]. As an example, consider the intervals B = [0, 0],
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C = [−5, 5] for which two incomparable A can be found, namely A = [−5, −1]
and A = [1, 5]. One way out of this dilemma is to lift a non-Heyting domain to
its power-set domain [18], which yields a Boolean domain. A Boolean domain B is
always Heyting since for each b ∈ B there exists a “full” complement b̄ ∈ B with
b � b̄ = � and b 	 b̄ = ⊥. Boolean functions naturally form a Boolean domain
which motivates our choice for inferring backward traces. Given their expressive-
ness and the recent advances in SAT solving, it is sufficient to only use Boolean
functions which also forestalls potential difficulties of combining this domain with
other (Heyting) domains. Rival [28] sidesteps the abduction problem by calculat-
ing an A′ with A |= A′ using the same domains as in forward analysis. To cap
the over-approximation of the backward transformer, backward states are inter-
sected with the forward invariants. Over-approximation makes it unlikely that an
empty state is ever observed. Then, a warning cannot be identified as a false pos-
itive. Indeed, Rival’s analysis merely informs a tool-users about inputs in which a
counterexample might lie. In contrast, Erez [12] aims at reducing the number of
false positives by performing a bounded search for backward traces using theorem
proving. Further afield is the work of Kim et al. [17] who, after a fast but imprecise
forward analysis, slice the program for a property violation before running a more
expensive forward analysis based on SMT solving.

7 Conclusion
This paper advocates integrating under-approximate abduction using SAT into
forward abstract interpretation frameworks. The motivation is to generate a
definitive counterexample once a property violation has been detected or to
identify a warning as spurious. Using Boolean formulae as abstract domain is
theoretically motivated as many domains used in verification cannot express
abduction. Moreover, the domain benefits from the progress in SAT solving,
specifically the recent advances in computing under-approximate projections.
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Abstract. In order to effectively deal with increased complexity and production 
pressures for the development of safety-critical systems, organizations need 
automated assistance in program analysis and testing. This need is intensified 
for systems that make heavy use of floating-point computations. Challenges 
related to the use of floating-point computations exist in the fields of testing, 
formal verification and debugging. While testing and formal verification 
provide mechanisms to identify possible failures within safety-critical systems, 
debugging techniques are employed to automatically isolate the cause of the 
failure. Recent advances in predicate-level statistical debugging have addressed 
localizing faults due to floating-point computations. Here, we present a 
methodology to modify the composition of a test suite to enable predicate-level 
statistical debuggers to more effectively isolate the causes of failures in safety-
critical systems. Our methodology makes test suites significantly more effective 
for a class of debuggers, including those built to address faults due to floating-
point computations. 

Keywords: causal model, matching, debugging, safety-critical systems. 

1 Introduction 

The success of experiments involving safety-critical systems including autonomous 
robots, Next Generation Air Transportation (NextGen), and fly-by-wire spacecraft 
depends on the correctness of software [1, 2]. Achieving correctness in these systems 
is significantly more difficult when floating-point computations are used because the 
desire to employ efficient floating-point computations increases the likelihood of 
numerical analysis errors [3]. 

Floating-point correctness creates challenges within the fields of testing, formal 
verification and fault localization. Formal verification is difficult because the 
semantics of floating-point computations may change according to factors beyond 
source-code level, such as choices made by compilers. Testing is difficult because 
non-deterministic numerical analysis errors can result in difficult to replicate failures. 
Fault localization is difficult because the values of variables associated with a fault 
rarely are exactly equal to one another or a predetermined value. 
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Numerous studies have shown that among verification, testing and fault 
localization, fault localization (debugging) takes up the most time in the development 
process [4, 5]. Recently, there has been considerable research on using statistical 
approaches for debugging [6-11]. Statistical debuggers require a test suite, execution 
profiles, and a labeling of the test executions as either succeeding or failing. The 
execution profiles reflect coverage of program elements. Program elements refer to 
individual statements or other inserted predicates. The approaches employ an estimate 
of the suspiciousness of the program elements. Then developers examine program 
elements in decreasing order of suspiciousness until the fault is discovered.  

Here, we are concerned with predicate-level statistical debuggers. All predicate-
level statistical debuggers share a common structure. Each debugger uses a set of 
conditional propositions, or predicates, which are inserted into a program and tested at 
particular points. A single predicate can be thought of as partitioning the space of all 
test cases into two subspaces: those satisfying the predicate and those not. Better 
predicates create partitions that more closely match where the fault is expressed.   

In the canonical predicate-level statistical debugger Cooperative Bug Isolation 
(CBI), three predicates are inserted and tested for each variable x within a program 
statement: (x>0), (x=0) and (x<0) [6]. In the statistical debugger Exploratory Software 
Predictor (ESP), these three predicates are complemented with elastic predicates. 
Elastic predicates use profiling to compute the mean, μx, and standard deviation, σx, 
of the values of variable x. Then, the CBI predicates are complemented with elastic 
predicates: (x > μx + σx), (μx + σx > x > μx - σx) and (x < μx - σx) [8]. 

Elastic predicate debuggers, such as ESP, are the only fault localization techniques, 
which are designed to target faults due to floating-point computations. Elastic 
predicates are effective for such faults because the predicates: (1) expand or contract 
based on observed variable values and (2) do not employ a rigid notion of equality.  

The standard suspiciousness metric for a predicate (elastic or otherwise) is the 
probability of a program Q failing given that a predicate p is true. This probability, 
Pr(Q fails | p=true), indicates if predicate p was true during an execution of Q at least 
once. Given the execution of a test suite, Pr(Q fails | p=true) is  typically estimated by 
the sample ratio (fp  / (fp+sp)), where fp is the number of tests for which p is true and 
the system fails and where sp is the number of tests for which p is true and the system 
succeeds (does not fail). However, this estimate and other similarly derived estimates 
of suspiciousness are susceptible to at least two types of confounding bias: control-
flow dependency bias and failure-flow bias. Control-flow dependency bias occurs 
when the conditions specified by a predicate corresponding to a fault cause other 
predicates to be evaluated during system failures [7]. Failure-flow bias occurs when a 
triggered fault causes the probability of reaching a subsequent statement where a 
predicate p is evaluated to be the same as the probability of p being true [6, 9]. 

In previous work, we introduced a causal model that accounts for these biases, to 
estimate the suspiciousness of a predicate by considering two groups of executions: 
those where predicate p is true at least once (the treatment group) and those where 
predicate p is not true (the control group) [9]. The estimate resulting from this model 
is more accurate than existing suspiciousness estimates, because it accounts for the 
possible confounding influences of other predicates on a given predicate p.  
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When estimating the suspiciousness of a predicate p, executions in the treatment 
group should have the same pattern of control flow dependences (control-flow 
dependencies bias) and statement coverage (failure-flow bias) as executions in the 
control group. When this condition is met the groups are balanced. When it is not met, 
there is a lack-of-balance and suspiciousness estimates become unreliable.  

Lack-of-balance issues are avoided in controlled experiments by the random 
assignment of subjects to different groups. Unfortunately, in practice the set of test 
cases is given and we cannot assume that the subsets of test cases where p is true 
(treatment group) and where p is not true (control group) are balanced. Furthermore, 
generating a random test suite with respect to a set of predicates is a non-trivial task 
that is made even more difficult when elastic predicates are employed. Here, instead 
of generating such a test suite, we modify the existing suite to create a suite that 
mitigates lack-of-balance issues for predicates. First we show that for effective fault 
localization within safety-critical systems, the composition of a test suite should 
exhibit balance. Second, we present new methods to modify the existing test suite to 
overcome lack-of-balance problems using statistical matching techniques. Finally we 
present empirical evidence that our genetic matching technique modifies the existing 
test suite to improve the effectiveness of predicate-level statistical debuggers. This is 
a particularly significant contribution since these improvements affect elastic-
predicate debuggers, the only class of fault localization tools that target faults due to 
floating-point computations. Ultimately, our work makes the development of safety-
critical systems a more effective and efficient process. 

2 Background 

Predicate-level statistical debuggers can be improved by estimating the suspiciousness 
of predicates with causal models [9]. In this section we review causal models and 
discuss their application to predicate-level statistical debuggers. 

2.1 Causal Models 

Causal graphs represent assumptions about causality that permit statistical techniques 
to be used with observational data. A causal graph is a directed acyclic graph G. 
Within G, nodes represent random variables and edges represent cause-effect 
relationships. An edge X→Y indicates that X causes Y. Each random variable X has a 
probability distribution P(x), which may not be known. The values of random 
variables are denoted by the corresponding lowercase letter of the random variable.  

All causal effects associated with the causal model M=(G, P) can be estimated if M 
is Markovian. Markovian means that each random variable Xi is conditionally 
independent of all its nondescendants, given the values of its parents (immediately 
preceding nodes) PAi in G [12]. If M is Markovian then the joint distribution of the 
random variables is factored as: 

p(x1, x2, …, xn) = ∏ p(xi | pai) . (1) 
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M will satisfy the Markovian condition if for each node Xi in G, the relationship 
between Xi and its parents can be described by the structural equation [13]:  

xi = fi(pai, ui) . (2) 

Thus M is Markovian if it represents functional relationships (fi) among a set of 
random variables and any external sources of error (ui) are mutually independent. 
Markovian models are a powerful and concise formalism to combine causal 
estimation together with causal graphs. For a binary cause, there are two states to 
which each member of the population can be exposed: treatment and control. These 
states correspond to the values of a causal treatment variable T where: T = 1 for 
treated population members and T = 0 for controlled population members. Given an 
outcome variable Y over the population, there are two potential outcome random 
variables: Y1 and Y0. The average treatment effect, τ, in the population is [12]: 

τ = E[Y1] – E[Y0] . (3) 

Many problems call for estimating the average treatment effect in a population from a 
sample S. Let S1 be the subset of S consisting of the treatment sample members, and 
let S0 be the subset of S consisting of control sample members. The estimator of τ, 
ˆ τ re , is the difference of the sample means of the outcomes for those in the treatment 

group (S1) and those in the control (S0) group [14]: 

^

τ re =
1

S1

yi −
i∈S1

∑ 1

S0

yi
i∈S0

∑ . (4) 

In an ideal randomized experiment, sample members are assigned to the treatment 
group or the control group randomly. Thus the treatment indicator variable T is 

independent of the potential outcomes Y1 and Y0 and τre

∧
is an unbiased. However, 

ideal randomized experiments are rare. Instead, data often comes from an 
observational study. In an observational study the effects are not under the control of 
the investigator and occur in the past. Treatment selection is not random, so the 
treatment indicator variable T is not independent of potential outcomes Y1 and Y0 and 

τre

∧
is likely to be biased and a better estimate of τ is needed. 
Often one can characterize a better estimate of τ in terms of one or more variables 

that are suspected of influencing selection. These variables are covariates of the 
treatment indicator T. If a set X of covariates accounts for which members received 
the treatment and which did not, then the confounding bias, when estimating the 
average treatment effect τ on an outcome Y, can be reduced by conditioning on X. One 
way of conditioning on X when estimating an average treatment effect is to include it 
as a predictor in a linear regression model, such as in Eq. 5 [12]: 

Y = α + τT + βX + ε. (5) 

In Eq. 5, Y is the outcome variable, T is the treatment variable, X is a vector of 

covariates and ε is a random error term. The fitted value τ
∧
 of the coefficient τ is an 

unbiased estimate of the average-treatment effect. 
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2.2 Control Flow Dependencies 

Recall that control-flow dependencies can be covariates of a predicate’s influence on 
system failure. Here we review predicate control-flow dependencies and show how to 
incorporate them into our causal model for estimating predicate suspiciousness. 

Defining predicate control flow dependencies requires first defining statement 
control flow dependencies. A program’s dependence graph is a directed graph where 
nodes correspond to program statements and edges represent data and control 
dependences between statements [15]. Node Y is control dependent on node X if X has 
two outgoing edges and the traversal of one edge always leads to the execution of Y 
while the traversal of the other edge does not necessarily execute Y. Node X 
dominates node Y in a control flow graph if every path from the entry node to Y 
contains X. Node Y is forward control dependent on node X if Y is control dependent 
on X and Y does not dominate X [15]. Forward control dependences are control 
dependences that can be realized during execution without necessarily executing the 
dependent node more than once. Node X is a forward control flow predecessor of 
Node Y if Y is forward control dependent on X and X immediately precedes Y in the 
dependence graph. The statement corresponding to node X is the forward control flow 
predecessor statement of the statement corresponding to node Y.  

Defining forward control flow predecessor predicates, as opposed to forward 
control flow predecessor statements, requires an additional step. For each variable x 
within a statement, all variables y1, y2,.., yn referenced in the forward control flow 
predecessor statement are identified. Each pair of variables (x, yi) induces additional 
predicate instrumentation that partitions the value of x and yi with compound 
predicates. Thus, for a given test case and predicate p, the forward control flow 
predecessor predicate is the set of predicates that correspond to the control flow 
predecessor statement for p and are true when combined with p via a compound 
predicate. For CBI, the nine compound predicates are shown in Table 1. The elastic 
compound predicates employed in ESP are formed in the same manner [9].  

Table 1. Compound CBI predicates for (x, yi) 

 x = 0 x < 0 x > 0
yi = 0 x = 0 ^ yi = 0 x < 0 ^ yi = 0 x > 0 ^ yi = 0 
yi < 0 x = 0 ^ yi > 0 x < 0 ^ yi < 0 x > 0 ^ yi < 0 
yi > 0 x = 0 ^ yi < 0 x < 0 ^ yi > 0 x > 0 ^ yi > 0 

2.3 Predicate-Level Statistical Debugging with Causal Models 

In our previous work we presented the following linear regression model for 
estimating the suspiciousness of a predicate p [9]: 

Y’ = α’p + τ’pT’p + β’pC’p + ω’pD’p + ε’p (6) 
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The model in Eq. 6 is fit separately for each predicate in the subject program, using 
execution profiles of the instrumented predicates from a set of passing and failing test 
cases. In the model, Y is a binary variable that is 1 for a given execution if the 
program failed, T’p is a treatment variable that is 1 if predicate p was true at least once 
during the execution, C’p is a binary covariate that is 1 if the dynamic forward 
control-flow dependence predecessor control-flow (cfp(p)) of p was true at least once 
during the execution, D’p is a binary covariate that is 1 if the statement corresponding 
to predicate p was covered during execution, α’p is a constant intercept and ε’p is a 
random error term that does not depend on the values of T’p, C’p and D’p. The average 

treatment effect of T’p upon Y is estimated by the fitted value ′ τ p
∧

 of the coefficient 

τ’p, which is the estimate of suspiciousness for p. The role of C’p, the control-flow 
predecessor covariate and D’p, the statement-coverage covariate is to account for 
confounding bias in the suspiciousness estimate for p, due to coverage of other 
predicates. Conditioning on C’p and D’p reduces confounding because they reflect the 
most immediate causes of p being true or not true during a particular execution [9].  

3 Modifying Test Suites with Matching 

We illustrate that lack-of-balance can create unreliable predicate suspiciousness 
estimates using an implementation of the Traffic Collision Avoidance System 
(TCAS). TCAS monitors an aircraft’s airspace and warns pilots of possible collisions 
with other aircraft [16]. The code snippet in Fig. 1 comes from the TCAS 
implementation in the Software-artifact Infrastructure Repository (SIR) [17]. 
Statement 126 contains a fault, which causes some system test cases to fail. 

 

Fig. 1. A code snippet from a faulty implementation of tcas 

Table 2 summarizes execution data gathered for the predicate need_upward_RA 
> 0 in statement 126 in Fig. 1. An entry of “1” in Table 2 denotes that the 
characteristic was observed in the specified number of execution traces and an entry 
of “0” denotes the characteristic was not observed in the specified number of 
execution traces. Combinations of characteristics not listed in Table 2 do not occur. 



76 R. Gore and P.F. Reynolds 

Table 2. Execution data for predicate need_upward_RA > 0 at Statement 126 

# of 
Tests 

Pred. Truth Forward Control-flow 
Predecessor Pred. (cfp(p))

Statement 
Coverage

Failure 

294 1 1 1 1 
721 1 1 1 0 
32 0 1 1 0 
8 0 0 1 0 

516 0 0 0 0 

 
The tests for this predicate are not balanced. In all the tests where 

need_upward_RA > 0 is true (treatment group), the forward control flow 
predecessor predicate (cfp(p)) for the predicate is also true and the tests cover 
statement 126. However, in only 32 of the tests where need_upward_RA > 0 is not 
true (control group), is the cfp(p) true. Furthermore, there are another 8 test cases 
where the cfp(p) is not true but the statement is covered. The remaining 516 tests 
branch away before reaching the cfp(p) or statement 126. These differences represent 
a lack-of-balance. Next, we’ll illustrate how this lack-of-balance can make a predicate 
suspiciousness estimate unreliable and how matching can mitigate this effect.  

3.1 Exact Matching 

In exact matching, each treatment unit is matched with one or more control units that 
have exactly the same covariate values as the treatment unit [14]. In the context of 
predicate-level statistical debugging, exact matching excludes tests where predicate p 
is not true, cfp(p) is not true and the statement s corresponding to p is not covered. 
The only tests from the control group that are used in fitting the causal model are 
those where cfp(p) is true and the statement s corresponding to p is covered. This 
ensures that the modified control and treatment groups are balanced with respect to 
the covariates (truth of cfp(p) and the coverage of s) because each of these covariates 
will be present in all entries in the treatment and control groups. 

An example helps elucidate the purpose of exact matching. We consider the 
predicate need_upward_RA > 0 in statement 126.  Exact matching excludes 524 
test cases from the test suite that is used to fit the causal model for this predicate. 
These tests are reflected in the bottom two rows of Table 2. If we do not employ 
matching while estimating the suspiciousness of need_upward_RA > 0 in statement 
126, then the predicate suspiciousness estimate is 0.24. However, if we exclude the 
524 unmatched test cases the predicate suspiciousness estimate becomes 0.29. 
Furthermore, the suspiciousness of the predicate (enabled && ((tcas_equipped 
&& intent_not_known) || !tcas_equipped) > 0 in statement 124 is 0.27 
regardless of the use of matching. Thus without matching the predicate (enabled 
&& ((tcas_equipped && intent_not_known) || !tcas_equipped) > 0 in 
statement 124 will be considered more suspicious than the predicate 
need_upward_RA > 0 in statement 126. This is incorrect. The fault in Fig. 1 lies in 
statement 126. By excluding the unmatched test cases we are able to more accurately 
estimate the suspiciousness of the predicates in Fig. 1 and identify the fault. 
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Unfortunately, as the number of covariates increases, it is more difficult to find 
exact matches between treatment and control units. This results in more discarded test 
cases, which makes suspiciousness estimates less reliable. In the next section we 
present more advanced techniques, which reduce the number of discarded test cases. 

3.2 More Advanced Matching Techniques 

To obtain more flexibility in matching treatment and control units, more advanced 
matching techniques, such as Mahalanobis Distance (MD) matching are employed 
[18]. The MD metric, dM(a,b), measures the similarity between two vectors. Eq. 7 
shows the computation of the MD between two random vectors a and b where T is the 
vector transpose and S-1 is the inverse of the covariance matrix for a and b. 

dM a,b( ) = a − b( )T
S−1 a − b( ) . (7) 

In the context of predicate-level statistical debugging, a reflects one covariate vector 
from a test case where predicate p is true and b reflects one covariate vector from a 
test case where predicate p is not true. The matrix S is the sample covariance matrix 
for all the test cases. In MD matching a treatment unit a is matched with a control unit 
b if and only if dM(a,b) is minimal.  

One property of MD matching is that all the components of the covariate vector are 
given equal weight in the MD metric. In other words, the truth of cfp(p) is given the 
same weight as the statement coverage of s in the computation of dM(a,b) [18]. This 
property seems reasonable but it does not always yield optimal covariate balance. To 
address this issue a generalization of MD Matching, genetic matching has been 
proposed [18].  

Genetic Matching (GM) considers many different distance metrics, rather than just 
one, and employs the metric that optimizes covariate balance. Each potential distance 
metric considered in GM corresponds to a particular assignment of weights to 
covariates. The algorithm weights each covariate according to its relative importance 
for achieving the best overall balance. Eq. 8 shows the general equation for the 
computation of the GM distance, dGM(a,b), between two random vectors a and b given 
a weight matrix W. In Eq. 8, T denotes the vector transpose and S-1/2 is the Cholesky 
Decomposition of the covariance matrix for a and b [18]:  

                  dGM a,b,W( ) = a − b( )T
S−1 2( )T

WS−1 2 a − b( ) .                       (8) 

GM uses a genetic search algorithm to choose the weights, W. The algorithm moves 
towards the W that maximizes overall balance by iteratively minimizing the largest 
observed covariate discrepancy. Since the largest observed covariate discrepancy is 
iteratively minimized, GM achieves optimal balance in the limit. When W converges 
to the identity matrix GM is equivalent to MD matching [18]. 

Our test suite modification employing GM for each predicate is shown in Alg. 1. T 
is the set containing the test cases and execution profiles for those test cases where 
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predicate p is true (treatment covariate data), C is the set containing the test cases and 
execution profiles for those test cases where predicate p is not true (control covariate 
data). GM is the genetic matching function. The algorithm returns the balanced set of 
test cases, Tests, which is used to fit the causal model specified in Eq. 6 and compute 
the suspiciousness estimate for the predicate. In the next section we will see how Alg. 
1 significantly improves the effectiveness of predicate-level statistical debuggers for a 
variety of faulty software applications including several safety-critical systems. 

Algorithm 1. Test Suite Modification Algorithm: TEST SUITE MOD 

TEST SUITE MOD(T, C) 
1 Tests ← NULL 
2 w       ← GM(T, C) 
3 index ← 0 
4 for (each Ti ∈ T) 
5        min ←∞ 
6        for (each Cj ∈ C) 
7               distance ← dGM(Ti,  Cj, w) 
8               if (distance < min) 
9                    min    ←  distance 
10                    index ← j 
11        add Cindex to Tests 
12        add Ti      to Tests 
13 return Tests 

4 Empirical Evaluation 

The evaluation includes programs used to evaluate statistical debuggers (print-
tokens, print-tokens2, replace, totinfo, sed, space, gzip, bc) and 
safety-critical programs (schedule, schedule2, tcas). Recall tcas is an air traffic 
collision avoidance system. schedule and schedule2 are different implementations 
of priority scheduling algorithms found in engine controllers and nuclear power plants 
[19]. These three programs make up approximately one-third of our evaluation 
subject programs. Furthermore approximately one-half of our evaluation programs 
employ floating-point computations. Table 3 shows the characteristics of all the 
subject programs.  

Each test suite modification algorithm is implemented in R, which is a statistical 
computation language and runtime environment [20]. For matching on control flow 
predicate dependences and statement coverage data we used the R package Matching, 
which implements MD matching and GM [21]. We perform MD matching and GM 
with replacement. In matching with replacement, the control unit is retained so it can 
be matched with other treatment units. We use replacement because it has been shown 
to be more effective for similar matching applications [18]. Matching introduces 
uncertainty into the suspiciousness estimate for a predicate. In GM the optimization 
that identifies the weight matrix includes a random component and in MD matching 
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ties for minimality are broken randomly. In both cases, the resulting predicate 
suspiciousness estimate can vary. To reduce the uncertainty we compute a predicate's 
suspiciousness 100 times and take the mean as the suspiciousness estimate.  

Table 3. Subject programs used in our evaluation 

Name LOC Vers. # Tests Description 
tcas 138 41 1608 altitude separation 
totinfo 396 23 1052 information measure 
schedule 299 9 2650 priority scheduler 
schedule2 297 9 2710 priority scheduler 
print-

tokens 
472 5 4130 lexical analyzer 

print-

tokens2 
399 10 4115 lexical analyzer 

replace 512 31 5542 pattern recognition 
sed 6,092 7 363 stream editing utility 
space 14,382 35 157 ADL interpreter 
bc (1.06) 14,288 1 4,000 basic calculator 
gzip 7,266 9 217 compression utility 

4.1 Effectiveness and Efficiency Studies 

To measure the effectiveness of the debugging techniques we use an established cost-
measuring function (Cost) [7-9, 11]. Cost measures the percentage of predicates a 
developer must examine before the fault is found, assuming the predicates are sorted 
in descending order of suspiciousness. To compare two techniques A and B for 
effectiveness, we subtract the Cost value for A from the Cost value for B. If A 
performs better than B, then the Cost is positive and if B performs better than A, the 
Cost is negative. For example, if for a given program the Cost of A is 30% and the 
Cost of B is 40%, then A is a 10% absolute improvement over B. 

Table 4 and Table 5 summarize the results of comparing the test suite modification 
techniques in the statistical debuggers CBI and ESP respectively. Our new genetic 
matching statistical debugging technique is GM. A variant of the new technique that 
employs MD matching instead of genetic matching is MDM. Our previous technique, 
which does not employ matching is NM. The first column of each table shows the two 
techniques being compared. The second column (Positive %) shows the percentage of 
faulty versions where the first technique performed better, the third column (Neutral 
%) shows the percentage of faulty versions where there was no improvement and the 
fourth column (Negative %) shows the percentage of faulty versions where the second 
technique performed better. Table 4 and Table 5 also show the minimum (Min), mean 
(Mean) and maximum (Max) improvement or degradation for the Positive % column 
and Negative % column. For example in Table 4, comparing GM vs NM, for the 
33.88% of faulty versions with positive improvement, the minimum improvement was 
0.03%, the mean improvement was 6.03% and maximum improvement was 14.23%. 



80 R. Gore and P.F. Reynolds 

Table 4. Comparison of Matching Techniques within CBI 

Comparing Positive % Neutral % Negative % 
Min Mean Max Min Mean Max 

GM vs NM 33.88 62.79 3.33 

0.03 6.03 14.23 0.03 2.26 9.08 

MDM vs NM 21.11 73.89 5.00 

0.03 5.09 10.21 0.03 3.16 12.90 

GM vs MDM 12.77 85.56 1.67 

0.02 1.82 7.88 0.02 0.08 0.21 

Table 5. Comparison of Matching Techniques within ESP 

Comparing Positive % Neutral % Negative % 
Min Mean Max Min Mean Max 

GM vs NM 39.44 57.78 2.77 

0.02 4.45 10.23 0.02 1.24 6.12 

MDM vs NM 24.44 71.05 4.51 

0.02 3.06 8.39 0.02 2.92 8.84 

GM vs MDM 15.00 83.89 1.11 

0.02 1.26 5.05 0.02 0.11 0.21 

 

  

Fig. 2. Effectiveness of GM vs NM in ESP (blue) and CBI (red) 

Fig. 2 summarizes the comparison of GM to NM over all program versions where 
there was some change in effectiveness for the statistical debuggers CBI (red) and 
ESP (blue). For each program version, the absolute improvement within each 
predicate-level debugger provided by GM is represented with a bi-colored bar. The 
height of the colored portion of the bar closest to the x-axis reflects the improvement 
for the matching debugger. The total height of both portions reflects the improvement 
for the debugger matching the colored portion of the bar furthest from the x-axis. For 
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example, for program version 21 on the graph, using GM in ESP resulted in 
examining 8.62% fewer predicates. For the same version on the graph, using GM in 
CBI resulted in examining 12.11% fewer predicates. Overall Fig. 2 shows that GM 
performed better than NM for both CBI and ESP. Table 4 shows that within CBI, GM 
performed better than NM on 33.88% of the faulty versions, worse on 3.33% of the 
faulty versions, and showed no improvement on 62.79% of the versions. Table 5 
shows that within ESP, GM performed better than NM on 39.44% of the faulty 
versions, worse on 2.77% of the faulty versions, and showed no improvement on 
57.78% of the faulty versions. Furthermore, the improvements in the ESP and CBI 
with GM are significantly greater than the degradations. 

Although GM performed the best of the three test suite modification techniques, 
we explored how much of the improvement resulted from the choice to use genetic 
matching as opposed to MD matching. To do this, we compared GM to MDM. Table 
4 shows that within CBI, GM performed better than MDM on 12.77% of the faulty 
versions and performed worse on only 1.67% of the versions. Similarly for ESP, GM 
performed better than MDM on 15.00% of the versions and performed worse on only 
1.11% of the versions. Thus, finding the optimal covariate balance in a test suite as 
opposed to simply improving the balance, significantly improves the effectiveness of 
a predicate-level statistical debugger. Overall, the results show that by using genetic 
matching to find optimal covariate balance, confounding bias can be significantly 
reduced when estimating the suspiciousness of a predicate. 

Table 6. Mean efficiency results for each subject program 

Name # of 
Test 

CBI Mins. 
Spent Matching

CBI Total 
Mins. 

ESP Mins. 
Spent Matching

ESP Total 
Mins. 

tcas 1608 30.9 31.2 62.6 64.0 
totinfo 1052 15.3 15.9 31.4 33.0 
schedule 2650 90.7 91.1 183.4 184.7 
schedule2 2710 100.5 100.8 204.1 205.4 
print-
tokens 

4130 480.2 480.6 966.8 968.1 

print-
tokens2 

4115 470.4 470.8 945.3 947.1 

replace 5542 885.5 885.9 1,774.2 1,775.8 
sed 363 4.8 5.4 10.1 12.9 
space 157 1.8 2.7 3.9 7.5 
bc (1.06) 4000 443.6 444.3 899.3 902.2 
gzip 217 2.1 2.9 4.3 8.4 

 
Table 6 shows the mean absolute computation time for each of the evaluation 

subject programs. The computation time is largely dependent on the size of the test 
suite. The GM and MD Matching algorithms within the Matching package take 
considerable time to invert large covariance matrices resulting from large test suites 
[21]. The time required to match the test cases for ESP is roughly double that of CBI 
because ESP contains twice as many predicates as CBI.  
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While matching makes CBI and ESP less efficient, it only requires machine time 
not developer time. If developers can remain productive while matching is performed, 
overall efficiency will be improved because the developer is given a more effective 
list of ranked predicates to identify faults. This rationale has made formal verification 
methods useful despite execution times measured in days and hours [22]. 

4.2 Discussion 

Although GM and MDM performed well in our evaluation, each was not as effective 
as our previous causal model (NM) for some program versions. The faults in these 
versions are not triggered by the coverage of the statement corresponding to a 
predicate. Instead the faults reflect missing statements and the predicates 
corresponding to statements adjacent to the missing code qualify as the fault. While 
these faults demonstrate a limitation of our approach, they have not been effectively 
localized by other automated debugging approaches either [6-11]. 

The effectiveness of GM and MDM relative to CBI and ESP is also important to 
discuss. For the preponderance of the program versions CBI offers more improvement 
than ESP. However, for most of the program versions ESP incurs less overall Cost for 
developers. This paradox can be explained. ESP has been shown to be more effective 
than CBI when biased suspiciousness metrics or no test suite modification is 
employed [8, 9]. Thus while GM and MDM improve the effectiveness of each 
statistical debugger, ESP appears to improve less because of its superior effectiveness. 
Similarly, for most of the versions where negative improvement is observed, the 
effectiveness of ESP degrades less than CBI. Furthermore, given a faulty program 
version, ESP is more likely than CBI to offer some improvement. This is because the 
additional predicates employed in ESP create more situations where there is a lack-of-
balance. As a result matching has a better chance of improving the effectiveness.  

4.3 Threats to Validity 

Validity threats affect our evaluation. Threats to internal validity concern factors that 
might affect dependent variables without the researcher’s knowledge. The 
implementations of the matching algorithms we used in our studies could contain 
errors. However, the Matching package we used is open source and is widely used. 
Threats to external validity occur when the results of our evaluation cannot be 
generalized. While we performed our evaluations on nine programs with a total of 
180 versions and two different predicate-level statistical debuggers (CBI and ESP), 
we cannot claim that the effectiveness observed in our evaluation can be generalized 
to other faults in other programs. Threats to construct validity concern the 
appropriateness of the evaluation metrics used. More studies into how useful 
developers find ranked predicates need to be performed. However, the more accurate 
ranking methods are the more meaningful such studies will become. 
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5 Related Work 

The debugging approach that is most closely related to our work is the statement-level 
statistical debugging work of Baah et. al [7]. Baah et. al have also developed a causal 
model that employs matching to balance test cases. However, our work differs from 
their work in three important ways. First, our work addresses debugging at the 
predicate-level while Baah et. al’s approach operates on the statement-level. 
Debugging at the predicate-level allows developers to identify more faults than 
debugging at the statement-level [8]. Second, while both our predicate-level approach 
and Baah et al.’s statement-level approach reduce confounding bias due to control-
flow dependencies, our approach is capable of further reducing bias by considering 
failure-flow. Third, our test suite modification algorithm uses genetic matching to 
balance the test suite while Baah et al.’s work employs MD matching. Recall, MD 
matching does not ensure optimal balance of covariates and did not perform as well as 
genetic matching in our evaluation [18, 21].  

Other statistical debugging techniques exist but they employ biased suspiciousness 
estimates [6, 10]. State-altering debugging approaches such as Delta Debugging [23] 
and IVMP [11] attempt to find the cause of program failure by altering program states 
and re-executing the program. However, the experiments they perform on altered 
programs can be time consuming and require an oracle to determine the success or 
failure of each altered program. Other approaches use slicing [24-26] to compute the 
statements that potentially affect the values of a given program point. However, these 
techniques do not provide any guidance, such as rankings, to the developer. Thus, it is 
difficult to compare them with our work. 

6 Conclusion 

The development of safety-critical systems presents challenges in the fields of testing, 
formal verification and debugging. Numerous studies have shown that debugging 
takes up the most time of these three tasks [4, 5]. We have presented a novel 
statistical debugging technique that modifies the program's test suite based on 
information about dynamic control-flow dependences and statement coverage to 
obtain more accurate estimates of an instrumented predicate's effect on the 
occurrences of safety critical system failures. Our evaluation shows that our technique 
provides more effective debugging for a variety of software applications including 
safety-critical systems. The result is a more effective development process. 
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Abstract. One of the most common and practical ways of representing
a real function on machines is by using a polynomial approximation. It
is then important to properly handle the error introduced by such an
approximation. The purpose of this work is to offer guaranteed error
bounds for a specific kind of rigorous polynomial approximation called
Taylor model. We carry out this work in the Coq proof assistant, with a
special focus on genericity and efficiency for our implementation. We give
an abstract interface for rigorous polynomial approximations, parameter-
ized by the type of coefficients and the implementation of polynomials,
and we instantiate this interface to the case of Taylor models with inter-
val coefficients, while providing all the machinery for computing them.
We compare the performances of our implementation in Coq with those
of the Sollya tool, which contains an implementation of Taylor models
written in C. This is a milestone in our long-term goal of providing fully
formally proved and efficient Taylor models.

Keywords: certified error bounds, Taylor models, Coq proof assistant,
rigorous polynomial approximation.

1 Rigorous Approximation of Functions by Polynomials

It is frequently useful to replace a given function of a real variable by a simpler
function, such as a polynomial, chosen to have values close to those of the given
function, since such an approximation may be more compact to represent and
store but also more efficient to evaluate and manipulate. As long as evaluation is
concerned, polynomial approximations are especially important. In general the
basic functions that are implemented in hardware on a processor are limited
to addition, subtraction, multiplication, and sometimes division. Moreover, divi-
sion is significantly slower than multiplication. The only functions of one variable
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that one may evaluate using a bounded number of additions/subtractions, mul-
tiplications and comparisons are piecewise polynomials: hence, on such systems,
polynomial approximations are not only a good choice for implementing more
complex functions, they are frequently the only one that makes sense.

Polynomial approximations for widely used functions used to be tabulated
in handbooks [1]. Nowadays, most computer algebra systems provide routines
for obtaining polynomial approximations of commonly used functions. However,
when bounds for the approximation errors are available, they are not guaranteed
to be accurate and are sometimes unreliable.

Our goal is to provide efficient and quickly computable rigorous polynomial
approximations, i.e., polynomial approximations for which (i) the provided error
bound is tight and not underestimated, (ii) the framework is suitable for formal
proof (indeed, the computations are done in a formal proof checker), while re-
quiring computation times similar to those of a conventional C implementation.

1.1 Motivations

Most numerical systems depend on standard functions like exp, sin, etc., which
are implemented in libraries called libms. These libms must offer guarantees
regarding the provided accuracy: they are heavily tested before being published,
but for precisions higher that single precision, an exhaustive test is impossi-
ble [16]. Hence a proof of the behavior of the program that implements a stan-
dard function should come with it, whenever possible. One of the key elements
of such a proof would be the guarantee that the used polynomial approximation
is within some threshold from the function. This requirement is even more im-
portant when correct rounding is at stake. Most libms do not provide correctly
rounded functions, although the IEEE 754-2008 Standard for Floating-Point
(FP) Arithmetic [22] recommends it for a set of basic functions. Implementing a
correctly rounded function requires rigorous polynomial approximations at two
steps: when actually implementing the function in a given precision, and—before
that—when trying to solve the table maker’s dilemma for that precision.

The 1985 version of the IEEE Standard for FP Arithmetic requires that the
basic operations (+, −, ×, ÷, and

√·) should produce correctly rounded results,
as if the operations were first carried out in infinite precision and these interme-
diate results were then rounded. This contributed to a certain level of portability
and provability of FP algorithms. Until 2008, there was no such analogous re-
quirement for standard functions. The main impediment for this was the table
maker’s dilemma, which can be stated as follows: consider a function f and a FP
number x. In most cases, y = f(x) cannot be represented exactly. The correctly
rounded result is the FP number that is closest to y. Using a finite precision
environment, only an approximation ŷ to y can be computed. If that approxi-
mation is not accurate enough, one cannot decide the correct rounding of y from
ŷ. Ziv [41] suggested to improve the accuracy of the approximation until the
correctly rounded value can be decided. A first improvement over that approach
derives from the availability of tight bounds on the worst-case accuracy required
to compute some functions [25], which made it possible to write a libm with
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correctly rounded functions, where correct rounding is obtained at modest ad-
ditional costs [37]. The TaMaDi project [32] aims at computing the worst-case
accuracy for the most common functions and formats. Doing this requires very
accurate polynomial approximations that are formally verified.

Beside the Table Maker’s Dilemma, the implementation of correctly rounded
elementary functions is a complex process, which includes finding polynomial
approximations for the considered function that are accurate enough. Obtain-
ing good polynomial approximations is detailed in [10,9,12]. In the same time,
the approximation error between the function and the polynomial is very im-
portant since one must make sure that the approximation is good enough. The
description of a fast, automatic and verifiable process was given in [23].

In the context of implementing a standard function, we are interested in find-
ing polynomial approximations for which, given a degree n, the maximum error
between the function and the polynomial is minimum: this “minimax approxima-
tion” has been broadly developed in the literature and its application to function
implementation is discussed in detail in [12,33]. Usually this approximation is
computed numerically [38], so an a posteriori error bound is needed. Obtaining a
tight bound for the approximation error reduces to computing a tight bound for
the supremum norm of the error function over the considered interval. Absolute
error as well as relative errors can be considered. For the sake of simplicity, in
this paper, we consider absolute errors only (relative errors would be handled
similarly). Our problem can be seen as a univariate rigorous global optimiza-
tion problem, however, obtaining a tight and formally verified interval bound
for the supremum norm of the error function presents issues unsuspected at a
first sight [14], so that techniques like interval arithmetic and Taylor models are
needed. An introduction to these concepts is given below.

Interval arithmetic and Taylor models. The usual arithmetic operations and
functions are straightforwardly extended to handle intervals. One use of interval
arithmetic is bounding the image of a function over an interval. Interval calcu-
lations frequently overestimate the image of a function. This phenomenon is in
general proportional to the width of the input interval. We are therefore inter-
ested in using thin input intervals in order to get a tight bound on the image of
the function. While subdivision methods are successfully used in general, when
trying to solve this problem, one is faced with what is known as a “dependency
phenomenon”: since function f and its approximating polynomial p are highly
correlated, branch and bound methods based on using intervals of smaller width
to obtain less overestimation, end up with an unreasonably high number of small
intervals. To reduce the dependency, Taylor models are used. They are a basic
tool for replacing functions with a polynomial and an interval remainder bound,
on which basic arithmetic operations or bounding methods are easier.

1.2 Related Work

Taylor models [27,35,28] are used for solving rigorous global optimization prob-
lems [27,5,14,6] and obtaining validated solutions of ODEs [34] with applications
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to critical systems like particle accelerators [6] or robust space mission design [26].
Freely available implementations are scarce. One such implementation is avail-
able in Sollya [13]. It handles univariate functions only, but provides multiple-
precision support for the coefficients. It was used for proving the correctness of
supremum norms of approximation errors in [14], and so far it is the only freely
available tool that provides such routines. However, this remains a C implemen-
tation that does not provide formally proved Taylor models, although this would
be necessary for having a completely formally verified algorithm.

There have been several attempts to formalize Taylor models (TMs) in proof
assistants. An implementation of multivariate TMs is presented in [42]. They are
implemented on top of a library of exact real arithmetic, which is more costly
than FP arithmetic. The purpose of that work is different than ours. It is appro-
priate for multivariate polynomials with small degrees, while we want univariate
polynomials and high degrees. There are no formal proofs for that implementa-
tion. An implementation of univariate TMs in PVS is presented in [11]. Though
formally proved, it contains ad-hoc models for a few functions only, and it is not
efficient enough for our needs, as it is unable to produce Taylor models of de-
gree higher than 6. Another formalization of Taylor models in Coq is presented
in [15]. It uses polynomials with FP coefficients. However, the coefficients are
axiomatized, so we cannot compute the actual Taylor model in that implemen-
tation. We can only talk about the properties of the involved algorithms.

Our purpose is to provide a modular implementation of univariate Taylor mod-
els in Coq, which is efficient enough to produce very accurate approximations of
elementary real functions. We start by presenting in Section 2 the mathematical
definitions of Taylor models as well as efficient algorithms used in their imple-
mentation. We then present in Section 3 the Coq implementation. Finally we
evaluate in Section 4 the quality of our implementation, both from the point of
view of efficient computation and of numerical accuracy of the results.

2 Presentation of the Taylor Models

2.1 Definition, Arithmetic

A Taylor model (TM) of order n for a function f which is supposed to be n + 1
times differentiable over an interval [a, b], is a pair (T, Δ) formed by a polynomial
T of degree n, and an interval part Δ, such that f(x) − T (x) ∈ Δ, ∀x ∈ [a, b].
The polynomial can be seen as a Taylor expansion of the function at a given
point. The interval remainder Δ provides an enclosure of the approximation
errors encountered (truncation, roundings).

For usual functions, the polynomial coefficients and the error bounds are
computed using the Taylor-Lagrange formula and recurrence relations satisfied
by successive derivatives of the functions. When using the same approach for
composite functions, the error we get for the remainder is too pessimistic [14].
Hence, an arithmetic for TMs was introduced: simple algebraic rules like addi-
tion, multiplication and composition with TMs are applied recursively on the
structure of function f , so that the final model obtained is a TM for f over
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[a, b]. Usually, the use of these operations with TMs offers a much tighter error
bound than the one directly computed for the whole function [14]. For exam-
ple, addition is defined as follows: let two TMs of order n for f1 and f2, over
[a, b]: (P1, Δ1) and (P2, Δ2). Their sum is an order n TM for f1 + f2 over
[a, b] and is obtained by adding the two polynomials and the remainder bounds:
(P1, Δ1) + (P2, Δ2) = (P1 + P2, Δ1 + Δ2). For multiplication and composition,
similar rules are defined.

We follow the definitions in [23,14], and represent the polynomial T with
tight interval coefficients. This choice is motivated by the ease of programming
(rounding errors are directly handled by the interval arithmetic) and also by the
fact that we want to ensure that the true coefficients of the Taylor polynomial lie
inside the corresponding intervals. This is essential for applications that need to
handle removable discontinuities [14]. For our formalization purpose, we recall
and explain briefly in what follows the definition of valid Taylor models [23, Def.
2.1.3], and refer to [23, Chap. 2] for detailed algorithms regarding operations
with Taylor models for univariate functions.

2.2 Valid Taylor Models
A Taylor model for a function f is a pair (T, Δ). The relation between f and
(T, Δ) can be rigorously formalized as follows.
Definition 1. Let f : I → R be a function, x0 be a small interval around an
expansion point x0. Let T be a polynomial with interval coefficients a0, . . . , an

and Δ an interval. We say that (T, Δ) is a Taylor model of f at x0 on I when⎧⎨⎩x0 ⊆ I and 0 ∈ Δ,

∀ξ0 ∈ x0, ∃α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ I, ∃δ ∈ Δ, f(x) −
n∑

i=0

αi (x − ξ0)
i = δ.

Informally, this definition says that there is always a way to pick some values αi

in the intervals ai so that the difference between the resulting polynomial and
f around x0 is contained in Δ. This validity is the invariant that is preserved
when performing operations on Taylor models. Obviously, once a Taylor model
(T, Δ) is computed, if needed, one can get rid of the interval coefficients ai in
T by picking arbitrary αi and accumulating in Δ the resulting errors.

2.3 Computing the Coefficients and the Remainder
We are now interested in an automatic way of providing the terms a0, . . . , an

and Δ of Definition 1 for basic functions. It is classical to use the following.
Lemma 1 (Taylor-Lagrange Formula). If f is n + 1 times differentiable on
a domain I, then we can expand f in its Taylor series around any point x0 ∈ I
and we have: ∀x ∈ I, ∃ξ between x0 and x such that

f(x) =

(
n∑

i=0

f (i)(x0)
i!

(x − x0)i

)
︸ ︷︷ ︸

T (x)

+
f (n+1)(ξ)
(n + 1)!

(x − x0)n+1︸ ︷︷ ︸
Δ(x,ξ)

.
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Computing interval enclosures a0, . . . , an, for the coefficients of T , reduces to
finding enclosures of the first n derivatives of f at x0 in an efficient way. The same
applies for computing Δ based on an interval enclosure of the n+1 derivative of f
over I. However, the expressions for successive derivatives of practical functions
typically become very involved with increasing n. Fortunately, it is not necessary
to generate these expressions for obtaining values of {f (i)(x0), i = 0, . . . , n}. For
basic functions, formulas are available since Moore [31] (see also [21]). There one
finds either recurrence relations between successive derivatives of f , or a simple
closed formula for them. And yet, this is a case-by-case approach, and we would
like to use a more generic process, which would allow us to deal with a broader
class of functions in a more uniform way suitable to formalization.

Recurrence Relations for D-finite Functions. An algorithmic approach exists for
finding recurrence relations between the Taylor coefficients for a class of functions
that are solutions of linear ordinary differential equations (LODE) with polyno-
mial coefficients, called D-finite functions. The Taylor coefficients of these func-
tions satisfy a linear recurrence with polynomial coefficients [40]. Most common
functions are D-finite, while a simple counter-example is tan. For any D-finite
function one can generate the recurrence relation directly from the differential
equation that defines the function, see, e.g., the Gfun module in Maple [39]. From
the recurrence relation, the computation of the first n coefficients is done in lin-
ear time. Let us take a simple example and consider f = exp. It satisfies the
LODE f ′ = f , f(0) = 1, which gives the following recurrence for the Taylor
coefficients (cn)n∈N: (n + 1)cn+1 − cn = 0, c0 = 1, whose solution is cn = 1/n!.

This property lets us include in the class of basic functions all the D-finite
functions. We will see in Section 3.2 that this allows us to provide a uniform
and efficient approach for computing Taylor coefficients, suitable for formaliza-
tion. We note that our data structure for that is recurrence relation + initial
conditions and that the formalization of the isomorphic transformation from the
LODE + initial conditions, used as input in Gfun is subject of future research.

3 Formalization of Taylor Models in Coq

We provide an implementation1 of TMs that is efficient enough to produce very
accurate approximating polynomials in a reasonable amount of time. The work
is carried out in the Coq proof assistant, which provides a formal setting where
we will be able to formally verify our implementation. We wish to be as generic
as possible. A TM is just an instance of a more general object called rigorous
polynomial approximation (RPA). For a function f , a RPA is a pair (T, Δ) where
T is a polynomial and Δ an interval containing the approximation error between
f and T . We can choose Taylor polynomials for T and get TMs but other types
of approximation are also available like Chebyshev models, based on Chebyshev
polynomials. This generic RPA structure will look like:
1 It is available at http://tamadi.gforge.inria.fr/CoqApprox/

http://tamadi.gforge.inria.fr/CoqApprox/
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Structure rpa := { approx: polynomial; error: interval }

In this structure, we want genericity not only for polynomial with respect to
the type of its coefficients and to its physical implementation but also for the
type for intervals. Users can then experiment with different combinations of
datatypes. Also, this genericity lets us factorize our implementation and will
hopefully facilitate the proofs of correctness. We implement Taylor models as
an instance of a generic RPA following what is presented in Section 2. Before
describing our modular implementation, we present the Coq proof assistant, the
libraries we have been using and how computation is handled.

3.1 The Coq Proof Assistant

Coq [4] is an interactive theorem prover that combines a higher-order logic and a
richly-typed functional programming language. Thus, it provides an expressive
language for defining not only mathematical objects but also datatypes and
algorithms and for stating and proving their properties. The user builds proofs in
Coq in an interactive manner. In our development, we use the SSReflect [19]
extension that provides its own tactic language and libraries.

There are two main formalizations of real numbers in Coq: an axiomatic
one [29] and a constructive one [18]. For effective computations, several imple-
mentations of computable real numbers exist. A library for multiple-precision
FP arithmetic is described in [8]. Based on this library, an interval arithmetic
library is defined in [30]. It implements intervals with FP bounds. Also, the
libraries [36] and [24] provide an arbitrary precision real arithmetic. All these
libraries are proved correct by deriving a formal link between the computational
reals and one of the formalizations of real numbers. We follow the same idea: im-
plement a computable TM for a given function and formally prove its correctness
with respect to the abstract formalization of that function in Coq. This is done
by using Definition 1 and the functions defined in the axiomatic formalization.

The logic of Coq is computational: it is possible to write programs in Coq
that can be directly executed within the logic. This is why the result of a compu-
tation with a correct algorithm can always be trusted. Thanks to recent progress
in the evaluation mechanism [7], a program in Coq runs as fast as an equivalent
version written directly and compiled in OCaml. There are some restrictions to
the programs that can be executed in Coq: they must always terminate and be
purely functional, i.e., no side-effects are allowed. This is the case for the above
mentioned computable real libraries. Moreover, they are defined within Coq on
top of the multiple-precision arithmetic library based on binary tree described
in [20]. So only the machine modular arithmetic (32 or 64 bits depending on the
machine) is used in the computations in Coq.

For our development of Taylor models we use polynomials with coefficients
being some kind of computable reals. Following the description in Section 2,
we use intervals with FP bounds given by [30] as coefficients. Since the interval
and FP libraries are proved correct, so is the arithmetic on our coefficients. By
choosing a functional implementation for polynomials (e.g., lists), we then obtain
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TMs that are directly executable within Coq. Now, we describe in detail this
modular implementation.

3.2 A Modular Implementation of Taylor Models

Coq provides three mechanisms for modularization: type classes, structures, and
modules. Modules are less generic than the other two (that are first-class citi-
zens) but they have a better computational behavior: module applications are
performed statically, so the code that is executed is often more compact. Since
our generic implementation only requires simple parametricity, we have been
using modules.

First, abstract interfaces called Module Types are defined. Then concrete “in-
stances” of these abstract interfaces are created by providing an implementation
for all the fields of the Module Type. The definition of Modules can be parame-
terized by other Modules. These parameterized modules are crucial to factorize
code in our structures.

Abstract Polynomials, Coefficients and Intervals. We describe abstract
interfaces for polynomials and for their coefficients using Coq’s Module Type.
The interface for coefficients contains the common base of all the computable
real numbers we may want to use. Usually coefficients of a polynomial are taken
in a ring. We cannot do this here. For example, addition of two intervals is not
associative. Therefore, the abstract interface for coefficients contains the required
operations (addition, multiplication, etc.) only, where some basic properties (as-
sociativity, distributivity, etc.) are ruled out. The case of abstract polynomials
is similar. They are also a Module Type but this time parameterized by the co-
efficients. The interface contains only the operations on polynomials (addition,
evaluation, iterator, etc.) with the properties that are satisfied by all common
instantiations of polynomials. For intervals, we directly use the abstract interface
provided by the Coq.Interval library [30].

Rigorous Polynomial Approximations. We are now able to give the defini-
tion of our rigorous polynomial approximation.

Module RigPolyApprox (C : BaseOps)(P : PolyOps C)(I : IntervalOps).
Structure rpa : Type := RPA { approx : P.T; error : I.type }.

The module is parameterized by C (the coefficients), by P (the polynomials with
coefficients in C), and by I (the intervals).

Generic Taylor Polynomials. Before implementing our Taylor models, we use
the abstract coefficients and polynomials to implement generic Taylor polyno-
mials. These polynomials are computed using an algorithm based on recurrence
relations as described in Section 2.3. This algorithm can be implemented in a
generic way. It takes as argument the relation between successive coefficients,
the initial conditions and outputs the Taylor polynomial.
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We detail the example of the exponential, which was also presented in Sec-
tion 2.3. The Taylor coefficients (cn)n∈N satisfy (n + 1)cn+1 − cn = 0. The
corresponding Coq code is

Definition exp_rec (n : nat) u := tdiv u (tnat n).

where tdiv is the division on our coefficients and tnat is an injection of integers
to our type of coefficients. We then implement the generic Taylor polynomial for
the exponential around a point x0 with the following definition.

Definition T_exp n x0 := trec1 exp_rec (texp x0) n.

In this definition, trec1 is the function in the polynomial interface that is in
charge of producing a polynomial of size n from a recurrence relation of or-
der 1 (here, exp_rec) and an initial condition (here, texp x0, the value of the
exponential at x0). The interface also contains trec2 and trecN for produc-
ing polynomials from recurrences of order 2 and order N with the appropriate
number of initial conditions. Having specific functions for recurrences of order 1
and 2 makes it possible to have optimized implementations for these frequent
recurrences. All the functions we currently dispose of in our library are in fact de-
fined with trec1 and trec2. We provide generic Taylor polynomials for constant
functions, identity, x �→ 1

x ,
√·, 1√· , exp, ln, sin, cos, arcsin, arccos, arctan.

Taylor Models. We implement TMs on top of the RPA structure by using
polynomials with coefficients that are intervals with FP bounds, according to
Section 2. Yet we are still generic with respect to the effective implementation
of polynomials. For the remainder, we also use intervals with FP bounds. This
datatype is provided by the Coq.Interval library [30], whose design is also based
on modules, in such a way that it is possible to plug all the machinery on the
desired kind of Coq integers (i.e., Z or BigZ).

In a TM for a basic function (e.g., exp), polynomials are instances of the
generic Taylor polynomials implemented with the help of the recurrence rela-
tions. The remainder is computed with the help of the Taylor-Lagrange formula
in Lemma 1. For this computation, thanks to the parameterized module, we reuse
the generic recurrence relations. The order-n Taylor model for the exponential
on interval X expanded at the small interval X0 is as follows:

Definition TM_exp (n : nat) X X0 :=
RPA (T_exp n X0) (Trem T_exp n X X0).

We implement Taylor models for the addition, multiplication, and composition
of two functions by arithmetic manipulations on the Taylor models of the two
functions, as described in Section 2. Here is the example of addition:

Definition TM_add (Mf Mg : rpa) :=
RPA (P.tadd (approx Mf) (approx Mg))

(I.add (error Mf) (error Mg)).
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The polynomial approximation is just the sum of the two approximations and
the interval error is the sum of the two errors. Multiplication is almost as in-
tuitive. We consider the truncated multiplication of the two polynomials and
we make sure that the error interval takes into account the remaining parts of
the truncated multiplication. Composition is more complex. It uses addition and
multiplication of Taylor polynomials. Division of Taylor models is implemented
in term of multiplication and composition with the inverse function x �→ 1/x.
The corresponding algorithms are fully described in [23].

Discussion on the Formal Verification of Taylor Models. The Taylor
model Module also contains a version of Taylor polynomials defined with ax-
iomatic real number coefficients. These polynomials are meant to be used only
in the formal verification when linking the computable Taylor models to the
corresponding functions on axiomatic real numbers. This link is given by Def-
inition 1. The definition can be easily formalized in the form of a predicate
validTM.

Definition validTM X X0 M f :=
I.subset X0 X /\
contains (error M) 0 /\
let N := tsize (approx M) in
forall x0, contains X0 x0 -> exists P, tsize P = N /\

( forall k, (k < N) ->
contains (tnth (approx M) k) (tnth P k) ) /\

forall x, contains X x ->
contains (error M) (f x - teval P (x - x0)).

The theorem of correctness for the Taylor model of the exponential TM_exp then
establishes the link between the model and the exponential function Rexp that
is defined in the real library.

Lemma TM_exp_correct :
forall X X0 n, validTM X X0 (TM_exp n X X0) Rexp.

Our goal is to formally prove the correctness of our implementation of Taylor
models. We want proofs that are generic, so a new instantiation of the polyno-
mials would not require changing the proofs. In a previous version of our Coq
development we had managed to prove correct Taylor models for some elemen-
tary functions and addition. No proofs are available yet for the version presented
here but adapting the proofs to this new setting should be possible.

4 Benchmarks

We want to evaluate the performances of our Coq implementation of Taylor
models. For this we compare them to those of Sollya [13], a tool specially
designed to handle such numerical approximation problems.
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The Coq Taylor models we use for our tests are implemented with polynomials
represented as simple lists with a linear access to their coefficients. The coeffi-
cients of the approximating polynomial in our instantiation of Taylor models as
well as the interval errors are implemented by intervals with multiple-precision
FP bounds as available in the Coq.Interval library described in [30]. Since we
need to evaluate the initial conditions for recurrences, only the basic functions
already implemented in Coq.Interval can have their corresponding Taylor models.

In Sollya, polynomials have interval coefficients and are represented by
a (coefficient) array of intervals with multiple-precision FP bounds. Sollya’s
autodiff() function computes interval enclosures of the successive derivatives
of a function at a point or over an interval, relying on interval arithmetic com-
putations and recurrence relations similar to the ones we use in our Coq devel-
opment. Thus, we use it to compute the Taylor models we are interested in.

Timings, Accuracy and Comparisons

We compare the Coq and the Sollya implementations presented above on a
selection of several benchmarks. Table 1 gives the timings as well as the tightness
obtained for the remainders. These benchmarks have been computed on a 4-core
computer, Intel(R) Xeon(R) CPU X5482 @ 3.20GHz.

Each cell of the first column of Table 1 contains a target function, the precision
in bits used for the computations, the order of the TM, and the interval under
consideration. When “split” is mentioned, the interval has been subdivided into
a specified amount of intervals of equal length (1024 subintervals for instance in
line 3) and a TM has been computed over each subinterval. Each TM is expanded
at the middle of the interval. The symbols RDt(ln 4), resp. RUt(ln 2), denote ln(4)
rounded toward −∞, resp. ln(2) rounded toward +∞, using precision t.

Columns 2 and 3 give the total duration of the computations (for instance, the
total time for computing the 1024 TMs of the third line) in Coq and Sollya re-
spectively. Columns 4 and 5 present an approximation error obtained using Coq
and Sollya, while the last column gives, as a reference, the true approximation
error, computed by ad-hoc means (symbolically for instance), of the function
by its Taylor polynomial. Note that when “split” is mentioned, the error pre-
sented corresponds to the one computed over the last subinterval (for instance,
[2 − 1/256, 2] for the arctan example). For simplicity, the errors are given using
three significant digits.

In terms of accuracy, the Coq and Sollya results are close. We have done
other similar checks and obtained the same encouraging results (the error bounds
returned by Coq and Sollya have the same orders of magnitude). This does
not prove anything but is nevertheless very reassuring. Proving the correctness
of an implementation that produces too large bounds would be meaningless.

Coq is 6 to 10 times slower than Sollya, which is reasonable. This factor
gets larger when composition is used. One possible explanation is that com-
position implies lots of polynomial manipulations and the implementation of
polynomials as simple lists in Coq maybe too naive. An interesting alternative
could be to use persistent arrays [2] to have more efficient polynomials. Another
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Table 1. Benchmarks and timings for our implementation in Coq

Execution time Approximation error
Coq Sollya Coq Sollya Mathematical

exp
prec=120, deg=20
I=[1, RD53(ln 4)]
no split

7.40s 0.01s 7.90 × 10−35 7.90 × 10−35 6.57 × 10−35

exp
prec=120, deg=8
I=[1, RD53(ln 4)]
split in 1024

20.41s 3.77s 3.34 × 10−39 3.34 × 10−39 3.34 × 10−39

exp
prec=600, deg=40
I=[RU113(ln 2), 1]
split in 256

38.10s 16.39s 6.23 × 10−182 6.22 × 10−182 6.22 × 10−182

arctan
prec=120, deg=8
I=[1, 2]
split in 256

11.45s 1.03s 7.43 × 10−29 2.93 × 10−29 2.85 × 10−29

exp × sin
prec=200, deg=10
I=[1/2, 1]
split in 2048

1m22s 12.05s 6.92 × 10−50 6.10 × 10−50 5.89 × 10−50

exp/sin
prec=200, deg=10
I=[1/2, 1]
split in 2048

3m41s 13.29s 4.01 × 10−43 9.33 × 10−44 8.97 × 10−44

exp ◦ sin
prec=200, deg=10
I=[1/2, 1]
split in 2048

3m24s 12.19s 4.90 × 10−47 4.92 × 10−47 4.90 × 10−47

possible improvement is at algorithmic level: while faster algorithms for poly-
nomial multiplication exist [17], currently in all TMs related works O(n2) naive
multiplication is used. We could improve that by using a Karatsuba-based ap-
proach, for instance.

5 Conclusion and Future Works

We have described an implementation of Taylor models in the Coq proof as-
sistant. Two main issues have been addressed. The first one is genericity. We
wanted our implementation to be applicable to a large class of problems. This
motivates our use of modules in order to get this flexibility. The second issue is
efficiency. Working in a formal setting has some impact in terms of efficiency.
Before starting to prove anything, it was then crucial to evaluate if the compu-
tational power provided by Coq was sufficient for our needs. The results given
in Section 4 clearly indicate that what we have is worth proving formally.
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We are in the process of proving the correctness of our implementation. Our
main goal is to prove the validity theorem given in Section 2 formally. This is
tedious work but we believe it should be completed in a couple of months. As we
aim at a complete formalization, a more subtle issue concerns the Taylor models
for the basic functions and in particular how the model and its corresponding
function can be formally related. This can be done in an ad-hoc way, deriving the
recurrence relation from the formal definition. An interesting future work would
be to investigate a more generic approach, trying to mimic what is provided by
the Dynamic Dictionary of Mathematical Functions [3] in a formal setting.

Having Taylor models is an initial step in our overall goal of getting formally
proved worst-case accuracy for common functions and formats. A natural next
step is to couple our models with some positivity test for polynomials, for ex-
ample some sums-of-squares technique. This would give us an automatic way
of verifying polynomial approximations formally. It would also provide another
way of evaluating the quality of our Taylor approximations. If they turned out
to be not accurate enough for our needs, we could always switch to better kinds
of approximations such as Chebyshev truncated series, thanks to our generic
setting.
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Abstract. Keeping the state space small is essential when verifying real-
time systems using Timed Automata (TA). In the model-checker Uppaal,
the merging operation has been used extensively in order to reduce the
number of states. Actually, Uppaal’s merging technique applies within
the more general setting of Parametric Timed Automata (PTA). The
Inverse Method (IM ) for a PTA A is a procedure that synthesizes a
zone around a given point π0 (parameter valuation) over which A is
guaranteed to behave in an equivalent time-abstract manner. We show
that the integration of merging into IM leads to the synthesis of larger
zones around π0. It also often improves the performance of IM , both in
terms of computational space and time, as shown by our experimental
results.

1 Introduction

A fundamental problem in the exploration of the reachability space in Timed
Automata (TA) is to compact as much as possible the generated space of sym-
bolic states. In [11], the authors show that, in a network of TAs, all the successor
states can be merged together when all the interleavings of actions are possible.
In [7,8], A. David proposed to replace the union of two states by a unique state
when this union is convex. More precisely, if the union of two states is included
into their convex hull, then one can replace the two states by their hull. This
technique is applied to timed constraints represented under the form of “Differ-
ence Bound Matrices” (DBMs). Actually, such a merging technique applies as
well in the more general setting of parametric timed automata (PTA), where pa-
rameters can be used instead of constants, and timed constraints are represented
under the form of polyhedra.

The Inverse Method (IM ) for a PTA A is a procedure that synthesizes a zone
around a given point π0 (parameter valuation) over which A is guaranteed to
behave in an equivalent time-abstract manner [2]. We show that the integration
of merging into IM often leads to the synthesis of larger zones around π0. More
surprisingly, our experiments show that even a simple implementation of merging
often improves the performance of IM , not only in terms of computational space
but also in time.
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2 Background and Definition

2.1 Timed Automata

Given a finite set X of n non-negative real-valued variables (called “clocks”),
a timed constraint is a conjunction of linear inequalities of the form xi ≺ c,
−xi ≺ c or xi − xj ≺ c with ≺∈ {<,≤}, xi, xj ∈ X and c ∈ Z.

A Timed Automaton (TA) is a tuple (Σ,Q, l0, X, I,→), with Σ a finite set of
actions, Q a finite set of locations, l0 ∈ Q the initial location, X a set of clocks, I
the invariant assigning to every l ∈ Q a constraint over X , and→ a step relation
consisting of elements (l, g, a, ρ, l′), where l, l′ ∈ Q, a ∈ Σ, g is a timed constraint
(guard) and ρ is a subset of X (set of clocks reset to 0).

A state is a couple (l, v) where l is a location of Q and v a valuation of X .
The operational semantics of TA is informally given as follows: given two

states s = (l, v) and s′ = (l′, v′) with l, l′ ∈ Q, v, v′ two valuations of X , the step

s
a→ s′ means that, for some (l, g, a, ρ, l′) ∈→ and some δ ∈ R+ :

(l, v)
g,a,ρ⇒ (l′, v′)

δ→ (l′, v′ + δ),

where (l, v)
g,a,ρ⇒ (l′, v′) means that discrete transition (l, g, a, ρ0, l′) can take

place (i.e. v satisfies g, and v′ is obtained from v by resetting the clocks of ρ

to zero), and (l′, v′)
δ→ (l′, v′ + δ) means that time can pass during δ units in

location l′ (i.e., v′ + δ′ satisfies the invariant I(l′) for all 0 ≤ δ′ ≤ δ).

A run is a sequence of the form (l0, v0)
a1→ (l1, v1)

a2→ · · · an→ (ln, vn). A trace

(or time-abstracted run) associated to a run is a sequence of the form l0
a1⇒ l1

a2⇒
· · · an⇒ ln. A trace can be seen as an alternating sequence of locations and actions.
Given a TA A, we denote by Tr(A) the set of traces associated to all possible
runs of A. When two TAs have the same set of traces, we say that they behave
in an equivalent time-abstract manner.

Given a set of states S, one defines PostA(S) as the set of states reachable
from S in one step, i.e.:

PostA(S) = {s′ = (l′, v′) ∈ Q× Rn
+ | s = (l, v)

a→ s′,

for some s ∈ S, l ∈ Q, v ∈ Rn
+ and (l, g, a, ρ, l′) ∈ →}.

Likewise, Post iA(S) is the set of states reachable from S in exactly i steps and
let Post∗A(S) =

⋃
i≥0 Post

i
A(S).

2.2 Parametric Timed Automata

We assume now given a finite set P of symbols (called “parameters”). A para-
metric term is a linear combination of parameters and integer constants. A para-
metric timed constraint is a conjunction of linear inequalities of the form xi ≺ e,
−xi ≺ e or xi − xj ≺ e where ≺∈ {<,≤}, xi, xj ∈ X and e is a parametric
term. A constraint over P is a conjunction of inequalities of the form e1 ≺ e2
with ≺∈ {<,≤} and e1, e2 two parametric terms. Given a parametric timed
constraint C, the expression (∃X : C) denotes the constraint over P obtained
from C by eliminating the variables of X . Given a parametric timed constraint
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C and a valuation π over P (i.e. a function from P to N), we denote by C[π] the
result of replacing every parameter in C by its π-valuation. We write π |= C to
express that ∃X : C[π] is true. A (symbolic parametric) state is a couple (l, C)
where l is in Q and C is a parametric timed constraint. A Parametric Timed
Automaton (PTA) is a TA where some constants appearing in the guard and
invariant inequalities have been replaced by parameters. Given a PTA A, we
denote by A[π] the TA obtained from A by replacing the parameters by their
π-valuations. Given a parametric constraint K, we denote by A(K) the PTA
where the parameters are assumed to satisfy K.

2.3 Inverse Method

Given a PTA A and a valuation π0 over P , the goal of IM introduced in [2]
is to synthesize a constraint K0 over P such that: π0 |= K0 and Tr(A[π0]) =
Tr(A[π]), for all π |= K0. This implies that for every π |= K0, A[π] and A[π0]
have the same time-abstracted behavior. The size of K0 gives us a measure
of the “robustness” (see [10]) of the behavior of A around π0. The larger K0

is, the more robust A is guaranteed to be. The algorithm IM is given below
(where s0 denotes the set of states of location l0 whose clocks are equal and
satisfy the invariant I(l0)). The idea of the procedure is to refine iteratively a
current constraintK over P by adding inequalities J in order to eliminate all the
generated π0-incompatible states (i.e., states (l, C) such that π0 �|= (∃X : C)).

Algorithm 1. Algorithm IM (A, π0)

input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

i ← 0 ; K ← true ; S ← {s0}
while true do

while there are π0-incompatible states in S do
Select a π0-incompatible state (l, C) of S (i.e., s.t. π0 �|= (∃X : C)) ;
Select a π0-incompatible inequality J in (∃X : C) (i.e., s.t. π0 �|= J) ;
K ← K ∧ ¬J ; S ←

⋃i
j=0 Post

j
A(K)

({s0}) ;
if PostA(K)(S)  S then return K0 =

⋂
(l,C)∈S(∃X : C)

i ← i+ 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post
j
A(K)({s0})

3 Enhancement of IM with Merging

Let us recall the notion of merging, following the lines of [7].

Definition 1 (Merging). We say that two states s = (l, C) and s′ = (l′, C′)
are mergeable iff l = l′ and C ∪C′ is convex; then, (l, C ∪C′) is their merging.

In [7], the main technique for merging two timed constraints C,C′ consists of
comparing their convex hull H with their union. If the hull and the union are
equal (or alternatively, if (H \ C) \ C′ = ∅ where \ is the operation of convex
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Table 1. Comparison between IM and IMmerge

PTA X P
IM IMmerge K0 ⊆ K0

merget States Trans. M t States Trans. M
AndOr 4 12 0.112 16 17 1,262 0.101 13 14 1,187 =

Flip-Flop 5 12 0.183 14 13 1,692 0.227 14 13 1,762 =
Latch 8 13 1.18 18 68 3,686 0.621 12 40 2,662 �
BRP 7 6 4.29 428 474 25,483 7.015 426 473 25,845 =

WLAN 2 8 220.157 7,038 11,052 733,044 286.141 6,020 9,538 1,408,702 =
SPSMALL1 10 26 1.578 31 35 5,098 1.642 31 35 5,442 =
SPSMALL2 28 62 - - - overflow 593 397 499 180,888 -

SIMOP 8 7 18.959 1,108 1,404 43,333 5.179 239 347 14,371 �
CSMA/CD 3 3 0.801 240 383 6,580 0.947 240 383 7,049 =
Jobshop 3 8 1.865 253 387 10,658 1.147 118 179 5,221 �
Mutex 3 3 2 0.802 307 1,060 14,598 0.671 241 811 11,934 =
Mutex 4 4 2 22.373 4,769 19,873 373,900 22.03 3,287 13,459 260,962 =

difference), then C and C′ are mergeable into H . In [7,8], this technique is
specialized to the case where the timed constraints are represented as DBMs.
Actually, as mentioned in the introduction, such a merging technique based on
convex difference is more general and still applies in the setting of PTA, where
parametric timed constraints are represented under the form of polyhedra.

Given a set of (symbolic parametric) states S, let Merging(S) denote the
result of applying iteratively the merging of a pair of states of S (using con-
vex difference) until no further merging applies. We define Postmerge(S) as
Merging(Post(S)). Let us denote by IMmerge the algorithm obtained from IM
(see algorithm 1) by replacing the Post operator by Postmerge . Let K

0
merge =

IMmerge(A, π0) and K0 = IM (A, π0). It is easy to see that we have always

K0 ⊆ K0
merge.

Informally, this is because the merging of a π0-incompatible state with a π0-
compatible state gives a π0-compatible state. Therefore, there are less π0-
incompatible states generated. Accordingly, the current setK is less often refined
with inequalities J in IMmerge. The property of trace preservation still holds with
IMmerge:

Proposition 1. Given a PTA A and a valuation π0, let K0
merge =

IMmerge(A, π0). We have: π0 |= K0
merge; furthermore: ∀π |= K0

merge, Tr(A[π])
= Tr(A[π0]).

The proof of this proposition is similar to its counterpart in [2].
We have implemented IMmerge through a simple extension of the tool Imitator

[4] using the operation of convex difference on polyhedra from the Parma Polyhe-
dra Library (PPL) [6]. We give in Table 1 some experimental results obtained with
IMmerge comparedwith those obtainedwith IM . The experiments have been done
on a 2.4 GHz Intel single-core processor with 4 GB of RAM memory.

The models of PTA in Table 1 are described in [5], except Jobshop which
corresponds to the jobshop scheduling problem with 2 jobs and 4 tasks of [1]
(Table 1), and the Mutex imodel (i = 3, 4) which corresponds to Fisher’s mutual
exclusion protocol with i tasks of [9]. In Table 1, column X (resp. P ) denotes
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the number of clocks (resp. parameters) of the PTA. Column t (resp. M) denotes
the computational time in seconds (resp. the memory used in KB), column
States (resp. Trans.) the number of states (resp. transitions) of the generated
reachability graph. The last column indicates if K0 = K0

merge or K0 � K0
merge.

We can see thatK0
merge is strictly larger thanK0 on 3 examples. Furthermore,

the reachability graphs produced with IMmerge are always smaller than the
corresponding graphs produced with IM (as illustrated in Appendix). Let us
also point out that IMmerge , unlike IM , is able to treat the SPSMALL2 example
(which contains no less than 62 parameters). Finally, the experiments are often
faster with IMmerge , in spite of the simplicity of our implementation.

4 Final Remarks

We have shown that the integration of a general technique of state merging
into IM often increases the size of the synthesized constraint while reducing
the computation space. Surprisingly, in spite of our simple implementation of
merging, the extended procedure is often faster than the basic procedure on
our experiments. We presently study the combined integration into IM of the
general technique of state merging with specific improvements presented in [3].

Acknowledgment. We are grateful to T. Chatain for helpful discussions.
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Appendix: Compared Reachability Graphs for Jobshop
and SIMOP Examples

Fig. 1. Reachability graph of the jobshop example with IM (left) and IMmerge (right)

Fig. 2. Reachability graph of the SIMOP example with IM (left) and IMmerge (right)
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Abstract. We present a combined class-modular points-to and class-
escape analysis that allows to analyze class declarations even if no in-
formation about the code that invokes the class’s methods is available
as is the case for e.g. shared libraries. Any standard whole-program or
summary-based points-to analysis can be plugged into our framework
and thus be transformed into a class-modular, class-escape and points-
to analysis. The analysis framework uses the flow restrictions imposed
by the access modifiers (e.g. private, public and protected in Java) to find
all fields that may be modified by code that is not part of the class dec-
laration. These fields escape the class. Unlike method-based summaries
instantiated with an unknown context, our analysis framework can give
detailed points-to information for non-escaping fields. In addition, the
knowledge of which fields belong to the region that does not escape a
class can be exploited to perform other analysis like class-modular object
in-lining [6] more efficiently or enable the automatic inference of class in-
variants [10]. We prove the soundness of the analysis and present a set of
benchmarks showing that the analysis is suitable to analyze real world
code and that more than 75% of the fields from the benchmarked classes
are identified as non-escaping.

1 Introduction

Accessibility of an object from different program parts is important information
for optimizing compilers and verification tools. This information can be inferred
using may points-to analyses. Often, not all code that uses a class declaration
is available to analysis because program modules are compiled independently
and linked dynamically at run time. In order to apply optimizations or veri-
fication in this scenario, points-to information for a class must be inferred in
isolation from the code that uses the class. Such class-modular points-to infor-
mation cannot be obtained from existing whole-program points-to analyses as
these expect the complete program as input. In contrast to whole-program analy-
ses, modular analyses can abstract different program parts independently. Com-
monly, individual methods are abstracted without calling-context. Later, these
method-summaries are instantiated with calling-context information, so that
eventually the context information and the summaries of the whole program are
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combined. Instantiating method-summaries with unknown context information
(e.g. for class methods without the code that calls the method) yields imprecise
results for the this-pointer and all other method parameters. Therefore, it is not
enough to use method-summary based analyses.

To solve this problem, we present a framework that transforms a common
whole-program or summary-based points-to analysis into a class-modular points-
to analysis. Given a sound plug-in analysis, the transformed analysis is sound
and may be useful even if the whole program is available. The analysis time can
be reduced by analyzing class declarations independently or in parallel, mostly
without loosing much precision.

As a side-effect, the transformed analysis produces class-escape information.
Escape analysis as presented by e.g. Blanchet [2] determines which local objects
escape from a method as only local objects that do not escape can be considered
truly local to that method and may be stack allocated. In contrast, our frame-
work extends the scope from methods to classes. Local variables, private fields
and locally used heap objects are considered class-local if and only if they can
never become accessible from outside the class. If a local variable, a private field
or a locally used heap object can possibly become accessible from outside the
class (e.g. a pointer to it escapes through one of the public class methods) then
it is considered class-escaped. This class-escape information can be used to im-
prove other analysis (e.g. object in-lining), which depend on object accessibility
information but commonly rely on a whole-program or summary-based analysis.

We have implemented an instance of the analysis in the Goblint [20] framework
showing that it can handle large classes from industrial and open source C++
code in seconds. Our contributions in this paper are

– we present the combined class-modular, class-escape and points-to analysis
based on encapsulation that is fully independent from the code that uses the
analyzed class,

– we present a framework that allows to transform common points-to analyses
into a class-modular, class-escape and points-to analysis,

– we prove the soundness of the transformed analysis,
– we present an implementation and a set of benchmarks applying an instance

of the analysis to large, real world code in seconds.

Related Work. Many of the points-to analyses are based on work from Steens-
gaard [17] and Andersen [1] which are neither class-modular nor deal with class-
escape information. Abstract interpretation based modular analyses in general
is described by Cousot and Cousot [5], where program modules can be analyzed
independently but a completely unknown (worst case) context is assumed and
access modifiers are not taken into account.

Rountev [13], Cheng and Hwu [4], Horwitz and Shapiro [8] present pointer
analyses that are modular on the function level but require additional informa-
tion from the function’s calling context. Whaley and Rinard [21] present a com-
positional pointer and (method-)escape analysis. They need information from
the analyzed methods’ calling context as their analysis is not on the class-level.
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The precision of non-escaped objects cannot be as good if the class methods are
analyzed separately, neglecting the object state information available through
the access modifiers. Rountev and Ryder [14] present a similar approach, assum-
ing worst case information on the function level.

The partitioning of fields into escaping and non-escaping fields performed by
our analysis relates our analysis to region analysis where mutually unreachable
heap regions are identified. The non-escaping field set represents a heap region
that is unreachable from outside the class declaration and the resulting points-
to information directly represents which of these fields can reach outside the
region. Region analysis for C programs was recently investigated by Seidl and
Vojdani [16]. These region analyses are not class-modular and often the pointer
information is undirected and less precise.

Boyapati, Liskov, and Shrira [3] have applied ownership type-systems to ver-
ify encapsulation and alias protection properties of object-oriented programs.
These type-systems heavily rely on annotations and restrict the programming
language they can be applied to, as e.g. iterators are not easily incorporated.
The ownership property verified in these systems is more restrictive than our
class-escape property.

To the best of our knowledge, this is the first presentation of a class-modular,
points-to and class-escape analysis. Class-level modular static analysis of classes
and class methods that automatically infer class invariants have been proposed
by Logozzo[10]. For the analysis to be sound it is required that accessibil-
ity of object internal state (to code that is outside the analyzed class) is de-
tected by another static analysis. The suggested whole-program escape analysis
from Blanchet[2] uses the different notion of method-escaping rather than class-
escaping and cannot be applied when only the class declaration is given. As such,
it does not provide the accessibility information required for Logozzo’s analysis.
Instead, the class-escape information provided by our analysis can be used.

Porat et al. [12] present a mutability analysis for Java that can handle missing
class definitions and utilizes access modifiers. They give no details on their state
accessibility analysis. It is not clear whether their state accessibility analysis is
sound nor how it works.

Based on our analysis class-modular object in-lining[6] optimizations for
garbage collected languages can be implemented. The life-time of fields which
do not escape a class is limited to the life-time of the enclosing object. Since
non-escaping fields are guaranteed to be non-accessible from outside a class it is
sufficient to modify the code of the class itself to in-line an object, so method
cloning is not required and the optimization is modular. JIT compilers could
benefit from similar improvements [22].

Structure. First, we present a working example in Section 2. After describing
the abstract semantics of our analysis in Section 3, we present our implemen-
tation of the analysis and benchmarks in Section 4. In Section 5 we summarize
our findings. In the corresponding technical report [7] we define the language
our analysis operates on and proof the soundness of the analysis.
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2 Example

In this Section a C++ example is shown where pointer assignments in one
method of a class have a non-local effect which is visible in another method
and how the analysis handles this information.

The private fields of a class can become accessible from external code if a
pointer to such a field escapes the class, for example as a return value as shown
in line 27 in the example in Fig.1.

In the constructor of Rect, an instance of Point which we denote as Ptb for
convenience, is assigned to lr. Then the address of lr is assigned to e and e’s
address is assigned to p in turn. This is denoted as edges leading from p to e to
lr and finally to Ptb in Fig.2, where an edge from node a to node b denotes that
b is in the points-to set of a.

Within DoEscape from line 22 to line 26 Ptb is escaped through various routes
as noted in the comments of Fig.1. Especially interesting is line 23, here the
pointer pr may be equal to the current instance this or another instance of the
class. So Ptb may be assigned to a field from this if pr equals this. Otherwise, Ptb
escapes because it is assigned to an external variable. In line 27 e is returned,
so the content of e and everything reachable thereof may escape. Generally, an
object escapes when its address may be stored in an externally accessible object.

Analysis Overview. In order to collect all escaped pointers in the points-to set
of the variable a ext, our analysis proceeds in three steps. First an instance a this
of the class is created and all public fields of the class are considered escaped. The
created instance serves as representative object for this class. Then the effect of
calling any constructor is over-approximated on the representative object a this.
Finally, all possible combinations of public method calls on a this are simulated.

When applied to our example class Rect, the first step produces points-to
information telling us that a ext may point to itself, a this, or pub — these are
considered class-escaped. In the next step we need to apply the effect of any
constructor to our abstract state. As our example only has one constructor, only
the effect of that constructor is applied. Finally, we simulate all possible public
method calls on Rect. Class Rect only has one (public) method DoEscape, but
this method could be applied several times on the same object (while changing
the escaped objects between each call). Therefore, the effect of a ext = a this →
DoEscape(a ext, a ext) is computed until the smallest fix-point for a ext and the
fields of a this is reached. In the first iteration, Ptb class-escapes on line 22, 23
and 25, because a pointer to Ptb is assigned to a potentially externally accessible
variable. In line 24, Ptb class-escapes because it is given as an argument to an
unknown function. Eventually, lr and Ptb class-escape in line 27, because they
are returned. In the second iteration, Ptb also escapes in line 26 because it is
assigned to lr, which has escaped in the previous iteration. This last step reaches
the fix-point and the result is shown in Fig. 2. At the end of each iteration step,
all escaped pointers are modified so that any escaped object may point to any
other escaped object.
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1 class Point{ public: int x,y; };
2 extern void unknown(Rect* pr);
3 class Rect
4 {
5 private: Point *ul,*lr;
6 Point **e,**l;
7 Point ***p;
8 Point *priv;
9 public: Point *pub;//escapes

10
11 Rect(int x1,int y1, int x2, int y2)
12 {
13 ul=new Point();//Pt_a
14 lr=new Point();//Pt_b
15 p=&e;e=&lr;l=&ul;
16 ul->x=x1;ul->y=y1;
17 lr->x=x2;lr->y=y2;
18 }
19
20 Point** DoEscape(Point**v,Rect* pr)
21 { //pt_b escapes in the following:
22 pub=lr;//copied into public var
23 pr->priv=lr;//maybe copied into

other instance
24 unknown(lr);//passed to unknown fun
25 *v=*e;//copied into external var
26 **p=lr;//copied into lr, becomes

external in next line
27 return e; //lr, Pt_b escape (

returned from public fun)
28 }
29 };

Fig. 1. C++ Example Code. Sound
points-to information for class Rect in
the absence of the code that uses class
Rect is generated. The field e is assigned
the address of lr in line 15, so when the
content of e is escaped in line 27 then
lr and the instance of Point which lr
is pointing to are escaped. An object
escapes when its address is stored in
an externally accessible object. The
points-to information of fields from Rect
is a global property, points-to relations
set up in one method are retained when
another method is called.

ext

externally accessible objects

Rect

this

Ptb lr

epriv

p

pub

l

ul Pta

Fig. 2. Graph based representation of
the final domain state for class Rect
for the program on the left after the
analysis has finished, dashed nodes
represent escaped objects. Dotted nodes
are externally accessible before any
method from Rect is called. An edge
from symbol a to symbol b means that
b is in the points-to set of a. All nodes
reachable from ext are also connected
with each other, this is not shown for
clarity. All addresses except this that
are neither declared nor allocated inside
Rect are abstracted to ext. this is an
external instance of Rect for which the
class-invariant is generated.
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3 Abstract Semantics

Our framework transforms a given plug-in points-to analysis from whole-program
or summary-based analysis to a class-modular class-escape analysis that can
analyze a given class without any context information on how the class may
be used. To achieve this, the domain of the plug-in analysis is extended by our
own global domain G′. The semantics of our analysis is defined by lifting the
plug-in semantics to be able to handle the extended domain and the unknown
context in which the class may be used in. A special address ext that abstracts
all addresses which may exist outside the analyzed class definition is introduced.
Furthermore, an address this is created that together with our global domain
abstracts all possible instances of the analyzed class.

The concrete language our analysis operates on and its semantics is given
in the corresponding technical report [7]. Any points-to analyses which adhere
to the set of requirements given in this section can be used as plug-in anal-
ysis for our framework. Eventually, our analysis inherits the properties from
the plug-in analysis while making the analysis class-modular and calculating
sets of maybe class-escaping objects which are collected in the points-to set
of ext.

This section is structured as follows. First, we list the requirements for the
plug-in points-to analysis to be suitable for this framework. Afterwards, we define
the necessary functions to lift the plug-in semantics �s�

	
to the abstract semantics

�s�
	′

of our analysis. Finally, we give a set of initialization steps and a set of
constraints that must be solved in order to perform the analysis.

Let val	 be the abstract values and addr	 ⊆ val	 the abstract addresses used
by the plug-in analysis.

Let A : D → lval → P(addr	) be a plug-in provided function that calculates
the set of possible abstract addresses of a l-value given an abstract domain
state ρ	.

Let �s�
	
: D → D be the abstract semantics of the plug-in points-to analysis

for the statement s. The complete lattice D is the abstract domain used by
the points-to analysis. From that we construct D′ = D × G′ — the domain of
our analysis, where G′ : addr	 → P(val	) extends the global (flow-insensitive)
domain of the plug-in analysis.

Furthermore, let q : D → addr	 → P(val	) be a plug-in provided function
that calculates the set of possible abstract values that may be contained by
the memory at the given address when provided an abstract domain state and
∀ρ	 ∈ D : qρ� null = ∅.

Intuitively, the plug-in analysis maintains some kind of mapping from abstract
addresses to sets of abstract values for each program point abstracting the stack
and the heap. How exactly this information is encoded inside the plug-in domain
D is not relevant for our analysis. All addresses are initialized to null, so if an
address a has not yet been written to in ρ	 then qρ� a = {null}.
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Finally, ρ	1 = ρ	0[x→ Y ] denotes the weak update of ρ	0 ∈ D such that:

∀z ∈ addr	 : qρ�
1
z �

{
qρ�

0
z ∪ Y : z = x

qρ�
0
z : else

Using this notation we can perform weak updates on the plug-in domain without
knowing the details of D.

For example the summary-based points-to and escape analysis from Whaley
and Rinard [21], like virtually all other sound points-to analyses, fulfills all our
requirements and can be plugged into our framework and thus become a class-
modular, points-to and class-escape analysis.

To shorten the notation we also define a function Q : D → P(addr	) →
P(val	) for sets of addresses.

Qρ� S �
⋃
x∈S

qρ� x

The function Q∗
ρ� : D → P(addr	) → P(val	) defines the abstract reachability

using Qρ� :

Q∗
ρ� S � F ∪Q∗

ρ�(F )

where F = Qρ� S ∪
⋃
c∈Q

ρ�
S

fi∈public fields of c

Aρ�(c→ fi)

The analysis is performed on a given class which we will call Class. Before
starting the analysis an instance of Class is allocated and stored in the global
variable a this which we assume is not used in the analyzed code. Also, a global
variable called a ext of the most general pointer type (e.g. Object for Java or
void* for C++) is created using the plug-in semantics (a ext is also assumed not
to be used in the analyzed code):

ρ	0 = (�a this := new Class�
	 ◦ �a ext := null�

	
) d	0

where d	0 is the initial state of the plug-in domain, before any code has been
analyzed. At this stage of the analysis new does not execute any constructors.
As both a this and a ext are not used within the analyzed code, they do not
change the semantics of the analyzed code and our lifted semantics can use these
variables to communicate with the plug-in analysis and store special information
as explained in the following.

The set this which contains all possible addresses of the allocated Class is
defined as:

this = Qρ�
0
(Aρ�

0
(a this)) .

The value this is meant to abstract all instances of Class that can exist (for the
plug-in, this is an instance of Class that cannot be accessed from the program
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unless our analysis provides its address). The plug-in analysis should be field
sensitive at least for the Class instance addressed by this in order to exceed the
precision of other points-to analyses when an unknown context is used.

The set fields contains all addresses of the public fields from the Class instance
a this:

fields =
⋃
fi∈public fields of Class

Aρ�
0
(a this → fi) .

Since the analysis is class-modular, only class declarations are analyzed. Hence,
most of the program code is hidden from the analysis. We differentiate program
segments which are visible to the analysis and the rest by defining external code:

Definition 1 (External Code)
External code with respect to a class C denotes all code that is not part of the class
declaration of C. If no class C is stated explicitly, then class Class is assumed.

The points-to set of ext abstracts all addresses accessible from external code.

ext = Aρ�
0
(a ext)

Initially, only ext itself, this and the public fields from this are reachable from
external code, so ext must point to itself, this and the public fields, as an instance
of Class may be allocated in code external to Class.

ρ	1 = ρ	0[a→ ext ∪ this ∪ fields | a ∈ ext] (1)

As the points-to set of ext contains multiple distinct objects, only weak updates
can be performed on ext by the plug-in analysis.

Fields from a this and their content become member of Qρ� ext during the
analysis if they may escape the Class. So after the analysis has finished, all
possibly escaped memory locations are contained in Qρ� ext, all other memory
locations do not escape the Class and are inaccessible from external code.

In the following we describe how the plug-in semantics �s�
	
is lifted to produce

the abstract semantics �s�
	′
of our class-modular class-escape analysis:

The global addresses are constituted by ext and the fields of this since modifi-
cations of these addresses’ values are observable inside different member methods
of this, even if these methods do not call each other. For example, a method from
Class may return an address to external code which was not previously accessible
by external code. Later, external code may invoke a method from Class passing
the newly accessible address (or something reachable thereof) as parameter to
the method.

global : P(val	)

global � ext ∪ fields

Given the state of the plug-in domain, globals : G′ → D→ G′ calculates the new
state of the global domain G′:

globals g	 ρ	 x �
{
qρ� x ∪ g	 x : x ∈ global

∅ : else
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The global domain state tracks modifications to fields of a this between different
invocations of Class-methods from external code.

modify over-approximates the effects of code external to Class. In a single-
threaded setting, these effects cannot occur inside code of Class so modify is
applied when leaving code from Class. This happens either when returning from
a public method to external code or when calling an unknown method. We
assume that all methods from Class are executed sequentially. If other threads
(that do not call methods from Class) exist, then modify must be applied after
every atomic step a statement is composed of, as the other threads my perform
modifications on escaped objects at any time. If no additional threads exit, then
modifications of escaped objects can happen only before a method from Class
is entered, when an external function is called and after a method from Class is
exited. As external code may modify all values from addresses it can access to
all values it can access, modify ensures all possible modifications are performed.

modify : D→ D

modify ρ	 � ρ	[x→ Q∗
ρ� ext | x ∈ Q∗

ρ� ext]

The following semantic equation is inserted into the semantics �s�
	
: D → D of

the plug-in analysis (or it replaces the existing version).

�l := e0 → mextern(e1, . . . , en)�
	

ρ� � (�l := a ext�
	 ◦modify ◦

�deref(a ext) := e0�
	 ◦ ... ◦ �deref(a ext) := en�

	
) ρ	

Methods mextern are called from within Class but are not analyzed (e.g. because
the code is not available). This makes the analysis modular with respect to
missing methods in addition to its class-modularity. The procedure unknown,
which is called in line 24 from our example in Fig. 1, represents such an external
method where the above rule applies.

As shown in the proof [7], reading from a ext and writing to deref(a ext)
correctly over-approximates reads from non-class-local r-values and writes to
non-class-local l-values.

Finally, we give the abstract semantics �s�	
′
: D×G′ → D×G′ of our analysis

for a statement s.

�e0 → m(e1, . . . , en)�
	′

(ρ�,g�) � (ρ	2, globals g
	 ρ	2)

where ρ	2 = modify(�deref(a ext) := e0 → m(e1, . . . , en)�
	

ρ�
1

)

and ρ	1 = ρ	[x→ g	 x | x ∈ global]

Our transfer function is invoked only for top-level methods when solving the
constraint systems for the analysis (see Eq. 3,4). First, the current state of the
flow-insensitive fields and ext is joined into the plug-in domain. Then the plug-
in semantics (which now contains our patched rule for mextern) is applied and
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stores the return value of the method in a ext. Afterwards, modify is applied to
over-approximate the effects of external code that may execute after the top-
level method is finished. Finally, the new global domain state is calculated using
globals.

Before starting the actual analysis, the effects of external code that might
have executed before a constructor from Class is called are simulated by applying
modify:

(ρ	i , g
	
i ) = modify(ρ	1, globals g

	
0 ρ	1) (2)

Here, g	0 is the bottom state of the global domain.
Then, the constructors are analyzed. Since we know that only one constructor

is executed when a new object is created, it is sufficient to calculate the least
upper bound of the effects of all available constructors:

(ρ	c, g
	
c) =

⊔
m∈public constructor of Class

�a this → m(a ext, ..., a ext)�
	′
(ρ	i , g

	
i ) (3)

Afterwards, the public methods from Class with all possible arguments and in
all possible orders of execution are analyzed by calculating the solution [15] of
the following constraint system,

(ρ	f , g
	
f ) � (ρ	c, g

	
c) (4)

∀m ∈ public method of Class :

(ρ	f , g
	
f ) � �a this → m(a ext, ..., a ext)�

	′
(ρ	f , g

	
f)

in order to collect all local and non-local effects on the Class until the global
solution is reached. a ext is passed for all parameters of the method as it con-
tains all values that might be passed into the method. For non pointer-type
arguments the plug-in’s top value �type for the respective argument type must
be passed as argument to the top-level methods. If the target language supports
function-pointers then all private methods for which function-pointers exist must
be analyzed like public methods, if the corresponding function-pointer may es-
cape the class.

When inheritance and protected fields are of interest, the complete class hi-
erarchy must be analyzed. If the language allows to break encapsulation then
additional measures must be taken to detect this. For example, C++ allows
friends and reinterpret cast to bypass access modifiers [18]. Friend declarations
are part of the class declaration and as such easily detected. Usage of reinter-
pret casts on the analyzed Class can be performed outside the class declaration,
so additional code must be checked. Still, finding such casts is cheaper than doing
a whole-program pointer analysis. In other languages, e.g. Java, such operations
are not allowed and no additional verification is required.
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4 Experimental Results

In this Section we present an implementation of the analysis and give a set of
benchmark results that show how the analysis performs when it is applied to
large sets of C++ code. As plug-in analysis a custom points-to analysis was
implemented using the Goblint[20] framework.

The C++ code is transformed to semantically equivalent C using the LLVM
[9] as the Goblint front-end is limited to C. Inheritance and access modifier
information is also extracted and passed into the analysis. During this trans-
formation, we verify that the access modifiers are not circumvented by casts
or friends. No circumvention of access modifiers was found for the benchmarked
code. Better analysis times can be expected from an analyzer that works directly
with OO code as the LLVM introduces many temporary variables that have to
be analyzed as well.

As additional input to the analysis a list of commonly used methods from the
STL that were verified by hand was provided. Without this information more
fields are flagged as escaping incorrectly by our implementation, because they
are passed to an STL method which is considered external. This additional input
is not required when using a different plug-in analysis that does not treat the
STL methods as external.

The analysis is performed on two code-sets — the Industrial code is a collec-
tion of finite state machines that handle communication protocols in an embed-
ded real-time setting whereas Ogre[11] is an open source 3d-engine. The results
are given in Table 1.

Table 1. Benchmark results

Code Classes C++[loc] C[loc] Time[s] Ext[%] σ

Industrial 44 28566 1368112 282 23 24
Ogre 134 71886 1998910 42 62 36

The C++ and C columns describe the size of the original code and its C
code equivalent, respectively. More complex C++ code lines generate more C
lines of code, so the ratio of code size is a measure for the complexity of the
code that needs to be analyzed. The table shows that the industrial code is on
average more complex than the Ogre code, requiring more time to analyze per
line of code.

The time column represents the total time to analyze all the classes. The
last two columns in the table show the mean and the standard deviation of
the percentage of fields that the analysis identified as escaping. Fields that are
identified as escaping limit the precision of subsequent analysis passes since they
can be modified by external code. For the rest of the fields detailed information
can be generated. A field fi is escaping if and only ifAρ�

f
(a this→fi)∩Qρ�

f
ext �= ∅.
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Only 23% of the fields are escaping for the industrial code. This is the case
because most of the code processes the fields directly rather than passing the
fields to methods outside the analyzed class, yielding good precision.

Inside the Ogre code most fields are classes themselves, so many operations
on fields are not performed by code belonging to the class containing the field
but by the class that corresponds to the field’s type. Our plug-in analysis imple-
mentation handles the methods of these fields as unknown methods and assumes
that the field escapes. By using a plug-in analysis that analyses into these meth-
ods from other classes (e.g. Whaley and Rinard [21]) the precision of the analysis
for the Ogre code can be improved to about 25% escaping fields, as indicated by
preliminary results. Our analysis provides an initial context to analyze deeper
into code outside of the class declaration. Especially for libraries it is necessary
to generate an initial context if the library is analyzed in isolation.

So for the presented examples, for more than 75% of the fields detailed infor-
mation can be extracted without analyzing the code that instantiates and uses
the initial class. The benchmark times are obtained by analyzing all classes
sequentially on a 2.8 Ghz Intel Core I7 with 8GB RAM. Since the results for
each class are independent from the results for all other classes, all classes could
be analyzed in parallel.

5 Conclusion

We have presented a sound class-modular, class-escape and points-to analysis
based on the encapsulation mechanisms available in OO-languages. The analysis
can be applied to a set of classes independently without analyzing the code
that uses the class thus reducing the amount of code that needs to be analyzed
compared to whole-program and summary-based analysis.

In addition, we have presented an easy to apply, yet powerful transformation
of non-class-modular points-to analyses into class-modular, points-to and class-
escape analyses. Since our framework has very weak requirements on potential
plug-in points-to analyses, it can be applied to virtually all existing points-to
analyses. We have shown, that the transformation will produce a sound analysis,
given that the whole-program plug-in analysis was sound. Moreover, the resulting
class-modular, class-escape and points-to analysis will inherit the properties of
the plug-in and therefore benefits from previous and future work on points-to
analyses.

The presented benchmarks show that the analysis can be applied to large, real
world code yielding good precision. Due to the modularity of the analysis, flow
sensitive pointer analysis becomes viable for compiler optimization passes. Class
files can be analyzed and optimized independently before they are linked to form
a complete program. Hence, various compiler optimizations and static verifiers
can benefit from a fast class-modular class-escape and pointer analysis. Espe-
cially in large OO software projects that enforce common coding standards[19]
the usage of non-private fields is rare, so good results can be expected.
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Abstract. Static analyzers should be correct. We used the random C-
program generator Csmith, initially intended to test C compilers, to test
parts of the Frama-C static analysis platform. Although Frama-C was
already relatively mature at that point, fifty bugs were found and fixed
during the process, in the front-end (AST elaboration and type-checking)
and in the value analysis, constant propagation and slicing plug-ins. Sev-
eral bugs were also found in Csmith, even though it had been extensively
tested and had been used to find numerous bugs in compilers.

1 Introduction

A natural place to start for industrial adoption of formal methods is in safety-
critical applications [8]. In such a context, it is normal to have to justify that
any tool used can fulfill its function, and indeed, various certification standards
(DO-178 for aeronautics, EN-50128 for railway, or ISO 26262 for automotive)
mention, in one way or another, the need to qualify any tool used. As formal
methods make headway in the industry, the question of ensuring the tools work
as intended becomes more acute.

This article is concerned with static analysis of software. A static analyzer
can be formally correct by construction or it can generate a machine-checkable
witness [2]. Both approaches assume that a formal semantics of the analyzed pro-
gramming language is available. This body of work should not distract us from
the fact that the safety-critical program is compiled and run by a compiler with
its own version of the semantics of the programming language, and it is the exe-
cutable code produced by the compiler that actually needs to be safe. Solutions
can be imagined here too: the compiler could be a formally verified or verifying
compiler based on the same formalization of the programming language as the
static analyzer. However, it is not reasonable to expect that any safety-critical
software industry is going to move en masse to such bundled solutions. Even the
most enlightened industrial partners feel reassured if they can substitute one
specific, well-delimited step in the existing process with a drop-in replacement
based on formal methods [4]. In a context where we assume an early adopter
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does not wish to change both compiler and verification process at the same time,
how can we ensure the static analyzer being proposed agrees with the compiler
already in use? We offer one partial solution to this problem: the compiler and
the analyzer can be subjected to automated random testing.

Frama-C is a framework for analysis and transformation of C programs. It
enables users to write their own analyses and transformations on top of pro-
vided ones. Several such custom analyses are used industrially [3] in addition to
various R&D experiments [7]. Csmith [9] is an automatic generator of random C
programs, originally intended for differential testing [6] of compilers. It has found
bugs in all compilers it has been tried on, for a total of 400+ identified bugs.
We used Csmith to test Frama-C. In this article, we report on the experiment’s
set-up and its results.

2 Testing Frama-C with Random Programs

Csmith generates programs that perform computations and then tally and print
a checksum over their global variables. The programs contain no undefined or
unspecified behavior, although they contain implementation-defined behavior.
They are therefore deterministic for a given set of compilation choices. We defined
several oracles for detecting that Frama-C wrongly handled a generated program
(subsection 2.1). A few methodological remarks apply regardless of the oracle
(subsection 2.2).

2.1 Testable Frama-C Functionalities

Robustness Testing. Random inputs often uncover “crash bugs” in software.
Any tool that accepts C programs as input can be tested for crashes with Csmith,
discarding the output as long as the tool terminates normally.

Value Analysis as C Interpreter. Frama-C’s value analysis computes an
over-approximation of the values each variable can take at each point of the
program. Another abstract-interpretation-based static analyzer would work in
a similar fashion, but make fundamentally different approximations, rendering
any näıve application of differential testing difficult. Instead, a first way to test
Frama-C’s value analysis with Csmith is to turn Frama-C into a C interpreter
and check its result against the result computed by the program compiled with
a reference compiler.

To allow the value analysis to function as a C interpreter, we needed to make
sure that all abstract functions returned a singleton abstract state when ap-
plied to a singleton abstract state. This was the hard part: since an abstract
interpreter is designed to be imprecise, there are plenty of places where benign
approximations are introduced. One example is union types, used in Csmith pro-
grams to convert between memory representations of different integer types. We
had to improve the treatment of memory accesses to handle all possible partially
overwritten values being assembled into any integer type.
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Another difference between a plain and abstract interpreter is that a plain
interpreter does not join states. The value analysis already had an option for
improving precision by postponing joins, so this adaptation was easy. However,
postponing joins can make fixpoint detection expensive in time and memory.
Noting that when propagating singleton states without ever joining them a fix-
point may be detected if and only if the program fails to terminate, we disabled
fixpoint detection. A Csmith program may fail to terminate, but for the sake of
efficiency, our script only launches the value analysis on Csmith programs that,
once compiled, execute in a few milliseconds (and thus provably terminate).

Printing Internal Invariants in Executable C Form. The previous oracle
can identify precision issues that cause the analyzer to lose information where
it should not. It is also good at detecting soundness bugs, since the checksum
computed by the program during interpretation is compared with the checksum
computed in an execution. But a large part of the value analysis plug-in’s nominal
behavior is not tested in interpreter mode. In order to test the value analysis
when used as a static analyzer, we augment it with a function to print as a
C assertion everything it thinks it knows about the program variables. Partial
information easily translates to C e.g. x >= 3 && x <= 7 or, in the case of a
relational abstract interpreter, x - y <= 4. To test, we analyze the program
and obtain an assertion that is supposed to hold just before it terminates. The
assertion is then inserted at the end of the program, and the program is compiled
and run to confirm that the assertion holds.

The weakness of this oracle is that it cannot detect precision bugs. A preci-
sion bug makes the printed assertion weaker, but still true. Besides, the natural
imprecision of static analysis may hide soundness bugs that would have been
caught in interpreter mode. Therefore, both are indeed complementary.

Constant Propagation. A Frama-C program transformation plug-in builds on
the results of the value analysis, replacing those expressions that only take one
possible value throughout execution with their value. For testing this plug-in,
the transformed program is compiled and run, and the computed checksum is
compared to the checksum computed by the original program. This oracle tests
the recording of value analysis results for further exploitation by other plug-ins,
a feature that is not tested by the previous two methods.

Slicing. Frama-C’s slicing plug-in removes from an input program everything
that does not contribute to the user-defined criterion. We sliced Csmith pro-
grams on the criterion “compute and print the final checksum.” The slicing
plug-in produces slices that can be compiled and executed, so for testing, we
did that and compared the computed checksum to the original. This oracle can-
not find slicing precision bugs where the plug-in includes unnecessary code, but
it finds slicing soundness bugs where the sliced program computes a different
checksum.
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2.2 Methodological Remarks

Observability. By default, Csmith generates programs with command-line ar-
guments and volatile variables. From the point of view of static analyzers, both
command-line arguments and volatile variables are unknown inputs, for which
all possible values are considered. Those initial imprecisions can snowball and
absorb interesting (faulty) behaviors of the analyzers. We therefore used the
Csmith options that disable these two constructs.

When this experiment took place, there was no automatic way to reduce a
large Csmith-generated program triggering a bug into a small one triggering
the same bug. Manual reduction took too much effort. The obvious solution
was to make Csmith work harder to produce smaller test cases. Csmith does
not have a single setting for generated program size, but several settings do
influence average size, such as maximum number of functions, maximum size of
arrays, and maximum expression complexity. We also let automatic scripts run
longer, and then picked only the two shortest generated problematic programs
out of the twenty found at each wave. Thus filtered, the test cases were 20KB
on average, and acceptable for manual reduction. Once the stream of bugs dried
up, we increased Csmith’s settings again to default values and beyond, but no
additional bugs were revealed: all the bugs identified with Csmith were found in
the first phase.

Manual Reduction. When a Csmith program produces unexpected results,
it may not be obvious where in the program lies the misinterpreted construct.
In the case of Frama-C, one way we found to speed up bug identification was
to add printf() calls at the beginning of each instruction block, so as to ob-
serve execution paths. This is not acceptable when manually reducing bugs in
an optimizing compiler, because the calls interfere with optimizations. No such
considerations apply to Frama-C’s value analysis or plug-ins that exploit its re-
sults. The tested plug-ins handle statements one by one with little possibility of
a bug being affected by interference between original and tracing statements.

Bug Triage. In a 300 kLOC piece of software such as Frama-C, the first step in
fixing a bug is to classify it. Frama-C plug-ins build on the results of one another.
When trying to make sense of a plug-in bug, it helps to be able to assume that
the supporting plug-ins are reliable. We tested the plug-ins in bottom-up order
so as to avoid bug reports that would be reclassified one or several times. Some
parts of the framework can only be tested indirectly when their results are used
by other parts. Thus, despite our efforts, a few bug reports had to be reclassified
and looked at by more than one person.

3 Bugs Found

The URL http://j.mp/csmithbugs lists bugs that were reported in Frama-C’s
bug tracking system. Oracles that use a reference compiler were applied with
GCC and Clang on IA32, PowerPC-32 and x86-64 targets, each time configuring

http://j.mp/csmithbugs
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the value analysis to simulate the corresponding target. Some bugs were indeed
specific to big-endian platforms, or to the LP64 model (bug 785). One crash was
identified and fixed (bug 715).

Value-analysis-as-interpreter testing revealed bugs in the front-end and in the
value analysis itself, all of which could affect normal use as a static analyzer. An
example of a bug in AST elaboration is the normalization into simple assignments
of x = long->access[path].bitfield = complex_expr;. One constraint is that
long->access[path] may contain arbitrarily complex expressions and should
not be duplicated. Before the bug was fixed, this complex statement was normal-
ized as tmp = complex_expr; long->access[path].bitfield = tmp; x = tmp;.
Bug 933 explains why this is incorrect.

Testing the value analysis as a static analyzer found bugs related to alarm
emission (bugs 715, 718, 1024), which was not tested at all in interpreter mode
(no alarm is emitted while interpreting a defined program). Constant propagation
testing revealed issues in program pretty-printing (bug 858). It was good to get
these out of the way before testing the slicing plug-in. One slicing bug was found
that could happen with very simple programs (bug 827). To occur, the other
slicing bugs found needed the program to contain jumps in or out of a loop, or
from one branch of a conditional to the other.

Unexpectedly, several bugs were also found by Frama-C in Csmith, despite
the latter having been put to intensive and productive use finding bugs in com-
pilers. Csmith is intended to generate only defined programs. The bugs found
in Csmith involved the generation of programs that, despite being accepted by
compilers, were not defined: they could pass around dangling pointers, contain
unsequenced assignments to the same memory location, or access uninitialized
members of unions. Generated programs could contravene [5, §6.5.16.1:3] either
directly (lv1 = lv2; with overlapping lvalues lv1 and lv2) or convolutedly
(lv1 = (e, lv2);). Lastly, Csmith could generate the pre-increment ++u.f;

with u.f a 31-bit unsigned bitfield containing 0x7fffffff. The bitfield u.f is
promoted to int according to [5, §6.3.1.1] (because all possible values of a 31-bit
unsigned bitfield fit in a 32-bit int). The increment then causes an undefined
signed overflow. This last bug needs just the right conditions to appear. Nar-
rower bitfields do not have the issue. Also, a 32-bit unsigned bitfield would be
promoted to unsigned int (because not all its values would fit in type int) and
the increment would always be defined [5, §6.2.5:9].

4 Related Work, Future Directions and Conclusion

Another recent application of fuzzing in formal methods is the differential testing
of SMT solvers [1]. The originality of our experiment is that differential testing
does not apply directly to static analyzers. New functionality had to be imple-
mented in the value analysis both to make it testable as a plain C interpreter
and to make it testable as a static analyzer. This was worth it, because the bugs
found when misusing the value analysis as a plain interpreter also affected nom-
inal use. Besides, the resulting C interpreter is useful in itself for applications
other than testing the value analysis.
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It is not shocking that bugs were found in some of the Frama-C plug-ins that
are already in operational use. Firstly, qualification of these plug-ins has not
taken place yet. Secondly, some of the bugs found can only appear in a specific
target configuration or in programs disallowed by industrial coding standards.

Fifty is a large number of bugs to find. It reveals the quantity of dark corners
in the C language specification. That bugs were found in Csmith confirms this
idea. Another inference is that correctly slicing a real world language such as
C into executable slices is hard: it took 22 bug reports on the slicing plug-in
itself to converge on an implementation that reliably handles Csmith-generated
programs. The Frama-C developers were happy to be informed about every single
bug. Almost all the bugs were obscure, which is as it should be, since Frama-C
has been in use for some time now.

Csmith generates programs that explore many implementation-defined behav-
iors. Csmith testing not only uncovers bugs where either the reference compiler
or the static analyzer disagree with the standard. It also checks that they agree
with each other where the standard allows variations.

Our conclusion is that everyone should be testing their static analyzers with
randomly generated programs. The Nitrogen Frama-C release can withstand
several CPU-months of automated random testing without any new bugs be-
ing found. The development version is continuously tested, so as to find newly-
introduced bugs as rapidly as possible.
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Abstract. This paper describes a design flow and supporting tools to significantly 
improve the design and verification of complex cyber-physical systems. We focus 
on system architecture models composed from libraries of components and 
complexity-reducing design patterns having formally verified properties. This 
allows new system designs to be developed rapidly using patterns that have been 
shown to reduce unnecessary complexity and coupling between components. 
Components and patterns are annotated with formal contracts describing their 
guaranteed behaviors and the contextual assumptions that must be satisfied for 
their correct operation. We describe the compositional reasoning framework that 
we have developed for proving the correctness of a system design, and provide a 
proof of the soundness of our compositional reasoning approach. An example 
based on an aircraft flight control system is provided to illustrate the method and 
supporting analysis tools.  

Keywords: Cyber-physical systems, design patterns, formal methods, model 
checking, compositional verification, SysML, AADL, META, DARPA. 

1 Introduction 

Advanced capabilities being developed for the next generation of commercial and 
military aircraft will be based on complex new software. These aircraft will 
incorporate adaptive control algorithms and sophisticated mission software providing 
enhanced functionality and robustness in the presence of failures and adverse flight 
conditions. Unmanned aircraft have already displaced manned aircraft in most 
surveillance missions and are performing many combat missions with increasing 
levels of autonomy. Manned and unmanned aircraft will be required to coordinate 
their activities safely and efficiently in both military and commercial airspace.  

The cyber-physical systems that provide these capabilities are so complex that 
software development and verification is one of the most costly development tasks 
and therefore poses the greatest risk to program schedule and budget. Without 
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significant changes in current development processes, the cost and time of software 
development will become the primary barriers to the deployment of the advanced 
capabilities needed for the next generation of military aircraft.  

DARPA’s META program was undertaken to significantly improve the design, 
manufacture, and verification process for complex cyber-physical systems. The work 
described in this paper directly addresses this goal by allowing the system architecture 
to be composed from libraries of complexity-reducing design patterns with formally 
guaranteed properties. This allows new system designs to be developed rapidly using 
patterns that have been shown to reduce unnecessary complexity and coupling between 
components. This work also deeply embeds formal verification into the design process 
to enable correct-by-construction development of systems that work the first time. The 
use of components with formally specified contracts, design patterns that provide 
formally guaranteed properties, and an architectural modeling language with a well-
defined semantics ensures that the system design is known to meet its requirements even 
before it is implemented. Further details can be found in [1].  

In previous work, we have successfully applied model checking to software 
components that have been created using model-based development (MBD) tools 
such as Simulink [7]. Our objective in this project was to build on this success and 
extend the reach of model checking to system design models. Examples of previous 
work in this area include approaches that essentially flatten the system model by 
elaborating each component and including its implementation in the same language 
used for the system [12]. This approach permits accurate modeling of component 
behaviors and interactions, but suffers from limited scalability. An alternative 
approach replaces each component with a state machine description that is an 
abstraction of the component design [11]. This provides better scalability, but can 
result in the component descriptions that diverge from their implementations and can 
limit the expressiveness of the overall system model.  

The compositional approach we advocate in this paper attempts to exploit the 
verification effort and artifacts that are already part of our software component 
verification work. We do this through the use of formal assume-guarantee contracts 
that correspond to the component requirements for each component. Each component 
in the system model is annotated with a contract that includes the requirements and 
constraints that were specified and verified as part of its development process. We 
then reason about the system-level behavior based on the interaction of the 
component contracts. The use of contracts is also extended to architectural design 
patterns that have been formally verified. This approach allows us to leverage our 
existing MBD process for software components and provides a scalable way to reason 
about the system as a whole.  

Section 2 of this paper presents our architectural modeling framework and describes 
how we have used the AADL and SysML languages to formally specify system designs. 
We have developed a mapping between relevant portions of these languages, as well as 
an automated translation tool and support for contract annotations. Section 3 briefly 
describes our formalization of architectural design patterns. These patterns encapsulate 
several fault-tolerance and synchronization mechanisms, increasing the level of design 
abstraction and supporting verification reuse. Section 4 describes in more detail our 
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compositional verification approach, and Section 5 presents the formulation of our 
method and a proof sketch of its soundness, the main technical contribution of the 
paper. Section 6 presents an example based on an aircraft flight control system, and 
Section 7 briefly describes our tool framework.  

2 Architectural Modeling 

Our domain of interest is distributed real-time embedded systems (including both 
hardware and software), such as comprise the critical functionality in commercial and 
military aircraft. MBD languages and tools are commonly used to implement the 
components of these systems, but the system-level descriptions of the interactions of 
distributed components, resource allocation decisions, and communication 
mechanisms are largely ad hoc. Application of formal analysis methods at the system 
level requires 1) an abstraction that defines how components will be represented in 
the system model, and 2) selection of an appropriate formal modeling language.  

Assumptions and Guarantees. Many aerospace companies have adopted MBD 
processes for production of software components. As a result of aircraft certification 
guidelines, these components must have detailed requirements. We have been 
successful applying formal methods to software component designs because of our 
decision to conform (as much as possible) to existing trends in industry. By formalizing 
the component requirements for verification using a combination of model checking and 
automated translation of the component models, we have made formal analysis 
accessible to embedded system developers. Therefore, one of our goals in this project 
was to create a system modeling methodology that would incorporate existing practices 
and artifacts and be compatible with tools being used in industry.  

In this approach, the architectural model includes interface, interconnections, and 
specifications for components but not their implementation. It describes the interactions 
between components and their arrangement in the system, but the components 
themselves are black boxes. The component implementations are described separately 
by the existing MBD environment and artifacts (or by traditional programming 
languages, where applicable). They are represented in the system model by the subset of 
their specifications that is necessary to describe their system-level interactions.  

Assume-guarantee contracts [4] provide an appropriate mechanism for capturing 
the information needed from other modeling domains to reason about system-level 
properties. In this formulation, guarantees correspond to the component requirements. 
These guarantees are verified separately as part of the component development 
process, either by formal or traditional means. Assumptions correspond to the 
environmental constraints that were used in verifying the component requirements. 
For formally verified components, they are the assertions or invariants on the 
component inputs that were used in the proof process.  

A contract specifies precisely the information that is needed to reason about the 
component’s interaction with other parts of the system. Furthermore, contract 
mechanism supports a hierarchical decomposition of verification process that follows 
the natural hierarchy in the system model.  
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SysML and AADL. The two modeling languages that we have worked with in this 
program are SysML and AADL. These languages were developed for different but 
related purposes. SysML was designed for modeling the full scope of a system, 
including its users and the physical world, while AADL was designed for modeling 
real-time embedded systems. While both SysML and AADL are extensible and can be 
tailored to support either domain, the fundamental constructs each provides reflect 
these differences. For example, AADL lacks many of the constructs for eliciting 
system requirements such as SysML requirement diagrams and use cases, and for 
specifying the behavior of systems such as SysML activity diagrams. On the other 
hand, SysML lacks many of the constructs needed to model embedded systems such 
as processes, threads, processors, buses, and memory.  
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Fig. 1. Flight Control System modeled using SysML 

AADL is a good fit for our domain of interest and provides a sufficiently formal 
notation. However, AADL has yet to gain traction with many industrial users and its 
lack of a stable graphical environment (at least in the most popular available tool, the 
Eclipse-based OSATE) has been a barrier to adoption. Consequently, SysML has 
been adopted by many organizations for system design specification, even though it 
has no formal semantics and no common textual representation.  

Our solution is to allow developers to do at least their initial system development 
in SysML, and provide support for automatic translation to AADL for analysis. We 
have built an Eclipse plugin that provides bidirectional translation between SysML 
and AADL for the domain in which they overlap. We have defined block stereotypes 
in SysML that correspond to AADL objects, thus effectively mapping the semantics 
of AADL onto a subset of SysML. The translation is based on the Enterprise 
Architect SysML tool used by Rockwell Collins. An example system is shown in 
Fig. 1.  
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For SysML to be used to model embedded systems in the same way that AADL 
does, SysML blocks and ports need to be tagged with stereotypes corresponding to 
AADL constructs such as threads and processors. AADL components are represented 
using SysML Blocks with stereotypes. If a SysML block is not tagged with one of 
these stereotypes, the translator treats it as an AADL system. AADL features are 
represented using SysML flow ports with stereotypes. If a SysML flow port is not 
tagged with one of these stereotypes, the translator treats it as an AADL port.  

The translator also translates the package structure from a SysML model to AADL 
and vice versa. When translating from AADL to SysML, the translator will create a 
single SysML block diagram for each AADL package with a SysML block drawn for 
each AADL component type and implementation. The translator will also create a 
single internal block diagram for each AADL implementation that has subcomponents 
showing that implementation, its subcomponents, their features, and connections. 

3 Architectural Design Patterns 

The second technical thrust in our META project was the use of architectural design 
patterns. An architectural design pattern is a transformation applied to a system model 
that implements some desired functionality in a verifiably correct way. Each pattern 
can be thought of as a partial function on the space of system models, mapping an 
initial model to a transformed model with new behaviors. We refer to the transformed 
system as the instantiation of a pattern.  

We have three main objectives in creating architectural design patterns. The first is 
the encapsulation and standardization of good solutions to recurring design problems. 
The synchronization and coordination of distributed computing platforms in avionics 
system is a common source of problems that are often challenging to implement 
correctly. By codifying verified solutions to these problems and making them 
available to developers, we raise level of abstraction and avoid “reinventing the 
wheel.” 

Reuse of verification is the second objective. The architectural design patterns are 
developed in a generic way so that they can be formally verified once, and then 
reused in many different development projects by changing parameters. Each pattern 
has a contract associated with it that specifies constraints on the systems to which it 
can be applied, and specifies the behaviors that can be guaranteed in the transformed 
system. In this way we are able to amortize the verification effort over many systems.  

The final objective is reduction or management of system complexity. An 
architecture pattern can be said to reduce system complexity if it provides an 
abstraction that effectively eliminates a type of component interaction in a way that 
can be syntactically enforced. The PALS (physically asynchronous logically 
synchronous) architecture pattern is an example in which real time tasks are executed 
with bounded asynchrony physically but the asynchronous execution is logically 
equivalent to synchronous execution. This greatly reduces the verification state space.  

Four architectural patterns were implemented in this project: PALS, Replication, 
Leader Selection, and Fusion.  
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The purpose of the PALS pattern is to make portions of a distributed asynchronous 
system operate in virtual synchrony. This allows portions of the system logic to be 
designed and verified as though they will be executed on a synchronous platform, and 
then deployed in the asynchronous system with the same guaranteed behavior. The 
pattern relies on certain timing constraints on the delivery and processing of messages 
that must be enforced by the underlying execution platform. To use the pattern, a 
group of nodes (systems) is selected that are to execute at approximately the same 
time at period T. The outputs (ports) of these nodes are to be received by other nodes 
in the group such that all nodes will receive the same values at each execution step. 
The pattern does not add any new data connections to the model, but assumes that the 
required connections already exist. 

The purpose of the Replication pattern is to create identical copies of portions of 
the system. This is typically used to implement fault tolerance by assigning the copies 
to execute on separate hardware platforms with independent failure modes. To use the 
pattern, one or more nodes (systems) are selected and the number of copies to create 
is specified. Optional arguments for each input and output port on the selected 
systems determine how these ports and their connections are handled in the 
replication process. Each new system and port created is given a unique name. When 
multiple outputs are created they may be merged by the addition of a new system 
block to select, average, or vote the outputs.  

The purpose of the Leader Selection pattern is to coordinate a group of nodes so 
that a single node is agreed upon as the ‘leader’ at any given time. The nodes typically 
correspond to replicated computations hosted on distributed computing resources, and 
are used as part of a fault-tolerance mechanism. If a replicated node fails, this allows a 
non-failed node to be selected as the one which will interact with the rest of the 
system. To use the pattern, a group of N nodes (systems or processes) is identified that 
are to select a leader from among themselves. The leader selection pattern will insert 
new leader selection threads into each of the systems/processes which are to 
participate in leader selection. Each thread will have a unique identifier (an integer) to 
determine its priority in selecting a leader. Connections will be added so that all 
leader selection threads are able to communicate with each other (N-1 input ports, 1 
output port). In addition, each leader selection thread will have an input port from 
which it determines (from other local systems) if it is failed, and an output port which 
will say if it is the leader. These two ports are initially left unconnected. 

The purpose of the Fusion pattern is to insert a component into the architecture that 
combines several component interfaces into a single interface. The component 
supplies properties that define the validation/selection algorithm that is used and its 
impact on the fault tolerance or performance properties of the interfaces. The fusion 
algorithm could provide voting through exact or approximate agreement or by mid-
value selection. The output could correspond to one of the selected inputs or it could 
be a computing average. To use the pattern, the user will select from a predefined set 
of fusion algorithms that are presented in a list. Each option will describe the 
properties and allow the user to browse these as part of the selection process. The user 
will select the type of component to be inserted in the model to perform the fusion 
algorithm. There are three initial choices: System (for abstract system designs), 
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Thread (for software implemented voting), and Device for hardware implementations. 
Finally, the user will select the insertion point for the voter by first selecting an 
existing architecture component that is the current destination of the interfaces to be 
voted. After component selection the user will be presented with a list of input 
interfaces that match the constraints required for the voter that was selected. The user 
can then select the set of interfaces to which the voter will be applied.  

   

Fig. 2. Avionics System, Flight Control System, and Flight Guidance System models that were 
used to demonstrate the use of architectural design patterns 

We have applied these patterns in an Avionics System modeled in AADL. Three 
levels of the system architecture are shown in Fig. 2: the Avionics System, the Flight 
Control System (FCS), and the Flight Guidance System (FGS). The initial system 
model to which we apply the patterns captures the functionality of the system under 
the assumption that nothing ever fails. It only has one set of inputs and outputs and 
has no redundancy in its implementation. We first apply the replication pattern to the 
FGS component to create two redundant copies. This pattern automatically replicates 
ports as necessary and applies a property requiring the copies not be hosted on the 
same hardware. We next apply the Leader Selection pattern to manage the redundant 
copies of the FGS. This pattern inserts pre-verified leader selection functionality as 
new threads inside each FGS to determines the current leader. The Leader Selection 
protocol that we have used requires that the nodes communicate synchronously. To 
satisfy this assumption, we apply the PALS synchronization pattern. The constraints 
of the PALS pattern will be verified during implementation to ensure they can 
actually be satisfied. Finally, the Fusion pattern is used inside the Autopilot 
component to combine the two outputs produced by the active and standby FGS 
copies into a single command input.  

4 System Verification 

The system-level properties that we wish to verify fall into a number of different 
categories requiring different verification approaches and tools. This is also true for 
the contracts that are attached to the components and design patterns used in the 
system model.  

− They may be behavioral properties that describe the state of the system as it 
changes over time. Behavioral properties may be used to describe protocols 
governing component interactions in the system, or the system response to 
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combinations of triggering events. We will use the Property Specification 
Language (PSL) [5] to specify most behavioral properties. An example of a 
behavioral property associated with the Leader Selection pattern is: A failed node 
will not be leader in next step, or G(!device_ok[j]- X(leader[i]!= j)). 

− They may be structural properties of the system model to which the pattern is 
applied (pre-conditions), or of the transformed system model after pattern 
instantiation (post-conditions). Relationships among timing properties in the model 
or constraints on the numbers of various objects in the model are in this category.  

− Some design patterns rely explicitly on resource allocation properties of the 
system, including real-time schedulability, memory allocation, and bandwidth 
allocation. Even after we annotate the model with deadlines and execution times, 
we must still demonstrate that threads can be scheduled to meet their deadlines. 
There are many tools available to support verification of these properties, including 
the ASIIST tool developed by UIUC and Rockwell Collins [8]. 

− Failure analysis of the system often requires the use of probabilistic methods to 
demonstrate that the sufficiency of the proposed fault handling mechanisms. The 
AADL error annex can be used to attach fault behavior models to the system 
design. As part of the META program we have participated in some 
demonstrations based on our example AADL model using the PRISM probabilistic 
model checker [9].  
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Fig. 3. Contracts between patterns used in the Avionics System example 

At the system level, assumptions and guarantees associated with the system 
components and patterns interact and are composed to achieve desired system 
properties. For example, the behavior of the avionics system in our example depends 
upon guarantees provided by the Leader Selection pattern (Fig. 3). Leader Selection 
includes an assumption of synchronous data exchange which is satisfied by the PALS 
pattern guarantees. It also includes an assumption that there will be at least one 
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working node, which is satisfied by the Replication pattern. The PALS pattern, in 
turn, makes assumptions about the timing properties of the underlying execution 
platform and the Replication pattern requires that copies are not co-located. Finally, 
the platform can only guarantee these properties if it verified to satisfy its resource 
allocation constraints, and its probability of failure is sufficiently low.  

The focus of our work is the first two categories: behavioral and structural 
properties. The next section describes our approach to compositional reasoning. 

5 Compositional Reasoning 

Our idea is to partition the formal analysis of a complex system architecture into a 
series of verification tasks that correspond to the decomposition of the architecture. 
By partitioning the verification effort into proofs about each subsystem within the 
architecture, the analysis will scale to handle large system designs. Additionally, the 
approach naturally supports an architecture-based notion of requirements refinement: 
the properties of components necessary to prove a system-level property in effect 
define the requirements for those components. We call the tool that we have created 
for managing these proof obligations AGREE: Assume Guarantee Reasoning 
Environment. 

There were two goals in creating this verification approach. The first goal was to 
reuse the verification already performed on components and design patterns. The 
second goal was to enable distributed development by establishing the formal 
requirements of subcomponents that are used to assemble a system architecture. If we 
are able to establish a system property of interest using the contracts of its 
components, then we have a means for performing virtual integration of components. 
We can use the contract of each of the components as a specification for suppliers and 
have a great deal of confidence that if all the suppliers meet the specifications, the 
integrated system will work properly.  

In our composition formulation, we use past-time LTL [2]. This logic supports a 
uniform formulation of composition obligations that can be used for both liveness 
properties and safety properties. For the reasoning framework, we use the LTL 
operator G (globally) supplemented by the past time operators H (historically) and Z 
(in the previous instant) [3]. They are defined formally over paths σ and time instants 
t as follows:  

σ, t ╞ G(f) ≡ ∀ (u, t ≤ u) : σ, u ╞ f 

σ, t ╞ H(f) ≡ ∀ (u, 0 ≤ u ≤ t) : σ, u ╞ f 

σ, t ╞ Z(f) ≡ (t = 0) ∨ (σ, (t-1) ╞ f ) 

Verification Conditions. Formally, in our framework a component contract is an 
assume-guarantee pair (A, P), where each element of the pair is a PSL formula. 
Informally, the meaning of a pair is “if the assumption is true, then the component 
will ensure that the guarantee is true.” To be precise, we need to require a component  
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to meet its guarantee only if its assumptions have been true up to the current instant. 
We can state this succinctly as a past-time LTL formula G(H(A) ⇒ P) 1.  

Components are organized hierarchically into systems as shown in Fig. 1. We want 
to be able to compose proofs starting from the leaf components (those whose 
implementation is specified outside of the architecture model) through several layers 
of the architecture. Each layer of the architecture is considered to be a system with 
inputs and outputs and containing a collection of components. A system S can be 
described by its own contract (As, Ps) plus the contracts of its components CS, so we 
have S = (AS, PS, CS). Components “communicate” in the sense that their formulas 
may refer to the same variables. For a given layer, the proof obligation is to 
demonstrate that the system guarantee Ps is provable given the behavior of its 
subcomponents CS and the system assumption As.  

Our goal is therefore to prove the formula G(H(As) ⇒ Ps) given the contracted 
behavior G(H(Ac) ⇒ Pc) for each component c within the system. It is conceivable 
that for a given system instance a sufficiently powerful model checker could prove 
this goal directly from the system and component assumptions. However, we take a 
more general approach: we establish generic verification conditions which together 
are sufficient to establish the goal formula. Moreover, we provide verification 
conditions which have the form of safety properties whenever all the assumptions and 
guarantees do not contain the G or F LTL operators. In such cases, this allows the 
verification conditions to be proved even by model checkers which are limited to 
safety properties, such as k-induction model checkers. 

Handling Cycles in the Model. It is often the case that architectural models contain 
cyclic communication paths among components (e.g., the FGS_L and FGS_R in 
Fig. 1), and that these components mutually depend on the correctness of one another. 
Therefore, we need to consider circular reasoning among components. To accomplish 
this, we use a framework similar to the one from Ken McMillan in [4]. We break 
these cycles using induction over time.  

Suppose that we have components A and B that mutually refer to each other’s 
guarantees. When trying to establish the assumptions of A at time t, we will assume 
that the guarantees of B are true only up to time t-1. Therefore, at time instant t there 
is no circularity. To accomplish this reasoning, we define a well-founded order (<) 
between component contracts. If CA < CB, then B can refer to A’s assumptions and 
guarantees at the current instant, while A can refer to B’s assumptions and guarantees 
only at the previous instant.  

Following McMillan, for a contract c ∈ C, we define Θc to be the contracts whose 
assumptions and guarantees are true up to and including time t. We define c^ for a 
contract c to be (Ac ^ Pc) and C^ to be {c^ | c ∈ C}. Every element in Θc must be less 
than c according to the order <, so Θc ⊆ C^. Since we are only considering cycles 
inside system S, its contracts are handled separately and do not need to be included. 
Therefore, the system assumptions are taken to hold up through the current time, and 
the system guarantees are proven separately (as shown below):  

                                                           
1  We use “Promises” P in the place of G for guarantees for presentation because G is an LTL 

operator. Also, in the informal presentation, we represent each of A,P as sets of formulas. The 
formulas here are formed by simple conjunction of the elements of the set. 
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Theorem 1. Let the following be given:  
− S = (AS, PS, CS) with assumption As, guarantee Ps and component contracts CS, 

with a well-founded order < on C  
− Sets Θc ⊆ C^, such that q ∈ Θc implies q<c 
− For all c ∈ C, ╞ G(H(Ac) ⇒ Pc) 

Then if for all c ∈ C 
╞ G((H(As) ^ Z(H(C^)) ^ Θc) ⇒ Ac) 

and  
╞ G((H(As) ^ H(C^)) ⇒ Ps)  

then  
╞ G(H(As) ⇒ Ps). 

 
In other words, for a system with n components there are n+1 verification conditions: 
one for each component and one for the system as a whole. The component 
verification conditions establish that the assumptions of each component are implied 
by the system level assumptions and the properties of its sibling components. These 
verification conditions are naturally cyclic, but the cycle is broken using the well-
founded ordering < and the one-step delay operator Z. The system level verification 
condition shows that the system guarantees follow from the system assumptions and 
the properties of each subcomponent. This is essentially an expansion of the original 
goal, ╞ G(H(As) ⇒ Ps), with additional information obtained from each component. 
 
Proof Sketch. It is possible to prove Theorem 1 directly using induction over time. 
The idea is, at each step, to go through each component (from largest to smallest 
based on the < ordering) and show that its assumptions hold in the current step. Then 
we can use the assumption ╞ G(H(Ac) ⇒ Pc) to show that Pc also holds in the current 
step. Once we have done this for each component we can use the system level 
verification condition to show that the system level guarantees hold in the current 
step. Formally, the proof is by induction over time using the strengthened goal 
formula 

 ╞ G(H(As) ⇒ (H(Ps) ^ H(C^))) 

The desired goal formula then follows directly. 
Another approach to proving Theorem 1 is to encoding it using McMillan's circular 

reasoning framework. This is fairly straightforward to do. In fact, the two approaches 
show many similarities which provides a strong argument for the quality of approach. 
The details of this equivalence are presented in a companion technical report [6].  

6 Flight Control System Example 

We have applied our compositional verification approach to the avionics system 
model. While there is not space to present the entire example, this section provides a 
summary of the assumptions and guarantees on the flight control system and 
describes one level of reasoning.  
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One of the typical requirements levied on a flight control system has to do with 
transients in the actuator commands. For passenger comfort and safety, a limit is 
placed on the forces that would be experienced by the passengers during normal 
operation. For example, the automation should not command a sharp change in the 
pitch of the aircraft, even in the presence of component failures.  

In our system architecture, this property becomes a constraint on the control 
surface actuator (CSA) output of the system. We would like the commanded pitch to 
be bounded both in terms of the both the actuator angle and its rate of change. In our 
notation, we can write these properties as follows:  

 transient_response_1 : assert  

   true -> abs(CSA.CSA_Pitch_Delta) < MAX_PITCH_DELTA; 

 transient_response_2 : assert  

   true -> abs(CSA.CSA_Pitch_Delta -  

   prev(CSA.CSA_Pitch_Delta, 0.0)) < MAX_PITCH_DELTA_STEP ; 

The “true ->” portion of each property states the property is initially true. The 
remainder of the first property states that the absolute value of the commanded  
pitch (CSA_Pitch_Delta) is less than some constant (MAX_PITCH_DELTA). The 
second property is similar, but states that the difference between the current  
pitch and the previously commanded pitch is less than some constant 
(MAX_PITCH_DELTA_STEP).  

Similarly, we have system-level assumptions related to independence of failures:  

 active_assumption: assume (FD_L.mds.active or  

  FD_R.mds.active) ; 

In our model we make assumptions about at least one FGS being active at all times 
(shown), as well as assumptions about maximum discrepancies between left and right 
side pitch sensors, and a handful of other assumptions. These assumptions state 
maximum discrepancies in the pitch inputs in time and between the left and right 
sides. In order to prove the guarantees for the system, we need to pull in assumptions 
from the left and right FGSs and the autopilot. In the absence of circularity, the tools 
automatically compute the dependency order for reasoning: FCI < {FGS_L, FGS_R}, 
{FGS_L, FGS_R} < AP2. For circular dependencies, the user must decide an order (if 
it is required). In this instance, our proof did not require “same instant” assumptions 
between FGS_L and FGS_R, so the cycles can be broken and verification conditions 
produced automatically by our AGREE tool.  

The proof relies on the guarantees for the components {FGS_L, FGS_R, AP}, and 
uses the system level assumptions to discharge the component level assumptions. In 
addition, the Leader Selection pattern guarantees are brought in as additional facts 
which function as assumptions in the proof. Each set of assumptions and guarantees 
per component is between ½ page and 1 page of text, and the proof for this layer of 
the architecture can be discharged in ~5 seconds by the Kind model checker.  

                                                           
2  The set notation is a shorthand: X < {Y, Z} is the same as X <Y and X < Z. 
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7 Tool Environment 

We have produced a prototype implementation of all the tools described in this paper 
in a single Eclipse environment, shown in Fig. 4 . They have been designed to work 
with the open source OSATE AADL tool developed by the Software Engineering 
Institute.  

 

Fig. 4. Eclipse environment for our translation, pattern instantiation, and verification tools 

The SysML-AADL translator is implemented as an Eclipse plug-in. It provides a 
convenient way to import an initial block diagram model created in SysML into 
OSATE for further development.  

The pattern instantiation tool is implemented as an extension to the EDICT tool 
developed by WW Technology Group. EDICT provides a wide variety analysis 
capabilities for building dependable systems, and now includes the ability to modify 
the system design through application of the architectural patterns described above.  

We have developed two additional Eclipse plugins to implement the  
compositional verification approach described in this paper (AGREE), and a static 
analysis tool called Lute for verifying structural properties of AADL models. These 
tools are available for download through the AADL wiki page at 
http://wiki.sei.cmu.edu/aadl/index.php/RC_META.  

Complex structural assumptions and guarantees can be verified using the Lute 
checker. While Lute is similar to the to the REAL verification system [10], it provides 
several enhancements needed for the META project for specifying and checking 
complex structural properties. A Lute specification is made up of Lute theorems, 
which are computational checks over the structure of the model. A typical Lute 
theorem iterates over a select group of components and aggregates information about 
each before checking a Boolean condition. For example, a Lute theorem may iterate 
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over each process and verify that the maximum deadline for all threads in the process 
is less than or equal to the process deadline. The Lute code for this theorem is shown 
below: 

 theorem Process_Deadline_Greater_Or_Equal_Thread_Deadline 

   foreach p in Process_Set do 

   Thread_Deadlines := {Property(t, “Deadline”)  

    for t in Thread_Set | Owner(t) = p}; 

  check Max(Thread_Deadlines) <= Property(p, “Deadline”); 

  end; 

Since Lute theorems are purely computational, they can be executed without user 
interaction. Thus it is feasible to re-verify the Lute specification every time a 
structural change is made to the model. This enables instant feedback during model 
development.  

The AGREE tool uses the custom AADL property set PSL_Properties to add 
support for compositional reasoning to AADL. The PSL_Properties property set is 
currently implemented simply as an AADL string applied as follows:  

 property set PSL_Properties is 

  Contract: aadlstring applies to (system, process, thread); 

  Facts: aadlstring applies to (system, process, thread); 

 end PSL_Properties; 

That is, it supports contracts and facts on systems, processes, and threads specified as 
AADL strings. Verification of AADL models is performed through the translation of 
the AADL structure and subcomponent assumptions and guarantees into a form 
suitable for model checking. Currently the KIND model checker is supported, but it 
would be straightforward to add support for additional model checkers and theorem 
provers.  

In our initial implementation, subcomponents are assumed to operate synchronously 
with a one-step communication delay between connected subcomponents. This makes 
the analysis tractable and creates a sound approximation of the behavior of the system. 
Any error found during verification corresponds to an error in the actual system. The 
approximation is complete in the case of synchronous systems (e.g. systems using the 
PALS pattern), and incomplete in the general case. Incompleteness means that the 
absence of verification errors does not ensure that the system is correct.  

8 Conclusion 

The work described here was accomplished under the META program which had a 
period of performance of only 12 months. Consequently, what we have presented here 
is just a start in what we consider to be a very important and very interesting research 
area. There is much important work ahead of us.  

First, we plan to extend our compositional verification approach to include more 
complex models of computation. Synchronous computation platforms are found in 
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many avionics systems, but we also need to provide support for multiple execution 
rates, variable delays, and asynchronous computation.  

We have implemented four architectural design patterns to demonstrate the 
concept, but there are many more that we have encountered. In particular, there is a 
great deal of work on standard fault tolerance mechanisms with existing verification 
artifacts that would fit very well into our design pattern scheme.  

The technique we have used to embed contracts in AADL models is expedient but 
semantically shallow. An improved method for annotation of architecture models with 
formal contracts would allow much better integration with the system design and 
more robust tooling. A new AADL annex seems the best way to accomplish this. We 
would also to provide support for some of the features in SysML that are well-suited 
for capturing dynamic requirements, such as activity and sequence diagrams.  
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Abstract. In this paper, a safety case pattern is introduced to facilitate
the presentation of a correctness argument for a system implemented us-
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constructed for systems that are developed by applying model-based ap-
proaches.

Keywords: safety cases, safety case patterns, model-based development
approach, PCA infusion pump.

1 Introduction

A Patient Controlled Analgesic (PCA) infusion pump is one type of infusion
pump that primarily delivers pain relievers, and is equipped with a feature that
allows for additional limited delivery of medication, called bolus, upon patient
demand. We are developing a PCA implementation software by using the model-
based approach based on the Generic PCA model [2] and the Generic PCA safety
requirements [1] provided by the U.S. Food and Drug Administration (FDA) as
shown in [13].

According to FDAs Infusion Pump Improvement Initiative [15], the FDA has
received over 56,000 reports of adverse events associated with the use of infu-
sion pumps from 2005 through 2009. The FDA structured 510k guidance doc-
ument [14] to assist industry in preparing premarket notification submissions
for infusion pumps. These recommendations are intended to improve the quality
of infusion pumps in order to reduce the number of recalls and infusion pump
Medical Device Reports (MDRs). In 510k submissions, the FDA recommends
device manufacturers to submit infusion pump information (i.e., what beneficial
properties the manufacturer claims for the infusion pump and how those proper-
ties are supported by the provided evidences) through a framework known as an
assurance case [5]. This recommendation is the main motivation for our work.

� This research was supported in part by NSF CNS-0930647, NSF CNS-1035715, and
NSF CNS-1042829.
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An assurance case is a way to demonstrate the validity of a claim by providing
a convincing argument together with supporting evidence (e.g., testing results,
analysis results, etc.). The 510k guidance document specifically mentions the
safety case [11] that is a special form of the assurance case that addresses safety.
There is often commonality among the structures of the argument used in safety
cases. This commonality motivates the definition for the concept of safety case
patterns [11], which is an approach to support the reuse of safety arguments
between safety cases. For example, patterns extracted from a safety case built
for a specific product can be reused in constructing safety cases for other products
that are developed via similar processes.

We are constructing a safety case for the PCA implementation software. The
term “PCA implementation software” means the software code that is automat-
ically generated from the GPCA reference model, and then extended to interface
with the target platform [13]. The ultimate goal of this safety case construction
is to show that the PCA implementation software we developed is acceptably
safe, with the intention of providing a guiding example of safety cases for other
infusion pumps. We are constructing the PCA safety case concurrently with the
PCA implementation development. This concurrent development enables assur-
ance needs to drive development decisions [5].

The main contribution of this paper is to define a safety case pattern that
allows the incorporation of the belief in the model correctness obtained by
using formal methods in the development process. This pattern is appropriate in
constructing safety cases for infusion pumps those are developed using the model-
based approach. The paper is organized as follows: we start by briefly giving
background information in Section 2. Section 3 describes the main contribution
of the paper which proposes a safety case pattern. Related work is discussed in
Section 4. Finally, conclusions and ongoing work are given in Section 5.

2 Background

Two important concepts are used in this paper: “safety case patterns” and “the
model-based development”.

Safety case patterns [12] are defined to capture successful (i.e., convincing,
sound, etc.) arguments that are used within the safety case. Whenever a safety
case pattern is found to be appropriate to apply in a new safety case development,
then it is instantiated within this new safety case. Therefore, safety case patterns
allow reusing successful arguments among different safety cases. In essence, the
patterns concept attempts to encourage best practice in creating and reviewing
safety cases [6]. The Goal Structuring Notation (GSN) is one of description
techniques that has proven to be useful for constructing safety cases. Details
about GSN can be found in [11]. A number of extensions have been made to
GSN to define a safety case pattern language. Those extensions are given in [12].

Model-based development is the notion that we can build systems by con-
structing abstract representations of the system’s behavior and translating them
into something that executes on a target platform. A typical model-based ap-
proach includes the following steps: 1) modeling the system, 2) analyzing and
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verifying this model against the system requirements, 3) systematic transforma-
tion of the model into an implementation, and 4) validating the implementation
against the system requirements. We applied such model-based approach in de-
veloping the PCA implementation software. Therefore, one of the safety case
patterns we suggest (described in the Section 3) is an argument about the cor-
rectness of the implementation developed using the model-based approach.

3 The Proposed Safety Case Pattern

We are constructing a safety case for the PCA implementation software we are
developing. Due to the page limit, description for the entire PCA safety case is
not given. Instead, we concentrate on the safety case pattern extracted from the
PCA safety case. The proposed safety case pattern allows one to incorporate
the confidence in the model correctness obtained by using formal methods and
the confidence in the development process gained by using a well-established
development approach. This pattern is appropriate to be used when the system
is developed from the formal model using the model-based approach.

Figure 1 shows the GSN structure of the proposed from to pattern. Here, {to}
refers to the system implementation and {from} refers to a model of this system.
The claim (G1) about the implementation correctness (i.e., satisfaction of some
property (referenced in C1.3)) is justified not only by validation (G4 through
S1.2) but also by arguing over the model correctness (G2 through S1.1), and
the consistency between the model and the implementation created based on it
(G3 through S1.1). The model correctness (i.e., further development for G2) is
guaranteed through the model verification (i.e., the second step of the model-
based approach). The consistency between the model and the implementation
(i.e., further development for G3) is supported by the code generation from the
verified model (i.e., the third step of the model-based approach). Only part of the
property of concern (referenced in C2.1) can be verified at the model level due

S1.1
Argument over the 
{from} and the 
development 
mechanism

J

J1.1.1

Justify this strategy by 
defining the mechanism that 
was used to develop {to} 
from {from}

C1.1.1

Define the 
{from}

G2

The {from} satisfies {part 
of the specific property}

G3

The used development 
mechanism guarantees the 
consistency between the {from} 
part and the {to} part

G4

The {to} is validated 
against the {specific 
property}

S1.2
Argument by 
validation

G1

The {to} satisfies {specific 
property} in {intended 
environment}

C1.1

Define the {to}

C1.3
Define the 
{specific 
property} C1.2

Define the 
{intended 
environment}

C2.1

Define the {part of 
the specific 
property}

Fig. 1. The proposed from to pattern
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to the different abstraction levels between the model and the implementation.
However, the validation argument (S1.2) covers the entire property of concern
(referenced in C1.3). The additional justification given in (S1.1) increases the
assurance in the top-level claim (G1).

S1.1
Argument over the GPCA 
timed automata model and 
the development 
mechanism

J

J1.1.1

The model-based approach is 
used to develop the PCA 
implementation software based 
on the GPCA timed automata 
model.

C1.1.1

Link to the GPCA 
timed automata 
model

G2

The GPCA timed automata model 
satisfies the GPCA safety 
requirements that can be formalized 
and verified on the model level

C2.1

Link to the GPCA safety 
requirements that can be 
formalized and verified 
on the model level

G3

The used development mechanism 
guarantees the consistency between 
the GPCA timed automata model 
and the PCA implementation 
software

G4
The PCA implementation 
software is validated 
against the GPCA safety 
requirements

S1.2
Argument by validating the 
PCA implementation 
software againt the GPCA 
safety requirements

G1

The PCA implementation 
software satisfies the GPCA 
safety requirements in the 
intended environment

C1.1

The PCA implementation 
software means the software 
code generated from the GPCA 
reference model, and extended 
to interface with the target 
platform

C1.2

Define the intended environment 
based on the environment related 
GPCA safety requirements 
(sections 2, 6 and 4) and the 
environment interface as defined 
by the GPCA reference model.

C1.3

Link to the GPCA 
safety requirements 
document

Fig. 2. An instance of the from to pattern

Figure 2 shows an instantiation of this pattern that is part of the PCA safety
case. Based on [13], for this pattern instance, the {to} part is the PCA imple-
mentation software (referenced in C1.1), the {from} part is the GPCA timed
automata model (referenced in C1.1.1) and the GPCA safety requirements (ref-
erenced in C1.3) represent the concerned property. In this case, correct PCA
implementation means it satisfies the GPCA safety requirements that defined to
guarantee the PCA safety. The satisfaction of the GPCA safety requirements in
the implementation level (G1) is decomposed by two strategies (S1.1) and (S1.2).
The argument in (S1.1) is supported by the correctness of the GPCA timed au-
tomata model (G2), and the consistency between the model and the implemen-
tation (G3). The correctness of the GPCA timed automata model (i.e., further
development for G2) has been proved using the UPPAAL model-checker [4]
against the GPCA safety requirements that can be formalized (referenced in
C2.1). The consistency between the model and the implementation (i.e., further
development for G3) is supported by the code-synthesis from the verified GPCA
timed automata model. Not all the GPCA safety requirements (referenced in
C1.3) can be verified against the GPCA timed automata model [13]. Only the
part referenced in C2.1 can be formalized and verified in the model level (e.g.,
“no bolus dose shall be possible during the Power-On Self-Test”). Other require-
ments are not formalizable and/or cannot be verification against the model given
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its level of details (e.g., “the flow rate for the bolus dose shall be programmable”
cannot be formalized meaningfully and then verified in the model level).

Generally, using safety case patterns does not necessarily guarantee that the
constructed safety case will be sufficiently compelling. So when instantiating the
from to pattern, it is necessary to be able to provide justification for each taken
instantiation decision to guarantee that the constructed safety case is sufficiently
compelling. Guidance for justifying such decisions can be found in [8].

4 Related Work

Assurance cases for medical devices have been discussed in [18]. The work in [18]
can be used as staring point for the PCA safety case construction. A safety case
given in [10] was constructed for a pacemaker was also developed using the
model-based approach. This paper takes a step forward by proposing a safety
case pattern for the model-based approach. The concept of safety case patterns
was defined in [12]. Many safety case patterns were introduced in [3,11,17], but
none of them is defined to the model-based approach. Another set of patterns
are given in [16]. However, those patterns are introduced only by instantiation
examples, limiting their reuse.

The software contribution pattern introduced in [7] is related to the from to
pattern. Both concern software development and can be applied iteratively. How-
ever, the software contribution pattern is intended to show that the contribu-
tion made by the software to the system hazards are acceptably managed. The
from to pattern is intended to show the software satisfaction for some concerned
property, which can be used to address different aspects. The software contribu-
tion pattern is defined to be flexible enough and may be instantiated no matter
what development process is used. While the from to pattern is applicable only if
the development process guarantees consistency between the developed artifacts.
Focusing on a specific development approach (i.e., model-based development)
breaks the advantage of the flexibility. The propagation of the correctness be-
tween tiers is not part of the software contribution pattern itself [8]. In contrast,
the from to pattern argues over the correctness propagation from the {from} ar-
tifact to the {to} artifact. This argument strengthens the assurance in the {to}
correctness (i.e., the pattern top-level claim).

5 Conclusions

Our ongoing work is constructing a safety case for the PCA infusion pump sys-
tem that we are developing. In the development of the PCA implementation,
we applied the model-based approach starting from the GPCA model. Here, we
suggest a safety case pattern that can be instantiated to argue about the cor-
rectness of implementations developed using the model-based approach. Where
the correctness (i.e., satisfaction of required properties) of the implementation
is justified not only by validation but also by arguing over the model correctness
and the preservation of this correctness through the development process.
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In addition to constructing a safety argument for the PCA infusion pump,
we are also working on constructing confidence arguments that are necessary to
increase the confidence in the developed safety argument as suggested in [9].
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Abstract. The problem of ensuring control software properties hold
on their actual implementation is rarely tackled. While stability proofs
are widely used on models, they are never carried to the code. Using
program verification techniques requires express these properties at the
level of the code but also to have theorem provers that can manipulate
the proof elements. We propose to address this challenge by following
two phases: first we introduce a way to express stability proofs as C
code annotations; second, we propose a PVS linear algebra library that
is able to manipulate quadratic invariants, i.e., ellipsoids. Our framework
achieves the translation of stability properties expressed on the code to
the representation of an associated proof obligation (PO) in PVS. Our
library allows us to discharge these POs within PVS.

1 Introduction

Critical computing systems, typically driving machinery or vehicles, are those
in which failure may result in unacceptable human losses. Examples of critical
systems include fly-by-wire controls on an aircraft or on a manned spacecraft,
radiation therapy equipment, and nuclear power plant safety systems. Digital
computation facilitates the design and the implementation of complex control
algorithms. The software implementation of a control law can be inspected by
analysis tools [7,22,24], however these tools are often challenged by issues for
which solutions are already available from control theory.

Control theory is a branch of engineering that focuses on the behavior of
dynamical systems. The desired output of a system is called the reference point.
When one or more output variables of a system need to follow a certain reference

� This work was supported by the National Aeronautics and Space Administration
under NASA Cooperative Agreement NCC-1-02043, the National Science Founda-
tion under Grant CNS - 1135955, the Army Research Office under MURI Award
W911NF-11-1-0046, the Air Force Research Laboratory as part of the CertaAMOR
program, the Dutton/Ducoffe Professorship at Georgia Tech, FNRAE CAVALE
project, and Spanish MEC project TIN2009-14562-C05-04.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 147–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



148 H. Herencia-Zapana et al.

over time, a controller manipulates the inputs of the system to obtain the desired
effect on its output. The objective of control theory is to calculate a proper action
from the controller that will result in stability for the system, that is, the system
will hold the reference point and not oscillate around it. Among the different
mathematical approaches to prove stability of the controller or the controlled
system, Lyapounov based stability relies on ellipsoid characterization and the
so-called S-procedure [3,14,15]. These works also address the expression of the
proof as C code annotation, but do not give means to automate this expression
nor to prove it on C code.

Program verification based on deductive methods uses either automatic deci-
sion procedures or proof assistants to ensure the validity of user-provided code
annotations. These annotations may express the domain-specific properties of
the code. However, formulating annotations correctly (i.e., precisely as the do-
main expert really intends) is nontrivial in practice [2,12]. By correctly, we mean
that the annotations formulate stability properties of an intended mathematical
interpretation from control theory.

The challenges of domain-specific code annotation arise along two directions.
First, the domain knowledge has its own inherent complexity. When considering
control theoretic issues, the annotations need to allow the expression of stability
properties using ellipsoids and the S-procedure in the way that was proposed
in [3,14,15]. Second, the code annotations are meant to be manipulated by au-
tomatic theorem provers. But most of the automatic decision procedures are
restricted to decidable logics such as Boolean satisfiability or linear arithmetic,
which are generally too weak to express the desired user-defined and domain-
specific code annotations.

In order to solve these two challenges this paper proposes an axiomatisation
of Lyapunov-based stability as C code annotations, and the implementation of
linear algebra and control theory results in PVS [28,26], respectively. The mech-
anism of theory interpretations [27] enables the translation of POs expressed on
the C code as PVS control theory proof obligations. The proof of these obliga-
tions can then be discharged using control theory results expressed and proved
with our PVS linear algebra library.

Related works. To our knowledge, apart from the work of [3,14,15], no other
research endeavor addresses the issue of proving in the C code the high-level
correctness properties of control systems such as stability. Some successful at-
tempts have been made at extracting quadratic invariants from the code, in [1]
and [13].

Regarding the prover part of our framework, the developments of tools that
support the proof of properties in real arithmetic or real linear algebra is a cur-
rent concern. However these early development do not cover the entire range of
mathematics and are often restricted to specific sub-areas. For example a recent
project, Coquelicot, develops real functional analysis , Gaussian elimination and
basic properties of matrices and determinants for the Coq proof assistant [18].
Generic design patterns were proposed to define algebraic structures[17]. For-
malization and instrumentation of Euclidean spaces also appears to be a new
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concern for Isabelle/HOL [20]. We should also mention automatic decision pro-
cedures for floating point arithmetics, such as Gappa [11]. A PVS formalization
of multivariate Bernstein polynomials was presented in [25]. In general however,
none of these recent extensions of theorem provers are able to deal with the
properties of interest in this paper.

Outline. Section 2 reminds the reader of elements of control theory software
analysis [3,14,15], i.e., it describes the controller stability proof and its expression
as C code annotations with Hoare triples. It also discusses issues to be handled
on the theorem prover part, mainly the need for two main theorems: one related
to ellipsoids and one on the S-procedure. Section 3 introduces our axiomatisation
of stability proofs as C code annotations using Hoare triples. Section 4 presents
the implementation of linear algebra and theorems related to ellipsoids in PVS.
Finally, Section 5 explains how we plan to map POs generated from the Hoare
triple stability annotations to PVS, using theory interpretation in PVS, and how
to use the ellipsoid library to discharge these POs. Last, Section 6 concludes the
paper and discusses future research.

2 Stability and Correctness

2.1 Expressing and Proving Stability of a Control System

The basic module for the description of a controller can be presented as

ξ(k + 1) = f(ξ(k), ν(k)), ξ(0) = ξ0

ζ(k) = g(ξ(k), ν(k))

where ξ ∈ Rn is the state of the controller, ν is the input of the controller and
ζ is the output of the controller. This system is bounded-input, bounded state
stable if for every ε there exists a δ such that ||ν(k)|| ≤ ε implies ||ξ(k)|| ≤ δ, for
every positive integer k. If there exists a positive definite function V such that
V (ξ(k)) ≤ 1 implies V (ξ(k + 1)) ≤ 1 then this function can be used to establish
the stability of the system; for more details see [8]. This Lyapunov function, V ,
defines the ellipsoid {ξ| V (ξ) ≤ 1}, this ellipsoid plays an important role for the
stability preservation at the code level, for more details see [3,14,15].

2.2 Hoare Triple and Deductive Methods

Since their early formalization by Hoare [21] and later by Dijsktra [10], deduc-
tive methods from Hoare triple to weakest precondition computation have been
widely used on imperative code.

In his initial proposal, Hoare requires a program to be annotated line by
line by the invariants that should hold at each program point. He also provides
instruction-specific rules that ensure the soundness of the code with respect to
the annotation system.



150 H. Herencia-Zapana et al.

Because it was, in general, not realistic to require a line-based set of anno-
tations, Dijkstra later proposed the weakest precondition computation and the
verification conditions, that automatically generate a PO with respect to a Hoare
style annotation for a block of instructions. Most software analysis tools which
use Hoare Logic are based on this algorithm.

Our current approach does not consist in automating the proof of stability,
but rather, given a stability proof, to check the proof automatically. As was
suggested in [3,14,15], we consider a line-by-line annotation of the code, allowing
a Hoare-like reasoning approach to the program.1

In general, Hoare proofs are sound, i.e., the proved property indeed holds, if
and only if the program terminates. They are complete if the underlying logic –
the one used in pre- and post-condition – is complete.

2.3 Application to Controller Stability: An Ellipsoid-Aware Hoare
Logic

We present here the two main patterns used in stability proofs. The main con-
cerns are: to relate quadratic invariants and affine or linear combinations of
variables on the one hand – the ellipsoid affine combination theorem; and to
extract one quadratic invariant out of implications between several quadratic
invariants on the other hand – the S-procedure.

Ellipsoid affine combination theorem. The use of ellipsoids to formally specify
bounded input, bounded state stability was proposed in [3,14,15] following prior
work [6]. Stability is then expressed as a predicate stating that the system state
remains in a given ellipsoid. Typically, an instruction S would be annotated in
the following way:

{x ∈ EP } y = Ax+ b {y − b ∈ EQ} (1)

where the pre- and post- conditions are predicates expressing that the variables
belong to some ellipsoid, with Ep = {x : Rn|xTP−1x ≤ 1} and Q = APAT .

The mathematical theorem that guarantees the relations in (1) is now stated:

Theorem 1. If M , Q are invertible matrices, and (x− c)TQ−1(x− c) ≤ 1 and
y = Mx+ b then (y − b−Mc)T (MQMT )−1(y − b−Mc) ≤ 1.

We will refer to it as the ellipsoid affine combination theorem. More details about
this result in the context of control theory can be found in [6,23].

The S-procedure. A second common need is to prove the implication between two
quadratic invariants. In the initial Hoare proposal [21], the post-condition of a

1 or equivalently a limited-depth Dijkstra weakest precondition.
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{P1} S1 {Q1}
{Q1} nil {P2}
{P2} S2 {Q2}

Fig. 1. Conseq. rule

statement is exactly the pre-condition of its successor. A
consequence rule allows to transform a post-condition of
a statement into another pre-condition for the following
statement. This can be understood as the introduction of a
nil statement that contains this translation of predicates
as illustrated in Figure 1. This unavoidable step allows software analyzers to
manipulate the annotations along the code. The PO associated to this new nil

statement is Q1 =⇒ P2.
A frequent proof pattern when using ellipsoid-based stability proofs is to show

that the inequality xTPx ≤ 1 implies yTQy ≤ 1. Such implications are usually
difficult to prove. We need to give conditions under which, given symmetric
matrices A0 and A1, statement 2. implies statement 1. in the following:

1. ∀x ∈ Rn : xTA1x ≥ 0 =⇒ xTA0x ≥ 0

2. ∃a ∈ R : ∀x ∈ RnxT (A0 − aA1)x > 0

From [3,14,15], a typical property for the composition of Hoare triples is to prove
that the implication

{xc ∈ EP , y2c ≤ 1} implies {Acxc +Bcyc ∈ EP , y2c ≤ 1}

is a consequence of the inequality

(Acxc +Bcyc)
TP (Acxc +Bcyc)− μxTPx− (1− μ)y2 ≤ 0.

This type of property may be proved using the following theorem, which the
S-procedure [6,23] is a by-product of.

Theorem 2. Let the real valued functionals σk : Rn → R where k=0, 1, 2, . . . , N
and consider the following two conditions:

1. S1: ∀y ∈ Rn : (∀k = 1, 2, . . . , N : σk(y) > 0) =⇒ σ0(y) ≥ 0
2. S2: There exists τk ≥ 0, k = 1, 2, . . . , N such that

σ0(y)−ΣN
k=1τkσk(y) > 0, ∀y ∈ Rn.

Then S2 =⇒ S1.

The S-procedure is the method of verifying S1 using S2.

3 Defining Quadratic Invariants as Code Annotations

Now that we know the annotations that we want to generate on the code, we
have to find a concrete way to express them on actual C code. The ANSI/ISO
C Specification Language (ACSL) [5] allows its user to specify the properties
of a C program within comments, in order to be able to formally verify that
the implementation respects these properties. This language was proposed as
part of the Frama-C platform [9], which provides a set of tools to reason on
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both C programs and their ACSL annotations. ACSL offers the means to extend
its internal logic with user-defined theory, i.e., types, constructors, functions,
predicates and axioms.

We outline the axiomatisation in ACSL to fit our needs, which consist of
expressing ellipsoid-based Hoare triples over C code. We first present the ax-
iomatisation of linear algebra elements in ACSL. Then we present the Hoare
triple annotations in ACSL and the POs generated by them.

3.1 Linear Algebra in ACSL Predicates

The following abstract types are declared: matrix, vector, integer, and real. With
these abstract types, basic matrix operations and properties are introduced
: a component of the matrix is a real number accessed using the function
mat select (matrix A, integer i, integer j), total number of rows and columns
are integers accessed with mat row(matrix A), and mat col(matrix A), respec-
tively. The multiplication of a matrix with a vector is defined with function
vect mult(matrix A, vector x), which returns a vector. The concatenation of vec-
tors x and y, itself a vector, is accessed through Vconcat(vector x, vector y).
Addition and multiplication of 2 matrices, multiplication by a scalar, and in-
verse of a matrix are declared as matrix type as follows:

mat add(matrix A,matrix B), mat mult(matrix A,matrix B)

mat mult scal(matrix A, real a), and mat inverse(A).

The matrix operations are defined axiomatically, for example the inverse of a
matrix A, mat inverse(A) is defined using the predicate is invertible(A) as follows:

/*@ axiom mat inv select i eq j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i == j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 1
@

@ axiom mat inv select i dff j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i! = j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 0
@*/

ACSL

In the same axiomatic way, the main matrix operations are declared. Complex
constructions or relations can be defined as uninterpreted predicates, i.e., with
no associated axiom. The semantics of those predicates are introduced in PVS,
as discussed in section 5. The following predicate is meant to express that vector
x belongs to EP :
//@ predicate in ellipsoid(matrix P, vector x);

ACSL

And last, a set of typing functions, associated to a set of axioms, such as
mat of array or vect of array, is used to associate an ACSL matrix type to a
C array.
//@ logic matrix mat of array{L}(float *A, integer row, integer col);

ACSL
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3.2 Linear Algebra Code Annotations

The paramount notion in ACSL is the function contract, [7]. It can be understood
as a Hoare triple for a whole function. The key word requires is used to introduce
the pre-conditions of the triple, and the key word ensures is used to introduce its
post-conditions. Dealing with a low-level language has its disadvantages: we need
to deal with memory issues. In general, we want all functions to be called with
valid pointers as arguments, i.e., valid array and therefore valid matrices. This is
what the built-in ACSL predicate valid does. The followings snippet shows how
the contract can be written using mat select and mat of array,

/*@ requires (valid(a + (0..3)));
@ ensures ∀integer i, j; 0 ≤ i < 2 && 0 ≤ j < 2
@ ==> mat select(mat of array(a, 2, 2), i, j) == 0;
@ */

void zeros 2x2(float* a)

{ a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

ACSL

In the following example the uninterpreted predicate in ellipsoid is used:

/*@ requires

@ (valid(xc + (0..1))) && (valid(yc)) && (valid(u)) &&

@ in ellipsoid(Qmu,Vconcat(vect of array(xc, 2), vect of array(yc, 1)));
@ ensures

@ in ellipsoid(Ubound , vect of array(u, 1)) &&

@ in ellipsoid(Qmu,Vconcat(vect of array(xc, 2), vect of array(yc, 1)));
@ */

void inst2(float* xc, float* yc, float* u)

{ u[0] = 564.48*xc[0] - 1280*yc[0]; }

ACSL

where Qmu, C = [564.48 0 −1280] are matrices and

Ubound = mat inv(mat mult(mat mult(C,mat inv(Qmu)), transpose(C)))

One important assumption which will be made throughout the rest of this article
is that all computations in the program yield their exact, real result. Errors due
to floating point approximations are thus not taken into account. The Frama-C
toolset offers the possibility of making this assumption by including the pragma
’JessieFloatModel(Math)’. Verification conditions are then generated with no
concern for floating point computations.

3.3 Generating Proof Obligations

Frama-C tools do not require an annotation at each line as proposed by Hoare.
They rather rely on Dijkstra-style weakest precondition calculus to compute the
backward semantics of the function code S to the post-condition Q and generate
the weakest pre-condition wp(S,Q) that guarantees to obtain Q after executing
S. The generated PO is then P =⇒ wp(S,Q) where P is the pre-condition.
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Focusing on single line contract, i.e., the Hoare annotations as described
in [21], these tools will generate the following two kinds of POs when used with
ellipsoid-based annotations.

First, we have the POs associated with the use of the ellipsoid affine combi-
nation theorem, see Equation 1:

in ellipsoid(matrix P , vector x)
IMPLIES

in ellipsoid(matrix Q, vector (vect mult(matrix A, vector x))

ACSL

One can remark that both axiom-based and uninterpreted predicates are ex-
pressed in the same way. The only difference is that axiom-based predicate def-
initions appear in the other generated files of the proof obligation generation
phase.

Second, we have the POs associated with the use of the S-procedure, cf. The-
orem 2:

in ellipsoid(A1, x) IMPLIES in ellipsoid(A0, x)
IF AND ONLY IF

in ellipsoid(mat add(A0,mat mult scal(A1, a)), x)

ACSL

For both POs, we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically. We must then discharge the verification
conditions using the appropriate theorem. This is done by using PVS and a linear
algebra extention of it, presented below.

4 Linear Algebra in PVS

First, we define matrices, vectors, etc. in PVS in a way that can be used to
interpret in ellipsoid and S-procedure. Second, we provide the main theorems
and basic principles of linear algebra in PVS that are needed to support this
interpretation. General linear algebra references include [19,4,16].

4.1 Bases for Linear Algebra in PVS

We first define maps as follows:

Mapping:TYPE=

[# dom: posnat, codom: posnat, mp: [Vector[dom]->Vector[codom]] #]

PVS

This is the set of functions that take a vector and return a vector. A linear map
is defined as a map h ∈ Mapping with the linear property h(ΣN

i=0(a(i)x(i))) =
ΣN

i=0(a(i)h(x(i))). this property in PVS is expressed as follows:

linear_map_e?(h,l,n,m): bool = h‘dom=n and h‘codom=m and

∀(x: Vector[l], F: [below[l]->Vector[n]]):

h‘mp(Σl−1
i=0x(i)*F(i)) = Σl−1

i=0(x(i)*(h‘mp(F(i))))

linear_map_e?(n,m)(h): bool = ∀(l): linear_map_e?(h,l,n,m)

Map_linear(n,m): TYPE = {h: Map(n,m) | linear_map_e?(n,m)(h)}

PVS
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The algebra of matrices is the set of matrices together with the operations ad-
dition, multiplication and multiplication by scalar, and these operations satisfy
the associative and commutative properties. The algebra of linear maps is the
set of linear maps with the operations of composition and multiplication and
preserving the associative and commutative properties [4,16]. We define the op-
erator L(n,m) from the algebra of linear maps Map linear(n,m) to the algebra
of matrices Mat(m,n) as follows:

L(n,m)(f) = (# rows:=m, cols:=n, matrix:=λ(j,i): f‘mp(e(n)(i))(j) #)
PVS

where f∈ Map linear(n,m). We define the operator T(n,m) from Mat(m,n) to
Map linear(n,m) as follows:

T(n,m)(A) = (# dom:=n, codom:=m,

mp:=λ(x,j):
ΣA‘cols−1

i=0 (λ(i): A‘matrix(j,i)*x(i)

#))

PVS

With these two operators connecting linear maps and matrices, the following
PVS lemmas prove the isomorphism between them:

Iso : LEMMA bijective?(L(n,m))

Iso_T : LEMMA bijective?(T(n,m))

PVS

Because of the isomorphism between these two operators, the following lemma
holds:

L_inverse: LEMMA inverse(L(n,m))=T(n,m)
PVS

More practical lemmas for proving properties in PVS are:

map_matrix_bij: LEMMA ∀(A:Mat(m,n)): L(n,m)(T(n,m)(A)) = A

iso_map: LEMMA ∀(f:Map_linear(n,m)): T(n,m)(L(n,m)(f)) = f

PVS

An important consequence of the isomorphism is the relation between the op-
erations of the isomorphic spaces. For example, the composition of two linear
maps is equivalent to the multiplication of their corresponding matrices:

comp_mult: LEMMA ∀(g: Map_linear(n,m),f:Map_linear(m,p)):

L(n,p)(f o g) = L(m,p)(f)*L(n,m)(g)

PVS

and the addition of two linear maps is equivalent to the addition of their corre-
sponding matrices:

iso_add: LEMMA ∀(f, g:Map_linear(n,m):

L(n,m)(f + g) = L(n,m)(f) + L(n,m)(g)

PVS

The main reason for the isomorphism is to define the inverse of a matrix; one
condition for the existence of the inverse in linear maps is that the linear map
needs to be bijective. The space of matrices having inverses is defined in PVS as
follows:

Matrix_inv(n):TYPE =

{A: Square | squareMat?(n)(A) and bijective?(n)(T(n,n)(A))}

PVS
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where Square is the type of matrices having the same number of rows and
columns, squareMat?(n)(A) is the type of matrices having the same number of
rows and column and equal to n, and the predicate bijective?(n)(T(n,n)(A))
expresses that the linear map, T(n,n)(A), associated to a matrix A is bijective.

The inverse operator, inv(n), maps Matrix inv(n) to Matrix inv(n) and is
defined as follows:

inv(n)(A) = L(n,n)(inverse(n)(T(n,n)(A)))
PVS

It is important to note that the operators L, T and the isomorphism play an
important role in this definition. The main lemmas for the matrix inverse are
proved in PVS, such as: the multiplication of the matrix and its inverse is equal
to the identity matrix, I(n), the inverse of a transpose matrix is equal to the
transpose of its inverse or the distributive property of the inverse over matrix
multiplication.

The PVS libraries also have basic lemmas from the matrices theory such as
the solution to a matrix equation, the transpose of matrix multiplication, and
the multiplication of matrix transpose and vectors.

One important point of this development is that the conditions under which
the inverse of a matrix exists is that the linear map associated to the matrix
is a bijective map. A common test for the existence of the inverse of a matrix
is that the determinant of the matrix be not equal to zero, The equivalence
between these two conditions needs to be implemented in PVS for which more
mathematical theories such as multi-linear forms, convex spaces, and so forth
are currently under development. The two conditions of S-procedure, i.e., The-
orem 2, were implemented as follows:

s1_condition?(m)(beta: fun_constraint(m),f: Map_linear(n,1)):

bool = FORALL (x: Vector[n]):

pos_constraint_point?(m)(beta,x)

IMPLIES

f‘mp(x)(0) >= 0

PVS

s2_condition?(m)(beta: fun_constraint(m),f: Map_linear(n,1)):

bool = EXISTS (r: pos_scalar_family(m)):

(FORALL (x: Vector[n]): f‘mp(x)(0) -

sigma(0,m - 1, LAMBDA(i): r(i)*beta(i)‘mp(x)(0)) >= 0)

PVS

We are still working on the proof of the equivalence of these two conditions, one
result that is needed for the proof is the Hyperplane theorem, which is a theorem
from real analysis currently under development in PVS.

4.2 Ellipsoid Affine Combination Theorem in PVS

The implication associated to Equation 1 can be proved using the following
theorem implemented in PVS.
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ellipsoid_affine_comb: LEMMA

∀ (n:posnat, Q, M: SquareMat(n), x, y, b, c: Vector[n]):

bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))

AND (x-c)*(inv(n)(Q)*(x-c))≤ 1

AND y=M*x + b

IMPLIES

(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c))≤ 1

PVS

This lemma was proved in PVS, the main part of the proof was to show that
replacing y by M ∗ x+ b in (y− b−M ∗ c) ∗ (inv(n)(M ∗ (Q ∗ transpose(M))) ∗
(y− b−M ∗ c)), we obtain (x− c) ∗ (inv(n)(Q) ∗ (x− c)). In order to manipulate
(y− b−M ∗ c)∗ (inv(n)(M ∗ (Q∗ transpose(M)))∗ (y− b−M ∗ c)) the following
PVS lemmas trans mat scal, prod inv oper, tran inv oper, transpose product
and basic properties of SigmaV were used.

5 Mapping ACSL Predicates to PVS Linear Algebra
Concepts

On the one hand, using ACSL and the Frama-C framework, we were able to
generate POs about the ellipsoid predicate. Frama-C tools even make it possible
to express the PO in PVS, along with a complete axiomatisation in PVS of C
programs semantics. On the other hand, we have developed a PVS library that
is able to reason about these properties.

We now must link these two worlds: ACSL ellipsoids predicate proof obligation
in PVS must be connected with with our linear algebra PVS library. We first
propose to relate ASCL constructs to PVS Linear Algebra library elements and
achieve a proof on the latter. A current ongoing approach, presented at the end
of the section, is to automate this mapping using theory interpretations in PVS.

5.1 Mapping ACSL Predicates to PVS Linear Algebra

Frama-C tools automatically generate the proof obligations (POs) associated
with a function contract, in our case, a Hoare triple. Depending on the back-end
used, the PO can be expressed either to target an automatic decision procedure
such as an SMT-solver, or to target a proof assistant, like Coq or PVS.

Using the PVS back-end, both the PO and all the axiomatisation of C seman-
tics and all ACSL defined theories and predicates are expressed in PVS files.
We now map PVS-encoded version of ACSL predicates into their PVS linear
algebra library equivalent. A few examples of how such a mapping is performed
are given in the rest of this section.

The ACSL logic function mat of array(ptr, n,m), when put through the PVS
back-end, appears with an additional argument, mat of array(ptr, n,m,mem),
which describes the memory state at the point where the function is used. The
mapping for this function and the accessor mat select are as follows:
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mat of array(ptr, n,m,mem) = A where

A ∈ Matrix, A‘rows = n, A‘cols = m
FORALL (i: below(A‘rows), j: below(A‘cols)):
A‘matrix(i,j) = select[real, floatP](mem, shift[floatP](ptr, i*n+j))

mat select(A, i, j) = A‘matrix(i,j) where A ∈ Matrix

PVS

The select and shift functions are part of the axiomatisation of C semantics
pertaining to memory access.

Function mat inverse and predicate is invertible are interpreted as follows:

mat inverse(matrix A) := inv(n)(A)

is invertible(matrix A)

:= square?(A) AND squareMat?(n)(A) AND bijective?(n)(T(n, n)(A))

PVS

And the following axiomatic definition of inverse

/* @axiom mat inv select eq: ∀ matrix A, integer: i, j; i=j

@ is invertible(M) =⇒ mat select(mat mult(A, mat inverse(A)),i,j) = 1

@*/

ACSL

is mapped to the following lemma:

LEMMA squareMat?(n)(M) and bijective?(n)(T(n,n)(M)) and

i=j and i≤n

IMPLIES

(M*inv(n)(M))‘(i,j) = 1

PVS

which was also proved, using the concepts introduced in the linear algebra library
and basic properties in PVS.

In the same way we develop the interpretation for the basic matrix opera-
tors such as addition, transposition, multiplication by scalars, multiplication by
vectors, and so forth.

5.2 Discharging Proof Obligations

We now sketch the typical use of our framework to prove a specific Hoare triple.
We consider the following single line function annoted with ellipsoid-based pre-
and post-condition. This function corresponds to the definition of the linear
combination of matrices as presented in Equation (1).

/*@ requires (valid(xc + (0..1))) && (valid(yc)) && (valid(u)) &&

@ in ellipsoid(Q mu, Vconcat(vect of array(xc,2), vect of array(yc,1)));

@ ensures in ellipsoid(U bound, vect of array(u,1)) &&

@ in ellipsoid(Q mu,Vconcat(vect of array(xc,2), vect of array(yc,1)));

@ */

void inst2(float* xc, float* yc, float* u) {
u[0] = 564.48*xc[0] - 1280*yc[0];

}

ACSL
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Using Frama-C and its PVS back-end on these annotations generate the fol-
lowing PVS PO:

FORALL ... in_ellipsoid(Q_mu,

Vconcat(vect of array(xc, 2, floatP_floatM),

vect of array(yc, 1, floatP_floatM))) IMPLIES

FORALL (result: real) :

result = select[real, floatP](floatP_floatM, shift[floatP](xc, 0))

IMPLIES

FORALL (result0: real) :

result0 = select[real, floatP](floatP_floatM, shift[floatP](yc, 0))

IMPLIES

FORALL (floatP_floatM0: memory[floatP, real]) :

floatP_floatM0 = store[floatP, real]

(floatP_floatM, u, 564.48 * result - 1280.0 * result0)

IMPLIES in ellipsoid(U_bound, vect of array(u, 1, floatP_floatM0))

AND in ellipsoid(Q_mu,

Vconcat(vect of array(xc, 2, floatP_floatM0),

vect of array(yc, 1, floatP_floatM0)))

PVS

In order to discharge this PO, we first give a meaning to the predicate
in ellipsoid.

in ellipsoid(matrix P, vector x)=x*(inv(n)(P)*x)≤ 1
PVS

Then, after skolemisation, we can split the conjunction in the consequence and
prove the two implications using the ellipsoid affine combination theorem in
PVS, presented in paragraph 4.2.

5.3 Theory Interpretations

Theory interpretation is a logical technique for relating one axiomatic theory to
another. This technique makes it possible to show that one collection of theories
is correctly interpreted by another collection of theories under a user-specified
interpretation for the uninterpreted types and constants. PVS supports theory
interpretations [27]. A theory instance is generated and imported, while the
axiom instances become POs to ensure that the interpretation is valid. Interpre-
tations can be used to show that an implementation is a correct refinement of a
specification, or that an axiomatically defined specification is consistent.

We outline here a possible use of theory interpretation to automate this map-
ping between the two theories. This will be developed as future work.

Jessie to PVS. The Jessie plugin translates obligations to uninterpreted types
and constants of PVS. When generating the PVS file associated to an annotated
C file, all ACSL definitions and the generated POs are declared under a new the-
ory acsl theory. This theory contains new types, for example, the uninterpreted
type matrix. To provide an interpretation for matrix, we first import the inter-
preting theory matrices, then we import the uninterpreted theory acsl theory

with mappings for matrix, matselect, mat mult, etc., as shown below.
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importing matrices

importing acsl theory{{ matrix := Matrix,

mat_select := λ M, i, j: M‘matrix(i, j),

mat_mult := *,

. . . }}

PVS

This action generatesPOs corresponding to the axioms of the theory acsl theory.
In a similar fashion, all uninterpreted predicatesmay be given interpretations, and
any axiom instances become POs. In the early stages of development, predicates
such as in ellipsoid may not have axioms provided in Jessie, in which case there is
no guarantee of soundness. However, the system still generates POs corresponding
to type correctness conditions (TCCs).

6 Conclusion and Future Work

We have described a global approach to validate stability properties of C code im-
plementing controllers. Our approach requires the code to be annoted by Hoare
triples, following [3,14,15], proving the stability of the control code using ellipsoid
affine combinations and S-procedure.

We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates. This library
contains matrices, linear maps, ellipsoid affine combination theorem, isomor-
phism between matrices and linear maps and theirs basic properties. The
PVS libraries can be found at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-
library/pvslib.html.

We have also outlined an approach based on theory interpretation that maps
proof obligations generated from the code to their equivalent in this new PVS
library. This mapping allows to discharge POs using the ellipsoid affine combi-
nation and S-procedure theorems implemented in PVS.

Currently we are working on the automatic translation, using theory inter-
pretations, of POs in ACSL about matrices properties into POs in PVS and
discharging these POs using our linear algebra libraries. We are also working on
the proof of the S-procedure in PVS, which involves more mathematical results
such as hyperplane theorem, multilinear forms etc. As future research we are
going to develop PVS strategies for automatically discharging proof obligation
generated from the ACSL annotations of the control code and also to prove the
equivalence between Det(A) �= 0 and the inversibility of matrix A.

Acknowledgments. The authors would like to thank Dr. A. Goodloe for his
suggestion of the use of the Frama-C toolset and his help in axiomatising of
linear algebra in ACSL.
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Abstract. We introduce Temporal Action Language (TAL). We design
TAL as a key component of our approach that aims to semi-automate
the process of consistency checking of natural language temporal require-
ments. Analysts can use TAL to express temporal requirements precisely
and unambiguously. We describe the syntax and semantics of TAL and
illustrate how to use TAL to represent temporal requirements.

1 Introduction

Requirements such as “a node should re-identify itself within 10 seconds after
making a connection to the server or the server will drop the connection in 2
seconds” describe temporal dependencies among events. Such temporal require-
ments are common in software projects. Temporal requirements may be inconsis-
tent. Detecting inconsistencies of temporal requirements is essential and should
take place before the design phase so that the cost of revisions can be mini-
mized. Automating or partially automating the process is crucial as the task,
when performed manually, is time consuming and error-prone.

There has been much research on formal methods for automating the process
of requirements analysis [7,9,8,4]. Analyzing temporal constraints automatically
requires that they be expressed in a low-level formal language for which good
automated reasoning tools are available (such as temporal logic [13] and timed
automata [1], which have been used with success to analyze real-time systems
[2,12]). Researchers typically assume that formal representations are already
given and focus on methods and tools for analyzing them. Our approach is
different as it assumes the requirements are stated in natural language, and so
addresses the needs of the most typical scenario when software requirements are
given as a free-flow narrative (cf. the example above).

Our main contribution is a controlled language called Temporal Action Lan-
guage (TAL). We propose it as a key component of a process aiming to minimize
the time and effort required to check the consistency of temporal requirements
specified in natural language. Translating such requirements faithfully into low-
level formal languages is difficult due to the significant “distance” between natu-
ral language text and formal expressions in logic, ambiguity common in natural
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language descriptions of requirements, importance of implicit information, and
insufficient formal method background of analysts. We introduce TAL as a bridge
between natural language and the low-level target language used for reasoning.
This naturally leads to a two-stage process: (1) creating a TAL theory that de-
scribes the system and (2) detecting conflicts in the TAL theory. Each stage can
be further decomposed into multiple manageable tasks.

The first stage requires identifying temporal requirements; gathering domain
information; making relevant, shared (or commonsense) knowledge explicit; re-
moving ambiguity in requirements; and expressing them in TAL. Analyst involve-
ment in the first stage will be necessary. However, we believe natural language
processing (NLP) and information retrieval (IR) techniques can effectively assist
analysts in the task. The second stage consists of translating TAL theory into
low-level logic formalism and using its tools to reason about the TAL theory.
That stage can be fully automated.

We want to use TAL as an effective bridge between natural language and
a low-level logic, and we designed TAL with the following desiderata in mind.
First, the syntax of TAL must be close to that of natural language because
the readability of TAL is crucial to the effectiveness and efficiency of the first
stage. High readability significantly reduces the time and effort required to ver-
ify and validate the TAL theories generated in this stage. Second, theories in
TAL must have a well-defined semantics so that correct automated translations
of TAL theories into target languages are possible. Third, we want TAL to be
capable of specifying the temporal constraints that people may find in software
requirements. Specifically, we want TAL to model the prerequisites and effects
of actions, and the time bounds on which actions start and end. Although the
overall approach is still under development, we have collected anecdotal evi-
dence suggesting readability of TAL theories as well as feasibility of automating
translations of TAL theories into formal systems.

2 Temporal Action Language TAL

Syntax. We use TAL to specify temporal constraints on times when events
occur. Such events include the start and end of actions and the change of system
properties (fluents). We design TAL as an extension of Action Language AL [3]
which allows us to specify actions and fluents, but not temporal information.

A TAL theory is a triple (AD ,IC ,TC ) where AD is the set of action defini-
tions, IC is the set of initial constraints, and TC is the set of temporal constraints.
The action definitions describe the actions by specifying their prerequisites and
effects, all expressed as fluents (boolean properties). The syntax of AD is that
of AL. In particular, AD consists of expressions of the following form:

State constraint L if P (1)

Dynamic causal law A causes L if P (2)

Executability condition impossible A1, . . . , Ak if P (3)
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where L and P are lists of fluents and their negations, and A,A1, . . . , Ak are
actions. State constraint (1) says that L holds (every fluent and the negation of
a fluent in L holds) in every state in which P holds (in the same sense as L).
Dynamic causal law (2) describes the effects of actions. Executability condition
(3) specifies the prerequisites of actions. For example:

connect(serA, nodeA) causes connected(nodeA, serA) if systemOn

says that executing the action connect(serA, nodeA) when the system is on re-
sults in nodeA and serA being connected, and

impossible identify(nodeA, serA) if ¬ connected(serA, nodeA)

specifies the prerequisite of the action identify(nodeA, serA).
The second component of a TAL theory, IC , consists of initial constraints

defining the initial state of the system. An initial constraint is an expression:
initially L , where L is a fluent.

The presence of the component TC in a TAL theory is the key feature that
distinguishes TAL from AL. TC specifies temporal information including tem-
poral constraints and action durations.

A duration specification is an expression: duration Act x unit, where Act
is an action, x is a positive number, and units refers to a time unit such as a
millisecond, second, or minute.

Temporal constraints describe temporal relationships among the times when
events occur. Temporal conditions are the basic component of temporal con-
straints. A temporal condition models the temporal relationship between the
occurrence time of two events. In TAL, each action Act is associated with two
prompts : commence Act and terminate Act, which represent starting and suc-
cessfully finishing action Act. In TAL one can relate two consecutive occurrences
of the same action to each other. To distinguish between them, TAL provides
the keywords previous and next. A temporal condition is of the form:

〈timeReference〉 @ 〈timeComparator 〉 [〈timeModifier 〉] 〈timeReference〉

The expression 〈timeReference〉 represents the occurrence time of the event. That
time can be startTime (the time when the system starts), prompt (the time
when the prompt occurs), a fluent, or its negation (the time when the fluent
starts or ceases being true). The expression 〈timeComparator 〉 [〈timeModifier 〉]
specifies the temporal relationship between these two time moments. In TAL,
we use <, ≤, =, ≥, or > for 〈timeComparator 〉. The parameter timeModifier is
optional. It modifies the time t given by the second timeReference expression as
in “x seconds before t” or “x milliseconds after t,” where x > 0. For example,
in TAL, the temporal condition “serA drops the connection to nodeB 5 seconds
after it establishes a connection to nodeA” can be written as:

commence dropConn(serA, nodeB) @ = 5 seconds after
terminate estConn(serA, nodeA)
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The basic form of a temporal constraint is:

if A1 and . . . and Ak, then B1 or . . .or Bm;

where A1, . . . , Ak and B1, . . . , Bm are temporal conditions or their negations
(temporal conditions can be viewed as special temporal constraints with k = 0
and m = 1). In TAL, one can express “if a connected node does not re-identify
itself to the server within 10 seconds after the connection is established, the server
shall drop the connection within 2 seconds” as:

if not terminate identify(nodeA, serA) @ ≤ 10 seconds after
terminate estConn(serA, nodeA),
then terminate dropConn(serA, nodeA) @ ≤ 2 seconds ;

Semantics. We base the semantics of a TAL theory (AD , IC ,TC ) on a transi-
tion system TAD of the action description component AD . The use of transition
systems as the semantics of action language theories was proposed by Gelfond
and Lifschitz [6]. That approach applies also to AL [3]. In an AL transition sys-
tem, states are combinations of fluents and their negations. Arcs between states
are labeled with actions because AL assumes that only actions can cause the
system to change its state. Since TAL’s action description AD is in the syntax
of AL, we create the transition system TAD essentially in the same way as in
AL but with two modifications. First, the arcs in TAD are labeled with prompts.
This is because the prerequisites and effects of actions specified in AD can be
viewed as prerequisites of the corresponding commence prompts and effects
of the corresponding terminate prompts. Second, some arcs are labeled with
the term time as some fluents in TAL can change value simply because of time
passing (for instance, a message becomes “old” if it is in the queue for more than
20 seconds – no action is required for that).

A sequence 〈s0, pr0, s1, pr1, . . . , sx−1, prx−1, sx〉 is a path in a transition sys-
tem TAD if all si are states, all pri are prompts or time, s0 satisfies all initial
constraints, and if for each i = 0, . . . , x− 1, 〈si, pri, si+1〉 is a transition in TAD.
A path in TAD represents a scenario, the evolution of the state of the corre-
sponding system as the result of prompts (time) labeling the arcs, assuming we
disregard action durations and temporal constraints.

A path does not show when the events occur. We define a timed path as a se-
quence 〈s0, pr0, t0, s1, pr1, t1, . . . , sx−1, prx−1, tx−1, sx〉,where 〈s0, pr0, s1, pr1, . . . ,
sx−1, prx−1, sx〉 is a path and for every i = 0, . . . , x − 1, ti < ti+1. The times ti
are the times when the system is to progress from state si to si+1. The question
of consistency of temporal requirements is that of the existence of arbitrarily long
timed paths satisfying all temporal constraints in TC .

Let p be a timed path and t a time in the time range of p (not greater than
the time of the last state change). It is straightforward, albeit tedious, to spec-
ify when B holds at time t on p. For instance, let B stand for prompt1 @ =
x seconds after prompt2. If the most recent occurrence of prompt1 before or
at t is at time t′ and at time t′ + x there is an occurrence of prompt2, then we
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say that the condition holds at B. There are several such cases to cover. We
omit details due to space limits. Next, we define a temporal constraint to be
satisfied on p at time t if at least one temporal condition in the consequent of
C evaluates to true whenever all temporal conditions in the antecedent evaluate
to true (interpreting t as “now”). Finally, we say that a temporal constraint C
holds on a path p if C holds at every time t within the range of p.

Consistency Checking. Consistency of a TAL theory means the existence of
arbitrarily long timed paths. It guarantees that there is no inconsistency in tem-
poral requirements. A weaker notion of bounded consistency means the existence
of a timed path with a given bound on its time range. It guarantees that no in-
consistency in temporal requirements can exhibit itself prior to the bound. The
larger the bound, themore accurately the notion approximates that of consistency.
Other interesting questions are whether an event can (or will) occur within a given
time bound, or whether a system can (will) satisfy a certain property while run-
ning. Since TAL is a formal system, a promising approach to decide (bounded)
consistency and related questions is to develop translations to low-level logic sys-
tems and use automated reasoning tools that are available for them.

3 Validation

To date, we studied bounded consistency and experimented with translations of
the TAL representation of the problem of existence of a timed path of bounded
length into answer-set programming (ASP) [10,11]. We selected ASP because it
is well suited for modeling search problems and has fast solvers [5]. We created
an example scenario with multiple temporal requirements and represented it as a
TAL theory. We manually translated the TAL theory into an answer-set program.
We used a solver, clingcon [5], to process it. We found that when the requirements
were consistent, clingcon returned at least one answer set that represents a valid
scenario. Upon modifying the requirements to make them inconsistent, clingcon
did not return any timed paths. The experiment shows the feasibility of reasoning
about consistency of temporal requirements given in TAL by translating them to
low-level target logics and then using automated reasoning tools.

We also wrote sixteen natural language temporal requirements and their cor-
responding TAL statements. We selected four people with various computer
science backgrounds, from working in industry for years as a requirements en-
gineer to having a bachelor’s degree in computer science. We briefly introduced
the syntax of TAL to them and asked them to rate the similarity in meaning of
the natural language statements and their formal TAL representations (we used
a scale from 0, completely different, to 5, exactly the same). The mean rating
for the sixteen pairs was 4.76. The result shows that the participants found TAL
statements to be unambiguous and easy to understand.

4 Discussion and Future Work

This paper presents the language TAL for specifying temporal requirements. It
extends AL by allowing users to specify temporal dependencies among events
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using temporal conditions and constraints. The syntax of TAL is close to nat-
ural language and, based on anecdotal evidence, easy to follow. The semantics
are based on the concepts of transition systems and timed paths. Checking for
(in)consistency of temporal requirements is reduced to creating TAL expres-
sions from natural language requirements since, once the TAL representation is
available, it can be processed in a fully automated way.

Future work includes automating the translation from TAL to ASP and cre-
ating tools based on natural language processing and information retrieval to
assist analysts in generating TAL theory based on requirements given in natural
language. We will also study temporal logics and timed automata as possible
target formalisms. Finally, we will perform systematic experiments to validate
the scope and feasibility of the approach.

Acknowledgment. This work is funded in part by the National Science Foun-
dation under NSF grant CCF-0811140 and JPL grant 1401954.
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Abstract. The mathematical concept of real numbers is much richer
than the double precision numbers widely used as their implementation
on a computer. The field of ‘exact real arithmetic’ tries to combine the
elegance and correctness of the mathematical theories with the speed of
double precision hardware, as far as possible. In this paper, we describe
an ongoing approach using the specification language ACSL, the tool suite
Frama-C (with why and jessie) and the proof assistant Coq to verify
central aspects of the iRRAM software package, which is known to be a
fast C++ implementation of ‘exact’ reals numbers.

1 Introduction

The verification of programs using double precision numbers often is very compli-
cated: the semantics of this number format does not coincide with the semantics
of real numbers, i.e. with the definitions and results found in textbooks on cal-
culus. On the other hand, it is possible to implement ‘exact’ real numbers in
software ([BK08, OS10, Mue01, Les08, Lam07], to name a few), so here verifi-
cation should be a lot easier and could concentrate on mathematical aspects of
the problem and not on the peculiarity of the double precision numbers.

Some of these ‘exact’ implementations have already been verified themselves:
[Les08] used Haskell/PVS, [OS10] used Haskell/Coq, and [BK08, Bau08] used
OCaml/Coq. Unfortunately, these implementations are much slower in general
than simple computations with double precision, and also much slower than
other implementations for real numbers like [Mue01, Lam07]. So what we would
like to have is one implementation of real numbers that is exact, fast and proven
to be correct at the same time.

This motivates an ongoing project started in 2010 where we try to verify at
least central aspects of the iRRAM software package [Mue01], which is known to
be a fast C++ implementation of exact reals numbers. Unfortunately, we do not
know of any tools for direct verification of C++ programs, so we took the following
approach: Using the specification language ACSL, we specify the semantics of
core routines of the package, then we use the tool suite Frama-C (with why and
jessie) as well as the proof assistant Coq in order to verify versions of these
routines that have been manually transformed from C++ to C. Currently, we

� This work was partially supported by the DFG project 446 CHV 113/240/0-1.
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use frama-c-Nitrogen-20111001, why-2.30 and Coq 8.3pl2; some proofs have
already partly been rewritten to use why3-0.71 instead of why-2.30. Automatic
provers like Alt-Ergo or CVC3 could be used to verify some conditions of our
test examples, but none of them could do a complete verification.

There are two objectives behind the project: the internal goal is just to verify
correctness of the iRRAM package, while the external goal is to develop verification
tools for other users of exact real arithmetic.

Our approach works in 4 levels, that are treated in parallel:

1. core level: arbitrarily precise floating-point numbers (mainly internal use)

2. interval level: interval arithmetic (mainly internal use)

3. basic arithmetic level: basic operations on real numbers (mainly internal use)

4. application level: non-basic operations and user tools (mainly external use)

As an example consider the multiplication x∗y of real numbers: although level 3
(basic arithmetic) is not yet fully proven, we can already use the multiplication
as an exact operation on level 4 (applications). In this paper we will describe
parts of this level 4, so basic real operations are assumed to be working correctly.

In section 2, we will briefly describe the background of exact real arithmetic,
which will motivate why we emphasize the correct behavior of the verified rou-
tines concerning exception handling. Chapters 3 and 4 describe the tools we use,
section 5 contains a detailed example and section 6 gives a short summary.

We estimate that until now about 5% of the complete package have been
proven: The package consists of about 800 functions and 12000 lines of code,
30 central functions have been considered so far. As the specifications on the
different levels are mutually dependent, both specifications and proofs might
have to be readjusted later.

2 Exact Real Arithmetic

As the set IR of real numbers is not countable, implementing real numbers must
be significantly different from an implementation of countable sets like the nat-
ural or even rational numbers. The theoretical background here is usually called
‘computable analysis’ or ‘type-2-theory of effectivity’, see [BHW07, We00]: a real
number x is represented as a sequence (rn)n∈IN of rational numbers rn with a
known rate of convergence. Usually this convergence is expressed as a constraint
‘∀n : |x − rn| ≤ 2−n’, i.e. x represented as a converging sequence (In)n∈IN of
intervals, where In := {y ∈ IR : |y − rn| ≤ 2−n}. ‘Exact real arithmetic’ now
tries to use similar concepts to implement real numbers on real-world computers.

Functional languages are ideal candidates here, and there exist quite many
prototypical implementations based on this programming paradigm: [OS10],
[BK08], [Les08], just to name a few. Unfortunately, the performance of these
approaches is usually very bad and they can only be used for academic exam-
ples. Newer functional based implementations try to improve the performance
using ‘stateful’ functional programming (e.g., [BK08] using monads in OCAML).
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Imperative or object-oriented programming languages, as a different paradigm,
first have to be enhanced with mechanisms to work with infinite objects like se-
quences. This is often done by explicit construction of computation diagrams,
see e.g. [Lam07]. The performance already increased dramatically, compared to
the functional approaches. Unfortunately, the diagrams need a lot of memory.

Already in 1996, the iRRAM package was presented, where computation dia-
grams were avoided. Instead, iterations of the underlying numerical algorithm
are used. This can easily be achieved using the concept of exceptions in C++:
The algorithm under consideration is executed with interval arithmetic where
each real number is represented by a single (initially quite imprecise) interval. If
during the computation these intervals grow too large to get satisfactory results,
an exception is thrown and the algorithm is executed with smaller intervals.
This is repeated until the results are precise enough, i.e. until the algorithm
finishes without throwing any exceptions. Although this idea seems to waste
computation time, it turned out to be amazingly fast and the memory impact is
neglectable compared to approaches previously mentioned: the iRRAM can some-
times perform a billion of dependant operations in a few seconds, where the size
of the computation diagrams alone would easily amount to more than 100GB.

In this paper, the main focus is on how we deal with this aspect of exceptions.

3 Verification of C Programs

To verify the iRRAM we use a combination of the proof assistant Coq and the
frameworks Frama-C and Why. Coq is a theorem prover which can be used to
formulate and proof theories. Frama-C is a static analysis framework for the C

programming language which for example provides tools for dead code elimi-
nation (Spare Code) but also for formal verification of C programs through a
plugin called jessie. The framework Why can be seen as a general verification
condition generator. It takes an annotated program as input and is able to gen-
erate verification conditions for that input for several proof assistants including
Coq.

In order to verify a C program we first have to provide a formal specification of
the program. For that we give a formal (predicative) description of the semantics
of the C program using the so called ANSI C Specification Language (ACSL). As
a C program usually consists of a large collection of functions, each of them has
to be annotated with a so called ‘function contract’.

Next, the annotated C program serves as input to the jessie plugin and then
to Why, which is generating the verification conditions in Coq. Having done that
we then have to prove that our program in fact is correct with respect to its
specification.

4 From C++ to C

First we have to translate the C++ code to C code for the purpose of verification.
In fact our specifications and even the resulting correctness proofs should easily



Some Steps into Verification of Exact Real Arithmetic 171

be adaptable as soon as there is a verification tool for C++ programs (e.g. as an
extension to the jessie plugin) since the semantical description should differ
only slightly (e.g. to describe that a function may throw an exception).

We had to consider the following C++ concepts in order to get a reliable trans-
lation from C++ to C: (a) classes, (b) constructors and destructors, (c) operator
overloading, and (d) exceptions.

(a) Classes can be translated to structs in C. Of course, classes are equipped
with a collection of methods for manipulating instances of objects. Additionally,
the visibility modifiers like private do not have a counterpart in C. Currently,
we simply treat everything to be public.

Taking into account that methods implicitly have access to the ’this’-pointer,
every method of n parameters is actually a function with n+1 parameters, where
the first parameter is a pointer to the object itself:

// C++ c l a s s f o r r e a l numbers
c l a s s REAL {
p u b l i c :
doub l e a s d oub l e ( con s t i n t p ) con s t ;
. . .

// t r a n s l a t i o n to C
typ ed e f s t r u c t REAL { . . . } ∗REAL ;
. . .
doub l e a s d oub l e ( con s t REAL t h i s ,

con s t i n t p ) ;

(b) The C language does not have constructors and destructors. Fortunately
it is easy to detect where constructors are called, so we can replace them by
corresponding C functions. Destructors are much harder to handle, as they are
almost always called implicitly at the end of a lifetime of objects. Currently we
simply ignore the destructors (and rely on a hypothetical garbage collection).

(c) Operator overloading is very useful to keep syntactical structures simple.
This especially holds for mathematical software, where writing x · y · z simply
as x*y*z instead of mul(mul(x,y),z) can significantly improve readability and
reduce errors at the same time. The translation, however, is tedious but quite
trivial, as soon as we know the involved classes. Since C does not support over-
loading we have to define a function with a name of its own:

// C++ v e r s i o n
f r i e n d REAL ope r a to r

∗ ( con s t REAL& x , con s t REAL& y ) ;
f r i e n d REAL ope r a to r

∗ ( con s t REAL& x , con s t i n t& y ) ;

// t r a n s l a t i o n to C

REAL REALREAL mul (REAL x , REAL y ) ;

REAL REALint mul (REAL x , i n t y ) ;

(d) The exception mechanism is the most complicated aspect. For JAVA, e.g.
the Krakatoa tool[MPMU04] contains a signals construct for the functions
contracts to represent exceptions. C itself does not have exceptions, so ACSL does
not have any support for exception handling. So currently we have no option for
an easy specification of the (vital) exceptions.

We choose to model exceptions by extending the source code: A global pointer
exception is introduced in the C version carrying the information about any
thrown exceptions. As long as this pointer remains 0, no exception occurred. So
using a multiplication z=x*y can be modeled in fact as

{REAL tmp = REALREAL mul ( x , y ) ; i f ( e x c e p t i o n != 0) r e t u r n 0 ; z=tmp ;}

On the application level, this is sufficient for verification, as these exceptions
are not caught by the application but by the runtime environment of the iRRAM
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(which is still unverified). To verify this runtime environment, however, we will
really need to translate all aspects of the exceptions, maybe using the C functions
setjmp and longjmp (that are not yet supported in Frama-C).

5 Example

As an example for a verified function we consider the power function computing
xn with x ∈ R and n ∈ N, n ≥ 0. A working implementation in the iRRAM is:

REAL power ( con s t REAL& x , i n t n ) {
REAL y=1;
f o r ( i n t k=0; k<n ; k=k+1) { y=y∗x ; }
r e t u r n y ; }

Translated to C we get:

REAL REALint power ( con s t REAL x , i n t n ) {
REAL y ;
{ REAL tmp = REAL from int32 ( 1 ) ; i f ( e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}
f o r ( i n t k=0;k<n ; k=k+1)

{ REAL tmp = REALREAL mul ( y , x ) ; i f ( e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}
r e t u r n y ; }

The corresponding function contract in ACSL is build as follows: With requires,
we express that the caller has to ensure that x points to a valid (i.e. correctly
constructed) data structure for real numbers and that n is non-negative. The
assigns part describes the side effects which may happen by calling the function:
in our case both the result of the function as well as the exception pointer
might be modified. Finally the ensures part expresses that in the program
state immediately after returning from the function the result points to a valid
real object and represents the n-th power of x, unless an exception was thrown.

/∗@
r e q u i r e s va l i d REAL ( x ) && n >= 0 ;
a s s i g n s \ r e s u l t , e x c e p t i o n ;
e n s u r e s e x ce p t i o n==0 ==> ( va l i d REAL (\ r e s u l t )

&& real of iRRAM REAL (\ r e s u l t ) == \pow( real of iRRAM REAL ( x ) , n ) ) ;
∗/
REAL REALint power ( con s t REAL x , i n t n ) ;

The last part of the ensures clause is very important here: This is the mathe-
matical statement we want to prove, i.e. that the result is the n-th power of x.
The function real_of_iRRAM_REAL is actually a logical defined function map-
ping iRRAM REALs to the ideal reals Coq knows about, and pow is mapped
to Coqs power function. As every interpretation of the value of REAL data will
happen via similar mappings, REAL is an implementation of real numbers.

What remains to be done for our example is the formal proof in Coq, for which
we enhance the source code with the following loop invariant in ACSL:

/∗@
loop i n v a r i a n t va l i d REAL ( y ) && 0 <= k <= n &&

real of iRRAM REAL ( y ) == \pow( real of iRRAM REAL ( x ) , k ) ;
l oop v a r i a n t n−k ;
∗/

f o r ( i n t k=0;k<n ; k=k+1)
{ REAL tmp = REALREAL mul ( y , x ) ; i f ( e x c e p t i o n != 0) r e t u r n 0 ; y=tmp ;}
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The variant expresses that the (non-negative) value n−k is decreasing, so that
we are able to prove that the loop eventually terminates. Having done this we
were able to finish the proof of correctness for our example.

6 Summary

As the example showed, the mathematical part of the verification of iRRAM

algorithms on the application level turns out to be quite easy, as we can rely
on the exactness of the operations (unless exceptions occur) and we can use the
knowledge already present in Coqs libraries on real numbers. Meanwhile, we are
also quite certain that the conversion from C++ to C could be done automatically,
e.g. by some suitable pre-compilation, at least as far as we need it.

Currently, we would like to concentrate first on other parts of the whole veri-
fication: one important task here will be to replace 32- or 64-bit integers almost
everywhere by a fast (and verified) datatype for Z using a similar concept as for
real numbers: either operations are correct in the mathematical sense (so with-
out any overflow), or an exception has to be thrown. Then our power operator
would not just be correct for 32-bit numbers but for arbitrary n ∈ Z.

A far goal is to address total correctness, i.e. to identify those cases where no
exceptions will be thrown. This will be much harder to do, as equality of real
numbers is not decidable. Additionally, out-of-memory errors will be very hard
to predict, as they depend on the necessary precision in a computation.
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ysis. In: Barry Cooper, S., Löwe, B., Sorbi, A. (eds.) New Computational
Paradigms: Changing Conceptions of What is Computable, pp. 425–491.
Springer, New York (2008)

[Lam07] Lambov, B.: Reallib: An efficient implementation of exact real arithmetic.
Mathematical Structures in Computer Science 17(1), 81–98 (2007)

[Les08] Lester, D.R.: Theworld’s shortest correct exact real arithmetic program? In:
Proc. 8th Conference on Real Numbers and Computers, pp. 103–112 (2008)
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1 NICTA Software Systems Research Group
2 The Australian National University

Abstract. A dynamic security mechanism for Android-powered devices based
on runtime verification is introduced, which lets users monitor the behaviour of
installed applications. The general idea and a prototypical implementation are
outlined, an application to real-world security threats shown, and the underlying
logical foundations, relating to the employed specification formalism, sketched.

1 Introduction

Most mobile platforms, such as Android [8], which is an open-source software stack
designed to power tablet PCs and smart phones, offer built-in security mechanisms to
protect users from various types of malware, often designed to spy on users or to exert
control over (parts of) a mobile device’s functionality. An example for the latter con-
sists in the sending of SMS messages secretly, without the user’s consent (cf. [11]).
However, the existing security mechanisms obviously cannot stop or prevent the ris-
ing number of attacks on these platforms: In its Q1/2011 threats report, security firm
Kaspersky remarks that “since 2007, the number of new antivirus database records for
mobile malware has virtually doubled every year.” In case of the Android platform,
security firm McAfee asserts in its Q2 threats report that, in fact, “Android OS-based
malware became the most popular target for mobile malware developers.” In light of
these developments various authors have proposed improvements to the built-in secu-
rity mechanisms of mobile platforms, and in particular to the Android platform which,
right now, constitutes the fastest growing platform on the market, and offers researchers
the advantage that its source code is freely available.

Arguably, two of the most feature-complete and well-documented security enhance-
ments recently made for Android are TaintDroid [4] and the Saint framework [12].
TaintDroid is an extensive modification of the entire Android stack that tracks the flow
of sensitive data through third-party applications at runtime. The modifications allow
TaintDroid to detect when sensitive data is leaked in whatever form, e.g., by sending an
email or SMS containing the sensitive data, or by uploading a file directly. To cater for
all these different scenarios, TaintDroid “taints” sensitive information to keep tracking
its use throughout the system. The central components of the Saint framework described
in [12] are a modified Android application installer and a so called AppPolicy Provider.
The custom installer ensures that at install-time only applications which do not vio-
late policies stored in the AppPolicy Provider can be installed. The authors of Saint
have gone to great lengths to check existing applications’ permissions for suspicious
permission requests and from that derived practically useful policies for that purpose.

While Saint is, more or less, true to Android’s own security mechanisms, which are
mostly based on assigning permissions statically to third-party applications, thereby
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deciding which operations an application may or not perform at runtime, TaintDroid
goes further, in that it controls what happens with data at runtime. The latter, however,
comes at a price, in that such a high level of system instrumentation results in up to 27%
runtime overhead [4]. Moreover, an expected downside of such a comprehensive system
modification is to try and keep up to date with future releases of Android, which is under
active development by a world-wide consortium of OEMs. As long as said consortium
does not adapt (and thereby maintain) TaintDroid officially, it will be difficult to install
and adapt it for off-the-shelf devices.

Our aim therefore, is to introduce a more light-weight, yet dynamic security ex-
tension to Android based on a technique known as runtime verification. In a nutshell,
runtime verification subsumes techniques that aid in showing that an observed system
behaviour satisfies or violates a given specification, often given in terms of automata
or logic (cf. [1]). The methods developed in this area typically help to automatically
generate a monitor from a given specification, such that at runtime one must not con-
sider/store the entire behavioural trace, but merely consume observations in a step-wise
and therefore efficient manner. That is, the monitor passively observes the system and
raises an alarm if a specification is violated, or switches itself off if a specification has
been satisfied. While the complexity of monitor generation, depending on the specifica-
tion formalism at hand, can be very high (sometimes multiple exponents), the runtime
complexity is usually constant-time for each new observation. Runtime verification
has been employed in safety-critical contexts, but recently also emerged as a generic
monitoring and testing methodology for Java (cf. [7,3]). Here, we use it specifically
to enhance system security, in that we monitor the individual behaviours of third-party
applications, installed on Android devices. To this end, users can specify what consti-
tutes a “suspicious behaviour”, e.g., an application starts at boot-time, later checks the
device’s GPS location, and then connects to the internet (possibly to transmit the loca-
tion). For each such policy, our implementation automatically creates a monitor that,
once active, will raise an alarm when such a sequence of events was produced by any
installed application. Admittedly, not every application which queries the GPS and then
connects to the internet is malicious, but many so called “spywares” are disguised as
seemingly harmless toy (e.g., wallpaper) applications, which have no legitimate reason
to behave in the aforementioned way.

Our proposed changes to Android are minimal compared to frameworks such as
TaintDroid, yet also target the runtime behaviour of applications rather than Android’s
static permissions. Unlike TaintDroid, however, our goal was not to trace data at run-
time, but to use simple behavioural specifications to detect a whole range of malicious
applications. In the area of computer security, this is known as behavioural detection,
where the aim is not to identify malware by comparing the applications in question
with signatures stored in a database, but to detect the behaviour of known and future
malware, which is expected to be similar to existing malware (for a survey cf. [10]).

2 Android Security Concepts in a Nutshell

Let us briefly discuss the important Android security concepts that are relevant to this
paper. Note that the aim of this section is not to give a comprehensive overview of the
Android architecture or its security concepts (cf. [8,9,5] for that).
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Firstly, Android applications and most of the Android stack are written in Java,
whereas a modified Linux kernel serves as the platform’s low-level OS. Applications
on Android are “sandboxed”, meaning that each executes within its own virtual ma-
chine, and, from an OS point of view, as unique user; that is, unlike standard Linux
processes, which inherit the UID of the user who started them, Android applications
all have a unique UID. In other words, each application is treated as an individual user
from the low-level OS’s point of view1. This strict “sandboxing” basically ensures that
one application cannot modify (or even read—unless dedicated inter-process API calls
are being made) the data of another installed application. Unfortunately, however, it is
generally not true that the harm caused by a malicious application, is therefore restricted
to its “sandbox.” In fact, as also pointed out above, there are countless ways in which a
malicious application could exploit the device’s capabilities, or spy on its users.

Whether or not an application is allowed to use a certain functionality that an An-
droid device offers is primarily determined at install-time, when the standard Android
installer presents to the user a list of required application permissions. Users cannot re-
voke individual permissions that they may not feel comfortable with or that they do not
understand, rather they need to grant all permissions or cannot install the application.
In consequence, many users do not review the permissions at install-time [6]. In fact,
Android’s permission system is predominantly static, meaning that once an application
is installed, users have basically no means of controlling that application’s runtime be-
haviour. For example, once an application has been granted permission to send SMS, it
may do so in the background without requesting further user confirmation. According
to the official documentation [9], the lack of dynamic security mechanisms is a design
principle: “Android has no mechanism for granting permissions dynamically (at run-
time) because it complicates the user experience to the detriment of security.” Note that
the situation on other mobile platforms, like Nokia’s Symbian OS, is similar (cf. [2]).

3 Modelling Security Policies

We assume a set of predicate symbolsP = P∪R, such that P∩R = ∅. Security policies
in our framework are based on the grammar ϕ ::= p(t1, . . . , tn)|r(t1, . . . , tn)|¬ϕ|ϕ ∧
ϕ|Xϕ|ϕUϕ|∀(x1 , . . . , xn) : p. ϕ, where p ∈ P , r ∈ R are n-ary predicate symbols,
ti terms, and xi variables. The term structure is determined by variables and function
symbols of given arities. For a ground term t, t ↓ denotes its actual value, e.g., (2 +
3) ↓ yields 5, assuming the usual arithmetic functions to be part of our language and
interpreted accordingly. Variables range over specific domains such as strings, integers,
or any finite domain. Hence, in a statement ∀x : p. ϕ, p’s arity, p : τ → B, uniquely
determines the sort of variable x to be τ . We model observed application behaviour in
terms of actions which, in turn, are represented by ground atoms. Sets of actions are
called events. An application’s behaviour, seen over time, is therefore a finite trace of
events, e.g., {sms(1234)}{login(“user”)} . . . That is, the occurrence of some ground
atom sms(1234) in some trace at position i ∈ N0 means that at time i it is the case
that sms(1234) is true. As is standard, the semantics of this language is defined via

1 There is an exception to this rule, but this is not relevant to this paper: applications which share
a developer’s signature may run under the same UID.
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w, i |= p(t1, . . . , tn) iff p(t1 ↓, . . . , tn ↓) ∈ w(i);
w, i |= r(t1, . . . , tn) iff r(t1 ↓, . . . , tn ↓) is true; w, i |= ¬ϕ iff w, i �|= ϕ;
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ; w, i |= Xϕ iff w, i + 1 |= ϕ;
w, i |= ϕUψ iff there exists k ≥ i s.t. w, k |= ψ and w, j |= ϕ, for all i ≤ j < k;
w, i |= ∀(x1, . . . , xn) : p. ϕ iff w, i |= ϕ[c1/x1, . . . , cn/xn], for all p(c1, . . . , cn) ∈ w(i).

Fig. 1. Kripke semantics of the language wrt. infinite trace w and position i therein

infinite traces (see Fig. 1). Note how, unlike symbols from P , symbols from R do not
obtain their interpretations via the trace, but by some computational means assumed to
be available in the background when evaluating a policy over some trace.

At runtime, a monitor checking ϕ, will only see a prefix of an infinite trace, denoted
u, and therefore return� if u is a good prefix of ϕ, ⊥ if u is a bad prefix, and ? otherwise.
This is akin to the 3-valued finite-trace semantics for LTL introduced in [1], except that
our monitor not necessarily reports minimal prefixes. For brevity, we cannot give a
detailed, step-wise semantics of our monitor, but refer the reader to Sec. 4 for an outline
of our algorithm based on the well-known concept of formula progression. Let us now
look at example policies, specified in this language and the usual syntactic “sugar”.

Recall the promise of our approach and, more generally, of behavioural detection is
that it allows not only the detection of specific, known malware, but of new threats
as they appear, so long as their damaging behaviour, exhibited on a device, is suf-
ficiently similar to already known malware. Indeed, the databases by security firms
such as McAfee, not only list specific malicious applications for Android, but entire
evolutions, classified by abstract IDs, such as Android/NickiSpy, to indicate that there
exist multiple incarnations of the same malware, realised in differently branded ap-
plications. Android/NickiSpy, for example, represents a family of applications which
secretly record a user’s phone conversation on SD card in the compressed .amr format
(adaptive multi-rate). We can detect this family of malware via a simple policy,

G∀x : sd write. ¬regcomp(x, “.*\.amr”),

where regcomp(x, y) is true if the string x, in this case representing a file name, is in
the language given by the regular expression that is represented by string y. However,
should there be legitimate recording of .amr files to SD card, the user is always able to
ignore any reported violations of this policy.

As another example, consider the first ever Android Trojan (Trojan-SMS.Android-
OS.FakePlayer.a), disguised as media player, which secretly sent SMS messages to
expensive premium numbers [11]. This led us to monitor a more general behaviour,
i.e., to be notified if any application sends an SMS to a number not in our contacts:

G∀x : sms. contact(x).

While there may be legitimate violations of this policy, its monitoring at least lets users
keep track of which applications exhibit this type of behaviour. It’s then up to them to
decide to remove an application, if they feel it is not justified.

Finally, a lot of malware is “spyware”, meaning that private user data or device details
are sent out to remote locations. For example, all applications of type Android/Actrack.
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A send GPS location, battery and radio status to a central internet server controlled by
the vendor at regular intervals. A policy we may want to monitor in regards to that, more
generally, could be “no application should request the GPS location, and later connect
to the internet (possibly to transmit said location)”, which is captured by the following
formula, where connect(x) appears in a trace whenever the application under scrutiny
triggers the Linux system call connect to IP address x, and gps whenever it requests
the device’s current location:

G(¬((F∃x : connect) ∧ gps)).

4 Implementation

Linux kernel
(C API)

user space

kernel space

Monitor
application

App-
lications

trace
operations

syscalls

events

Custom
kernel

module

Android Framework
(Java API)

Fig. 2. Architecture

Currently, our monitors are realised in terms of a
stand-alone Android application, written in Java,
with a simple GUI that allows users to enter poli-
cies. As Android applications are “sandboxed”
and therefore unable to monitor each other, we
also had to modify the Android stack to facilitate
runtime verification in the above sense. To this
end, we made some very small, local modifica-
tions to exactly two files of the Android system in
order to get notified when an application requests
permission to perform specific operations or when
system events are created, e.g., an application tries
to send an SMS message, the system reports low
battery status, etc. It is our expectation that this way, our changes will easily carry over
to future releases of the platform. Unfortunately, however, it is not possible to obtain
all relevant data by intercepting the high-level Android permission checks. In many
cases, Android directly consults the underlying, low-level OS if an application is al-
lowed to perform an operation, e.g., based on the application’s UID membership in a
Linux group. Examples are the opening of a network socket or the writing to an SD
card. But also to extract the actual phone number of an outgoing SMS message, we
need to monitor the Linux write system call (or rather, its arguments) as there are
no means to obtain this information in user space without having to modify many addi-
tional Android files, but then much to the detriment of portability and maintainability of
our solution. For reasons of modularity, we “outsourced” this type of information gath-
ering in our own kernel module that dynamically loads during boot2. The architecture
is sketched in Fig. 2, where the grey areas are constituents of our system, and arrows
indicate relevant information flow.

The actual monitoring of a temporal logic formula is currently realised by means of
formula progression; that is, for each formula ϕ and each application, there is a function
prog, taking a first-order LTL formula and an event as input and returning a first-order
LTL formula, such that σw |= ϕ iff w |= prog(ϕ, σ). For example, prog(Gψ, σ) =
prog(ψ, σ)∧Gψ, where prog(ψ, σ) may return � or ⊥ immediately or after expanding

2 Note that there are numerous Android applications, even on the official Market, that also re-
quire the installation of custom kernel modules (e.g., DroidWall requires the netfilter module).
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to a more complicated formula. The aforementioned 3-valued finite-trace semantics is
obtained by mapping all resulting formulae other than � or ⊥ to the ?-value.

5 Conclusions and Future Work

Although our work is preliminary, arguably, our results show not only that runtime
verification is generally feasible on Android devices, but also that it can improve sys-
tem security by identifying known and yet unknown malware. Due to active develop-
ment, our code is still unreleased, but we have prepared a system demonstration video:
http://baueran.multics.org/droid/. Note also that the performance overhead, when exe-
cuted on an Android emulator as well as on an actual phone, was negligible even in this
preliminary, unoptimised version of the code. However, there can be cases, where the
runtime performance of our monitoring procedure necessarily deteriorates over time,
i.e., the longer the observed trace gets, the longer the formula becomes that needs to
be progressed. Although none of our examples triggers this particular problem, there
is a need to characterise fragments of our policy language that lead to monitoring al-
gorithms whose complexity at runtime can be guaranteed to depend only on the size
of each new event. One such fragment is obtained by discarding the first rule of both
the syntax and the semantics, respectively (see Sec. 3), and assuming predicate symbols
from R to be rigid. Additionally, the latter must be either at most unary or, if n-ary, their
individual use restricted to at most one variable. However, one of the reasons why we
have not adopted this fragment here is due to a symbol like contact whose interpreta-
tion, arguably, needs to be flexible, i.e., the user can add or delete contacts at any time.
Finding useful fragments in the above sense that are also practically relevant is subject
of ongoing work.
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Abstract. By extending regular Propositional Dynamic Logic (PDL)
with simple recursive propositions, we obtain a language which has
enough expressiveness to allow interesting applications while still enjoy-
ing a relatively simple decision procedure. More specifically, it is strictly
more expressive than the regular PDL and not more expressive than
the single alternation fragment of the modal μ-calculus. We present a
decision procedure for satisfiability of a large class of so called simple
formulas. The decision procedure has a time complexity which is poly-
nomial in the size of the programs and exponential in the number of
the sub-formulas. We show a way to solve process equations of weak
bisimulation as an application.

Keywords: specification, labeled transition systems, propositional dy-
namic logic, modal μ-calculus, fixed point, satisfiability.

1 Introduction

Labeled transition system (LTS) is a widely accepted model for concurrent sys-
tems. Many logics use LTS as models, and the formulas of these logics can be
used for describing properties of states in LTS. We often call these formulas
specifications [1] of the concurrent systems represented in the model. Usually,
we wish on one hand powerful expressiveness of the language for specification so
that more properties can be expressed, and on the other hand simplicity of the
language so that the expressions can be easily analyzed. These are contradictory
requirements for a language, so we often have to strike a balance based on our
needs.

Two well known logics for LTS are Propositional Dynamic Logic (PDL) [2]
and the modal μ-calculus [3]. PDL was introduced by Fisher and Ladner [4] in
the late 1970s as a formalism for reasoning about programs. Soon afterwards
the logic was outdated for that purpose through the introduction of the modal
μ-calculus - a much more expressive logic with a little higher complexity. How-
ever, there has been a resurgence of interest in PDL in recent years. PDL has
by now become a standard logic that is far from being outdated. It can be used

� Research supported by ANR-NSFC 61161130530.
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in program verification, to describe the dynamic evolution of agent-based sys-
tems, for planning or knowledge engineering, it has links to epistemic logics, it
is closely related to description logics, etc. In [5] Lange studied model checking
problem for PDL extended with some operators on programs such as repeat and
loop. In [6], instead of introducing recursive definitions for propositions, Leivant
proposed PDL with recursive procedures. The resulting logic μPDL is strictly
more powerful than the modal μ-calculus. In [7] Löding, Lutz, and Serre studied
satisfiability problem for certain non-regular extension of PDL and showed that
the problem is still decidable.

PDL uses regular expressions for programs in which limited recursive patterns
of traces can be described, while the modal μ-calculus achieves richer expressive-
ness through a full scale use of recursive properties. Comparing the two logics,
PDL is less expressive but the formulas are easy to understand and analyze, while
the modal μ-calculus is more expressive but the formulas are often hard to under-
stand and analyze. In particular, some simple properties concerning repetition of
traces often have to be encoded into complex recursive properties in μ-calculus.

In this work we introduce limited use of recursive propositions into PDL to
obtain a new language, which has a good balance between expressiveness and
ease of analysis. As an example, in the extended PDL, we can express a property
X which is the weakest one satisfying the equation X = 〈a∗?ϕ〉X . This X
describes a property of a state, which is: there is an infinite trace starting from the
state such that the only action occurring in the trace is a, and ϕ holds infinitely
often along the states of the trace. Describing such a property in the modal
μ-calculus requires nesting of maximal and minimal fixed-points which leads to
complication. We demonstrate that with such extension, the language is strictly
more expressive than the original PDL and not more expressive than the single
alternation fragment of the modal μ-calculus. And by adding nesting, we can get
a language which is more expressive than CTL and CTL* [8], which will be shown
in [9]. This language has good decomposition property for a large class of process
contexts ( this is in another paper [10] because of the limitation of the length
of this paper). We identify a class of so called simple formulas which are quite
expressive, demonstrate its expressiveness, and present a decision procedure for
the satisfiability of such formulas. The worst case time complexity of the decision
procedure is polynomial in the size of the programs and exponential in the
number of the sub-formulas, which is better than first translating into μ-calculus
and then checking the satisfiability of the translated μ-calculus formula [11,12].
Combining the decision procedure and the decomposition property proposed in
[10], we can use this language to solve weak (branching) bisimulation equations
of processes [13].

In the following section we define the syntax and semantics of the extended
language. In section 3 we compare it with modal μ-calculus through translation.
In section 4 we study simple formulas and their expressiveness. In section 5 we
present a decision procedure for satisfiability of simple formulas, and show a
way to solve process equations of weak bisimulation as an application. In the
last section we conclude our work, together with some future and related work.
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2 PDL with Recursion

This section presents the syntax and semantics of PDL with recursion. It starts
with the standard regular PDL. The presentation here is slightly different from
but equivalent to that in [2].

The language of regular PDL has expressions of two sorts: propositions or for-
mulas ϕ, ψ, . . . and programs α, β, . . .. There are countably many atomic symbols
of each sort. Atomic programs are denoted a, b, . . . which are also called actions,
and the set of all atomic programs is denoted Act. Atomic propositions here are
tt and ff. Programs and formulas are built inductively according to the following
abstract syntax:

ϕ ::= tt ff ϕ ∧ ψ ϕ ∨ ψ 〈α〉ϕ [α]ϕ

α ::= a ?ϕ α ∪ β α;β α∗

The set of all programs is denoted Π and the set of all propositions is denoted
Φ. The syntax of programs is essentially regular expressions. That is why it is
called regular PDL.

The semantics of regular PDL is interpreted on a labeled transition system
〈S, Act, { a−→ | a ∈ Act}〉, where S is a set of states, each

a−→ is a transition

relation
a−→⊆ S × S. The satisfaction relation |=⊆ S × Φ and the transition

relation ⇒⊆ (S × Π) × S for each program α are defined inductively on the
structures of formulas and programs as follows:

1. p |= tt holds for all p ∈ S;
2. p |= ff never holds;
3. p |= ϕ ∧ ψ if and only if p |= ϕ and p |= ψ;
4. p |= ϕ ∨ ψ if and only if p |= ϕ or p |= ψ;
5. p |= 〈α〉ϕ if and only if there exists q ∈ S such that (p, α) ⇒ q and q |= ϕ;
6. p |= [α]ϕ if and only if for all q ∈ S whenever (p, α) ⇒ q then q |= ϕ.

7. (p, a)⇒ q if and only if p
a−→ q;

8. (p, ?ϕ) ⇒ q if and only if p = q and p |= ϕ;
9. (p, α ∪ β)⇒ q if and only if (p, α) ⇒ q or (p, β) ⇒ q;
10. (p, α;β) ⇒ q if and only if there exists r with (p, α)⇒ r and (r, β) ⇒ q;
11. (p, α∗)⇒ q if and only if there exist n ≥ 0, q0, . . . , qn such that (qi, α) ⇒ qi+1

for 0 ≤ i ≤ n− 1 and p = q0, qn = q.

We will write p �|= ϕ when p |= ϕ does not hold.
Although we do not have an explicit negation operation in this presentation of

syntax, for each formula ϕ, there is a dual formula ϕ which semantically expresses
the negation of ϕ. Thus tt and ff are dual to each other. For the formula ϕ with
structures, its dual ϕ is inductively defined as follows: ϕ ∧ ψ = ϕ ∨ ψ, ϕ ∨ ψ =
ϕ ∧ ψ, 〈α〉ϕ = [α]ϕ, [α]ϕ = 〈α〉ψ.

Proposition 1. Let ϕ be a PDL formula and ϕ be its dual. Then ∀p ∈ S, p |= ϕ
if and only if p �|= ϕ.
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We now present the syntax and semantics of PDL with recursive propositions.
We refer to this language as rPDL in this paper. We allow property identifiers
in rPDL, which are denoted X,Y, . . . and the set of all property identifiers is
denoted V . The syntax of rPDL formulas and programs is as follows:

ϕ ::= tt ff X X ϕ ∧ ψ ϕ ∨ ψ 〈α〉ϕ [α]ϕ

α ::= a ?ϕ α ∪ β α;β α∗

The meaning of the property identifiers is determined by a recursive declara-
tion D.

Definition 1. A declaration is a finite set D with elements of the form X = ϕ.
No variable is defined more than once in D.

A simple test is ?X or ?X. Since in the declaration the variables are defined as
formulas, we can require simple test in the program here, and the restriction of
simple tests will not result in any loss of expressiveness.

Definition 2. For programs, whether it is positive or negative is defined as:

1. a, ?X are both positive programs
2. ?X is a negative program
3. α∪ β and α;β are both positive (negative) programs if α and β are positive

(negative) programs
4. α∗ is a positive (negative) program if α is a positive (negative) program

For formulas, whether it is positive or negative is defined as:

1. tt,ff are positive formulas
2. X is a positive formula
3. X is a negative formula
4. ϕ∧ψ and ϕ∨ψ are both positive (negative) formulas if ϕ and ψ are positive

(negative) programs
5. 〈α〉ϕ is a positive (negative) formula if α is a positive (negative) program

and ϕ is a positive (negative) formula
6. [α]ϕ is a positive (negative) formula if α is a negative (positive) program

and ϕ is a positive (negative) formula

The definition above defines the positive and negative formulas and programs,
and it is easy to see that there are formulas and programs which are neither
positive nor negative, for example, X ∧ Y where X,Y ∈ V .

A declarationD is well defined if each variable is defined by a positive formula.
The semantics of rPDL formulas and programs under a given environment

ρ : V −→ 2S, which maps each variable in V to a set of states in S, are the
same as that of PDL formulas and programs under ρ except for the property
identifiers:

12. p |=ρ X if and only if p ∈ ρ(X);
13. p |=ρ X if and only if p ∈ S− ρ(X).
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D = {X1 = ϕ1, . . . , Xm = ϕm} defines an environment for the identifiers
X1, . . . , Xm, which are the weakest properties they satisfy.

Proposition 2. Let ρ, ρ′ be two environments such that ρ(X) ⊆ ρ′(X), ϕ a
positive formula, α a positive program, and β a negative program w.r.t all the
X defined in ρ and ρ′, then:

a. if (p, α) ⇒ρ q then (p, α) ⇒ρ′ q;
b. if (p, β) ⇒ρ′ q then (p, β)⇒ρ q;
c. if p |=ρ ϕ then p |=ρ′ ϕ.

Since D is well defined and we have the monotonous property (Proposition 2 ),
there exists a unique maximal environment ρmax =

⋃
{ρ | ρ satisfies D} and ρmax

satisfies D, that is ∀X = ϕ ∈ D, ρmax(X) = {p ∈ S | p |=ρmax ϕ}.
Then we have the semantics of rPDL formulas and programs under D:

p |=D ϕ is defined as p |=ρmax ϕ

(p, α)⇒D q is defined as (p, α) ⇒ρmax q

For an rPDL formula ϕ, we can take the same definition as in regular PDL to
obtain its dual ϕ, and in this case ϕ is still semantically the negation of ϕ.

Proposition 3. Let ϕ be an rPDL formula and ϕ be its dual. Then ∀p ∈ S,
p |=D ϕ if and only if p �|=D ϕ.

The proof of this proposition only needs simple induction on the transition rule
⇒ and the structure of ϕ. Just be careful with the test ?ψ and modalities 〈α〉,
[α] cases. We will not do that because of the limitation of the length.

Example 1. The following formulas specify the property that the a and b actions
always appear alternatively, which is not expressible in PDL.
X = 〈(τ.?X)∗.a〉Y
Y = 〈(τ.?Y )∗.b〉X
· τ−→ · · · τ−→ · a−→ · τ−→ · · · τ−→ · b−→ · τ−→ · · · τ−→ · a−→ · τ−→ · · · τ−→ · b−→ · · ·
X · · · X Y · · · Y X · · · X Y · · · Y �

3 Expressiveness

It is obviously that rPDL is more expressive than the regular PDL. In this section
we will show that any proposition expressible in rPDL can be expressed in the
modal μ-calculus.

To show that any property expressible in rPDL can also be expressed in
the modal μ-calculus, we present a translation from rPDL formulas to the μ-
calculus formulas. Here we take the version of the μ-calculus in [14] which allows
simultaneous mutual recursive definitions. It is clear that this version has the
same expressive power as the usual μ-calculus introduced by Kozen [3].
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The syntax of this version of μ-calculus is as follows:

F ::= tt ff X X F ∧G F ∨G 〈a〉F [a]F

letmax D in F letmin D in F

D ::= X1 = F1, . . . , Xn = Fn

To ensure that the semantics can be well defined, we assume that each Fi in D
is positive, i.e. does not have sub-formulas of the form X .

The semantics is given by two semantic functions F[[ ]]ρ (from formulas to sets
of states) and D[[ ]]ρ (from declarations to a function on environments) with ρ
being a given environment which assigns a subset of S to each variable X :

F[[tt]]ρ = S

F[[ff]]ρ = ∅
F[[X ]]ρ = ρ(X)

F[[X ]]ρ = S− ρ(X)

F[[F ∧G]]ρ = F[[F ]]ρ ∩ F[[G]]ρ

F[[F ∨G]]ρ = F[[F ]]ρ ∪ F[[G]]ρ

F[[〈a〉F ]]ρ = {p ∈ S | p a−→ q, q ∈ F[[F ]]ρ for some q ∈ S}
F[[[a]F ]]ρ = {p ∈ S | if p a−→ q then q ∈ F[[F ]]ρ for all q ∈ S}
F[[letmax D in F ]]ρ = F[[F ]](νσ.(D[[D]]ρ)σ)

F[[letmin D in F ]]ρ = F[[F ]](μσ.(D[[D]]ρ)σ)

D[[X1 = F1, . . . , Xn = Fn]]ρ = λσ.ρ{F[[F1]]σ/X1, . . . ,F[[Fn]]σ/Xn}

Let ϕ be an rPDL formula. We now define a translation function T which maps
ϕ to T (ϕ) as follows:

T (ϕ) = ϕ when ϕ is tt,ff, X,X

T (ϕ ∧ ψ) = T (ϕ) ∧ T (ψ)

T (ϕ ∨ ψ) = T (ϕ) ∨ T (ψ)

T (〈a〉ϕ) = 〈a〉T (ϕ)

T (〈?ψ〉ϕ) = T (ψ) ∧ T (ϕ)

T (〈α ∪ β〉ϕ) = T (〈α〉ϕ) ∨ T (〈β〉ϕ)
T (〈α;β〉ϕ) = T (〈α〉〈β〉ϕ)
T (〈α∗〉ϕ) = letmin Y = T (ϕ) ∨ T (〈α〉Y ) in Y

T ([a]ϕ) = [a]T (ϕ)

T ([?ψ]ϕ) = T (ψ) ∨ T (ϕ)

T ([α ∪ β]ϕ) = T ([α]ϕ) ∧ T ([β]ϕ)

T ([α;β]ϕ) = T ([α][β]ϕ)

T ([α∗]ϕ) = letmax Y = T (ϕ) ∧ T ([α]Y ) in Y
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Lemma 1. Let ϕ be an rPDL formula. ρ and ρ′ are environments, which satisfy:
p ∈ ρ(X) if and only if p ∈ ρ′(X), p ∈ S. Then p |=ρ ϕ if and only if p ∈
F[[T (ϕ)]]ρ′.

Proof. Induction on the structure of ϕ. And all the cases are quite simple ex-
cept for the modalities 〈α〉ψ and [α]ψ cases. For those, induction on the
structure of α. Since the structure of the test cases in α is smaller than
the outer formula, we can use the outer inductive hypothesis in the inner
proof.
We will not discuss the detail of this proof here because of the limitation
of the length.

Theorem 1. Let ϕ be an rPDL formula defined with D = {X1 = ϕ1, . . . , Xn =
ϕn}, and p ∈ S. Then p |=D ϕ if and only if p ∈ F[[letmax X1 = T (ϕ1), . . . , Xn =
T (ϕn) in T (ϕ)]]ρ0, where ρ0 is an empty environment.

Proof. p |=D ϕ if and only if p |=ρmax ϕ;
F[[letmax Dμ in T (ϕ)]]ρ0=F[[T (ϕ)]]ρμ, where Dμ={X1=T (ϕ1), . . . , Xn=
T (ϕn)} and ρμ = νσ.ρ0{F[[T (ϕ1)]]σ/X1, . . . ,F[[T (ϕn)]]σ/Xn};
Let ρ satisfies: p ∈ ρμ(X) if and only if p ∈ ρ(X).
Obviously we have ρ = ρmax.
Then by Lemma 1, we have p |=D F if and only if p ∈ F[[letmax X1 =
T (F1), . . . , Xn = T (Fn) inT (F )]]ρ0. �

For an rPDL formula ϕ, it is not hard to see that T (ϕ) has no free variables ex-
cept for those defined in D, so T (ϕ) is free of alternation of fixed-points. However
the variables defined in D may occur within some minimal fixed-point definitions
in T (ϕ), the overall result letmax X1 = T (ϕ1), . . . , Xn = T (ϕn) in T (ϕ) has one
alternation of fixed-points.

Example 2. Fairness property:
· −→ · · · · · −→ · −→ · · · · · −→ · −→ · · · · · · · · · ·
X p,X p,X

CTL*: EGFp
μ-calculus: νX.μY.〈•〉((X ∧ p) ∨ Y )
rPDL: X = 〈•∗.?p〉X �

By adding nesting to rPDL, we can get a language which is more expressive than
CTL and CTL*, and is still no more expressive than modal μ-calculus. This is
beyond this paper, and we will present that elsewhere.

4 Simple Formula

An rPDL formula is said to be simple if every box modality [α] in it has the
simple form [a] for some a ∈ Act. A declarationD is said to be simple if, whenever
X = ϕ ∈ D then ϕ is simple.
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Simple formulas and simple declarations are quite expressive. Here we demon-
strate that for a finite state process p, its weak bisimulation [15] equivalence
classes are expressible by simple formulas and simple declarations in rPDL.

For that purpose, we associate a proposition identifier Xp for each state p in
the (finite) state space. Then we construct a declaration

D = {Xp =
∧

p
a−→p′

〈τ∗.a.τ∗〉Xp′ ∧
∧

a∈Act

[a](
∨

p
â

=⇒p′

Xp′) | p ∈ S}

It is easy to see that D is a simple declaration.

Proposition 4. Let p be a finite state process, Xp and D constructed as above.
Then for any process q, p ≈ q if and only if q |=D Xp.

Proof ⇒: p ≈ q then q |=D Xp

First we construct an environment ρ≈: q ∈ ρ≈(Xp) if and only if p ≈ q;
We know: q |=D Xp if and only if p |=ρmax Xp. That is ∃ρ s.t ρ satisfies
D and q ∈ ρ(Xp);
So if we can prove that ρ≈ satisfies D, then we have p ∈ ρ≈(Xp) =⇒
p |=D Xp, and apparently p ≈ q =⇒ q |=D Xp is proved;
That is to prove that: ∀Xp ∈ V , q ∈ ρ≈(Xp) then q |=ρ≈∧

p
a−→p′〈τ∗.a.τ∗〉Xp′ ∧

∧
a[a](

∨
p

â
=⇒p′ Xp′), which is easy to calculate by

the definition of ≈.
⇐: q |=D Xp then p ≈ q

We construct a binary relation B first: B = {(p, q) | q |=D Xp};
We show that B is a weak bisimulation;
For (p, q) ∈ B, q |=D Xp =⇒ q |=D ϕXp =⇒ q |=D

∧
p

a−→p′〈τ∗.a.τ∗〉Xp′ ∧∧
a[a](

∨
p

â
=⇒p′ Xp′);

• Assume p
a−→ p′, then 〈τ∗.a.τ∗〉Xp′ is a conjunct of ϕXp

=⇒ ∃q′, s.t. (q, τ∗.a.τ∗)⇒ q′ and q′ |=D Xp′

=⇒ q
â

=⇒ q′ and q′ |=D Xp′

=⇒ (p′, q′) ∈ B
=⇒ ∃q′ s.t. q â

=⇒ q′ and (p′, q′) ∈ B
• Assume q

a−→ q′, then [a](
∨

p
â

=⇒p′ Xp′) is a conjunct of FXp

=⇒ q′ |=
∨

p
â

=⇒p′ Xp′

=⇒ ∃p′ s.t. p â
=⇒ p′ and q′ |=D Xp′

=⇒ (p′, q′) ∈ B
=⇒ ∃q′ s.t. q â

=⇒ q′ and (p′, q′) ∈ B
�

In the same way, we can show that branching bisimulation equivalence classes
are expressible by simple declarations in rPDL.
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Next we will show that in rPDL every positive formula has an equivalent
simple formula.

First, we define a translation function S as follows, which translates a positive
formula ϕ into a simple one. Since ϕ is a positive formula, the test can only be
?X in the diamond modalities and ?X in the box modalities, and moreover there
is no occurrence of X in ϕ besides in the box modalities,.

S(ϕ) = ϕ when ϕ is tt,ff, X

S(ϕ ∧ ψ) = S(ϕ) ∧ S(ψ)
S(ϕ ∨ ψ) = S(ϕ) ∨ S(ψ)
S(〈α〉ϕ) = 〈α〉S(ϕ)
S([a]ϕ) = [a]S(ϕ)
S([?X ]ϕ) = S(X) ∨ S(ϕ)
S([α ∪ β]ϕ) = S([α]ϕ) ∧ S([β]ϕ)
S([α;β]ϕ) = S([α][β]ϕ)
S([α∗]ϕ) = X[α∗]ϕ

where X[α∗]ϕ is an induced identifier.
Then for a given declaration D, let Ds be the smallest set such that:

1. whenever X = ϕ ∈ D then X = S(ϕ) ∈ Ds;
2. whenever X[α∗]ϕ occurs in a right hand side of a definition in Ds, that is

[α∗]ϕ occurs in a right hand side of a definition in D, then X[α∗]ϕ = S(ϕ) ∧
S([α]X[α∗]ϕ) ∈ Ds.

Theorem 2. Let D be a declaration, Ds be a simple declaration constructed
as above, ϕ be a positive rPDL formula, and p ∈ S. Then p |=D ϕ if and only if
p |=Ds S(ϕ).

Proof ⇒: p |=D ϕ then p |=Ds S(ϕ)

Define ρ(X) =

{
{p | p ∈ S, p |=D X} X = ϕ ∈ D

{p | p ∈ S, p |=D [α∗]ϕ} X is X[α∗]ϕ

If we can prove that p |= ϕ then p |=ρ S(ϕ) holds, we can easily prove
that ρ satisfies Ds as follows:
• X = ϕ ∈ D, then X = S(ϕ) ∈ Ds

p ∈ ρ(X) =⇒ p |=D X =⇒ p |=D ϕ =⇒ p |=ρ S(ϕ)
• X is X[α∗]ϕ, then X[α∗]ϕ = S(ϕ) ∧ S([α]X[α∗]ϕ) ∈ Ds

p ∈ ρ(X[α∗]ϕ) =⇒ p |=D [α∗]ϕ =⇒ p |=D ϕ ∧ [α][α∗]ϕ =⇒ p |=ρ

S(ϕ ∧ [α][α∗]ϕ) =⇒ p |=ρ S(ϕ) ∧ S([α]X[α∗]ϕ)
So we have p |=ρ S(ϕ) then p |=D S(ϕ);
Then p |=D ϕ then p |=Ds S(ϕ) is proved;
Then it is easy to prove p |=D ϕ then p |=ρ S(ϕ) by induction on the
structure of ϕ. And for the modalities cases we do the proof by induction
on the structure of α.
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⇐: p |=Ds S(ϕ) then p |=D ϕ
Define ρ(X) = {p | p ∈ S, p |=Ds X,X = ϕ ∈ D}
If we can prove that p |=Ds S(ϕ) then p |=ρ ϕ holds, we can easily prove
that ρ satisfies D as follows:
• X = ϕ ∈ D
p ∈ ρ(X) =⇒ p |=Ds X =⇒ p |=Ds S(ϕ) =⇒ p |=ρ ϕ

So we have p |=ρ ϕ then p |=D ϕ;
Then p |=Ds S(ϕ) then p |=D ϕ.
Then it is easy to prove p |=Ds S(ϕ) then p |=ρ ϕ by induction on the
structure of the rPDL formula ϕ. And for the modalities cases we do the
proof by induction on the structure of α.

We will not discuss the detail of this proof here because of the limitation of
the length. �

According to Theorem 2, every well defined declaration has an equivalent simple
declaration.

5 Deciding Satisfiability of Simple Formula

In this section we present a decision procedure for satisfiability of simple formu-
las. And since every positive formula has an equivalent simple formula, positive
formulas’ satisfiability can be decided by translating into simple formula. The key
is a syntactic characterization of satisfiability through the notion of consistency
sets defined as follows.

Definition 3. A set of formulas Γ is saturated with respect to a declaration D
if it satisfies the following:

1. whenever ϕ ∧ ψ ∈ Γ then ϕ ∈ Γ and ψ ∈ Γ ;
2. whenever ϕ ∨ ψ ∈ Γ then ϕ ∈ Γ or ψ ∈ Γ ;
3. whenever X ∈ Γ and X = ϕ ∈ D then ϕ ∈ Γ .

Definition 4. Let C ⊆ 2Φ (i.e. C is a set of formula sets). Construct a labeled

transition system 〈C, Act, { a−→| a ∈ Act}〉 with an environment ρC defined as

ρC(X) = {Γ ∈ C | X ∈ Γ}. a−→ is defined as: ∀Γ, Γ ′ ∈ C, Γ a−→ Γ ′ if whenever
[a]ψ ∈ Γ then ψ ∈ Γ ′. C is called a consistency set, if for every Γ ∈ C, the
following holds:

1. Γ is saturated;
2. whenever ϕ ∈ Γ then Γ |=ρC ϕ.

For a simple formula ϕ, let sub(ϕ) be the set of sub-formulas of ϕ, defined by:

sub(ϕ) = {ϕ} where ϕ = tt,ff, X,X

sub(ϕ ∧ ψ) = {ψ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)

sub(〈α〉ϕ) = {〈α〉ϕ} ∪ sub(ϕ)

sub([a]ϕ) = {[a]ϕ} ∪ sub(ϕ)

For a simple declaration D, we write sub(D) =
⋃
{sub(ϕ) |X = ϕ ∈ D}.
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Note that the number of sub-formulas in sub(ϕ) has nothing to do with the
size of programs in ϕ: no matter how big or small a program α is, one occurrence
of 〈α〉ψ in ϕ only generates one sub-formula. Therefore, the cardinality of sub(ϕ)
is much smaller than that of FL(ϕ) (the usual Fischer-Ladner Closure of ϕ).

Theorem 3. Let ϕ be a simple rPDL formula, D be a simple declaration. Then
the following two conditions are equivalent:

1. there exists a consistency set C and some Γ ∈ C such that ϕ ∈ Γ ;
2. there exists an LTS 〈S, Act, { a−→ | a ∈ Act}〉 such that p |=D ϕ for some

p ∈ S.

Proof ⇒ To prove 1 =⇒ 2, let C be a consistency set.
We construct an LTS 〈S, Act, { a−→ | a ∈ Act}〉, where: S = C, and the

transition relation
a−→ is defined such that: Γ

a−→ Γ ′ if and only if,
whenever [a]ψ ∈ Γ then ψ ∈ Γ ′. Let ρ(X) = {Γ |X ∈ Γ} for X ∈ V .
With this construction we can prove the following implication by a simple
induction on the structure of ϕ: if Γ |=C ϕ then Γ |=ρ ϕ.
Then suppose X = ψ ∈ D, the following sequence of implications shows
that ρ satisfies D: Γ ∈ ρ(X) =⇒ X ∈ Γ ( by construction) =⇒ ψ ∈
Γ (Γ is saturated) =⇒ Γ |=C ψ (C is a consistency set) =⇒ Γ |=ρ ψ
Thus ρ ⊆ ρmax.
Then for ϕ ∈ Γ ∈ C, Γ |=C ϕ (C is a consistency set) =⇒ Γ |=ρ ϕ =⇒
Γ |=ρmax ϕ (Proposition 2) =⇒ Γ |=D ϕ.

⇐ To prove 2 =⇒ 1, construct C0 = {Γ ⊆ sub(ϕ) ∪ sub(D) | ∃p ∈ S, p |=D

ψ for all ψ ∈ Γ}.
Now let C consist of all the maximal elements of C0, then it is routine to
verify that C is a consistency set. �

The above proof suggests the following simple iterative procedure to decide
whether a simple formula ϕ with a simple declaration D is satisfiable.

Algorithm 4 . For a given simple formula ϕ with a simple declaration D, start
from C = {Γ ⊆ sub(ϕ) ∪ sub(D) | } and do the following steps.

1. For each Γ ∈ C, check whether is saturated, all of which can be checked
locally. If not, delete Γ from C.

2. Repeat the following until C does not decrease:
If there exists Γ ∈ C, ∃ψ ∈ Γ such that Γ |=C ψ does not hold, delete Γ from
C.

The algorithm must terminate, since there are only finitely many states initially,
and at least one state must be deleted in each iteration of step 3 in order to
continue. Then ϕ is satisfiable if and only if, upon termination there exists
Γ ∈ C such that ϕ ∈ Γ . Obviously C is a consistency set upon termination. The
correctness of this algorithm follows from Theorem 3. The 1 =⇒ 2 direction of
the proof guarantees that all formulas in C are satisfiable. The 2 =⇒ 1 direction
of the proof guarantees that all satisfiable Γ will not be deleted from C.
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We now estimate the worst case time complexity ofAlgorithm 4. For a formula,
we can simply define its size by adding up the number of occurrences of variables,
∨’s, ∧’s, and the modalities 〈α〉’s and [a]’s in the formula (in particular note that
an occurrence of 〈α〉 always counts as 1 no matter what complicated structure α
has). We can also define the size of programs in a similar way. Now the maximum
size of C is clearly exponential in the number of sub-formulas of D and ϕ, i.e. the
cardinality of sub(ϕ)∪ sub(D) which is just the size of ϕ plus the sum of the size
of all right hand side formulas in D. That puts an upper bound on the number of
iterations. The size of programs only matters when checking Γ |=C ψ within an
iteration. Then it is not difficult to see that the size of programs only contributes
to a polynomial factor. Thus the time complexity of this procedure is exponential
in the size of the formulas, but polynomial in the size of the programs. This is
better than first translating the formula into a modal μ-calculus formula and then
deciding if the translated formula is satisfiable (for example using the decision
procedure in [16]), because the size of the translated formula, to which the size
of the programs contributes a linear factor, contributes to the exponential blow
up of the time complexity.

The construction used here has similarities with the standard Fischer-Ladner
construction often used in temporal logics, although as pointed out earlier, we
actually used sub(ϕ) which is much simpler than FL(ϕ). The way we translate
a positive formula into a simple one is quite similar as the way of finding the
Fischer-Ladner closure of [α]ϕ. So for a positive formula, the time complexity of
checking whether it is satisfiable is exponential in the size of the formulas and the
programs in the box modalities, but polynomial in the size of the programs in the
diamond modalities. The satisfiability of regular PDL can also be decided by our
algorithm, and the time complexity is exponential in the size of the formulas and
the programs in the box modalities, but polynomial in the size of the programs
in the diamond modalities, which is better than the usual algorithm in [2], whose
time complexity is exponential in the size of the formulas and programs.

Note that the results of this section only holds for simple formulas. For people
familiar with temporal logics, the CTL formula AFp can not be a counter-
example here although it fails the Fischer-Ladner technique, because it is not a
simple formula when expressed in rPDL.

Now as an application of rPDL, we have a way to solve process equations of
the form C(x) ≈ p (finding out whether there is a process x which satisfies the
equation). Here is how to do it. According to the result of Section 4, there is a
simple formula ϕp and a simple declaration D such that C(x) ≈ p if and only
if C(x) |=D ϕp. By the decomposition property of rPDL, which will be shown
in [10], there is a simple formula W(C,ϕp) such that C(x) |=D ϕp if and only if
x |=D W(C,ϕp). Thus there is an x with C(x) ≈ p if and only if Wf (C,ϕp) is
satisfiable under D, and then we can use the decision procedure to check that.
In the same way, we can slove the branching bisimulation equations of processes.
In [17,18,19], Disjunctive Modal Transition Systems (DMTS) were used to solve
strong bisimulation equations of the form C(x) ∼ p. Here by using rPDL, we
can do what we could not do with DMTS.
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6 Conclusion and Related Works

In this work we propose a specification language for LTS by introducing sim-
ple recursive propositions into the regular PDL. This language is strictly more
expressive than the regular PDL and not more expressive than the single alter-
nation fragment of the modal μ-calculus. We present a decision procedure for
satisfiability of the simple formulas, which are quite expressive. The decision pro-
cedure has a time complexity which is polynomial in the size of the programs in
the formulas and exponential in the number of the sub-formulas. Many of these
are desirable properties as a specification language. We also show an application
of rPDL by using it to solve weak (branching) bisimulation equations.

Decomposition [20] is always an interesting issue which relates a specification
language to states (systems) with a structure. Informally and in short, a decompo-
sition problem is concerned with reducing a specification required of a combined
system into (sufficient and necessary) specifications of the system’s components.
More precisely, for any property ϕ expressed in the language and some kind of
program context C, the problem of decomposition asks if the propertyW(C,ϕ) is
always definable as a formula in the language.W(C,ϕ) is such a property that a
state p satisfies it if and only if C(p) satisfies ϕ. In [10] we show that rPDL enjoys
such a good decomposition property for a very large class of process context.

By adding nesting to rPDL, we get a language which is more expressive than
CTL and CTL*, and is still no more expressive than modal μ-calculus. We
demonstrate that any property expressible in CTL or CTL* can also be expressed
in rPDL with nesting. This is beyond this paper, and we will present that in [9],
which is in preparation.

Since every positive formula can be transformed into a simple formula, the
problem of satisfiability of positive formula is reduced to that of simple formula.
According to this, tools for deciding satisfiability of rPDL simple formulas can be
built based on the notion of consistency set. The feasibility of such tools is due to
the fact that this notion is defined in a way which is effectively computable. With
the addition of a proof system, a desirable tool should be able to output a direct
proof if a specification is not satisfiable. The work is in progress. Moreover, by
combining the tools for deciding satisfiability of rPDL specifications and the tools
for decomposing rPDL specifications [10], equation solver (EQ) can be built. EQ
can either find a solution or provide a proof to explain why the equation system
is not solvable.

However, many interesting problems cannot be reduced to satisfiability of
simple formulas. The satisfiability of full rPDL and rPDL with nesting is under
consideration. A decision procedure for satisfiability of full rPDL formulas, which
runs in deterministic single-exponential time, is promising to be proved to be
correct soon. Moreover we also want to provide a tool for deciding satisfiability
of full rPDL formulas.

We have not discussed the problem of model checking in rPDL. Although
we can always do it through translating into the modal μ-calculus, direct model
checking in rPDL may explore features of the language and may lead to improved
efficiency. It can be an interesting future research direction.
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Abstract. Recently it has become possible to verify full functional cor-
rectness of certain kinds of software using automated theorem-proving
technology. Empirical studies of the difficulty of automatically proving
diverse verification conditions (VCs) would be helpful. For example, they
could help direct those developing formal specifications toward tech-
niques that tend to simplify VCs. They could also help focus the efforts
of those improving automated theorem-proving tools that are targeted to
handle VCs. This study explores two specific empirical questions of this
sort: How does an SMT solver perform on VCs that involve user-defined
mathematical functions and predicates? When it does not perform well,
what can be done to improve the prospects for automated proof? Ex-
perience using Z3 to prove VCs for a solution to a fully generic sorting
benchmark, along with thousands of other VCs generated for both clients
and implementations of dozens of RESOLVE software components, sug-
gests that providing the prover with universal algebraic lemmas about
user-defined mathematical functions and predicates results in better out-
comes than expanding (unfolding) definitions. The importance of such
lemmas might not be surprising to those who have tried to carry out such
proofs manually or with the help of an interactive prover, but the dam-
age sometimes caused by expanding definitions might be unexpected. A
large empirical study of these phenomena in the context of automated
software verification has not been previously reported.

1 Introduction

We took the following steps for this study. First, we selected a variety of about 50
RESOLVE [1] software components comprising about 2000 lines of code, includ-
ing the components involved in an earlier empirical study of different issues [2].
This code includes arithmetic algorithms over integers and natural numbers;
sorting of arbitrary items with arbitrary orders; and a variety of client-view ma-
nipulations of, and internal data representations for, stacks, queues, lists, sets,
etc. These components have specifications based on standard design-by-contract
principles with pre- and post-conditions, and the code to be verified includes the
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necessary annotations: loop invariants, progress metrics, representation invari-
ants, and abstraction functions, as appropriate, but very few other assertions.
Second, we generated the 4028 VCs needed to prove the full functional correct-
ness of all this code, including termination, by using the RESOLVE VC gener-
ator [3]. We believe all these VCs are valid; while we have plenty of code that
contains (mostly intentional) bugs, all such code was removed from our library
for this study. Third, we machine-translated each VC into Dafny [4] from which
it was fed to the SMT solver Z3 [5] for an automated proof attempt, and we
recorded what happened. Fourth, we studied carefully the 503 VCs that were
not proved automatically by Z3 (about 12%; see the red or dark gray region in
the middle of the top bar in Figure 1) and tried to determine which changes
to specifications, code, or anything else under the control of the software devel-
oper would improve automated proof success. We emphasize that the intent of
this tool-chain is to prove full functional correctness of the code by automated
theorem-proving technology, as opposed to abstracting that code to possibly
simpler but incomplete finite-state models to be analyzed by a model-checker.

Fig. 1. Results of Proof Attempts on 4028 VCs: For the top bar, user-defined symbols
appearing in VCs are treated as uninterpreted function or predicate symbols; for the
lower three bars, their definitions are expanded to the prover and/or universal lemmas
about those functions and predicates are provided to the prover, as indicated

It turned out that 425 of the 503 VCs not proved by Z3 in the first step
were among the 817 VCs that involved used-defined mathematical function or
predicate symbols. The automated proof success rate for these VCs was so low—
about 48%, compared to about 98% for VCs not involving such symbols—that
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we chose to focus our attention on what one might be able to do about them
to improve the automated proof success rate. The rest of this paper is about
these 425 VCs (represented in the checkerboard pattern in the top bar of Figure
1) and others like them that might arise in future software verification efforts.
It explains how we improved the automated proof success rate for VCs involv-
ing user-defined mathematical functions and predicates from 48% to 93%. It is
likely that formal specifications of software will often involve some ad hoc user-
defined mathematical functions and predicates of the sort seen in these VCs,
especially when domain-specific software components and application software
are involved. So these results are potentially significant.

In considering these 425 VCs, we took the viewpoint of software engineers or
mathematical specialists working on the software to be verified. We did not seek
to reverse-engineer or second-guess Z3. Any advice provided here is, therefore,
intended to be used by software verification researchers (and soon, we believe, by
professionals working under a verified software paradigm). That advice is related
to issues these “users” of software verification tools should both understand and
be able to control, not to internal details of a black-box automated theorem-
prover like Z3 that happens to be part of a tool chain. If any results also end
up being of interest to those developing better automated provers for VCs, so
much the better. We therefore wish to emphasize that none of our results should
be interpreted as being critical of Z3. Indeed, both Z3 and the other automated
provers we have used in the RESOLVE software verification tool-chain [3] per-
form far better than their predecessors of the 1990s, when we attempted a similar
study on a smaller scale and found that few VCs could be proved automatically.
In fact, maybe Dafny/Z3 can do better today on some VCs than the version
available at the time of the study: Dafny version 2, which uses Z3 version 2.15.
However, we are confident our basic conclusions would remain valid if Z3 were
incrementally improved, or even if a different automated prover were substituted
for it.

The paper makes two primary contributions. The first contribution is the em-
pirical study itself, including its scale and the conclusions drawn from it: the
importance of providing universal algebraic lemmas about user-defined math-
ematical function and predicates appearing in formal specifications, combined
with the importance of not expanding definitions to reveal hidden quantifiers
and even more definitions. Overviews of the study process and results are pre-
sented here, and full details are available via a companion website that is the first
effort to provide such detailed information about so many VCs and the results
of attempting to prove them automatically. The second contribution is the first
entirely automatic proof of sorting code in which both the type of items being
sorted and the total pre-ordering by which they are sorted are client-supplied
parameters; this is one of the software verification benchmarks proposed in [6].

2 User-Defined Mathematical Functions and Predicates

Any practical language for writing mathematics must allow new mathematical
functions and predicates to be introduced via user-defined symbols. This is
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particularly important for a software specification language because specifica-
tions are mathematical statements meant to be read by software developers.
Indeed, carefully considered and well-named mathematical functions and pred-
icates can dramatically simplify mathematical statements while providing intu-
ition and understanding for humans.

As a simple example, consider a specification involving odd integers. If the
mathematical language used to write this specification has no built-in functions
or predicates with which to make direct statements about odd integers, then
the specifier might choose to write out, everywhere she needs to say “n is odd”,
a relatively cumbersome expression such as ∃k : integer (n = 2k + 1). The
capability to introduce new mathematical symbols and to define them gives
her the alternative of saying “ODD(n)” in all these places; of course, if she
introduces the symbol ODD she must say once and for all that ODD(n) is
defined as ∃k : integer (n = 2k+ 1). We note as an important empirical matter
that it is typical for a user-defined mathematical function or predicate symbol
such as ODD to hide one or more quantifiers in its definition.

RESOLVE does, therefore, support user-defined mathematical function and
predicates. There are a number of mathematical theories and associated operators
built-in to the language: booleans, integers, tuples, strings, finite sets, functions,
relations, etc. In this study, we deal only with new user-definedmathematical func-
tions and predicates within these theories (i.e., using their mathematical types, or
sorts), not with entirely new user-defined mathematical theories.

There are two distinct ways in RESOLVE to introduce a new mathematical
function or predicate symbol via a signature and provide its definition in a
body:

– Explicit definition: the body is an expression of the result type of the
function or predicate.

– Implicit definition: the body is an assertion (involving the function or
predicate symbol being defined) that uniquely characterizes the function or
predicate.

The definition of ODD above uses an explicit definition. An inductive definition
is one style of implicit definition. Detailed examples of both explicit and implicit
definitions are discussed in Section 5.

It is also possible in RESOLVE for a mathematical function or predicate
to be a parameter to a software component. A body does not appear in the
software component where this parameter is introduced, but rather in some other
component (typically a client program) that completes the definition by binding
that parameter to a specific mathematical function or predicate symbol with the
same signature. RESOLVE permits the specifier introducing such a parameter
to place a restriction on the definition ultimately to be bound to it by stating
a property that the definition must satisfy—without uniquely characterizing
the mathematical function or predicate. A specific example, a client-supplied
ordering relation for sorting, is central to the discussion in Section 5.

In a verified software paradigm as envisioned by Hoare [7], mathematical state-
ments in software specifications are seen not only by software developers but also
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by automated provers as they attempt to prove verification conditions (VCs). If
user-defined symbols are simply expanded (“unfolded”) into their bodies in the
VC proof process, thereby reintroducing the quantifiers and other complexities
they were designed to bury for the software developer, then the benefits of user-
defined mathematical function and predicate symbols are limited to the human
writers and readers of specifications.

Sometimes, no knowledge at all about the definition is needed to prove a VC
in which a user-defined mathematical function or predicate symbol appears [2]; it
can be treated as an uninterpreted symbol. One assumption in a VC might have
a form such as ODD(n) =⇒ P , while another assumption is simply ODD(n).
The prover concludes P from these two assumptions and proceeds to use that
fact in the proof of the conclusion of the VC—without knowing anything more
about ODD . Expanding definitions is not needed here.

Other times, when certain properties associated with a user-defined function
or predicate such as ODD are needed in the proof of a VC, they can be stated
as universal algebraic lemmas, e.g., ODD(n) ⇐⇒ ¬ ODD(n + 1); or, restated
without free variables, ∀n : integer(ODD(n) ⇐⇒ ¬ ODD(n + 1)). Again,
expanding definitions is not needed.

In summary, then, when a user-defined mathematical function or predicate
symbol appears in a VC, automated proof of that VC may seem to require the
prover to have neither, one, or both of (a) the expanded definition, and (b)
appropriate lemmas about it. The question studied in this paper is to what ex-
tent it is helpful to keep the complexity of expanded definitions hidden from
an automated prover, since automated provers (like humans) often have consid-
erable difficulty dealing with quantifiers.1 The answer is that simply providing
the prover with universal algebraic lemmas about user-defined mathematical
functions and predicates is generally far better than expanding their definitions.

3 The Tool Chain

Several tools were integrated for this study to process the pipeline from spec-
ifications and code to proof of correctness. Our specifications are written in
RESOLVE [1] using some of its built-in mathematical theories and its capabili-
ties for making both explicit and implicit definitions and its support for generic
parameters. Code to be verified is also written in RESOLVE. VCs are generated
by the OSU RESOLVE verification tools [3] using proof rules described in [8,9].
These VCs along with the theories and mathematical definitions used in them
are then (by further automatic translation) expressed as assumptions and as-
sertions in Dafny [4,10]. Dafny translates these “VC programs” into the Boogie
intermediate language [11], which in turn generates its own VCs to be proved
by the SMT solver Z3 [5].

Dafny is a tool for writing programs annotated with various mathematical and
specification statements. Dafny’s features for making definitions and for writing

1 Not in the case of ODD, which is easy to reason about automatically because it is
in Presburger arithmetic, but in general.
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assumptions and assertions make it an attractive translation target. We encode
each definition as a static function in Dafny, with the definition body encoded as
an assumption about it. Each VC generated from the RESOLVE code is encoded
in an ordinary method in Dafny that consists of a series of assumptions followed
by an assertion: each assumption Ai in the VC generates an assume statement,
and the conclusion C generates an assert statement.

It would have been possible to translate RESOLVE specifications and code for
realizations into Dafny or Boogie, but this would have introduced the reference
semantics that is inherent in these languages and that RESOLVE avoids. So,
we encode RESOLVE VCs themselves into Dafny programs rather than trans-
lating them into Z3’s input format. The reason for this design choice (rather
than providing Z3 with an axiomatic description of, say, RESOLVE’s string the-
ory, and relying on its core logic capabilities alone) is that Dafny offers similar
mathematical theories into which we can directly translate RESOLVE-generated
VCs. So, for instance, Dafny’s sequences can be used as a translation target for
RESOLVE’s strings. Having no direct control over any details in this entire
black-box back-end of the tool chain, we trust, of course, that Dafny’s interface
to Boogie and Boogie’s to Z3 appropriately encode these features and that Z3
proves only valid VCs; we have no reason to suspect otherwise.

4 The Study

For the 817 VCs involving user-defined mathematical functions and predicates,
we followed a sequence of four steps in an attempt to prove each of them.

In step 1, we attempted to prove each VC without providing Dafny with any
information (except the signature) for any user-defined mathematical function
or predicate symbol appearing in it. This is also the only step in which we tried
to prove VCs that do not have any user-defined symbols in them at all, since
providing more information about things not even indirectly appearing in a VC
presumably cannot help the prover. In principle, this still allows us to prove
any VC whose proof does not require the body or any other knowledge about a
user-defined symbol. In Table 1 we see (also shown graphically in Figure 1) that
Z3 performed extremely well on VCs without any user-defined mathematical
functions or predicate symbols, proving almost 98% of them. It even proved
48% of the VCs that contain such symbols, without any knowledge at all about
the underlying mathematical functions and predicates they denote, as illustrated
with a similar hypothetical situation involving ODD in Section 2.

In step 2, we provided as an additional assumption of each VC an expanded
definition of each user-defined symbol appearing in it. We provided its body
for an explicit or implicit definition and its restriction for a parameter. An im-
portant point here is that the typical body or restriction involves at least one
quantifier and sometimes alternation of quantifiers. This raises the level of com-
plexity of the VCs for the automated prover. Indeed, hiding this complexity from
the reader of specifications is one of the primary reasons for introducing a new
user-defined mathematical function or predicate in the first place. Yet with ex-
panded definitions available, Z3 nonetheless proved many more of the VCs that
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involve user-defined mathematical function or predicate symbols: 68% of them,
compared to 48% without this additional information.

In step 3, we added to the assumptions of each VC some universal algebraic
lemmas about the user-defined mathematical functions and predicates appearing
in it, or in the expanded definitions already added as assumptions in step 2. Most
of the provided lemmas were from reusable mathematical developments related
to the definitions and independent of any VC, as illustrated with ODD in Section
2. A few others were not independently identified as mathematically interesting
and highly reusable, but rather were directly suggested by human proof attempts
on particular VCs that were not proved automatically by Z3. This improved the
success rate for Z3 to about 79% of the VCs when both expanded definitions and
universal algebraic lemmas were available.

In step 4, we removed the bodies of definitions, but left the restrictions on user-
defined symbols that are parameters; these restrictions are generally so central to
the code in which they appear that they must be kept to have any hope of proving
the resulting VCs. Moreover, they tend to be syntactically indistinguishable
from universal algebraic lemmas, as seen in Section 5. The removal of expanded
definitions significantly improved the success rate of Z3 to about 93% of the VCs
involving user-defined mathematical functions and predicates.

Table 1. Summary of Empirical Results

Component VCs without a VCs with a user-defined symbol
family user-defined symbol

No expansion; Expansion; Expansion; No expansion;
no lemmas no lemmas lemmas lemmas

List (58/58) (52/84) (78/84) (80/84) (83/84)

Queue (48/48) (108/248) (155/248) (222/248) (240/248)

Sequence (53/53) (50/98) (75/98) (79/98) (87/98)

Stack (6/7) (7/25) (17/25) (25/25) (21/25)

Integer (755/788) (-/-) (-/-) (-/-) (-/-)

Natural (2147/2190) (32/48) (43/48) (46/48) (46/48)

Set (22/23) (100/242) (130/242) (129/242) (215/242)

Array (3/3) (21/31) (30/31) (31/31) (31/31)

BooleanFacility (23/23) (-/-) (-/-) (-/-) (-/-)

Others (18/18) (22/41) (30/41) (35/41) (38/41)

VCs proved /
(3133/3211) (392/817) (558/817) (647/817) (761/817)

VCs total

% VCs proved 97.6% 48.0% 68.3% 79.2% 93.1%

Table 1 summarizes the empirical study results. Detailed information showing
specifications and code for all components, the VCs generated, the user-defined
symbols with their bodies and restrictions, and the lemmas are available at
http://resolve.cse.ohio-state.edu:8080/archive/nfm2012/ .
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5 Example: Fully Generic Sorting

To illuminate issues and results regarding what happens when trying to prove
VCs—by expanding the definitions of user-defined mathematical function and
predicates and/or by providing universal algebraic lemmas about them—we offer
one of the verification benchmark problems proposed in [6]: a generic sorting
program in which both the type of the entries to be sorted and the ordering are
client-supplied parameters. We specify and then verify an implementation (using
merge sort) of an operation that sorts an ordered collection of entries of a user-
supplied type according to a user-supplied total pre-order. This benchmark has
been addressed by others, e.g., [12], for the case of sorting a fixed type (integers)
according to a fixed total pre-order (≤). The fully generic version offered as
a benchmark is challenging precisely because it involves an obvious need to
introduce some user-defined symbols to simplify the specification. Moreover,
the code for the merge sort algorithm is not trivial and involves the standard
sequential programming constructs including recursion.

We store the elements to be sorted in a Queue, whose mathematical model is
a string of (the mathematical model of) the type of the elements to be sorted.
The contract QueueTemplate provides four typical operations: Enqueue, Dequeue,
Length, and Is Empty. The elements inside a Queue can only be obtained by the
Dequeue operation in a FIFO order, and there is no way to access the elements
inside a Queue other than removing them from it. All code for this example can
be found, accompanied with explanations of the relevant RESOLVE language
features, on the web site mentioned at the end of Section 4.

Figure 2 shows the contract of an enhancement, or extension, of the Queue-
Template contract, called SortExtension. It specifies an operation to Sort a Queue.
Note that the contract is parametrized by a binary relation ARE IN ORDER that is
restricted to be a total pre-order. The ellipsis in this code is where the user-defined
mathematical function and predicates in Figure 3 appear. These four definitions
(signatures and their bodies) are structured in such a way that the two appearing
in the contract of Sort (ARE PERMUTATIONS and IS NONDECREASING) are de-
fined in terms of the other two (OCCURS COUNT and PRECEDES). This style of
making definitions is typical. The intent of each definition is as follows:

– OCCURS COUNT is the number of occurrences of its second argument (an
Item) in its first argument (a string of Items). This is an implicit definition,
introduced by the keyword satisfies followed by an assertion in which OC-
CURS COUNT appears.

– ARE PERMUTATIONS is true whenever its two arguments (strings of Items)
are permutations of one another. This is an explicit definition, introduced
by the keyword is followed by an expression of the result type.

– PRECEDES is true whenever every entry in its first argument (a string of
Items) is “in order with” every entry in its second argument (a string of
Items), where the order is based on the relation ARE IN ORDER.

– IS NONDECREASING is true iff its argument (a string of Items) is sorted.
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contract Sor tEx tens ion (
d ef in i t io n ARE IN ORDER ( x : Item , y : Item ) : boolean sat is f i es r es t r i c t io n

for a l l z : Item ( ( ARE IN ORDER ( x , y ) or ARE IN ORDER ( y , x ) ) and
( i f (ARE IN ORDER ( x , y ) and ARE IN ORDER ( y , z ) ) then ARE IN ORDER ( x , z ) ) )

) enhances QueueTemplate
. . .
procedure Sor t ( updates q : Queue )

ensures
ARE PERMUTATIONS ( q , #q ) and IS NONDECREASING ( q )

end Sor tEx tens ion

Fig. 2. Sort Specification

d ef in i t io n OCCURS COUNT (
s : str ing of Item ,
i : Item

) : integer sa t is f ies
i f s = <> then
OCCURS COUNT ( s , i ) = 0

else there exists x : Item ,
r : str ing of Item

( s = <x> ∗ r and
( i f x = i then OCCURS COUNT ( s , i )

= OCCURS COUNT ( r , i ) + 1
else OCCURS COUNT ( s , i )

= OCCURS COUNT ( r , i ) ) )

d ef in i t io n ARE PERMUTATIONS (
s1 : str ing of Item ,
s2 : str ing of Item

) : boolean is
for a l l i : I tem

(OCCURS COUNT ( s1 , i )
= OCCURS COUNT ( s2 , i ) )

d ef in i t io n PRECEDES (
s1 : str ing of Item ,
s2 : str ing of Item

) : boolean is
for a l l i , j : I tem
where (OCCURS COUNT ( s1 , i ) > 0 and

OCCURS COUNT ( s2 , j ) > 0)
(ARE IN ORDER ( i , j ) )

d ef in i t io n IS NONDECREASING (
s : str ing of Item
) : boolean is

for a l l a , b : str ing of Item
where ( s = a ∗ b )

(PRECEDES ( a , b ) )

Fig. 3. Mathematical Definitions Used in SortExtension

In Section 6 we use sample VCs from the MergeSort realization of the contract
in Figure 2 to illustrate the kinds of VCs proved in each step of the study. It
is important to notice that this realization is parametrized by a control-valued
programming function AreInOrder which returns true whenever its arguments
satisfy the mathematical relation ARE IN ORDER (described previously and aris-
ing as a separate parameter to the SortExtension contract). The full separation of
mathematical and programming functions as illustrated here is an important dis-
tinctive feature of RESOLVE. As it is often difficult to select names that convey
this distinction, we adopt a typographical convention: all-upper-case identifiers
are reserved for mathematical functions and predicates. It is worth noting that
since we view the VCs to be putative mathematical theorems, only mathematical
symbols (not the names of programming entities) appear in them.

6 VCs from the Fully Generic Sorting Example

In this section, we show some VCs from the MergeSort verification that are
proved in each step of the study—and some that are not. The intent is to give
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an indication of some of the difficulties that arise in this example—and some
that do not. A total of 62 RESOLVE VCs are generated from the MergeSort
code, of which 58 mention user-defined mathematical functions or predicates.

Figure 4 shows a VC that is proved in step 1 of the study, i.e., with all
user-defined symbols treated as uninterpreted function and predicate symbols.
Although this VC involves the predicate ARE PERMUTATIONS in its assumptions
and conclusions, it is proved without knowledge of anything more than the sig-
nature of ARE PERMUTATIONS. This VC is proved easily due to a contradiction
involved in one of the assumptions. Less than half (28 of 58) of the interesting
VCs were proved in the first step.

var q1 4 , q2 4 , q1 0 : seq<T> ;
var x 6 : T ;
. . .
assume ARE PERMUTATIONS ( ( ( ( [ x 6 ] + [ ] )

+ q1 4 ) + q2 4 ) , ( ( q1 0 + [ ] ) + [ ] ) ) ;
assume ( ( [ x 6 ] + [ ] ) == [ ] ) ;
. . .
assert ARE PERMUTATIONS ( ( ( [ ] + ( q1 4
+ [ x 6 ] ) ) + q2 4 ) , ( ( q1 0 + [ ] ) + [ ] ) ) ;

Fig. 4. VC Proved in Step 1

var q2 3 , q1 0 : seq<T> ;
var q2Item 3 : T ;
. . .
assume ( | q1 0 | > 0 ) ;
assume ( | ( [ q2Item 3 ] + q2 3 ) | > 0 ) ;
. . .
assert ARE PERMUTATIONS (
( ( ( [ ] + q1 0 ) + q2 3 ) + [ q2Item 3 ] ) ,
( ( ( [ ] + q1 0 ) + q2 3 ) + [ q2Item 3 ] ) ) ;

Fig. 5. VC Proved in Step 2

Figure 5 shows a VC proved in step 2 but not in step 1. Its assumptions
include the expanded definitions shown in Figure 3 (but not shown here). The
conclusion of this VC states that a particular string is a permutation of itself,
which unsurprisingly cannot be proved if ARE PERMUTATIONS is treated as an
uninterpreted predicate symbol. With expanded definitions provided, Z3 is able
to prove 36 of the 58 VCs containing user-defined function and predicate symbols.

Notice that expanding definitions opens up everything to the prover, including
the definitions of OCCURS COUNT and PRECEDES that do not directly appear
in the specification of Sort. In software engineering terms, we might say that
expanding definitions breaks encapsulation and flattens out all the underlying
mathematical machinery devised to write the specification. There is no infor-
mation hiding—either from a human reader or a prover—when definitions are
expanded.

Figures 6 and 7 show examples of two VCs that are proved in step 3 but not in
step 2. In addition to expanding definitions, we now provide the prover with some
simple universal algebraic lemmas about the user-defined mathematical func-
tions and predicates. We encode some lemmas involving ARE PERMUTATIONS
and IS NONDECREASING as shown in Figures 8 and 9. Z3 proves 57 of the 58
interesting VCs with this additional information.

The VC in Figure 6 contains among its assumptions (not shown here) the
expanded definitions of ARE PERMUTATIONS and OCCURS COUNT. It also has
several more assumptions, all but one elided as irrelevant to the proof. To a hu-
man, the conclusion seems easily provable from the given assumption along with
an understanding of concatenation and the meaning of ARE PERMUTATIONS.
Some of the lemmas provided as additional assumptions capture this feature.
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var q1 0 , q2 3 , q1 6 , tmp 4 , q2 4 : seq<T> ;
var q2Item 3 , q1Item 6 , q2Item 4 : T ;
. . .
assume ARE PERMUTATIONS ( ( ( ( tmp 4 +
( [ q1Item 6 ] + q1 6 ) ) + q2 4 ) + [ q2Item 4 ] ) ,

( ( ( [ ] + q1 0 ) + q2 3 ) + [ q2Item 3 ] ) ) ;
. . .
assert ARE PERMUTATIONS ( ( ( ( ( tmp 4 +
[ q2Item 4 ] ) + q2 4 ) + q1 6 ) + [ q1Item 6 ] ) ,

( ( ( [ ] + q1 0 ) + q2 3 ) + [ q2Item 3 ] ) ) ;

Fig. 6. VC Proved in Step 3

var tmp 4 , q2 4 : seq<T>;
var q2Item 4 : T ;
. . .
assume IS NONDECREASING(

( ( tmp 4 + [ q2Item 4 ] ) + q2 4 ) ) ;
. . .
assert IS NONDECREASING(

( [ q2Item 4 ] + q2 4 ) ) ;

Fig. 7. VC Proved in Step 3

The VC in Figure 7 also includes two expanded definitions (not shown here),
and has several other assumptions, all but one elided as irrelevant. To a human,
it is obvious that if IS NONDECREASING holds for a string formed by the con-
catenation of three strings, then it holds for the concatenation of two of them
in the same order. But here it is less clear how long a reasoning path is required
for an automated prover to notice this without some simple lemmas to help.

1. f o r a l l a : seq<T> :: ARE PERMUTATIONS ( a , a )

2 . f o r a l l a : seq<T>, b : seq<T>, c : seq<T> :: ARE PERMUTATIONS ( a , b ) &&
ARE PERMUTATIONS ( b , c ) ==> ARE PERMUTATIONS ( a , c )

3 . f o r a l l a : seq<T>, b : seq<T> :: ARE PERMUTATIONS ( a , b ) ==> ARE PERMUTATIONS ( b , a )

4 . f o r a l l a : seq<T>, b : seq<T>, c : seq<T> :: ARE PERMUTATIONS ( ( a + b ) + c , a + ( b + c ) )

5 . f o r a l l a : seq<T> , b : seq<T> : : a == b ==> ARE PERMUTATIONS ( a , b )

6 . f o r a l l a : seq<T>, b : seq<T> :: ARE PERMUTATIONS ( a , b ) ==> |a | == |b |

Fig. 8. ARE PERMUTATIONS Lemmas

An obvious and important question is, “Which lemmas should be provided
to the prover?” The lemmas in Figure 8 for ARE PERMUTATIONS are the usual
equivalence relation properties along with a few others that might be given as
problems in an undergraduate math/logic textbook. Given lemma 1, lemma 4
merely restates that concatenation is associative. It turns out to be important
for Z3 to have this property separately in order to prove some of the MergeSort
VCs involving ARE PERMUTATIONS. Lemma 5 says the same thing as lemma
1; yet it helps Z3 prove some VCs where lemma 1 does not. In short, none
of these lemmas is surprising except possibly for the fact that it helps Z3 when
properties are stated in a particular way. This is not a shortcoming of the concept
of using universal algebraic lemmas in proofs of VCs, but rather appears to be
the expression of a current limitation on how they are processed by the prover.

The lemmas added for IS NONDECREASING are more extensive. The most
basic set are lemmas 1 through 3 in Figure 9. The second set (4 through 6)
are of a different nature, relating various concatenations of strings satisfying
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1. IS NONDECREASING ( [ ] )

2 . f o r a l l x : T : : IS NONDECREASING ( [ x ] )

3 . f o r a l l q : seq<T> : : |q | <= 1 ==> IS NONDECREASING( q )

4. f o r a l l x : seq<T>, y : seq<T> :: IS NONDECREASING( x + y ) ==>
IS NONDECREASING( x ) && IS NONDECREASING( y )

5 . f o r a l l a : seq<T>, b : seq<T>, c : seq<T> :: IS NONDECREASING( a + b + c ) ==>
IS NONDECREASING( a + b ) && IS NONDECREASING( b + c ) &&
IS NONDECREASING( a + c )

6. f o r a l l a : seq<T>, b : seq<T>, c : seq<T> :: IS NONDECREASING( a + c ) &&
IS NONDECREASING( c + b ) && c != [ ] ==> IS NONDECREASING( a + c + b )

7. f o r a l l a : T , b : T : : ARE IN ORDER( a , b ) ==> IS NONDECREASING ( [ a ] + [ b ] )

8 . f o r a l l a : seq<T>, b : seq<T>, x : T , y : T : : IS NONDECREASING( a + [ x ] ) &&
IS NONDECREASING ( [ y ] + b ) && ARE IN ORDER( x , y ) ==>
IS NONDECREASING( a + [ x ] + [ y ] + b )

9. f o r a l l a : seq<T>, x : T , y : T : : IS NONDECREASING ( [ x ] + a + [ y ] ) ==>
ARE IN ORDER( x , y )

Fig. 9. IS NONDECREASING Lemmas

IS NONDECREASING. The third set (7 through 9) are different still, relating
ARE IN ORDER and IS NONDECREASING. All these lemmas were proved inter-
actively with the help of Isabelle used as a proof assistant.

var q1 0 , q2 3 , tmp 17 , q2 17 : seq<T> ;
var q2Item 3 , q2Item 17 : T ;

assume ARE PERMUTATIONS ( ( ( ( tmp 17 + [ ] ) + q2 17 ) + [ q2Item 17 ] ) ,
( ( ( [ ] + q1 0 )+ q2 3 ) + [ q2Item 3 ] ) ) ;

assert ARE PERMUTATIONS ( ( ( tmp 17 +[ q2Item 17 ] ) + q2 17 ) , ( q1 0 + ( [ q2Item 3 ]+ q2 3 ) ) ) ;

Fig. 10. VC Proved in Step 4

Figure 10 shows the lone VC not proved in a previous step but successfully
proved in step 4, where we remove expanded definitions and leave only universal
algebraic lemmas about them. Z3 now proves all 58 interesting lemmas.

It is important to note that in the absence of the expanded definitions, pro-
viding universal algebraic lemmas does not open up everything to the prover.
In particular, here the very existence of OCCURS COUNT and PRECEDES re-
mains hidden because they do not directly appear in the specification of Sort. In
software engineering terms, providing universal algebraic lemmas about defined
functions and predicates respects encapsulation and leverages all the underlying
mathematical machinery devised by the software developer to write the specifi-
cation. Information hiding survives when definitions are not expanded.
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7 Discussion

Intuition for believing that otherwise troublesome quantifiers in VCs might be
finessed by introducing universally quantified lemmas comes from observing the
practice in calculus where, for example, most results are established (by humans)
not by appealing to a complex nested quantification like that required to define
the concept of a limit, but rather by reusing universal algebraic results proved
separately, e.g., lim (f + g) = lim f + lim g. A similar situation characterizes
reasoning using big-O notation. The value of universal algebraic lemmas seems
clear from such experience with fully manual proofs, as well as from anecdotal
evidence involving interactive proofs (e.g., [13,14]). However, it is less clear that
such lemmas should be so helpful to an automated prover that they should help
it produce—fully automatically—proofs of VCs involving complex definitions.

To see why this is plausible, consider a VC in which user-defined symbols
appear, but in which no definitions are expanded and no properties about those
definitions appear. The form of such a VC as generated by the OSU RESOLVE
verification tools [3] is always

∧
Ai =⇒ C. When definitions are used to hide

all quantifiers in software specifications (a recommendation we have followed in
the specifications used in this study), all the variables (call them x1, ..., xm) in
the assumptions A1, ..., An and the conclusion C are free variables; equivalently,
there is an implicit universal quantifier in front: ∀x1, ..., xm(

∧
Ai =⇒ C).

Depending on the combination of functions and predicates appearing in the VC,
automated provers may do well or not so well on it. Yet if there is trouble then
at least it is not the fault of the quantifier structure, because such VCs are in a
form to which automated provers are well suited.

On the other hand, if a definition hiding quantifiers is expanded in the VC,
then these newly exposed quantifiers might, or might not, cause serious addi-
tional trouble for an automated prover. For example, in the lucky special case
that one of the assumptions, say Ak, expands to the form ∃y(P (y)), then there is
no problem at all: xm+1 can be introduced as a new free variable and Ak can be
replaced with P (xm+1), i.e., xm+1 is simply treated as a witness to the existence
of a value that makes P true. The structure of the revised VC remains the same
as the original: it is now ∀x1, ..., xm+1(

∧
Ai =⇒ C).

A more difficult situation is the equally special case where one of the assump-
tions, say Ak, expands to the form ∀y(P (y)). Now, the prover must instantiate
y with term(s) appearing in the VC, so the new instance(s) help in the overall
proof. SMT solvers use “triggers” to match terms in such a way that the instan-
tiated version(s) might be useful. Sometimes the prover can find an appropriate
match automatically, and sometimes it needs a human-suggested trigger [5, 15].
A universal algebraic lemma added as an additional assumption in a VC is ex-
actly of this second, somewhat non-trivial, form. However, this is still far less
complex a form for an automated prover to handle than an arbitrary quantified
statement. Indeed, in some sense this is the non-trivial quantified form for which
automated provers are tuned to work particularly well.

Though the general idea of providing universal algebraic lemmas about user-
defined mathematical function and predicates has been reported in case studies
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with interactive proofs [13, 14], it has not previously been systematically and
empirically evaluated for use with automated provers for verification conditions.

8 Conclusions

We have presented empirical support for the claim that supplying universal al-
gebraic lemmas about user-defined mathematical functions and predicates is, in
general, a better way than expanding definitions to support automated verifica-
tion of programs; and the approach does not assume that programmers have any
knowledge about the intricacies of a back-end theorem prover (such as triggers
or proof tactics). We also have demonstrated that the approach can be applied
successfully for code whose specifications involve various mathematical theories.

There is clear potential for dependence of these results on specification and
programming language features. The VCs we have seen from verification tools
for other imperative languages, including Dafny itself and Jahob (for Java), are
similar in basic mathematical content to VCs from RESOLVE programs. Yet
there is one critical difference as well. RESOLVE programs have value seman-
tics, not reference semantics; hence, there is no possibility for aliasing and no
appearance of heap properties in RESOLVE VCs. This makes RESOLVE VCs
relatively easier to prove, so our results in one direction should apply across the
board: if expanding definitions does not lead to automated proofs of RESOLVE
VCs using the same or similar back-end provers as are used for languages with
reference semantics, it is unlikely that expanding definitions will lead to suc-
cessful automated proofs of VCs that involve heap properties in addition to the
properties of the primary mathematical models used in specifications. In the
other direction, as far as we know it remains open to what extent providing uni-
versal algebraic lemmas to automated provers rather than expanding definitions
has similar value for VCs that also involve heap properties.
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Abstract. Case studies on formal software verification can be divided
into two categories: while (i) unsound approaches may miss errors or
report false-positive alarms due to coarse abstractions, (ii) sound ap-
proaches typically do not handle certain programming constructs like
concurrency and/or suffer from scalability issues. This paper presents a
case study on successfully verifying the Linux USB BP keyboard driver.
Our verification approach is (a) sound, (b) takes into account dynamic
memory allocation, complex API rules and concurrency, and (c) is ap-
plied on a real kernel driver which was not written with verification in
mind. We employ VeriFast, a software verifier based on separation logic.
Besides showing that it is possible to verify this device driver, we identify
the parts where the verification went smoothly and the parts where the
verification approach requires further research to be carried out.

1 Introduction

The safety and security of today’s omni-present computer systems critically de-
pends on the reliability of operating systems (OS). Due to their complicated
task of managing a system’s physical resources, OSs are difficult to develop and
to debug. As studies show, most defects causing operating systems to crash are
not in the system’s kernel but in the large number of OS extensions available
[1,4]. In Windows XP, for example, 85% of reported failures are caused by errors
in device drivers [1]. As explained in [4], the situation is similar for Linux and
FreeBSD: error rates reported for device drivers are up to seven times higher
than error rates stated for the core components of these OSs.

A lot of research aims to prove the correctness of programs. However, not
much work has been carried out to test whether the results of this research is
applicable to complex real-world programs where correctness is important, like
operating systems drivers. To work towards addressing this question, this paper
applies a separation-logic based verifier, VeriFast [11], on a device driver taken
from the Linux kernel.

The driver code subject to verification is Linux’s USB Boot Protocol keyboard
driver. While being small, this driver contains a bigger than expected subset of
kernel driver complexity. It involves asynchronous callbacks, dynamic allocated
memory, synchronization and usage of complex APIs. During verification, we
identified and fixed a number of bugs. For these bugs we submitted patches that
have been accepted by the driver’s maintainer and are queued for inclusion in
future Linux releases.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 210–215, 2012.
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In the remainder of this paper we briefly introduce VeriFast and the device
driver. We outline the verification of the driver and elaborate on the challenges
involved. Finally, we discuss related work and draw conclusions.

2 Background

The verifier we apply to the USB BP keyboard driver is VeriFast. VeriFast’s
underlying logic is based on an extension of separation logic. Separation logic [16]
builds on Hoare Logic [10] and adds support for the heap by introducing the
separating conjunction ∗ and other assertions describing a heap. An assertion
A ∗ B expresses that the heap can be divided in two disjoint parts, such that
assertion A holds for the first part and B holds for the second part.

Concurrency is supported by associating a real number (called “fraction”)
from (0, 1] to every heap cell which is regarded as a permission (e.g. to access
data) [3]. Multiple threads can obtain different fractions of the same permission.
What is allowed with the permission, depends on the fraction, e.g. for an access-
data permission, a fraction 1 denotes read-write permission, a fraction of another
size denotes read-only permission.

Specifications for (spin)locks are done in a fashion similar to [7]: with a lock a
handle and an invariant are associated. A fraction of the handle allows acquiring
the lock, which yields (adds to the thread’s owned permissions) the invariant
which represents the permissions protected by the lock.

VeriFast checks annotated C files. The annotations can contain pre- and post-
conditions written in separation logic, ghost data structures and ghost lemmas.
The VeriFast tool and its technical documentation, including a tutorial and a
formalization of a core subset of VeriFast and its semantics, are available for
download at http://www.cs.kuleuven.be/~bartj/verifast/.

3 Overview of How usbkbd Works

The driver subject to verification is Linux’s USB Boot Protocol keyboard driver,
named usbkbd1. This section gives a high-level overview of how the driver works,
leaving out details concerning concurrency and the exact API usage.

On loading, usbkbd registers itself with the USB API. When a new keyboard is
attached, the API calls the usb_kbd_probe function of usbkbd. usb_kbd_probe
checks whether the driver can handle the attached keyboard, and if so initializes
a USB Request Block (URB). An URB is an asynchronous request that can
be used to send or receive data from a USB device. The purpose of the URB
initialized here is to receive key-presses and key-releases. This URB is named
the IRQ URB. usb_kbd_probe initializes another URB for updating the LED
status (e.g. numlock) named the LED URB. usb_kbd_probe then registers a new
input device with the input API to make the keyboard available to applications.
When the newly created input device is opened, usbkbd’s usb_kbd_open callback

1 The driver’s source file, usbkbd.c, is located in drivers/hid/usbhid/ in the Linux
kernel distribution available from http://kernel.org/.

http://www.cs.kuleuven.be/~bartj/verifast/
http://kernel.org/
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is invoked and usb_kbd_open submits the IRQ URB. When a key is pressed
or released, the URB completion callback usb_kbd_irq is called. usb_kbd_irq
parses the data received from the keyboard and reports key-presses and releases
to the input API. It then resubmits the URB. When the input API decides
the LED status needs to be changed, the usb_kbd_event callback is invoked.
This callback checks whether a LED URB is in progress, and if not submits the
LED URB with the appropriate data. Otherwise, it stores the new LED info in
a buffer. When the LED URB completion callback usb_kbd_led is called, this
callback checks whether new LED info has appeared while the LED URB was in
progress. If so, usb_kbd_led resubmits the LED URB with the new LED info.

4 Verifying the USB BP Keyboard Driver

Verification of the driver is against the original API. Wrapper functions are only
used in a few cases where API functions return a struct (i.e. not a pointer to
a struct) because this is currently not supported by VeriFast. The APIs that
usbkbd uses are the USB API, the input API, spinlocks, and some generic func-
tions like memcpy. Verification thus consists of (1) writing formal specifications for
these APIs, based on official documentation and reading the API implementation
for the underspecified or undocumented parts, and (2) of adding annotations to
usbkbd. These annotations consists of contracts (pre- and postconditions written
in separation logic), predicates to describe data structures, predicate family in-
stances to instantiate callback function contracts, lemmas (i.e. ghost functions),
and ghost-code like folding and unfolding predicates.

The verified properties are freedom of data races in the presence of concurrent
callbacks, freedom of illegal memory accesses, and correct API usage. This does
not include a formal proof of correctness of the hand-written API formalization.

usbkbd is one of the smallest Linux kernel drivers. It consists of 426 lines of C
code (including blanks and comments). VeriFast reports 329 lines of actual code
and 822 lines of annotations. The API specifications count up to 769 lines of
code. VeriFast can be launched for this driver with “verifast -prover redux

-c usbkbd_verified.c”. On an Intel L9400 1.86GHz running the verifier takes
about one second. The annotated sources of usbkbd, specifications for the used
APIs and the patches submitted to the driver’s maintainer are available at
http://people.cs.kuleuven.be/~willem.penninckx/usbkbd/.

Writing Specifications for the Input API and some generic functions like
kmalloc was rather straightforward. API rules include forbidding double frees,
requiring when registering input devices that the given callbacks are real function
pointers with a contract not conflicting with some rules, etc.

Killable URBs were rather tricky to get verified for the LED URB. Because
usb_kbd_eventand usb_kbd_ledboth submit URBs, they are synchronizedwith
a spinlock. A C boolean led_urb_submitted represents whether the URB is in
progress, and thus also whether the URB data (necessary for URB submitting) is
not owned by the lock invariant. After killing the URB, the URB data must be
taken out of the lock invariant in order to free it, i.e. VeriFast must be convinced

http://people.cs.kuleuven.be/~willem.penninckx/usbkbd/
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led_urb_submitted is false.We used a ghost-counter (associatedwith a predicate
of which a uniqueness-proof must be provided on creation) named cb_out_count

that yields a ticket on increase and ensures the counter is at least n high if n such
tickets are owned. Another counter, killcount, keeps track of the number of URB
submits. By making sure killcount tickets of cb_out_count are obtained when
killing the URB, we can prove cb_out_count is at least as high as killcount.
Because cb_out_count is maximum one less than cb_out_count, we know they
are equal, which can only happen if the URB is not submitted.

The usb_kbd_malloc and usb_kbd_free’s Contracts take into account all
possible combinations of failed and successful allocation and initialization, which
makes their contracts long, and dependent on other parts of the annotations.

Flow Between Callbacks had to be reasoned about: permissions are passed
between callbacks by setting up callbacks in other callbacks. Reasoning about
flow between multiple callbacks easily gives the impression big parts of the pro-
gram must be taken into account at the same time.

5 Related Work

Here we discuss related case studies and tools in the context of OS verification.
The reader is referred to [11] for a discussion of the related work on VeriFast.

Several automated tools for verifying C programs have been introduced. No-
tably, CEGAR-based [5] model checkers such as BLAST [9] and SLAM/SDV [1]
have been applied to check the conformance of device drivers with a set of API
usage rules. In contrast with our work, these tools do not provide support for
identifying errors with respect to the inherently concurrent execution environ-
ment device drivers are operating in. The tools also assume either that a pro-
gram “does not have wild pointers” [1] or, as shown in [13], perform poorly when
checking OS components for memory safety.

In [18] a model checker with support for pointers, bit-vector operations and
concurrency is evaluated on a case study on Linux device drivers. The tool checks
for buffer overflows, pointer safety, division by zero and user-written assertions.
Yet, it requires a test harness with a fixed number of threads to be generated for
each driver. VeriFast, in difference, handles concurrency implicitly and aims at
verifying full functional correctness and implements assume-guarantee reasoning
using generic API contracts. Therefore, VeriFast can check each function of a
driver in isolation, which contributes to the scalability of our approach.

Bounded model checking and symbolic execution have been successfully ap-
plied to the source code [15,12] and to the object code [14] of kernel modules. In
contrast to the VeriFast approach, these techniques suffer from severe limitations
with respect to reasoning about concurrently executing kernel threads.

Shape analysis has been applied to Windows [2] and Linux [19] drivers, and
aims to automatically infer, e.g. whether a variable points to a cyclic or acyclic
list. Shape analysis can be employed to verify pointer safety, guaranteeing that
the shape of data structures is maintained throughout program execution. Ongo-
ing work on VeriFast envisages the use of shape analysis to infer annotations [17].
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A competing toolkit to VeriFast is the Verifying C Compiler (VCC) [6]. VCC
verifies C programs annotated with contracts in Boogie. The tool generates veri-
fication conditions from the annotated program, which are then discharged by an
SMT solver. VCC can be expected to require fewer annotations than VeriFast,
however, at the expense of a less predictable search times. The toolkit has been
employed in a case study on verifying the Microsoft Hypervisor.

Other approaches to OS verification involving modelling and interactive proof.
Most notably, the L4.verified [8] project aims at producing a verified OS ker-
nel by establishing refinement relations between several layers of Isabelle/HOL
specifications, a prototypic kernel implementation in Haskell and the actual ker-
nel implementation in C and assembly. This differs from our work as we do not
employ refinement relations and verification is non-interactive.

6 Conclusions

We report on the successful verification of usbkbd, the USB Boot Protocol key-
board driver distributed with the Linux kernel, using the sound and efficient ver-
ification tool VeriFast. The verified properties are crash-freedom, race-freedom,
and a set of API usage rules. The usbkbd driver presents a challenging case
study as it involves concurrency and employs a complex API.

VeriFast requires the source code to be annotated with method contracts that
are typically easy to write. Certain programming constructs that are difficult to
annotate are discussed in this paper. During verification, we identified two bugs
related to erroneous synchronization and a missing URB kill. Our case study
shows that VeriFast is a powerful tool. Yet, the annotation overhead amounts to
a total of 4.8 lines of annotations per line of code. About half of these annotations
specify API contracts, that can potentially be reused in future case studies.

Verifying functional correctness and unload-safety is left for further work.
Unload-safety includes making sure the kernel does not maintain a function-
pointer to a callback of a module that is already unloaded. It is hard to tell
whether our verification approach will scale for larger device drivers. More au-
tomation for writing or generating annotations with a high degree of decompo-
sition might help. From our experience we conclude that execution speed of the
verification tool will not impose problems for larger drivers.
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Abstract. Establishing an accurate model for formal verification of an
existing hardware or software system is often a manual process that
is both time consuming and resource demanding. In order to ease the
model construction phase, methods have recently been proposed for au-
tomatically learning accurate system models from data in the form of
observations of the target system. Common for these approaches is that
they assume the data to consist of multiple independent observation
sequences. However, for certain types of systems, in particular many
running embedded systems, one would only have access to a single long
observation sequence, and in these situations existing automatic learning
methods cannot be applied. In this paper, we adapt algorithms for learn-
ing variable order Markov chains from a single observation sequence of
a target system, so that stationary system properties can be verified us-
ing the learned model. Experiments demonstrate that system properties
(formulated as stationary probabilities of LTL formulas) can be reliably
identified using the learned model.

1 Introduction

Model-driven development (MDD) is increasingly used for the development of
complex embedded software systems. An important component in this process
is model checking [1], where a formal system model is checked against a spec-
ification given by a logical expression. Often, the complexity of a real system
and its physical components, unpredictable user interactions, or even the use of
randomized algorithms make the use of complete, deterministic system models
infeasible. In these cases, probabilistic system models and methods for proba-
bilistic verification are needed.

However, constructing accurate models of industrial systems is hard and time
consuming, and is seen by industry as a hindrance to adopt otherwise powerful
MDD techniques and tools. Especially, the necessary accurate, updated and
detailed documentation rarely exist for legacy software or 3rd party components.
We therefore seek an experimental approach where an accurate high-level model
can be automatically constructed or learned from observations of a given black-
box embedded system component.

Sen et al. [12] proposed to learn system models for verification purposes,
based on the Alergia algorithm for learning finite, deterministic, stochastic au-
tomata [2]. In [8] we developed a learning approach related to that of [12], and
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established strong theoretical and experimental consistency results: if a sufficient
amount of data, i.e., observed execution runs of the system to be modeled, is
available, then the results of model-checking probabilistic linear-time temporal
logic (PLTL) properties on the learned model will be good approximations of
the results that would be obtained on the true model. Both [12] and [8] assume
that learning is based on data consisting of many independent finite execution
runs, each starting in a distinguished, unique initial state of the system. In many
situations, it will be difficult or impossible to obtain data of this kind: we may
not be able to run the system under laboratory conditions where we are free
to restart it any number of times, nor may we be able to reset the system to a
well-defined unique initial state.

In this paper, therefore, we investigate learning of system models by passively
observing a single, ongoing execution of the system, i.e., from data that con-
sists of a single, long observation sequence, which may start at any point in
the operation of the system. This scenario calls for different types of models and
learning algorithms than used in previous work. The probabilistic system models
we are going to construct are Probabilistic Suffix Automata (PSAs) [10]. This is
a special type of probabilistic finite automaton, in which states can be identified
with finite histories of past observations. Since we are constructing models only
for the long-run, stationary behavior of a system, we must also limit the model
checking of the learned system to such properties as only refer to this long-run
behavior, and not to any initial transitions from a distinguished start state. We
therefore define Stationary Probabilistic Linear Time Temporal Logic (SPLTL)
as the specification language for system properties. Roughly speaking, a SPLTL
property S(ϕ) specifies the probability that a system run which we start observ-
ing at an arbitrary point in time during the stationary, or steady-state, operation
of the system satisfies the LTL property ϕ.

The main contributions of this paper are: we introduce the problem of learn-
ing models for stationary system behavior, and adapt an existing learning al-
gorithm for PSAs [10] to this task. We formally define syntax and semantics
of SPLTL properties. We conduct experiments which demonstrate that model-
checking SPLTL properties on learned models provides good approximations for
the results that would be obtained on the true (but in reality unknown) model.

The paper is structured as follows: in Section 2 we introduce the necessary
concepts relating to Markov system models, their stationary distributions, and
SPLTL. Section 3 describes our method for learning PSAs and Labeled Markov
chains (LMCs). Section 4 contains our experimental results. Section 5 includes
conclusion and future work.

2 Preliminaries

2.1 Strings and Suffixes

Let Σ denote a (finite) alphabet, and let Σ∗ and Σω denote the set of all finite,
respectively infinite strings over Σ. The empty string is denoted by e. For any
string s = σ1 · · ·σi, where σi ∈ Σ, we use the following notation:
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– The longest suffix of s different from s is denoted by suffix(s) = σ2 . . . σi.
– suffix∗(s) = {σk . . . σi|k = 1 . . . i} ∪ {e} is the set of all suffixes of s.
– A set of strings S is suffix free, if for all s ∈ S, suffix∗(s) ∩ S = {s}.

2.2 Markov System Models

A Labeled Markov chain (LMC) is a tuple M = 〈Q,Σ, π, τ, L〉, where

– Q is a finite set of states,
– π : Q→ [0, 1] is an initial probability distribution such that

∑
q∈Q π(q) = 1,

– τ : Q × Q → [0, 1] is the transition probability function such that for all
q ∈ Q,

∑
q′∈Q τ(q, q′) = 1.

– L : Q→ Σ is a labeling function

Labeling functions that assign to states a subset of atomic propositions AP can
also be accommodated in our framework by assigning Σ = 2AP . Since a Markov
chain defines a probability distribution over sequences of states, an LMCM with
alphabet Σ induces a probability distribution P π

M over Σω through the labeling
of the states.

A subset T of Q in LMC M is called strongly connected if for each pair (qi, qj)
of states in T there exists a path q0q1 . . . qn such that qk ∈ T for 0 ≤ k ≤ n,
τ(qk, qk+1) > 0, q0 = qi, and qn = qj . If Q is strongly connected, then M is said
to be strongly connected. A distribution πs

M is a stationary distribution for M
if it satisfies

πs(q) =
∑
q′∈Q

πs(q′)τ(q′, q). (1)

We abbreviate P πs

M with P s
M . If an LMCM is strongly connected, thenM defines

a unique stationary distribution.
In this paper we focus on so-called probabilistic suffix automata (PSA). A PSA

is an LMC extended with a labeling function H : Q → Σ≤N , which represents
the history of the most recent visited states (a string over Σ with length at
most N). Given the labeling functions L and H , each state qi is associated with
a string si = H(qi)L(qi) such that, i) the set of strings labeling the states is
suffix free, and ii) for any two states q1 and q2, if τ(q1, q2) > 0, then H(q2) is a
suffix of s1. For example, for the PSA in Figure 1(b) the set of strings associated
with the states is suffix free. Furthermore, e.g., by considering the states qsa and
qaa we have that H(qsa) = s, H(qaa) = a, L(qsa) = a and L(qaa) = a which
represent past and current information respectively. Here H(qaa) = a is a suffix
of the string sa associated with qsa. The latter case implies that aa is sufficient
for identifying qaa rather than saa. Similarly, qs has two incoming transitions
with different histories, but s is sufficient for identifying qs. For a given N ≥ 0,
the collection of PSAs are denoted by N -PSA, where each state are labeled by a
string of at length most N . In the special case, where all strings in a N -PSA is
of length N , then the N -PSA is also called an N -order labeled Markov chain. An
LMC is called PSA-equivalent if there exists a PSA M ′, such that they define
the same distribution over Σω (P s

M = P s
M ′).
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Example 1. The LMC M and the PSA M ′ in Figures 1(a) and (b) are specified
over the same alphabet Σ = {s, a, b} and define the same probability distribution
over Σω. The LMC M is therefore PSA-equivalent, but it is not a PSA since the
set of strings associated with states can not be suffix free.
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Fig. 1. The LMC in (a) defines the same probability distribution over Σω as the 2-
PSA in (b). The probabilistic suffix tree in (c) corresponds to the PSA in (b). The next
symbol probabilities associated with the nodes follow the ordering s, a, and b.

The learning algorithm adapted in this paper attempts to find a PSA model
that best describes the observed sequence of output symbols generated by a sys-
tem. However, for the actual learning we will primarily consider an intermediate
structure called a prediction suffix tree (PST) [10]. A PST over an alphabet Σ is
a tree of degree |Σ|, where each outgoing edge of an internal node is labeled by
a symbol in Σ. The nodes of the tree are labeled by pairs (s, γs); s is the string
defined by labels of the edges on the path from the node in question to the root
of the tree. If s′ is a descendant of s, then s ∈ suffix∗(s′). γs : Σ → [0, 1] is
the next symbol probability function such that

∑
σ∈Σ γs(σ) = 1. The probabil-

ity that a PST T generates a string str = σ1σ2 · · ·σn ∈ Σn is
∏n

i=1 γsi−1(σi),
where s0 = e and si is the label of the deepest node reached by following the links
corresponding to σiσi−1 · · ·σ1 from the root. The PST T in Figure 1(c) shows a
representation of the PSAM in Figure 1(b); the node corresponding to the suffix
ba is not shown, since the probability of seeing ba is zero. Based on this PST we
can, e.g., calculate the probability of seeing the string sabsaa from the probabil-
ities of the individual symbols in the string. These probabilities can be found as
the next symbol probabilities of the deepest nodes in the tree that can be reached
by following (in reverse order) the symbols observed so far. For example, at the
root node labeled with the empty string e we have that γe(s) = 1/3. After seeing
the string s, the probability of seeing an a is encoded at the node labeled s, where
we have γs(a) = 1. The probability of seeing the symbol b following the string sa
is encoded at the node labeled sa, where γsa(b) = 1/2. Given the string sab, the
probability of seeing an s is encoded at the node labeled b, which is the deepest
node in the tree reached by following the links corresponding to the symbols bas
from the root. By following this procedure for each symbol in the string we get
P (sabsaa) = γe(s) · γs(a) · γsa(b) · γb(s) · γs(a) · γsa(a) = 1

3 · 1 ·
1
2 · 1 · 1 ·

1
2 . See

also [10] for further discussion about PSAs and PSTs.
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2.3 Stationary Probabilistic LTL

Linear time temporal logic (LTL) [1] over the vocabulary Σ is defined as usual
by the syntax

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (σ ∈ Σ)

For better readability, we also use the derived temporal operators � (always)
and ♦ (eventually).

Let ϕ be an LTL formula over Σ. For s = σ0σ1σ2 . . . ∈ Σω, s[j . . .] =
σjσj+1σj+2 . . . is the suffix of s starting with the (j + 1)st symbol σj . The LTL
semantics for infinite words over Σ are as follows:

– s |= true
– s |= σ, iff σ = σ0
– s |= ϕ1 ∧ ϕ1, iff s |= ϕ1 and s |= ϕ2

– s |= ¬ ϕ, iff s � ϕ
– s |= © ϕ, iff s[1 . . .] |= ϕ
– s |= ϕ1Uϕ2, iff ∃j ≥ 0. s[j . . .] |= ϕ2 and s[i . . .] |= ϕ1, for all 0 ≤ i < j

The syntax of stationary probabilistic LTL (SPLTL) now is defined as by the
rule:

φ ::= S��r(ϕ) (�� ∈ ≥, ≤, =; r ∈ [0, 1]; ϕ ∈ LTL)

The syntax of SPLTL, thus, is essentially the same as standard probabilistic LTL
(PLTL). However, the semantics will be defined in a slightly different manner.
Seen as a PLTL formula, S��r(ϕ) would be satisfied by a LMC if traces of the
Markov chain satisfy φ with probability �� r, when initial states of the system are
sampled according to the initial state distribution π. In the SPLTL semantics, the
unique initial distribution π is replace with the set of all stationary distributions
of the Markov chain, and we define for an LMC M :

M |= S��r(ϕ) iff for all stationary distributions πs for M :
P πs

M ({s ∈ Σω|s |= ϕ}) �� r

Note, in particular, that the satisfaction relation |= now only depends on the
transition probabilities τ of M , but not on the the initial distribution π.

The reason for this design of SPLTL is that we are interesting in analyzing
behaviors of systems that are characterized by an open-ended mode of operation,
and which we observe during their ongoing operation. Think, for example, of an
elevator control program, a network router, or an online web-service. It will then
typically be the case that the system (which may originally have started from
some special initial configuration) has reached a terminal strongly connected
component of states, and has converged to one of its stationary distributions.
Starting to observe the system at a random point in time then corresponds to
starting the observation at a state sampled from a stationary distribution. The
real-world meaning of M |= S��r(ϕ) then is: assuming that we start observing
M at a random point in time, but when M is already past a possible initial
“burn-in” phase, then the probability that we see the further execution of M
having property φ is �� r.
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3 Learning Labeled Markov Chains

Our algorithm for learning PSAs is a modified version of the method described
in [10]. The modifications mostly relate to the fact that the data is to be gen-
erated by a strongly connected model. As in [10], for a given sample sequence
Seq = σ1σ2 . . . σn, we learn a PSA by firstly constructing a PST T , and then
translating T into a PSA. The PSA may be considered as an LMC after removing
the labeling function H(qi) (representing past observations), and the resulting
model can then directly be used in probabilistic model checker (PRISM [6] here).
The translation from a PST to a PSA is performed as described in [10], and will
not be discussed further. The key part in the learning process is the construction
of T , which takes the form of a top-down tree-growing procedure. At any point
in time, the algorithm maintains a current tree, and a set S of strings (repre-
senting suffixes) that are candidates for inclusion in the tree. In one iteration,
the algorithm

(1) selects a string s ∈ S, and decides whether to add s as a node to T (which
may require the addition of intermediate nodes to T that connect s to the
leaf in the current T that represents the longest suffix of s contained in T ).

(2) (regardless of whether s was added to T ) for all σ ∈ Σ, decide whether to
add σs to S.

The crucial question, now, is how exactly to define the decision criteria for (1)
and (2). In [10], the decision criteria depend on a parameter as well as a prior
specification of both the memory length of the PSA and an upper bound on the
number of states of the PSA. The authors prove probably approximately correct-
ness results for the learning algorithm, but the requirement of prior knowledge
about model size and memory length is not compatible with our setting. Here we
are going to adjust the original criteria by combining parameters and removing
prior constraints. As in most statistical learning approaches, a central tool in
our learning approach is the likelihood of a PST T given the data Seq, i.e., the
conditional probability of the data given the model T :

L(T | Seq) = P (Seq | T ). (2)

We now base both decisions on a single parameter ε ≥ 0 that is given as input
to the PST learning algorithm, and which represents the minimal improvement
in likelihood that we want to obtain when adding an extra node to the PST.

For step (1) it is straightforward to compute precisely the improvement in
likelihood one will obtain using a tree T containing s as a leaf, compared to
the tree T ′ in which suffix(s) is a leaf (T and T ′ otherwise being equal), i.e.,
line 4, in Algorithm 1. We add s to the tree if the improvement is at least ε.
Exactly the same criterion can not be used in step (2), since here we need to
include σs into the candidate set not only when adding σs itself to T leads
to a likelihood improvement, but also when this may happen only for some
further extension s′σs of σs. However, one can derive a global upper bound
on the maximal likelihood improvement obtainable by adding any such s′σs,
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and we add σs to S if this bound is at least ε, i.e., line 5, in Algorithm 1. The
learning algorithm is described in Algorithm 1, where the empirical (conditional)
probabilities P̃ (·) are calculated based on the sample sequence Seq.

Algorithm 1. Learn PSA

Require:
A sample sequence Seq, and the ε

Ensure:
A PST T̄

1: Initialize T̄ and S: let T̄ consist of a single root node (corresponding to e), and let
S = {σ | σ ∈ Σ and P̃ (σ) ≥ ε}

2: while S �= ∅ do
3: (A) Pick any s ∈ S and remove s from S
4: (B) If

P̃ (s) ·
∑

σ∈Σ
P̃ (σ|s) · log P̃ (σ|s)

P̃ (σ| suffix(s))
≥ ε

then add s and all its suffixes which are not in T̄ to T̄
5: (C)If P̃ (s) ≥ ε, then for every σ′ ∈ Σ, if P̃ (σ′s) ≥ 0, then add σ′s to S
6: end while
7: Extend T̄ by adding all missing sons s of internal nodes if P̃ (s) > 0
8: For each s ∈ T̄ , let

γ̂s(σ) = P̃ (σ|s′)
where s′ is the longest suffix of s in T̄

The learned tree, thus, depends on the value of ε. Smaller ε lead to the con-
struction of larger trees, and as ε→ 0, the size of the tree will typically approach
the size of the dataset (because the tree degenerates into a full representation
of the data). In Machine Learning terminology, the learned tree then overfits
the data. In order to avoid overfitting, and to learn an accurate model of the
data source, rather than an accurate model of the data itself, one often employs
a penalized likelihood score to evaluate a model. These scores evaluate candi-
date models based on likelihood, but subtract a penalty term for the size of the
model. Common penalized likelihood scores are Minimum Description Length
[9] and the Bayesian Information Criterion (BIC) [11]. The BIC score of a PSA
A relative to data Seq is defined as

BIC(A | Seq) := log(L(A | Seq))− 1/2 |A | log(|Seq |), (3)

where |Seq | is the length of Seq, and |A | is the number of free parameters which
represents the size of model, i.e. |A |=|QA | ·(|Σ | −1). Using a golden section
search [14, Section E.1.1] we systematically search for an ε value optimizing the
BIC score of the learned model.

4 Experiments

In order to test the proposed algorithm we have generated observation sequences
from three different system models. We applied the learning algorithm on each
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single sampled sequence, and validated resulting models by comparing with the
known generating models in terms of their SPLTL properties. For the actual
comparison of the models, we considered relevant system properties expressed by
LTL formulas as well as a set Φ of randomly generated LTL formulas. Formulas
were generated using a stochastic context-free grammar, and each formula was
restricted to a maximum length of 30.

In order to avoid generating un-interesting formulas (especially tautologies or
unsatisfiable ones), we constructed a dummy model Md with one state for each
symbol in the alphabet, and with uniform transition probabilities. For each gen-
erated LTL formula ϕ ∈ Φ we tested whether the formula was indistinguishable
by the learned model Ml, the generating model Mg, and the dummy model Md

in the sense that P s
Mg

(ϕ) = P s
Ml

(ϕ) = P s
Md

(ϕ). If that was the case, then ϕ was
removed from Φ.

We compute stationary probabilities of LTL properties using the PRISM
model checker [6]; in the experiments performed, all the learned models are
strongly connected. PRISM provides algorithms to compute the stationary dis-
tribution over the states, and for a given LTL property ϕ, the probability of ϕ
at any given start state. Combined, this allows us to compute P s

M (ϕ).
We evaluate the learned models by comparing P s

Mg
(ϕ) and P s

Ml
(ϕ) for certain

properties ϕ that are of interest for the individual systems, as well as by the
mean absolute difference for the random formulas in Φ:

D =
1

|Φ|
∑

ϕ∈Φ
|P s

Mg
(ϕ)− P s

Ml
(ϕ)| (4)

The mean absolute difference between Mg and Md is calculated analogously. It
is denoted Dd, and reported as a reference baseline.

We distinguish experiments in which the data was generated by a PSA-
equivalent model, and experiments where the generating model is not exactly
representable by a PSA.

4.1 Learning Models of PSA-Equivalent Systems

Phone Model. For our first experiment we use a toy model for a telephone. We
consider observable state labels i (the phone is idle), r (ringing), t (talking), h
(phone is hung up), and p (receiver picked up). The PSA model in Fig. 2 encodes
that the probability of a ringing phone being picked up depends on the elapsed
time since it has been used last (which can indicate that the phone owner has
left in the meantime). To this end, the model has a limited memory for how
many time units the phone has been idle since it has last been hung up (or
since it has last been ringing without being answered), and, e.g., the probability
P (p|hr) is higher than P (p|hir). The model has a memory of histories of at most
length 4, but in many cases only a shorter history is relevant for determining the
transition probabilities. For example, once the phone is picked up (transition to
the state with suffix label p), the previous history becomes irrelevant.
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Fig. 2. The phone model. States are labeled by (i)dle,(r)ing, (p)ick-up,(h)ang-up and
(t)alk.

Experimental results for this model are summarized in Table 1. The first four
columns in the table show: |Seq|: the length of the sequence (generated by the
model from Figure 2) from which the model was learned; time: time in seconds
for the full learning process, including multiple learning runs with different ε
parameters, and golden section search for optimizing the BIC score; order: the
order of the learned model, i.e., the maximal length of a suffix label in the model;
|Ql|: number of states in LMC.

The results show that for smaller data sizes a too simple model consisting
of a simple Markov chain over the 5 symbols in the alphabet is learned. With
more data, the correct structure of the model with its order 4 and 14 states is
identified.

Columns 5-10 of Table 1 show the accuracy obtained for checking SPLTL for-
mulas. Column D shows the average error (refer to Equation 4) for 507 random
formulas. For comparison: Dd = 0.1569. The remaining columns show the sta-
tionary probabilities for selected properties of interest. Column t simply contains
P s
M (t), i.e., the long-run frequency of the phone being busy. Column rp | r shows

the stationary conditional probability for the LTL formula ϕ = r ∧ ©p, given
that r holds, i.e., the stationary probability that the ringing phone is picked up.
Similarly, the next two columns show the probability that the phone is picked
up, given that it is ringing, and has been idle for (at least) one, respectively two,
time intervals before. Finally, ♦� i is the (unbounded) property that eventually
the phone will be idle forever. The results show that the learned models provide
very good approximations for the SPLTL properties of the generating model.

Randomized Self-stabilizing Protocol. Consider now the randomized self-
stabilizing protocol by [4]. This algorithm is designed for ring networks with an
odd number of processes, and where each process pi is equipped with a Boolean
variableXi. The protocol operates synchronously such that ifXi = Xi−1, then pi
makes a uniform random choice about the next value of Xi; otherwise it sets Xi

to the current value of Xi−1. Each pair of neighboring processes with the same
value assigned to their Boolean variables generates a “token”. The network is
stable if it only contains a single token. In order to obtain a strongly connected
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Table 1. Experimental results for the phone model

|Seq| time(sec) order |Ql| D t rp|r irp|ir iirp|iir ♦� i

80 9.1 1 5 0.0551 0.253 0.333 0.333 0.333 0

160 4 1 5 0.0096 0.370 0.407 0.407 0.407 0

320 6.2 1 5 0.0281 0.344 0.310 0.309 0.309 0

640 6.13 1 5 0.0094 0.392 0.424 0.424 0.424 0

1280 7.5 1 5 0.0064 0.385 0.446 0.446 0.446 0

2560 11.9 1 5 0.0089 0.366 0.447 0.447 0.447 0

5120 36.9 3 10 0.0020 0.379 0.490 0.490 0.490 0

10240 225.2 4 14 0.0014 0.381 0.506 0.477 0.409 0

20480 456.5 4 14 0.0005 0.378 0.515 0.489 0.414 0

Mg 4 14 0.378 0.512 0.488 0.424 0

model we have modified the original protocol: after reaching a stable state each
process will set its Boolean variable to 0, thus returning to an unstable state.

Using the protocol above we have analyzed the behavior of the learning algo-
rithm by varying the number of processes and the length of the observed sample
sequence as well as by changing the level of abstraction. In the first experiment,
symbols in the sample sequence correspond to a value assignment to all the
Boolean variables associated with processes. Thus, with N processes, there are
2N symbols in Σ. In the second experiment, we replaced the symbols in the
sequence with more abstract labels that only represent the number of tokens
defined by the value assignments. For N processes, the alphabet Σ then only
contains N symbols.

The results of the experiments are given in Figure 3 and Table 2. Figure 3
shows the probability P s

M (trueU≤L stable|token = N) of reaching a stable con-
figuration within L steps conditional on being in a (starting) configuration where
all processes assign the same value to the Boolean variables. In general, we ob-
serve a very good fit between the probability values computed for the different
models (having the same number of processes). One notable difference is the
probability values calculated for the full 7 processes model compared to the ab-
stract and the real 7 processes models. We believe that this discrepancy is due
to the length of the sample sequence being insufficient for learning an accurate
full model. This hypothesis is supported by the results in Table 2. The table
lists the learning time (time), the order of the learned PSA (order), the number
of iterations performed by the golden section search (iter), the number of states
in LMC (|Ql|), and the average difference in probability (D) calculated accord-
ing to Equation 4 using 503 random LTL formulas. In particular, we see that
with 10240 symbols, the learned full model only contains a single state, whereas
the abstract model has four states and a lower average difference in probability.
Note, however, that with 50000 symbols the algorithm learns the correct order
and number of states for the full model and the average difference in probability
becomes significantly smaller.
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Fig. 3. Left: Experiment results for 3 processes and 7 processes. Right: Experiment
results for 11 processes and 19 processes. For 3, 7 and 11 processes, both full and
abstract models were learned from 10240 symbols; the abstract 19 process model was
learned from 20480 symbols.

From Table 2, we also see (as expected) that the time complexity of learning
an abstract model is significantly lower than that of learning a full model. Note
that due to time complexity, we have not learned full models for networks with
11 and 21 processes.

Since the abstract models are often significantly smaller than the generating
models, the time required for model checking using the abstract models is also
expected to be lower. We have analyzed this hypothesis further by measuring the
time complexity for evaluating the SPLTL property P s

M (trueU≤L stable|token =
N) for 19 and 21 processes. For the generating model, the total time is calculated
as the time used for compiling the PRISM model description to the internal
PRISM representation as well as the time used for the actual model checking.
For the abstract model, the total time is calculated as the time used for model
learning (which produces a model in the PRISM file format), model compilation,
and model checking. Fig. 4 shows the time used by both approaches as a function
of L. The time complexity of using the abstract models is close to constant.
It consists of a constant time (253 sec. and 284 sec., respectively) for model
learning and model compilation, and a negligible additional linear time for model
checking.

4.2 Learning Models of Non PSA-Equivalent Systems

Consider the LMC in Figure 5(a), which is a modified version of the model by
Knuth and Yao [5] that uses a fair coin to simulate the toss of a six-sided die.
For example, start, H, H, H, T, h2 corresponds to a die toss of 2. Compared to
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Table 2. Experimental results for the self-stabilizing protocol with 7 processes. D is
based on 503 random LTL formulas. For reference: Dd = 0.1669.

Full model Abstract model

|Seq| time(sec) order iter |Ql| D time(sec) order iter |Ql| D

80 73.0 0 30 1 0.0192 1.6 1 38 4 0.0172

160 49.4 0 23 1 0.0325 2.1 1 41 4 0.0079

320 162.9 0 29 1 0.0292 3.3 1 41 4 0.0369

640 34.3 0 19 1 0.0234 2.3 1 23 4 0.0114

1280 37.2 0 19 1 0.0193 4.1 1 32 4 0.0093

2560 42.0 0 19 1 0.0204 5.0 1 23 4 0.0054

5120 47.9 0 19 1 0.0182 8.9 1 23 4 0.0018

10240 59.3 0 19 1 0.0390 16.3 1 23 4 0.0013

20480 80.7 0 19 1 0.0390 31.4 1 23 4 0.0016

50000 1904.4 1 25 128 0.00034 152.42 1 23 4 0.0011

100k 3435.5 1 25 128 0.00071 308.9 1 23 4 0.0007
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Fig. 4. The time for calculating P s
M (trueU≤L stable |token = N) ( N is the number

of process in each model) in the generating model and abstract model. Both abstract
models for 19 and 21 processes are learned from a single sequence with 20480 symbols.

the original model, the model in Figure 5(a) makes a transition back to the start
state after having simulated the outcome of a toss.

In this LMC we see that the next symbol probabilities for the two states
labeled H on the top branch differ. Specifically, we have that the next sym-
bol probability depends on whether or not we have seen an even or an odd
number of Hs, which implies that the model in Figure 5 cannot be represented
by any N -order Markov chain and, in particular, any N -PSA. Note that this
also implies that the dice model is not PSA-equivalent. An example of a model
that was learned from a sample sequence with 1440 observations can be seen in
Figure 5(b).

The results of all the experiments are summarized in Table 3. From the table
we see that the learned models provide very good approximations for the sta-
tionary probabilities of the randomly generated LTL formulas. For example, for
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Table 3. The experiment results for dice model. See table 2 for a description of the
columns in the left part of the table. For the right part of the table, D is the mean
absolute difference of the learned model and the generating model for stationary prob-
abilities of 501 randomly generated LTL formulas, and P s

M (i) denotes the stationary
probability of getting a i in the next dice toss, and the stationary probability is 1/6
for each number in the generating model.

|Seq| time(sec) order |Ql| |D| P s
M (1) P s

M (2) P s
M (3) P s

M (4) P s
M (5) P s

M (6)

360 11.4 2 13 0.0124 0.137 0.17 0.182 0.103 0.205 0.203

720 14.4 2 13 0.0043 0.188 0.174 0.174 0.149 0.168 0.147

1440 16.9 2 13 0.0023 0.184 0.166 0.169 0.143 0.153 0.185

2880 57.4 4 17 0.0023 0.173 0.166 0.159 0.142 0.176 0.184

5760 90.5 4 17 0.0016 0.173 0.165 0.153 0.161 0.174 0.174

11520 159.4 5 19 0.00094 0.162 0.17 0.176 0.157 0.168 0.167

20000 318.4 6 21 0.00092 0.164 0.173 0.171 0.166 0.164 0.162

the model learned from 20000 observations the mean absolute difference in prob-
ability is 0.00092 for 501 random LTL formulas; in comparison, the difference in
probability is 0.1014 for the dummy model. A similar behavior is observed for
the probability P s(i) of getting i in the next dice toss.

Finally, we note that the size of the learned model grows as the length of
the data sequence increases. This behavior is a consequence of the generating
model not being representable by any N -order Markov chain. To illustrate the
effect, Figure 6 shows the structure of the model that was learned from 20000
observations. Notice that the differences between the learned model and the
generating model relates to the part of the model encoding the number of times
we have seen an even number of Hs.
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5 Conclusion

In this paper we proposed to use methods for learning Probabilistic Suffix Au-
tomata to learn a formal model for the stationary behavior of a system from a
single observation sequence. Compared to previous approaches of learning sys-
tem models for verification purposes, this extends the scope of applications to
scenarios where one can easily obtain data by passively observing a system in
its ongoing operation, but where it is difficult to obtain multiple, independent
runs under laboratory conditions.

The analysis of the learned model must be restricted to properties that only
concern the observed stationary behavior of the system, for which purpose we
have introduced SPLTL properties as a suitable specification language. Exper-
imental results show that model-checking SPLTL properties on learned models
provides a good approximation to model-checking the true, data-generating sys-
tem. This can often even be the case when the true system itself is not exactly
equivalent to a PSA, in which case the learned model can only be an approxi-
mation to the true model.

As in the learning from multiple sequences setting, one could also in the
single sequence setting consider methods of statistical model checking [15,13,7]
as an alternative to model learning. While existing statistical model checking
approaches are also based on the assumption that data consists of multiple in-
dependent system runs, they could be easily adapted to the single sequence
case. As discussed in [8], model learning offers several advantages over statistical
model checking: learned models also support the model checking of unbounded
properties, whereas statistical model checking is limited to bounded properties.
Moreover, learned models can support additional analysis and design processes
beyond model-checking.

For learning deterministic stochastic automata from multiple sample strings
strong consistency results guarantee that in the large sample limit the learned
and the true system agree on the probabilities of LTL formulas [2,8]. Similar
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results are not yet established for learning PSAs from a single sequence. Existing
results on the consistency of the BIC selection criterion for learning variable order
Markov chains [3] strongly indicate that such consistency properties also hold
for our learning method, but a full analysis is subject of further work.
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The Use of Rippling to Automate Event-B

Invariant Preservation Proofs

Yuhui Lin, Alan Bundy, and Gudmund Grov
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Abstract. Proof automation is a common bottleneck for industrial adop-
tion of formal methods. In Event-B, a significant proportion of proof obli-
gations which require human interaction fall into a family called invariant
preservation. In this paper we show that a rewriting technique called rip-
pling can increase the automation of proofs in this family, and extend this
technique by combining two existing approaches.

Keywords: Event-B, automated reasoning, rippling, lemma conjecture.

1 Introduction

Event-B [2] is a “top-down” formal modelling method, which captures require-
ments into an abstract formal specification and then stepwise refines the specifi-
cation into the final product. In each step of development, designers justify the
correctness of the specification by proving proof obligations (POs). The gener-
ation of the POs is automated by the Rodin platform [3] which also contains
support for both automatic and interactive theorem proving. Most of these POs
can be discharged automatically, yet still 3% to 10% of them require human in-
teraction [8]. In an industrial sized project, this proportion of interactive proofs
can be thousands. For example, 43,610 POs with 3.3% interactive proof in the
Roissy Airport Shuttle project, and 27, 800 POs with 8.1% interactive proof in
the Paris Metro line 14 project [1]. Moreover, specifications often change fre-
quently, which require users to reprove previous proven POs.

Invariant preservation (INV) POs is a family of Event-B POs which can ac-
count for a significant part of all of the POs that require human interaction.
To illustrate, 188 out of 317 (59%) undischarged POs in the BepiColombo case
study1 belong to the INV family.

Here we argue that part of the problem is a lack of meta-level reasoning since
Rodin provers only work on the object level logic. In [5] it is argued that, to
achieve a better understanding of reasoning, both logic and a meta-level un-
derstanding should be put into consideration. In this paper we propose to use
a meta-level reasoning technique, called rippling [6] for Event-B POs. It is a
rewriting technique which can be applied when the goal embeds in one of the
hypothesis, and details are given in Sect. 2.2. Our hypothesis is

1 The case study can be found in http://deploy-eprints.ecs.soton.ac.uk/136/

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 231–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://deploy-eprints.ecs.soton.ac.uk/136/
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By utilising rippling we can increase the automation of Event-B in-
variant preservation proof obligations and make proofs more robust to
changes.

The contributions of this paper are two-fold: (1) In Sect. 2 we illustrate the use of
rippling for INV POs; (2) The key advantage of rippling is that, due to meta-level
reasoning, we can often patch a broken proof, thus making proofs more robust to
changes. In Sect. 3 we describe a novel combination of two existing techniques,
lemma speculation and scheme-based theory exploration, to conjecture lemmas
when proofs are blocked by the absence of lemmas. Finally, we describe further
work and conclude in Sect. 4 and Sect. 5, respectively.

2 INV POs and Rippling

2.1 INV POs

Machines are key components of Event-B specifications. A machine contains
variables, invariant and events. Variables represent the states of the machine,
and invariants describe constraints on the states. INV POs are generated to
guarantee that the invariants are still preserved under changes made by the
events.

any
s

where
s ∈ Subs ∧ s /∈ dom call

then
call := call ∪ {(s �→ (seize �→ ∅))}

end

Notation Definition

x �→ y denotes the pair (x, y)
dom(r) {x|∃y.x �→ y ∈ r}
s�− r {x �→ y|x �→ y ∈ r ∧ x /∈ s}
r � s {x �→ y|x �→ y ∈ r ∧ y ∈ s}
r �− s s ∪ (dom(s)�− r)
r ; s {x �→ y|∃z.x �→ z ∈ r ∧ z �→ y ∈ s}

Fig. 1. An example of events & mathematical notions

To illustrate, let us consider the invariant (1)

Callers = dom((call ; st)� Connected) (1)

in which Callers, call, st and Connected are variables. Figure 1 defines an event
in which s is an argument followed by a guard and an action, describing how the
state changes.

An INV PO (2) is generated to ensure (1) holds under changes made in the
event.

s ∈ Subs ∧ s /∈ dom call ∧ Callers = dom((call ; st)� Connected)

 
Callers = dom((call ∪ {(s !→ (seize !→ ∅)))} ; st)� Connected)

(2)
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2.2 Rippling

Rippling2 is a rewriting technique which was developed originally for inductive
proofs. Although it was designed to guide the step cases of inductive proofs, it
is applicable in any scenario where one of the assumptions can be embedded in
the goal. In the case of INV POs, the invariant is embedded in the goal, thus
making rippling applicable. The embedding in the goal is called the skeleton,
while the differences are the wave-front.

To illustrate, let us recall the INV PO in Sect. 2.1. The annotated version of
the goal (2) with the embedding (1), becomes:

Callers = dom(( call ∪ {(s !→ (seize !→ ∅)))} ; st)� Connected)

in which the wave-fronts are shaded by a box. When applying a rewrite rule,
the skeleton (i.e. the non-shaded part) in a goal should be preserved, and a
ripple measure must decrease, e.g. skeletons which are separated by wave-front
are moving together. Therefore, by applying

(f ∪ g) ; S = (f ; S) ∪ (g ; S)

we have

Callers = dom( ((call ; st) ∪ ({(s !→ (seize !→ ∅)))} ; st)) � Connected)

With the following two rules

(f ∪ g)� S = (f � S) ∪ (g � S)

dom(f ∪ g) = dom f ∪ dom g

we have

Callers = dom( (call ; st � Connected) ∪ ({(s �→ (seize �→ ∅)))} ; st) � Connected )

and finally get the INV PO to

Callers = dom((call ; st) � Connected) ∪ dom(({(s �→ (seize,∅))} ; st) � Connected)

Then the hypothesis (1) can be applied to simplify the proof by substituting
dom((call ; st)� Connected) with Callers, which results in

Callers = Callers ∪ dom(({(s !→ (seize,∅))} ; st)� Connected)

This step of using the hypothesis is called fertilisation. Now as st projects the
second first argument (e.g. (x !→ (y !→ z)) into (x !→ y)) and Connected =

2 Rippling has been implemented in IsaPlanner which we use to start our experiments.
For more details about IsaPlanner, please refer to
http://dream.inf.ed.ac.uk/projects/isaplanner/

http://dream.inf.ed.ac.uk/projects/isaplanner/
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{ringing, speech, suspended}, dom(({(s !→ (seize,∅))} ; st) � Connected) can
be trivially simplified into ∅ by using the assumptions in (2). This completes
the proof.

The advantage of rippling is the meta-level guidance which can be used to
guide the application of rewrite rules. Due to its lack of meta-level guidance,
many rules3 can only be applied manually in Rodin. Let us consider the following
distribution rule:

(p ∪ q)�− r = (p�− r) ∪ (q �− r)

We can generate two rewrite rules from the left hand side (lhs) to the right hand
side (rhs) and the other way round. Rodin does not add both of them into its
rewriting system, because the rewriting may not terminate. However, due to the
meta-level guidance of rippling, both directions can be added in rippling whilst
guaranteeing termination. For example:

From lhs to rhs : (p ∪ q) �− r⇒ (p�− r ) ∪ (q �− r)

From rhs to lhs : (p �− r) ∪ (q �− r) ⇒ (p ∪ q )�− r

3 IsaScheme and Lemma Conjecture

The key advantage of rippling is that the strong expectation of how the proof
should succeed can help us to build a proof patching mechanism when a proof is
blocked, e.g. due to a missing lemma. It can contribute to proof automation and
makes proofs more robust to change. This mechanism is known as proof critics
[7]. One useful critic in our case is lemma speculation [7]. It’s applicable when
proofs are blocked due to a missing lemma. Meta-level annotations are used to
guide and construct the lemma being conjectured. Consider the following blocked
rippling proof:

Callers = dom( (call �− x) ; st� Connected)

we construct the left hand side of the missing lemma with one of our wave-fronts

and parts of skeletons, which is (call �− x) ;st. With the skeleton preservation

rule, we can construct the right hand side of the lemma by introducing a meta-
variable ?F1 to represent the unknown part. Then we have

(call �− x) ; st = ?F1 call ; st x st

This meta-variable is stepwise instantiated by unification during the proof. This
approach is called middle-out reasoning [9]. However, higher-order unification
brings a challenge for this approach.

Therefore, instead of using middle-out reasoning, we propose a new approach
by using IsaScheme[10] which is a scheme-based approach to instantiate these

3 For more rules, please refer to
http://wiki.event-b.org/index.php/All_Rewrite_Rules

http://wiki.event-b.org/index.php/All_Rewrite_Rules
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meta-variables, to generate the missing lemmas. Given a scheme and candidate
terms and operations, IsaScheme can instantiate the meta-variables and return
lemmas that pass a counter-example checker. The scheme will help constrain
the lemmas generated, and we can further filter out those that will not provide
valid ripple steps. The following algorithm shows more details about how to
construct a scheme and get the potential lemmas with the example showed in
the beginning of this section.

Precondition: When no rewriting rules are applicable and fertilisation can not
be applied, the following process can be triggered.

1. Construct the lhs of the scheme with a wave-front and part of skeletons, i.e.

(call �− x) ; st = ...

2. Since the skeleton has to be preserved and a ripple measure must decrease,
we can partially predict how the term evolves on the rhs.

i.e. evolve from (call �− x) ; st to call ; st �− ...

Also we need to construct a term with meta-variables to specify the new
shape of combination of the constants and variables in the wave-fronts, i.e.
x, and those next to the wave-fronts in the skeleton, i.e. st. In our example
this term would be (?F2 x st). Now we introduce meta-variables to combine
these terms to compose the rhs of the missing lemma, i.e.

... = ?F1 (call ; st)(?F2 x st) .

3. Now we have a scheme to instantiate. i.e.

Myscheme ?F1 ?F2 ≡ (call �− r) ; st = ?F1 (call ; st) (?F2 r st)

in which Myscheme is the name of our scheme; ?F1 and ?F2 are meta-
variables to be instantiated from a set of given terms. Then we try this
scheme in IsaScheme with relevant proof context, including assumptions.

4. IsaScheme returns potential lemmas which we can apply to unblock the
current proof. In our example, we get the following lemma which can help
to proceed the proof4

(call�− r) ; st = (call ; st)�− (r ; st)

4 Further Work

These schemes are currently deduced manually, and next we plan to automate
this process. Moreover, we observe that many POs contain quantifiers and are
conditional. Rippling is not particularly suited for such POs, and to handle this,
we are currently exploring integrating a technique called piecewise fertilisation
[4] with rippling. Longer term we will develop a rippling plug-in for Rodin, which
will be based on the existing Rodin to Isabelle translator by Schmalz5.

4 This lemma relies on some properties of the specification
5 See http://wiki.event-b.org/index.php/Export_to_Isabelle for details.

http://wiki.event-b.org/index.php/Export_to_Isabelle
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5 Conclusion

We have showed that the use of rippling can improve the automation of proofs in
Event-B INV POs and make it more robust to changes.We have combined lemma
speculation and scheme-based theory exploration to discovery the missing lemma
when proofs are blocked. This has to be done manually in Rodin. Moreover, with
meta-level reasoning and its patching mechanism, the robustness of proofs can
be improved, as the proof strategy remains the same even if the POs are required
to be re-proven when specifications change.

Acknowledgement. This work is supported by EPSRC grant EP/H024204/1
(AI4FM). Thanks to Omar Montano Rivas, Andrew Ireland, Moa Johansson
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Abstract. Thread-modular analysis is an incomplete compositional
technique for verifying concurrent systems. The heuristic works rather
well when there is limited interaction among system components. In this
paper, we develop a refinement algorithm that makes thread-modular
model checking complete. Our algorithm refines abstract reachable states
by exposing local information through auxiliary variables. The experi-
ments show that our complete thread-modular model checking can out-
perform other complete compositional reasoning techniques.

1 Introduction

Compositional reasoning is a promising technique to alleviate the state explosion
problem in model checking [2,17]. In compositional reasoning, one decomposes a
verification problem into simpler subproblems and solves each subproblem one at
a time. By the soundness of decomposition, the verification problem is solved if
all subproblems are solved. Soundness of decomposition apparently depends on
the underlying computation model. In this paper, we are interested in verifying
invariant properties on shared-memory interleaving systems.

A shared-memory interleaving system consists of several components. Each
component has two types of variables. Global variables are accessible to every
component in the system. Local variables, on the other hand, are only accessible
to the defining component. At any moment, exactly one component is active.
Inactive components do not perform any computation and hence keep their local
variables unchanged. Global variables may be updated by the active component
nonetheless. In such systems, global variables are used for communication among
components. Given a predicate on system states, the invariant checking problem
is to verify whether the given predicate holds on every reachable states.

Two compositional techniques for the invariant checking problem on shared-
memory interleaving systems are known. In thread-modular reasoning [9,5],
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University Initiative Scientific Research Program.
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one computes an over-approximation of reachable system states by intersect-
ing reachable component states of all components. In order to compute reach-
able component states of a designated component, one disregards local variables
of other components and computes an abstract model of global variables. The
designated component is then composed with the abstract model to compute
its reachable component states. The effectiveness of thread-modular reasoning
depends on the abstraction. If the abstraction of global variables is able to es-
tablish the property, one concludes the verification. Otherwise, one reports that
the verification is inconclusive.

The (in)effectiveness problem in thread-modular reasoning is solved in the
second compositional technique called local proof [4]. In local proof, one still re-
quires reachable states of each component. Reachable component states however
are computed by early quantification of reachable system states. Abstract mod-
els for global variables are hence not needed. Moreover, techniques have been
developed to refine reachable component states. Local proof is hence a complete
compositional technique for shared-memory interleaving systems.

Although both techniques compute reachable component states and use the
intersection as an over-approximation of reachable system states, we would like
to point out a subtle difference between them. In thread-modular reasoning, one
constructs an abstract model for global variables. Reachable component states
are then computed via the abstract model. In local proof, on the other hand,
reachable component states are computed by quantifying out inaccessible local
variables during the exploration of reachable system states. Since no abstraction
is deployed during the exploration of component states, reachable component
states in local proof are more precise than those of thread-modular reasoning.
On the other hand, the computation of reachable component states in local proof
can be more expensive then thread-modular reasoning due to no abstraction.
One wonders whether an efficient yet complete compositional technique exists
for such systems.

Inspired by the refinement in local proof, we propose a complete thread-
modular model checking algorithm for the invariant checking problem on shared-
memory interleaving systems. Our technique contains two phases. At the veri-
fication phase, we apply thread-modular reasoning to the verification problem.
If the compositional technique suffices to conclude the verification, we are done.
Otherwise, our technique moves to the refinement phase. In the other phase,
we adopt ideas from local proof and expose information about local variables
during refinement. More precisely, we identify local variables that can refine the
approximation to reachable system states. Such information is then exposed to
other components by adding global variables. When our technique returns to the
verification phase, added variables will induce a refined abstract model for global
variables. Efficiency of thread-modular reasoning and effectiveness of local proof
are thus attained by our proposed technique.

We implement our thread-modular model checking with iterative refinement
algorithm on NuSMV, and compare with other algorithms in five examples.
Due to its aggressive abstraction, thread-modular reasoning fails to verify all
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examples but the bakery algorithm. Our new technique performs better than
local proof in our examples. In several examples, our compositional technique
outperforms monolithic techniques in orders of magnitude. Our preliminary ex-
perimental results suggest that an efficient yet complete compositional technique
is indeed possible for shared-memory interleaving systems.

1.1 Related Work

In 1976, Owicki and Gries proposed some non-interference proof rules for parallel
programs in their work [15]. Chandy and Misra [13] and Jones [9] [10] extended
those rules with interference to introduce thread-modular reasoning. To make
thread-modular model checking automatic, the environment is automatically
generated [5] according to the interactions of the programs. Henzinger et al. [7]
[8] improved the original thread-modular model checking and made it complete
for safety property verification on finite state systems. In their approaches, each
thread is initialized as true and is then iteratively refined by addition of new
predicates, and the guarantee of each thread is initialized as false and is succes-
sively refined by considering abstract of current thread and guarantees of other
threads. Recently, Gu et al. [6] attempted to improve the generation of envi-
ronment assumptions with horn logic deductive rule. Malkis et al. [12] proposed
a technique, called thread-modular counterexample guided abstraction refine-
ment, which computes reachable states with cartesian abstraction. A refinement
step was involved to eliminate the infeasible states by excluding them from the
cartesian product. But this approach directly computes the reachable states for
all processes of concurrent system in an explicit way.

Another interesting branch for concurrent system verification is based on the
inductive invariant rule. The invisible invariants method [16] [1] generated quan-
tified invariants for parameterized protocols by analyzing reachable states of a
small instance; however, it is incomplete for some protocols. Absorbing the com-
pleteness theory of [15] and [11], Namjoshi extended the inductive invariant to
non-interference invariant named split invariant [14]. Based on split invariant,
Cohen and Namjoshi proposed a local proof algorithm for global safety properties
of concurrent systems and used refinement procedure to make the verification
complete [4].

The remainder of this paper proceeds as follows. Section 2 gives basic defini-
tions. It is followed by a brief overview of thread-modular reasoning in Section 3.
Our technical contribution is presented in Section 4. Section 5 gives our experi-
mental results. We conclude our presentation in Section 6.

2 Preliminary

We assume a fixed set V of typed variables. A state over W ⊆ V is a valuation
for the variables in W . The set of states over W ⊆ V is denoted by St [W ]. For
W ⊆ V and s ∈ St [V ], the projection of s on W (written s ↓W ) is a state over
W that s ↓W (w) = s(w) for every w ∈ W . Let W ⊆ V , we write St[V ] ↓W
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to indicate the set St[W ] = {s ↓W ‖∀s ∈ St[V ]}. Given St [W ] and St [X ], their
join is St [W ∪X] = {s|s ↓W∈ St [W ] and s ↓X∈ St [X ]} which is denoted by
St [W ] �� St [X ]. A predicate over St [V ] is a function from St [V ] to the Boolean
domain B. Given a state s ∈ St [V ] and a predicate φ over St [V ], we say s
satisfies φ (written s |= φ) if φ(s) = �. For any predicate φ over St [V ], define
[[φ]] = {s ∈ St [V ] : φ(s)}. That is, [[φ]] consists of states that satisfy φ. For
W ⊆ V and a predicate φ over St [V ], define the predicate φ ↓W over St [W ] to
be that for any t ∈ St [W ],

φ ↓W (t) = � if and only if there is an s ∈ St [V ] with φ(s) = � and s ↓W= t.

A process P = 〈X,L, I, T 〉 is a quadruple where X ⊆ V is the set of global
variables, L ⊆ V the set of local variables disjoint from X , I the initial predicate
over St [X ∪ L], and T the transition predicate over St [X ∪ L] × St [X ∪ L]. Let
s, s′ ∈ St [X ∪ L]. We say s is initial if I(s) = �. If T (s, s′) = �, we say s is
a predecessor of s′ and s′ a successor of s. A trace τ is a sequence of states
s0, s1, . . . , sn such that I(s0) = � and T (si, si+1) = � for 0 ≤ i < n. The set of
traces of P is denoted by Tr [P ]. A state s is reachable in P if there is a trace
τ = s0, s1, . . . , sn ∈ Tr [P ] such that sn = s. The set of states reachable in P
is denoted by Re[P ]. Let π be a predicate over St [X ∪ L]. We say P satisfies π
(written P |= π) if s |= π for every s ∈ Re[P ].

Let Pj = 〈X,Lj , Ij , Tj〉 be processes for j = 0, 1 where L0 and L1 are disjoint.
Let Wj = X ∪ Lj ⊆ V for j = 0, 1. The composition of P0 and P1 (written
P0‖P1) is a process 〈X,L, I, T 〉 where

– L = L0 ∪ L1;
– I(s) = � if I0(s ↓W0) = � and I1(s ↓W1) = �;
– T (s, s′) = � if

• T0(s ↓W0 , s
′ ↓W0) = � and s ↓L1= s′ ↓L1 ; or

• T1(s ↓W1 , s
′ ↓W1) = � and s ↓L0= s′ ↓L0 .

That is, exactly one process updates the global variables and its local variables;
the other process stutters in a transition of the composition. It is straightforward
to see that the composition is associative. P1‖P2‖ · · · ‖PN is thus well-defined for
N ≥ 2.

3 Thread-Modular Reasoning

Definition 1. Let P = 〈X,L, I, T 〉 be a process. The guarantee of P is a process
G(P ) = 〈X, ∅, IG, TG〉 where IG = I ↓X and TG is a predicate over St [X ]×St[X ]
such that

TG(t, t
′) = � if ∃s, s′ ∈ St [X ∪ L] with T (s, s′) = �, s ↓X= t, and s′ ↓X= t′.

The main process of thread-modular model checking is shown in Algorithm 1.
It first computes the reachable component states Rj for each process Pj , then
computes the reachable system states R by joining reachable component states
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Input: Pj = 〈X,Lj , Ij , Tj〉 : a process for 1 ≤ j ≤ N ; π : a predicate over
St [X ∪ L1 ∪ · · · ∪ LN ]

Output: “PASS” or “UNKNOWN ”
error ← [[¬π]];1

foreach j = 1, . . . , N do2

Rj ← Re[G(P1)‖ · · · ‖G(Pj−1)‖Pj‖G(Pj+1)‖ · · · ‖G(PN )];3

end4

R ← R1 � R2 � · · · � RN ;5

if R ∩ error = ∅ then6

return PASS ;7

else8

return UNKNOWN ;9

Algorithm 1. Thread-Modular Model Checking

global x: boolean initially x = 1
loop forever⎡
⎢⎢⎣
l = 0 : Non-Critical
l = 1 : request x
l = 2 : Critical
l = 3 : release x

(a) Textual

(1|0) (1|1)

(0|2)(0|3)
(b) Graphical

Fig. 1. MUX-SEMk

of all processes. Apparently, R is an over-approximation of the reachable system
states, so it can report “PASS” when there is no error state in R. Otherwise, it
cannot make any conclusion.

Example 1. Consider a simple solution to the mutual exclusion problem in Fig.
1. In the figure, N processes attain mutual exclusion by the semaphore x. Each
process requests x before entering the critical section, and releases x after leaving
the critical section. Assume there are two processes P1 and P2. We use Pj .l to
denote the local variable l in process Pj where j ∈ {1, 2}. Each state in Fig. 1 (b)
is marked with the corresponding valuation for all variables, where before the
separator | is the valuation for global variables, and after the separator | is the
valuation for local variables. Mutual exclusion is specified as π : ¬((P1.l = 2 ∨
P1.l = 3)∧ (P2.l = 2∨P2.l = 3)). We have the guarantee G(Pj) = 〈{x}, ∅, Ij, Tj〉
where j ∈ {1, 2}, Ij(s) is s(x) = 1, and Tj(s, s

′) is �. Hence

R1 = Re[G(P1)‖P2] = {s : s(x) ∈ {0, 1} and s(P1.l) ∈ {0, 1, 2, 3}}
R2 = Re[P1‖G(P2)] = {s : s(x) ∈ {0, 1} and s(P2.l) ∈ {0, 1, 2, 3}}

Thus,

R=R1 �� R2={s : s(x) ∈ {0, 1}, s(P1.l) ∈ {0, 1, 2, 3}, and s(P2.l) ∈ {0, 1, 2, 3}}.

Since R ∩ [[¬π]] �= ∅, Algorithm 1 reports “UNKNOWN.”
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4 Iterative Refinement

Let P = 〈X,L, I, T 〉 be a process, l ∈ L, and S a set of states. We say l is an
essential variable of P with respect to s ∈ S if there is a t ∈ St [X ∪ L] such that

– t �∈ S;

– s(l) �= t(l); and

– s(v) = t(v) for every v ∈ (X ∪ L) \ {l}.

In other words, a local variable is essential with respect to a state set if its value
signifies the membership of the given state set.

Let l be an essential variable with respect to s ∈ S. Define the essential
predicate χs

l for l with respect to s ∈ S by

χs
l (t) = � if t(l) = s(l).

Two essential predicate χs
l and χt

m are distinct if either l is different from m or
s(l) �= t(m).

Example 2. In Example 1, observe that

R ∩ [[¬π]] = {s : s(x) ∈ {0, 1}, s(P1.l) ∈ {2, 3}, and s(P2.l) ∈ {2, 3}}.

Let us consider the state s0 ∈ R ∩ [[¬π]] that s0(x) = 0, s0(P1.l) = s0(P2.l) = 2.
Define t0 ∈ St [{x, P1.l, P2.l}] where t0(x) = 0, t0(P1.l) = 1, and t0(P2.l) = 2.
Then t0 �∈ R ∩ [[¬π]], s0(P1.l) �= t0(P1.l), and s0(v) = t0(v) for v ∈ {x, P2.l}.
Hence P1.l is an essential variable of P1 with respect to s0. The essential predicate
χs0
P1.l

for P1.l is hence

χs0
P1.l

(t) = � if t(P1.l) = 2.

Similarly, consider the state s1 ∈ R ∩ [[¬π]] that s1(x) = 0, s1(P1.l) = 3,
s1(P2.l) = 2. Define t1(x) = 0, t1(P1.l) = 1, and t1(P2.l) = 2. Then P1.l is
an essential variable of P1 with respect to s1. The essential predicate χs1

P1.l
for

P1.l is therefore

χs1
P1.l

(t) = � if t(P1.l) = 3.

Definition 2. Let P = 〈X,L, I, T 〉 be a process and Ψ a set of predicates. Define
W = X ∪L. The augmented process A(P,XA, XΨ , Ψ) = 〈X ∪XA, L, IA, TA〉 of
P with Ψ is defined by

– XΨ = {uχ ∈ V : χ ∈ Ψ} is the set of auxiliary variables with respect to Ψ ;

– XΨ ⊂ XA and XA −XΨ is other processes’ auxiliary variables;

– IA(s) = � if I(s ↓W ) = � and s(uχ) = χ(s) for every χ ∈ Ψ ;

– TA(s, s
′) = � if T (s ↓W , s′ ↓W ) = �, s(uχ) = χ(s), s′(uχ) = χ(s′) for every

χ ∈ Ψ and s′(v) = s(v) for every v ∈ XA −XΨ .
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(0, 0, 1, u3, u4|3)

(1, 0, 0, u3, u4|0) (1, 0, 0, u3, u4|1)

(0, 1, 0, u3, u4|2)

Fig. 2. A(MUX-SEM1, {χs0
P1.l

, χs1
P1.l

})

(0, u1, u2, 0, 1|)

(1, u1, u2, 0, 0|)

(0, u1, u2, 1, 0|)

(a) G(A(MUX-SEM2, {χs0
P1.l

, χs1
P1.l

}))
(0, 0, 1, 0, 0|3)

(1, 0, 0, 0, 0|0)

(0, 1, 0, 0, 0|2)

(1, 0, 0, 0, 0|1)

(0, 0, 0, 1, 0|0)

(0, 0, 0, 0, 1|0) (0, 0, 0, 0, 1|1)

(0, 0, 0, 1, 0|1)

(b) A(MUX-SEM1, {χs0
P1.l

, χs1
P1.l

})‖
G(A(MUX-SEM2, {χs0

P2.l
, χs1

P2.l
}))

Fig. 3. Example 3

Example 3. Recall the essential predicates χs0
P1.l

and χs1
P1.l

from Example 2.
Let Ψ = {χs0

P1.l
, χs1

P1.l
}. Denote the auxiliary variables for χs0

P1.l
, χs1

P1.l
, χs0

P2.l
,

and χs1
P2.l

as u1, u2, u3, u4 respectively. Fig. 2 shows the augmented process
A(MUX-SEM1, XA, XΨ , Ψ), where XΨ = {u1, u2} and XA = {u1, u2, u3, u4},
and Fig. 3 shows its composition with the guarantee of augmented MUX-SEM2.
Thus

R1 =

{
(1, 0, 0, 0, 0|0), (1, 0, 0, 0, 0|1), (0, 1, 0, 0, 0|2), (0, 0, 1, 0, 0|3),
(0, 0, 0, 1, 0|0), (0, 0, 0, 0, 1|0), (0, 0, 0, 1, 0|1), (0, 0, 0, 0, 1|1)

}
Similarly,

R2 =

{
(1, 0, 0, 0, 0|0), (1, 0, 0, 0, 0|1), (0, 0, 0, 1, 0|2), (0, 0, 0, 0, 1|3),
(0, 1, 0, 0, 0|0), (0, 0, 1, 0, 0|0), (0, 1, 0, 0, 0|1), (0, 0, 1, 0, 0|1)

}
Thus,

R = R1 �� R2

=

⎧⎨
⎩

(1, 0, 0, 0, 0|0, 0), (1, 0, 0, 0, 0|0, 1), (1, 0, 0, 0, 0|1, 0), (1, 0, 0, 0, 0|1, 1),
(0, 1, 0, 0, 0|2, 0), (0, 1, 0, 0, 0|2, 1), (0, 0, 1, 0, 0|3, 0), (0, 0, 1, 0, 0|3, 1),
(0, 0, 0, 1, 0|0, 2), (0, 0, 0, 0, 1|0, 3), (0, 0, 0, 1, 0|1, 2), (0, 0, 0, 0, 1|1, 3)

⎫⎬⎭
Since R �� [[¬π]] = ∅, we conclude that MUX-SEM1‖MUX-SEM2 |= π.
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Observe that additional constraints on the initial and transition predicates are
non-interfering. They merely update the augmented variables XA by the values
of predicates. The following lemma hence follows from the definition.

Lemma 1. Let P = 〈X,L, I, T 〉 be a process, Ψ a set of predicates, and π a
predicate. Then P |= π if and only if A(P, Ψ) |= π.

Proof. According to Definition 2, given any trace α = s0s1 . . . sk in P , the corre-
sponding trace in A(P, Ψ) is β = t0t1 . . . tk, where ti(uχ) = χ(si) for any χ ∈ Ψ
and si = ti ↓X∪L(0 ≤ i ≤ k). It is easy to prove α |= π ⇐⇒ β |= π. So we can
conclude that (P |= π) ⇔ (A |= π). �

The main process for thread-modular model checking with iterative refinement
is shown in Algorithm 2. Given N processes P1, P2, · · · , PN and a predicate
π, the algorithm decides is π satisfied on the whole system or not. In lines 3-
8, the algorithm performs the regular thread-modular model checking. Then it
analyzes is there any initial state in the reachable set of error states. If so, it
reports “FAILURE”. Otherwise, it calls a subroutine to refine the model.

Input: Pj = 〈X,Lj , Ij , Tj〉 : a process for 1 ≤ j ≤ N ; π : a predicate over
St [X ∪ L1 ∪ · · · ∪ LN ]

Output: “PASS” or “FAILURE”
error ← [[¬π]];1

Ψj ← ∅, for j = 1, . . . , N ; // the essential predicate set for Pj2

repeat3

foreach j = 1, . . . , N do4

Rj ← Re[G(P1)‖ · · ·G(Pj−1)‖Pj‖G(Pj+1)‖ · · · ‖G(PN )];5

end6

R ← R1 � R2 � · · · � RN ;7

if R � error = ∅ then8

return PASS ;9

if R � error � [[I1]] � · · · � [[IN ]] �= ∅ then10

return FAILURE ;11

// refine P1, P2, . . . , PN by R and error

refinable ← Refine(R, error , P1, P2, . . . , PN , Ψ1, . . . , ΨN);12

if ¬refinable then13

return PASS ;14

until forever ;15

Algorithm 2. Thread-Modular Model Checking with Refinement

Algorithm 3 gives the subroutine for refining a model. For each state s ∈
R �� error, the algorithm tries to find the distinct essential predicate for each
process. If successes, it refines the component model using these found predicates.
Otherwise, it adds the predecessors of s into error.
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Input: R : a state set; error : a state set; Pj = 〈X,Lj , Ij , Tj〉 : a process for
1 ≤ j ≤ N ; Ψ1, · · · , ΨN

Output: � if any of the processes is refined; ⊥ otherwise
refined ← ⊥;1

S ← R � error ;2

while S �= ∅ do3

predicateAdded ← ⊥;4

remove an s from S;5

foreach j = 1, . . . , N do6

Ψs
j ← {χs

l : χs
l is a distinct essential predicate from all χ ∈ Ψj};7

if Ψs
j �= ∅ then8

Pj , Ψj ← A(Pj , XΨs
j
, XΨs

j
, Ψs

j ), Ψj ∪ Ψs
j ;9

foreach i �= j do10

Pi ← A(Pi, XΨs
j
, ∅, ∅);11

end12

refined , predicateAdded ← �,�;13

break;14

end15

if ¬predicateAdded then16

// 〈X,L, I, T 〉 = P1‖P2‖ · · · ‖PN, W = X ∪ L
pre ← { ′s ↓W : T (′s, s) = �};17

if pre \ error �= ∅ then18

refined , error ← �, error ∪ pre ;19

end20

return refined ;21

Algorithm 3. Refine(R, error , P1, . . . , PN )

Lemma 2. Let Pj = 〈X,Lj , Ij , Tj〉 for j = 1, . . . , N , and π a predicate. For any
system state s in P1‖P2‖ · · · ‖PN = 〈X,L, I, T 〉, when Algorithm 2 terminates,
we have

1. s �|= π implies s ∈ error;
2. s ∈ error implies there is a sequence si = s, si+1, . . . , sn such that sn �|= π

and T (sk, sk+1) = � for every i ≤ k < n.

Proof. (1) Note all states in [[¬π]] are added to error in the begining of the
algorithm; (2) Note error contains only states in [[¬π]] and their predecessors.

�

Lemma 3. Let Pj = 〈X,Lj, Ij , Tj〉 for j = 1, . . . , N , and π a predicate. Then
Re[P1‖P2‖ · · · ‖PN ] ⊆ R at line 2, Algorithm 2.

Proof. According to Definition 1, G(Pj) simulates Pj for j = 1, . . . , N . Then we
canconcludeG(P1)‖ · · · ‖G(Pj−1)‖Pj‖G(Pj+1)‖ · · · ‖G(PN ) simulatesP1‖ · · · ‖PN

for j = 1, . . . , N . So Rj is an over-approximation of Re[P1‖ · · · ‖PN ] ↓X∪Lj for
j = 1, . . . , N . Then the conclusion holds. �
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Theorem 1. Let Pj = 〈X,Lj , Ij , Tj〉 for j = 1, . . . , N , and π a predicate.

1. If Algorithm 2 returns “PASS”, then P1‖P2‖ · · · ‖PN |= π;
2. If Algorithm 2 returns “FAILURE”, then P1‖P2‖ · · · ‖PN �|= π.

Proof. (1) If Algorithm 2 returns “PASS” from line 11, with the precondition
R �� error = ∅ and Lemma 3, we get the conclusion immediately. Otherwise, if
Algorithm 2 returns “PASS” from line 16, the model cannot be refined anymore.
Proof by contradiction, suppose P1‖P2‖ · · · ‖PN �|= π, then there must be a state
s ∈ error and it is reachable from an initial system state s0. Since s0 /∈ error
(otherwise the Algorithm 2 returns “FAILURE” from line 13), there must be two
adjacent states si, si+1 along the trace from s0 to s, such that si /∈ error and
si+1 ∈ error. According to Algorithm 3, the state si should be added into error,
which means the model is refinable. This is contradictory with the assumption.
(2) According to Lemma 2, if R �� error �� [[I1]] �� · · · �� [[IN ]] �= ∅, then
∃s0 ∈ [[I1]] �� · · · �� [[IN ]], ∃α = s0 . . . sk ∈ Tr [P1‖ · · · ‖PN ] : sk �|= π, which means
(P1‖ · · · ‖PN ) �|= π. �

Theorem 2. Let Pj = 〈X,Lj, Ij , Tj〉 for j = 1, . . . , N , and π a predicate. Algo-
rithm 2 always terminates.

Proof. In each refinement iteration, either some new states are added to the
error set, or the system is augmented by some new predicates. Note the state
space of the system is finite, the number of possible predicates is also finite
(each predicate corresponds to a subset of the states). In the worst case that the
algorithm cannot give conclusive answer in all iterations, it finally terminates
for no new state or new predicate can be found. �

Theorem 3. Let Pj = 〈X,Lj , Ij , Tj〉 for j = 1, . . . , N , and π a predicate.

1. If P1‖P2‖ · · · ‖PN |= π, then Algorithm 2 returns “PASS”;
2. If P1‖P2‖ · · · ‖PN �|= π, then Algorithm 2 returns “FAILURE”.

Proof. (1) According to the second statement of Theorem 1, if P1‖ · · · ‖PN |= π,
Algorithm 2 cannot return with “FAILURE”. According to Theorem 2, Algo-
rithm 2 always terminates. Thus, if P1‖ · · · ‖PN |= π, the algorithm can only
terminate with “PASS”. (2) Similarly, according to the first statement of The-
orem 1, and Theorem 2, if P1‖ · · · ‖PN �|= π, the algorithm can only terminate
with “FAILURE”. �

5 Experiments

We implemented our thread-modular model checking algorithm with iterative
refinement (TMMCIR) in NuSMV. For comparison, several model checking
algorithms are implemented as well. They are asynchronous forward reacha-
bility (AFR) and thread-modular model checking (TMMC). To compare with
SPLIT[3], we configure the tool to use the CUDD package. All benchmarks are
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downloaded from [18] and conducted on an 2.0GHz Intel T6400 CPU with 2GB
memory.

Table 1 shows the experimental results for the simple mutual exclusion proto-
col MUX-SEM in Fig. 1. In the table, the column “method” shows the name of
the model checking algorithm (TMMCIR, SPLIT, AFR, NuSMV, or TMMC).
The number of processes instantiated in MUX-SEM is shown in the column “pro-
cesses.” The time needed for verification is indicated by the column “time.” The
column “BDD’s” shows the peak number of BDD nodes required. The number of
refinement applied in TTMCIR and SPLIT is shown in the column “refinement.”
The column “preds” gives the number of essential predicates added during veri-
fication. Finally, the column “conclusive?” shows whether the verification result
is conclusive.

Table 1. Experimental Results of MUX-SEM

method processes time BDD’s refinement preds conclusive?

TMMCIR 20 0.064 45990 1 40 Y
SPLIT 20 0.887 331128 1 38 Y
AFR 20 0.064 45990 na na Y

NuSMV 20 0.144 141036 na na Y
TMMC 20 0.032 20440 na na N

TMMCIR 50 0.580 401646 1 100 Y
SPLIT 50 12.187 4555054 1 98 Y
AFR 50 3.320 1242752 na na Y

NuSMV 50 3.412 2444624 na na Y
TMMC 50 0.228 203378 na na N

TMMCIR 100 5.536 1510344 1 200 Y
SPLIT 100 207.233 57265726 1 198 Y
AFR 100 208.561 3059868 na na Y

NuSMV 100 614.806 4762520 na na Y
TMMC 100 4.200 2057907 na na N

TMMCIR 200 27.966 2439514 1 400 Y

TMMCIR 300 145.093 5767146 1 600 Y

For MUX-SEM (Fig. 1), thread-modular model checking does not give a con-
clusive verification result due to abstraction. Our algorithm (TTMCIR) clearly
outperforms other complete algorithms in large cases. For 100 processes, TTM-
CIR takes only 5.536 seconds to conclude the verification; other algorithms re-
quire more than 200 seconds to give conclusive results. Moreover, our algorithm
is able to finish cases with 200 and 300 processes in less than 2.5 minutes. Other
complete algorithms fail to finish the verification within an hour.

We now consider a variant of the simple mutual exclusion algorithm called
MUX-SEM-LAST (Fig. 4(a)). In the new algorithm, a new global variable last
is added to record the last process which enters its critical section. Table 2 gives
the experimental results.
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global x: boolean initially x = 1
global last : N initially last = 0
loop forever⎡
⎢⎢⎣
l = 0 : Non-Critical
l = 1 : request x ∧ last := j
l = 2 : Critical
l = 3 : release x

(a) MUX-SEM-LASTj

global x: boolean initially x = 1
local counter : initially counter = 0
loop forever⎡
⎢⎢⎢⎢⎣

l = 0 : Non-Critical
l = 1 : request x ∧

counter := (counter + 1)%M
l = 2 : Critical
l = 3 : release x

(b) MUX-SEM-COUNTj

Fig. 4. MUX-SEM-LASTj and MUX-SEM-COUNTj

Table 2. Experimental Results for MUX-SEM-LAST

method processes time BDD’s refinement preds conclusive?

TMMCIR 50 1.548 1263192 1 100 Y
SPLIT 50 4.047 3219300 0 0 Y
AFR 50 87.297 2480394 na na Y

NuSMV 50 189.900 3113012 na na Y
TMMC 50 0.624 488516 na na N

TMMCIR 100 12.945 4143188 1 200 Y
SPLIT 100 36.557 28470876 0 0 Y
AFR 100 >1h - na na N

NuSMV 100 >1h - na na N
TMMC 100 6.636 2454844 na na N

Thread-modular model checking again fails to verify the property conclu-
sively. Our algorithm still performs better than other complete algorithms in
this example. The SPLIT tool also performs reasonably well; it finishes the case
with 100 processes in 36.557 seconds whereas forward reachability and NuSMV
cannot conclude in an hour. Interestingly, the SPLIT tool is able to prove the
result without any refinement. Although TMMCIR requires one refinement and
adds 100 essential predicates, the algorithm still concludes the verification with
less time and space than SPLIT. This suggests the overhead of the proposed
refinement technique is insignificant in this example.

We now consider another variant of the simple mutual exclusion algorithm
(Fig. 4(b)). In MUX-SEM-COUNT, a local counter is added to each process.
When a process enters its critical section, the local counter is incremented by one
(modulo a constant M). Thread-modular model checking fails to give any con-
clusive result in this example. Thanks to abstraction, our algorithm and SPLIT
can verify all cases in seconds. In comparison, forward reachability and NuSMV
need more than 20 minutes to finish the case with 20 processes (Table 3).

For the bakery algorithm, thread modular model checking is able to verify the
property conclusively (Table 4). It therefore attain the best performance with
the larger case with 8 processes. Our algorithm is slightly slower (.466 seconds)
than the incomplete algorithm and finishes the verification of the same case in
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Table 3. Experimental Results for MUX-SEM-COUNT

method processes time BDD’s refinement preds conclusive?

TMMCIR 10 0.020 14308 1 20 Y
SPLIT 10 0.321 100019 1 18 Y
AFR 10 5.996 617288 na na Y

NuSMV 10 2.288 1030176 na na Y
TMMC 10 0.016 10220 na na N

TMMCIR 20 0.104 122640 1 40 Y
SPLIT 20 2.520 930020 1 38 Y
AFR 20 1584.179 2634716 na na Y

NuSMV 20 3914.385 159986 na na Y
TMMC 20 0.044 47012 na na N

less than a half minute. The SPLIT tool is able to prove the same property in
less than 1.5 minutes. Conventional forward reachability and NuSMV require
more than 6 and 21 minutes to obtain the verification result respectively.

Table 4. Experimental Results for the Bakery Algorithm

method processes time BDD’s refinement preds conclusive?

TMMCIR 4 0.100 96068 0 0 Y
SPLIT 4 0.267 218708 0 0 Y
AFR 4 0.084 91980 na na Y

NuSMV 4 0.140 106288 na na Y
TMMC 4 0.100 96068 na na Y

TMMCIR 8 26.246 2389436 0 0 Y
SPLIT 8 75.141 26776400 0 0 Y
AFR 8 240.555 4258674 na na Y

NuSMV 8 1282.984 25237268 na na Y
TMMC 8 25.780 2389436 na na Y

Finally, we consider the dining philosopher problem (Table 5). Thread-modular
model checking cannot give conclusive answers. Most interestingly, conventional
forward reachability algorithm is most efficient in this example. It takes less than
3 seconds to prove the property in the case with 10 processes. NuSMV is about
1 second slower than forward reachability. In comparison, our algorithm and the
SPLIT tool require several refinements to conclude the verification. In the case
with 8 processes, TMMCIR adds 20 essential predicates in 3 refinements; SPLIT
adds 11 essential predicates in 6 refinement. Subsequently, both are significantly
inefficient than conventional algorithms. Our algorithm requires about 16 seconds
to finish whereas SPLIT takes more than 80 minutes.

In our experiments, TMMC does not give conclusive results in all examples
but the bakery algorithm. If an example needs no refinement, our algorithm
and thread-modular model checking have comparable performance. In most
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Table 5. Experimental Results for Dining Philosophers

method processes time BDD’s refinement preds conclusive?

TMMCIR 6 0.104 85848 3 12 Y
SPLIT 6 0.320 158410 3 6 Y
AFR 6 0.016 14308 na na Y

NuSMV 6 0.036 17374 na na Y
TMMC 6 0.008 7154 na na N

TMMCIR 8 1.028 367920 3 16 Y
SPLIT 8 16.442 1176322 5 10 Y
AFR 8 0.236 243236 na na Y

NuSMV 8 0.236 223818 na na Y
TMMC 8 0.020 24528 na na N

TMMCIR 10 15.981 1475768 3 20 Y
SPLIT 10 5274.488 4193266 6 11 Y
AFR 10 2.592 1815434 na na Y

NuSMV 10 3.556 1739444 na na Y
TMMC 10 0.052 48034 na na N

examples, TMMCIR and SPLIT are faster than conventional forward reachabil-
ity and and NuSMV. Between our algorithm and SPLIT, ours usually performs
better. This is due to the fact that our algorithm computes the reachable states
separately with only one process and its environment.

6 Conclusions

This paper uses iterative refinement to make thread-modular model checking
complete. Thread-modular model checking computes the reachable states of each
process with its environment—the composition of other processes’ global infor-
mation. With limited global information, thread-modular model checking can
compute the system reachable states quickly. However, it is incomplete for many
protocols, which is what we resolved by the refinement in our approach. In most
examples, our approach performs substantially better than other complete ver-
ification algorithms. The main reason is that we compute the reachable states
separately with only one process and its environment. In MUX-SEM with 200
processes, we only use about 27 seconds, while other approaches use more than
1 hour.

According to our experimental data, the approach about thread-modular
model checking cannot give good performance when the global variables are
much more than local variables. We will take abstraction for global variables to
improve its efficiency in our future work.

Acknowledgment. Thanks to Kedar Namjoshi for introducing more detail
about the auxiliary variable refinement.
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Abstract. In this paper we present a new approach to verification of
multi-threaded C/C++ programs. Our solution effectively chains the
parallel and distributed-memory model checker DiVinE with CLang
and the LLVM bitcode interpreter. This combination offers full LTL,
distributed-memory model checking of virtually unmodified C/C++
source code and is supported by a newly introduced path-reduction tech-
nique. We demonstrate the efficiency of the reduction and also the ca-
pacity to produce human-readable counter-examples in two small case
studies: a C implementation of the Peterson’s mutual exclusion protocol
and a C++ implementation of a shared-memory, lock-free FIFO data
structure designed for fast inter-thread communication.

1 Introduction

Direct applicability of model checking to unmodified, or at most lightly anno-
tated, software systems is extremely desirable, since it substantially reduces costs
associated with this otherwise appealing technique. Tools that bypass the mod-
elling step, i.e. those, that model-check software directly, remove the need for
a significant part of the specialist work normally required for model checking.
This in turn enables wider applicability of automated formal verification.

A number of advancements have been made in this area. One of the first forays
into the territory is the support for combining C code with ProMeLa models in
SPIN [11], which can be used, although with a number of caveats and substantial
amount of extra work, to verify implementation-level properties. Another early
approach to the problem is constituted by automated model extraction [10,12,6].
In a similar spirit, the ZING [1] model checker is shipped with automated model
extraction tools. More direct approaches, which are in many cases also easier
to apply, are embodied by model checkers based on a particular programming
language (or runtime), like CMC [15], JCat [8], MCP [19], Java PathFinder [20]
and MoonWalker [7].
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While the CEGAR-based software model checkers like SLAM [2], BLAST [9]
or Magic [5] have a related set of goals, they in fact live on a somewhat remote
branch in relation to previously mentioned explicit-state model checkers. With
real programs, the abstraction refinement process allows for processing of larger
systems, but also introduces a degree of infidelity into the process. Therefore, the
overall result is more in the spirit of static analysis (with a model checker back
end) than it is to exhaustive model checking. Even though the CEGAR approach
(and predicate abstraction in general) has been quite successful, it does require
a significant insight into the input language of the tool. As a direct consequence,
there is no C++ support in CEGAR-based tools. Moreover, verification of multi-
threaded programs is usually not supported by CEGAR-based tools, since a
suitable symbolic representation for control-based, interleaving parallelism is not
available.

With the lack of abstraction in direct software model checking the problem of
state space explosion is even more poignant. The most successful techniques used
in explicit-state model checking to fight state explosion are Partial Order Reduc-
tion [16] and distributed-memory processing, the latter of which has not been
yet applied to direct model checking of programs. Hash compaction and bitstate
hashing techniques can also be used to help overcome a state space explosion,
although at a cost of small infidelity in the model checking process. Hash com-
paction combined with distributed-memory computation can achieve enormous
capacity (on the order of 1010 states) in an explicit-state model checker [4]. While
symbolic approaches can match or even exceed this capacity, this only applies
to special classes of models: unfortunately, software systems with interleaving
concurrency (in the imperative style) resist significant symbolic reduction.

Another trait of existing approaches to direct software model checking is their
focus on verification of safety properties. However, liveness properties, such as
the requirement of guaranteed progress or response, are crucial in specifications
of parallel programs. Verification of general liveness properties poses a far greater
technical challenge compared to state-space exploration (which is sufficient for
an important class of safety properties). Nevertheless, even fully generic safety
properties are often neglected. For both generic safety and for liveness, we need a
mechanism to conveniently describe atomic propositions, which relate the prop-
erties of any given instantaneous state of a system (this problem will be described
in more detail in Section 3). Additionally, a property automaton (which refers
to these atomic propositions to describe undesired program behaviour) needs to
be synchronised with the execution of the program.

In this paper we describe an extension of the model checker DiVinE [3] that
enables analysis of models written in LLVM assembly language (in the form of
LLVM bitcode). Since compilers that produce LLVM bitcode are available for a
variety of programming languages, including C, C++, and Java, this extension
allows DiVinE to effectively verify unmodified software. As DiVinE is a paral-
lel and distributed-memory model checker, this is, to our best knowledge, the
first approach that allows for verification of unmodified C/C++ programs us-
ing distributed memory. Additionally, we introduce a path reduction technique
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(τ -reduction) that works at the level of LLVM bitcode. This technique signifi-
cantly reduces the space explosion effect of the very fine detail available in the
model structure arising from the LLVM bitcode. We also describe how general
atomic propositions can be defined for C/C++programs so that verification tasks
performed by model checking can go beyond the typically delivered state space ex-
ploration that allows for deadlock detection and assertion violation checking.

The rest of paper is organised as follows. In Section 2 we describe the LLVM
extension to DiVinE, in Section 3 we elaborate on full LTL model checking of
C/C++ programs, in Section 4 we describe the principle of the τ -reduction. In
Section 5 we give some related work, in Section 6 we demonstrate the technique
on two small use cases, and finally, in Section 7 we give some conclusions and
future work.

2 Model Checking LLVM Bitcode

The LLVM system [13] is based on an assembly-level, single-static-assignment
language. The main goal of the LLVM framework is to provide support for
code transformations using the LLVM assembly language as both the input and
output languages (most notably optimisation passes). Moreover, thanks to code
generation and just-in-time compilation tools available for the LLVM assembly,
LLVM can be transformed into a native program on a number of platforms,
either in an ahead-of-time or a just-in-time manner. The combination of these
traits makes LLVM a very attractive choice for compiler back ends: a number
of optimiser passes are available on the LLVM level, and many code generation
choices come basically for free. This fact is illustrated by the widespread support
of LLVM-based code generation in various programming language compilers.1

The general work-flow for model checking of programs directly from their
source code is following: the program source code is compiled into LLVM bit-
code, the bitcode is verified with a model checker, and finally the target binary
is generated from the verified bitcode. A major advantage of this approach is
the ability to apply compiler optimisations before running the model checker.
This enables discovery of subtle effects of unspecified behaviour in the presence
of various levels of compiler optimisation. Of course, the code generation step
still constitutes a possibly unfaithful translation which can introduce property
violations unseen by the model checker at the LLVM bitcode level. Nevertheless,
this fidelity gap is much narrower here than it is in high-level model checkers and
static analysis tools operating on the “statement level” of the input language.

To explore the state space of the program (as described by a LLVM bitcode
file), we employ a modified version of the upstream LLVM interpreter. We seri-
alise and store states of the interpreter as byte vectors (one vector corresponding
to one state) and each such vector fully describes the configuration of the virtual
machine executing the program under consideration. Within a single state, each
executing thread is represented by an execution stack, consisting of execution

1 Including GCC (C, C++, Objective C, Java, Ada and Fortran), Clang (C and C++),
GHC (Haskell) and others.
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contexts. Each context in turn contains a set of LLVM registers2, including a
program counter. Additionally, the state contains a shared heap for both non-
register local variables and for dynamically allocated memory. A thread to be
executed is picked non-deterministically in each step, producing all the possible
thread interleavings.

Thanks to symbolic debugging interfaces and metadata stored at the bitcode
level, it is possible to reliably map assembly locations to original source locations
and provide meaningful counterexample traces.

2.1 Preparing Programs

While the approach allows for model checking of unmodified programs, there
is nevertheless a certain minimal amount of preparation that needs to be done
to apply the DiVinE model checker. On the level of C/C++ source code, we
provide a header file, divine-llvm.hwhich transparently maps native (pthreads
and other supported API) calls to their equivalents required for model checking.
In the current version, the header file defines or alters the definition of at least
the following functions:

– malloc(int) – For the purpose of verification a non-deterministic choice is
made whenever malloc is called by the program, with a NULL return in one
of the branches and successful allocation in the other one. This behaviour
can be suppressed by a CPP macro NO MALLOC FAILURE.

– malloc guaranteed(int) – A variant of malloc that never fails, even when
NO MALLOC FAILURE is not defined.

– free(void *) – Release heap-allocated memory. Deterministic.
– assert(int) – Semantically equivalent to assert provided in system’s

assert.h; however, the program is not terminated. Any transition that calls
a failing assert will raise an “assertion failed” flag in the resulting state.
Reachability analysis can be used to search for system states with the flag.

– trace(...) – A debugging API, printing a message to the console when-
ever the corresponding transition is executed by the verification core; imple-
mented as standard error output in non-verification runs.

– pthread create(...) – Create a new thread. Part of the pthread library.
– arbitrary(n) – An interface to data-based non-determinism, produces a

value between 0 and n. In non-verification builds, a single random value is
produced.

The pthread mutex API will be provided in a future revision, most likely in the
form of spinlocks. Condition variables can be implemented in terms of a busy
wait as well, although this needs to be done carefully to preserve the specified
semantics.

The use of divine-llvm.h header file is, however, fully transparent. The
header does not modify behaviour of the program in any way, unless a CPP

2 The registers in LLVM are dynamic, and only created upon assignment. Their exis-
tence and values are lexically scoped. Allocation of processor registers is part of the
native code generation step.
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macro DIVINE is defined. Therefore, the only difference between a “normal”
compilation (producing a natively executable binary) and a “verification” build
(for model checking with DiVinE) is that in the latter case, -DDIVINE needs
to be passed on the command line to the compiler, and native code generation
needs to be suppressed. For C and C++ programs, there are two options to
generate the requisite LLVM bitcode:

– with CLang (which is the preferred option), passing -emit-llvm at the
command line,

– using GCC with dragonegg, which will use the GCC compiler front- and
middle- ends; the options -flto -fplugin=/path/to/dragonegg.so will
cause GCC to emit LLVM bitcode.

The library of APIs available to programs under verification is of course subject
to future extensions. As of now, the arbitrary calls can be used to implement an
exhaustive search based on “arbitrary” inputs from the environment, and in turn
to provide verification-friendly implementations of system APIs that interact
with the environment. In its present form, though, this option is only viable for
the smallest of programs: a form of hybrid data-symbolic model checking will
be needed to at least partially lift this restriction. Therefore, support for data-
intensive forms of system interactions, like reading files or sockets, is not planned
until the model checking back end can usefully deal with the consequences.

3 Atomic Propositions and LTL in C/C++ Programs

Model checking of general LTL properties is often neglected in favour of safety
checking in the form of detection of deadlocks and assertion violations detection.

Of course, LTL model checking of programs per se is not devoid of difficul-
ties: a language of atomic propositions needs to be devised. While it is tempting
to simply provide an expression language on top of global variables, such an
arrangement is likely to interfere with optimisers (and with store buffer simula-
tion). In particular, the ordering of memory stores at the LLVM bitcode level is
not guaranteed to be the same as at the source-code level. Hence, augmenting
the source code with new global variables to represent properties of individual
states is not satisfactory. Moreover, there is further interference with “instanta-
neous” occurrences of atomic propositions: often, it is desirable to mark a single
state with a certain proposition – in context of programs, this is a very useful
ability – allowing the developer to mark, for an LTL formula, that program has
passed through a certain location in the source code. Setting and immediate
resetting a global variable is not quite a faithful simulation of the instantaneous
moment as the two succeeding modifications of the variable may interleave non-
deterministically with execution of a parallel thread.

Therefore, we propose (and implement) a system where assert-like statements
can be added to the program to encode the atomic propositions: there are two
statements, first of which is called simply ap, and its only parameter is the
identifier of the atomic proposition drawn from an enumerated type in the source
language. The other is called ap set, and apart from the atomic proposition
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identifier, it takes a value indicating the value to set the atomic proposition to
(0/1 in the usual false/true interpretation). The divine-llvm.h header provides
a no-op implementation for the ap procedure, so it can be used in real programs
without the need to keep separate versions of the source.

Whenever a call to either of the ap* built-in procedures is found in the in-
struction stream, the atomic proposition values visible to LTL formulae may
change. If we were to admit the ap mechanism as the only one, the valuation
of atomic propositions could only ever change at these points. Of course, the ap
calls can be, in the source language, guarded by arbitrary conditionals, making
(virtually) the complete source language the language of atomic propositions.
The ap set calls comprise a very “imperative” approach to valuation of atomic
propositions, while the ap calls are more declarative.

Nevertheless, even though as explained above, values of variables alone are
not sufficient to satisfactorily formulate some of the desirable LTL properties,
the ap* statements alone are not sufficient either: in some cases, the atomic
propositions should be derived from variable content, and it is often inconvenient
to encode such a relation in explicit ap calls. Unfortunately, a solution to this
problem is only straightforward when we restrict our interest to global variables
– in case of those, we can ask the user to supply a Boolean function which
essentially becomes the “implementation” of an atomic proposition. However,
not all variables of interest live in the global scope, and we need to deal with
atomic propositions that depend on variables that may be currently out of scope.
To allow flexible specification of atomic propositions by the users, we propose
the following mechanism.

An atomic proposition relies on a function of the source language with Boolean
return value and arbitrary parameters. To bind such a function to an actual
atomic proposition, we need to match the input parameters of this Boolean
function to specific variables in a given scope. This binding will work differently
for global and differently for intermittent (lexically scoped) variables. On the
global level, a macro ap global(proposition, function, N, p1, ..., pN)

is provided. This informs the model checker that whenever the value of the
atomic proposition proposition is required, it can call the function function

with values of variables p1 through pN as parameters. Since all these variables
must be in the global scope, such a call can be made at any time.

On the other hand, scope-dependent propositions are somewhat more com-
plicated. Whenever local variables may be declared in the program, we allow a
macro ap local to be used, similar to ap global. The ap local call may refer
to the values of arbitrary in-scope variables, and their current scope values will
be passed to the evaluation function. This means that when a different scope
is entered, even if it shadows some of the parameters to ap local, the original,
shadowed variable values are used for evaluating the atomic proposition. For
example, see Figure 1.

The main problem with these scope-dependent propositions arises in presence
of recursive and parallel scopes (lexical scope combined with recursion or with
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#include "divine-llvm.h"

enum AP { Progress };

LTL(GF(Progress));

bool progress( int x ) { return x == 2; }

void thread( int *x ) {

int y = 0;

ap_local( Progress, progress, y );

while ( true ) {

y = arbitrary( 3 ); // 0 - 2

while ( *x == y ); // wait

y = *x;

}

}

int main() {

int x = 0;

pthread_t tid;

pthread_create( &tid, NULL, thread, &x );

while ( true )

x = (x + 1) % 3;

return 0;

}

Fig. 1. A simple example demonstrating the use of LTL and ap local. Fair scheduling
is assumed. The forked thread is expected to continue making progress (i.e. Progress
is true infinitely often). This progress may fail to happen if the compiler moves the
dereference of x out of the inner loop (which it may legally do).

multi-threading gives rise to this case): the same atomic proposition could be
assigned different values in different contexts at the same time.

A similar problem arises with the “imperative” ap set construct – in this
case, however, it is the responsibility of the developer to manipulate atomic
propositions carefully. The ap set call is provided for completeness, and because
there are corner cases that are difficult to address otherwise. Whenever possible,
it should be avoided in favour of ap or of the “declarative” style.

Nevertheless, even the “declarative” approach has certain limits, related to
the already mentioned “recursive” scopes. We define the value of a declarative
atomic proposition as false whenever it has been bound to none of the currently
active scopes. However, it can happen that multiple such scopes are active si-
multaneously (either “below” each other, in a recursion stack, or “beside” each
other in multiple execution threads). In this case, we can no longer relegate this
problem to the developer, since they have no explicit control over precedence in
such cases. There are multiple candidates for a solution, but the simplest and
most intuitive seems to be to set the atomic proposition to 1 (true) when any
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#include "divine-llvm.h"

enum AP { Cap };

LTL(G(Cap));

bool cap( int x ) { return x < 3; }

int rec( int x ) {

ap_local( Cap, cap, x );

return x >= 3 ? x : rec( x + 1 );

}

int main() {

int x = rec( 0 );

trace( "%d", x );

return 0;

}

rec(0) rec(1) rec(2) rec(3) result
– – – – ¬Cap
Cap – – – → Cap

Cap Cap Cap – → Cap

Cap Cap Cap – → Cap

Cap Cap Cap ¬Cap → Cap

Fig. 2. An example of recursive program where atomic proposition Cap is defined in
multiple (shadowed) scopes with different value

of the active scopes proscribes this (in other words, we take the logical disjunc-
tion of the values given by all active scopes). For example, see Figure 2. This
approach is also consistent with the behaviour of the ap built-in function.

As a future enhancement, we propose a scheme with (optional) parametric
formulae that can use quantifiers over scopes, and a matching (and likewise
optional) indexing scheme for atomic propositions. This will allow substantially
more flexibility in specification of scope-dependent behaviours in multi-threaded
and recursive programs.

4 τ -Reduction

The fine-grained nature of LLVM bitcode further aggravates the state-space
explosion problem. To counter this, we have devised a very simple yet efficient
state-space reduction technique that mimics the path reduction as presented
in [21]. The reduction is based on the observation that some transitions in the
state space are invisible for other active threads in the system. These, the so-
called τ actions, of a thread or process, can be delayed over other τ actions of
other processes. In fact, multiple subsequent τ actions of a single process/thread
can be safely collapsed into a single transition without any effect on other threads
or the observed property.

In traditional model-based model checking of asynchronous systems, this re-
duction would be quite ineffective, because τ chains are fairly rare in purpose-
built models. On the other hand, they are extremely ubiquitous in the SSA
bitcode produced by LLVM. While identifying all τ actions is very complex,
there is a simple yet very efficient heuristic that will identify and collapse a
majority of safe (i.e. not forming a loop) τ transitions. All transitions that:
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– do not access memory (only registers), and
– are within a single basic block

can be safely treated as τ transitions. From experience, we know that assembly-
level programs, especially in the RISC style with explicit loads and stores (as
is the case of LLVM), contain a significant share of instructions (actions) that
meet both these criteria.

To illustrate the extreme payoff for the otherwise very simple reduction, let’s
take our peterson.c running example (listing in Figure 3): the state space
size (when compiled with -O2) before τ -reduction was 37482 states and 107533
transitions and safety verification took 135 seconds. The reduced state space has
5301 states, 14585 transitions and verifies in 18 seconds, which is about 7-fold
decrease in state count and 7.5-fold decrease in verification runtime.

It should be noted that this reduction is closely related to “superstep POR”
proposed in [22], although simpler. A good candidate for improving both these
reductions may be a heuristic that would identify (some of the) memory writes
that are (provably) invisible to any other threads. On the other hand, since the
LLVM virtual machine has a possibly infinite register file, no register spilling
happens (register spilling is normally a major source of invisible memory writes;
in LLVM-based compilers, register allocation takes place in a later phase of
code generation). This naturally limits the number of invisible writes, and easily
explains why the reduction is so successfull despite its simplicity.

5 Related Work

According to [17], the MCP model checker uses a similar approach to model
checking of C/C++ program. MCP uses the LLVM interpreter, while it is more
closely following the Java PathFinder model, where safety checking is the pri-
mary goal. Later papers on MCP [18,19], however, present a different approach
to model checking – through automatic code transformation (annotation). While
MCP appears to provide extra flexibility by allowing user-level implementation
of the thread scheduling algorithm, we focus on an out-of-the box experience. It
is already possible to apply the DiVinE model checker to a subset of unmodi-
fied pthread-based programs, with semantics closely resembling those of actual
(hardware and operating system) implementations. The major outstanding fea-
ture in this regard are store buffers [14], which will bring the model checking
process to almost perfect fidelity with real executing code. On the other hand,
we believe that the focus of MCP is more on dedicated, mission-critical systems,
whereas our primary focus is on commodity hardware and software. However,
while we do not rule out the possibility of allowing user override of the scheduler
in future releases, we will very likely always provide a default behaviour that
mimics real hardware and operating systems.

A different approach to LLVM-based explicit-state model checking is pre-
sented in [22] – instead of making it possible to directly model check programs,
a hybrid approach is chosen. A program is supplemented with a driver written
in the modelling language ProMeLa, which can then call into LLVM-compiled
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Table 1. Verification results for peterson.c, as listed in Figure 3. The compiler used
was clang, version 2.9. All figures are of the entire state space; no early termination
was done in this experiment.

model variant assertion state count transition count

-O0 safe 1992772 5323045

-O0, BUG unsafe 1609112 4237118

-O1 safe 18631 49624

-O1, BUG unsafe 23849 63804

-O2 safe 5842 16121

-O2, BUG unsafe 12718 35439

functions, with proper interleaving. The approach employs SPIN as the model
checking back end, with its respective advantages (maturity, speed) and disad-
vantages (lack of distributed memory support and limited parallelism). In many
cases, this is more laborious, and requires knowledge of another programming
language and of the special interface between SPIN and LLVM.

At the time of this writing, though, there was no support for LTL model
checking in either of these tools, nor were the tools available publicly. The sup-
port for LTL model checking in the non-LLVM software model checkers (Java
PathFinder, MoonWalker, and the like) is very limited as well.

6 Use Cases

A very simple, illustrative use case for the software model checking capabili-
ties added to DiVinE is represented by the program listed in Figure 3. We can
compile the listed program using the clang compiler into LLVM bitcode, ei-
ther optimised or unoptimised. By running the model checker on the program
(τ -reduction enabled), both with the bug indicated in the listing present and
corrected, we obtain the results shown in Table 1. We can observe a significant
decrease in state space size when compiler optimisations are enabled.

A second, much more elaborate use-case is the verification of a lock-free data
structure for inter-thread communication. We do not include the listing of the
source code in this paper due to space constraints, but it is available among
the examples shipped as part of the development versions of DiVinE.3 Since
the implementation of the data structure as such is not a complete program,
we have combined a unit testing approach with model checking, providing a
small, standalone unit test-case (listing shown in Figure 5). Furthermore, since
we know that the correctness of the implementation is independent of the actual
data payload, we use the common approach of fixing the data values as part of
the test-case, making the whole unit test into a closed system. This approach is
ubiquitous whenever automated testing of software is performed. However, since

3 In fact, this same data structure is employed by the parallel model-checking back
end of DiVinE for fast shared-memory communication.
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1: #include "divine-llvm.h"

2:

3: struct state {

4: volatile int flag[2];

5: int turn;

6: volatile int in_critical[2];

7: };

8:

9: struct p {

10: int id;

11: pthread_t ptid;

12: struct state *s;

13: };

14:

15: void thread( struct p *p ) __attribute__((noinline));

16: void thread( struct p *p ) {

17: p->s->flag[p->id] = 0; // BUG. Should assign 1 here.

18: p->s->turn = 1 - p->id;

19: while ( p->s->flag[1 - p->id] == 1 && p->s->turn == 1 - p->id ) ;

20: p->s->in_critical[p->id] = 1;

21: trace("Thread %d in critical.", p->id);

22: assert( !p->s->in_critical[1 - p->id] );

23: p->s->in_critical[p->id] = 0;

24: p->s->flag[p->id] = 0;

25: }

26:

27: int main() {

28: struct state *s = malloc( sizeof( struct state ) );

29: struct p *one = malloc( sizeof( struct p ) ),

20: *two = malloc( sizeof( struct p ) );

31: if (!s || !one || !two)

32: return 1;

33:

34: one->s = two->s = s;

35: one->id = 0;

36: two->id = 1;

37:

38: s->flag[0] = 0;

39: s->flag[1] = 0;

40: s->in_critical[0] = 0;

41: s->in_critical[1] = 0;

42: pthread_create( &one->ptid, NULL, thread, one );

43: pthread_create( &two->ptid, NULL, thread, two );

44: pthread_join( one->ptid, NULL );

45: pthread_join( two->ptid, NULL );

46: return 0;

47: }

Fig. 3. An example program implemented in C, using pthreads and shared memory
for communication. The program implements Peterson’s mutual exclusion.
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===== Trace from initial =====

[ peterson.c:29 ]

[ peterson.c:42 ]

[ divine-llvm.h:54 ]

[ divine-llvm.h:57 ]

[ divine-llvm.h:53 ]

[ divine-llvm.h:54 ]

[ peterson.c:19, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 1, [ 0, 0 ] } } ]

[ divine-llvm.h:53 ]

[ divine-llvm.h:54 ]

[ peterson.c:20, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 1, [ 1, 0 ] } } ]

[ divine-llvm.h:53 ]

[ divine-llvm.h:54 ]

[ peterson.c:22, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 1, [ 1, 0 ] } } ]

[ peterson.c:17, p = *0x80c { 1, 1, *0x400 <...> } ]

[ divine-llvm.h:54 ]

[ peterson.c:22, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 1, [ 1, 0 ] } } ]

[ peterson.c:18, p = *0x80c { 1, 1, *0x400 <...> } ]

[ divine-llvm.h:54 ]

[ peterson.c:22, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 0, [ 1, 0 ] } } ]

[ peterson.c:19, p = *0x80c { 1, 1, *0x400 <...> } ]

[ divine-llvm.h:54 ]

[ peterson.c:22, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 0, [ 1, 0 ] } } ]

[ peterson.c:20, p = *0x80c { 1, 1, *0x400 <...> } ]

===== The goal =====

[ divine-llvm.h:54 ]

[ peterson.c:22, p = *0x800 { 0, 0, *0x400 { [ 0, 0 ], 0, [ 1, 1 ] } } ]

[ peterson.c:20, p = *0x80c { 1, 1, *0x400 <...> } ]

! ASSERTION FAILED

Fig. 4. Counterexample trace produced byDiVinE. The trace has been manually short-
ened to fit a single page, but is otherwise verbatim. Each block separated by a blank line
represents a single configuration of the system, and in each block, each row represents a
single thread of execution. Within a single row, the program counter is represented first
(whenever possible, through a source file location) and a listing of in-scope variables
follows. Type information is used to format values: pointers are automatically deref-
erenced, structures are shown using braces and arrays using square brackets. Aliased
values are elided (shown as <...>), unless their occurrences are of different types.
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LTL( G(Sent -> F(Recv)) )

void threads( Fifo< int > *f ) {

int id = thread_create();

if ( id ) {

for ( int i = 0; i < 3; ++i ) {

ap( Sent );

f->push( i );

}

while( true );

} else {

for ( int i = 0; i < 3; ++i ) {

int j = f->front( true ); // wait for value

ap( Recv );

f->pop();

}

assert( f->empty() );

while ( true );

}

}

Fig. 5. A parallel unit test for a lock-free queue

our unit test employs multiple threads, the outcome of the test when simply
executed is not deterministic. A possible bug in the implementation may go
uncovered for many testing iterations, for certain bug classes even thousands or
millions. However, by applying our model checker to this multi-threaded unit
test, we can guarantee that if any thread interleaving violates the property,
the problem is found reliably, even though the particular interleaving may be
extremely improbable and never found through testing alone.

This hybrid approach is best applied in situations where the control aspect of
a parallel program is most important and the input data can be fixed or taken
from a small set of specific examples. Moreover, writing test-cases for automated
software testing is already part of many software development methodologies
and as such familiar to development staff. For these reasons, we believe that this
particular combination of unit testing and model checking can become a new and
rather useful part of the developer’s toolkit when dealing with multi-threaded
applications.

7 Future Work and Conclusions

We have presented how LLVM bitcode interpreter can be used in concert with a
distributed-memory, explicit-state LTL model checker DiVinE, enabling direct
verification of program source code.4 By using the DiVinE model checker, we

4 The final implementation will be released as part of DiVinE 3.0. Nevertheless, the
work currently in progress is already available in development versions of DiVinE –
see http://divine.fi.muni.cz/development.html.
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are tapping a powerful tool designed for high-performance model checking on
platforms ranging from commodity multi-core workstations to high-end compute
clusters. The powerful model checking back end is further assisted by a path
reduction in the LLVM-based front end.

Moreover, to facilitate LTL model checking of software, we have proposed
a novel mechanism to specify atomic propositions, one that is both practical
and unobtrusive, while at the same time sufficiently expressive. This makes it
possible to realistically specify properties in terms of LTL formulae, as part of
real-world programs.

One of the priorities in our future work is to improve support for dynamic
memory. Distinguishing states that are identical up to a symmetry with respect
to their heap layout is a significant waste of the tool’s capacity. Unfortunately,
not all languages that the tool supports can provide reliable pointer tagging,
which means that the more traditional heap canonisation approaches are not
directly applicable. A conservative approach will be required, at least in cases
where exact pointer tagging is not available in the given input language.

Additionally, while sequential DFS-based software model checkers can use
delta compression to improve their memory efficiency, this is not straightforward
with a distributed-memory system. Nevertheless, especially for software, where a
single system state is often large, delta compression is usually very efficient and
an adequate alternative is needed for use in distributed-memory environment.

Finally, we would like to investigate heuristics for obtaining efficient ample
sets for LLVM bitcode sources, which would then enable the use of Partial Order
Reduction as implemented in DiVinE.
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Abstract. Statecharts is a model-based formalism for simulating and
analyzing reactive systems. In our previous work, we developed Polyglot,
a unified framework for analyzing different semantic variants of Stat-
echart models. However, for systems containing communicating, asyn-
chronous components deployed on a distributed platform, additional
features not inherent to the basic Statecharts paradigm are needed.
These include a connector mechanism for communication, a schedul-
ing framework for sequencing the execution of individual components,
and a method for specifying verification properties spanning multiple
components. This paper describes the addition of these features to Poly-
glot, along with an example NASA case study using these new features.
Furthermore, the paper describes on-going work on modeling Plexil exe-
cution plans with Polyglot, which enables the study of interaction issues
for future manned and unmanned missions.

Keywords: Statecharts, analysis, modeling, testing.

1 Introduction and Motivation

This paper reports on an on-going project at NASA Ames, whose goal is to
develop early, design-level automated techniques for error detection in the flight
control software developed for the next generation of manned and unmanned
space missions. The Ares-Orion abort scenario for the Constellation program
was an original motivating example for this work and is also used in this paper to
illustrate the technical capabilities of integrating different Statechart components
in our modeling and analysis framework.

During the Constellation Program, NASA was determined to provide a last-
chance option for astronaut survival if the Ares launch vehicle exploded during
launch – as did the rocket booster for the Space Shuttle Challenger in 1986 –
and therefore spent significant resources on a launch abort system. The driv-
ing requirement was to provide the Orion crew capsule with a powerful abort
rocket capable of rapidly pulling the capsule away in case of an explosion. The
Ares launch vehicle on-board fault diagnostics would interact with the Orion
spacecraft’scontrol system to detect an emerging hazard and execute either a
crew-initiated or automated firing of the launch abort rocket. Achieving the
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rapid control capability for a launch abort became a major design driver for
the Orion software architecture, the Ares software architecture, and also the
interface between Ares and Orion.

The interface requirements between Ares and Orion were defined in an English-
language Interface Control Document that included communication and control
specifications to be implemented by the Ares and Orion flight software. Both
Ares and Orion had adopted model-based software design methods. However,
due to cultural reasons and the technical capabilities of different tools, a multi-
tude of modeling formalisms were adopted: Enterprise Architect (UML 2.0) for
Ares, Mathworks Simulink/Stateflow for math-intensive functions on Orion, and
Rhapsody for the overall software framework for Orion. The Statechart control
component for these different modeling formalisms each has different execution
semantics. This makes performing conventional formal methods analysis of in-
teracting systems developed with these different modeling formalisms difficult.

In previous work [2] we developed Polyglot, a framework for modeling and
analysis of software using different Statechart formalisms. Polyglot uses a com-
mon intermediate representation with customizable Statechart semantics and
leverages existing verification and test case generation technologies developed at
Ames [1,4]. However, to study integration issues between asynchronous compo-
nents described using different modeling formalisms, as in the Ares-Orion case
study, additional features need to be added to Polyglot. These include a connec-
tor mechanism for modeling communication, an execution scheduling framework
and a method for specifying verification properties that span multiple compo-
nents. This paper describes the addition of these features to Polyglot, along with
an analysis of the Ares-Orion abort scenario using these new features. We also
describe on-going work on modeling Plexil [3] execution plans with Polyglot,
which enables the study of interaction issues for future manned and unmanned
(robotic) missions. Although we make our presentation in the context of a par-
ticular NASA project, we believe that our work should be relevant to other
complex, safety critical model-based software that is built from multiple compo-
nents modeled with different Statechart formalisms.

2 Integrating Statechart Components in Polyglot

Due to space constraints, we present here only a brief review of the typical us-
age of Polyglot; for a detailed description, see [2]. The basic Polyglot framework
is used in the following way. First, the structure of the Statechart model (ex-
pressed in Matlab Stateflow, or Rational Rhapsody) is translated into a common
intermediate representation (IR). The IR is then translated into Java code that
represents the structure of the model. Only the structure of a model is trans-
lated because the semantics are provided as ”pluggable” modules. Currently,
modules implementing the semantics of Matlab Stateflow, Rational Rhapsody,
and UML Statemachines are provided. The Java code representing the structure
of the model is combined with one of these semantic modules, resulting in an
executable component. Analysis can be performed using Symbolic Pathfinder
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(SPF), the symbolic execution module of Java Pathfinder (JPF), which provides
test-case generation and reachability analysis.

Polyglot can be used as described above to execute and analyze both individ-
ual models and also systems with simple communication between multiple mod-
els where the communication semantics matches that of Statecharts (i.e. event
broadcast). However, large systems often contain components that execute in
parallel and communicate asynchronously, and the basic Statecharts formalism
does not provide a way to model either asynchrony or non-trivial communi-
cation between components. The remainder of this section gives a high-level
overview of the connector and scheduling frameworks that were added to Poly-
glot for modeling communicating, asynchronous components, and also describes
how properties spanning such components can be specified and checked.

Connectors. The connector framework provides a generic way for components
to communicate. From a component’s point of view, a connector is simply a
source (destination, resp.) of inputs (outputs). Instead of reading data from or
sending data directly to another component, data is read from or written to a
connector. The connector is responsible for determining both how data is queued
when it arrives and the order in which messages are delivered when data is read.

Our basic implementation of connectors exposes two methods, recvFrom and
sendTo, which components call to receive data from or write data to the connec-
tor. Sending data to a connector is non-blocking, but attempting to read from a
connector that has no available data will block the calling component. This block
happens on the level of the scheduling framework, so that upon being blocked, the
component returns control to the scheduler. A component becomes unblocked,
and thus eligible to be run by the scheduler, when another component sends
data to it through a connector. The connector that we used in the experiment
in Section 4 was lossless and messages were delivered in FIFO order. Another
connector that we developed implements ARINC-6531 ports. Our intention is
to develop an extensive library of connectors, modeling different communication
mechanisms, including lossy communication and non-FIFO message delivery.

Scheduler. The scheduling framework is responsible for determining the or-
der of component execution and invoking the property checking. We have de-
veloped a generic scheduler that can be instantiated with different scheduling
mechanisms, e.g. non-deterministic, priority-based, calendar-based, etc. The de-
fault non-deterministic scheduler implementation works in the following way.
First, each Statechart component is registered with the scheduler and marked as
“ready” for execution. The scheduler is then run, and upon each step of its exe-
cution, it non-deterministically runs a single step of a component that is either
”ready”, meaning it previously ran without blocking and is ready again, or “un-
blocked”, meaning that the component was blocked during its previous execution
step (when trying to read data from an empty connector, for instance), but has
since become unblocked by the occurrence of some external event (such as hav-
ing data sent to it through a connector). Unblocked components are invoked so

1 Avionics Application Standard Software Interface, Aeronautical Radio, Inc.
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that they can continue executing at the point at which they last became blocked,
if desired. After the selected component finishes a step of execution, properties
(described below) are checked.

Additionally, the scheduler is implemented such that if JPF or SPF are being
used, all of the feasible paths with respect to which eligible (i.e., ready or un-
blocked) component is chosen to run are explored. This allows JPF to explore
all possible valid orderings of component execution.

Properties. Checking properties that span multiple components (i.e., the prop-
erty involves the state configuration of more than one Statechart model) involves
two main tasks. The first is specifying the property. The second is deciding when
to check for property satisfaction. We specify properties using observer automata
defined as Statechart models because it allows us to leverage the existing frame-
work for translating high-level automata descriptions into Java code that can
be executed directly by Polyglot. If the individual components are modeled in
different tools, then the property can still be modeled as a Statechart in any one
of those tools and then translated into Java.

The relevant state variables and state configuration of the components be-
ing observed are modeled as inputs to the observer automata. However, in the
generated Java code, the values of these inputs are set directly by the observer
automata by using references to the individual components. The observers can
look directly inside the components being monitored thus eliminating the need
for the Statechart components to pass any messages to the observer automata.

All properties are checkedby the scheduler after each step of execution by a com-
ponent, i.e. after each step of the state machine that implements the component.
Because the properties are defined as observer automata using Statechart mod-
els, they are translated into Java code and executed like normal Statechart com-
ponents (with the only difference being that the observers set the values of their
inputs at each step by looking directly inside the monitored components). Proper-
ties that are not satisfied trigger an exception, which can be caught by SPF. The
sequence of input values leading to the property violation is also reported by SPF.

3 Integrating Plexil

To further extend the reach of Polyglot, we have recently added support for
Plexil [3], a PLan EXecution Language that is being used in developing various
mission software for e.g., the K10 Rover [5] and human habitat automation.
Plexil is based on hierarchical state machines, but unlike the other notations in
Polyglot, the state machines in Plexil are implicit in the definitions of nodes,
which describe the computational activities for executing a plan. In addition,
Plexil has several language features useful for planning that are not included in
the other notations, such as an extended type system in which all variables can
take on the value “unknown”, and a variety of different node types that have
template behaviors for several activities commonly required for plan execution.

As it is likely that Plexil plans will be integrated into complex mission software
involvingRhapsody, Simulink, andUMLStatecharts,wewantPolyglot to have the
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capability of simultaneously analyzingmodels in all of these notations.To that end,
we have added support for translating Plexil plans into Polyglot state machines
whose execution model matches the Rhapsody semantics. The most significant as-
pect of the translation is to make explicit the implicit state machines in the Plexil
plan, and to add support for the extended type system used in Plexil plans. We
have added the type extensions through a Java class library that in turn is loaded
into Polyglot for interpretation in JPF. There are several benefits of translating
into Rhapsody besides the obvious integration into Polyglot. First, it is possible to
visualize the state machines involved in Plexil nodes using the IBMRhapsody tool
suite. Second, it is possible to use the tool suite to generate code for Plexil plans.

The translation is schematic in the structure of the Plexil plan and is based
on the operational semantics of Plexil [3]. However, it is currently not well-
optimized, and the Rhapsody semantics impose a certain amount of inefficiency
on top of the analysis due to some mismatches between the Rhapsody and Plexil
conception of state machines. In the future, we are planning to perform two addi-
tional steps with respect to Plexil. First, unlike the other Statecharts notations,
there is a single semantics for the Plexil Statecharts. Therefore, there is not the
same utility to ”swapping out” of multiple Statecharts semantics for Plexil plans.
We plan first to create a better optimized translation into Polyglot in which we
create a custom interpreter for Plexil plans to better match the Plexil state ma-
chine semantics. In addition, we are examining a direct-to-Java code generation
option for Plexil plans as it allows still more efficient analysis.

4 Experience

The extensions to Polyglot presented in this paper were applied to models rep-
resenting the interaction between the Ares launch vehicle and the Orion Crew
Exploration Vehicle described in Section 1. An Ares engineer modeled both Ares
and Orion in Stateflow. The Ares Stateflow model consists of six concurrent re-
gions, each containing a state machine, while the Orion Stateflow model consists
of five concurrent regions, each containing its own state machine. The inputs for
this model consist of ten different boolean signals. We analyzed the component
interactions using the non-deterministic scheduler described in Section 2.

We analyzed the Ares-Orion communication during abort by formulating a
property derived from the official flight software design documents and the soft-
ware requirements specification available for Ares I. The property states that:
“Ares aborts only if Orion initiates abort or crew commands automatic abort.”

We formulated the property as an observer automaton (as described in Section
2) which is advanced whenever the Ares or Orion components execute one step
through their associated state machines. Using Symbolic Pathfinder to check
this property resulted in a property violation in a 3 step sequence leading to
the error. The generated test sequence revealed that Ares could also abort when
there is loss of communication. Based on this analysis, we formulated a new
property that, when analyzed with SPF, holds on the system.

Our analysis confirmed problems suspected by the engineer who developed
the model, who had already submitted a request for a change to the Ares I



272 D. Balasubramanian et al.

design document. Even though NASA’s manned space flight program has moved
beyond project Constellation, the same cultural and technical factors that led
to multiple modeling formalisms used in interacting safety-critical systems will
persist for future missions. Our framework provides automated formal methods
tools for the analysis of interactive components modeled with multiple Statechart
formalisms, not only Stateflow as we discussed for this case study, as well as
robotic plan execution represented by Plexil plans. This will be a key capability
for verification and validation of future manned and unmanned missions.

We have implemented the component framework presented here in Java, and
based on our profiling results with the Ares-Orion scenario and also with other
examples, we made improvements to the performance of Polyglot when used with
SPF. Our original analysis using the non-optimized version of Polyglot took a
total of 4m, 15s. The optimized version of Polyglot took 2m, 2s, over 50% less
time compared to the original version.

5 Conclusions

We have presented a high-level overview of three extensions to Polyglot that al-
low systems with communicating, asynchronous components to be modeled and
analyzed. These extensions are a connector framework for modeling communica-
tion, a scheduling framework for sequencing component execution and a method
for specifying properties spanning multiple, asynchronous components. A NASA
case study using these extensions was described, as well as our on-going work to
support the analysis of Plexil plans in Polyglot.

We continue to work on the Plexil integration and to apply our framework to
the analysis of interacting software components developed for human and robotic
missions. We also plan to investigate program specialization via symbolic execu-
tion to increase the speed of our analysis. This involves using SPF to specialize
the Polyglot semantic modules with respect to particular Statechart models.

The Polyglot framework is available in open source form, and we plan to make
the scheduling and connector framework available as well.
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Abstract. A systematic tool-based method is outlined that raises ques-
tions about the circumstances surrounding an incident: why it happened
and what went wrong. The approach offers a practical and systematic
way to apply a distributed cognition perspective to incident investiga-
tions, focusing on how available information resources (or the lack of
them) may shape user action, rather than just on causal chains. This
perspective supports a deeper understanding of the more systemic causes
of incidents. The analysis is based on a higher order-logic model describ-
ing how information resources may have influenced the actions of those
involved in the incident. The PVS theorem proving system is used to
identify situations where available resources may afford unsafe user ac-
tions. The method is illustrated using a healthcare case study.

Keywords: Theorem proving, incident analysis, socio-technical system.

1 Introduction and Motivation

We explore whether automated reasoning tools, like PVS [11], informed by a
distributed cognition perspective, can help investigators improve their under-
standing of the circumstances surrounding an incident. Distributed cognition [6]
explains how people within a socio-technical system use information resources to
support their actions and achieve their goals. These information resources may
be external (on paper, signs, computers) or internal (in the head). Understand-
ing how they are deployed and transformed as people perform actions helps to
understand the socio-technical system and what might have led to an incident.
The proposed method is illustrated using a medical incident example described
in a comprehensive investigation report [3]. The analysis demonstrates that ad-
ditional, and potentially error-inducing conditions that were not envisaged in
the original report can be identified.

Contribution. (i) A distributed cognition perspective is demonstrated that
could help investigators understand the circumstances surrounding an incident.
This perspective focuses on how the availability of internal and external infor-
mation resources (or the lack of them) may shape user action. (ii) The use of a
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built-in PVS type-checking mechanism is illustrated that can challenge investi-
gators about their reconstruction of facts.

2 The Proposed Approach for Incident Investigation

We propose that automated reasoning tools can be used systematically to help
investigators understand the factors contributing to an incident by (i) making
explicit conjectures about the availability and use of resources; (ii) supporting
exploration of the validity of the logical argument about how resources are used;
(iii) challenging the validity of possible recommendations aimed at avoiding the
recurrence of such incidents. This proposal is illustrated through the example
incident using PVS.

The proposed constructive method to incident investigation focuses on infor-
mation resources and their transformation. It involves the following steps: (1)
modeling information resources used by those involved in the incident (e.g., infu-
sion rate printed on a medication order); (2) modeling how information resources
propagate within the system (e.g., how a medication order is entered into the
pharmacy information system); (3) formulating and verifying conjectures about
how resources were used (e.g., were relevant resources available at critical mo-
ments to relevant actors) and facts about the prescribed use of information
resources (e.g., according to procedures and regulations).

This approach is not intended to replace existing accident analysis methods.
Rather the aim is to further support the investigators’ awareness about the
circumstances surrounding an incident, enhancing the final recommendations.
A variety of techniques have been proposed for conducting incident analysis.
The Australian Transport Safety Bureau has developed an investigation anal-
ysis framework [2] based on Reason’s model of organizational accidents [12].
Johnson’s substantial and systematic review of the topic covers many of the
more mature techniques [7]. Analyzing descriptions of incidents using formal
techniques is not a new idea. For example, Ladkin’s Why-Because analysis [9]
uses formal proofs to verify the correctness and completeness of the causal ar-
gument hypothesized by the investigator. Petri Nets have also been used to
generate alternative paths towards an incident [13]. A comprehensive overview
of formal methods for incident investigation can be found in [8]. Leveson [10],
Hollnagel [5] and others critique the basis of these approaches because they are
largely based on event chains and because inappropriate classifications can bias
the analysis. Leveson’s STAMP approach aims to overcome some of the per-
ceived deficiencies enabling an exploration of how constraints are propagated
systemically contributing to the circumstances of the incident.

3 Illustrative Example

The example is described in a thorough report relating to an accident involving
an intravenous infusion pump [3]. Documented incidents with a range of infusion
pumps show that the wrong drug, or the wrong volume at the wrong rate, may
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Fig. 1. Reproduction of the label and of the pump used in the incident [3]

have disastrous consequences for the patient to whom the infusion was being
administered [4]. In this case a pump that delivered a drug dose over a period
of time to treat a patient in an oncology out-patients unit was programmed
incorrectly. The events relevant to this incident included the prescription of the
medication at the pharmacy; transferring the prescription to the out-patients
unit; one nurse using the label attached to the drug bag to program the infusion
pump; another nurse cross-checking, and commencement of the infusion process.

The circumstances surrounding the incident were explored by producing a
PVS higher-order logic model, then using PVS to explore the facts and events. A
number of questions are raised by the analysis that cannot be answered through
the report. They highlight issues that may have warranted further investigation.
We focus here for the purposes of illustration on one part of the incident. The
complete PVS specification is available at [1].

3.1 Modeling Information Resources

Resource identification allows the analyst to externalize facts about the informa-
tion that is available to the actors. Each resource is modeled using a different PVS
datatype. The PVS predicate subtyping language mechanism which restricts the
domain of already defined data-types is used extensively in the specifications of
these models. When using expressions with subtypes, PVS automatically gener-
ates proof obligations. They identify type correctness conditions to ensure the
valid use of the type. By this means issues in the incident are highlighted.

Information resources are first identified through the “initial understanding”
of the incident described in the report: a nurse mistakenly programmed the
infusion pump with the wrong rate (28.8 mL/h instead of 1.2 mL/h). The report
notes that a label attached to the drug bag was used to program the pump. This
printed label specified: unit of delivery, concentration, rate, and volume to be
infused (see Figure 1). Further details are in the incident report [3]. The label
provides a number of information resources. It is modeled using a record type
[# a: A, b: B, ... #]. Each field represents a distinct information resource.

label_th: THEORY BEGIN
drug_name_type: TYPE = { fluorouracil, cisplatin, %... }



276 P. Masci et al.

rate_type: DATATYPE BEGIN mL_Xh(val: real, unit: nat): mL_Xh? END rate_type
% ...
bag_label_type: TYPE =
[# drug_name : drug_name_type,

% ...
rate_mL_24h : rate_type,
rate_mL_h : rate_type, % ... #]

END label_th

The label specification models the multiple fields contained in the bag label. If
different resources can be specified with the same type, then such resources are
potentially either replicated or have compatible content (e.g., in terms of values
and/or units) but different meaning. Either case could lead to confusion. Check-
ing these type matches can therefore reveal potential issues that may warrant
further investigation. In this case the bag label contained information resources
(e.g., rate, dose) specified multiple times in different formats. According to the
report, this seemed to be the direct cause of the incident. One field on the label
was used incorrectly in preference to another: “The calculated rate (28.8 mL/h)
was observed to match a number on the pharmacy label.” ([3], page 13).

The pump also contains information resources including the displays, labels
that may have been attached to the pump, and audible alarms. Similarly to the
bag label, the pump can be modeled as a record type, pump type (not shown
here, available from [1]). The predicate subtype used in each field reflects the
constraints imposed by the pump on each information resource.

3.2 Modeling Transformations of Information Resources

Transformations are modeled as functions over resources. PVS generates proof
obligations to ensure correct use of types. Discharging a proof obligation chal-
lenges the investigator’s reconstruction of events and facts. Modeling the trans-
formations helps the investigators to be clear about relations that hold among
resources. Building a specification that correctly type-checks in the presence of
these transformations can therefore help identify when and in what form re-
sources are needed. An example transformation is the use of the information
resources printed on the bag label by the nurse to enter the rate into the pump.
Consider the information resource “rate”. The constraints imposed by the bag
label can be modeled easily as a PVS datatype (rate type, defined in theory
label th) with constructor mL Xh(val: real, unit: nat). The pump rate,
on the other hand, is simply a non-negative real number below a maximum
value (rate type, defined as { x: nonneg real | x <= max rate } in theory
pump th). The transformation function is:

enter_rate(rate: label_th.rate_type): pump_th.rate_type = val(rate)

PVS generates a proof obligation to ensure the correct use of types:

enter_rate_TCC: OBLIGATION
FORALL (rate: label_th.rate_type): val(rate) >= 0 AND val(rate) <= max_rate;

To discharge this proof obligation, it is necessary to show that the label rate
ranges over values that can be entered in the pump — the pump rate is a
bounded real number. This proof obligation, with the available information,
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cannot be discharged — the rate specified on the bag label is unbounded. Al-
though mathematically trivial these results highlight implications for incident
investigation that are potentially significant. They raise the question: What are
the constraints on the rate value printed on the label? If answers are not avail-
able then this may suggest a weakness in the system and a potential for unsafe
workarounds. The proof obligation also stimulates further investigation about
rate value bounds: What is the procedure in practice when a nurse has to pro-
gram a pump and the label indicates values that cannot be entered? These issues
were not covered in the incident report [3].

3.3 Conjectures about the Use of Information Resources

Conjectures about the actual or prescribed use of information resources can be
formulated as predicates over resources. They can be embedded in the spec-
ification of information resources – PVS then systematically generates proof
obligations that ensure the conjectures hold.

One significant aspect of the incident was the safe limit of administration
for the drug. A reasonable conjecture is that the resources available to the
nurse provided appropriate information about safe infusion rates. The predicate
subtype for the infusion rate in the label is {r: rate type | safe rate?(r,

drug name)}, where drug name is another information resource provided by the
label (PVS allows the specification of dependent subtypes). Instantiating the
label (see Figure 1) automatically generates the proof obligation:

fluorouracil_bag_label_TCC: OBLIGATION safe_rate?(mL_Xh(28.8, 24), fluorouracil);

Given available information resources, this proof obligation cannot be discharged.
Neither the label nor the pump provides information about safe limits. A bag
label reporting safe limits could have helped the nurses or the patient catch the
mistake, e.g., while reviewing the therapy parameters — recognition and pat-
tern matching over recall from memory. Similarly, a pump with safeguards would
have prompted a warning and, thus, could have helped catch the mistake. This
seems to be a real problem in the incident: “The calculation was not validated
with a mental approximation” ([3], page 18). A similar issue due to the propa-
gation of information resources from the medication order to the computerized
physician order entry can be highlighted with this approach. This issue is not
explicitly covered in the incident report [3], though the report points out that
“a miscalculation occurred when the pharmacist initially reviewed the order in
the clinic” ([3], page 33).

4 Conclusions

This brief illustration indicates that applying a distributed cognition perspective
to incident analysis can lead to insight that would help guide an incident inves-
tigator. Missing insight could of course just mean that this particular report was
weak rather than our method useful. However, we argue that the method found
issues beyond that related to direct causes of the particular incident. Insight can
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also relate to other issues that could lead to future mishaps. A traditional causal
analysis method as used does not aim to highlight such issues. They would only
be found through craft skill not the method. The proposed technique shares with
STAMP [10] the notion that incident analysis is about discovering systemic fail-
ures rather than focusing on causal chains. It is necessary however to carry out
more case studies to further explore the benefits of our approach.

A relatively simple use of a theorem prover can support this analysis. In the
illustration sub-typing alone was used to raise issues and questions and it was
not necessary for the analyst to formulate theorems. The analyst just models
how information resources are transformed and propagated in the system. PVS
automatically produces the obligations and proof attempts, demonstrating the
satisfaction or otherwise of the investigators’ understanding of the circumstances
surrounding the incident. As more information is uncovered and modeled further
proof obligations raise issues that may warrant further investigation or lead to
further recommendations.
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Abstract. Deadlock-free algorithms that ensure mutual exclusion cru-
cially depend on timing assumptions. In this paper, we describe our expe-
rience in automatically verifying mutual-exclusion and deadlock-freedom
of the Fischer and Lynch-Shavit algorithms, using themodel checker mod-
ulo theories mcmt. First, we explain how to specify timing-based algo-
rithms in the mcmt input language as symbolic transition systems. Then,
we show how the tool can verify all the safety properties used by Lynch
and Shavit to establish mutual-exclusion, regardless of the number of pro-
cesses in the system. Finally, we verify deadlock-freedom by following a
reduction to “safety problems with lemmata synthesis” and using acceler-
ation to avoid divergence. We also show how to automatically synthesize
the bounds on the waiting time of a process to enter the critical section.

1 Introduction

In distributed systems, deadlock-free algorithms that ensure mutual exclusion
crucially depend on timing assumptions. For example, the one proposed by Fis-
cher cannot guarantee mutual exclusion when all the steps of a process do not
take time in a fixed interval, while that proposed by Lynch and Shavit [16] guar-
antees that mutual exclusion is never violated even when the timing constraints
are not satisfied. As witnessed by the pen-and-paper proofs in [16], the veri-
fication of such a class of algorithms is a subtle and time-consuming activity.
This is so because of the following two main difficulties. First, the verification
should be done regardless of the number n of processes in the systems, i.e., it
must be parametric in n. Second, the waiting time of a process to enter the
critical section is usually specified by means of a linear polynomial that is para-
metric in c1 and c2, where [c1, c2] is the interval time in which any other step
can be executed. Hence, for such a class of timing-based systems, there are two
meanings of the word “parametric”. This, in turn, implies that these systems
have (at least) two dimensions along which they are infinite state. To over-
come these difficulties, we first introduce a class of symbolic transition systems,
called parameterized timed systems, that support the declarative specification of
timing-based systems that are parametric in both the number of processes and
the timing-constraints (Section 2) by using certain classes of formulae. We also
sketch how the three algorithms for mutual exclusion in [16] can be formally
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described as parameterized timed systems (Section 4). Then, we explain how
to automatically solve reachability problems for parametric timed systems by
using the Model Checker Modulo Theories (mcmt) [12] (Section 3). The tool
uses Satisfiability Modulo Theories (SMT) techniques that cope with both kinds
of parameters uniformly. Although the reachability problem for parameterized
timed systems is undecidable, our experiments show that mcmt terminates when
analyzing mutual exclusion and all the other safety properties considered in [16]
for all the three algorithms (Section 5). Interestingly, safety properties can also
be used to automatically verify deadlock-freedom by reducing the analysis of the
liveness property to reachability problems as outlined below. The key observation
is that the bound on the waiting time to enter the critical section is independent
of the number n of processes in the system. Thus, deadlock-freedom reduces to
show that it is impossible, starting from a reachable state of the system, to reach
the states where an interval of time has passed which is longer than the bound
without recording the event that a process has entered the critical section. In
order to make the tool converge on these new problems, we use acceleration
techniques. The role of lemmata is crucial to specify invariants overapproximat-
ing the notion of a “reachable state”: first (Section 6.1), we show how mcmt is
able to check the invariants identified in [16] and use them as lemmata to prove
deadlock-freedom. Then (Section 6.2), we explain a technique to automatically
synthesize such lemmata again by using mcmt and we report about our findings
in its application for the fully automated verification of deadlock-freedom.

2 Parameterized Timed Systems

The notion of parameterized time system is an extension of that of parametrised
timed network in [3] with shared variables and universal conditions in the time
elapsing transitions. Informally, a parameterized timed system is formed by a
collection of finitely many identical processes. Each process is a finite state au-
tomaton extended with data and clock variables, that may be local or shared.
There are two kinds of transitions: one modelling the passing of time (specified
by incrementing the clocks of the same amount of time) and another one in
which data variables are updated and a given number of processes (usually 1 or
2) synchronize and change their states simultaneously. Transitions of the first
kind (called time elapsing) may be guarded by “universal” conditions on the val-
ues of the clocks, i.e. by predicates involving the values of a finite but unknown
number of clocks. If the guard is satisfied, all the clock variables are added of
the same amount of time while the values stored in the data variables are left
unchanged. Universal conditions in time elapsing transitions allow us to model
the so-called location invariants, i.e. guards forcing a process to leave a certain
location before a fixed amount of time has passed. Transitions of the second kind
(called location) are guarded by “existential” conditions on the data and clock
variables, i.e. by predicates involving a finite and known number of processes. If
the guard is satisfied, both the data and clock variables of the involved processes
are updated; for example, the value of some clocks may be reset. Initially, all
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the processes are in a distinguished initial state and their clock variables are set
to zero. The value of the clocks is always positive and ranges over R, thereby
modeling a continuous flow of the time.

In the rest of this section, we explain how parameterized timed systems can
be specified in the formal framework of [11] underlying the infinite state model
checker mcmt [12]. The idea is to use guarded assignment transition systems
whereby state variables are functions mapping a subset of the integers (used as
identifiers of the processes) to either a finite subset of the integers representing
the locations of the automaton or an infinite set of time points, representing the
values of the clocks. For simplicity, we provide only an abstract characterization
of the fragment of the mcmt input language that will be used to specify the
class of parameterized timed systems; the concrete syntax can be found in the
on-line user manual available at [22].

Formalization. We use multi-sorted first-order logic extended with the ternary
expression constructor “if-then-else.” We consider a sort INDEX for indexes of
arrays, the sorts INT and REAL for elements of arrays, ARRAYINT and ARRAYREAL
for arrays indexed over INDEX and storing elements of sort INT and REAL, respec-
tively. We assume the availability of the arithmetic symbols of Linear Arithmetic
(e.g., + and ≤) and of the binary symbols [ ]INT : ARRAYINT, INDEX → INT and
[ ]REAL : ARRAYREAL, INDEX → REAL to denote the array dereferencing operations
(by abuse of notation, we omit the subscript INT or REAL when this is clear from
the context). Semantically, we shall consider the class of structures where (i)
INDEX is interpreted as a finite subset of the integers; (ii) INT is interpreted as Z,
REAL as R, and the usual arithmetic symbols have their standard meanings; and
(iii) ARRAYINT and ARRAYREAL are interpreted as the set of functions from a finite
subset of the integers to Z and R, respectively, and [ ] is interpreted as function
application. According to the SMT-LIB standard [19], a pair comprising a set
of symbols and a class of structures (also called models) identifies a theory: the
theory described above will be called PTS in the rest of the paper.

If i is a tuple of variables of sort INDEX and a a tuple of array variables, a[i]
is a tuple comprising all terms of the kind a[i] for a ∈ a, i ∈ i; when writing
φ(i, a[i]), we mean that φ is a quantifier-free formula, that the i’s are the only
variables of sort INDEX occurring in φ and that all the variables of sort INT or
REAL occurring in φ have been replaced by the terms a[i] of the corresponding
sorts. A ∀I-formula is a formula of the kind ∀iφ(i, a[i]) and an ∃I -formula is a
formula of the kind ∃iφ(i, a[i]).

A parameterized timed system pts is a tuple

〈p, a, Ax, I, {Li(a, a
′)}i, E(a, a′)〉

where p is a tuple of parameters, a is a tuple of state variables, Ax is a finite
set of system axioms, I is the initial state formula, Li is a finite set of location
transitions, and E is a time elapsing transition. (Intuitively, a and a′ denote
the values of the state variables immediately before and after, respectively, of
the execution of a transition.) We also assume the following proviso on the
components of the pts .
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Parameters. The tuple p is composed of an array constant id of sort ARRAYINT
and a tuple pr of constants of sort REAL. The constant id maps indexes to a finite
(unknown) set of integers to allow for indirect dereference of arrays by integers.
We assume id to be injective—i.e., it satisfies ∀i, j.(id[i] = id[j]→ i = j)—and its
co-domain to be the set of positive integers—i.e., it also satisfies ∀i.(id[i] > 0). In
other words, id is a “casting” function from integers to indexes; for more details
on the role of id, the reader is pointed to [4]. In the rest of the paper, for the
sake of simplicity, we will simply write i in place of id[i] (this syntactic sugar is
also allowed by mcmt input language) and omit to list id among the parameters
in p. The fact that 0 and negative integers cannot be considered as identifiers
will turn out to be useful in the specification of the algorithms considered in this
paper. The constants in the tuple pr are called real-valued parameters and will
be used to represent time bounds of a parameterized timed system which can be
subject to some constraints, such as being strictly positive or one being larger
than another. All the elements in p do not change their values over any run of
the parameterized timed system.

State Variables. The tuple a is partitioned into two disjoint tuples b and c of
sort ARRAYINT and ARRAYREAL, respectively. The variables in b are the data vari-
ables and those in c are the clock variables. Concerning data variables, we as-
sume that there exists a distinguished variable pc, short for program counter, map-
ping indexes to a finite (known) set of integers that represent the control locations
of an automaton. Without loss of generality, we assume pc to be constrained by
∀i.(1 ≤ pc[i] ∧ pc[i] ≤ �) (abbreviated as pc ∈ [1, �]) for some given value � ≥ 1
(corresponding to the number of control locations). The updates to the clock vari-
ables in c model the flow of time. We assume that the tuple c contains a distin-
guished variable pcclock that measures the time a process is staying in a given lo-
cation. Thus, pcclock is initialized to zero and reset every time the corresponding
location is changed. In our framework, a shared (data or clock) variable a is mod-
eled as a “constant” array, i.e. a is initialized and updated so that the invariant
∀i, j.(a[i] = a[j]) (abbreviated as global(a)) is maintained. In the rest of the pa-
per, abusing notation, we shall write a instead of a[i] or a[j], etc. to emphasize that
the exact value of the index used to dereference a constant array is immaterial.

System Axioms. Constraints on parameters p (linear inequalities and the like)
are included in the set Ax of system axioms: these axioms are added to the theory
PTS and used in the satisfiability tests modulo PTS mentioned in next Section.
Obvious invariants known to the user (e.g., the fact that the values of the clocks
are always nonnegative, the above assertions pc ∈ [1, �], global(a), etc.) can be
introduced as further system axioms in mcmt specification files so that the tool
can make use of them too.

Initial State Formula. We assume I(a) to be a ∀I -formula.

Location Transition Formulae. We assume Li(a, a
′) to be of the form

∃i (φL(i, a[i]) ∧
∧
a∈a

a′ = λj.Upda(j, i, a[i], a[j])), (1)
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where i is a variable of sort INDEX, φL is a conjunction of literals, and the Upda

are functions defined by cases, i.e., by suitably nested if-then-else expressions
whose conditionals are again conjunctions of literals. To keep the technicalities
to a minimum and since this is sufficient for the systems considered in this
paper, we consider only one existentially quantified variable i in (1). However,
the discussion can be generalized to location transitions with two quantified
variables, which are supported by mcmt and allow one to model a wide class of
systems, as observed in [11].

Time Elapsing Transition. We assume E(a, a′) to be of the form

∃ε ≥ 0
(
∀j φG(j, a[j], ε) ∧ b′ = b ∧ c′ = λj.(c[j] + ε)

)
, (2)

where φG is a quantifier free formula, ε is a variable of sort REAL, and equality
of tuples of variables is interpreted as the conjunction of componentwise equal-
ities. The universal guard ∀j φG(j, a[j], ε) is typically used to model a location
invariant.

3 Reachability for Parameterized Timed Systems

Let π := 〈p, a, Ax, I, {Lh(a, a
′)}h, E(a, a′)〉 be a parameterized timed system

and U(a) be an ∃I -formula, i.e., a formula of the form ∃i.φ(i, a[i]). Assuming
that the unsafe formula is an ∃I -formula allows us to express the complement of
a large class of safety properties as these can usually be encoded as ∀I -formulae.
For example, if location 4 is the critical section location, the set of unsafe states
violating the mutual exclusion property can be expressed by the ∃I -formula
∃i1, i2.(i1 �= i2 ∧ pc[i1] = 4 ∧ pc[i2] = 4), saying that two distinct processes are
in the critical section at the same time.

Given π and U(a), the symbolic backward reachability procedure iteratively
computes the set of backward reachable states BR(a) as follows. Preliminarily,
let us put τ(a, a′) :=

∨
h Lh(a, a

′) ∨ E(a, a′); define also (for n ≥ 0) the n-pre-
image of a formula K(a) as

Pre0(τ,K) := K and Pren+1(τ,K) := Pre(τ, Pren(τ,K)),

where Pre(τ,K) := ∃a′.(τ(a, a′) ∧K(a′)). Intuitively, Pren(τ, U) describes the
set of backward reachable states in n ≥ 0 steps. At the n-th iteration, the back-
ward reachability procedure computes the formula BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U)
representing the set of states which are backward reachable from the states in
U with at most n steps. While computing BRn(τ, U), the procedure also checks
whether the system is unsafe by establishing if the formula I ∧ Pren(τ, U) is
satisfiable modulo PTS (safety test) or whether a fix-point has been reached by
checking if (BRn(τ, U) → BRn−1(τ, U)) is PTS-valid or, equivalently, if the for-
mula BRn(τ, U)∧¬BRn−1(τ, U) is PTS-unsatisfiable (fix-point test). If a safety
test is positive, the procedure returns UNSAFE; if this does not happen and a
fixed point is reached, the procedure returns SAFE.
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The essential requirement in order to mechanize the procedure (which might
be non-terminating for various known general reasons) is the closure of ∃I -
formulae under preimage computation. In this way, in fact, a formula in the
sequence BR0, BR1..., is an ∃I -formula and we need to check the satisfiability of
conjunctions of ∃I - and ∀I -formulae, which is decidable by using a general result
in [11]. LetK be an ∃I formula; while it is easy to show that Pre(L,K) is equiva-
lent to an ∃I -formula for any location transition L, it is unfortunately impossible
to prove it for Pre(E,K). Although the existential variable ε can be eliminated
by using a standard quantifier-elimination procedure for Linear Real arithmetic,
the main difficulty is posed by the universal guard in (2), namely ∀j.φG(j, a[j], ε).
In fact, it is known (see, e.g., [2]) that universal conditions are difficult to ana-
lyze automatically and require approximation techniques. In mcmt, the system
is approximated by using the stopping failures model [17] (similar to the “ap-
proximate model” of [1, 2]). According to this model, processes can crash at
any time and crashed processes remain so. In this way, the approximated system
admits more runs than the original one and thus satisfies fewer safety properties.
As a consequence, if the approximated system enjoys a safety property, then we
are entitled to conclude that also the original system does so. In fact, establish-
ing a safety property for the approximate system means that the system enjoys
that property in a “fault-tolerant way”, i.e., even in presence of failures. This
will be the case for all safety properties considered in this paper and also for
the deadlock freedom properties (modulo some provisoes discussed in Section 6
below). For a detailed description of how mcmt implements the stopping failures
model and for information on how to check whether an unsafety trace applies
to the original system, the reader is pointed to [4] (again, all unsafety traces
found in the experiments of this paper can be proved to apply to the original
version of the system without failures). We just point out that after moving to
the stopping failures model the desired closure property of ∃I -formulae under
preimages holds.

4 The Lynch-Shavit Algorithm

Lynch and Shavit [16] develop a time-based algorithm for mutual exclusion by
combining two other algorithms for mutual exclusion: a Lamport style asyn-
chronous algorithm (see, e.g., [17]) and the well-known Fischer’s timed mutual
exclusion algorithm. The three algorithms presented in [16] consist of a finite
(but unknown) number n of identical processes running concurrently. Each pro-
cess is composed of four regions of code:
– remainder: the region of code not concerned with

the access to critical resources;
– trying: the region of code where the process tries

to acquire access to the critical region;
– critical: the region of code with exclusive access;
– exit: the region of code where the process exits

from the critical region.

Process i:

repeat forever
remainder region
trying region
critical region
exit region

end repeat
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Algorithm 1

x, y: shared registers
initially y = 0

repeat forever
0b: remainder exiti
L: x := i;
1: if y �= 0 then goto L;
2: y := 1;
3: if x �= i then goto L;
4a: critical entryi
4b: critical exiti
5: y := 0;
0a: remainder entryi
end repeat

Algorithm 2

x: shared register, initially 0
delay: positive integer constant

repeat forever
0b: remainder exiti
L: if x �= 0 then goto L;
1: x := i;
2: pause(delay);
3: if x �= i then goto L;
4a: critical entryi
4b: critical exiti
5: x := 0;
0a: remainder entryi
end repeat

Algorithm 3

x, y: shared registers initially 0
delay: positive integer constant

repeat forever
0b: remainder exiti
L: if x �= 0 then goto L;
1: x := i;
2: pause(delay);
3: if x �= i then goto L;

% Start of Critical Region
4: if y �= 0 then goto L;
5: y := 1;
6: if x �= i then goto L;
7a: critical entryi
7b: critical exiti
8: y := 0;

% End of Critical Region
9: x := 0;
0a: remainder entryi
end repeat

(1) (2) (3)

Fig. 1. The three Algorithms from [16] (code for process i): (1) Lamport’s Style Mutual
Exclusion; (2) Fisher’s Timed Mutual Exclusion; (3) Lynch-Shavit’s Combined Mutual
Exclusion

The pseudo-code of a process i belonging to the three algorithms (taken verbatim
from [16]) is shown in Figure 1. Algorithm 1 is asynchronous while Algorithms 2
and 3 are timing-based: the time interval between successive steps of a process
i is assumed to range in some interval of time when i is in its trying or exit
region. The instruction pause(k) causes the process to delay by a number k − 1
of steps. Intuitively, pause(k) is equivalent to a sequence of k− 1 no-operations.
The idea is to choose values for time parameters in Algorithms 2 and 3 so as to
guarantee the two key properties:

– Mutual Exclusion (MEX): in any reachable state, at most one process is in
its critical region;

– Deadlock Freedom (DF): in any execution, if some process is in the trying
region, and no process is in the critical region, then eventually some process
enters the critical region.

Algorithm 1 enjoys property MEX but not DF. Two timing constraints are
crucial for Algorithms 2 and 3 [16]: (TC1) the time interval between successive
steps of a process i should be contained in [c1, c2] (for 0 < c1 ≤ c2 < ∞) when
i is in its trying or exit region and (TC2) delay ≥ C = c2/c1 where C is called
the time uncertainty. If (TC1)-(TC2) are satisfied, then both Algorithms 2,
3 satisfy MEX and DF, otherwise Algorithm 2 satisfies only property DF and
Algorithm 3 satisfies only property MEX. Since, ideally, timing-based algorithms
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should guarantee mutual exclusion regardless of the timing constraints, in this
sense, Algorithm 3 is better designed than Algorithms 1 and 2.

Algorithm 1 can be formalized by a parameterized timed system

π1 := 〈∅, 〈pc, x, y〉, {global(x), global(y), pc ∈ [1, 9]}, I,LT1, ∅〉

where I := ∀i.pc[i] = 1 ∧ y = 0 and the integers 1, ..., 9 stands for the labels
0b, ..., 0a in the pseudo-code, LT 1 contains the location transition corresponding
to the various instructions in the pseudo-code. The tuple of parameters and the
set of time elapsing formulae of π1 are empty since time plays no role for an
asynchronous algorithm like the Algorithm 1.

Algorithm h ∈ {2, 3} is formalized by a parameterized timed system of the
form πh := 〈p, ah, Axh, Ih,LTh,TEh〉, where

p := 〈C,F,G〉, a2 := 〈pc, pcclock, x〉, a3 := 〈pc, pcclock, x, y〉,
Ax2 := Ax ∪ {pc ∈ [1, 9]}, Ax3 := Ax ∪ {pc ∈ [1, 13], global(y)},
with Ax := {G ≥ F, F ≥ C,C ≥ 1, global(x), ∀i.pcclock[i] ≥ 0},
I2 := ∀i.pc[i] = 1 ∧ x = 0, I3 := ∀i.pc[i] = 1 ∧ x = 0 ∧ y = 0 ,

the location transition formulae in LTh are derived from the pseudo-code as
for Algorithm 1, the time elapsing formulae in TEh is of the form (2), and the
matrix φG of the universal guard is a conjunction of formulae of the form

pc[j] = q → pcclock[j] + ε ≤ Bq (3)

saying that the location q has a bound Bq that cannot be violated if pcclock[j] is
updated to pcclock[j]+ ε. (Recall that transitions of the form (1) should have set
the special clock variable pcclock[j] to 0 as soon as the process j enters location q.)
Two clarifications about the role of the parameters C, F , and G are mandatory
(the full formalization of Algorithm 2 is reported in the Appendix of [6]).

First observe that, without loss of generality, it is possible to assume c1 = 1: in
this way we will be able to use only Linear Arithmetic constraints, as prescribed
by the definition of parameterized timed system of Section 2. Thus we have
C = c2/c1 = c2. Because of the timing constraint (TC1), a process is forced
to remain in a location belonging to the trying or exit regions for at least 1
and at most C time units. This is encoded in πh (for h ∈ {2, 3}) with the two
following conditions (i)-(ii). Condition (i) adds pcclock[i] ≥ 1 to the guards of
those location transition formulae that modify a control location inside the trying
or the exit regions. Condition (ii) adds a conjuct of the form (3) to the universal
guard of the time elapsing formulae with Bq set to C, for each location inside
the trying or exit regions; the only exception is for the location corresponding
to the pause instruction, i.e., line 2 in the pseudo-code of Algorithms 2 and 3.

The second clarification is about the absence of the parameter delay and the
presence of the parameters F and G that do not occur in the pseudo-code of
Algorithms 2 and 3. The idea is to replace the obvious Non-Linear Arithmetic
constraint in the formulae of πh (for h ∈ {2, 3}) modelling pause(delay) with a
linear one involving F and G. In fact, the naive encoding of pause(delay) would
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require the use of the non-linear term delay ∗ C to count the the number of
nullary operations that the process should wait before continuing its computa-
tions. Fortunately, as observed in [16], the key property of pause(delay) is that
its duration is greater than the time uncertainty C. Thus, the two additional
parameters F and G are used to model the minimum and maximum time span
that a process can spend inside pause(delay). In this way, the time constraint
(TC2) is encoded in πh (for h ∈ {2, 3}) by adding (i) the condition pcclock[i] ≥ F
to the guard of the transition location in LTh modifying the control location q
and (ii) a conjunct of the form (3) in the universal guard of the time elapsing
formulae in TEh with Bq set to G, where q is the control location associated to
the pause instruction (i.e., line 2 in the pseudo-code of Algorithms 2 and 3).

5 Automated Verification of Mutual Exclusion

We begin by reporting the results of our experiments on verifying the mutual
exclusion and other safety properties of the three algorithms. All the specification
files and scripts used in our experiments can be downloaded from the web page
http://www.oprover.org/mcmt_lynch_shavit.html.

Table 1. Mutual exclusion experiments. Experiments were run on an Intel i7 2.70 GHz
running Ubuntu Linux 11.10 32-bits.

Protocol Property Result Time (s) Notes

Lamport MEX safe 0.04

Fischer
MEX safe 2.64 T. c. specified
MEX unsafe 3.73 T. c. not specified
MEX + I1 safe (0.02 + 0.17) 0.19 Invariant added

Lynch-Shavit
MEX safe 24.39 T. c. specified
MEX safe 353.91 T. c. not specified
MEX abstr. safe 8.56 Uses mcmt’s abstraction

Algorithm 1. As it is clear from Table 1, mcmt verifies instantaneously the
mutual exclusion (MEX) property of Algorithm 1. Although the related results
are not shown in the Table, the same applies to the three properties of Lemma 3.2
of [16], which are used as helper properties to derive theorems in the original
paper. We briefly discuss Property I3 because it is not a safety property. It is
formulated as follows:

– I3: If y = 1 then some process i is not inside the remainder region.

Since mcmt proceeds by refutation, in order to be proved, I3 should be negated
and formalized as the unsafety condition

y = 1 ∧ ∀i. (pc[i] ∈ {0a, 0b}) (4)

which is not an existential formula, i.e., it cannot be handled directly by mcmt.
However it is not difficult to build an existential formula whose negation implies

http://www.oprover.org/mcmt_lynch_shavit.html
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the safety property represented by the negation of (4). The idea is to add a
historical variable H that records the id of the process that set y to 1 last
(initially H = 0); we use H to replace (4) with the weaker statement

y = 1 ∧ ∃i. (i = H ∧ pc[i] ∈ {0a, 0b}) (5)

which corresponds to the invariant

– I3’: If y = 1 then the processH that set y = 1 last is not inside the remainder
region.

We shall implicitly use similar tricks to transform some other safety lemma
statements arising in our experiments.

Algorithm 2. As discussed in Section 4, mutual exclusion for Algorithm 2
depends on timing constraints. This is confirmed by mcmt, as reported in the
rows 2-3 of Table 1. Also, it appears that checking mutual exclusion with the
help of Lemma 4.1 (I1), as suggested by [16], yields a substantial performance
improvement, see row 4, MEX + I1 (in order to use a Lemma, mcmt first verifies
it and then adds it to the set of system axioms).

Algorithm 3. Algorithm 3 combines the previous two and guarantees both
mutual exclusion (even without timing constraints) and deadlock-freedom (with
timing constraints). In Table 1 we check with mcmt that Algorithm 3 has the
mutual exclusion property, even without timing constraints (rows 5-6). mcmt
implements only a rudimentary form of abstraction which might be used during
invariant search. Since mutual exclusion for Algorithm 3 does not depend on
timing information at all, one can try to ask the tool to abstract away any
timing information: with this proof strategy, mutual exclusion without timing
constraints is established much quicker (compare lines 7 and 6 from Table 1). We
just mention that it is possible to quickly check with mcmt also other lemmata
from [16], e.g., those that are used as ingredients for the proof of the deadlock-
freedom property.

6 Automated Verification of Deadlock Freedom

Algorithms 2 and 3 have the deadlock freedom property: interestingly, time
bounds for waiting time are independent on the size of the network and can
be expressed as linear polynomials p(C,G) involving the parameters G and C.
This raises the possibility of verifying deadlock-freedom using mcmt, even if
mcmt can only accept safety problems. We first show how to do it with manual
intervention and then we fully automatize the whole procedure by synthesizing
both invariants and polynomial bounds.

6.1 Verification

We first suppose that we already know the linear polynomials giving the time
bounds (p(C,G) = 2 ∗ G + 5 ∗ C for Algorithm 2 and p(C,G) = 2 ∗ G + 9 ∗ C
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for Algorithm 3); we just want to check that such bounds are correct by using
mcmt. Thus we want to check that “if some process is in the trying region, and
no process is in the critical region, then before p(C,G) time units have passed
some process enters the critical region”. The first idea is the following:

(i) we add an absolute clock absclock and a boolean flag k to the specification
(the Boolean flag k is permanently turned to true as soon as one process
reaches the critical region);

(ii) we initialize the system by putting absclock := 0, k := false, and by
saying that no process is in critical region and that the process having N
as an id is in the trying region (N is a new parameter of type INT subject
to the constraint N > 0);

(iii) we consider unsafe the states in which absclock > p(C,G) and k = false.

For various reasons, the above idea is not correct (indeed mcmt returns UNSAFE
if you implement it, even if the chosen bound p(C,G) is correct). We need to
identify these reasons and make the suitable adjustments to our plan.

The reason for a first adjustment is clear: mcmt adopts the stopping failures
model (due to the presence of universal quantifiers in transitions guards) and in
the stopping failures model deadlock freedom does not hold (as a trivial coun-
terexample, consider the run in which a process i sets the shared register x to i
and then crashes, thus preventing any other process to access the critical region
forever). However, crashes can be tolerated without losing deadlock freedom,
provided some key actors do not crash: there is a limited (albeit sufficient) pos-
sibility to tell this to mcmt. Notice that, whenever mcmt adopts the stopping
failures models, it automatically relativizes quantifiers to non-crashed processes
(see [4] for details). Recall also that a process that crashes is crashed forever:
as a consequence, processes that are existentially quantified in the unsafety for-
mula cannot be crashed. Thus, the proposal is to use as unsafety formula the
disjunction of the following three existential sentences:

∃i1 ∃i2 (i1 = N ∧ i1 �= i2 ∧ x = i2 ∧ k = false ∧ absclock > p(C,G)) (6)

∃i1 (i1 = N ∧ x = i1 ∧ k = false ∧ absclock > p(C,G)) (7)

∃i1 (i1 = N ∧ x = 0 ∧ k = false ∧ absclock > p(C,G)) (8)

In this way we are guaranteed that process N (i.e., the one who was trying to
access the critical region from the very beginning) does not get crashed and
that, in case an undesired state is reached, it will be reached either with an
uninitialized shared register or with the shared register set to the id of a non
crashed process. This is much weaker than saying that there are no crash failures
at all, but it is sufficient for our problems.

Still, mcmt gives UNSAFE and now comes the reason for our second adjust-
ment : we need to constrain the initial states to be “reachable” states of our
Algorithms 2 and 3. The notion of “reachable state” needs not to be definable,
however we can overapproximate it by using suitable lemmata. This is in a sense
the strategy of [16]: suitable lemmata describing seemingly interesting properties
of the reachable states are invented, then they are formally proved and finally
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they are used when proving the correctness of time bounds for deadlock free-
dom. In our experiments, we proposed two lemmata for Algorithm 2 and three
lemmata for Algorithm 3; such lemmata are checked by using mcmt itself (in a
total amount of time of 8.95 sec. for Algorithm 2 and 236.51 sec. for Algorithm
3) and then they are added as system axioms to the specification file of the time
bounds for deadlock-freedom (we shall see below how to automatically synthe-
size the lemmata). In other words, we try to prove that the deadlock-freedom
property and the related time bound for the access to the critical region apply to
all the states that satisfy the lemmata we found, independently on whether such
states are really reachable or not.

But now another problem arises: mcmt diverges. In fact, termination is not
guaranteed at all, because we are outside the scope of decidability results known
from the literature. However, the divergence source is limited and we can fruit-
fully apply a well-know model checking technique, namely acceleration (this will
be our third and last adjustment). The point is that the sequence of the two
transitions formed by line code L (for a fixed process i) and time elapsing can be
indefinitely applied: we need to insert a further transition modeling n executions
of this sequence for an arbitrary n. This is definable in the format accepted by
mcmt (details are shown in the Appendix of [6]). After this last adjustment,
mcmt is able to check the time bounds in 80.97 sec. and in 1374.38 sec. for
Algorithms 2 and 3, respectively.

6.2 Synthesis

The insertion of the accelerated transition is the only manual intervention that
is actually needed. In fact, both the lemmata used to overapproximate the set
of reachable states and the polynomial p(C,G) can be synthesized.

Invariant Synthesis. Suppose first the polynomial p(C,G) is fixed; let us run
mcmt on our Algorithm 2 (or 3), with the unsafety formula given by the dis-
junction of (6)-(8) and with the initial formula I(a, absclock, k) given by the
statement suggested in 6.1(ii), namely

absclock = 0 ∧ k = false∧ ∀i (i = N → pc[i] ∈ Try) (9)

(here pc[i] ∈ Try) abbreviates a disjunction saying that pc[i] is equal to one
of the locations of the trying region). The tool returns UNSAFE by producing
an ∃I -formula P := ∃iφ(i, a[i], k, absclock, N), which means that that during the
safety check the formula

∃iφ(i, a[i], k, absclock, N) ∧ I(a, absclock, k) (10)

is reported to be PTS-satisfiable. Now notice that (6)-(8) all contain the con-
junct i1 = N , which is not modified during the calculus of preimages, thus
φ(i, a[i], k, absclock, N) is of the kind i1 = N ∧ ψ(i1, j, a[i1], a[j], k, absclock, N).
Taking into consideration (9) and the instantiation algorithm for PTS-satisfia-
bility given in [11], the PTS-unsatisfiability of (10) means that the formula

ψ(i1, j, a[i1], a[j], false, 0, i1) ∧
∧

i∈i1,j

(i = i1 → pc[i] ∈ Try) (11)



Analysis of Parametric Timing-Based Mutual Exclusion Algorithms 291

is not PTS-satisfiable. The idea is to check whether the negation of this formula
can be used as a lemma, i.e., if it is an overapproximation of the set of reachable
states. To check this, it is sufficient to run mcmt on the problem having the
standard initialization of Algorithm 2 (resp. 3) and having precisely (11) as
an unsafe formula. If the tool returns UNSAFE, then the bound p(C,G) is not
correct, because composing the two traces leading to the unsafe sets of states,
we have a counterexample showing that the time bound can be violated. If
the tool returns SAFE, then we can repeat our attempt of verifying the time
bound, but in the new run we add the negation of (11) as a system axiom. As a
consequence, the formula (10) is not satisfiable anymore and the tool won’t exit
if ∃iφ(i, a[i], k, absclock, N) is produced. Of course, the tool may still produce an
UNSAFE outcome, in which case the procedure must be repeated. In the end,
provided divergence does not arise, the tool either synthesizes enough lemmata
and certifies that the time bound is correct or it finds a counterexample for it.

Time Bounds Synthesis. The above procedure works independently on the
fact whether the time bound we suggest to the tool is correct or not, thus it is
possible to use it in order to get the optimal polynomial p(C,G). In fact, what
we are looking for is a linear polynomial α ∗ C + β ∗ G with positive integers
coefficients: we can just begin with α = 1, β = 1 and then increment the values
with a dichotomic search as soon as we get a counterexample. The statistics of
our experiments, for values close to the optimum, are reported in Table 2.

Table 2. Time bounds synthesis. The table reports the attempts of checking a poly-
nome with given α and β coefficients. The optimal values found (2 5 for Fischer and 2
9 for Lynch-Shavit) coincide with the known theoretical optimal bounds. Experiments
were run on an Intel i7 2.70 GHz running Ubuntu Linux 11.10 32-bits.

Protocol α, β Bound Holds Iterations Time (s)

Fischer

2, 2 NO 1 62.06
2, 4 NO 5 110.68
2, 5 YES 8 155.56
2, 6 YES 6 130.69
2, 10 YES 3 51.25

Lynch-Shavit

2, 2 NO 1 224.74
2, 8 NO 11 5764.42
2, 9 YES 16 27995.78
2, 10 YES 10 6935.91
2, 14 YES 3 974.06

7 Discussion

We have described how mutual exclusion and deadlock-freedom of a class of
timing-based algorithms can be specified and automatically verified by the model
checker mcmt. We have highlighted how two kinds of being parametric are
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supported by our framework, namely with respect to the number of processes
in the system and the symbolic constants in the timing constraints. We have
illustrated our approach on the Lynch-Shavit algorithm.

To the best of our knowledge, it is the first time that a formal and automatic
analysis of this algorithms is performed. Key to the automated verification of
deadlock-freedom is the use of acceleration (to avoid non-termination) combined
with the automated synthesis of invariants to be used as lemmata in the main
proof (to realize a fully automated analysis procedure).

Related Work. To the best of our knowledge, analysis techniques for the ver-
ification of parameterized systems seldom consider the two dimensions of the
parameters as we do here. For example, [10, 18] consider only finite-state pro-
cesses while [3] presents a method for the verification of a parametric number
of timed automata with real-valued clocks. Our notion of parameterized timed
systems is strictly more general than that in [10, 18] by allowing for arithmetic
variables and that of [3] by allowing for location invariants (see Section 2) in
timed transitions.

There is also a substantial body of work on the analysis of safety properties
for parameterized systems with an arbitrary number of processes operating on
bounded and unbounded variables, see, e.g., [14, 15, 21]. These methods are not
targeted to the verification of timing-based algorithms and consider only safety
properties whereas we also tackle the problem of verifying a restricted class of
liveness properties. The approach in [9] uses SMT techniques to verify systems
with several dimensions in the parameters but it only supports invariant checking
or bounded model checking.

In [5, 8, 20], SAL is used to model check several timed systems. In contrast
to our approach that is fully automatic, these approaches require some amount
of user interaction, which is reasonable given the large size of some of the sys-
tems (especially those in [5]). The model checker Uppaal [23] is capable of auto-
matically checking both safety and liveness of timed automata without timing
parameters. An extension of Uppaal described in [13] is capable of synthesizing
linear parameter constraints for the correctness of the timed automata. Both of
these approaches are not parametric in the number of processes. Our approach
is parametric both in the number of processes and in the time constraints but
does not attempt to perform the synthesis of linear arithmetic constraints al-
though, in principle, this would possible and we leave it to future work. Here, we
focus on the automated synthesis of invariants to be used as lemmata in proving
deadlock-freedom.

In our previous work on mcmt [7, 11], we have only considered safety proper-
ties of parametric systems while here we verify also a restricted class of liveness
properties. Furthermore, the analysis presented here is much more fine-grained
than that in [7], because, for instance, specific time interval bounds are consid-
ered for each step of the protocols and not just for few relevant locations. This
additional precision in the formalization significantly increases the difficulty of
the verification tasks.
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Abstract. Symbolic execution shows promise for increasing the automation of
verification tasks in certified safety/security-critical systems, where use of stati-
cally allocated value-based data structures is mandated. In fact Spark/Ada, a sub-
set of Ada designed for verification and used for building critical systems, only
permits data structures that are statically allocated. This paper describes a novel
and efficient graph-based representation for programs making use of value-based
data structures and procedure contracts. We show that our graph-based represen-
tation offers performance superior to a logic-based representation that is used in
many approaches that delegate array reasoning to a decision procedure.

1 Introduction

The development of effective techniques for handling complex heap-based data struc-
tures has been a key enabler in the recent revival of symbolic execution (SymExe) [10,
16, 23]. While the application of SymExe has focused on the detection of common pro-
gram faults and test case generation [8, 13, 16, 21, 22], we are exploring its effective-
ness in highly-critical systems development. We aim to support the checking of formal
contracts written in languages such as Spark/Ada (Spark for short) that are capable of
capturing rich functional correctness properties.

Spark [2] is a subset of Ada designed for programming and verifying high assur-
ance applications. Spark includes a notation for procedure contracts and deliberately
omits constructs that are difficult to reason about such as dynamically allocated data,
pointers, and exceptions. Even though Spark and its static analysis tools are beneficial
and easy to use for “lightweight” specifications, its full contract language is rarely used
since the burden imposed on developers attempting to prove full functional correctness
is too high. When the contract language is employed, its use is almost always limited
to adding only enough pre/post-conditions necessary to establish absence of run-time
errors such as array and numeric bounds violations. We are unaware of any industrial
development effort that makes significant use of the Spark contract notation for speci-
fying full functional correctness properties.
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One of our overall goals is to alleviate this burden by adapting SymExe to check
interface specification languages for highly-critical systems such as those captured in
Spark, so that functional correctness can be checked fully automatically and with a high
degree of efficiency—sufficiently so that SymExe could be run during normal compile-
and-test cycles. In this paper, we address the important task of evaluating algorithms
for the SymExe of statically-allocated, value-based data structures (SAVB DS). This
is important because in most highly-critical systems, dynamically allocated heap-based
data structures are disallowed; instead, data structures are most often implemented
using SAVB arrays and records.

The technique generally employed for performing SymExe on SAVB arrays and
records is to encode operations over these data structures in a logical form using the
vocabulary of corresponding logical theories (of arrays and records) of an external deci-
sion procedure1 (DP). This is the approach used by tools such as PEX [23] and KeY [1].
We have applied this logical approach to Spark and it yields a simple and clean SymExe
algorithm since the management of the state of composite objects is entirely handled by
the decision procedure.

However, our prior experience in developing a Lightweight Decision Procedure
(LDP) for SymExe [5] has shown that significant performance gains can be realized by
optimizing the interface between an analysis engine and a DP. Unfortunately, the logic-
based approach does not lend itself to such optimizations, so we decided to investigate
whether or not the graph-based SymExe approaches used for analyzing dynamically-
allocated reference-based data structures [10] could be adapted for SAVB DS as used
in languages like Spark. We conjectured that a graph-based representation would be
beneficial since it would allow greater flexibility in optimizing not only our SymExe
engine, with regards to how it handles composite objects, but also how constraints over
composite objects are presented to the DP. As will be discussed in Section 2, Spark’s
support of unconstrained arrays makes this adaptation non-trivial.

The main contributions of the research reported in this paper are as follows:

– We present a novel and efficient graph-based representation of SAVB DS, and its
associated algorithms, as it might be used in the SymExe of a Spark-like language
(Section 3). This new approach addresses issues that arise when attempting to apply
SymExe strategies originally developed for Java (e.g., algorithms used in the Java
PathFinder [16] and optimized approaches we subsequently developed [5, 10]) to
SAVB DS.

– We describe aspects of the implementation (realized in Bakar Kiasan, our SymExe
tool for Spark [3]) of both a conventional logic-based and our new graph-based
scheme for SAVB DS. This tool leverages various optimizations (Section 3) such
as incremental solving (with native bindings to external decision procedures that we
previously developed), as well as fast linear-solving of certain forms of arithmetic
constraints, employing symbolic value representatives, constant propagation, term
rewriting, and caching [5].

– Using various configurations of state-of-the-art decision procedures, we measure
differences in SymExe times on a collection of Spark examples, including modules

1 Our use of the term “decision procedure” includes automated theorem provers.
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1 f u n c t i o n Min (A, B : I n t e g e r )
2 re turn I n t e g e r i s
3 Z : I n t e g e r := A;
4 begin
5 i f B < A then
6 Z := B ;
7 end i f ;
8 i f Z>A or e l s e Z>B then
9 −−# a s s e r t f a l s e ;

10 n u l l ;
11 end i f ;
12 re turn Z ;
13 end Min ;

A=α, B=β, Z=α, {}

Z := A;

A=α, B=β, Z=α, {β<α} A=α, B=β, Z=α, {β≥α}

A=α, B=β, Z=β, {β<α}

B<A B≥A

Z := B;

A=α, B=β, Z=β, {β<α}A=α, B=β, Z=β, F

Z>A or Z>B Z≤A and Z≤B

A=α, B=β, Z=α, F

Z>A or Z>B

A=α, B=β, Z=α, {β≥α}

Z≤A and Z≤B

A=α, B=β, {}

Fig. 1. Illustration of symbolic execution on a simple example

from our industrial partners. Results demonstrate that for composite structures, our
graph-based approach is more efficient than the logic-based approach despite hav-
ing optimized support for the latter by modern high-performance SMT solvers such
as Yices [12] and Z3 [9]. Speed-ups range from 2×–6× when checking data struc-
tures with small bounds, and up to 65× when scaling up bounds (Section 4). The
practical importance of this improved efficiency is that it enables checking with
higher bounds on more complex examples within the normal compile-and-test cy-
cle, as desired by our industrial collaborators at Rockwell Collins.

A novel representation, even if more efficient, is useless if incorrect. Thus, we have for-
malized both the logic- and our graph-based approaches. Space constraints prevent us
from presenting the formalization here, but it is available in the following report [4]. The
report also contains, or gives references to: full experimental data, tool output reports,
source code for examples used, and a proof sketch of correctness. To our knowledge,
this is the first time that two popular approaches to SymExe (logic- and graph-based)
are realized within the same framework (i.e., allowing controlled experiments), and em-
pirically evaluated and compared.

2 Background and Motivation

In this section, we present a brief overview of SymExe and show how a logic-based
representation of composite objects can be used. We then motivate the need for a new
graph-based formalism for SAVB DS.

Overview of SymExe: SymExe characterizes values flowing through a program using
logical constraints. This allows one to potentially explore all the possible paths through
a program2 without the need to construct concrete test cases, which in most situations
would be infeasible. Consider the Min example of Figure 1 that computes the minimum
of two values; in this case, we are interested in proving that the assertion at line 9 is
never executed (i.e., the true-branch of line 8 is infeasible) without knowing specific
concrete values. Thus, we introduce special symbolic values α and β to act as place-
holders for concrete values of A and B, respectively. The computation tree on the right

2 In general, some form of bounding is required in order to ensure termination.
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1 type AType i s array ( I n t e g e r range <>) of I n t e g e r ;
. . .

2 A, B : AType ;
. . .

3 A[ 1 ] := 5 ; −− I n s t e a d o f Ada p a r e n t h e s e s , we us e t h e more
4 B := A; −− f a m i l i a r s quar e b r a c k e t s f o r a r r a y a c c e s s .
5 B[ 2 ] := 7 ;
6 −−# a s s e r t A[ 3 ] = B [ 3 ] ;
7 −−# a s s e r t A[ 2 ] = B [ 2 ] ;

Fig. 2. Running Example: Spark/Ada-like Command Sequence Over Arrays

(a) After line 4 (b) After line 5

States under a reference-based semantics

(c) After line 4 (d) After line 5

States under a value-based semantics

Fig. 3. Concrete execution states contrasting a reference- and value-based semantic interpretation
of part of our running example in Figure 2

side of Figure 1 illustrates SymExe on the procedure by keeping track of the symbolic
values bound to each variable as well as logical constraints through the so-called path
condition given in curly brackets {. . .}.

Initially, the constraint set is empty because we know nothing about the values of A
and B. After executing line 3, we know that Z=α, thus, (A=α and B=β and Z=α). At line
5, both the condition (β < α) and its negation (β ≥ α) are satisfiable under the path con-
dition, thus, we have to consider both program executions following the conditional’s
true-branch and its false-branch; hence, the initial path on the right side of the figure
splits to cover the two possible cases. At line 8, the program state is characterized by
either (A=α, B=β, Z=β, {β < α}) or (A=α, B=β, Z=α, {β ≥ α}).

The constraints imply that the if-condition at line 8 is false in either situation (as
indicated by the F for the path condition for the “true” cases) – there is no feasible path
(no possible assignment of concrete values to inputs) that leads to line 9—and thus
exploration along these paths is ignored. Decision procedures are used to determine if
constraints in path conditions are satisfiable in order to make decisions at branching
points (e.g., lines 5 and 8). The symbolic value manipulation above is typically incor-
porated in a depth-first exploration.

Reference- vs. Value-based Semantics: The path condition constraints of Figure 1
are relatively simple since Min only contains integer based variables. Using the code
excerpt of Figure 2 as a running example, in the next sections we detail techniques that
can be used to reason about programs manipulating composite structures.

Before proceeding, we illustrate (Figure 3) the main difference between the reference-
based semantics of arrays (of say, Java) vs. the value-based semantics of Spark/Ada, for
the purpose of making it obvious that a direct application of graph-based representa-
tions to SAVB DS will not work since it is incompatible with a value-based semantics.
The Spark program fragment shown in Figure 2 performs lookups and updates on two
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unconstrained (i.e., whose lengths are unspecified) integer arrays. To simplify our il-
lustration, assume that the arrays have an index range of 1..3 and that all the initial ar-
ray element values are 0. The sub-figures 3(b) and 3(d) show the program states after
executing line 5 under a reference-based and valued-based interpretation of the program,
respectively. In a reference-based semantics, assignment of A to B at line 4 will cause
A’s reference value to be stored in B. Clearly then, both of the assertions at lines 6 and 7
will hold since any modification of B will necessarily impact A since both are pointing
to the same object. In contrast, in a value-based semantics, the assignment at line 4 is
handled by copying each element of A into B. Therefore the array update at line 5 will
only impact B, and thus, the assertion at line 7 will fail since 0 � 7.

Logic-Based Representation: Static analysis engines that generate constraints over
composite structures can often defer the task of deciding satisfiability to external de-
cision procedures such as SMT solvers. These solvers often contain highly optimized
decision procedures for reasoning about composite objects, such as arrays and records,
via theories over these structures. We illustrate this now on the example3 of Figure 2.

We first start by assigning fresh symbolic values to A and B to obtain the initial state,
s0 : A=α0, B=α1, { }. To encode the effect of the assignment of line 3 in a logical-form,
we assume the decision procedure provides function symbols such as Select and Store
that allow a client to perform lookups and functional updates on composite structures,
respectively. Thus, execution of A[1] := 5 in line 3 will result in the state:

s1 : A=α2, B=α1, {α2 = Store(α0, 1, 5)}
The store operation returns a new composite value, leaving the original value unchanged,
so a new symbolic value α2 is introduced to be equal to the resultant array. The current
value of A is thus set to α2. For the assignment B := A at line 4 we simply assign A’s
value to B, s2 : A=α2, B=α2, {α2 = Store(α0, 1, 5)}. For the final update B[2] := 7 on
line 5 we obtain the state:

s3 : A=α2, B=α3, {α2 = Store(α0, 1, 5), α3 = Store(α2, 2, 7)}
As before, a new symbolic value α3 is obtained and assigned to B. The DP should
indicate that the false-branch of the assertion at line 6 is infeasible (i.e., the assertion
will never fail) since B was derived from A and no update was performed on the third
index position in either array. However, as was seen in the concrete execution of the
valued-based interpretation of our running example (Figures 3(c) and 3(d)), there exists
paths for which the assertion at line 7 can fail. This is evident from the path condition
in state s3 where nothing is known about the second index position for the array stored
in A (i.e., α2). Therefore, the DP will allow SymExe to enter the false-branch of the
assertion and thus detect that it can be violated.

Assessment: This approach yields a very clean SymExe algorithm when applied to
Spark since the management of the state of composite objects is entirely handled by
the decision procedure. However, it does not lend itself easily to the types of optimiza-
tions that we believe are necessary to scale to industrial applications for exhaustive

3 For the remainder of the paper, we assume that array bounds checking is done by embedding
assertions in programs for each array access; this simplifies subsequent discussions.
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(a) A[1] := 5 (b) B := A (c) B[2] := 7 (d) assert A[3] = B[3]

Fig. 4. States of our running example using a conventional graph-based representation

checking of strong behavioral contracts. Specifically, we have shown in previous work
that because general purpose SMT solvers are not targeted to the specific patterns of
constraints that are typically generated in SymExe and inherent properties of SymExe
state-space exploration, they miss many opportunities for optimization when used in
SymExe algorithms. To overcome this, we introduced a lightweight decision procedure
LDP [5] that sits in front of a collection of conventional SMT solvers such as Yices
and Z3. LDP performs SymExe-targeted optimizations including constant propagation
in constraints and caching that significantly reduces the number of calls that need to
be made to external decision procedures. Our experimental studies showed that signif-
icant performance gains can be realized by this approach. Unfortunately, there is little
room for such optimizations when a logical form is used since so much of the symbolic
representations of data must be pushed directly down into the SMT solvers.

Graph-Based Representation: In the graph-based approach for reference-based data
structures introduced in [16], the SymExe engine internally maintains the state of ob-
jects and only employs the DP to reason about the values stored within them, not their
actual structures. As was demonstrated earlier, one cannot naı̈vely apply these tech-
niques on SAVB DS as the semantics are not compatible.

Although the concrete manipulation of value-based data structure copies values rather
than sharing references, performing copies (i.e., deep-clones) (upon executing an assign-
ment) on the state that SymExe is maintaining for composite objects would not solve
this issue since the techniques in [16] employ an optimization strategy known as lazy-
initialization that allows SymExe to delay materializing values stored in composite ob-
jects until they are actually referenced. So for our running example, Figure 4 illustrates
that the connection between non-materialized indices of the two arrays will be lost after
the assignment of A to B of line 4 (Figure 4(b)). The assignment at line 5 would only
affect B as expected (Figure 4(c)), however the assertion at line 6 will cause new sym-
bolic values α1 and α2 to be materialized for A[3] and B[3], respectively (Figure 4(d)).
As there is no relationship between these two values, SymExe would incorrectly con-
clude that the assertion at line 6 could be violated as the constraint α1 � α2 would be
satisfiable. Moreover, deep-cloning is inefficient for large nested structures.

Instead of lazy-initialization, one could choose to fully materialize composite objects
by assigning symbolic values to any unknown element. While this might be practical
for records, it would not be for arrays since Spark supports the notion of unconstrained
arrays (at program development time) for which it may be impossible to statically de-
termine the length and therefore the number of elements in the array (until the code is
ready to be deployed in a specific configuration). In addition, always eagerly material-
izing structures are needlessly inefficient as the materialized elements may not be used
in the context of unit-level or modular program analysis.
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In the next section, we present a novel graph-based representation which allows for
the efficient application of SymExe to languages with a value-based semantics for com-
posite structures, while still realizing the performance benefits of lazy-initialization.

3 Our Approach

To recap the main points of the previous section, a key characteristic of the logic-based
approach that allows it to faithfully represent the value-based semantics is that con-
straints in the path condition capture the necessary relationship between array copies.
For example, consider the evaluation of B[2] := 7: this yields the new array α3 for B
such that α3 = Store(α2, 2, 7) where α2 is the current array value assigned to A (cf. s3

on page 299). The connection between A and B is implicitly captured by the equation
α3 = Store(α2, , ) within the path condition. In contrast, in a naı̈ve application of the
standard graph-based approach with deep cloning, the connection between the arrays is
effectively lost after the statement B := A is evaluated.

To address these issues, we propose optimized graph-based data structures to repre-
sent symbolic values (abstractions) of arrays or records directly in the SymExe engine.
Techniques for handling arrays are described next. Due to space constraints, and since
records are handled similarly to arrays, readers interested in the technical details for
record handling are referred to [4]. A key sub-structure used in our approach for arrays
is termed the base-array; it mimics that aspect of the logical approach that keeps track
of the origin of arrays and hence the relationship between array copies. Intuitively, ar-
rays that share a base-array are considered to have a common base value. A shared base
is necessary to ensure that index positions that have not been materialized will be the
same when (if) they are eventually materialized. Using this adaptation we are able to
correctly capture the value-based semantics for SymExe. Similar in spirit to previous
graph-based representation of symbolic objects [10], analysis begins with an initial ab-
straction that reflects no specific knowledge about array content, it is then incrementally
refined by materializing array entries as execution proceeds.

SymExe Trace of the Running Example in Figure 2: To provide a better understand-
ing on how base arrays are used, we present here a simplified SymExe trace for our
running example, but before doing so, we explain the notation that we use to graphi-
cally depict a SymExe state: for this purpose, refer to Figure 5(b). The node labeled σ3

represents the store of the program which, for this example state, contains a mapping of
variables to their values such as arrays A and B. The nodes a0 and a1 denote array val-
ues. Below each node label, ai, is drawn (vertically) the list of materialized index-value
pairs. Thus, the array value a0 has a single materialized pair 1 �→ α1. If an array has no
materialized index-value pairs then only the array value label is shown (as is the case
for a1). The nodes labeled ρ0 and ρ1 denote base arrays and in state s3, we see that the
array values a0 and a1 have distinct base arrays, whereas s11 (Figure 5(f)) shows two
array values sharing a base array. We now return to our running example.

Starting from the initial state s1 (Figure 5(a)), the assignment A[1] := 5 is evaluated
in two steps. The first step consists in evaluating the A[1] (as if to determine an L-value).
Since nothing is known about a0, we first materialize a new symbolic value α1 at 1 and
store it in a0 as shown in the intermediate state s3 (Figure 5(b)). Intuitively, we expect
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(a) s1 (d) s6 (e) s9

(b) s3 (f) s11

(c) s5 (g) s15

Fig. 5. States of our running example using our graph-based representation

the new mapping 1 �→ α1 to also appear in any array whose origin was derived from
A. In general, this implies that any index that has not been materialized in arrays which
share a common origin should have a common value. The base array structure allows us
to correctly propagate these materializations. This representation has an invariant that
all arrays that share a common base array will have exactly the same set of indices. For
this particular case, the base-array ρ0 is used to propagate the mapping to all the arrays
that depend on it, which in this case is just a0. For reasons of efficiency, we use a copy-
on-write scheme for modeling composite structures, thus, for the actual assignment, we
need to build a new array a2 with the same base-array and the mapping 1 �→ 5. The
resultant state s5 is shown in Figure 5(c)—the array node a0 is dashed because it can be
safely ignored (along with reference to/from it) because no variable refers to it.

Next, evaluating A := B in s5 simply changes the value of B to a2 because we use
copy-on-write; this results in s6 (Figure 5(d)). Continuing with the execution of B[2]:=7,
we get the intermediate state s9 after evaluating (and thus materializing) B[2], and s11

(Figure 5(f)) after the assignment. Note that although B refers to a new array a3, it still
shares the base array ρ0 since A was copied to B earlier.

Evaluating A[3] from assert A[3]=B[3] yields the state s15 with a new symbolic value
α3. Note that since A and B share a common base-array, the materialization 3 �→ α3 is
propagated to B when evaluating the sub-expression A[3]. Therefore, evaluating B[3]
yields this propagated value which is clearly equal to A[3], thus the assertion always
holds. For the final assert statement A[2] = B[2], evaluation causes a path split since
both the true-branch and the false-branch of α2 = 7 are feasible because the value of α2

is unconstrained in the path condition, thus, it simulates what may happen at runtime.

Array-Lookup Case Splitting: Previously, we only considered array lookup expres-
sions in which the index was a constant. More generally, when performing a lookup
on an array using a possibly symbolic value ι, we have three variants that case-split
on whether the array has any information in its index mapping for ι. The three lookup
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cases represent the three possible situations for ι: (1) ι is already present in the index
map, (2) ι is not already present in the mapping and is not equal to any of the exist-
ing materialized indices, and (3) ι is not already present in the mapping but is equal to
one of the existing indices. Note that this is similar to the array approaches used for
reference-based structures [10, 16], although it has been modified to take into account
materialization propagation using base arrays. In case (1), where an element at ι already
exists, the value v at that index in the array is simply returned (e.g., looking up B[3] in
s15). The other two cases will cause the path to split.

In case (2), we assume that ι is not equal to any of the existing indices in the array and
its element value will be assigned to a fresh symbolic value. Since we assume that ι is
distinct, the path condition needs to be updated to constrain ι to be different from all the
other existing indices for the array. For the evaluation of A[1] in s1, the path condition
did not need to be updated since the index set for a0 was empty. For the evaluation
B[2] in s6, a2’s index set was not empty yet the constraint 1 � 2 does not add new
information to the path condition and so can be ignored. To further illustrate this case,
consider evaluating A[A[1]] in s3. Since a0 contains a mapping for 1, the expression
reduces to A[α1]. Under the assumption that α1 is distinct, we add α1 � 1 to the path
condition and then materialize a fresh symbolic value β1 and use the base array ρ0 to
propagate the mapping α1 �→ β1 to all the arrays that came from it. We obtain the
following state, s′3, with the path condition {α1 � 1}:

In case (3), we assume that ι is equal to some index ι′ that is already mapped in the
array’s set of materialized indices and simply return the value at ι′; note that this case-
splits (non-deterministic choice) for each index in the index set. In the resulting state,
we constrain ι and ι′ to be equal by adding an appropriate formula to the path condition.
To illustrate this, again consider evaluating A[A[1]] in s3: in this case we assume that α1

is equal a materialized index of a0. Since there is only one such index, namely 1 �→ α1,
we only have one path to explore for which we add the constraint 1 = α1.

Array Element Update and Nested Structures: Care needs to be taken when imple-
menting array element updates for value-based structures using a graph-based approach
since an update does not actually cause an array to be updated but it rather constructs
a new array value. This has special repercussions for nested structures. For example,
consider a variable A which is an array of arrays of integers, and the instruction A[1] :=
B where B is an array of integers. Under a reference-based semantics, we would simply
assign the reference value of B to A[1]. For a value-based interpretation, this is actually
realized as a copy of the elements in B to the array stored at A[1]. To efficiently imple-
ment this for SymExe, we effectively treat the copy as a series of individual updates:
e.g., A[1][1] := B[1]; A[1][2] := B[2]; etc. The end result is a new array value which is
stored in A. This evaluation may result in case splitting similar to the previous example
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1 proc compare(a1, a2) is begin
2 if a1 and a2 refer to the same structure then return True
3 if types/bounds of a1 and a2 are not equal then return False
4 foreach materialized ι1 �→ v1 in a1 do
5 v2 ← a2[ι1] // materializing a2[ι1] if needed
6 if v1 � v2 then return False
7 foreach materialized ι2 �→ v2 in a2 where ι2 not in a1 do
8 v1 ← a1[ι2] // materializing a1[ι2] if needed
9 if v1 � v2 then return False

10 if base-arrays of a1 and a2 are equal then return True
11 if chooseBoolean() then return True
12 // Generate a witness for inequality
13 Assume a1, a2 can be further materialized, and materialize fresh index α and values v1, v2

14 Add α �→ v1 to a1 and α �→ v2 to a2

15 Assume (add) v1 � v2 and α is distinct to other indices in a1 and a2 to path condition
16 return False

Fig. 6. Pseudocode for Graph-based Array Comparison

since the values stored in A[1] may not be known and hence must be materialized and
propagated to any array sharing the same base as A.

Optimizations: As will be seen in our experimental results from Section 4, in compari-
son to the logic-based approach this graph-based representation can provide significant
speed-ups by: (a) reducing calls to the decisions procedures, (b) exposing the oppor-
tunity to leverage an LDP’s symbolic value representatives and constant propagation,
as well as linear-solving (time and space) of some arithmetic operations and caching
capabilities (which further reduce calls to the decisions procedures), and (c) providing
an optimized and incrementally maintained representation of data structures that would
otherwise need to be captured by solving (often deeply nested) Store and Select terms.

For example, consider again the evaluation of A[A[1]] but this time using the logi-
cal approach. Because array reasoning is delegated to a decision procedure, the inner
lookup operation would yield a fresh symbolic value and so we would never be able
to infer that 1 = α1. In contrast, the graph-based approach allowed us to discover that
α1 is in fact a constant value for any path emanating from this point. Aggressively
applying optimization techniques such as those implemented in an LDP, we can now
perform a fast constant propagation so that any reference to α1 is replaced with 1. This
can lead to more concrete executions being performed down the SymExe path and can
significantly reduce the state-space (i.e., due to the decrease in the number of non-
deterministic choices for array lookup described previously), and thus analysis time.

Array Equality: Further, consider the case of deciding array equalities. This can be
accomplished by simply iterating over the indices of two arrays and materializing in-
dex/value mappings as needed. However, this would cause large portions of arrays to
be needlessly materialized and hence greatly increase the state-space SymExe needs
to explore. Figure 6 presents pseudocode for an optimized test of array equality. The
compare procedure takes two arrays, a1 and a2, and first checks whether the arrays
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point to the same structure at line 2. For example, compare would have returned True
had it been called on state s6 in Figure 5(d) since A and B have the same value a2. It
next ensures the bounds of the two arrays are compatible at line 3. The for-loops at lines
4-9 perform the actual comparison of the elements materialized in the arrays by iterat-
ing over their index-value mappings. The array lookups performed at lines 5 and 8 may
materialize new elements since the two arrays might not have the same materialized
indices. It is important to note that this can introduce (desired) non-determinism and
hence program splitting. For example, when evaluating the equality test A = B in state
s5 of Figure 5(c) in which A has the mapping 1 �→ α1 and B’s map is empty. The lookup
at line 5 in Figure 6 will materialize a new mapping 1 �→ v2 in B’s array which would
cause the element comparison at line 6 to non-deterministically yield True or False.

If the for-loops do not return False and the two arrays share a common base array
(meaning they must be equal even on non-materialized indices) then compare returns
True at line 10. If the arrays share the same materialized indices but do not share a
common base array, then the arrays may or may not be equal. Therefore we perform a
case split by either assuming that they are equal and return True (line 11), or by creating
an index witness (α) and materializing index/value mappings for the two arrays, and
then assuming the two array elements differ (lines 12-18).

When compare returns True, the two arrays a1 and a2 are then unified as a means
to optimize later queries further down the SymExe path. That is, when a1 and a2 are
equal, an operation on a1 can be replaced by the same operation on a2 and vice versa.
Thus, one can select a representative, for example, a1, and always use a1 whenever a2

or a1 is used. This unification can be done by simply replacing references to a2 with a1

in the state, or by efficiently leveraging LDP’s symbolic value representative engine.

4 Empirical Evaluation

Table 1 presents experiment data for each procedure from our example applications
(available online [25]). Each procedure has an associated contract that is checked, which
specifies its full functional behavior4. In addition to standard sorting algorithms used
for benchmarking, IntegerSet and LinkedIntegerSet are representative of data struc-
tures used to maintain data packet filtering and transformation in embedded security
applications. IntegerSet set provides an array-based implementation of an integer set
data structure that adds an element by inserting it at the end of the occupied slots in
the array and deletes an element by sliding the contents of occupied slots at higher
index positions down one slot to reclaim the slot at which the element was deleted.
LinkedIntegerSet comes directly from a Rockwell Collins code base and uses arrays
to provide a “linked list” set implementation (where links are represented as indices in
an auxiliary array) with more efficient additions/deletions. The MMR (MILS Message
Router) is an idealized version of a MILS infrastructure component (first proposed by
researchers at the University of Idaho [18]) designed to mediate communication be-
tween partitions in a separation kernel [19]—the foundation of specialized real-time
platforms used in security contexts to provide strong data and temporal separation. For
each of these examples, C-LoC and I-LoC gives the number of lines of code in the

4 Checking Spark contracts involves translating them to an executable form as described in [3].
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method contract and implementation respectively broken down as X/Y where X is the
LoC appearing directly in the contract/implementation and Y is the LoC appearing in
helper functions. Note that the examples are relatively small in terms of lines of code/-
contract as we focus on exhaustive modular checking of strong behavioral contracts
instead of (selective-search) whole program bug-finding. Even with these small exam-
ples, many of which come from the embedded system domain, we can already show the
performance benefits of our approach.

To rigorously evaluate both the logical and the graph-based state representation ap-
proaches, we used two highly-optimized decision procedures: Yices 1.0.29 [12] (Y) and
Z3 2.15 [9] (Z)—we are in the process of adapting our optimized SMT solver bindings
to Z3 3.x. In our use of both Yices and Z3, path conditions are incrementally pushed
to a single instance (process) of the prover. We also included configurations that use
LDP in combination with the underlying decision procedure package for the graph-
based representation (YG and ZG); data for the logical representation with LDP only
offers negligible benefits, thus we do not use it (YL and ZL). The k column indicates
the bound on the number of array elements; beside this and a 2 hour timeout per test
(overtime indicated by O.T.), no other bounding is used. Due to short running time with
k up to 5, we averaged the timing data from 10 runs. The YL/YG and ZL/ZG columns
give the speed-up rate of graph-based over logical-based.

Table 1. Experiment Data Excerpts (YL, YG, ZL, ZG are in seconds)

Package (P).Method (M) C-LoC I-LoC Total-LoC
Sort.Bubble 1/23 14/4 42
Sort.Insertion 1/21 11/0 33
Sort.Selection 1/21 15/0 37
Sort.Shell 1/21 15/0 37
MMR.Fill Mem Row 3/1 6/1 11
MMR.Zero Mem Row 5/1 3/1 10
MMR.Zero Flags 4/0 3/0 7
MMR.Read Msgs 15/63 5/13 96
Total 31/151 72/19 273

P M k YL YG YL/YG ZL ZG ZL/ZG

In
te

ge
rS

et
A

dd

5 1.28 0.74 1.7× 2.14 0.79 2.7×
6 1.90 0.91 2.1× 3.73 0.98 3.8×
7 3.03 1.00 3.0× 6.35 1.08 5.9×

E
m

pt
y 5 0.03 0.02 1.8× 0.03 0.02 1.6×

6 0.03 0.02 1.7× 0.03 0.02 1.6×
7 0.03 0.02 1.7× 0.03 0.02 1.6×

G
et

Id
x 5 0.12 0.06 2.1× 0.15 0.06 2.3×

6 0.16 0.07 2.2× 0.20 0.08 2.5×
7 0.20 0.09 2.2× 0.26 0.09 2.8×

R
em

v 5 1.15 0.61 1.9× 1.35 0.62 2.2×
6 1.50 1.02 1.5× 2.39 1.04 2.3×
7 2.15 1.26 1.7× 4.14 1.28 3.2×

S
or

t B
ub

bl
e 5 24.65 2.55 9.7× 33.61 3.13 10.7×

6 317.00 14.62 21.7× 595.85 18.78 31.7×
7 5468.32 153.62 35.6× O.T. 198.21 —-

In
se

rt 5 19.29 2.63 7.3× 28.58 3.20 8.9×
6 222.48 14.71 15.1× 473.54 18.96 25.0×
7 3131.62 156.42 20.0× O.T. 210.46 —-

Package (P).Method (M) C-LoC I-LoC Total-LoC
IntegerSet.Get Element Index 7/0 8/0 15
IntegerSet.Add 8/29 4/2 43
IntegerSet.Remove 8/27 6/0 41
IntegerSet.Empty 1/0 2/0 3
LinkedIntegerSet.Get Value 6/45 12/0 63
LinkedIntegerSet.Add 15/51 23/12 101
LinkedIntegerSet.Delete 14/45 22/0 81
LinkedIntegerSet.Init 1/37 10/0 48
Total 60/234 87/14 395

P M k YL YG YL/YG ZL ZG ZL/ZG

Li
nk

ed
In

te
ge

rS
et

A
dd

5 16.47 2.14 7.7× 13.33 2.58 5.2×
6 43.32 9.71 4.5× 35.37 12.95 2.7×
7 201.39 72.91 2.8× 234.99 101.60 2.3×

D
el

et
e 5 13.53 1.31 10.3× 10.10 1.34 7.6×

6 32.76 2.00 16.4× 25.21 2.12 11.9×
7 170.30 2.83 60.2× 193.41 3.30 58.7×

G
et

V
al 5 11.12 1.39 8.0× 9.11 1.43 6.4×

6 27.85 2.02 13.8× 23.95 2.24 10.7×
7 150.62 2.92 51.7× 190.05 3.28 58.0×

In
it

5 0.27 0.04 6.6× 0.12 0.05 2.7×
6 0.41 0.05 9.1× 0.15 0.05 3.0×
7 0.61 0.05 12.3× 0.19 0.05 3.4×

S
or

t S
el

ec
t 5 22.52 3.13 7.2× 35.22 3.65 9.6×

6 263.68 19.39 13.6× 686.75 24.58 27.9×
7 3352.92 228.16 14.7× O.T. 283.11 —-

S
he

ll 5 22.34 2.78 8.0× 30.43 3.37 9.0×
6 241.99 15.19 15.9× 502.20 18.95 26.5×
7 3352.66 165.83 20.2× O.T. 216.39 —-

Package.Method k YL YG YL/YG ZL ZG ZL/ZG
MMR.Fill Mem Row 3 0.62 0.21 3.0× 0.31 0.25 1.2×
MMR.Zero Flags 3 0.15 0.05 3.2× 0.19 0.05 3.8×
MMR.Read Msgs 3 1.05 0.24 4.4× 1.39 0.23 5.9×
MMR.Zero Mem Row 3 47.29 1.88 25.1× 115.18 1.78 64.8×

Test Machine
CPU 2.4 GHz Intel Xeon X3430
RAM 8 GB
JVM Oracle’s 64-bit Server 1.6.0 22-b04
OS Ubuntu Server 10.4 LTS 64-bit
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The empirical data indicates that graph-based representation is strictly better than
its logical counterpart. As the k-bound increases, the speed-up rate increases signifi-
cantly (up to 65 times faster). This is because as SymExe proceeds, we observe that our
approach gains more knowledge that enables a much faster concrete execution to be
used, which is consistent with our experience with LDP [5]. It is interesting to note that
for almost all of our benchmark examples, both approaches explore the same number
of feasible paths. However, for LinkedIntegerSet.Add, the logical approach explores
fewer paths because case-splits happen differently. In the graph-based approach, case-
splits on an array index during array lookup happen explicitly as part of the SymExe
state-space exploration; this contributes to the number of paths SymExe explores. In the
logical approach, such case-splits happen internally inside the decision procedure, thus
it does not contribute to different paths for SymExe to explore. Despite exploring less
paths, the data suggests that this phenomenon does not necessarily translate to faster
analysis time, which we found counter-intuitive at first. However, this illustrates the
value of empirical evaluation in conjunction to formal treatment of our approaches.

5 Related Work

There has been much work on SymExe for programs that manipulate dynamically-
allocated structures, e.g., [8, 13, 14, 16, 20, 23]. With the exception of work by Khurshid
et al. [16], most of these rely on decision procedures to reason about complex structures;
i.e., they use a logic-based representation, encoded using Select and Store, as discussed
in Section 2.

ACL2 supports value-based array structures similar to the logic-based representa-
tion with explicit compression operations [24]. That is, nested array update expressions
can be compressed by removing overridden indices (e.g., Store(Store(α, β, 10), γ, 5)
can be “simplified” to Store(α, β, 10) when β = γ). In essence, our graph-based ap-
proach always eagerly compresses index-to-value mappings. In contrast, however, we
have further leveraged previous work on LDP [5], allowing us to design an efficient
graph-based representation whose use in SymExe can compete with specialized array
decision procedure support offered by modern high-performance SMT solvers.

As was mentioned earlier, our graph-based representation is built on the lazy initial-
ization algorithms that were originally designed for heap-allocated objects in Java [10,
16]. In this paper, we show how such an approach can be adapted to efficiently sup-
port value-based array structures—and records too, as they are simpler to handle than
arrays. To our knowledge, this is the first time logic-based and graph-based approaches
to handling composite structures in SymExe have been compared and evaluated in a
controlled experiment.

In contrast to other work which uses SymExe primarily for bug-finding and test gen-
eration, our use of SymExe is targeted at bounded verification of behavioral contracts.
Work on separation-logic-based techniques such as SmallFoot [6], jStar [11], and Veri-
Fast [15] also aim to support contract checking via algorithms that use SymExe. A key
difference relative to our work is that these focus on heap-based data structures instead
of statically-allocated value-based structures.

Compared to theorem proving and other unbounded methods (e.g., [17]), our ap-
proach not only provides precise analysis of code and contracts, but it excels at
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giving feedback/evidence, such as counter-examples when verification fails, and test-
cases when the verification process succeeds. Furthermore, our approach does not re-
quire loop invariants (in contrast to, e.g., [7]), which aligns with our goal of providing
highly automated techniques to industrial developers. Of course, the trade-off here is
that our approach is bounded, and thus it may potentially miss bugs only exposed by
behaviors outside of the bounds. Thus, it is complementary to other techniques—we
envision it being used earlier in system development and then followed by use of un-
bounded techniques (e.g., semi-manual theorem proving) in later development phases.

6 Conclusion

We have presented part of our work in enhancing Bakar Kiasan to support both con-
ventional logical and an efficient graph-based SymExe approaches for reasoning about
value-based data structures used in critical systems programming. The graph-based rep-
resentation uses an explicit-state approach, and decision procedure support is only used
to handle scalar values that occur as leaf elements. Since the graph-based representation
is implemented directly in the SymExe engine, it reduces the size of formulas as well as
the number of calls to external decision procedures. The representation is tailored to the
pattern of constraints generated by SymExe, and it enables a number of optimizations
such as improved constant propagation, incrementally constructed data structures that
more directly relate array indices to values (avoiding repeated rewritings in the logical
representation in decision procedures), and an optimized form of copy-on-write state
structures. An advantage of having both the logical and graph-based representations is
redundancy: we were able to test the results of the two approaches against each other.
This was helpful while developing and experimenting with our implementations.

The improvements in efficiency offered by the approach enable checking more com-
plex examples with higher bounds to the extent that it can be used within the normal
compile-and-test cycle of industrial software development. Due to the bounded nature
of Spark (e.g., it forbids dynamic data structurs and recursion), we believe our bounded
approach fits well with how developers use Spark. That is, we believe our approach
complements existing Spark tools, and that it offers a different and worthwhile trade-
off along the specification and verification effort/benefits space with respect to the ones
offered by tools based on verification condition generation and automatic/semi-manual
theorem proving.
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Abstract. The use of verification tools to produce formal specifications of digital
systems is commonly recommended, especially when dealing with safety-critical
systems. These formal specifications often consist of segments which can auto-
matically be translated into executable code.

We propose to generate both code and assertions in order to support verification
at the generated code level. This is essential (and possible) when making modi-
fications to the implemented code without revering to the verification tool, as the
formal verification can be performed directly at the level of the adjusted code.

As a result of a feasibility study on this approach, we present a prototype of
a code generator for the Prototype Verification System (PVS) that translates a
subset of PVS functional specifications into Java annotated with JML assertions.
To illustrate the tool’s functionality a verified communication protocol from the
NASA AirStar project is taken and a reference implementation in Java is gener-
ated. Subsequently, we experiment with verification on the Java level in order to
show the feasibility of proving the generated JML annotations. In this paper we
report on our experiences in this feasibility study.

1 Introduction

Safety critical systems [27] such as fault-tolerant avionics and air traffic management
systems pose particular challenges due to the potential loss of life that could incur from
a failure. Debugging techniques such as testing and model checking are often insuffi-
cient to ensure that the required safety guarantees hold. Heavyweight formal methods
have been applied to such problems for many years, e.g. using the Prototype Verifi-
cation System (PVS) [22] to model and mechanically prove that these models satisfy
safety, correctness and completeness properties such as validity and agreement [18,24].
After verification of these properties, the models are implemented using traditional im-
perative programming languages. A huge improvement to this scenario would be to au-
tomatically derive the code and formal assertions from these proven models. As such,
eliminating the potential introduction of errors during the coding phase. In addition,
this opens possibilities for the use of verification condition generators or other soft-
ware verification tools to check the correct implementation of the specified algorithm
in the generated code, further improving code quality. Our approach follows the so-
called Proof-Carrying Code principle: programs are accompanied by proofs that can be
checked prior to execution.

Verifiable generated code is desirable for more reasons than that alone. When code
is modified, for example, for maintenance issues or in an effort to improve efficiency,

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 310–325, 2012.
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the corresponding link to original PVS specification inevitably gets lost. In such a case,
the generated formal assertions can be used to prove that the required safety properties
still hold. In practice, one will make the step from formal specification to a concrete
implementation only once. Any necessary adjustments in the generated code will then
be made directly, instead of going back to the model, modifying it, and generating new
code. As such, possibly introducing errors which would remain undetected, and thereby
annihilating previous investments into quality.

Generally, two different techniques are employed for generating code from formal
specifications. The first technique exploits the Curry-Howard isomorphism in order to
extract programs from constructive proofs [17,23]. The second technique translates the
original specification into code assuming that the specification has been sufficiently
refined such that it has been written in a pseudo-executable subset of the specification
language [1, 12, 29, 32]. The latter technique is particularly appealing when generating
code from specifications written in declarative languages, such as PVS. These languages
encourage writing specifications in a style that is in large part functional and therefore,
executable. Furthermore, in the absence of (constructive) proofs, the second technique
is usually the only viable option.

In this paper, we present in Section 2 a prototype generator of annotated code for
declarative specifications written in PVS. We currently derive Java code annotated with
JML [6] assertions. Although PVS contains a Lisp code generator, we believe that in
order to integrate with the traditional software engineering process, a widely used im-
perative language like Java is a logical choice. We will show the tool’s functionality
and usability. Firstly by specifying in PVS in Section 3 a communication protocol for a
remotely operated aircraft. Subsequently, in Section 4 we illustrate code generation by
examining the automatically derived Java code from the PVS specification. Finally, we
reflect in Section 5 on our experiment using the state-of-the-art verification tool KeY,
especially designed for the formal verification of Java programs with JML specifica-
tions. We use this tool to reconstruct the correctness proof, originally presented in PVS,
by supplying KeY with our generated Java program annotated with JML assertions.
Finally, we discuss related work and conclude (Sections 6 and 7).

2 Overview of the Approach

The input to our code generator is a specification written in PVS, a theorem prover with
specification language based higher-order logic. Since we aim at a wide range of appli-
cations, we do not fix the target language a priori. Indeed, the tool first generates code
in Why, an intermediate language for program verification [9]. Our current prototype
translates Why code with proof obligations into Java with JML annotations.

In addition to enabling multi-target generation of code, another benefit of an interme-
diate language is that transformations and analysis that are independent from the target
language can be applied to the intermediate code directly. Besides, our code generator
supports exporting Why code in XML format. This relieves the developer of translation
and/or analysis tools from delving into the internals of the generator or from having to
write a custom parser.

In order to increase the confidence on the generated code, the generator annotates
the code with logical assertions such as pre-, postconditions, and invariants. These
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assertions are extracted from the declarations, definitions, and lemmas in the formal
PVS model. Therefore, the generated code can be the input of a verification condition
generator (VCG), e.g. Krakatoa [8] or KeY [2]. The annotated code is also amenable to
static analysis, software model checking, and automated test generation. The Why tool
is used as the back-end of verification condition generators. Indeed, the same team that
develops Why, develops the tools Krakatoa and FramaC, which are front-ends for Java
and C VCG’s, respectively.

The figure to the right illustrates
the approach with multiple target lan-
guages. The feasibility case study in
this paper concerns the framed part of
the figure. Via the intermediate Why
language different programming lan-
guages can be targeted. In order to
ease the translation from PVS to Why,
we have extended the Why language
with several features. For instance, we
have added records, and a simple no-
tion of modules. Tuples are treated the
same as records. Modules only pro-
vide a naming scope for a set of Why
declarations. We note that a more general notion of module that includes interfaces is
currently being added to the Why core language [31].

The key aspect of our approach is that not only code is transformed but also proven
properties. Why proof obligations derived from PVS properties are transformed to an-
notations on the target language level (Java JML annotations in the case study). In this
way proofs can be reconstructed on the target level even when the generated program
has been changed for maintenance reasons. Consequently, maintenance of the program
and its proof can be fully dealt with on the target language level.

In order to make this possible, interfaces to target level libraries are constructed
on the PVS level. This is achieved via the definition of enriched abstract interfaces
using dependently typed uninterpreted PVS functions: functions without a body for
which the properties are given in a dependent type. These functions can be instantiated
on the target language level with language specific libraries. Of course, the translated
properties should hold for the library functions.

In the next two sections, we will perform a feasibility study on a specific case
(AirStar, described in Section 3) generating Java with JML and verifying it with KeY.
Further technical details of the approach are given while applying it on the case study.
This will include how to deal with non-executable PVS specifications, destructive up-
dates and higher-order functions.

3 The AirStar Model

AirSTAR [3] is a dynamically scaled experimental aircraft designed and built by NASA’s
Langley Research Center (LaRC) for use as a testbed for research on software health
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management and flight control. This Remotely Operated Aircract (ROA) is a distributed
system where its critical components are dispersed between the airborne vehicle and the
ground station. Commands from the ground based pilot are broadcast to the aircraft and
telemetry data from the aircraft are sent to the ground station. Communication between
the air and ground components are critical for the safe operation of the vehicle.

The AirSTAR team was instructed to study [20] a small protocol that provides a
guarantee of eventual message delivery, but would be simpler, and more verifiable than
say User Datagram Protocol (UDP)/Transmission Control Protocol (TCP), which are
considered to be too complex to be used in AirSTAR. Flight commands and telemetry
data are treated differently. Flight commands are time sensitive in the sense that if a
message is lost or corrupted in transit, it should not be resent, because the information
would be stale by the time the new copy arrives. This requirement of the protocol is
called the weak delivery requirement. On the other hand, engineers and researchers
on the ground need to receive all data produced by the aircraft in order to analyze
aircraft performance as well as to plan future aircraft flights. Hence, the protocol should
guarantee that all telemetry data produced during the flight is eventually delivered. This
requirement is called the guaranteed delivery requirement. Due to these differences,
the protocol has been structured as two separate protocols: the weak delivery protocol
(WDP) and the guaranteed delivery protocol (GDP).

The complete protocol is a simplified version of the standard OSI-model. It is struc-
tured in a protocol stack, where each layer handles a different aspect of message pro-
cessing. As a message moves down the stack, each layer performs some processing
and possibly adds packet headers. As a message moves up the stack, the corresponding
packet headers are removed. The proposed protocol stack consist of four layers depicted
in the figure on the right.

In this section we will describe
only the layers/parts of the protocol
that are used in the remainder of our
paper.

The Ether layer is actually an
abstraction of the concrete physical
layer: an unreliable medium where
messages can sometimes be dropped
or duplicated, or corrupted by noise.
The behavior of this layer is described using bags, more concretely, the layer consists
of an input and an output channel, both represented by a bag of messages. In PVS these
bags will be modeled as functions that when applied to a message return the number of
copies that were made of this message. E.g. if a bag returns 0 for a given message this
might signify that the message was not yet sent or dropped.

The link layer is the interface between the WDP and GDP layers and the physical
layer. It provides common services, such as error detection. Additionally, it multiplexes
messages sent from the WDP and GDP layers, wrapping them in a common header and
demultiplexes them on the receiving end. A link layer frame is composed of a check-
sum and either a WDP or a GDP frame. The link interface consists of four queues:
gdp_to_ll, wdp_to_ll, ll_to_gdp and ll_tp_wdp, which are used to store the messages



314 L. Lensink, S. Smetsers, and M. van Eekelen

that were sent to or received from the the upper layers. For passing messages to the
communication medium, the link state contains a reference to the Ether layer.

The weak delivery protocol is composed out of two sequencesto_wdp andfrom_wdp,
two queuesapp_to_wdp and wdp_to_app and a shared link interface. Sending a message
is modeled as removing a message from the app_to_wdp queue and adding it to the
wdp_to_ll queue.

3.1 AirStar PVS Specification

All layers of the communication protocol are modeled in PVS. The Ether and Link
layer are both represented by a process taking care of the receiving and sending in
that layer. For the protocol layer (WDP and GDP) as well as for the application layer,
separate sending and receiving processes are assumed. This resulted in a number of
PVS theorems, each corresponding to one of these processes. Due to the nature of the
problem, the theories could be structured uniformly. More specifically, each process Pi

consists of:

– A process state PSi consisting of connections to the layer above and below (if
exists), and possibly some local information, i.e: PSi = PIi × PSi−1 × PLi, where
PIi contains the information to connect Pi with process Pi+1, and PLi consists of
local data.

– A set of local actions PAi describing the kind of actions that can occur in Pi.
– A local step function Pstepi of type: PAi × PSi → PSi
– A global transition relation Pnexti specifying that a transition is either a local step

or a transition at a lower level.

Usually, the global transition relation can be defined in the following way:

Pnexti(s, n : PSi) : bool=

⎧⎨
⎩
∃(a : PAi) : n = Pstepi(a, s) or
Pnexti−1(PSi−1(s),PSi−1(n)) and

PIi(s) = PIi(n) and PLi(s) = PLi(n)

For example, for the link layer, this resulted in the following PVS theory.

Link[GDPFrame, WDPFrame:TYPE] : THEORY BEGIN

LinkInterface : TYPE = [#
gdp_to_ll : fifo[GDPFrame] ,
ll_to_gdp : fifo[GDPFrame] ,
wdp_to_ll : fifo[WDPFrame] ,
ll_to_wdp : fifo[WDPFrame] #]

LinkFrame : DATATYPE BEGIN

GDP(gdp:GDPFrame,cs: CheckSum): GDPFrame?
WDP(wdp:WDPFrame,cs: CheckSum): WDPFrame?

END LinkFrame

LinkState : TYPE = [# link : LinkInterface, ether: EtherState #]

LinkAction : DATATYPE BEGIN
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SendWDP : SendWDP?
SendGDP : SendGDP?
Receive(linkframe:LinkFrame) : Receive?

END LinkAction

step(a:LinkAction, s:LinkState) : LinkState = CASES a OF

SendWDP :
IF ¬empty_fifo?(s‘link‘wdp_to_ll)
THEN LET wdpf = topof(s‘link‘wdp_to_ll) IN

s WITH [ ‘link‘wdp_to_ll := dequeue(s‘link‘wdp_to_lll) ,
‘ether‘input := add(WDP(wdpf,checksum(wdpf) ) ,s‘ether‘input)

ELSE s ENDIF ,
SendGDP : ...
Receive(linkframe): ...

ENDCASES

next(s,n: LinkState): boolean = ∃(a:LinkAction):
n = step(a,s) ∨next(s‘ether, n‘ether) ∧ s‘link = n‘link

END Link

In thestep function, only one action is specified; the other actions are defined similarly.
Since this layer does not require any local administration, the local part of LinkState
could be omitted. Observe that, thenextpredicate is not recursive: the call tonext refers
to the predicate in the lower ether layer.

Our aim is to prove correctness of WDP. To formulate this property, we introduce an
auxiliary theory that combines the sender and receiver processes of both the WDP and
the Application layer. The states that are involved in the communication are collected
in a single record WDPState. To activate one of the underlying processes, the complete
state is divided into two parts: the part that is needed by the active process and the part
that remains unaffected. For this reason we introduce for each of the communication
processesP a function PSplit that takes theWDPState record and returns a pair consisting
of the PState component of this state and the unaffected part.

WDPState : TYPE = [# ... a record containing all the states required by
WDPSender, WDPReceiver, AppWDPSender and AppWDPReceiver ... #]

WDPSenderSplit (s: WDPState) : ( WDPSenderState, ... ) = ...
WDPReceiverSplit(s: WDPState) : ( WDPReceiverState, ... ) = ...

WDP (s, n: WDPState) : bool =
LET (ss,sr) = WDPSenderSplit(s) , (ns,nr) = WDPSenderSplit(s)
IN WDPSender(ss,ns) ∧ sr = nr
OR

LET (ss,sr) = WDPReceiverSplit(s) , (ns,nr) = WDPReceiverSplit(s)
IN WDPReceiver(ss,ns) ∧ sr = nr
OR

...
OR

s = n
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The invariant that expresses correctness of WDP is defined as follows:

wdp_sound?: pred[WDPState] = λ(s:WDPState): s’from_wdp ⊆ s’to_wdp

Hereto_wdpandfrom_wdpare fields ofWDPState representing collections of data.to_wdp
contains the frames that were sent by the application layer, and from_wdp that were sent
back to the application layer. In essence, the invariant says that only genuine data will
actually arrive at its destination.

4 Generating Code

Generating Why from PVS is straightforward for the most part: each language construct
in the executable subset of PVS has an almost identical counterpart in Why. Indeed, like
PVS, Why can be used as a purely functional programming language.

An important difference between the PVS and Why is that Why separates the logical
from computational expressions: program functions cannot be used in logical expres-
sions. In PVS, this is not the case: one can mix both expressions freely. In principle,
this problem can be circumvented easily, by generating for each PVS construct both a
logical and computational version.

For brevity, the intermediate translation into Why is left out in this paper in favor of
the translation to Java.

Subtype Annotations. The predicate subtyping capability of PVS enables the creation
of a new subtype corresponding to an arbitrary predicate. One can use this feature to
specify functions more accurately, akin to pre- and postconditions in traditional Hoare
logic-based specification languages [26]. For instance, the square root function in PVS
can be typed as follows: sqrt(x:real | x ≥ 0) : y:real | y ≥ 0∧ x = y*y.

This typing states that sqrt is a function that takes a non-negative real x and returns
a non-negative real y such that x=y*y.

The predicate subtypes in function arguments and result are translated into JML
annotations as requires and ensures clauses, respectively. More concretely, if a function
uses a subtype of a type σ (specified by the predicate P on σ), the translation into Java
will employ σ, and lifts the additional subtyping requirement P to the requires and/or
ensures clause.

If the predicates are executable, the resulting functions will be regular pure Java
functions. However, if a predicate contains non-executable constructs, the result will
be an abstract function, where the non-executable fragments are transformed into re-
quires/ensures clauses. This holds for most of the quantified expressions. In this trans-
formation, the case in which a subtype is used for a quantifier variable is treated spe-
cial. For instance, a universally quantified expression ∀(x : (P ))1 : Q(x) becomes
∀(x : σ) : P (x) =⇒ Q(x), whereas the existential quantifier ∃(x : (P )) : Q(x) is
translated to ∃(x : σ) : P (x) ∧ Q(x). Here P,Q are predicates on types σ and P (σ),
respectively.

As an example, consider the predefined PVS functions nat and below , both repre-
senting the subsets of int, and heavily used in the AirStar model. These functions are

1 PVS allows the notation (P) as a shorthand for {x : σ|P (x)}.
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executable, so they will be translated into pure Java methods. A pure Java method is
generated whenever a function is used in a JML annotation.

boolean /*@ pure */ nat ( in t s) { return 0 <= s ; }
boolean /*@ pure */ below ( i n t s , i n t i) { return nat(s) && s < i ; }

Destructive Updates. Another difference between PVS and Why is that the latter sup-
ports typically imperative features like references and side effects. The efficiency of
code generated from Why could be significantly improved if some of the PVS constructs
are translated into an imperative Why version. For instance, PVS supports record and
array overriding. Translating these updates into a destructive (in-situ) updates, when it
is safe to do so, would significantly improve the efficiency of the resulting code.

PVS includes a code generator that translates PVS expressions into Lisp [28]. In the
generated Lisp code, a PVS overriding expression is translated into two variants: one
that destructively updates the data structure and one that constructs a new copy. The
decision about which version to use is based on a conservative approximation of the
runtime behaviour of the program. This static analysis is fairly coarse: nested applica-
tions and higher-order operations mostly lead to inefficient but safe copying.

Our translation from PVS to Why and subsequently into Java uses a different ap-
proach. For every function we generate a destructive variant only. However, if the alias
analysis determines that a particular variable is referenced more than once, and it cannot
be destructively updated, we create of (deep) copy of the corresponding object before
performing the function which destructively updates the copy. In this way possibly large
structures are copied only once instead of multiple times leading to increased efficiency.
A more detailed description can be found in [16].

4.1 PVS to Java

Although the translation of PVS to Java occurs via Why, we will explain it as if it was
performed in a single step, i.e. we will describe the translation by showing how basic
PVS constructs are represented in Java.

Each PVS theory results in a generic Java class in which theory parameters are rep-
resented by generic variables.2. Record definitions are directly represented as class.
Abstract data types (containing constructors and recognizers) are translated into a col-
lection of classes extending an abstract base class representing the type itself whereas
each derived class corresponds to a constructor. Recognizers are Boolean methods de-
fined in the base class returning false by default, and which are overridden in the derived
class.

For the Link theory this leads to the following class definition:

public c las s Link<GDPFrame, WDPFrame> {

/* The LinkInterface record */
public c las s LinkInterface {

2 Actually, this only holds for TYPE parameters: value or other more complex kinds of parame-
ters a treated differently.
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public FiFo<GDPFrame> gdp_to_ll, ll_to_gdp;
public FiFo<WDPFrame> wdp_to_ll, ll_to_wdp;
public LinkInterface update (

FiFo<GDPFrame> gdp_to_ll, FiFo<GDPFrame> ll_to_gdp,
FiFo<WDPFrame> wdp_to_ll, FiFo<WDPFrame> ll_to_wdp) {

t h i s .gdp_to_ll = gdp_to_ll; t h i s .ll_to_gdp = ll_to_gdp;
t h i s .wdp_to_ll = wdp_to_ll; t h i s .ll_to_wdp = ll_to_wdp;
return t h i s ; } }

public c las s LinkState {
public LinkInterface link ;
public Ether .EtherState ether;
/* ... other methods as above .../ }

/* The abstract data type LinkFrame */
public abstract c las s LinkFrame {

public boolean isGDPFrame ( ) { return f a l s e ; }
public boolean isWDPFrame ( ) { return f a l s e ; } }

public c las s WDP extends LinkFrame {
public WDPFrame wdp ;
public in t cs ;
public WDP (WDPFrame wdp , i n t cs) {

t h i s .wdp = wdp ; t h i s .cs = cs; }

@Override
public boolean isWDPFrame ( ) { return true ; } }

public c las s GDP extends LinkFrame { /* ... as above ... */ }

/* The abstract data type LinkAction is similar to LinkFrame */

/* The local step function */
public LinkState step ( LinkAction a , LinkState s ) {

i f (a .isSendWDP( ) ) {
i f ( ! s .link .wdp_to_ll.isempty( ) ) {
WDPFrame wdpf = s .link .wdp_to_ll.topof ( ) ;
LinkInterface link_update = s .link .update (s .link .gdp_to_ll,
s .link .ll_to_gdp, s .link .wdp_to_ll.dequeue( ) , s .link .ll_to_wdp) ;
Ether<LinkFrame>.EtherState ether_update = s .ether .update(
Bag .add (new WDP(wdpf, checksum(wdpf) ) ,s .ether .input) ,

s .ether .output) ;
return s .update(link_update, ether_update) ;

} e l s e { return s ; }
} e l s e { /* sendWDP and receive */ } } }

Thenextpredicate in theLink theory contains a non executable part. It is translated into
a function in a separate abstract interface class. The required behavior is guaranteed by
the ensures annotation.
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public in ter face c las s LinkAbstract {
/*@ ensures \result == (\exists LinkAction a; n = step(a,s)

|| next(s.ether,n.ether) && s.link == n.link);
public /*@ pure */ next(LinkState s , LinkState n ) ;

}

Higher-order Functions/Closures. The current version of Java does not (yet) sup-
port higher-order functions. For this reason, we use a common technique to implement
closures, namely by introducing the following interface:

public in ter face Lambda <ARG ,RES>{ RES apply (ARG arg ) ; }

The higher-order functions mainly arise due to the way bags are modeled in PVS,
namely as a function from LinkFrame to int. In Java, we have modeled these bags by
the following helper class providing elementary operations as services (i.e. public static
methods):

public c las s Bag<E> {
public s t a t i c <E> Lambda<E ,Integer> emptyBag ( ) {

return new Lambda<E ,Integer> ( ) {
public Integer apply(E arg) { return 0; }}; }

public s t a t i c <E> Lambda<E ,Integer> add (
f i n a l E elem, f i n a l Lambda<E ,Integer> bag) {

return new Lambda<E ,Integer> ( ) {
public Integer apply ( f i n a l E arg) {

i f (arg .equals(elem ) ) {
return bag .apply(arg) + 1;

} e l s e { return bag .apply(arg ) ; } }}; }

public s t a t i c <E> Lambda<E ,Integer> remove (
f i n a l E elem, f i n a l Lambda<E ,Integer> bag) {

/* similar to add */ } }

Inheritance and abstract classes are also used to enable the integration of the generated
code with existing code. This integration is particularly useful when a given function
is uninterpreted in the original specification. Take, for example, the case of the square
root function in PVS. Since a constructive version of this function is not available, this
function (and the class in which it is defined) is declared as abstract in Java. Since the
pre- and postconditions of sqrt are still generated, any VCG should be able to generate
proof obligations guaranteeing that the provided function satisfies the specification of
the uninterpreted one.

5 Verification of Weak Delivery Protocol

There are several theorem prover tools available that can be used to prove Java code
correct. The most notable are KeY and Krakatoa. The Krakatoa tool could not handle
inline classes at time of the experiment, so we decided to use KeY.
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Soundness of the protocol is expressed by assuming that there are two nodes running
the WDP protocol, consisting of a sender and a receiver. The invariant states that all
WDP messages delivered by the receiver to the application layer originated from the
sender’s application layer.

5.1 Invariants

One of the challenges is deducing which part of the specification describes the invari-
ants on the model that should be turned into pre- and postconditions. The translator
recognizes these functions by matching them with a template.

The theories will be scanned for special predicates3. There should be an initialization
predicate Finit of typepred[S]4, a transition relation R of typepred[S, S] ] and a pred-
icate that defines the invariant: P of typepred[S]. The type S can be any tuple or record
that holds state variables. For matching functions there should exist a theorem or lemma
that states ∀r, n : P (r(n)), where r is defined as mapping from natural numbers to S

and n is a natural number. For the mapping r, Finit(r(0)) and R(r(n), r(n+1) should
hold. A second template looks for functions that match a simple transition schema:
∀P, S : Finit(S) =⇒ P (S) and ∀P, S1, S2 : R(S1, S2) ∧ P (S1) =⇒ P (S2).

For functions that match the above structures pre- and postconditions are generated.
Finit, will have to ensure P , while R will require P and will have to ensure P .

In the WDP theory, functions that match the first template are used, defined as a
separate PVS theory, with the state, the initial state predicate and the transition relation
as theory parameters.

The proofs require that the invariants are maintained by the transition relation. For the
weak delivery protocol, the transition relation isWDP. The soundness invariantis_subset5

depends on the invariant wdp_in_app_to_wdp in its proof. All other invariants that are
required for proofs of the invariant are added to the precondition of the transition rela-
tion WDP.

The no_null_pointerspredicate is generated by the translator under the assumption
that all the generated code is properly initialized. The predicate simply states that all
fields of objects are properly initialized.

/*@ requires no_null_pointers(s)
@ && WDPAbstract.wdp_in_app_to_wdp(s)
@ && WDPAbstract.is_subset(s);
@ ensures \result ==> WDPAbstract.is_subset(n); */
public boolean WDP( f i n a l WDPState s , f i n a l WDPState n)

5.2 Proof Construction in KeY

The KeY theorem prover uses dynamic logic, which includes an operator < p >, where
p is a sequence of Java statements. The formula < p > φ expresses that the program

3 Instead of predicates, the initial and transition functions could also be functional in nature: finit

of typeS and ftrans as a function from [S → S]. The template match is adjusted accordingly.
4 In PVS pred[t] is a shorthand for t -> bool.
5 Java can not handle special characters in identifiers, therefore identifiers with them, like
subset? are translated into an meaningful identifier excluding character.



Generating Verifiable Java Code from Verified PVS Specifications 321

p terminates in a state where φ holds. For the soundness invariant the program p is a
function call toWDP(s,n) and it should terminate in a state where the postcondition holds.
To prove that, the operator needs to be eliminated. The logic rules of the operator are
constructed in such a way that they perform a symbolic execution of the Java statements.

A prominent feature of the AirStar model are transitions between states where one
aspect of the model is active and the rest remains unchanged. For instance, in the WDP
transition relation defined at the end of Section 3, will generate Java code like the fol-
lowing:

( WDPSender(ss ,ns)
&& sr .equals(nr)
) | |
( WDPReceiver(ss ,ns)

&& . . etc . .
)

This will be symbolically evaluated using the <> operator. While symbolically eval-
uating the code it will lazily translate the && and || into if statements. The result of
the evaluation of WDPSender(ss,ns) is assigned to a variable and if it is false, it will
skip further evaluation and directly assign the value to the variable representing the first
argument of the or statement.

b0 = { b1 = WDPSender(ss ,ns ) ;
i f ( !b1) b2 = f a l s e ;
e l s e b2 = sr .equals(nr ) ;
return b2 ; } ;

i f (b0) b3 = true ;
e l s e b3 = { b4 = WDPReceiver(ss ,ns ) ;

i f (b4) . . .

The rules defined for the symbolic execution of the if statements will force the creation
of two separate goals, one where WDPSender(ss,ns) holds and one where it does not.
Within each of these cases it will have to evaluateWDPReceiver(ss,ns). The number of
goals increases with each branching point added to the transition relation.

When running fully automatically, KeY should be able to dispatch most of these
goals. However, in the proofs we sometimes need to choose between regular method
expansion and the use of an operation contract. On its own, KeY prefers the regu-
lar method expansion. For the proofs to succeed, sometimes the operation contract is
needed. The KeY theorem prover can be instructed to halt at points where it needs to ex-
pand methods in order to let the user choose. Combined with branching factor, the user
is quickly overwhelmed by the amount of manual labor needed to complete the proof
goals. By hiding the branching points behind pure function definitions, it is possible to
delay the branching until a more opportune moment.

Not all of the invariants of the original PVS specification have been completely ver-
ified in Key. However, the experiment gave us sufficient confidence in our proposed
approach. That is, with some more sophisticated support from the KeY prover environ-
ment a semi-automatic proof of all the invariants for the WDP as well as for the GDP
protocol should be feasible.
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5.3 Feasibility Case Study Evaluation

The case study shows that generating Java code from the PVS models for small to
medium sized models is definitely feasible. The translated model roughly doubled in
size by translating it into Java. Generating annotations made it possible to prove parts
of the properties of the original model. However, generating annotated Java for the
current set of Java code verifiers is still a cumbersome process. There were some issues
we ran into when using KeY to prove the generated Java code correct.

– KeY only supports Java 1.4 language constructs. Specifically the use of generics is
not allowed. Although it has a built-in procedure that can remove generics, this did
not seem to work properly for our model. Instead we removed it using Declawer, a
tool used to strip the generics from Java source code.

– Proving properties of complex Java code statements is cumbersome when there are
multiple branching points in the code. These branching points multiply goal gener-
ation in the KeY theorem prover. However, using pure Java methods it is possible
to postpone evaluation of these branching points until evaluation is opportune.

– KeY has no problem with defining static abstract functions, while Java does. This
is not directly an issue, but might lead to proving programs correct that do not
compile.

– KeY properly demands that references to fields within an object can only happen
when the object itself is not null. These checks make up a great deal of the prover
activity. This condition can be relaxed, however, only for regular method calls.
When used in conjunction with operation contracts, the user still has to prove the
existence of the object.

– KeY sometimes refuses to load saved proofs due to parser issues.

Although the translator supports all executable language constructs that PVS provides,
some minor changes had to be made to the original models in order to be successfully
translated. The changes all have to do with clashing name spaces, non-translatable char-
acters in identifiers and the fact that the translation requires all fields of a record to be
updated. All these issues can be easily resolved. Furthermore, the generation of pre-
and postconditions is still work in progress.

The case study presented in the previous section should be viewed in terms of “proof
of concept.” Although several features are still missing, the case study demonstrates the
potential for integrating heavy-weight formal methods tools into the software develop-
ment cycle.

6 Related Work

Two major fields of computer science come together in generating code from formal
specifications: theorem proving and compiler construction.

Within the theorem proving community all the major theorem provers have some
form of code generation to a functional language from their specification language. The
theorem prover Isabelle/HOL even provides two code generators. There is the origi-
nal generation from higher-order logic to ML, described by Berghofer and Nipkow [4].
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A second translator, developed by Haftmann [10], targets multiple languages. Unlike
our generator, however, these languages are all functional programming languages like
Haskell, OCaml and SML. ACL2’s [13] specification language is a subset of Common
Lisp. The theorem prover Coq [5] has its generator [17] that extracts lambda terms
and translates them in either Haskell or OCaml. As mentioned before, PVS [22] pro-
vides a code generator for Lisp. A PVS translation into the functional programming
language Clean is in its prototype stage [11]. Using semantic attachments or analog
mechanisms to tie executable code and logical statements together has been studied by
Ray in ACL [25], and by Rushby et al [7] and Muñoz [19] in PVS.

Integrating formal methods into the software engineering process has been the main
goal of the B-method [1], a collection of mathematically based techniques for the speci-
fication, design and implementation of software components. The main difference with
our method is that PVS as a specification language allows for higher-order functional
specification and is a more powerful theorem prover than those that come with the
B-tool suite. The added expressiveness of the specification language allows for code
generation to functional languages, unlike the B-method where only C or ADA code
can be generated. A similar approach is taken with the Vienna Development Method
(VDM) [12]. This also is a collection of formal methods and tools that aim at using
mathematical techniques in the software development process. It does support higher-
order functions and can generate Java as well as C++ code. However, their code gener-
ator uses a standard library of VDM concepts, instead of translating more directly into
the target language. Both VDM and the B-method do not annotate their generated code,
which makes it harder to check whether the generated code is indeed correct.

From within the compiler construction community, work has been done on source to
source translators from functional languages to imperative ones: A source code trans-
lator between Lisp and Java has been constructed by Leitao [15]. However, not all lan-
guage constructs of Lisp are supported. Another translator from ML to Java was pro-
posed by Koser et al in [14]. Instead of Java, Ada has also been used as a target language
by Tolmach [30].

7 Conclusion and Future Work

Integrating formal methods into the software engineering process requires tools that
provide support without unnecessarily constraining the design and implementation
choices. We present an approach designed to generate annotated code from declarative
PVS specifications for multiple functional and imperative target languages. We reported
on a feasibility study using a prototype tool. The key advantages:

– Independently verifiable code: The generated code is accompanied by annotations
that allow for proof obligation generation. The generated code can be verified,
changed and verified again.

– The generated code is readable and it allows for integration with existing code.
– The generated code is reasonably efficient, due to the nature of the translation from

an executable subset, as well as by using destructive update optimization tech-
niques. Since we are using an intermediate language, further optimizations such
as tail recursion elimination can be easily added.
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The attractiveness of our approach is that we have tied together existing techniques into
a complete package targeting both functional and imperative languages in such a way
that maintenance and verification can be done on the target language level.

Future Work. The code generator presented in this paper is still a proof of concept.
Many features have to be improved to be really useful in a large scale software engi-
neering process. For example, currently, only a subset of the specification language of
PVS can be translated. Many models are only partially executable. In particular, formal
models of protocols typically use a relational specification style to describe functional
behaviors. These models cannot directly be translated into an executable program. Be-
ing able to generate code for these models, by providing syntactic restrictions on their
specification, is one of our next goals. For this we need to add support for guarded
non-determinism.

In the spirit of proof carrying code [21], another venue of progress would be to
extend the Why logic and the extraction mechanism so that annotated programs carry
with them a reference to the correctness lemmas in the original specification and enough
information for discharging the proof obligations from these lemmas. Thus, eliminating
most of the burden of mechanically proving the correctness of the generated code.

Another interesting issue that can be addressed is whether it is possible to maintain
a correspondence between the proofs in the original PVS model and the generated Java
code, JML specifications and KeY proofs.
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Abstract. This paper establishes connections between logical equiva-
lences and bisimulation relations for hidden Markov models (HMM).
Both standard and belief state bisimulations are considered.

We also present decision algorithms for the bisimilarities. For standard
bisimilarity, an extension of the usual partition refinement algorithm
is enough. Belief bisimilarity, being a relation on the continuous space
of belief states, cannot be described directly. Instead, we show how to
generate a linear equation system in time cubic in the number of states.

1 Introduction

Probabilistic models like Markov chains allow to describe processes whose be-
haviour is governed by probabilistic distributions. Together with extensions with
nondeterministic choices, reward structures and continuous time, they are widely
used in networked and distributed systems. During the last twenty years, effi-
cient model-checking algorithms of Markov chains and their extensions have been
extensively studied, allowing for performance evaluation and formal reasoning.

Markov chains are fully observable, in the sense that at any time, an observer
can determine the exact state and infer the probability to be in a specific state
at later times. This may be too restrictive in many applications: Intuitively, the
underlying state space of a Markov chain may contain fine-grained information,
which is not always visible from the outside. For instance, a meteorologist might
use a Markov chain with states for several kinds of snow [19] to model the weather
behaviour. Non-expert observers only see whether it is snowing or not, implying
that the states of the Markov chain are not fully visible to them.

Hidden Markov models (HMM) [15] enhance Markov chains with observa-
tions. These reveal partial information about the state, while the actual state
remains unknown. Given the sequence of produced observations, we may infer a
probability distribution over the states, a so-called belief state.

HMMs have received much attention in the area of speech recognition [10],
communication channel modelling [16], and biological systems [5]. Recently, they
have also been used to analyse stochastic dynamic systems [17]. A typical prob-
lem is to find the most probable state after a given observation sequence and
perhaps other constraints. For example, in speech recognition, a sequence of
sound recordings is given, and the sentence that has probably been pronounced
is sought.
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As for Markov chains, model checking and other algorithms depend on the
size of the HMM, which is usually very large. Bisimulation equivalences have
been shown to be an effective way to amend the state space problem for Markov
chains [11]. In contrast, behavioral equivalences for HMMs have only been in-
troduced recently by Castro et al. [4]. It is, however, not clear whether such
equivalences agree with the logical properties in HMMs. To pave the way for
efficient algorithms using reduction techniques, we study various bisimulation
equivalences and characterise them logically with variants of the logic POCTL*
(probabilistic observation-CTL*) introduced in [20].

Contributions. Our main contribution is the logical characterisation for three
variants of bisimulation for HMMs, and their corresponding decision algorithms.
For standard state-based bisimulation, we show that the logic POCTL* is sound
and complete. Since Markov chains are special instances of HMMs, this result
conservatively extends the logical characterisation for Markov chains [2]. More
interesting are the strong and weak belief bisimulations defined by [4]. (We shall
follow [4] and call the two equivalence relations strong and weak belief bisimu-
lation, although this differs from the usual distinction between strong and weak
bisimulation.) We show that these relations are too coarse for POCTL*: the
nested probabilistic operator, conjunction and some forms of the until operator
can distinguish belief bisimilar states. We introduce two sublogics SBBL* and
WBBL*, which correspond to strong and weak belief bisimilarity, respectively.
The key difference between SBBL* andWBBL* is that the latter cannot describe
requirements on the most probable state after a certain sequence of observations.

We also present decision algorithms for the bisimilarities. For standard bisim-
ilarity, an extension of the usual partition refinement algorithm [14] is enough.
Belief bisimilarity is a relation over distributions and cannot be computed with
partition refinement. Instead, we extend the approach in [7]: we generate a lin-
ear equation system that is satisfied by two belief states iff they are bisimilar.
The time to construct the system is in O(|S|3) for weak and in O(|S|3 · |Ω|) for
strong belief bisimilarity, where |S| is the number of states and |Ω| the number
of observations. Since the bisimulation for labelled Markov chains considered in
[7] can be regarded as a special case of strong belief bisimulation, our results
apply also in that setting. This produces another logical characterisation. More
interestingly, our algorithm improves their complexity O(|S|4).

We believe that our results are of practical relevance. We have identified the
properties corresponding to the bisimulation relations considered, so the model
checker can choose the appropriate relation and reduce the size of the HMM
under consideration, using our efficient decision algorithm. Such characterisation
and decision algorithms will make it possible to analyse HMMs of larger size.

Organisation of the paper. In Section 2 we recall the definition of HMM, belief
states, probabilistic measures on them and the logic POCTL*. Section 3 discusses
the three different notions of bisimulation for HMMs. The corresponding logical
characterisations are presented in Section 4. The decision algorithm is presented
in Section 5. We discuss related work in Section 6.
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Fig. 1. A hidden Markov model for a cooling system

2 Hidden Markov Models and the Logic POCTL*

In this section we recall the definition of hidden Markov models (HMM) [4] and
some related notions. On that basis, we can define the logic POCTL*.

2.1 Hidden Markov Models

Definition 1. A hidden Markov model is a sextuple M = (S, P, L,Ω,O, α),
where S is a finite set of states; P : S × S → [0, 1] is a probabilistic transition
relation satisfying

∑
s′∈S P (s, s′) = 1 for every s ∈ S; L : S × AP → {0, 1}

describes the truth values of atomic propositions; Ω is a finite set of observations;
the partial function O : S × S → Dist(Ω) assigns a probability distribution over
the observations to each transition in P−1((0, 1]); α : S → [0, 1] is the initial
distribution.

Note that we assign observations to transitions. Many other definitions assign
observations to states, but in that case, the observations would be almost the
same as atomic propositions. Our choice is inspired by [4].

Example 1. In Fig. 1, a simple HMM that describes a small part of a nuclear
power plant is depicted. It describes the state of the cooling system and how
much information about this state can be obtained based on the incomplete
information provided by temperature sensors, a situation that may occur in a
partially broken power plant. For example, if the temperature sensor produces
a “high” reading, it is not completely clear whether the power plant is melting
down, renouncing all hope of repair, or it is only in state “out of order”, so a
repair should be attempted.

2.2 Belief States

In this and the following sections, we assume we are given a fixed set of atomic
propositions AP and a hidden Markov model M = (S, P, L,Ω,O, α).
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In a hidden Markov model, only the observation can be seen, and a standard
problem is to guess the real state of the HMM based on the observations. We can
summarize the history of observations in a belief state (or information state) [15].

Definition 2. A belief state is a probability distribution over S. Moreover, we
let 1s be the characteristic belief state for s ∈ S defined by: 1s(s) = 1.

A belief state is not really a state of the HMM. Rather, it is a way to describe
what we know about the state. The set of all belief states is called the belief
space and is denoted by B. The labelling function can easily be extended to belief
states by: L(b, a) :=

∑
s∈S b(s) · L(s, a). Intuitively, L(b, a) gives the probability

of satisfying a in belief state b.
The belief state bn at time n ≥ 0, i. e. the distribution over S at time n given

the observation history ω0, . . . , ωn−1, captures all information about the past.
We can inductively calculate the next belief state bn+1 based on the previous
belief state bn and the current observation ωn. More details will be given after
introducing probability spaces for HMMs.

2.3 Paths in HMM and Probability Spaces over Paths

Given M = (S, P, L,Ω,O, α) (as fixed above), we first introduce some notation.
A path σ of M is a sequence s0, ω0, s1, ω1 . . . ∈ (S × Ω)ω where P (si, si+1) > 0
and O(si, si+1)(ωi) > 0 for all i ∈ N. For i ∈ N, let σ(i)s = si denote the
(i + 1)th state of σ, and σ(i)o = ωi denote the (i + 1)st observation of σ. Let
σ(i . . .) denote the suffix path of σ starting with σ(i)s, i. e., si, ωi, si+1, ωi+1, . . .

Let PathM denote the set of all paths in M , and PathM (s) denote the
set of paths in M that start in s. The superscript M is omitted whenever it
is clear from the context. We define a probability space on paths of M us-
ing the standard cylinder construction. For a finite state–observation sequence
s0, ω0, s1, ω1, . . . , sn, its induced basic cylinder set is C(s0, ω0, s1, ω1, . . . , sn) :=
{σ ∈ Path | ∀i ≤ n : σ(i)s = si ∧ ∀j < n : σ(j)o = ωj}. This set con-
sists of all paths σ starting with s0, ω0, s1, ω1, . . . , sn. Let Cyl contain all basic
cylinder sets for all finite state–observation sequences. Given a finite sequence
C0, Υ0, C1, Υ1, . . . , Cn of state sets and observation sets, we define the cylinder
set to be the (disjoint) union of the basic cylinder sets with state–observation
sequences picked from the sequence of sets:

C(C0, Υ0, . . . , Cn) :=
⋃

s0∈C0

⋃
ω0∈Υ0

· · ·
⋃

sn∈Cn

C(s0, ω0, . . . , sn)

Given a belief state b, we define the premeasure Probb on Cyl by induction
on n as: Probb(C(s0)) = b(s0) and, for n > 0, Probb(C(s0, ω0, . . . , sn)) equals:
P (sn−1, sn)O(sn−1, sn)(ωi−1) ·Probb(C(s0, ω0, . . . , sn−1)). By induction, we get:

Probb(C(s0, ω0, . . . , sn)) = b(s0)

n∏
i=1

O(si−1, si)(ωi−1)P (si−1, si)
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The above premeasure can be extended uniquely (Carathéodory’s theorem, see
e. g. [18, page 272]) to a measure on the σ-algebra generated by Cyl. We introduce
a few shorthand notations, which will be used frequently later on:

– Probb(ω, s
′) :=

∑
s∈S O(s, s′)(ω)P (s, s′)b(s) is the probability to get obser-

vation ω and end in some state s′. So, Probb(ω, s
′) = Probb(

⋃
s∈S C(s, ω, s′)).

For a set of states A ⊆ S, let Probb(ω,A) :=
∑

s′∈A Probb(ω, s
′).

– Probb(ω) := Probb(ω, S) is the probability to get observation ω in belief
state b. For a set of observations Υ , let Probb(Υ ) :=

∑
ω∈Υ Probb(ω).

– τ(b, ω)(s′) := Probb(ω,s′)
Probb(ω) . Then, τ(b, ω) is the resulting belief state under

the condition that we take a transition from belief state b and that we get
observation ω.

– Probb(b
′) :=

∑
ω∈Ω Probb(ω) · 1b′=τ(b,ω) is the probability of getting to b′ in

the next step, starting from b. Here 1b′=τ(b,ω) equals 1 if b′ = τ(b, ω), and 0
otherwise. For a set of belief statesB, we define Probb(B) :=

∑
b′∈B Probb(b

′).

For belief state b = 1s, we sometimes write s when clear from the context. The
updating of belief state described above can now be written by: bn+1 = τ(bn, ωn).

2.4 Syntax of POCTL*

In our article [20], we defined a logic POCTL* to describe properties of HMMs.
In POCTL*, we distinguish state formulas (denoted Φ), path formulas (denoted
ϕ), and belief state formulas (denoted ε). Its syntax is:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | ε
ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | XΥ ϕ | ϕ U≤n ϕ

ε ::= ¬ε | ε ∧ ε | P��p (ϕ)

where a is an atomic proposition, Υ is a set of observations, n is a natural number
or ∞, �� is a comparison operator ∈ {<,≤,≥, >}, and p is a probability bound
∈ [0, 1].1

The disjunction ∨ is defined as usual as an abbreviation. If Υ = Ω, we will
sometimes suppress the index of a next-state operator:Xϕ := XΩ ϕ. The future-
operator ♦≤nϕ abbreviates true U≤n ϕ.

The semantics of Φ and ϕ is mostly defined in the same way as for CTL
over states and paths, respectively [20,1]. A few examples: s |= ε iff 1s |= ε,
σ |= XΥ ϕ iff σ(0)o ∈ Υ and σ(1 . . .) |= ϕ, and b |= P��p (ϕ) iff Probb{σ|σ |=
ϕ} �� p. POCTL* can be applied to the typical problem (based on the sequence
of observations and perhaps other constraints, find a probable state) by verifying
a formula like P≥0.25 (Xω1 Xω2 Xω3 true).

1 Some formulas, e. g. state formula ¬ε, have two derivations: either use the negation
of state formulas or the negation of belief state formulas. However, this will not pose
problems because the two are semantically equivalent.
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3 Bisimulation Notions for HMMs

In this section we define various bisimulations for HMMs. First, one can simply
extend standard bisimulation of Markov chains [13] to the HMM setting:

Definition 3. Let R ⊆ S×S be an equivalence relation on the states of M . R is
a strong bisimulation if it respects the following conditions for every (s, t) ∈ R:

1. For all atomic propositions a ∈ AP , we have s |= a iff t |= a.
2. For all observations ω ∈ Ω, we have Prob1s(ω) = Prob1t(ω).
3. For all observations ω ∈ Ω, and all R-equivalence classes C ∈ S/R, we have

τ(s, ω)(C) = τ(t, ω)(C).

Two states s, t ∈ S are strongly bisimilar if there exists a strong bisimulation R
with s R t. We denote this as s ∼ t. Bisimilarity can be extended to paths: two
paths σ, ρ ∈ Path are strongly bisimilar if σ(i)o = ρ(i)o and there exists a strong
bisimulation R such that σ(i)s R ρ(i)s for all i ∈ N.

Note that Conditions 2 and 3 can be subsumed to: For all observations ω ∈ Ω and
all R-equivalence classes C ∈ S/R, we have Probs(ω,C) = Probt(ω,C). Since
probabilities agree on bisimilar states, we sometimes denote Probs by Prob [s]R .
The definition conservatively extends bisimilarity on Markov chains: if |Ω| = 1,
HMM bisimilarity reduces to standard bisimilarity for Markov chains [13].

The state-based bisimulation defined above does not take into account that
states in HMMs are hidden, i. e., only indirectly observable. Recently, Castro et
al. [4] introduced two new notions of bisimulation relations, not on the states of
the HMM, but on the belief states, i. e., on distributions over states. We recall
their definitions and adapt them to our fully probabilistic setting.

Definition 4. Let R ⊆ B × B be an equivalence relation on the belief states. R
is a strong belief bisimulation if it respects the following conditions for every
(b, c) ∈ R:

1. For all atomic propositions a ∈ AP , we have L(b, a) = L(c, a).
2. For all observations ω ∈ Ω, we have Probb(ω) = Probc(ω).
3. For all observations ω ∈ Ω, we have τ(b, ω) R τ(c, ω).

Two belief states b, c ∈ B are strongly belief bisimilar if there exists a strong belief
bisimulation R with b R c. This is denoted b ∼sb c.

The first condition requires that b and c have the same labelling. The second
condition states that the probability of observing ω is the same from b or c.
The new condition is the third one, stating that the updated belief states with
respect to ω must also be in the relation R. It is weaker than the third condition
of state-based bisimulation: The following example illustrates the difference.

Example 2. Consider the HMM depicted in Fig. 2. Assume L(s3) �= L(s4), and
other states have the same labelling. First, s1 �∼ t1, independent of the obser-
vations. The reason is that s2 cannot be bisimilar with either t2 or t3. Now let
b = 1s1 and c = 1t1 . It is easy to verify that b ∼sb c.
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Fig. 3. Strong and weak belief bisimilarity differ

Now we recall weak belief bisimulation for HMMs, based on [4]:

Definition 5. Let R ⊆ B × B be an equivalence relation on the belief states.
R is a weak belief bisimulation if it respects the following conditions for every
(b, c) ∈ R:

1. For all atomic propositions a ∈ AP , we have L(b, a) = L(c, a).
2. For all observations ω ∈ Ω, we have Probb(ω) = Probc(ω).
3. For all R-equivalence classes B ∈ B/R, we have Probb(B) = Probc(B).

Two belief states b, c ∈ B are weakly belief bisimilar if there exists a weak belief
bisimulation R with b R c. This is denoted b ∼wb c.

Indeed, it holds that ∼sb ⊂ ∼wb, where the inclusion is strict [4]. Intuitively,
while strong belief bisimulation requires that the updated belief states must be
in the relation, in weak belief bisimulation we require only that the updated
belief states evolve with the same probability to each B ∈ B/R.

The example in Fig. 3, taken from [4], illustrates the difference: 1s1 and 1t1

are not strongly belief bisimilar, but they are weakly belief bisimilar.
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4 Characterising Bisimilarity

This section presents the logical characterisation results for the three bisimi-
larities for HMMs. We first show that state-based bisimilarity agrees with the
logical equivalence induced by POCTL*. Then, we shall identify two sublogics
of POCTL* to characterise strong and weak belief bisimilarities, respectively.

4.1 Strong Bisimilarity

We show that the equivalence induced by POCTL* agrees with state-based
bisimilarity. As a preparation, we introduce bisimulation-closed sets of paths.

Definition 6. A set of paths is bisimulation-closed if it is a (disjoint) union of
equivalence classes induced by strong bisimilarity on paths.

Lemma 1. Assume that s is strongly bisimilar to t. Then, for all bisimulation-
closed sets of paths Π, we have that Probs(Π) = Probt(Π).

Proof. It is enough to show equality for a ∩-closed generator of the σ-algebra
of all bisimulation-closed sets of paths. Therefore, assume w. l. o. g. that Π is a
cylinder set C(C0, ω0, C1, ω1, . . . , Cn), where the Ci are bisimulation equivalence
classes, and assume that s ∈ C0. Bisimilarity implies t ∈ C0. Clearly,

Probs(Π) = ProbC0(ω0, C1)·ProbC1(ω1, C2)·· · ·ProbCn−1(ωn−1, Cn) = Probt(Π)

where ProbCi = Probsi for some si ∈ Ci; as Ci is a bisimulation equivalence
class, ProbCi is well-defined. The intersection of two such cylinder sets is either
the smaller of the two or empty.

The following theorem shows that the equivalence induced by the logic POCTL*
agrees with strong bisimulation:

Theorem 1. The logic POCTL* characterises strong bisimilarity, i. e.,
two states are strongly bisimilar iff they satisfy the same POCTL* state formulas,
and two paths are (statewise) strongly bisimilar iff they satisfy the same POCTL*
path formulas.

The proof is mostly based on the proof of Theorem 10.67 of [1], adapted to the
setting of HMMs – details appear in [9]. The completeness proof does not rely
on the until operator being part of the logic; therefore, the sublogic of POCTL*
without until formulas is sufficient to characterise state-based strong bisimilarity.
Thus, it conservatively extends the result for Markov chains [1].

4.2 Strong Belief Bisimilarity

In this section we will present a logical characterisation of strong belief bisimilar-
ity. First, in Subsection 4.2, we will discuss that several operators of POCTL*
are too discriminative with respect to belief bisimilarity. Then, we define the
logic SBBL*, which characterises strong belief bisimilarity.
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POCTL* Is too Discriminative. In the example of Fig. 4, we illustrate why
we shall have to remove a few operators to characterise strong belief bisimilarity.
Every transition in the HMM produces the same observation.

– The nested probabilistic operator ε1 := P≥0.5 (P≥1 (X a3)). Consider belief
state b1 defined by b1(s2) = b1(s4) = 0.5, and b2 defined by b2(s1) = b2(s3) =
0.5. It follows that b1 ∼sb b2, but b1 |= ε1, while b2 �|= ε1. The distinguishing
power of ε1 comes from the fact that s2 (in the support of b1) satisfies the
inner probabilistic formula, whereas no state in the support of b1 does so.

– The conjunction ε2 := P≥0.5 (a1 ∧ a2). For the belief states b1 and b2 defined
above, it holds then b2 |= ε2 but b1 �|= ε2.

– The conjunction after the path operator ε3 := P≥0.5 (X (a1 ∧ a2)), and belief
states 1s7 ∼sb 1s8 . We again have 1s7 �|= ε3 but 1s8 |= ε3.

– The until formula (X a1) U≤∞ a2 is satisfied by paths in C(s8, ω, s3), but
not by any path starting in s7. Therefore, 1s7 |= P=0

(
(X a1) U≤∞ a2

)
, but

1s8 does not satisfy this formula.
– The nested until formula ¬a1 U≤∞ (a2 U≤∞ a3) holds on paths in C(s8, ω, s3,
ω, s6), so similarly 1s7 |= P=0

(
¬a1 U≤∞ (a2 U≤∞ a3)

)
.
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Fig. 4. A hidden Markov model

The Logic SBBL*. Based on
the discussion above, we present
a sublogic of POCTL* to char-
acterise strong belief bisimilarity.
We call this logic SBBL*:

Φ ::= true | a | ¬Φ
ϕ ::= Φ | XΥ ϕ

ε ::= ¬ε | ε ∧ ε | P��p (ϕ)

| P��p

(
Φ U≤n Φ

)
Theorem 2. The logic SBBL* characterises strong belief bisimilarity,
i. e., two belief states are strongly belief bisimilar iff they satisfy the same SBBL*
belief state formulas.

Proof. We prove soundness by induction over the structure of the formulas; in
contrast to Theorem 1, the induction runs only over the belief state formulas.

We assume given two belief states b ∼sb c and a belief state SBBL*-formula
ε; we prove that b |= ε iff c |= ε. For symmetry reasons, it is enough to prove
one direction, so assume that b |= ε; then it remains to be proven that c |= ε.

– ε = ¬ε′ and ε = ε1 ∧ ε2. These two cases are simple consequences of the
induction hypothesis.

– ε = P��p (true) or P��p (¬true). Trivial.
– ε = P��p (a) or P��p (¬a). A simple consequence of Condition 1 of Def. 4.
– ε = P��p (ϕ), where ϕ = XΥ1 XΥ2 · · ·XΥk

Φ. LetΠ be the set of paths satisfy-
ing ϕ. So, Π = {σ|σ(0)o ∈ Υ1∧σ(1)o ∈ Υ2 . . . σ(k−1)o ∈ Υk∧σ(k . . .) |= ϕ′}.
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Note that Probb(Π) is a product of factors of the form Probb(ω1) for ω1 ∈ Υ1,
Probτ(b,ω1)(ω2) for ω2 ∈ Υ2, all constructed using Prob(·) and τ(·, ·). Simi-
larly, Probc(Π) can be described using Probc(ω1), Probτ(c,ω1)(ω2) etc. All
these terms for b and c are equal, because τ(b, ω1) ∼sb τ(c, ω1) for all ω1

(Condition 3 of Def. 4), Probb(ω1) = Probc(ω1) (Condition 2 of Def. 4), etc.
– ε = P��p

(
Φ1 U≤n Φ2

)
. First assume that n <∞. We evaluate this property

on a modified HMM M ′. It has the same states, labels and observations as
M , but (Φ2∨¬Φ1)-states are made absorbing. This does not change the truth
values of Φ1 or Φ2. Further, once a path has reached a (Φ2 ∨ ¬Φ1)-state, it
has become clear whether it satisfies ϕ. So modifying transitions out of these
states does not change the truth value of ε. OnM ′, the formula ε is equivalent
to P��p (XX · · ·XΦ2) (n next-operators); then, the argumentation for the
next-operator can be used to complete the proof.
Now, if n = ∞, note that the sequence (Probb(Φ1 U≤i Φ2))i∈N is a nonde-
creasing sequence in a compact interval, so it does have a limit, which is
Probb(Φ1 U≤∞ Φ2). The corresponding sequence for Probc consists of the
same elements, so it must have the same (unique) limit.

This finishes the proof of soundness. To show completeness, we define the equi-
valence relation on belief states R := {(b, c) | ∀ SBBL*-belief state formulas ε :
b |= ε iff c |= ε}. We have to show that this relation is a strong belief bisimula-
tion. Assume given two belief states b and c such that b R c.

– Condition 1. One sees easily that L(b, a) = sup {r|b |= P≥r (a)}. Obviously,
{r|b |= P≥r (a)} = {r|c |= P≥r (a)}; therefore L(b, a) = L(c, a).

– Condition 2. The same reasoning with sup {r|b |=P≥r (Xω true)}=Probb(ω).
– Condition 3. Assume given any ω ∈ Ω. We prove that b′ := τ(b, ω) R
τ(c, ω) =: c′. Assume given a belief state formula ε such that b′ |= ε; if
we can prove that c′ |= ε, then we get the desired result.
First assume that ε has the special form P��p (ϕ). Then, b |=
P��p·Probb(ω) (Xω ϕ), as Probb(Xω ϕ) = Probb(ω) · Probb′(ϕ). From the defi-
nition of R, we know that c |= the same formula, and therefore c′ |= P��p (ϕ).

Now assume that ε is constructed from the special form above using nega-
tion and conjunction, then a trivial induction over the structure of ε shows
c′ |= ε.

Again, from the completeness proof we see that the sublogic of SBBL* without
until formulas is sufficient to characterise strong belief bisimilarity.

4.3 Weak Belief Bisimilarity

In this section we present logical characterisation results for weak belief bisimi-
larity. We restrict SBBL* further to the following logic, named WBBL*:

Φ ::= true | a | ¬Φ
ϕ ::= Φ | XΥ true | Xϕ

ε ::= ¬ε | ε ∧ ε | P��p (ϕ) | P��p

(
Φ U≤n Φ

)
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Essentially, the operatorXΥ ϕ in SBBL* is replaced by two subformulasXΥ true
andXϕ. Note that properties like P≥0.25 (Xω1 Xω2 Xω3 true) are not inWBBL*,
so it cannot be used to describe to solve the corresponding standard problem.
The following theorem shows the main result:

Theorem 3. The logic WBBL* characterises weak belief bisimilarity,
i. e., two belief states are weakly belief bisimilar iff they satisfy the same WBBL*-
belief state formulas.

Proof. We proceed as in the previous two cases. To prove soundness, assume
given two belief states b and c that are weakly belief bisimilar and a belief state
WBBL*-formula ε such that b |= ε. We have to prove that c |= ε.

– ε = ¬ε′, ε = ε1 ∧ ε2, ε = P��p (true), P��p (¬true), P��p (a), P��p (¬a), or
P��p

(
Φ U≤n Φ

)
. These cases are handled as in Theorem 2.

– ε = P��p (XΥ true): The set Π of paths that satisfy XΥ true has probability
Probb(Π) = Probb(Υ ). From Condition 2 of Def. 5, it follows that this is
equal to Probc(Υ ) = Probc(Π).

– ε = P��p (Xϕ). From the induction hypothesis, we can conclude that b′ ∼wb

c′ implies b′ |= P>p (ϕ) iff c′ |= P>p (ϕ), so for every weak belief bisimi-
larity class B ∈ B/∼wb, ProbB(ϕ) is well-defined. Therefore, Probb(Xϕ) =∑

B∈B ProbB(ϕ) · Probb(B), and Probc(Xϕ) =
∑

B∈B ProbB(ϕ) ·Probc(B).
The right-hand sides are equal because of Condition 3 of Def. 5.

To show completeness, we define the equivalence relation on belief states

R := {(b, c) | ∀ WBBL*-belief state formulas ε : b |= ε iff c |= ε}

We have to show that this relation is a weak belief bisimulation. Assume given
two belief states b and c such that b R c.

– Conditions 1 and 2 are handled as in Theorem 2.
– Condition 3. Assume given any R-equivalence class B. We prove Probb(B) =

Probc(B) by regarding the satisfaction sets Sat(ε) for all WBBL*-belief state
formulas with rational probability bounds, i. e., every subformula P��p ( · ) has
p ∈ Q. Let SatQ contain all such satisfaction sets, and let F be the σ-algebra
generated from SatQ. Then, B ∈ F , because B is a countable intersection of
elements of SatQ. Note that SatQ is ∩-closed. Therefore, if two premeasures
agree on SatQ, then their extensions to measures on F also agree.
From the definition of R, it follows easily that Probb(ϕ) = Probc(ϕ) for any
belief states b R c, because Probb(ϕ) = sup{q ∈ Q|b |= P>q (ϕ)}. So, Probb
and Probc agree on SatQ.

5 Decision Algorithms

In this section we present decision algorithms for the three different bisimilari-
ties. The state-based strong bisimilarity is the easiest one, as it can be computed
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by a simple extension of the usual partition refinement algorithm [14,6,11]. The
complexity is linear in the number of transitions and observations and logarith-
mic in the number of states. We do not go further into that matter, as details
can be found in [3].

As the belief states are probability distributions, the set of belief states is un-
countable. Therefore, one cannot describe the belief state bisimulation quotient
as a partition of the state space as for standard bisimilarity or ordinary lumping
of Markov chains. Another approach has been proposed by [7]: two belief states
b and c are belief bisimilar if they are a solution to a specific equation system
over b(s) and c(s), for all s ∈ S. We adapt their algorithm to our setting and
show an improved time bound. The equation system is constructed as follows.

Let {s1, s2, . . . , sn} be an order of the states. We denote b(sj) as bj and c(sj)
as cj ; these variables will be the unknowns in the system. We construct the
equation system iteratively. We start with the system∧

a∈AP

∑
si|=a

bi − ci = 0 ∧
∧
ω∈Ω

∑
si∈S

Probsi(ω) · (bi − ci) = 0

The base case is the same for strong and weak belief bisimilarity: the first con-
junction corresponds to the condition on the labelling, and the second one to
the condition that the probability of observing ω ∈ Ω agrees with b and c.
Considering b and c and row vectors, this equation system can be written as(

A1 −A1

)
· (b, c)T = 0

where A1 is an (|AP |+ |Ω|)×n-matrix. We assume that A1 is brought to upper
triangular form (i. e., a matrix with zeroes below the main diagonal) immediately,
and the equations that turn out to be linearly dependent are removed. Let k1
be the number of rows in A1 (after the triangular transformation), i. e., k1 ≤
|AP |+ |Ω|. There can be at most n linearly independent equations of this form
(since A1 has n columns); this property will be used to ensure termination. If
k1 = n, we stop immediately.

5.1 Deciding Weak Belief Bisimilarity

Now we describe the iteration step for weak belief bisimilarity – corresponding
to the third condition of weak belief bisimulation in Def. 5. In the ith iteration
step, we assume given an equation system of the form⎛⎜⎝A1 −A1

...
...

Ai −Ai

⎞⎟⎠ · (b, c)T = 0 (1)

with at most n− 1 equations (n equations cannot occur because the algorithm
would have terminated earlier in that case), all of them linearly independent, in
upper triangular form. From this, we construct an extended equation system of
the same form, but possibly with more equations:
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A1 −A1

...
...

Ai −Ai

Ai+1 −Ai+1

⎞⎟⎟⎟⎠ · (b, c)T = 0 (2)

If it does not have more equations, we have reached a fixpoint. In that case, or
if the new system has n equations, we can stop after the ith iteration step.

To find Ai+1, we first add new equations to the system: the new equa-
tions are produced from equations in (1) by replacing the variable bj with∑

ω∈Ω Probb(ω, sj) and replacing the cj with
∑

ω∈Ω Probc(ω, sj). It is enough to
add the new equations for the rows of Ai, as equations for A1, A2, . . . , Ai−1 have
been added earlier. This adds at most ki equations, where ki is the number of
rows in Ai. Then, we bring the matrix in equation 2 with all these new equations
into upper triangular form, to find out which ones are linearly dependent. As
A1, . . . , Ai are already in upper triangular form, we only have to do calculations
with Ai+1. Finally, we drop the linearly dependent equations, giving us ki+1 ≤ ki
additional equations.

Time complexity. The algorithm generates an equation system in upper triangu-
lar form. It basically interleaves (i) steps where ki new equations are generated,
corresponding to Ai+1, with (ii) steps where these new equations are brought into
upper triangular form, and the linear dependent ones are removed. Some equa-
tions then turn out to be linearly dependent; this will happen exactly |AP |+ |Ω|
times in total, because we started with this number of equations. To see this, re-
member that every single row in A1 (i. e., a single equation) is transferred to A2,
A3, . . . by the variable substitution described above. In one of those transfers,
the generated equation turns out to be linearly dependent, and from that itera-
tion on, it is dropped completely. Therefore, at most n + |AP | + |Ω| equations
over 2n variables are generated. The most costly step is to turn the equation
system into upper triangular form. For all equations together, this takes time
∈ O(n2(n+ |AP |+ |Ω|)). Notably, this improves the time bound O(n4) in [7] by
a factor of n, as in most cases |AP |+ |Ω| & n.

5.2 Deciding Strong Belief Bisimilarity

The argumentation for strong belief bisimilarity is almost the same as for weak
belief bisimilarity; only in the iteration step, one set of equations for each ob-
servation ω ∈ Ω is generated – corresponding to the third condition of strong
belief bisimulation in Def. 4. In the ith iteration step, assume that we start
with an equation system of the form in (1). We similarly add new equations to
it, but now, for every ω ∈ Ω, we add a set of equations where we replace bj
by Probb(ω, sj) and cj by Probc(ω, sj). So, Ai+1 consists of rows of the form
Ai · P · O(. . . , . . .)(ω). It adds at most ki|Ω| equations to the system.

We similarly bring all these equations into upper triangular form and eliminate
the linearly dependent ones.
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Time complexity. The final equation systems contains at most n equations. In
the worst case, from every of these equations, we generated |Ω| new equations
in some iteration, brought them into upper triangular form and found them
(almost) all linearly dependent. So, at most n|Ω| equations over 2n variables have
been generated. Turning them into upper triangular form takes time ∈ O(n3|Ω|).

6 Related Work

The three bisimulation relations we have considered here are based on existing
definitions in the literature for Markov chains and their extensions. State-based
strong bisimulation was considered earlier [3] and is a simple extension of the
bisimulation for Markov chains [13], by incorporating the notion of observations.
Our logic POCTL* [20] is an extension of the logic PCTL* [8]. Moreover, our
logical characterisation for state-based bisimulation also conservatively extends
the logical characterisation of Markov chains presented e. g. in [2].

The strong and weak belief bisimulations we have used were taken from [4],
where they are defined for a general model with nondeterministic choices. The
new concept here is to match distributions with distributions, instead of states
with states as in the classical setting. This notion of equivalence has also been
studied in [7], where bisimulation between distributions is defined for labelled
Markov chains: strong belief bisimulation can be considered as an extension of
the definition in [7] with the observation function attached to the transitions.
In HMMs where all transitions generate the same trivial observation, it agrees
with the definition in [7]. Thus, inspired by the work in [7], we have presented
an algorithm for deciding strong belief bisimulation. As we have noted, our time
bound improves theirs. Because of the mentioned connection to [7], our logical
characterisation also carries over to the setting of labelled Markov chains.

Finally, we want to mention the recent related paper [12] in which the al-
gorithm in [7] was – independently – improved to cubic as well: they have a
similar observation as our paper by keeping the basis in a canonical orthogo-
nal set. Moreover, they have proposed a randomized algorithm with quadratic
complexity which could be applied in our setting as well.
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Abstract. Given a Kripke structure M and CTL formula ϕ, where
M �|= ϕ, the problem of Model Repair is to obtain a new model M ′

such that M ′ |= ϕ. Moreover, the changes made to M to derive M ′

should be minimal with respect to all such M ′. As in model checking,
state explosion can make it virtually impossible to carry out model re-
pair on models with infinite or even large state spaces. In this paper, we
present a framework for model repair that uses abstraction refinement to
tackle state explosion. Our model-repair framework is based on Kripke
Structures, a 3-valued semantics for CTL, and Kripke Modal Transition
Systems (KMTSs), and features an abstract-model-repair algorithm for
KMTSs. Application to an Automatic Door Opener system is used to
illustrate the practical utility of abstract model repair.

Keywords: Model Repair, Model Checking, Abstraction Refinement.

1 Introduction

Given a modelM and temporal-logic formula ϕ,model checking is the problem of
determining if M |= ϕ. When this is not the case, a model checker will typically
provide a counterexample in the form of an execution path along which φ is
violated. The user should then process the counterexample manually to correct
the model.

An extended version of the model-checking problem is that of model repair :
given a model M and temporal-logic formula ϕ, where M �|= ϕ, obtain a new
model M ′ such that M ′ |= φ. The problem of Model Repair was introduced for
the first time in the context of Kripke structures and the CTL temporal logic
in [4].

State explosion is a well known problem in automated formal methods, such
as model checking and model repair, which limits their applicability to systems
having large or even infinite state spaces. Different techniques have been devel-
oped to cope with this problem. In the case of model checking, abstraction is
used to create a smaller, more abstract version M̂ of the initial concrete model
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M , and model checking is performed on this smaller model. For this technique
to work as advertised, it should be the case that M̂ |= ϕ iff M |= ϕ.

Motivated by the success of abstraction-based model checking, we present in
this paper a new framework for Model Repair that uses abstraction refinement
to tackle state explosion. The resulting Abstract Model Repair (AMR) method-
ology makes it possible to repair models with large state spaces, and to speed-up
the repair process through the use of smaller abstract models. The major con-
tributions of our work are as follows:

– We provide an AMR framework that uses Kripke structures (KSs) for the
concrete model, Kripke Modal Transition Systems (KMTSs) for the abstract
model, and a 3-valued semantics for interpreting CTL over KMTSs. An
abstract KMTS model is refined whenever the 3-valued CTL model-checking
problem returns a value of undefined. Repair is initiated on the KMTS when
a value of false is returned.

– We strengthen the Model Repair problem by additionally taking into account
the following minimality criterion (refer to the definition of Model Repair
above): the changes made to M to deriveM ′ should be minimal with respect
to allM ′ satisfying ϕ. To handle the minimality constraint, we define a metric
space over KSs that quantifies the structural differences between KSs.

– A key feature of our Abstract Model Repair framework is a repair algorithm
for KMTSs, which takes into account the minimality criterion.

– We illustrate the utility of our approach by applying it to the repair of an
Automatic Door Opener system [1].

The rest of this paper is organized as follows. Sections 2 and 3 introduce KS,
KMTSs, and the concepts of abstraction and refinement for a 3-valued semantics
for CTL. Section 4 defines a metric space for KSs and gives the problem state-
ment for Model Repair. Section 5 presents our framework for Abstract Model
Repair, while Section 6 highlights our model-repair algorithm for KMTSs. Sec-
tion 7 considers related work, while Section 8 offers our concluding remarks.

2 Kripke Modal Transition Systems

Let AP be a set of atomic propositions. Also, the set Lit of literals is given by:

Lit = AP ∪ {¬p : p ∈ AP}

Definition 1. A Kripke Structure (KS) is a quadruple M=(S, S0, R, L), where:

1. S is a finite set of states.
2. S0 ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total; i.e., ∀s ∈ S, ∃s′ ∈ S

such that R(s, s′).
4. L : S → 2Lit is a state labeling function such that ∀s ∈ S, ∀p ∈ AP ,

p ∈ L(s)⇔ ¬p /∈ L(s).
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Fig. 1. The Automatic Door Opener (ADO) System

The fourth condition in Def. 1 ensures that an atomic proposition p ∈ AP has
one and only one truth value at any state.

Example. We use the Automatic Door Opener system (ADO) of [1] as a running
example throughout the paper. The system, given as a KS in Fig 1, requires
a three-digit code (p0, p1, p2) to open a door, allowing for a wrong digit to be
entered at most twice. Variable err counts the number of errors, and an alarm
is rung if its value exceeds two. For the purposes of our paper, we use a simpler
version of the ADO system, given as the KS M in Fig. 2a, where the set of
atomic propositions AP = {q}, q ≡ (open = true).

Definition 2. A Kripke Modal Transition System (KMTS) is a 5-tuple M̂ =
(Ŝ, Ŝ0, Rmust, Rmay, L̂), where:

1. Ŝ is a finite set of states.
2. Ŝ0 ⊆ Ŝ is the set of initial states.
3. Rmust ⊆ Ŝ× Ŝ and Rmay ⊆ Ŝ× Ŝ are transition relations such that Rmust ⊆

Rmay.

4. L̂ : Ŝ → 2Lit is a state-labeling such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled by at
most one of p and ¬p.

A KMTS has two types of transitions: must-transitions, which exhibit necessary
behavior, and may-transitions, which exhibit possible behavior. The “at most
one” condition in the fourth part of Def. 2 makes it possible for the truth value
of an atomic proposition at a given state to be unknown. This relaxation of
truth values in conjunction with the existence of may-transitions in a KMTS
constitutes a partial modeling formalism.

Verifying a CTL formula φ over a KMTS may result in an undefined answer
(⊥). We use the 3-valued semantics [13] of a CTL formula φ at a state ŝ of
KMTS M̂ (denoted [(M̂, ŝ) |=3 φ]). From the 3-valued semantics, it follows that
must-transitions (under-approximation) are used to check the truth of existential
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CTL properties, while may-transitions (over-approximation) are used to check
the truth of universal CTL properties. This works inversely for checking the
refutation of CTL properties. When we get ⊥ from the 3-valued model checking
of a CTL formula φ on a KMTS, the result of model checking property φ on the
corresponding KS can be either true or false. In the rest of the paper, we use |=
instead of |=3 in order to refer to 3-valued satisfaction relation.

3 Abstraction and Refinement for 3-Valued CTL

3.1 Abstraction

Abstraction is a state-space reduction technique that produces a smaller abstract
model from an initial concrete model, so that the models behave similarly. In
order for the result of verifying an abstract model to hold for its concrete model,
the abstract model should be produced with certain requirements [7,10].

Definition 3. Let M = (S, S0, R, L) be a KS. For any pair of total functions
( = (α : S → Ŝ, γ : Ŝ → 2S), where ∀s ∈ S, ŝ ∈ Ŝ, α(s) = ŝ if and only if
s ∈ γ(ŝ), a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) is defined as follows:

1. ŝ ∈ Ŝ0 iff ∃s ∈ γ(ŝ) such that s ∈ S0

2. lit ∈ L̂(ŝ) only if ∀s ∈ γ(ŝ) it holds that lit ∈ L(s)
3. Rmust = {(ŝ1, ŝ2) | ∀s1 ∈ γ(ŝ1) ∃s2 ∈ γ(ŝ2) such that R(s1, s2)}
4. Rmay = {(ŝ1, ŝ2) | ∃s1 ∈ γ(ŝ1) ∃s2 ∈ γ(ŝ2) such that R(s1, s2)}
For a given KS and pair of abstraction and concretization functions, Def. 3
introduces a KMTS with a set Ŝ of abstract states. In our AMR framework, we
view the given KS as the concrete model and the derived KMTS as the abstract
model. A state of the abstract KMTS is initial if and only if at least one of its
concrete states is initial. An atomic proposition is true (or false) in an abstract
state, only if this atomic proposition is true (or false) in all of its concrete states.
Only if allows for the value of an atomic proposition to be unknown at a KMTS
state. Between two abstract states ŝ1,ŝ2, there exists a must-transition if there
are transitions from all the concrete states of ŝ1 to at least one concrete state
of ŝ2 (∀∃ − condition), while on the other side, there exists a may-transition if
there is a transition from at least one concrete state of ŝ1 to at least one concrete
state of ŝ2 (∃∃ − condition).

Definition 4. [8,11] Let M = (S, S0, R, L) be a concrete KS, and let M̂ =
(Ŝ, Ŝ0, Rmust, Rmay, L̂) be an abstract KMTS. A relation H ⊆ S × Ŝ for M and

M̂ is called a mixed simulation, when H(s, ŝ) implies:

– L̂(ŝ) ⊆ L(s)
– if r = (s, s′) ∈ R, then there exists some ŝ′ ∈ Ŝ such that rmay = (ŝ, ŝ′) ∈
Rmay and (s′, ŝ′) ∈ H.

– if rmust = (ŝ, ŝ′) ∈ Rmust, then there exists some s′ ∈ S such that r =
(s, s′) ∈ R and (s′, ŝ′) ∈ H.

Abstraction function α in Def. 3 is a mixed simulation for KS M and KMTS M̂ .



Abstract Model Repair 345

(a) The KS and initial KMTS (b) The KS and refined KMTS

Fig. 2. The KS and KMTSs for the ADO system

Theorem 1. [11] Let H ⊆ S × Ŝ be a mixed simulation from a KS M =
(S, S0, R, L) to a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂). Then, for every CTL
formula ϕ and every (s, ŝ) ∈ H it holds that

[(M̂, ŝ) |= ϕ] �= ⊥ ⇒ [(M, s) |= ϕ] = [(M̂, ŝ) |= φ]

Theorem 1 ensures that if a CTL formula φ has a definite truth value (true or
false) in the abstract KMTS then it has the same truth value in the concrete
KS.

Example. An abstract KMTS M̂ is presented in Fig. 2a, where all the states
labeled by q are grouped together, as are all states labeled by ¬q.

3.2 Refinement

When the answer to verifying a CTL formula ϕ on an abstract model using the
3-valued semantics is ⊥, then a refinement step is needed to acquire a more
precise abstract model. A number of refinement frameworks specialized for 3-
valued model checking have been proposed [10,16]. The refinement technique
that we use in our framework is a two-step process: (1) identify a failure state in
the KMTS, and (2) produce a new abstract KMTS such that this failure state is
refined into several states. The cause of failure for a state s stems from an atomic
proposition having an undefined value in s, or from an outgoing may-transition
from s. In both cases, s is refined in a way that the cause of failure is eliminated.

Example. Consider the case where the ADO system requires a mechanism for
opening the door from any state with a direct action. This could be an action
done by an expert if an immediate opening of a door is required. This property
can be expressed in CTL as the formula ϕ = AGEXq. Observe that in M̂ of
Fig. 2a, the absence of a must-transition from ŝ0 to ŝ1, where [(M̂, ŝ1) |= q] =
true, in conjunction with the existence of a may-transition from ŝ0 to ŝ1, thus
to a state where [(M̂, ŝ1) |= q] = true, results in an undefined answer to the



346 G. Chatzieleftheriou et al.

model-checking question for M̂ and ϕ. State ŝ0 is identified as the failure state,
and the may-transition from ŝ0 to ŝ1 as the cause of the failure. Consequently,
ŝ0 is refined into two states, ŝ01 and ŝ02, such that the former has no transition
to ŝ1 and the latter has an outgoing must-transition to ŝ1. As such, we eliminate
the may-transition which led to the undefined answer of model checking varφ
over M̂ . The refined KMTS M̂Refined together with the initial KS is shown in
Fig. 2b.

4 The Model Repair Problem

In this section, we give the problem statement for Model Repair and define a
metric space over Kripke structures to quantify their structural differences such
that the minimality of changes can be taken into account as a criterion for Model
Repair.

Let G be a function on the set of all functions F : X → Y such that:

G(F : X → Y ) = {(x, F (x)) : x ∈ X}

Let F : X → Y be a function defined over a set X . A restricting operator (	) for
the domain of function F can be defined such that

F 	X1= {(x, F (x)) : x ∈ X1}

where X1 ⊆ X . Finally, we let SC denote the complement of a set S.

Definition 5. Let KM be the set of all KSs M ′ = (S′, S′
0, R

′, L′) derived from
the KS M = (S, S0, R, L), where S′ = (S ∪ SIN ) − SOUT for some SIN ⊆ SC,
SOUT ⊆ S, R′ = (R ∪ RIN ) − ROUT for some RIN ⊆ RC, ROUT ⊆ R, L′ =
S′ → 2LIT . A distance function d can be defined over KM such that

d(M,M ′) = |SΔS′|+ |RΔR′|+ |G(L 	S∩S′)ΔG(L′ 	S∩S′)|
2

where AΔB represents the symmetric difference (A−B) ∪ (B −A).

For any two KSs defined over the same set of atomic propositions AP , function
d counts the number of differences |SΔS′| in the state space of M , the number of
differences |RΔR′| in their transition relation and the number of common states
with altered labeling.

Proposition 1. The ordered pair (KM , d) is a metric space.

Definition 6. Given a KS M and a CTL formula ϕ where M �|= ϕ, the Model
Repair problem is to find a KS M ′, such that M ′ |= ϕ and d(M,M ′) is minimal
with respect to all such M ′.

The Model Repair problem aims at modifying a KS such that the KS satisfies
a CTL formula that it originally does not. We focus on repair with minimal
changes to the original KS.
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Fig. 3. Abstract Model Repair Framework

5 Abstract Model Repair Framework and Algorithm

Our AMR framework integrates 3-valued model checking, model refinement, and
a new algorithm for ordering the basic repair operations to be performed on the
abstract model. The goal of this algorithm is to order the repair operations in
such a way that the number of corresponding structural changes applied to the
concrete model is minimized. The basis for this algorithm is a partial order over
the basic repair operations. This section describes the steps involved in our AMR
framework, the basic repair operations, and the operations-ordering algorithm.

5.1 The Abstract Model Repair Process

The process steps shown in Fig. 3 rely on the KMTS abstraction of Def. 3. These
are the following:

Step 1. Given a KS M , a state s of M , and a CTL property ϕ, let us call M̂
the KMTS obtained as in Def. 3.

Step 2. For state ŝ = α(s) of M̂ , we check whether (M̂, ŝ) |= ϕ by 3-valued
model checking.
Case 1. If the result is true, then, according to Theorem 1, (M, s) |= ϕ and

there is no need for repair.
Case 2. If the result is undefined, M̂ is refined to an M̂Refined and control

is transferred to Step 2.
Case 3. If the result is false, then, from Theorem 1, (M, s) �|= ϕ and the

repair process follows.
Step 3. The AbstractRepair algorithm is called for the KMTS M̂ (or M̂Refined

if refinement occurred), the state ŝ and the property ϕ.
Case 1. AbstractRepair returns an M̂ ′ for which (M̂ ′, ŝ) |= ϕ.
Case 2. AbstractRepair fails to find an M̂ ′ for which the property holds.
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Step 4. If AbstractRepair returns an M̂ ′, then the process ends with a set of
KSs, resulting from the concretization of M̂ ′, whose structural distance d
from the original KS M is minimized.

5.2 Basic Repair Operations

We decompose the repair process of the KMTS into seven basic repair operations:

AddMust. Adding a must-transition
AddMay. Adding a may-transition
RemoveMust. Removing an existing must-transition
RemoveMay. Removing an existing may-transition
ChangeLabel. Changing the labeling of a KMTS state
AddState. Adding a new KMTS state
RemoveState. Removing a disconnected KMTS state

Definition 7 (AddMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂)

and r̂n = (ŝ1, ŝ2) /∈ Rmust with ŝ1, ŝ2 ∈ Ŝ, AddMust(M̂, r̂n) is a KMTS M̂ ′ =

(Ŝ′, Ŝ′
0, R

′
must, R

′
may, L̂

′) such that Ŝ′ = Ŝ, Ŝ′
0 = Ŝ0, R

′
must = Rmust ∪ {r̂n},

R′
may = Rmay ∪ {r̂n} and L̂′ = L̂.

Fig. 4 shows how the basic repair operation AddMust modifies a given KMTS.

(a) May-transition exists (b) May-transition doesn’t exist

Fig. 4. AddMust : Adding a new must-transition

Definition 8. Let M be a KS, M̂ be a KMTS derived as in Def. 3, and M̂ ′ =
AddMust(M̂, r̂n) for some r̂n = (ŝ1, ŝ2) /∈ Rmust with ŝ1, ŝ2 ∈ Ŝ. The set of
KSs, derived from the concretization of M̂ ′, whose structural distance d from M
is minimized is given by:

Kmin = {M ′ = (S′, S′
0, R

′, L′) | S′ = S, S′
0 = S0, R

′ = R ∪Rn, L
′ = L} (1)

where
Rn = {rn = (s1, s2) | for every s1 ∈ γ(ŝ1) such that � ∃s ∈ γ(ŝ2) with (s1, s) ∈ R,
and only one s2 ∈ γ(ŝ2)}.
Def. 8 implies that when the AbstractRepair algorithm applies AddMust on the
abstract KMTS M̂ , then a set of KSs are retrieved from the concretization of M̂ ′.
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The same holds for the other basic repair operations for which their definition
is omitted for the sake of brevity. Consequently when AbstractRepair finds a
repaired KMTS, one or more KSs can be obtained for which property ϕ holds.

Proposition 2. For all M ′ ∈ Kmin, it holds that 1 ≤ d(M,M ′) ≤ |S|.

From Prop. 2, we conclude that a lower and upper bound exists for the distance
between M and any M ′ ∈ Kmin.

Minimality of Changes Ordering for Basic Repair Operations. Based
on the upper bound given by Prop. 2 and the corresponding results for the
other basic repair operations, we introduce the ordering shown in Fig. 5. We use
this ordering in the AbstractRepair algorithm to heuristically select at each step
the basic repair operation that generates the KSs with the least changes. The
alternative to check at each step all possible repaired KSs in order to identify
the proper basic repair operation, would cancel the benefits of using abstraction.
The reason is that such a check inevitably depends on the size of the KS.

Remove
State

Change
Label

Remove
May

d ≤ |S|2

Add
Must

Remove
Must

d ≤ |S| d ≤ |S| d ≤ |S|

Add
State 
d ≤ 1

d ≤ |S|

Add
May
d ≤ 1

Fig. 5. Minimality of changes ordering of the set of basic operations

6 The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a recursive,
CTL syntax-directed algorithm. The repair of an abstract KMTS is accomplished
by successive calls of primitive repair functions that handle atomic formulas,
logical connectives and CTL operators.

The main routine of AbstractRepair is presented in Algorithm 1. A set of
constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} which is initially empty is
passed as an argument in the successive recursive calls of AbstractRepair. If C is
not empty, then for the KMTS M̂ ′ returned from AbstractRepair, it holds that
(M̂ ′, ŝci) |= φci for all (ŝci, φci) ∈ C. C is used for handling conjunctive formulas
of the form φ = φ1 ∧ φ2 for some state ŝ. In this case, AbstractRepair is called
for the KMTS M̂ and property φ1 with C = {(ŝ, φ2)}. The same is repeated for
property φ2 with C = {(ŝ, φ1)} and the two results are combined appropriately.

For any CTL formula φ and KMTS state ŝ, AbstractRepair either outputs a
KMTS M̂ ′ for which (M̂ ′, ŝ) |= φ or else returns FAILURE if such a model cannot
be found. This is the case when the algorithm handles conjunctive formulas and
a KMTS that simultaneously satisfies all conjuncts cannot be found.
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Algorithm 1. AbstractRepair

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ for which (M̂, ŝ) �|= φ,
and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where ŝci ∈ Ŝ and
φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: φpos := PositiveNormalForm(φ)
2: if φpos is ⊥ then
3: return FAILURE
4: else if φpos ∈ LIT then
5: return AbstractRepairATOMIC(M̂, ŝ, φpos, C)
6: else if φpos is φ1 ∧ φ2 then
7: return AbstractRepairAND(M̂, ŝ, φpos, C)
8: else if φpos is φ1 ∨ φ2 then
9: return AbstractRepairOR(M̂, ŝ, φpos, C)
10: else if φpos is OPERφ1 then
11: return AbstractRepairOPER(M̂, ŝ, φpos, C)
12: where OPER ∈ {AX,EX,AU,EU,AF,EF,AG,EG}

6.1 Primitive Functions

For a simple atomic formula, AbstractRepairATOMIC updates the label of the
input state with the given atomic proposition. While conjunctive formulas are
handled by the algorithm with the use of constraints, disjunctive formulas are
handled by repairing any of the disjuncts.

Algorithm 2 describes the primitive function AbstractRepairAG which is called
when φ = AGφ1. When AbstractRepairAG is called with state ŝ as argument, it
recursively calls AbstractRepair for all states that are reachable from ŝ through
successive may-transitions and do not satisfy φ1. If the found KMTS M̂ ′ does
not violate any constraint in C, then (M̂ ′, ŝ) |= φ and AbstractRepairAG re-
turns the found solution. If a KMTS does not satisfy all the constraints in C,
then AbstractRepairAG tries to repair the input KMTS by removing all may-
transitions through which the state violating φ1 is reached.

AbstractRepairEX presented in Algorithm 3 is the primitive function for han-
dling properties of the form EXφ1 for some state ŝ. Initially, this function tries
to repair the KMTS by adding a must-transition from ŝ to a state that satisfies
property φ1. If the obtained KMTS does not satisfy all constraints in C, then
AbstractRepair is recursively called for an immediate successor of ŝ through a
must-transition, such that φ1 is not satisfied. If a constraint in C is still violated,
then (i) a new state is added, (ii) AbstractRepair is called for the new state and
(iii) a must-transition from ŝ to the new state is added.

6.2 Well-definedness and Soundness

AbstractRepair is well-defined, in the sense that all possible cases are handled
and each algorithm step is deterministically defined. This feature distinguishes
our approach from related concrete model repair solutions which entail nonde-
terministic behavior [19,5].
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Algorithm 2. AbstractRepairAG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ = AGφ1 for which
(M̂ , ŝ) �|= φ, and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where
ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if (M̂, ŝ) �|= φ1 then
2: RET := AbstractRepair(M̂, ŝ, φ1, C)
3: if RET == FAILURE then
4: return FAILURE
5: else
6: M̂ ′ := RET
7: else
8: M̂ ′ := M̂
9: M̂ ′′ := M̂ ′

10: for all reachable states ŝk through may-transitions from ŝ such that (M̂ ′, ŝk) �|= φ1

do
11: RET := AbstractRepair(M̂ ′, ŝk, φ1, C)
12: if RET == FAILURE then
13: BREAK
14: else
15: M̂ ′ := RET
16: if M̂ ′ |= φ && M̂ ′ |= C then
17: return M̂ ′

18: else
19: M̂ ′ := M̂ ′′

20: for all π̂may := [ŝ, ŝ1, ..., ŝi, ŝk] for which (M̂ ′, ŝk) �|= φ1, (M̂ ′, ŝi) |= φ1 and
� ∃ŝj ∈ π̂may such that (M̂ ′, ŝj) �|= φ1 and ŝj ∈ Premay(ŝi) do

21: r̂m := (ŝi, ŝk), M̂ ′ := RemoveMay(M̂ ′, r̂m)
22: if ŝi is a dead-end state then
23: r̂n := (ŝi, ŝi), M̂ ′ := AddMay(M̂ ′, r̂n)
24: if M̂ ′ |= C then
25: return M̂ ′

26: else
27: return FAILURE

Theorem 2 (Soundness). Let M̂ be a KMTS and φ a CTL formula for which
(M̂, ŝ) �|= φ for some state ŝ of M̂ . If AbstractRepair(M̂, ŝ, φ) returns a KMTS
M̂ ′, then (M̂ ′, ŝ) |= φ.

Proof. The proof is done by structural induction over φ.

Theorem 2 shows that AbstractRepair is sound in the sense that if it returns a
KMTS M̂ ′, then M̂ ′ satisfies property φ. In that case, from Def. 8 it follows that
one or more KSs are obtained for which property φ holds true.

6.3 Application

We present the application of AbstractRepair to the ADO system from Section 2.
After the first two steps of our repair process, AbstractRepair is called for the
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Algorithm 3. AbstractRepairEX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ = EXφ1 for which
(M̂ , ŝ) �|= φ, and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where
ŝci ∈ M̂ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if there exists ŝ1 ∈ Ŝ such that (M̂, ŝ1) |= φ1 then
2: for all ŝi ∈ Ŝ such that (M̂, ŝi) |= φ1 do
3: r̂n := (ŝ, ŝi), M̂ ′ := AddMust(M̂, r̂n)
4: if M̂ ′ |= C then
5: return M̂ ′

6: else
7: for all ŝi ∈ Postmust(ŝ) do
8: RET := AbstractRepair(M̂, ŝi, φ1, C)
9: if RET �= FAILURE then
10: M̂ ′ := RET
11: return M̂ ′

12: M̂ ′ := AddState(M̂, ŝ′1), r̂n := (ŝ, ŝ′1), M̂ ′ := AddMust(M̂ ′, r̂n)
13: if ŝ′1 is a dead-end state then
14: r̂n := (ŝ′1, ŝ

′
1), M̂ ′ := AddMay(M̂ ′, r̂n)

15: RET := AbstractRepair(M̂ ′, ŝ′1, φ1, C)
16: if RET �= FAILURE then
17: M̂ ′ := RET
18: return M̂ ′

19: else
20: return FAILURE
21: return FAILURE

(a) Application of AbstractRepair (b) The repaired KMTS and KS

Fig. 6. Repair of ADO system using abstraction

KMTS M̂Refined that is shown in Fig. 2b, the state ŝ01 and the CTL property
φ = AGEXq.

AbstractRepair calls AbstractRepairAG with arguments M̂Refined, ŝ01 and
AGEXq. The AbstractRepairAG algorithm at line 2 triggers a recursive call
of AbstractRepair with the same arguments. Eventually, AbstractRepairEX is
called with arguments M̂Refined, ŝ01 and EXq, that in turn calls AddMust at
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line 3, thus adding a must-transition from ŝ01 to ŝ1. AbstractRepair terminates
by returning a KMTS M̂ ′ that satisfies φ = AGEXq. The repaired KS M ′ is
the single element in the set of KSs derived by the concretization of M̂ ′. The
execution steps of AbstractRepair and the obtained repaired KMTS and KS are
shown in Fig. 6a and Fig. 6b respectively.

Although the ADO is not a system with a large state space, it is shown that
the repair process is accelerated by the proposed use of abstraction. If on the
other hand model repair was applied directly to the concrete model, adding
transitions to the state labeled with open would have to take place for all states
with a different labeling. The number of these states is seven but in a system
with a large state space this number can be significantly higher. Direct repair of
such a model without using abstraction is impractical.

7 Related Work

To the best of our knowledge this is the first work that suggests the use of
abstraction as a means to counter the state space explosion in the search for a
solution to the Model Repair problem. In [18], abstract interpretation is used in
program synthesis, a problem related to Model Repair but much different.

A first attempt for introducing the Model Repair problem in the context of
CTL has been done in [4], where a repair algorithm with high computational
cost is presented based on the AI techniques of abductive reasoning and theory
revision. A formal algorithm for Model Repair in the context of KSs and CTL
is presented in [19]. The authors acknowledge that the repair process strongly
depends on the size of the model, while they do not implement explicitly in
their algorithm how the constraints can be used to handle conjunctive formulas.
An effort for making repair applicable to large KSs, is done by the authors of
[6]. They use “table systems”, a concise representation of KSs, implemented in
the NuSMV model checker. A certain limitation for their approach is that ta-
ble systems cannot represent any KS. In [20], tree-like local model updates are
introduced with the aim of making repair process applicable to large scale do-
mains, but their approach is limited to the universal fragment of CTL formulas.
For better handling of the constraints in the repair process and thus, ensuring
completeness of it, the use of constraint automata for ACTL formulas [14] and
the use of protected models for an extension of CTL [5] have been proposed.
Both methods are not directly applied to formulas of full CTL. An extension
of the Model Repair problem in the context of Labeled Transition Systems has
been examined in [9].

The Model Repair problem has been addressed in [2] in the context of prob-
abilistic systems. A slightly different problem, that of Model Revision, has been
studied for UNITY properties in [3] and for CTL in [12]. Finally, the program re-
pair problem that does not consider KSs as the repair model, has been examined
in prior work [17,15].
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8 Conclusions

In this paper, we have shown how abstraction can be used to fight state explosion
in Model Repair. Our model-repair framework is based on Kripke Structures, a 3-
valued semantics for CTL, and Kripke Modal Transition Systems, and features
an abstract-model-repair algorithm for KMTSs. To demonstrate its practical
utility, we applied our framework to an Automatic Door Opener system.

As future work, we plan to apply our method to case studies with larger
state spaces, and investigate how abstract model repair can be used in different
contexts and domains.
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Abstract. We present CLSE, a closed-loop symbolic execution engine
for control system implementations. CLSE takes as input the description
of a physical plant represented by a system of linear ordinary differential
equations, the software implementation and execution frequency for a
discrete-time controller that senses and actuates the plant, and a time
horizon, and symbolically executes the closed-loop system —the com-
bination of the plant and the controller— up to the time horizon. The
execution helps capture the bounded-time dynamics of the system in
terms of the finite sequences of the plant’s sampled state-sets and sym-
bolic control inputs. We show the use of CLSE in symbolic execution of a
set of control systems benchmarks. Using the symbolic execution engine,
we also build a robustness analysis tool which computes the maximum
deviation of the states of the plant due to measurement uncertainties in
the controller up to the time horizon.

1 Introduction

Software controllers for physical systems are at the core of many safety-critical
systems. The combination of physical behavior, given by the dynamics of con-
tinuous state variables, and discrete behavior, implemented in software, makes
the end-to-end behavior of these systems hard to design and to reason about.

The need for effective analysis techniques for cyber-physical systems com-
bining physical plants and software controllers has been long recognized. Most
current techniques, though, take one of two approaches. In the first approach,
the system is modeled as a hybrid automaton [1,19,8,23] —a finite-state machine
that is endowed with dynamics over continuous variables— and symbolic reacha-
bility analysis is performed on this model. This captures the intended semantics
of the plant but usually the software-based controller is “abstracted away” to
a mathematical function that is typically modeled as a second automaton run-
ning in parallel with the plant. While recent progress in reachability analysis
for hybrid automata [14] have shown the potential for symbolic techniques to
scale to systems with many continuous variables, the simplistic modeling of the
controller, in particular, the omission of programming-language level features
whose interaction with the physical system often leads to errors, makes it hard
to provide any guarantees for the implementation of the feedback control system.

In the second approach, techniques used in analysis of programs, based on
abstract interpretation, precisely model features of the controller program, but
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usually “abstracts away” the plant’s dynamics, assuming that the sensors can
read arbitrary values from their range in each cycle. While tools like Astrée [4]
and Fluctuat [17] have been successful in proving various safety properties of
controller programs, such as the absence of arithmetic or buffer overflows, the
absence of a plant model makes it hard to verify properties of the entire feed-
back control system that depend on the interaction between the plant and the
controller.

In order to address the drawbacks in these two approaches, it is clear that
analysis techniques need to model the full closed-loop control system —both
the plant and the controller code— in analyzing embedded control software in
cyber-physical systems. This need has been expressed before [7,16,3,11], and
some tools to perform closed-loop simulation of feedback control systems have
been developed recently (cf. [2,24,27]).

We present Clse, a symbolic execution engine for feedback control systems.
Clse takes as input the description of a feedback control system in two parts: a
plant model given as a set of linear ordinary differential equations, and a soft-
ware implementation of a controller for the plant. For a given time horizon and a
sampling rate for the controller, and a given set of initial states of interest for the
plant, Clse performs symbolic simulation of the plant and the controller up to
the time horizon. The simulation is guaranteed to provide a complete coverage
of the initial state set, that is, the bounded-time evolution of the system starting
from any state in the initial state set is included in the simulation. The sym-
bolic analyses of the controller uses concolic execution techniques (cf. [15,29]),
together with decision procedures for non-linear arithmetic [20]. We have imple-
mented Clse for controller implementations in the C language and describe its
application to examples of closed-loop control systems.

We also show how the symbolic execution engine of Clse can be used to
build additional analyzers for closed-loop control systems. We develop a symbolic
robustness analyzer on top ofClse. In addition to the closed-loop system and the
time horizon, the robustness analyzer takes as input a bound on the disturbance
on sensor measurements, and computes the maximum deviation between the
plant state without disturbance and the plant state with disturbance up to the
time horizon.

Outline of the paper. We first describe the class of closed-loop systems we address
in our work in Section 2. Clse’s closed-loop analysis algorithm is then presented
in Section 3. In Section 4 we show how such an analysis can be used to realize
a robustness analyzer. Experimental evaluation of the analyses is provided on
a few example closed-loop control systems in Section 5. We conclude the paper
after a discussion of related work in Section 6.

2 Closed-Loop System Model

We consider the standard model of a closed-loop control system that is com-
posed of a plant and a controller that are connected via sensors and actuators
(see Fig. 1). The plant captures the continuous dynamics of the environment
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Fig. 1. Model of a closed-loop control system

that is being controlled and the controller represents the software program that
implements the control algorithm.

In an execution of the closed-loop system, the state of the plant is sensed by
the controller at discrete time instants, called sampling times, based on which
the control inputs to the plant are computed. Our analysis performs a symbolic
simulation of the system up to a bounded-time horizon, T = N×τ , where N ∈ N

and τ is the sampling period of the system. In what follows, we characterize the
dynamics of the two main components in detail.

2.1 Plant Dynamics

We consider linear dynamical systems

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (1)

where x(t) ∈ Rn is the continuous state vector, A and B are n × n and n ×
m matrices, respectively, and the control input u(t) is a piecewise continuous
function from R+ to a convex, compact set U ⊆ Rm of control actions. A function
ξ : (0,∞) → Rn is said to be a trajectory of the dynamical system if ξ(0) = x0
and there exists a control input υ such that ξ̇(t) = Aξ(t) +Bυ(t) for almost all
t ∈ (0,∞).

In a sampled-data control system, there is an a priori fixed sampling time
τ ∈ R+. The plant state is sensed at the end of each sampling period of τ time
units. The control inputs are computed based on the plant state and applied
to the plant at the beginning of the next sampling period. The control input
remains constant throughout the next sampling period. Thus, control inputs in
a sampled-data control system are piecewise constant curves of duration τ , i.e., a
control input υ : R+ → U satisfies υ(t) = υ((k−1)τ) for all t ∈ [(k−1)τ, kτ) and
k ∈ N. For a sampled-data control system ẋ(t) = Ax(t) + Bu(t) with sampling
time τ and control actions U , and a given set of initial states X0, we define
X (X0, U,Ax(t)+Bu(t), τ) to be the set of all possible trajectories starting from
some state in X0.
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2.2 Controller Dynamics

We assume that the controller of the closed-loop system is implemented as a
software program. The controller program may have state variables that retain
their values at the end of an execution to be used in the next execution. We model
controller software in a simple imperative language. In our implementation we
handle more general features such as pointers, arrays, and function calls.

We represent a controller program as a control flow graph (CFG) P = (Y,L, �i,
�o, op, E) consisting of (1) a set of variables Y , containing disjoint subsets Y0 of
input variables, Ys of state variables, and Yu of output variables, (2) a set of
control locations (or program counters) L which includes a special start location
�i ∈ L and an output location �o ∈ L, (3) a function op labeling each location
� ∈ L with one of the following basic operations:

– an assignment y := e, where y ∈ Y and e is an arithmetic expression over
Y , and

– a conditional if (e) then �′ else �′′, where e is a side-effect free expression
and �′, �′′ are locations in L

and (4) a set of directed edges E ⊆ L × L defined as follows. The set of edges
E is the smallest set such that (i) every node � where op(�) is an assignment
statement has exactly one node �′ with (�, �′) ∈ E, (ii) every node � such that
op(�) is if (e) then �′ else �′′ has two edges (�, �′) and (�, �′′) in E. For a location
� ∈ L where op(�) is an assignment operation, we write N (�) for its unique
neighbor. Thus, the locations of a CFG correspond to program locations with
associated commands, and edges correspond to control flow from one operation
to the next. The program ends on reaching the location �o and outputs the values
for all variables u ∈ Yu. A path is a sequence of locations �1, �2, . . . , �n in the
CFG. A location � ∈ L is reachable from �′ ∈ L if there is a path �′, . . . , � in the
CFG. We assume that every node in L is reachable from �i and �o is reachable
from every node. Note that, even though we do not include a loop construct
here, our implementation handles static control loops via unrolling.

The concrete semantics of the program is given using a memory that maps
variables in Y to values. For a memory M , we write M [y !→ v] for the memory
mapping y to v and every other variable z ∈ Y \ {y} to M(z). For an expression
e, we denote by M(e) the value obtained by evaluating e where each variable y
occurring in e is replaced by the value M(y).

Execution starts from a memory M0 containing initial values for input vari-
ables in Y0, final values for the state variables in Ys from the execution on the
previously sampled plant output and constant default values for variables in Yu,
at the entry location �i. When the program runs for the first time, the values
of the variables in Ys are equal to their initial values. Each operation updates
the memory and the control location. Suppose the current location is � and the
current memory is M . If op(�) is y := e, then the new location is N (�) and
the new memory is M [y !→ M(e)]. If op(�) is if (e) then �′ else �′′ then e is
evaluated based on the current memory M . If the evaluated value is 0, then the
new location is �′′, otherwise the new location is �′. In either case, the memory
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remains unchanged. On reaching �o, the program terminates and outputs the
values M(v) for each v ∈ Yu. Execution of the program starting from a memory
M0 defines a path in the CFG in a natural way. A path is executable if it is the
path corresponding to program execution from some initial memory M0.

3 Closed-Loop Symbolic Execution

In this section, we first discuss symbolic execution of the plant and concolic
execution of the control program individually, and then discuss how their com-
bination is handled by Clse.

3.1 Symbolic Execution of the Plant

In sampled-data control systems, the evolution of the plant state over time can
be viewed as a discrete-time sequence of sets X0, X1, . . ., where X0 is the set of
initial states and Xi denotes the set of states reached in the ith sampling time
(i.e., t = iτ). Computation of the set Xi depends on the set of states Xi−1 of
the plant at the preceding sampling time, the continuous equations governing
the dynamics of the plant, and the set of control inputs actuating the plant.

Suppose we are given a set Xk of states of a plant, corresponding to the
sampling time t = kτ , and suppose we let the plant evolve due to its continuous
dynamics for one sampling period to reach the set Xk+1. For the given set of
states Xk, the set of control inputs Uk, and the dynamics of the plant ẋ =
Ax(t)+Bu(t), we define Reach(Xk, Uk, Ax(t)+Bu(t), τ), the set of states Xk+1

that the plant can be in after the elapse of a time period τ , as follows:

Xk+1 = Reach(Xk, Uk, Ax(t) +Bu(t), τ)

= {ξ(τ) | ξ ∈ X (Xk, Uk, Ax(t) +Bu(t), τ)}.

The set Xk+1 may be hard to compute and represent exactly. Thus, in practice,
we approximate Xk+1.

We have tried two techniques in Clse. First, using symbolic reachability
techniques for linear systems for a bounded time interval (cf. [23]), we can
get arbitrarily precise approximations but at high computation costs. Second,
for relatively coarse, but computationally practical approximations, we used
continuous-time to discrete-time model conversion based on the zero-order hold
method [12]. Since the control inputs in our system model are piecewise con-
stant over the sampling period, for a given continuous time dynamics of the plant
ẋ = Ax(t)+Bu(t), and a sampling period, the method provides the discrete-time
dynamics of the plant defined by x[k + 1] = Adx[k] +Bdu[k].

3.2 Concolic Execution of the Controller

For closed-loop analysis of a control system we need to have the symbolic outputs
and symbolic path constraints for all possible executable paths in the controller
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program. We obtain them by analyzing the controller program via concolic ex-
ecution, in which the program is executed on symbolic inputs in addition to
concrete inputs [15,29]. The concolic execution algorithm executes the program
while maintaining two additional artifacts: a symbolic memory μ which maps
variables in Y to symbolic expressions over a set of symbolic constants, and a
path constraint κ, which collects predicates over symbolic constants along the
execution path. The symbolic memory map and the symbolic path constraint
are updated during the course of execution.

Concolic execution proceeds as follows. Starting at location �i in the control
flow graph, the symbolic memory μ maps each input variable y ∈ (Y0 ∪ Ys) to a
fresh symbolic constant αy and each variable z ∈ Y \ (Y0 ∪ Ys) to some default
constant value. Initially, the path constraint is true.

For an assignment y := e at location �, the symbolic memory μ is updated to
μ[y !→ μ(e)], where μ(e) denotes the symbolic expression obtained by evaluating
e using the map μ. The path constraint is unchanged. The control location is
updated to N (�). For a conditional if (e) then �′ else �′′ at location �, if none
of these branches has been explored with a path that agrees with the current
path up to location �, a branch is arbitrarily chosen, otherwise the branch which
has not been explored is taken. Based on which branch is chosen, the control
location is updated to either �′ or �′′. If the new control location is �′, the path
constraint is updated to κ ∧ μ(e) �= 0, and if the new control location is �′′,
the path constraint is updated to κ ∧ μ(e) = 0. In each case, the new symbolic
memory is still μ. Execution ends when the control location is �o. At this point,
κ is the path constraint, and the restriction μ|Yu∪Ys maps each y ∈ Yu ∪ Ys to
μ(y). We denote μ|Yu∪Ys by λ.

At the end of an execution, a new execution is created by selecting a con-
ditional � : if (e) then �′ else �′′ along the path that was executed such that
(1) the current execution took the then (respectively, else) branch of the con-
ditional, and (2) the path that agrees with the current execution up to � but
then takes the else (respectively, then) branch of this conditional has not been
explored before. In this way, each control path in the program is explored. At
the end of symbolic execution, we get the set controllerPaths of tuples 〈κ, λ〉 of
path constraints and output maps for each explored path.

3.3 Combining the Two

Our closed-loop execution is based on the interaction of the symbolic execution
of the plant and concolic execution of the controller implemented in software. A
single iteration in our execution begins at the point the plant’s state is sensed
and ends after the plant evolves for one sampling period based on the controller’s
actions on the sensed data. We make the usual assumption that the time taken
by the controller is negligible when compared to the chosen sampling period.

The algorithm for closed-loop execution is outlined in closedLoopExecution

function in Algorithm 1. It takes the following as inputs: (1) t, the time instant
at the current sampling (an integer multiple of τ), (2) Xt, the set of states of the
plant at time instant t, (3) St−τ , the set of states of the controller at time instant
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Algorithm 1. Closed-loop execution of a system.

Input: A closed-loop system with the dynamics of the plant captured as flow and the
controller captured in controllerPaths, sampling time τ , simulation time
bound T , initial states of the plant X0 and initial states of the controller S−τ .

Output: Reach set sequences and path sequences that cover the initial states up to
time T .

function closedLoopExecution(t,Xt, St−τ , reachSetSeq , pathSeq)
begin
intersectingPaths ← {〈κ, λ〉|〈κ, λ〉 ∈ controllerPaths, (Xt ∧ St−τ ∧ κ) is satisfiable}
foreach 〈κ, λ〉 ∈ intersectingPaths do
Xinit ← ∃Ys, Xt(Y0) ∧ St−τ (Y0, Ys) ∧ κ(Y0, Ys)
Ut ← {u|u = λ(y)(x, s), y ∈ Yu, x ∈ Xt, s ∈ St−τ}
St ← {s′|s′ = λ(y)(x, s), y ∈ Ys, x ∈ Xt, s ∈ St−τ}
Xt+τ ← Reach(Xinit, Ut, f low, τ)
reachSetSeq′ ← append(reachSetSeq,Xt+τ )
pathSeq′ ← append(pathSeq, 〈κ, λ〉)
if t+ τ < T then
closedLoopExecution(t+ τ,Xt+τ , St, reachSetSeq

′, pathSeq ′)
else
reachSetSequences ← reachSetSequences ∪ {reachSetSeq ′}
pathSequences ← pathSequences ∪ {pathSeq ′}

begin
global reachSetSequences ← ∅
global pathSequences ← ∅
closedLoopExecution(0, X0, S−τ , [X0], [ ])
return (reachSetSequences, pathSequences)

t−τ , (4) reachSetSeq, the sequence of plant’s state setsX0, Xτ , . . . , Xt reached in
the current execution at successive sampling instants until time t, and (5) pathSeq ,
the sequence of controller paths traversed in the current execution. Initially,
closedLoopExecution function is called with t = 0, Xt = X0, where X0 is the
set of initial states of the plant, St−τ = S−τ , where S−τ is the set of initial states
of the controller, reachSetSeq = [X0] and pathSequences = [ ].

At any time instant t, the closedLoopExecution function executes in the
following manner. The algorithm first identifies intersectingPaths , a subset of
paths in the controller program (controllerPaths), that can be executed starting
from some state in Xt and St−τ . This is computed by checking the satisfiability
of Xt ∧ St−τ ∧ κ, for each path = 〈κ, λ〉 ∈ controllerPaths . Satisfiability implies
that there exists a state with x ∈ Xt and s ∈ St−τ that can execute the controller
program along path. For each controller path, path = 〈κ, λ〉, we first compute
three sets: Xinit, Ut and St. The set Xinit denotes the set of initial states of
the plant for the evolution in the next sampling period when path is executed
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Algorithm 2. Robustness analysis of a closed-loop system.

Input: A closed-loop system with the dynamics of the plant captured as flow and
the controller captured in controllerPaths, sampling time τ , simulation time
bound T , initial states of the plant X0 and initial states of the controller S−τ

and an upper-bound ε on the sensor errors.
Output: An upper-bound Δ on the deviation in the plant’s states after time T .
function computeDeviation(t,Xt, St−τ , X

′
t, S

′
t−τ , δt)

begin
Xε

t ← X ′
t ⊕ E

intersectingPaths ← {〈κ, λ〉|〈κ, λ〉 ∈ controllerPaths, (Xt ∧ St−τ ∧ κ) is satisfiable}
intersectingPathsε ← {〈κε, λε〉|

〈κε, λε〉 ∈ controllerPaths, (Xε
t ∧ S′

t−τ ∧ κε) is satisfiable}
foreach 〈κ, λ〉 ∈ intersectingPaths do
Xinit ← ∃Ys, Xt(Y0) ∧ St−τ (Y0, Ys) ∧ κ(Y0, Ys)
Ut ← {u|u = λ(y)(x, s), y ∈ Yu, x ∈ Xt, s ∈ St−τ}
St ← {s′|s′ = λ(y)(x, s), y ∈ Ys, x ∈ Xt, s ∈ St−τ}
Xt+τ ← Reach(Xinit, Ut,flow , τ)
foreach 〈κε, λε〉 ∈ intersectingPathsε do
Xε

init ← ∃Ys, X
′
t(Y0) ∧ S′

t−τ (Y0, Ys) ∧ (κ(Y0, Ys)⊕ E)
Uε

t ← {u′|u′ = λε(y)(x, s), y ∈ Yu, x ∈ X ′
t, s ∈ S′

t−τ}
S′
t ← {s′′|s′′ = λε(y)(x, s), y ∈ Ys, x ∈ X ′

t, s ∈ S′
t−τ}

X ′
t+τ ← Reach(Xε

init, U
ε
t ,flow , τ)

δt+τ ← findOutputDeviation(Xt, X
′
t,Xt+τ , X

′
t+τ , 〈κ, λ〉, 〈κε, λε〉, δt)

if t+ τ < T then
computeDeviation(t+ τ,Xt+τ , St, X

′
t+τ , S

′
t, δt+τ )

else
Δ ← max(Δ, δt+τ )

begin
global Δ ← 0
computeDeviation(0, X0, S−τ , X0, S−τ ,0)
return Δ

in the controller program due to the current sampled states of the plant. The
sets Ut and St denote the next set of control inputs to the plant and the set
of controller states at time t, respectively. Now we let time evolve for τ units
to reach sampling time t + τ and obtain the set Xt+τ of the plant’s states by
applying Reach to Xinit and Ut. The set Xt+τ thus computed is appended to
the current sequence of reach sets reachSetSeq ′, and the current controller path,
path, is appended to the current sequence of paths pathSeq ′.

If t + τ is less than the time horizon T = Nτ , we repeat the algorithm
recursively, otherwise, the current sequence of reach sets reachSetSeq ′ is added
to the set reachSetSequences of all state set sequences and the current sequence
of paths pathSeq is added to the set pathSequences of all path sequences.
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Fig. 2. Snapshot of an iteration instance in the computation of δt+τ

4 Closed-Loop Robustness Analysis

We now describe a closed-loop robustness analyzer based on Clse. Given a
closed-loop control system, the robustness analyzer carries out two symbolic
executions over plant’s state variables: (1) the reference evolution in which all
sensors are ideal so that they do not introduce any numerical errors in the
inputs to the controller; and (2) the perturbed evolution in which all sensors can
possibly introduce errors that are bounded by ε. The objective is to compute the
maximum deviation Δ in the state of the plant due to sensor errors for a given
set of initial states up to a bounded time horizon T (which is a multiple of τ).

The computation of the deviation Δ is outlined in Algorithm 2. Figure 2
shows one step of the computation. On the top, we perform closed loop symbolic
execution on the plant and controller as described in the previous section. At
the bottom, we again perform closed loop symbolic execution, but assume that
instead of reading X ′

t for the set of states, there is some sensor error that adds
additional “noise” to the measurement, which leads to execution of an erroneous
path in the controller, pathε, instead of path. Hence, instead of continuing the
simulation with X ′

t, we continue with Xε
t defined as follows.

We assume a simple sensor error model where each variable in the plant state
x is sensed by a sensor with an error bound of ε. Then the bounds on the
perturbations due to individual sensors define an error box E = [−ε,+ε]n. The
perturbed set Xε

t is defined by the Minkowski sum of X ′
t and the error box, that

is, Xε
t = X ′

t ⊕ E .
The closed-loop symbolic execution proceeds as previously described for the

reference and perturbed evolutions by identifying the intersecting paths based
on the sets Xt and Xε

t , respectively. For each pair of intersecting paths from
the two evolutions, the deviation in the next plant states, δt+τ , between Xt+τ

and X ′
t+τ , is computed based on the deviation δt from the previous iteration. If

t + τ < T , we repeat the algorithm recursively. We now describe the different
operations used in the above computation.

Updating the Initial Sets. In each iteration of plant’s evolution, we need to
provide the initial set that is a subset of the reach set of the plant in the previous
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Fig. 4. Performance of Clse on increasing initial state set sizes and simulation lengths
for example systems

iteration. For the reference evolution, the controller senses the set Xt and the
initial set is computed as described previously in Section 3.3 for path, the current
path of the controller. For the perturbed evolution, however, the controller senses
the set Xε

t that is obtained by adding the effect of sensor noise E to the plant’s
reach state X ′

t. Computing the initial set of states for the perturbed evolution
has to take into account the fact that, pathε, the current path of the controller is
due to erroneously sensed states of the plant. Therefore, we need to identify the
subset of states in Xε

t , which when perturbed lead to the selection of pathε, as
follows. We first bloat the set κε with E to obtain the set κε⊕E . The intersection
of this set with the reach set of the plant X ′

t gives the set Xε
init, which is the

initial set for the next execution of the plant for the perturbed evolution. The
different sets described above are illustrated in Fig. 3.

Finding Deviation in the Plant’s State. The function findOutputDeviation

computes the deviation in plant’s state for the reference and perturbed evolu-
tion. It takes as inputs: (1) two sets of states of plant variables, Xt and X ′

t, at
time instant t for the reference and perturbed evolutions, respectively, (2) two
sets of states of plant variables, Xt+τ and X ′

t+τ , at time instant t+ τ for the ref-
erence and perturbed evolutions, respectively, (3) the pair of intersecting paths,
path and pathε, and (4) the current deviation δt, for a state x0 ∈ X0 between
the two evolutions at time instant t. The computation of the deviation due to
elapse of a time period τ is based on the relation between states in the sets Xt
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and Xt+τ that is given by a discretization of the plant dynamics in Equation 1.
Suppose that the discrete-time dynamics is given by: x[k+1] = Adx[k]+Bdu[k],
where k ∈ N, then the computation of the deviation is formalized as a constraint
solving problem as below:

δt+τ := |xt+τ − x′t+τ |
where, xt+τ = Adxt +Bdut, and x′t+τ = Adx

′
t +Bdu

′
t,

path = 〈κ, λ〉 ∈ intersectingPaths ,

pathε = 〈κε, λε〉 ∈ intersectingPathsε,

ut = [λ(y1), . . . , λ(ym)]T ,

u′
t = [λε(y1), . . . , λ

ε(ym)]T ,whereYu = {y1, . . . ym},
xt+τ ∈ Xt+τ and x′t+τ ∈ X ′

t+τ ,

|xt − x′t| = δt, xt ∈ Xinit and x′t ∈ Xε
init.

The expression |xt+τ − x′t+τ | denotes the vector with components obtained by
taking the absolute values of the difference of the corresponding components in
xt+τ and x′t+τ .

Updating the Maximum Deviation. After the computation of δt+τ , if t+ τ
reaches the simulation time bound T , we compare δt+τ with Δ that is the max-
imum deviation found so far. If δt+τ > Δ, Δ is updated to δt+τ .

5 Experiments

We have implemented Clse using c2d, a model discretization routine provided
by MathWorks’ Control System Toolbox, to capture plant dynamics, and
Splat [31] for concolic execution of programs. In addition, Clse calls upon
iSAT [20] as the constraint solver of choice. We have run experiments using
our implementation on a 64-bit Linux on a machine with Intel Xeon X5650
2.66GHz processor and 48GB memory. In what follows, we present performance
of Clse for two examples of feedback-control systems, followed by the results
from the robustness analyzer for one of them.

Example 1: Switching Control System. We evaluate Clse first on an ex-
ample of a switching control system that is representative of the class of systems
that we handle. In this system, obtained from the literature [10], depending on
the current state of the plant, one of two controller gains is selected. The plant is
represented as a transfer function and the controller uses an integrator. We have
substituted the transfer function model of the plant by its equivalent state-space
model, and the continuous integrator in the controller by a discrete-time inte-
grator. The plant model has two continuous state variables and the controller
(about 50 lines of C code) has two paths. The performance of Clse on this ex-
ample is as shown in Fig. 4(a) for increasing sizes of initial state sets. We observe
that, in this example, the number of unique path sequences that covers each of
the selected initial state sets does not increase with increase in the simulation
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Table 1. The dimension-wise maximum deviation computed by our robustness ana-
lyzer and the time taken to compute them

No. of Δ for [−0.1, 0.1]2 time Δ for [−0.25, 0.25]2 time Δ for [−0.5, 0.5]2 time
steps x1 x2 (mins) x1 x2 (mins) x1 x2 (mins)

50 0.041 0.059 20.28 0.053 0.064 40.12 0.071 0.084 65.12
75 0.068 0.081 60.13 0.076 0.093 74.07 0.134 0.151 91.27

length. This is due to the fact that the control system stabilizes quickly under
the effect of the controller, and after that the controller can execute only one
control path corresponding to the stable state of the plant.

Example 2: Cruise Control System. This automotive system is obtained
from the demonstration suite of the Reactis test-generation tool [28]. The plant
model has four inputs and one continuous state variable speed, whereas the con-
troller has eight inputs and two state variables. The controller code is about
200 lines, with 24 unique control paths. Among the inputs to the controller, 6
are user inputs that are Boolean, which leads to 26 configurations in which the
closed-loop system operates. We have simulated the system for all the configu-
rations for varying simulation lengths for speed in the range [0, 80]. The worst
case simulation time, which is observed for 2 of the 26 configurations, for each
simulation length is as shown in Fig. 4(b).

Robustness of the Switching Control System. For robustness analysis of
the switching control system, we choose an error bound of [−0.01, 0.01]2 on the
sensors for the two state of the plant. The maximum bounds obtained by our
implementation for simulation lengths 50 and 75, for increasing sizes of initial
sets, are as shown in Table 1.

6 Related Work

Clse is similar to several recent projects in model-based testing and verifica-
tion of hybrid systems. Alur et al. [2,21] have proposed a method for symbolic
simulation of closed-loop Simulink/Stateflow (SL/SF) models for the purpose of
test-case generation. Our method bears a resemblance to this work in that both
adopt the same notion of equivalence of closed-loop trajectories and provide cov-
erage over the space of initial states of the plant. However, Clse implements a
forward analysis that guarantees full coverage for the selected initial set of states
unlike the backward analysis implemented in [2]; and Clse directly handles the
software implementation of the controller.

Lerda et al. [24] present a closed-loop analysis technique to find bugs in control
software which is coupled with a continuous plant. They perform systematic sim-
ulation of the controller program using an explicit state software model checker
and perform numerical simulations on the plant in the Simulink environment.
In a similar vein, Păsăreanu et al. [27] propose a framework which supports
translation of different modeling formalisms, including SL/SF, into a common
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intermediate representation and then use model checking and symbolic execu-
tion tools for property verification and test-case generation. Given a set of initial
states of the system, our objective is not to model-check the controller software,
but to compute the set of all sequences of paths executed in the controller soft-
ware due to the closed-loop evolution up to a bounded time. Due to this, Clse
provides coverage over the input space of the system and not over the structure
of the controller software.

HybridFluctuat [5] is a static analyzer for closed-loop systems that deals with
software implementations directly just as Clse does. It provides an assertion-
based mechanism for specifying interaction of the software controller with the
plant that can help build custom analyzers. It is based on Fluctuat [17] and
leverages techniques from abstract interpretation in order to deal with path
explosion.

Now we turn to related work on robustness analysis. Robustness of control
system has been studied widely in the last thirty years (cf. [32]). There are
software tools available to help design robust control systems [22]. However,
the above-mentioned theory and software tools only help in analyzing a math-
ematical model of the control system. They do not consider the case when the
controller is implemented as software. Analyzing software programs for robust-
ness has been undertaken in a few recent works [25,6], where controller programs
are analyzed independently without the presence of the plant.

Robustness of a trajectory of a system has been studied in the recent past.
Fainekos and Pappas [9] introduce a notion of robust satisfaction of a Linear
or Metric Temporal Logic formula which is interpreted over finite timed state
sequences in some metric space. Fainekos et al. [10] present a framework for
reporting points where a simulation of a Simulink model may not be robust in
the presence of both uncertainties in the model and internal computation errors.
Robustness of hybrid automaton models for control systems have been studied
before [18,13]. However, unlike these works, our algorithm and tool provides a
quantitative guarantee on the robustness of the system’s output through the
reachability analysis of the continuous plant, and program path exploration by
symbolic execution of the controller program.

7 Conclusions

We believe Clse is a step toward closed-loop static analyzers that incorporate
both plant and software dynamics into the analysis. Our experiences suggest that
symbolic execution-based techniques, while precise, suffer from path explosion.
It will be interesting to design an algorithm combining symbolic execution (for
precision) and abstract interpretation (for scalability). In particular, we would
like to study how path merging techniques that have been developed in the
abstract interpretation setting can help scale our method. While our tool accepts
the description of the plant as a set of linear differential equations, it is possible
(but not trivial) to “compile” a Simulink/Stateflow model of the system to such
a description [30,26]. Adding support for non-linear systems is also an open
direction.
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Abstract . This paper introduces Expi2Java, a new code generator for crypto-
graphic protocols that translates models written in an extensible variant of the Spi
calculus into executable code in a substantial fragment of Java, featuring concur-
rency, synchronization between threads, exception handling and a sophisticated
type system with generics and wildcards. Our code generator is highly extensible
and customizable, which allows it to generate interoperable implementations of
complex real life protocols from detailed verified specifications. As a case study,
we have generated an interoperable implementation of TLS v1.0 client and server
from a protocol model verified with ProVerif. Furthermore, we have formalized
the translation algorithm of Expi2Java using the Coq proof assistant, and proved
that the generated programs are well-typed if the original models are well-typed.
This constitutes an important step towards the first machine-checked correctness
proof of a code generator for cryptographic protocols.

1 Introduction

Implementing cryptographic protocols is a difficult and notoriously error-prone task,
where even the smallest error can cause very serious security vulnerabilities1. One way
to prevent many such vulnerabilities is to model the protocol in a process calculus [4],
check the security of the model [3], and then automatically generate a secure implemen-
tation from the protocol model. Automatic tools exist that can generate protocol imple-
mentations starting from such verified models together with configuration information
that allows them to produce code that is interoperable with other implementations of
the same protocol.

This paper introducesExpi2Java2, a new tool that brings code generators for security
protocols even closer to reality. Expi2Java is highly extensible and customizable: The
user can easily add new cryptographic primitives, configure all the relevant parameters,
customize implementation classes, and even customize the code generation process by
editing the provided templates. Commonly used cryptographic primitives and data types
are supported out of the box, and the user has full control not only over the high-level

1 For example, see the security advisories of OpenSSL
(http://www.openssl.org/news/), a well-known implementation of various SS-
L/TLS versions.

2 http://www.infsec.cs.uni-saarland.de/projects/expi2java
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design of the protocol, but also over all the low-level details, including the precise bit-
level representation of messages. To illustrate the flexibility of our tool we have gen-
erated an interoperable implementation of TLS v1.0 client and server from a protocol
specification verified with ProVerif [3, 9]. TLS is orders of magnitude more complex
and sophisticated than the protocols used by the previous code generation experiments.

The types in the generated Java code cannot be synthesized out of thin air, so we
ask the user to provide type annotations while writing the protocol model. Our code
generator uses the type information in the model to generate the typing annotations
needed by the Java type-checker. Additionally, it is important to detect all the typing
errors as soon as possible, before the code generation phase, so that we can guide the
user with helpful error messages. Our tool uses a type-checker with variant parametric
types and subtyping to prevent the incorrect usage of cryptographic primitives in the
protocol model. This source-level type-checker rejects models that could lead to ill-
typed Java code early on, and produces errors in terms of the model the user has actually
written, not in terms of the automatically generated code that the user would have a hard
time understanding. Moreover, our source-level type-checker performs type inference,
which greatly decreases the annotation burden on the user.

All the features that make Expi2Java a usable and useful tool in practice come at a
price though: the tool is rather complex; it currently has more than 16.000 lines of Java
code, and this code needs to be trusted to generate correct implementations that preserve
the security of the original protocol models. In this paper we take the first step towards
formally bridging the gap between secure protocol models and automatically generated
protocol implementations: We provide the first mechanized formalization of a code gen-
erator for cryptographic protocols. And we do this for an idealized code generator that
is fairly close to the core of our Expi2Java tool, without “sweeping under the carpet” the
interesting details. We formalize the semantics of both the source language of the code
generator, an extensible and customizable variant of the Spi calculus, and the target
language, which is a substantial fragment of the Java programming language featuring
concurrency, synchronization between threads, exception handling and a sophisticated
type system with generics and wildcards. We formally prove that our translation gener-
ates well-typed programs when starting from well-typed protocol models. This confirms
the validity of our source-level type-checker, and constitutes an important step towards
the longer-term goal of proving the correctness of the translation.

Outline. §2 discusses related work. §3 introduces the features and workflow of our tool
while §4 reports on the TLS case study. §5 presents our source language, the Extensible
Spi calculus. §6 describes the formalization of our target language, Variant Parametric
Jinja. In §7 we give a high-level overview of our translation. In §8 we discuss our
formalization, proofs, and some of the lessons we have learned. Finally, §9 discusses
directions for future work and concludes. The implementation and documentation of
Expi2Java are available online3, together with the Coq formalization and proofs. The
details that had to be omitted in this paper due to the lack of space are available in an
online appendix.

3 http://www.infsec.cs.uni-saarland.de/projects/expi2java
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2 Related Work

The idea of a code generator for protocol implementations is not new, and several such
tools were developed in the past. One of the early approaches is the AGVI toolkit [21]
that uses the Athena protocol analyzer, and can generate Java implementations. The
CIL2Java tool [20] can also generate Java code from the CAPSL intermediate language
CIL. SPEAR II [18] is a tool aimed at rapid protocol engineering. It has a graphical user
interface and generates Java code that uses the ASN.1 standard for data encoding and
various cryptographic libraries. The Sprite tool [25] translates simple protocols written
in “standard notation” to the Spi calculus from which it can generate Java code. The
CPPL compiler [19] generates OCaml code that can be deployed on stock Web servers.

Spi2Java [22,23] is the first code generator that attempts to be flexible and configurable.
It uses the original Spi calculus [4] as the input language together with a very simple type
system, and provides a (quite primitive) way to specify the low-level information needed
for generating interoperable protocol implementations. The generated implementation of
a simple SSH client [22] demonstrates that interoperability with standard implementa-
tions is indeed achievable. Nevertheless, the practicality of Spi2Java is quite limited: its
customization mechanism is very hard to use, and requires manually editing huge highly-
redundant XML files for associating configuration information to individual terms. Also,
Spi2Java cannot handle all the cryptographic primitives involved in really complex pro-
tocols like TLS, and has no extension mechanism to circumvent this problem — this
lead us to develop Expi2Java, initially as an extension of Spi2Java, but rewritten by now.
Moreover, none of the existing tools has a thorough formalization of their translation or
a proof that their translation preserves any interesting property of the original model.

We have based our formalization of the target language on Jinja with Threads [16,17],
since, to the best of our knowledge, this is the most complete and thorough formaliza-
tion of Java that supports concurrency. In order to be able to use Jinja with our Coq
formalization of the Extensible Spi calculus, we have manually translated the formal-
ization of Jinja with Threads from Isabelle/HOL to Coq. We have extended Jinja with
Threads with a type system based on the variant parametric types needed to express Java
5.0 generics and wildcards [26], which are pervasively used by our code generator. This
very expressive type system was first introduced by Igarashi et al. [14] as an extension
of Featherweight GJ, itself an extension of Featherweight Java [13].

3 Expi2Java: An Extensible Code Generator for Security
Protocols

Expi2Java is a new code generator for security protocols designed to be highly exten-
sible and customizable. It takes a protocol specification written in the Extensible Spi
calculus (Expi calculus) together with a configuration that provides the low-level infor-
mation needed for code generation and produces interoperable Java code.

The diagram in Figure 1 shows the workflow of Expi2Java. The Expi calculus model
can be verified using ProVerif and type-checked with respect to the Expi2Java configu-
ration(we defer the discussion about the type system to §5.3). The code generator takes
the model and the configuration, and generates the symbolic library and the protocol
implementation using code templates (special snippets of Java code).
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Fig. 1. Expi2Java Workflow

The user can easily cus-
tomize and extend the in-
put language by adding new
types or new cryptographic
primitives (constructors and
destructors) to the default
configuration, and by instanti-
ating them with specific cryp-
tographic algorithms (DES en-
cryption, RSA signature, etc.).
The Expi2Java configuration
also specifies which Java class
should be used to implement
each of the cryptographic al-
gorithms and allows to pass
user-defined parameters to the implementation class. This can be used, for example,
to specify which encryption mode and padding should be used to encrypt data or to
specify the length and endianness of an integer nonce to match the protocol specifica-
tion, basically giving the user full control over the low-level data format in the generated
protocol messages.

The syntax used by Expi2Java for writing models is very similar to the one used by
ProVerif [9] and includes support for ProVerif-specific constructs such as events and
queries. The main difference is that our calculus is typed and we therefore need to anno-
tate some terms with their types. Expi2Java can pretty-print the protocol specifications in
ProVerif syntax, so that it can be formally verified before generating the implementation.

The translation used for code generation can also be customized, since Expi2Java
uses templates to generate the protocol implementation. The user can change the tem-
plates and the class stubs to simplify integration of the generated code into existing
applications. Our formalization targets the default translation used in the tool, with only
minor simplifications.

The generated code relies on a runtime library containing classes that implement
the cryptographic primitives used by the protocol specifications. We provide two in-
terchangeable versions of the runtime library: a symbolic library that is used in our
formalization and proofs, and a concrete library that implements real networking and
cryptography. This separation allows us to abstract away from the complexity of net-
work communication and cryptography when testing and debugging locally. The sym-
bolic library is for the most part automatically generated by our tool and is described in
more detail in §6. The concrete library contains implementations for most of the com-
mon cryptographic primitives and data types out of the box, and can easily be extended
by the user. It uses the standard Java cryptographic providers to ensure interoperability
with other existing protocol implementations.

In the six major releases over the last three years we made a lot of progress in the form
of both practical features and usability improvements, turning Expi2Java from a proto-
type into a mature, useful and usable tool. We provide a detailed user manual and a tuto-
rial that uses the Perrig-Song mutual authentication protocol as a running example [21].
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More sample protocols such as Needham-Schroeder-Lowe, Andrew and Fiaba are pro-
vided in the Expi2Java distribution, together with the TLS implementation described in
§4. Expi2Java is free software and is distributed under the terms of the GNU GPLv3.

4 TLS Case Study

In order to show the potential of Expi2Java we have generated a fully functional and
interoperable implementation of the widely used Transport Layer Security (TLS) proto-
col [12] from a model verified with ProVerif. TLS provides a secure transport layer for
many popular application protocols such as HTTP, FTP, SMTP, and XMPP.

TLS is a very complex protocol, it supports many different cryptographic schemes,
optional parameters and extensions. Our TLS model implements TLS v1.0 [12] with the
AES extension [10] and the Server Name Indication (SNI) extension [8]. The model in-
cludes both client and server sides, the Handshake, the Application Data Protocol and
the Alert Protocol. We support dynamic cipher suite selection between 6 different cipher
suites (including AES, RC4 and 3DES encryption with different key lengths, SHA1 or
MD5 HMACs and RSA key exchange). One of these cipher suites is dynamically cho-
sen during the handshake. Supporting multiple cipher suites in TLS in older tools such
as Spi2Java would require duplicating the whole protocol model for each of the cipher
suites. In order to prevent this, Expi2Java allows parameterizing processes with respect
to the employed cryptographic algorithm. Using the parameterized processes, we could
add support for 6 cipher suites with only a few lines of code. The only noteworthy
TLS features we have not implemented are: session resumption (a performance tweak
where a vulnerability [1] was discovered in 2009), the client-authenticated handshake
(a rarely used feature) and record fragmentation (unsupported by some popular servers
and clients, and therefore a very rarely used feature). The handshake messages that are
used for key exchange algorithms (other than RSA) are also not supported.

Our model of TLS consists of an Expi calculus process (about 850 lines) and a con-
figuration file (625 lines). It includes all the steps of the Handshake and the consequent
message exchange through the Application Data Protocol. We check the validity of each
received message, including MACs and certificate chain (when provided with the list of
trusted CA certificates) and respond with an alert message on errors. The structure of
all messages is modeled completely in the Extensible Spi calculus, while the data for-
mats of encryptions and certificates are defined in the configuration and implemented in
corresponding Java classes. For comparison, the most sophisticated generated protocol
implementation we are aware of is a much simpler SSH client generated by Spi2Java4.
Their model is 250 lines in size and needs 1390 lines of XML configuration (i.e., more
than 5-to-1 ratio between configuration and model).

We have verified some security properties of our TLS model with ProVerif. In par-
ticular, we have used 3 secrecy queries showing that the secret key of the server, the
“pre-master secret” nonce used to derive the session keys and initialization vectors, and
the request that the client sends to the server using the Application Data Protocol are
not leaked. We have used 3 correspondence queries adapted from FS2PV [7] to show
message authentication for the certificate and pre-master secret. Additionally, we have

4 The latest version (Apr. 19, 2011) is available at http://spi2java.polito.it/

http://spi2java.polito.it/
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used 9 reachability queries providing a consistency check to ensure that different parts
of the handshake are reached. The verification process for all 15 queries took about 9
minutes on a laptop with an Intel® Core2™ Duo P7450 CPU.

The generation of Java code for the TLS model (on the same hardware) takes only
about 12 seconds. In addition to the sample web server and web client we generate a
verified implementation of a TLS channel for the concrete library. We use this channel
to generate a simple web server offering a web page over HTTPS and a web client
downloading it. We have tested that the resulting implementation is interoperable with
common browsers and web servers.

5 The Extensible Spi calculus

The source language of our translation is a variant of the Spi calculus [4], a process
calculus for cryptographic protocols. We start with the variant of the Spi calculus by
Abadi and Blanchet [3] – a subset of the language accepted by ProVerif [9]. We extend
it with the Expi2Java configuration in §5.2 and define a type system for it in §5.3.

5.1 Syntax

The syntax of the Extensible Spi calculus (Expi calculus) is defined in Table 1. In this
calculus, terms are used to model cryptographic operations symbolically. Terms are
obtained by applying constructors to other terms, variables, and Expi names. Construc-
tor applications are parameterized by the name of the cryptographic algorithm A that
should be used to implement the constructor in the generated code. Differently param-
eterized constructors are treated as different constructors, so for instance encDES is
different than encAES . The global configuration (see §5.2) defines, amongst others, the
set of constructor identifiers F = {f1, . . . , fn} and their type, as well as the set of
possible cryptographic algorithms that can be used to implement each constructor.

Table 1. The Syntax of the Extensible Spi calculus

K,L,M,N ::= terms
a, b,m, n, k Expi names
x, y, z, v, w variables
fA〈T1, . . . , Tm〉(M1, . . . ,Mn) constructor application

G ::= gA〈T1, . . . , Tm〉(M1, . . . ,Mn) destructor applications

P,Q,R ::= processes
out(M,N).P output
in(M,x).P input
! in(M,x).P replicated input
new a : T.P restriction
P | Q parallel composition
0 null process
let x = G in P else Q destructor evaluation

Notation: We use u to refer to both Expi names and variables.
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In our calculus, destructors are partial functions that are applied to terms and can
produce a term or fail. Similar to constructors, we parameterize destructors by a cryp-
tographic algorithm name. The global configuration also defines the set of destructor
identifiers G, and the cryptographic algorithms supported for each destructor identifier.
Constructors and destructors can have a parametric type, in which case we must pro-
vide a list of type annotations 〈T1, . . . , Tm〉 for instantiating the type variables. In our
Expi2Java tool these annotations are automatically inferred in most cases.

Processes are used to model the behavior of protocol participants and the commu-
nication between them. A specific characteristic of our calculus is that replication (the
bang symbol “!”) can only appear before an input process [6]. This is the most common
way to use replication in specifications, and at the same time it is reasonably easy to
implement as a server that waits for requests on a channel and spawns a new thread to
process each incoming message. The Expi name in the restriction process has a type
annotation, otherwise the syntax of processes is standard [3, 4, 6].

In our Coq formalization, we use a locally-nameless representation [5] for Expi
names (bound by the restriction process) and variables (bound by the let and input
processes) to avoid the issues related to α-renaming. Nevertheless, for the sake of read-
ability, throughout this paper we use the more familiar, named representation.

5.2 Configuration

The crucial features of the Expi calculus are its extensibility and customizability. The
user can extend the sets of types, constructors and destructors, redefine the reduction
relation for destructors and provide different implementations for the constructors and
destructors. Our whole calculus is parameterized over what we call a configuration – a
collection of several sets and functions that define the behavior of types, constructors
and destructors (see Table 2). We have defined a default configuration that is sufficient
to model most cryptographic protocols, please refer to the online appendix for more
details.

Table 2. Configuration

(
T ,F ,G, alg(t), alg(f), alg(g), variance(t , i),Gen , f : ∀X̃. (T̃ ) �→ T ,g : ∀X̃. (T̃ ) �→ T ,⇓

)

T = {t1, . . . , tn} a finite set of type identifiers
F = {f1, . . . , fm} a finite set of constructor identifiers
G = {g1, . . . , gl} a finite set of destructor identifiers
alg(ti) = {A1

i , . . . ,A
ni
i } cryptographic algorithms for each type

alg(fj) = {A1
j , . . . ,A

nj

j } cryptographic algorithms for each constructor
alg(gk) = {A1

k, . . . ,A
nk
k } cryptographic algorithms for each destructor

variance(t , i) ∈ {+,−, ◦} the variance of each type identifier (see §5.3)
Gen ⊆ T a set of generative types
f : ∀X̃. (T̃ ) �→ T the type of each constructor (see §5.3)
g : ∀X̃. (T̃ ) �→ T the type of each destructor
g(M1, . . . ,Mn) ⇓ N the destructor reduction relation

Notation: We use T̃ to denote type sequences of form T1, . . . , Tn for some n.
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5.3 Type System

Since Java is an explicitly typed language, any code generator targeting Java needs
to generate type annotations for variables, fields, method arguments and return values,
etc. These type annotations cannot be generated out of thin air, and asking the user to
manually annotate types in the automatically generated Java “spaghetti code” would be
a usability disaster. We solve this problem by asking the user to provide type annotations
while writing the protocol model. Our code generator uses the type information in the
model to generate the typing annotations needed by the Java type-checker.

Additionally, we want to prevent that a user who makes mistakes in a protocol model
finds out that the generated implementation does not even compile in Java because of typ-
ing errors in the automatically generated code, which the user does not understand. So we
provide a type-checker for the Expi calculus that prevents generating ill-typed Java code.
Our type-checker immediately reports inconsistent usage of terms in an understandable
way – in terms of the specified protocol model the user has written. In §8.1 we show
that if the original protocol model is well-typed with respect to our Expi calculus type
system then our translation is guaranteed to generate a well-typed Java program.

Our type system for the Expi calculus features subtyping and parametric polymor-
phism [11]. This makes the type system very expressive and has allowed us to devise a
very precise unification-based type inference algorithm. This decreases the type annota-
tion burden on the user and improves the readability of the protocol models. Parametric
polymorphism also allows us to have only a small number of “generically” typed con-
structors and destructors and still be able to specialize them. Parametric types can be
nested, which naturally corresponds to the types of the nested terms and allows us to
keep more information about the inner terms even after several destructor or constructor
applications. The nested types allow us, for instance, to express the type of messages
sent and received over a channel, or to model the fact that an encryption and the corre-
sponding key work on messages of the same type.

In order to ensure the correct use of cryptographic primitives we also parameterize
types, constructors and destructors with respect to cryptographic algorithms. We use
this feature to statically prevent mixing up different algorithms, e.g., decrypting an AES
encrypted message with a DES key. As the result, our type system can express many
complex types, such as specializations of channels, encryptions etc. using a reasonably
small set of core types, which is better suited for formalization.

Table 3. Syntax of Expi Types

T, U ::= X | Top | ChannelA〈T 〉 | tA〈T1, . . . , Tm〉

Our type system has only two fixed types, which are required for the correct typing
of processes: type Top and type ChannelA〈T 〉. The type variables X are used in the
parametric types of constructors and destructors. The types tA〈T1, . . . , Tm〉 represent
user-defined parametric types defined using the set T from the configuration (see §5.2).
Additionally, types ChannelA〈X〉 and tA〈T1, . . . , Tm〉 are parameterized by a crypto-
graphic algorithm name A, which allows us to define subsets of related types such as
TCP or TLS channels, AES keys and AES-encrypted messages. The configuration also
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defines a set of generative types, the only types that can be used in well-typed restriction
processes.

The subtyping relation <: is defined in Table 4. Type Top is a supertype of all
other types. Subtyping for channel types Channel〈X〉 is invariant. The custom types
tA〈T1, . . . , Tm〉 are subtyped according to the variance of their arguments, as defined
in the configuration using function variance(t , i). Subtyping is reversed for contravari-
ant (−) arguments, runs in the same direction for covariant (+) arguments and requires
the invariant (◦) arguments to be the same.

Table 4. Subtyping: T <: U

(SUB-TOP)
T �  

T <: Top

(SUB-CHANNEL)
T <: U U <: T

ChannelA〈T 〉 <: ChannelA〈U〉
(SUB-NESTED)
t ∈ T ∀i ∈ [1, n]. (variance(t , i) = + ⇒ Ti <: Ui)

(variance(t , i) = − ⇒ Ui <: Ti)
(variance(t , i) = ◦ ⇒ Ui <: Ti ∧ Ti <: Ui)

tA〈T1, . . . , Tn〉 <: tA〈U1, . . . , Un〉

The type of terms is defined by relation Γ  M : T from Table 5. This relation is
very simple and general. The type of constructor applications is defined in the config-
uration and instantiated by the given type annotations. Finally, using the subsumption
rule TERM-SUB a term can be used in any context that expects a supertype of its type.

Table 5. Term Typing: Γ � M : T

(TERM-ENV)
Γ �  T �  u : T ∈ Γ

Γ � u : T

(TERM-SUB)
Γ � M : T T <: U

Γ � M : U

(TERM-CONSTR)
fA : ∀X̃. (T̃ ) �→ T ∀i ∈ [1, m]. Ui �  ∀i ∈ [1, n]. Γ � Mi : Ti[X̃ := Ũ ]

Γ � fA〈U1, . . . , Um〉(M1, . . . ,Mn) : T [X̃ := Ũ ]

6 Variant Parametric Jinja

Our target language, Variant Parametric Jinja (VPJ) is based on Jinja with Threads [16,
17] and the type system with variant parametric types by Igarashi et al. [14]. In this
section, we briefly describe VPJ with an emphasis on the modifications we have made;
please refer to the original papers for more details [14–17]. We chose Jinja with Threads
over other formalized Java fragments because of its comprehensiveness. Expi2Java
needs concurrency with shared memory and synchronization to model channels and
message passing, a class hierarchy with inheritance and casting to model data types,
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a type system that supports Java generics and wildcards and, optionally, exceptions to
simplify modeling destructor applications. Jinja with Threads supports all these features
except for generics and wildcards, which we added in the form of variant parametric
types [14]. We have also extended the values and types with support for a new base
type, string, and removed support for arrays in order to simplify the semantics.

Syntax. The syntax of VPJ is very similar to Jinja with Threads, and therefore differs
from Java in several ways. The most visible simplification is the absence of distinction
between expressions and statements. Other differences inherited from Jinja are simpli-
fications in the form of a few artificial expressions like insync (@n) {e} and unit,
slightly different typing and reduction rules, and the lack of syntactic sugar [16]. A
difference unique to VPJ is that the object instantiation expression new takes an addi-
tional list of expressions e1, . . . , ek that are used to initialize all fields declared in the
corresponding class.

Table 6. Syntax of Variant Parametric Jinja (VPJ)

v ::= unit | null | true | false | i | ”xyz” | @n VPJ value

⊗ ::= = | �= | < | ≤ | > | ≥ |+ | − | × | ∧ | ∨ | ⊕ binary operation

e ::= VPJ expression
new C〈TP

1 , . . . , TP
n 〉 (e1, . . . , ek) object instantiation

(T J)e typecast
v literal value
e1 ⊗ e2 binary operation
x, y, z variable access
x := e variable assignment
e.f{C} field access
e1.f{C} := e2 field assignment
e.〈TP

1 , . . . , TP
n 〉m (e1, . . . , ek) parametric method invocation

{T J x := "v# ; e} variable declaration block
synchronized (e1) {e2} synchronized statement
insync (@n) {e} locked synchronized statement
e1 ; e2 sequential composition
if (e1) {e2} else {e3} conditional
while (e1) {e2} while loop
throw e exception throwing

try {e1} catch (C〈T̃P 〉 x) {e2} exception catching

T J ::= void | boolean | int | string | nullT| TP VPJ type
TP ::= XJ | TC parametric type
TC ::= C〈TP

1 V, . . . , TP
n V〉, D〈TP

1 V, . . . , TP
n V〉 variant parametric class type

V ::= + | − | ◦ | � co-, contra-, in- and bivariant subtyping

L ::= class C〈X̃J � ŨC〉 � D〈T̃P 〉 {T̃ J f̃ ; M̃} class definition

M ::= 〈X̃J � ŨC〉 T J m(T̃ J x̃) {return e} method definition

Notation: We write X̃J � T̃C for the sequence XJ
1 � TC

1 , . . . , XJ
n � TC

n
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Just like Java, VPJ allows to define custom classes with methods and fields. The syn-
tax is similar to the Java generics, with type variables and upper bounds (denoted by
� in VPJ, and extends in Java). In VPJ variant parametric types require variance an-
notations on each type argument. In addition to the variance annotations from the Expi
calculus the variance in VPJ can also be bivariant; any two instantiations of a bivariant
type constructor are subtypes of each other. The type system of VPJ is a mixture of the
Jinja type system [16] with variant parametric types [14]. We have extended the subtyp-
ing relation with two additional rules stating that the null type nullT is the subtype of
string and all reference types TP . Additionally, we require the subclass relation to be
well-founded (i.e., that it does not have infinite descending chains) to ensure termination
of subclass checks.

Memory Model. VPJ uses a realistic memory model with a shared heap and thread-
local stacks. The stacks are maps from variable names to values. The heap maps mem-
ory locations @n to a class type TC and the field values of the corresponding instance.
This heap model differs slightly from the one used in Java, since we store the exact
parametric type of each object, while in Java the information about the type parameters
is lost.5 We have decided to store the parametric types to simplify the formalization of
variant parametric types in Coq and avoid the problems arising from Java-like semantics
such as the need for run-time type-checks to enforce type soundness.

Semantics. The semantics of VPJ can be split into two parts, the single-threaded core
and the (very complex) multi-threaded semantics [16]. The single-threaded semantics
is defined using the reduction relation →J , a labeled relation that takes a conversion
function and reduces some expression together with some state (i.e., stack and heap) to
another expression and a state, possibly producing a thread action (usually visualized
as a label on the reduction arrow). The thread actions are used for inter-thread commu-
nication in the multi-threaded semantics. The multi-threaded semantics is exactly the
same as in Jinja with Threads [16], we have only made changes that had to be done to
adapt the formalization for Coq.

Symbolic Library. In addition to the standard classes like Object required by VPJ we
have defined an additional set of classes that are used by the translated protocols. We call
this the symbolic library, because the implementation of the cryptographic primitives
and data types does not perform any “real” cryptography or networking. The symbolic
library provides a symbolic abstraction of the cryptographic primitives and channel com-
munication. It is designed to be simple enough to simplify proving the translation secure
in the future. Finally, the symbolic library can also be used for debugging purposes. Our
Expi2Java tool also has a concrete library that performs “real” cryptographic operations
and uses the actual network, but this is not formalized in Coq. The two libraries (con-
crete and symbolic) can be used interchangeably by the generated code.

The fixed part of the symbolic library (i.e., the one that is not generated by
our translation from the configuration) consists of the 7 classes shown in Figure 2.
AbstractBase is the base class of the class hierarchy for translations of all Expi types.

5 In the Java community, this process is usually called “type erasure”, although not all type
information is erased, just the generics, and that just for backward compatibility.
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AbstractGenerativeBase is the superclass for generative types. The generated flat
class hierarchy reflects the subtyping relation from the Expi calculus.

Fig. 2. Symbolic Library Classes

Semaphore implements a count-
ing semaphore using the synchroniza-
tion primitives of VPJ. This class is
used in the implementation of inter-
thread message passing. Expi chan-
nels are modeled using the class
AbstractChannel〈XJ〉. It imple-
ments the synchronous semantics of
Expi channels, where different pro-
cesses are implicitly synchronized
when a message is sent from one pro-
cess to another over a channel.

Finally, ELibrary is the base class
for ELetProcess and EDestructor,
the two exception classes used to model failing destructor applications. The translation
of the let x = G in P else Q process uses the exception to decide when to take the else
branch. We have proved that all symbolic library classes are well-typed with respect to
our type system (see §8.1).

7 Translation Overview

The translation from the Expi calculus to VPJ is performed in two steps. The first step
translates protocol models to the Global Expi calculus, a variant of the Expi calculus
with a different semantics for name binders. The second and much more complex step
translates Global Expi processes into VPJ programs.

7.1 First Step: Translating Expi Calculus Models to the Global Expi Calculus

The usual semantics of the Expi calculus heavily relies on α-renaming and scope extru-
sion to reduce processes. Scope extrusion allows to move name binders (i.e., restriction
processes new a : T ) out of parallel compositions (P | Q). The problem with this se-
mantics is that it cannot be easily implemented in a mainstream programming language,
because it would require changing the scope of variables and moving them across dif-
ferent threads. Instead of extruding restrictions around we define a variant of the Expi
calculus in which restrictions generate globally fresh names. Such a global semantics
was proposed for the pi calculus by Wischik [27], and we adapt this idea to the Expi
calculus. The resulting Global Expi calculus uses the same terms and types as the Expi
calculus and has only one different process, the generation process gen x : T in P in-
stead of the restriction process new a : T.P . The semantics of gen x : T in P is to
generate a globally fresh name a and substitute variable x with a in P , like for ML
references. This first translation step brings our semantics closer to the one of the Java
implementation, which should ease any future simulation proof.
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7.2 Second Step: Translating Global Expi Models to VPJ Programs

In the second step of the translation we implement the behavior of Expi terms and
processes in VPJ; this is much more complicated than the fist step.

Table 7. Translation Overview

Global Expi VPJ

Configuration:
- Type identifiers (t) 
 Class declarations
- Algorithm names (A) 
 String constants stored in fields
- Constructors (f ) 
 Special methods in class Fun
- Destructors (g) 
 Special methods in class Fun

Expi Types 
 Variant parametric classes
Terms 
 Expressions (variables, method calls)
Processes 
 Expressions (variable declarations, control flow)
- Parallel composition (P | Q) 
 Threads that are spawned and joined

Free names 
 Variables in main (passed by reference to threads)

Table 7 gives an overview of how the different Expi calculus constructs are repre-
sented in VPJ. Expi calculus types are modeled as additional generated classes in our
symbolic library, and variant parametric types are used to represent type parameters.
The instances of these generated classes represent Expi terms of the corresponding type.
The cryptographic algorithm names used in the destructor reduction relation are stored
in fields of type string in the generated classes. Expi constructors and destructors are
represented as special methods in a symbolic library class named Fun. We use a sim-
ple naming convention to distinguish constructor and destructor methods. Terms are
translated to VPJ expressions that either access local variables or call constructor meth-
ods. Processes are translated into larger code blocks that create and modify the terms
stored in local variables and use the symbolic library to interact with each other. We
use threads to model parallel composition of processes and shared memory to pass data
between them. Please refer to the online appendix for a more detailed description of the
translation process.

8 Proofs

We have used the Coq proof assistant [2] to develop the mechanized formalization of our
translation and machine-check our proofs. We believe that this is the only way to stay
honest with ourselves when proving something about a formalization that is so complex.
A proof assistant helps organizing the formal development as a software project, ensures
that the definitions are well-formed and in sync with each other, provides automation
for proving routine tasks, and checks that the proofs are correct, without missing any
corner-case and without forgetting any assumption that was made. This gives us high
confidence in the final result, which one cannot easily obtain by “handwaving”. The
formalization encompasses about 17K lines of Coq code in total.
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8.1 Symbolic Library and Generated Code are Well-Typed

We have proved that the symbolic library and the VPJ code generated by the translation
are well-typed. This is an important consistency check for our definitions (it helped
us to find out, for instance, that the first version of our translation was using the field
access in an inconsistent way) and justifies the usage of our Expi calculus type system to
prevent generating ill-typed VPJ programs. In the longer-term perspective these proofs
will be needed for proving the correctness of our translation.

We have shown that each class of the symbolic library is well-typed in a VPJ program
containing a small number of Java standard library classes (NullPointerException,
Object, etc.) and the symbolic library classes. We show that all types used in class
declarations are well-formed and all declared methods are well-typed. The proof is by
case analysis on the corresponding expression and using the right case of the expression
typing relation. It is not complicated, but quite long and tedious, because we need to
give the correct type of each subexpression and show all premises of the typing rules.

Showing that the code generated by the translation is well-typed was much harder.
Most typing rules require providing the exact types of all subexpressions and only fail
in the last moment if a wrong type was chosen. Another problem was finding the right
invariants to type-check the code generated by recursive functions. An incorrect invari-
ant (i.e., the type of the expression we are trying to type-check and the preconditions)
usually becomes noticeable only when applying the induction hypothesis, after having
constructed a big part of the failed proof attempt.

We prove that the expressions generated for the Global Expi processes, the construc-
tor and destructor methods and the classes representing Expi types are well-typed as-
suming that our invariants hold. In the end, we use these results to show the following
theorem:

Theorem 1 (Trans-WT). If P is locally-closed, Γ  P and P 
 (e, L), then L is
well-typed and (e, L) is well-typed in a preallocated heap and an empty stack.

This theorem shows that our translation generates a self-contained VPJ program (e, L)
that is well-typed in the initial heap and stack. The assumptions about the heap and
stack are inherited from Jinja. They are needed for the typing relation, because an ar-
bitrary Jinja expression can contain local variables or throw system exceptions (e.g.,
NullPointerException). At the program start, we assume that the heap is “preallo-
cated”, i.e., it contains instances of system exception classes at some fixed addresses
that are reserved for the system exceptions, and the stack contains no local variables.

The Coq proof of this theorem is done in great detail, and so are the proofs of most
of the helper lemmas. Due to the lack of time we did not prove some rather obvious
properties of the translation that are used in the proof of the theorem, e.g., that processes
are translated only to expressions of type void or that all used types were generated
and added to the program. Furthermore, we did not prove some list and substitution
rewriting lemmas, and other similar helper lemmas in cases that looked trivially true
but were tedious to prove in Coq. We have also assumed that the translation of terms
and the declaration of free Expi names are well-typed.
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8.2 Destructor Consistency Proof for Default Configuration

The flexible nature of the Expi calculus makes it impossible to prove the type system
sound for an arbitrary configuration. The destructor reduction relation could be defined
in a way that conflicts with the typing of the destructor or of some of the constructors
used by the reduction rule. For instance, it would be possible to give an identity destruc-
tor (which returns its only argument) the type (Int) !→ Bool. Such a destructor would
be inconsistent, because we cannot give any term two different types that are not even
subtypes of each other. To prevent such inconsistency in our default configuration we
have proved the following theorem in Coq:

Theorem 2 (Destructor Consistency). If a destructor has type gA : ∀[Xi]n. ([Tj]m)

!→ T , gA〈[Ui]n〉([Mj ]m) ⇓ M and ∀j ∈ [1,m]. Γ  Mj : Tj[X̃ := Ũ ], then M can

be typed to the instantiated return type of the destructor: Γ  M : T [X̃ := Ũ ].

Destructor consistency is the crucial step in the subject-reduction proof of the Expi
calculus. It is the only part of the soundness proof that depends on the configuration
and should therefore be re-proven if the user wants to change the default configuration.
Once one proves destructor consistency, soundness follows directly.

8.3 Lessons Learned

Formalizing our code generator in a proof assistant turned out to be harder than we ex-
pected. Like the large majority of similar tools before it [18, 20, 21, 23–25], Expi2Java
targets the Java programming language. This has many pragmatic advantages for build-
ing a usable and secure tool: from type and memory safety, an extensive standard library
and the cryptographic service provider architecture, to the ease of integrating the gen-
erated code into existing applications. However, Java is a very complex programming
language, and merely adapting an existing mechanized formalization of a subset of
Java [16, 17] to suit our particular needs turned out to be a quite daunting task. About
7k LOC out of the 17k LOC of our formalization are solely concerned with defining
our target language, VPJ.

Moreover, Java is an imperative language, and lacks certain functional features that
would have greatly simplified the symbolic representation of terms: immutable data
structures, structural equality, and pattern matching. A programming language like
Scala6 or F#7, which integrate features of both functional and imperative object-oriented
programming, would have been a better match for implementing our symbolic library,
while preserving most of the pragmatic advantages of Java. On the other hand, we are
not aware of any mechanized formalizations of comprehensive subsets of these lan-
guages, so the upfront effort needed just to formalize the target language would have
been even larger.

9 Conclusion

In this paper we have introduced Expi2Java, an extensible code generator for security
protocols. We have illustrated the flexibility of Expi2Java by generating interoperable

6 http://www.scala-lang.org/
7 http://www.fsharp.net/

http://www.scala-lang.org/
http://www.fsharp.net/
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implementations of a client and a server for TLS v1.0 from a protocol model verified
with ProVerif. We have formalized our source and target languages as well as the trans-
lation between them using the Coq proof assistant, and proved that the generated code is
well-typed if the original protocol model is well-typed. This increases our confidence in
the translation, and justifies the usage of our Expi calculus type system to catch all type
errors as early as possible and present understandable error messages. Additionally, we
have proved the consistency of the destructors in our default configuration.

In the future it would be very interesting to show that the translation presented here
preserves the trace properties, and, more ambitiously, the security properties (e.g., the
robust safety) of the original protocol model. The former could be achieved by using
weak labeled simulation to relate VPJ programs to Expi processes, while for the later
one would have to show that this simulation is contextual and that each VPJ attacker can
be mapped back to an attacker in the Expi calculus. We believe that the current work
builds a solid ground on which the preservation of security properties can be formally
investigated.
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Abstract. We describe two complementary techniques to aid the automatic ver-
ification of safety properties of synchronous systems by model checking. A first
technique allows the automatic generation of certain inductive invariants for mode
variables. Such invariants are crucial in the verification of safety properties in sys-
tems with complex modal behavior. A second technique allows the simultaneous
verification of multiple properties incrementally. Specifically, the outcome of a
property—valid or invalid—is communicated to the user as soon as it is known.
Moreover, each property proven valid is used immediately as an invariant in the
model checking procedure to aid the verification of the remaining properties. We
have implemented these techniques as new options in the KIND model checker.
Experimental evidence shows that these two techniques combine synergistically
to increase KIND’s precision as well as its speed.

1 Introduction

Embedded systems often contain complex modal behavior that describes how the sys-
tem will interact with its environment. In these systems, the modes of the software drive
the behavior of the device. In a flight guidance system, these modes cause a particular
control algorithm to be chosen; an approach mode enables a control algorithm that at-
tempts to land the airplane, while a go-around mode enables a controller that attempts
to climb the aircraft to a suitable safe altitude. These modes are often designed as state
machines or mode transition tables. In addition, embedded systems typically have sev-
eral parallel mode machines that communicate with one another to define the control
state of the system. For instance, in flight guidance, there are separate lateral and verti-
cal modes that manage the lateral and vertical aspects of flight.

Understanding which variables in a system’s model represent system modes, and dis-
covering relationships between such variables often determine whether or not a property
can be proven about a system. However, such variable, which from now on we will re-
fer informally to as mode variables, may not be easily identifiable among all of the
system’s variables. In addition, once identified, determining correct invariants between
different mode variables is non-trivial. As an example of these challenges consider the
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Fig. 1. State machine of a microwave model

hierarchical state machines (HSMs) described in Figure 1 that illustrates the modal be-
havior of a microwave.1 HSMs are used by model-based development notations such
as Simulink and SCADE which are becoming widespread for software development in
avionics and other industries. In the example, mode information is encoded both explic-
itly, in the states of the HSM, and implicitly, through the integer variable mode. This
sort of hybrid encoding of mode information occurs regularly in industrial models that
we have analyzed. An additional complication is that when HSMs are compiled to a
lower level modeling language or to code, their state are usually encoded into integer
variables that are not immediately distinguishable from other integer variables.

The focus of this paper is on leveraging mode information for k-induction-based
model checking. In this approach, a prover attempts to prove a safety property of a
system inductively by showing for some k ≥ 0 that (i) the property holds in all states
reachable in up to k steps, and (ii) for all sequences of k + 1 states along the sys-
tem’s transition relation, the last state satisfies the property whenever all the previous
ones do. As with mathematical induction, sometimes safety properties are not strong
enough to be provable by k-induction, for any k. In that case, it is helpful to strengthen
the induction hypotheses with known invariants properties of the system. We believe
that invariants involving mode variables are critical for the success of inductive meth-
ods when proving properties of control systems, and we provide initial experimental
evidence to support this conjecture.

This paper describes two complementary techniques to aid, more generally, the au-
tomatic verification of safety properties of synchronous systems with modal behavior.
The first technique, described in Section 3, allows the automatic identification of likely
mode variables, and the discovery of invariant relationships among them by adapting
an invariant generation method, described in Section 2, we developed in previous work.
We heuristically consider as a mode variables any system variable that (i) ranges over
a (small) finite set of values and (ii) whose next-state value is determined in part by its
current value. We generalize this idea slightly to mode variable sets in which strongly-
connected variables define a particular system mode. We develop a general invariant

1 We thank Steve Miller and Lucas Wagner at Rockwell Collins for the example.
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generation method to identify implicative relationships between values of mode vari-
ables. The second technique, described in Section 4 and motivated by the industrial use
of model checkers for the verification of large numbers of safety properties on the same
system, allows the simultaneous and incremental verification of multiple properties. It
is incremental in the sense that the status of a property—whether it holds in the system
or not—is communicated to the user as soon as the checker determines it. Moreover,
each property proven to hold is used immediately as an auxiliary invariant to aid the ver-
ification of the remaining properties. Our experimental results, described in Section 5
for selected benchmarks, indicate that our two techniques are quite effective in practice,
especially in combination. As we show, using them together considerably increases the
number of provable safety properties, as well as speeding up the verification process.

Related Work. Automatic invariant generation has been intensively investigated since
the 1970s, producing a large body of literature. Manna and Pnueli [13] provide an early
compendium of this research and an extensive set of references. In this paper, we fo-
cus on discovering invariants related to system modes. The idea of automatically dis-
covering mode machines for hardware is (very briefly) referenced in [7]. The idea of
generation of mode-specific invariants for the SCR notation was introduced in [8] and
improved in [9] then generalized to LTSs by Damas [2,1]. This work supports discovery
of invariants between a (known) state machine and variables used in guard expressions
for transitions of the machine, using syntactic fixpoint algorithm that operates over the
state machine graph. Our approach, based on our own previous work invariant discov-
ery [10], is more general; it automatically identifies mode (state machine) variables and
uses symbolic analysis to discover a superset of the implications in [9,2] to include vari-
ables not explicitly referenced in the definition of the state machine. On the other hand,
the other approaches can quickly determine “local” mode invariants through simple
graph traversal algorithms. It may be possible to combine both approaches to improve
the scalability of invariant generation. In [4], query checking is used to discover mode
invariants. That work uses symbolic methods and is in principle more general (a single
query can discover all state invariants), but has serious scaling problems. The idea of
simultaneous verification of multiple properties is not new [12, e.g.]. Our approach con-
trasts with previous work by using a parallel architecture that allows the incorporation
of invariant generators to enhance the basic verification process.

1.1 Formal Preliminaries

Our work is built on logic-based model checking techniques that phrase reachability
problems as entailment problems in a suitable logic for which efficient solvers exist.
Relevant examples of such logics are propositional logic or any of the many logics used
in SMT. For generality, we consider any of these logic L (with classical semantics)
extending propositional logic, and rely on L’s notion of variable, term, formula, free
variable, model, satisfiability in a model, and entailment (which we denote as |=L). If F
is a formula of L and (x1, . . . , xk) a tuple of distinct variables, we write F [x1, . . . , xk]
to express that the free variables of F are in (x1, . . . , xk). If t1, . . . , tk are any terms,
we write F [t1, . . . , tk] to denote the formula obtained from F [x1, . . . , xk] by simulta-
neously replacing each occurrence of xi in F by ti, for i = 1, . . . , k. We denote finite
tuples of elements by letters in bold font, and use comma (,) for tuple concatenation.
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Let Q be a set of states, a state space. We assume some encoding of the state space
Q in terms of n-tuples of ground terms in L, for some fixed n.2 Then, we say that
(the encoding of) a state q satisfies a formula F [x], where x is an n-tuple of distinct
variables, if F [x] is satisfied by every model of L interpreting x as q. This terminology
extends to formulas over several n-tuples of free variables in the obvious way.

A transition system S over Q is a pair (SI, ST) where SI ⊆ Q is the set of S’s initial
states, and ST ⊆ Q × Q is S’s transition relation. A state q ∈ Q is 0-reachable if
q ∈ SI; it is k-reachable with k > 0 if it is (k − 1)-reachable or (s, q) ∈ ST for some
(k − 1)-reachable state s. A state is (S-)reachable if it is k-reachable for some k ≥ 0.
A (state) property is any formula P [x] for some n-tuple x of variables. It is invariant
(for S) if it is satisfied by all S-reachable states. For automated verification purposes
one does not work directly with a transition system S itself, but with an encoding of it
in some logic L, namely, a pair (I[x], T [x,x′]) of formulas of L, with x and x′ both
of size n, where

– I[x] is a formula satisfied exactly by the initial states of S;
– T [x,x′] is a formula satisfied by two reachable states q, q′ iff (q, q′) ∈ ST.

k-Induction Given an L-encoding (I[x], T [x,y]) of some transition system S, one can
prove that a property P is invariant for S by showing that P is k-inductive.

Definition 1. A state property P [x] is k-inductive (wrt T ) for some k ≥ 0 if

I[x0] ∧ T [x0,x1] ∧ · · · ∧ T [xk−1,xk] |=L P [x0] ∧ · · · ∧ P [xk] (1)

T [x0,x1] ∧ · · · ∧ T [xk,xk+1] ∧ P [x0] ∧ · · · ∧ P [xk] |=L P [xk+1] (2)

When entailment in L is decidable and an L-solver is available for that, the k-
inductiveness of a property P can be established by asking the L-solver to prove both
entailments in the definition above for some initial choice of k, retrying with an increas-
ingly larger k until either the base case (1) is shown not to hold or both the base and
the induction step (2) are shown to hold. In the second situation, P has been shown
to hold for all reachable states, which means it is invariant. In the first situation, P is
not invariant and a counterexample path can be generated from a counter-model of (1)
above if the L-solver is able to return models.

Since k-inductiveness is a sufficient condition for invariance, the k-induction proce-
dure above is a sound verifier for invariance. The procedure, however, is not complete
since there exist systems with invariant properties that are not k-inductive for any k.
For those properties, the procedure will keep increasing k indefinitely. A number of
improvements are possible to increase the procedure’s precision, the set of invariant
properties it can prove [15,3,5]. In particular, if Y is another state property already
known to be invariant, one can strengthen the antecedent of the entailment in the induc-
tion step (2) by adding (conjunctively) the formula Y [x0] ∧ · · · ∧ Y [xk+1] to it. The
strengthening is beneficial for eliminating spurious counter-examples to the induction
step, i.e., counter-models involving unreachable states.

2 Depending on L, states may be encoded for instance as n-tuples of Boolean constants or as
n-tuples of integer constants, and so on.
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2 Template-Based Invariant Generation

In previous work [10] we described a general invariant discovery scheme that produces
k-inductive invariants for a given transition system S from a template R[x, y], a formula
of L representing a decidable binary relation over one of the system’s data types. The
discovered invariants are instancesR[s, t] of the template generated with terms s, t from
a set U of terms over the same n-tuple x of variables. The set U can be constructed
heuristically in any number of ways from S and a given set of properties to be proven
invariant for S. In the experiments reported in [10], U included terms occurring in a
given L-encoding of S, as well as a few distinguished constants.

The general scheme relies on the availability of efficient reasoning engines, such as
SAT and SMT solvers, for the given logic L, and capitalizes on their ability to quickly
generate counter-models. It consists of a simple two-phase procedure, with an optional
third phase not discussed here. Given the template R and the term set U , the first phase
starts with the (very crude) conjecture that the state property C[x] =

∧
s,t∈U R[s, t]

is invariant. Then, it uses the L-solver to weaken that conjecture by eliminating from
it as many conjuncts R[s, t] as possible that have a counterexample—specifically, all
conjuncts falsified by a k-reachable state, for some heuristically determined k. The re-
sulting formula C is passed to the second phase, which attempts to proveC k-inductive
by checking that it satisfies the inductive step of k-induction. Any counter-examples
there are used, conservatively, to weaken C further by eliminating additional conjuncts
until no counter-examples exists. The final formula—the empty conjunction in the worst
case—is by construction k-inductive, and so invariant.

The scheme above is impractical in its full generality because the number of in-
stances of R over U can be very large. So we devised two specializations to relations R
that are partial orders, one for general posets and one specific to binary posets. These
specializations rely on the properties of partial orders to represent the conjunctive con-
jecture C compactly, and weaken it efficiently. In the following, we briefly illustrate the
case of binary posets (see [10] for a more formal treatment and for the general case).

Invariant Generation for Binary Posets. For concreteness, and because it is rele-
vant to our goal of learning invariants on mode variables, let us consider the poset
({⊥,�},→) of the Booleans, with logical implication → as the partial order, and with
linear integer arithmetic as L. In this case, the instances of R have the form F → G,
where F and G are any arithmetic predicates, i.e., quantifier-free arithmetic formulas.

The invariant generation procedure maintains a directed acyclic graph where each
node contains a set of arithmetic predicates and stands for the conjecture that those
predicates all imply each other (i.e., are all equivalent) in every reachable state of S. An
edge from a node A to a node B in the graph represents the weaker conjecture that the
predicates in A imply the predicates in B, again in all reachable states.

The graph starts with a single node containing all the predicates in the candidate set
U ; it is then updated incrementally using a sequence (M1,M2, . . .) of models ofL, each
containing a reachable state q that falsifies one of the conjectures in the current graph.
Let G0 be the initial graph and Gi the version of the graph updated after observing
model Mi. The graph Gi is updated to Gi+1 using model Mi+1 as follows. If Mi+1

falsifies (the conjecture expressed by) an edge of Gi, the edge is removed; if it falsifies
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DAG Conjecture

O O : {x = 0 ↔ x = 1 ↔ x �= 0 ↔ x �= 1 ↔ y = 3 ↔ y = 4
↔ y �= 3 ↔ y �= 4 ↔ x + y ≥ 3 ↔ (2 ∗ x) − y ≥ y}

M1 : x �→ 0, y �→ 4
A

[⊥]

B

[	]
A : {x = 1 ↔ x �= 0 ↔ y = 3 ↔ y �= 4 ↔ (2 ∗ x) − y ≥ y}
B : {x = 0 ↔ x �= 1 ↔ y �= 3 ↔ y = 4 ↔ x + y ≥ 3}

M2 : x �→ 0, y �→ 3

C

[⊥,⊥]

D

[⊥,	]

E

[	,⊥]

F

[	,	]

C : {x = 1 ↔ x �= 0 ↔ (2 ∗ x) − y ≥ y}
D : {y = 3 ↔ y �= 4}
F : {y �= 3 ↔ y = 4}
E : {x = 0 ↔ x �= 1 ↔ x + y ≥ 3}

Fig. 2. In each graph, a node stands for a set of predicates that have evaluated to the same Boolean
value (⊥ or �) in each model considered until them. The predicates in a node are shown, as a
double implication chain, in the Conjecture column. The list of observed values for the predicates
in each node is shown on top of the node.

a node N , then (i) the node is split in two new nodes N⊥ and N� connected with an
edge from N⊥ and N�, (ii) N ’s predicates are assigned to N⊥ and N� depending on
whether they are respectively falsified or satisfied byMi+1, and (iii) all edges involving
N are updated so that the set of conjectures represented by Gi+1 is consistent with all
the models observed so far and weakens the previous set only as little as needed to
accommodate Mi+1. The procedure is perhaps best illustrated with an example.

Example 1. Consider a system whose L-encoding contains exactly the predicates x +
y ≥ 3 and (2∗x)−y ≥ y, with x ∈ [0..1] and y ∈ [3..4], say. In the invariant generation
procedure in [10], the set U would be just {x+ y ≥ 3, (2 ∗ x)− y ≥ y}. In the version
we discuss here, if x and y are identified as mode variables of interest (see later) U is
augmented with the predicates from the following set

V := {x = 0, x = 1, y = 3, y = 4} ∪ {x �= 0, x �= 1, y �= 3, y �= 4} .

Figure 2 shows how the graph evolves with a sample sequence of two models. The
procedure starts with the implication graph consisting of the node O, conjecturing that
all predicates in U are equivalent. Nodes A and B are the result of splitting O. Nodes
C and D are the result of splitting A, and node E and F of splitting B. �

The addition to U of predicates like those in the set V in Example 1 allows our proce-
dure to discover, among others, invariants of the form x = a → y = b where x and y
are mode variables and a and b are specific values in their range. Together with range
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constraints, negative predicates of the form y �= b, allow the procedure to discover, in
effect, also invariants of the form x = a→

∨
i∈I y = bi where [b1..bn] is y’s range and

I ⊆ 1, . . . , n.3 We will call these two kinds of invariants mode invariants.

3 Identifying Mode Variables

In this section we propose a technique to identify a relatively tight number of system
variables as mode variables and a set of predicates on them to be used to produce mode
invariants as described in the previous section. The overall goal is to capture with these
invariants enough mode information about a software system under analysis—or, more
accurately, about its encoding as a transition system in some logic L.

The logic L used here will be the two-sorted logic consisting of the quantifier-free
fragment of (mixed integer and real) linear arithmetic.

3.1 State Machines in Synchronous Models

Embedded systems, controllers for instances, are usually modeled as a set of syn-
chronous dataflow computations governed by an overall mode logic. In aircraft control
command, the mode logic could be a finite state machine iterating through the phases:
taxi, take-off, flying, landing. For a car cruise controller, it could be a state machine
describing how the controller engages and disengages depending on a number of pa-
rameters and actions. As mentioned in the introduction, when encoding these models as
transition systems for verification purposes, the state machine expressing the original
system’s mode logic is often encoded with the introduction of mode variables to model
the mode logic’s finite state machine. These are variables over an enumeration type or,
more often, Boolean variables or variables over a finite integer range.

While this approach is rather general, it has the disadvantage that the structure of
state machine gets lost in the translation. This has important consequences for verifi-
cation methods based on inductive arguments, such as k-induction, because the logical
encoding ends up creating a state space with states that do not correspond to any state
of the original state machine, and so are unreachable by the resulting transition system.
These states are problematic because they typically lead to spurious counter-examples
for the inductive step of the verification process.

To illustrate the problem with an example, consider again the microwave model of
Figure 1, but without the variable mode. Consider then a layered encoding of the model
into a transition system where a mode variable top ∈ [1..2] represents the top states
SETUP and RUNNING, with top = 1 for the first and top = 2 for the second, and a mode
variable running ∈ [0..2] represents the running state, with 0 meaning not running,
1 meaning SUSPENDED and 2 COOKING. The state space of this transition system con-
tains the unreachable states {top !→ 1, run !→ 1} and {top !→ 1, run !→ 2} which
may cause problems during induction. Those states can be ruled out during the verifi-
cation process if (top = 1) ↔ (running = 0 ) is discovered to be an invariant for the
system.

3 The reason is that such an invariant is equivalent to
∧

j∈[b1..bn]\I(x = a → y �= bj).
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T1 := x′ = z
∧ y′ = if c′1 then 2 else

if c′2 then 1 else x′

∧ z′ = if c′3 then 0 else y′

∧ x, y, z ∈ [0..2]

T2 := a′ = z ∧ x′ = b
∧ b′ = if c′4 ∧ a′ = 2 then 1 else if c′5 then y′ else 2
∧ y′ = if c′1 then 2 else if c′2 then 1 else x′

∧ z′ = if c′3 then 0 else y′

∧ a, b, x, y, z ∈ [0..2]

Fig. 3. Transition relations over integer and Boolean variables. The latter are unconstrained just
for simplicity.

3.2 Selecting Mode Variables

To generate mode invariants for a transition system S it is necessary to identify its mode
variables in the first place. In the absence of explicit user-provided information, a possi-
bility is to perform interval analysis on S to uncover variables that have a finite domain
in all reachable states, and treat all such variables as mode variables. In general, exam-
ples of finite domain variables would be Boolean variables, enumeration type variables,
and integer variables over a finite range. Then, one can strengthenS’s transition relation
as needed with the discovered finite domain constraints on those variables, and apply
the invariant generation technique presented in Section 2 based on a set of predicates
that contains all equations of the form x = v and their negation, for each finite domain
variable x and value v in its domain.

One problem with this approach is that it does not to scale well with respect to the
number of finite domain variables or the size of their domains. Furthermore, many fi-
nite domain variables are uninteresting from a mode invariant generation perspective
because they simply store intermediate values in the system’s computation. For exam-
ple, consider the two transition relations T1 and T2 in Figure 3, already strengthened
with finite domain constraints for some of their variables. While artificial and some-
what contrived, they illustrate a common situation in which several of the finite domain
variables can be ignored for depending functionally on other variables.

It is easy to see that in T1 the values of x′, y′ and z′—i.e., the next-state values of
x, y and z—are all determined by the value of the tuple (z, c′1, c

′
2, c

′
3). A closer look

reveals that they are also all determined by the value of (x, c′1, c
′
2, c

′
3). As we will argue

later, this suggests that it is enough to consider just z or just x as a mode variable for
invariant generation purposes. In contrast, it would not be advantageous to consider just
y because the next-state value of x is not determined by (y, c′1, . . . , c

′
3). In T2, no tuple

consisting of the Boolean variables and just one of the integer variables determines the
next-state value of all the other variables. However, a tuple made of b and z and the
Boolean variables will do. We formalize this intuition in the following and discuss a
mode variable selection heuristics based on it.

Definition 2. Let F [z] be a formula in L and let FL be the relation denoted by F in
L. A variable y in z depends (in F ) on a tuple x of variables from z, if the projection
πx,y(F

L) of FL over x, y, in the sense of relational algebra, is functional; that is, if
πx,y(F

L) contains no two distinct tuples of the form (v, u1), (v, u2); the variable y
strictly depends on x if, additionally, it depends on no proper subtuple of x.
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Fig. 4. Dependency graphs for the formulas T1 and T2, respectively, from Figure 3

Now, let’s consider a formula T [x,x′] of L encoding the transition relation of some
system S. Suppose we are given a mapping dep from each variable y′ of x′ to a tuple
of variables (of F ) that y′ strictly depends on. This mapping induces a directed labelled
multigraph (V,E), a dependency graph for T , where

V = x E = {y −→ z | z′ ∈ dep(y′)} ∪ {y −→• z | z ∈ dep(y′)} .

Intuitively, there is an edge−→ in the graph between y and z iff the next-state value of y
depends on the next-state value of z, and there is an edge−→• between them iff the next-
state value of y depends on the current-state value of z. For the transition relation T1 in
Figure 3, a suitable mapping dep would be {x′ !→ (z), y′ !→ (c′1, c

′
2, x

′), z′ !→ (c′3, y
′)}.

That mapping and its analogous for T2 induce the multigraphs depicted in Figure 4.
We assume here that, for a given transition relation formula T , it is possible to com-

pute from it a mapping dep, and hence its induced dependency graph. The ease, or in
fact the possibility, of doing this automatically depends in general on T ’s format. In
our experiments, where transition relation formulas are generated from system models
written in Lustre [6], the process is straightforward because there each variable is given
an explicit equational definition, as in the formulas of Figure 3.

Definition 3. Let G = (V,E) be a dependency graph and let C be a strongly connected
component (SCC) of G.4 The base of C is the set

{y ∈ C | x −→• y ∈ E for some x, y ∈ C} (3)

if this set is non-empty; otherwise it is C itself. A variable is a base variable of G if it is
in the base of one of G’s SCCs; it is a stateful base variable if it is in a base like (3).

The SCCs of the left-hand graph of Figure 4 are {c1}, {c2}, {c3}, and {x, y, z}; their re-
spective bases are {c1}, {c2}, {c3}, and {z}. The SCCs of the other graph are {c1}, . . . ,
{c5}, {a, b, c, x, y, z}; their respective bases are are {c1}, . . . , {c5}, {b, z}.

It is not difficult to show that the following holds.

Proposition 1. Let G = (V,E) be a dependency graph for a transition relation T , and
let N = {x1, . . . , xk} be the union of all the base variables of G. Then, every variable
in V \N depends on (x1, . . . , xk) in T .

The proposition above suggests that for invariant generation purposes it is enough to
restrict attention to base variables only since they determine the values of all the other
variables. Therefore, it is enough to constraint their values only. In fact, one can go

4 With respect to paths built with any of the two edge types of G.
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even further and ignore any invariants containing only non-stateful base variables. For
instance, invariants over just the base variables c1, . . . , c3 and c1, . . . , c5 in the graphs
of Figure 4. The reason is that the current state values of such variables constraints
only current state values of other variables, but no next state values. This means that
invariants containing only such variables will be entailed by the transition relation. Such
invariants are useless for induction because they do not not strengthen the transition
relation.5 In this work we take a more draconian approach and simply discard all non-
stateful base variables, to reduce as much as possible the number of predicates x = v
fed to our invariant discovery procedure. Of course, we also discard all stateful base
variables that do not (or that we cannot determine to have) a finite domain.

The rationale behind this selection heuristics is that each independently defined state
machines in the original system model—in particular, submachines of a hierarchical
state machine—typically end up generating separate SCCs over mode variables in the
dependency graph. Our conjecture is that enough useful invariants about these subma-
chines and their relationships, are captured by considering just the finite-domain stateful
base variables of each SCC.

A Variable Selection Procedure. To summarize, to limit the number of variables used
for mode invariant generation for a transition relation formula T we use a procedure
that (i) computes a dependency graph G = (V,E) for T , (ii) identifies G’s strongly
connected components, and (iii) collects and returns all and only the finite-domain
stateful base variables of these components.

4 Multi-property Incremental Verification

In this section we present a technique to verify simultaneously and incrementally mul-
tiple safety properties. Its relevance in this work is that it combines synergistically with
the invariant generation techniques described in the previous sections.

Given a transition system encoding (I, T ) and a list of properties P 1, . . . , Pn all to
be checked for invariance, there are two possible ways of doing that with k-induction.
One is to check each property individually. This is however time consuming and not
very effective because a conjunction of formulas is usually easier to prove by induction
that its individual conjuncts. Another way then is to check the property P = P 1 ∧
· · · ∧ Pn. But this has its drawbacks as well. To start, if even just one of the individual
properties fails to be invariant so does the whole P . However, even when P is indeed
invariant, it is often the case that its individual constituents are k-inductive for different
values of k. So the k-induction procedure has to wait until the largest of these values is
reached before succeeding. In the worst case, one of the individual properties may not
be k-inductive for any k, forcing the basic k-induction procedure to diverge.

Our solution to the problems above is to work with all properties at the same time
but also keep track in each iteration of the k induction loop of the current status of
each property P i. In the base case, all properties that are falsified for a particular k are
removed from consideration before increasing the value of k. In the induction step, all

5 Note, however, that they might nevertheless be useful to speed up queries to an L-solver, the
way auxiliary (deductive) lemmas generally do.
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proc base proc ≡
k := 0; props := {P 1, . . . , Pn}; for P ∈ props P.level := ∞
while (props �= ∅)

model := SAT(T0 ∧ · · · ∧ Tk ∧ ¬
∧

P∈props(P0 ∧ · · · ∧ Pk))

if (model = Unsat) then k := k + 1
else
invalid := filter sat(model, props)
send(INVALID(invalid), ind proc)
props := props \ invalid
print out invalid

if receive(VALID(possibly valid, k′), ind proc) then
for P ∈ possibly valid P.level := k′

valid := {P ∈ props | P.level ≤ k}
props := props \ valid
if props �= ∅ then send(INVAR(valid), ind proc)
print out valid

send(STOP, [ind proc, inv gen proc])

Fig. 5. Base step process. For each i, Ti abbreviates I [xi] if i = 0 and T [xi−1,xi] otherwise. Pi

abbreviates P [xi].

properties that are validated for a particular k (see later for details on how we check
this) are also removed from the list of properties to be checked but immediately added
back as invariants, to aid the verification of the remaining ones.

Our incremental approach builds on the parallel k-induction-based model checking
architecture we developed in recent work [11]. That architecture is designed to min-
imize synchronization delays and facilitate the incorporation of concurrent invariant
generators, and has the following basic structure:

base proc || ind proc || inv gen proci

The base and the inductive step of k-induction execute concurrently respectively in
the base proc and the ind proc process, as do one or more independent processes
inv gen proci that incrementally generate auxiliary invariants for the system being ver-
ified. These invariants are fed to the k-induction loop as soon as they are produced
and used to strengthen the induction hypothesis. The processes communicate with one
another by asynchronous messages passing, with non-blocking send and receive op-
erations relying on message queues. The operation receive(pat , source) matches the
pattern pat with a message from process source, if any; it returns true if there is a
message and the matching succeeds, and returns false otherwise. Some more details on
each process are described below, assuming for simplicity just one invariant generator.

Base Case Process. Figure 5 shows the pseudo-code for base proc. Its main task is to
partition incrementally the initial set of properties, the initial value of props , into valid
(i.e., invariant) properties and invalid (i.e., non-invariant) ones.

The process checks the entailment in Case (1) of Definition 1 for increasing values
of k starting from 0. The function SAT implements the L-solver. It takes a formula F
over n states and returns either unsat or a model model of F , i.e., a sequence of n
states that satisfies F . The function filter sat returns the set of properties in props that
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proc ind proc ≡
k := 0; props := {P 1, . . . , Pn}; invs := ∅
while (props �= ∅)

assert(Tk+1 ∧
∧

Y ∈invs Yk+1 ∧
∧

P∈props Pk)

if entailed(
∧

P∈props Pk+1) then send(VALID(props, k), base proc); exit
else

possibly valid := recheck validity(props, k)
send(VALID(possibly valid, k), base proc)
props := props \ possibly valid

if receive(msg , ) then
match msg with

STOP → exit
| INVALID(invalid) → props := props \ invalid
| INVAR(new invs)→ for i = 0 to k + 1 assert(

∧
Y ∈new invs Yi)

invs := invs ∪ new invs
k := k + 1

Fig. 6. Inductive Step Process. For each i, Yi abbreviates Y [xi].

are falsified by one of the states in model . Those properties are definitely invalid. They
are both printed for the user and sent the inductive step process, and then removed from
the current set props of properties. Note that the counter k left unchanged as long as
the solver keeps finding counter-models for some of the current properties.

Before repeating the main loop the process checks its message queue; a message
from ind proc stating that it has successfully proven the inductive step (2) of Defini-
tion 1 for a some k′ and a subset possibly valid of the input properties. The value
k′ need not be the same as k since the two processes increase their own induction
level independently. As a consequence, the base proc first annotates each property in
possibly valid with k′, storing it in the level field of the property. Then it collects in
valid all properties from props whose level is at that point smaller or equal to the cur-
rent k. Each property P in valid has been cooperatively shown by the two processes
to be (P.level)-inductive. So it is removed from the list of properties to be proven and
sent back to ind proc to be used as an invariant, provided there are still properties to
be proven. The process terminates when props becomes empty, sending a termination
signal to the other processes as well.

Inductive Step Process. Pseudo-code for this process is provided in Figure 6. There we
assume a stateful L-solver that allows one to assert formulas (with the assert procedure)
and then check (with the entailed Boolean function) whether the current set of asserted
formulas entails a given one.

The process checks the inductive step entailment for increasing values of k. However,
it strengthens the induction hypothesis with any invariants at its disposal (in invs). If the
entailment holds for the current k and set props of properties, they are both sent to the
base case process, and the inductive process terminates. As discussed earlier, base proc
will confirm their individual invariance, or not, by checking that they have no counter-
examples of length up to k. If the entailment fails, the process passes the properties to
the auxiliary function recheck validity which (using a separate copy of the L-solver)
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computes the largest subset of props for which the entailment test succeeds. This set is
sent to base proc as in the previous case, and removed from props .

The remaining properties are rechecked for an increased value of k. Before pro-
ceeding, however, the process checks its message queue. If it sees a message (from
base proc) with a set of properties found to be invalid, it removes them from props .
If it sees a message from an invariant generation process, providing a set of auxiliary
invariants, or from base proc, providing a set of properties confirmed to be valid and
so usable as invariants, it asserts all those invariants for all steps from 0 to k + 1 and
then adds them to the current invariant set invs . The process terminates if it sees a
termination message from base proc.

Incremental Invariant Generator. This process can be any incremental invariant gen-
erator for the given transition system. It is supposed to keep sending any newly discov-
ered invariants to the induction step process until it can generate no more, or it receives
a termination message from the base case process. In our current implementation, we
have one such process that essentially implements the general template-based invariant
discovery procedure seen in Section 2. The process is composed of three main modules:
the Candidate generator, which constructs the initial set C of candidate invariants from
predefined templates, the Int invariant generator, which produces from C invariants of
the form s ≤ t where s and t are integer terms, and the Bool invariant generator, which
produces invariants of the forms F → G as discussed in Section 3.

5 Experimental Results

To evaluate experimentally the techniques presented in the previous sections, we have
implemented it as new options in our k-induction-based model checker KIND.6 KIND

can simultaneously check multiple invariant properties of programs written in an ide-
alized version of the specification/programming language Lustre [6].7 The underlying
logic of KIND is a quantifier-free logic that includes both propositional logic and mixed
real-integer linear arithmetic. Lustre programs can be readily encoded as transition sys-
tems in this logic [5]. KIND uses the SMT solvers CVC3 and Yices, in alternative, as
satisfiability solvers for this logic. The version discussed here is based on the incremen-
tal parallel architecture discussed in the previous section.

The experiments discussed below were run, using Yices version 1.0.9 as the back-
ground solver, on a 12-core 2.10 GHz AMD Opteron machine under Ubuntu 11.10. The
experiments used benchmark derived from the following problem.

NASA Docking Approach Example. This is a complex hierarchical problem that de-
scribes the approach behavior of the Space Shuttle when docking with the International
Space Station [14]. As the shuttle approaches the ISS it goes through several opera-
tional modes related to how the shuttle is to orient itself for capture, dock with the ISS,
and capture the ISS docking latch, among several other operational modes. The model
describing this behavior is quite intricate and consists of a hierarchical and parallel state
machine with three levels of hierarchy and multiple parallel state machines, including a

6 Tools and experimental data can be found at http://clc.cs.uiowa.edu/Kind.
7 The idealization consists in treating Lustre’s numerical types as infinite precision types.

http://clc.cs.uiowa.edu/Kind
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Fig. 7. The left graph illustrates the distribution of solved and unsolved properties for the different
benchmarks, DA1 . . . DA5, using configurations A though G for KIND. Darker areas indicate the
portion of solved properties. The right graph indicates the number of variables considered for
mode invariant generation before and after applying the selection procedure from Section 3 to the
5 benchmarks.

total of 64 states. For the purposes of this experiment, we created five reduced versions
of the docking approach model in which we replaced one of the complex hierarchical
states with a simple state that approximates its behavior. This allows us to examine the
behavior of the invariant generation over a range of state machine models with different
characteristics (the hierarchical states vary substantially in size). Note that it also causes
some of the original properties to be violated.

We ran KIND on the five problems above in different configurations: (A) single-
prop, no invars; (B) multi-prop, no invars; (C) single-prop, no mode invars; (D) multi-
prop, no mode invars; (E) single-prop, mode invars; (F) multi-prop, mode invars; (G)
multi-prop, selected mode invars. In the single-prop configurations, each property was
checked individually; in multi-prop configurations the properties were checked together
incrementally as discussed in Section 4. In no invars, no invariants were generated at all.
In no mode invars, invariants were generated, but no mode invariants. In mode invars,
invariants included mode invariants generated for all finite domain variables. In the
selected mode invars configuration, invariants included mode invariants generated only
for those variables selected by the procedure discussed in Section 3.

Precision Results. The first graph of Figure 7 summarizes the precision achieved by
KIND under the configurations above. In cases A and B, KIND is able to solve 42%
of all the properties without relying on auxiliary invariants. The percentage of solved
properties goes up to 73%, 80% and 87% in cases C, D and E, respectively, illustrating
the effectiveness of invariant generation and of incremental multi-property verification.
In particular, general invariants (case C) increase precision by 31 percentage points over
configurations A and B. The further addition of mode invariants in the single property
case increases precision by 14 more points (from C to E). Going from single to incre-
mental multi-property verification but without mode invariants (from C to D) increases
precision by 7 points. Finally, the combination of multi-property verification and mode
invariants does noticeably better than each of them alone (91% vs 80% and 87%).

Runtime Results. As we conjectured, reducing the number of variables to generate
mode invariants using our variable selection procedure reduces runtimes in general
without impacting precision. In particular, in case F, KIND can to solve all the valid
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properties in a total time of 15s; in case G, such value goes down to 14.3s. As shown
by the right-hand side graph of Figure 7, our selection procedure reduces the number
of mode variables to consider in problems DA1, DA2 and DA3—although not in DA4
and DA5, perhaps because of their small number there. As a result, the total time for the
first three benchmarks goes respectively from 4089ms, 57ms and 6025ms before the
selection of mode variables (case F) to 3728ms, 33ms and 5752ms after (case G).

6 Conclusion

We have presented two complementary techniques for the verification of safety prop-
erties in synchronous systems with complex modal behavior. A first technique allows
the automatic generation of certain inductive invariants for system variables identified
heuristically as containing mode information. A second technique allows the simultane-
ous verification of multiple properties in an incremental fashion. The synergy between
these two techniques allowed us to verify safety properties of complex systems like the
NASA docking benchmarks.
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Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract. Gorrieri and Martinelli’s tGNDC is a general framework for
the formal verification of security protocols in a concurrent scenario.
We generalise their tGNDC schema to verify wireless network security
protocols. Our generalisation relies on a simple timed broadcasting pro-
cess calculus whose operational semantics is given in terms of a labelled
transition system which is used to derive a standard simulation theory .
We apply our tGNDC schema to perform a security analysis of LiSP, a
well-known key management protocol for wireless sensor networks.

1 Introduction

Wireless communications are vulnerable to several kinds of threats and risks. An
adversary can compromise a device, alter the integrity of the data, eavesdrop on
messages, inject fake messages, and waste network resource. Designing security
protocols for wireless systems requires a deep understanding of their resource
limitations to achieve acceptable performances.

In this paper, we adopt a process calculus approach to formalise and verify
wireless network security protocols. We propose a simple timed broadcasting pro-
cess calculus , called aTCWS, for modelling wireless networks. The time model we
adopt is known as the fictitious clock approach (see e.g. [7]): A global clock is
supposed to be updated whenever all nodes agree on this, by globally synchron-
ising on a special timing action σ. Broadcast communications span over a limited
area, called transmission range. Both broadcast actions and internal actions are
assumed to take no time. This is a reasonable assumption whenever the duration
of those actions is negligible with respect to the chosen time unit. The operational
semantics of our calculus is given in terms of a labelled transition semantics in
the SOS style of Plotkin. The calculus enjoys standard time properties, such as:
time determinism, maximal progress , and patience [7]. The labelled transition
semantics is used to derive a co-inductive (weak) simulation theory which can
be easily mechanised by relying on well-known interactive theorem provers such
as Isabelle/HOL [13] or Coq [2]. Based on our simulation theory, we generalise
Gorrieri and Martinelli’s timed Generalized Non-Deducibility on Compositions
(tGNDC ) schema [5,6], a well-known general framework for the formal verifica-
tion of timed security properties. The basic idea of tGNDC is the following: a
protocol M satisfies tGNDC ρ(M) if the presence of an arbitrary attacker does
not affect the behaviour of M with respect to the abstraction ρ(M). By varying
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ρ(M) it is possible to express different timed security properties for the pro-
tocol M . Examples are the timed integrity property, which ensures the freshness
of authenticated packets, and the timed agreement property, when agreement
between two parties must be reached within a certain deadline. In this paper,
we will focus on the first property. In order to avoid the universal quantification
over all possible attackers when proving tGNDC properties, we provide a sound
proof technique based on the notion of the most powerful attacker .

As a main application of our theory, we provide a formal specification of
LiSP [14], a well-known key management protocol for wireless sensor networks
that, through an efficient mechanism of re-keying, provides a good trade-off
between resource consumption and network security. We perform our tGNDC -
based analysis on LiSP showing that old packets can be authenticated as a
consequence of a replay attack . To our knowledge this attack has never appeared
in the literature. Then, we formally prove that similar attacks can be avoided if
nonces are added to the original LiSP protocol.

Related Work. A number of process calculi have been proposed for model-
ling different aspects of wireless systems [8,16,9,4,3,10]. The paper [12] pro-
poses an algebraic approach to perform security analysis of communication
protocols for ad hoc networks. The paper [1] proposes a first formalisation of
tGNDC in our setting and a security analysis of the authentication protocols
μTESLA [15] and LEAP+ [17]. μTESLA has also been studied within the cal-
culus tCryptoSPA [5,6], an extension of Milner’s CCS where node distribution,
local broadcast communication, and message loss are codified in terms of point-
to-point transmission and a notion of discrete time. As a consequence, specific-
ations and security analyses of wireless network protocols in tCryptoSPA are
much more involved than ours.

2 The Calculus

Table 1 provides the syntax of our applied Timed Calculus for Wireless Systems ,
aTCWS, in a two-level structure: A lower one for processes and an upper one for
networks. We assume a set Nds of logical node names, ranged over by m,n. Var
is the set of variables , ranged over by x, y, z. We define Val to be the set of
values, and Msg to be the set of messages , i.e., closed values that do not contain
variables. Letters u, u1 . . . range over Val , and w,w′ . . . range over Msg .

Both syntax and operational semantics of aTCWS are parametric with respect
to a given decidable inference system, i.e. a set of rules to model operations on
messages by using constructors. For instance, the rules

(pair)
w1 w2

pair(w1, w2)
(fst)

pair(w1, w2)
w1

(snd)
pair(w1, w2)

w2

allow us to deal with pairs of values. We write w1 . . . wk  r w0 to denote an
application of rule r to the closed values w1 . . . wk to infer w0. Given an inference
system, the deduction function D : 2Msg → 2Msg associates a (finite) set φ of
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Table 1. Syntax of aTCWS

Networks:
M,N ::= 0 empty network∣∣ M1 | M2 parallel composition∣∣ n[P ]ν node

Processes:
P,Q ::= nil termination∣∣ !〈u〉.P broadcast∣∣ "?(x).P #Q receiver with timeout∣∣ ⌊∑

i∈I τ.Pi

⌋
Q internal choice with timeout∣∣ σ.P sleep∣∣ [u1 = u2]P ;Q matching∣∣ [u1 . . . un �r x]P ;Q deduction∣∣ H〈ũ〉 guarded recursion

messages to the set D(φ) of messages that can be deduced from φ, by applying
instances of the rules of the inference system.

Networks are collections of nodes running in parallel and using a unique
common channel to communicate with each other. All nodes have the same
transmission range (this is a quite common assumption in models for ad hoc
networks [11]). The communication paradigm is local broadcast : only nodes loc-
ated in the range of the transmitter may receive data. We write n[P ]

ν
for a node

named n (the device network address) executing the sequential process P . The
tag ν contains the neighbours of n (ν ⊆ Nds \ {n}). Our wireless networks have
a fixed topology as node mobility is not relevant to our analysis.

Processes are sequential and live within the nodes. In the processes !〈w〉.P ,
-?(x).P .Q,

⌊∑
i∈I τ.Pi

⌋
Q and σ.Q, the occurrences of P , Pi and Q are said

to be guarded ; the occurrences of Q are also said to be time-guarded. In the
processes -?(x).P .Q and [w1 . . . wn  r x]P the variable x is said to be bound
in P . A variable which is not bound is said to be free. We adopt the standard
notion of α-conversion on bound variables and we identify processes up to α-
conversion. We assume there are no free variables in our networks. The absence
of free variables will be maintained as networks evolve. We write {w/x}P for the
substitution of the variable x with the message w in P . We write H〈w1, . . . , wk〉
to denote a recursive process H defined via an equation H(x1, . . . , xk) = P ,
where (i) the tuple x1, . . . , xk contains all the variables that appear free in P ,
and (ii) P contains only guarded occurrences of the process identifiers, such asH
itself. H is said to be time-guarded if P contains only time-guarded occurrences
of the process identifiers.

We report some notational conventions . We write
∏

i∈I Mi to mean the par-

allel composition of all Mi, for i ∈ I. We write σk.P for the process σ. . . . σ.P ,
where prefix σ occurs k times. The process [w1 = w2]P is an abbreviation for
[w1 = w2]P ; nil. Similarly, [w1 . . . wn  r x]P denotes [w1 . . . wn  r x]P ; nil.
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Table 2. LTS - Transmissions, internal actions and time passing

(Snd)
−

m[!〈w〉.P ]ν
m!w�ν−−−−−−→ m[P ]ν

(Rcv)
m ∈ ν

n["?(x).P #Q]ν
m?w−−−−→ n[{w/x}P ]ν

(RcvEnb)
m /∈ nds (M)

M
m?w−−−−→ M

(RcvPar)
M

m?w−−−−→ M ′ N
m?w−−−−→ N ′

M | N m?w−−−−→ M ′ | N ′

(Bcast)
M

m!w�ν−−−−−−→ M ′ N
m?w−−−−→ N ′ μ := ν\nds (N)

M | N m!w�μ−−−−−−→ M ′ | N ′

(Tau)
h ∈ I

m[
⌊∑

i∈I τ.Pi

⌋
Q]ν

τ−−→ m[Ph]
ν (TauPar)

M
τ−−→ M ′

M | N τ−−→ M ′ | N

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Sleep)
−

n[σ.P ]ν
σ−−→ n[P ]ν

(σ-Rcv)
−

n["?(x).P #Q]ν
σ−−→ n[Q]ν

(σ-Sum)
−

m[
⌊∑

i∈I τ.Pi

⌋
Q]ν

σ−−→ m[Q]ν

(σ-Par)
M

σ−−→ M ′ N
σ−−→ N ′

M | N σ−−→ M ′ | N ′ (σ-0)
−

0
σ−−→ 0

In the sequel, we will make use of a standard notion of structural congruence
to abstract over processes that differ for minor syntactic differences.

Definition 1. Structural congruence over networks, written ≡, is defined as
the smallest equivalence relation, preserved by parallel composition, which is a
commutative monoid with respect to parallel composition and internal choice,
and for which n[H〈w̃〉]ν ≡ n[{w̃/̃x}P ]ν , if H(x̃) = P .

Here, we provide some definitions that will be useful in the remainder of the
paper. Given a networkM , nds (M) returns the node names ofM . More formally,
nds (0) = ∅, nds (n[P ]

ν
) = {n} and nds (M1 |M2) = nds (M1) ∪ nds (M2). For

m ∈ nds (M), the function ngh(m,M) returns the set of the neighbours of m
in M . Thus, if M ≡ m[P ]

ν | N then ngh(m,M) = ν. We write Env (M) to
mean all the nodes of the environment reachable by the network M . Formally,
Env (M) = ∪m∈nds(M)ngh(m,M) \ nds (M).

The syntax provided in Table 1 allows us to derive networks which are some-
how ill-formed. The following definition identifies well-formed networks.

Definition 2 (Well-formedness). M is said to be well-formed if (i) M ≡ N |
m1[P1]

ν1 | m2[P2]
ν2 implies m1 �= m2; (ii) M ≡ N | m1[P1]

ν1 | m2[P2]
ν2 , with

m1 ∈ ν2, implies m2 ∈ ν1; (iii) for all m,n ∈ nds (M) there are m1, . . . ,mk ∈
nds (M), such that m=m1, n=mk, mi ∈ ngh(mi+1,M), for 1 ≤ i ≤ k−1.
In Table 2, we provide a labelled transition system (LTS) for aTCWS, in the SOS
style of Plotkin. Intuitively, the computation proceeds in lock-steps: between
every global synchronisation all nodes proceeds asynchronously by performing
actions with no duration, which represent either broadcast or input or internal
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Table 3. LTS - Matching, recursion and deduction

(Then) n[P ]ν
λ−−→ n[P ′]ν

n[[w = w]P ;Q]ν
λ−−→ n[P ′]ν

(Else) n[Q]ν
λ−−→ n[Q′]ν w1 �= w2

n[[w1 = w2]P ;Q]ν
λ−−→ n[Q′]ν

(Rec) n[{w̃/̃x}P ]ν
λ−−→ n[P ′]ν H(x̃)

def
= P

n[H〈w̃〉]ν λ−−→ n[P ′]ν

(DT) n[{w/x}P ]ν
λ−−→ n[R]ν w1. . .wn �r w

n[[w1 . . . wn �r x]P ;Q]ν
λ−−→ n[R]ν

(DF) n[Q]ν
λ−−→ n[R]ν � ∃ w. w1. . .wn �r w

n[[w1. . .wn �r x]P ;Q]ν
λ−−→ n[R]ν

actions. Communication proceeds even if there are no listeners: Transmission is a
non-blocking action. Moreover, communication is lossy as some receivers within
the range of the transmitter might not receive the message. This may be due to
several reasons such as signal interferences or the presence of obstacles.

The metavariable λ ranges over the set of labels {τ, σ,m!w�ν,m?w} denot-
ing internal action, time passing, broadcasting and reception. Let us comment
on the transition rules of Table 2. In rule (Snd) a sender m dispatches a mes-
sage w to its neighbours ν, and then continues as P . In rule (Rcv) a receiver n
gets a message w coming from a neighbour m, and then evolves into process P ,
where all the occurrences of the variable x are replaced with w. If no message
is received in the current time slot a timeout fires and the node n will continue
with process Q, according to the rule (σ-Rcv). The rule (RcvPar) models the
composition of two networks receiving the same message from the same trans-
mitter. Rule (RcvEnb) says that every node can synchronise with an external
transmitter m. Notice that a node n[-?(x).P .Q]ν might execute rule (RcvEnb)

instead of rule (Rcv); in this manner we model message loss. Rule (Bcast) models
the propagation of messages on the broadcast channel. Rules (Tau) and (TauPar)

model internal computations. Rule (σ-Rcv)models timeout on receivers, and sim-
ilarly rule (σ-Sum) describes timeout on internal activities. Rule (σ-Par) models
time synchronisation. Rules (Bcast) and (TauPar) have their symmetric counter-
parts. Table 3 reports the standard rules for matching, recursion and deduction.

Below, we report a number of basic properties of our LTS.

Proposition 1. Let M , M1 and M2 be well-formed networks.

1. m �∈ nds (M) if and only if M
m?w−−−−→ N , for some network N .

2. M1 |M2
m?w−−−−→ N if and only if there are N1 and N2 such that M1

m?w−−−−→
N1, M2

m?w−−−−→ N2 with N = N1 | N2.

3. If M
m!w�μ−−−−−−→ M ′ then M ≡ m[!〈w〉.P ]

ν | N , for some m, ν, P and N

such that m[!〈w〉.P ]
ν m!w�ν−−−−−−→ m[P ]

ν
, N

m?w−−−−→ N ′, M ′ ≡ m[P ]
ν | N ′ and

μ = ν \ nds (N).

4. If M
τ−−→ M ′ then M ≡ m[

⌊∑
i∈I τ.Pi

⌋
Q]

ν | N , for some m, ν, Pi, Q and

N such that m[
⌊∑

i∈I τ.Pi

⌋
Q]

ν τ−−→ m[Ph]
ν
, for some h ∈ I, and M ′ ≡

m[Ph]
ν | N .
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5. M1 | M2
σ−−→ N if and only if there are N1 and N2 such that M1

σ−−→ N1,

M2
σ−−→ N2 and N = N1 | N2.

Proposition 2. Let M be well-formed. If M
λ−−→M ′ then M ′ is well-formed.

Based on the LTS of Section 2, we define a standard notion of timed labelled sim-
ilarity for aTCWS. We distinguish between transmissions which may be observed
and those which may not be observed by the environment. We extend the set of
rules of Table 2 with the following two rules:

(Shh)
M

m!w�∅−−−−−−→M ′

M
τ−−→M ′

(Obs)
M

m!w�ν−−−−−−→M ′ μ ⊆ ν μ �= ∅
M

!w�μ−−−−−→M ′

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers is in the environment. Rule (Obs) models transmissions that
can be received (and hence observed) by those nodes of the environment con-
tained in ν. Notice that the name of the transmitter is removed from the label.
This is motivated by the fact that nodes may refuse to reveal their identities, e.g.
for security reasons or limited sensory capabilities in perceiving these identities.

In the sequel, the metavariable α will range over the following actions: τ ,
σ, !w�ν and m?w. We adopt the standard notation for weak transitions: the

relation =⇒ denotes the reflexive and transitive closure of
τ−−→; the relation

α
==⇒

denotes =⇒ α−−→ =⇒; the relation
α̂
==⇒ denotes =⇒ if α = τ and

α
==⇒ otherwise.

Definition 3 (Similarity). A relation R over well-formed networks is a sim-

ulation if M R N and M
α−−→ M ′ imply there is N ′ such that N

α̂
==⇒ N ′ and

M ′ R N ′. We write M � N , if there is a simulation R such that M R N .

Our notion of of similarity between networks is a pre-congruence, as it is pre-
served by parallel composition.

Theorem 1. Let M and N be two well-formed networks such that M � N .
Then M | O � N | O for all O such that M | O and N | O are well-formed.

3 A tGNDC Schema for Wireless Networks

Gorrieri and Martinelli [5] have proposed a general schema for the definition of
timed security properties, called timed Generalized Non-Deducibility on Com-
positions (tGNDC ). Basically, a system M is tGNDC ρ(M) if for any attacker A

M
∣∣ A � ρ(M)

i.e. the composed system M | A satisfies the abstraction ρ(M).
A wireless protocol involves a set of nodes which may be potentially under

attack, depending on the proximity to the attacker. This means that, in general,
the attacker of a protocol M is a distinct network A of possibly colluding nodes.
For the sake of compositionality, we assume that each node of the protocol is
attacked by exactly one node of A.
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Definition 4. We say that A is a set of attacking nodes for the network M if
and only if |A| = nds (M) and A∩ (nds (M) ∪ Env (M)) = ∅.

During the execution of the protocol an attacker may increase its initial know-
ledge by grasping messages sent by the parties, according to Dolev-Yao con-
strains. The knowledge of a network is expressed by the set of messages that
the network can manipulate. Thus, we write msg(M) (resp. msg(P )) to denote
the set of the messages appearing in the network M (resp. in the process P ). To
ensure that attackers cannot prevent the passage of time, in the following defini-
tion we denote Prcwt the set of processes in which summations are finite-indexed
and recursive definitions are time-guarded.

Definition 5 (Attacker). Let M be a network, with nds (M)={m1, ...,mk}.
Let A = {a1, . . . , ak} be a set of attacking nodes for M . We define the set of
attackers of M with initial knowledge φ0 ⊆ Msg as:

A
φ0

A/M

def
=
{ k∏

i=1

ai[Qi]
μi : Qi ∈ Prcwt, msg(Qi) ⊆ D(φ0), μi=(A \ ai) ∪mi

}
.

Sometimes, for verification reasons, we will be interested in observing part of
the protocol M under examination. For this purpose, we assume that the en-
vironment contains a fresh node obs /∈ nds (M) ∪ Env (M) ∪ A, that we call
the ‘observer’, unknown to the attacker. For convenience, the observer cannot
transmit: it can only receive messages.

Definition 6. Let M=
∏k

i=1 mi[Pi]
νi . Given a set A={a1, . . . , ak} of attacking

nodes for M and fixed a set O ⊆ nds (M) of nodes to be observed, we define:

MA
O

def
=

k∏
i=1

mi[Pi]
ν′
i where ν′i

def
=

{
(νi ∩ nds (M)) ∪ ai ∪ obs if mi ∈ O
(νi ∩ nds (M)) ∪ ai otherwise.

This definition expresses that (i) every node mi of the protocols has a dedicated
attacker located at ai, (ii) network and attacker are considered in isolation,
without any external interference, (iii) only obs can observe the behaviour of
nodes in O, (iv) node obs does not interfere with the protocol as it cannot
transmit, (v) the behaviour of the nodes in nds (M) \ O is not observable.

We can now formalise the tGNDC family of properties as follows.

Definition 7 (tGNDC for wireless networks). Given a network M , an ini-
tial knowledge φ0, a set O ⊆ nds (M) of nodes under observation and an abstrac-

tion ρ(M), representing a security property for M , we write M ∈ tGNDC
ρ(M)
φ0,O

if and only if for all sets A of attacking nodes for M and for every A ∈ A
φ0

A/M

it holds that MA
O
∣∣ A � ρ(M).

It should be noticed that when showing that a system M is tGNDC
ρ(M)
φ0,O , the

universal quantification on attackers required by the definition makes the proof
quite involved. Thus, we look for a sufficient condition which does not make use
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of the universal quantification. For this purpose, we rely on a timed notion of
term stability [5]. Intuitively, a network M is said to be time-dependent stable if
the attacker cannot increase its knowledge in a indefinite way when M runs in
the space of a time slot. Thus, we can predict how the knowledge of the attacker
evolves at each time slot. First, we need a formalisation of computation. For

Λ=α1 . . . αn, we write
Λ
==⇒ to denote =⇒ α1−−−→ =⇒ ... =⇒ αn−−−→ =⇒. In order to

count how many time slots embraces an execution trace Λ, we define #σ(Λ) to
be the number of occurrences of σ-actions in Λ.

Definition 8 (Time-dependent stability). A network M is said to be time-
dependent stable with respect to a sequence of knowledge {φj}j≥0 if whenever

MA
nds(M)

∣∣A Λ
==⇒ M ′ ∣∣A′, where A is a set of attacking nodes for M , #σ(Λ) = j,

A ∈ A
φ0

A/M and nds (M ′) = nds (M), then msg(A′) ⊆ D(φj).

The set of messages φj expresses the knowledge of the attacker at the end of
the j-th time slot. Time-dependent stability is the crucial notion that allows us
to introduce the notion of most general attacker. Intuitively, given a sequence
of knowledge {φj}j≥0 and a network M , with P = nds (M), we pick a set A =

{a1, . . . , ak} of attacking nodes for M and we define the top attacker Top
φj

A/P
as the network which at (the beginning of) the j-th time slot is aware of the
knowledge (derivable) from φj .

Definition 9 (Top attacker). Let M be a network with P=nds (M)=
⋃k

i=1 mi.
Let A = {a1, . . . , ak} be a set of attacking nodes for M , and {φj}j≥0 a sequence
of knowledge. We define:

Top
φj

A/P
def
=
∏k

i=1 ai[Tφj ]
mi where Tφj

def
=
⌊∑

w∈D(φj)
τ.!〈w〉.Tφj

⌋
Tφj+1 .

Basically, from the j-th time slot onwards, Top
φj

A/P can replay any message in

D(φj) to the network under attack. Moreover, every attacking node ai can send
messages to the corresponding node mi, but, unlike the attackers of Definition 5,
it does not need to communicate with the other nodes in A as it already owns
the full knowledge of the system at time j.

Top attackers represent a compositional criterion to guarantee tGNDC.

Theorem 2 (Criterion for tGNDC ). Let M be time-dependent stable with
respect to a sequence {φj}j≥0, A be a set of attacking nodes for M and O ⊆
nds (M) = P. Then MA

O
∣∣ Topφ0

A/P � N implies M ∈ tGNDCN
φ0,O.

Theorem 3 (Compositionality). Let M =
∏k

i=1 Mi be time-dependent stable
with respect to a sequence of knowledge {φj}j≥0. Let A1, . . . ,Ak be disjoint sets of
attacking nodes for M1, . . . ,Mk, respectively. Let Oi⊆nds (Mi)=Pi, for 1≤i≤k.
Then, (Mi)

Ai

Oi

∣∣Topφ0

Ai/Pi
� Ni, for 1≤i≤k, implies M ∈ tGNDC

N1|...|Nk

φ0,O1∪...∪Ok
.

4 A Security Analysis of LiSP

LiSP [14] is a well-known key management protocol for wireless sensor net-
works . A LiSP network consists of a Key Server (ks) and a set of sensor nodes
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m1, . . . ,mk. The protocol assumes a one way function F , pre-loaded in every
node of the system, and employs two different key families: (i) a set of temporal
keys k0, . . . , kn, computed by ks by means of F , and used by all nodes to en-
crypt/decrypt data packets; (ii) a set of master keys kks:mj , one for each node
mj , for unicast communications between mj and bs. The transmission time is
split into time intervals, each of them is Δrefresh time units long. Thus, each
temporal key is tied to a time interval and renewed every Δrefresh time units.
At a time interval i, the temporal key ki is shared by all sensor nodes and it is
used for data encryption. Key renewal relies on loose node time synchronisation
among nodes. Each node stores a subset of temporal keys in a buffer of a fixed
size, say s with s << n.

The LiSP protocol consists of the following phases.

Initial Setup. At the beginning, ks randomly chooses a key kn and computes
a sequence of temporal keys k0, . . . , kn, by using the function F , as ki :=
F (ki+1). Then, ks waits for reconfiguration requests from nodes. More pre-
cisely, when ks receives a reconfiguration request from a node mj , at time
interval i, it unicasts the packet InitKey:

ks→ mj : enc(kks:mj , (s | ks+i | Δrefresh)) | hash(s | ks+i | Δrefresh) .

The operator enc(k, p) represents the encryption of p by using the key of k,
while hash(p) generates a message digest for p by means of a cryptographic
hash function used to check the integrity of the packet p. When mj receives
the InitKey packet, it computes the sequence of keys ks+i−1, ks+i−2, . . . , ki
by several applications of the function F to ks+i. Then, it activates ki for
data encryption and it stores the remaining keys in its local buffer; finally
it sets up a ReKeyingTimer to expires after Δrefresh/2 time units (this value
applies only for the first rekeying).

Re-Keying. At each time interval i, with i ≤ n, ks employs the active encryp-
tion key ki to encode the key ks+i. The resulting packet is broadcast as an
UpdateKey packet:

ks→ ∗ : enc(ki, ks+i) .

When a node receives an UpdateKey packet, it tries to authenticate the key
received in the packet; if the node succeeds in the authentication then it
recovers all keys that have been possibly lost and updates its key buffer.
When the time interval i elapses, every node discards ki, activates the key
ki+1 for data encryption, and sets up the ReKeyingTimer to expire after
Δrefresh time units for future key switching (after the first time, switching
happens every Δrefresh time units).

Authentication and Recovery of Lost Keys. The one-way function F is used to
authenticate and recover lost keys. If l is the number of stored keys in a buffer
of size s, with l ≤ s, then s−l represents the number of keys which have been
lost by the node. When a sensor node receives an UpdateKey packet carrying
a new key k, it calculates F s−l(k) by applying s− l times the function F . If
the result matches with the last received temporal key, then the node stores
k in its buffer and recovers all lost keys.
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Reconfiguration. When a node mj joins the network or misses more than s tem-
poral keys, then its buffer is empty. Thus, it sends a RequestKey packet in
order to request the current configuration:

mj → ks : RequestKey | mj .

Upon reception, node ks performs authentication of mj and, if successful, it
sends the current configuration via an InitKey packet.

Encoding. In Table 4, we provide a specification in aTCWS of the entire LiSP
protocol. We introduce some slight simplifications with respect to the original
protocol. We assume that (i) the temporal keys k0, . . . , kn have already been
computed by ks, (ii) both the buffer size s and the refresh interval Δrefresh are
known by each node. Thus, the InitKey packet can be simplified as follows:

ks→ mj : enc(kks:mj , ks+i) | hash(ks+i) .

Moreover, we assume that every σ-action models the passage of Δrefresh/2 time
units. Therefore, every two σ-actions the key server broadcasts the new temporal
key encrypted with the key tied to that specific interval. Finally, we do not model
data encryption.

When giving our encoding in aTCWS we will require some new deduction rules
to model an hash function and encryption/decryption of messages:

(hash)
w

hash(w)
(enc)

w1 w2

enc(w1, w2)
(dec)

w1 w2

dec(w1, w2)
.

The protocol executed by the key server is expressed by the following two threads:
a key distributor Di and a listener Li waiting for reconfiguration requests from
the sensor nodes, with i being the current time interval. Every Δrefresh time
units (that is, every two σ-actions) Di broadcasts the new temporal key ks+i

encrypted with the key ki of the current time interval i. The process Li replies
to reconfiguration requests by sending an initialisation packet.

At the beginning of the protocol, a sensor node runs the process Z, which
broadcasts a request packet to ks, waits for a reconfiguration packet q, and then
checks authenticity by verifying the hash code. If the verification is successful
then the node starts the broadcasting new keys phase. This phase is formalised
by the process R(kc, kl, l), where kc is the current temporal key, kl is the last
authenticated temporal key, and the integer l counts the number of keys that
are actually stored in the buffer.

To simplify the presentation, we formalise the key server as a pair of nodes: a
key disposer kd, which executes Di, and a listener kl, which executes Li. Thus,
the LiSP protocol, in its initial configuration, can be represented as:

LiSP
def
=
∏
j∈J

mj[σ.Z]
νmj | ks[σ.D0]

νks | kl[σ.L0]
νkl

where for each node mj , with j ∈ J , mj ∈ νkd ∩ νkl and {kd,kl} ⊆ νmj .
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Table 4. The LiSP protocol

Key Server:

D0
def
= σ.D1 synchronise and move to D1

Di
def
= [ki ks+i �enc ti] for i ≥ 1, encrypt ks+i with ki

[UpdateKey ti �pair ui] build the UpdateKey packet ui

!〈ui〉.σ.σ.Di+1 broadcast ri, and move to Di+1

Li
def
= "?(r).Ii+1#σ.Li+1 wait for request packets

Ii
def
= [r �fst r1]I

1
i ;σ.σ.Li extract first component

I1i
def
= [r1 = RequestKey]I2i ;σ.σ.Li check if r1 is a RequestKey

I2i
def
= [r �snd m] extract node name

[kks:m ks+i �enc wi] encrypt ks+i with kks:m
[ks+i �hash hi] calculate hash code for ks+i

[wi hi �pair ri] build a pair ri
[InitKey ri �pair qi] build a InitKey packet qi
σ.!〈qi〉.σ.Li broadcast qi, move to Li

Receiver at node m:

Z
def
= [RequestKey m �pair r] send a RequestKey packet

!〈r〉.σ."?(q).T #Z wait for a reconfig. packet

T
def
= [q �fst q

′]T 1;σ.Z extract fst component of q

T 1 def
= [q′ = InitKey]T 2;σ.Z check if q is a InitKey packet

T 2 def
= [q �snd q′′] extract snd component of q

[q′′ �fst w]T 3;σ.Z extract fst component of q′′

T 3 def
= [q′′ �snd h] extract snd component of q′′

[kks:m w �dec k]T 3; σ.Z extract the key

T 4 def
= [k �hash h′][h = h′]T 5;σ.Z verify hash codes

T 5 def
= σ.σ.R〈F s−1(k), k, s−1〉 synchronise and move to R

R(kc, kl, l)
def
= "?(u).E#F wait for incoming packets

E
def
= [u �fst u

′]E1;σ.F extract fst component of u

E1 def
= [u′ = UpdateKey]E2; σ.F check UpdateKey packet

E2 def
= [u �snd u′′] extract snd component of u

[kc u′′ �dec k]E3; σ.F decrypt u′′ by using kc

E3 def
= [F s−l(k) = kl]E

4;σ.F authenticate k

E4 def
= σ.σ.R〈F s−1(k), k, s−1〉 synchronise and move to R

F
def
= [l = 0]Z; σ.R〈F l−1(kl), kl, l−1〉 check if buffer key is empty

Security Analysis. In LiSP, a node should authenticate only keys sent by the key
server in the last Δrefresh time units. Otherwise, a node needing a reconfiguration
would authenticate an obsolete temporal key and it would not be synchronised
with the rest of the network. Here, we show that key authentication in LiSP may
take longer than Δrefresh time units, as a consequence of a replay attack.
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For our analysis, without loss of generality, it suffices to focus on a part of the
protocol composed by the kl node of the key server and a single sensor node m.
Moreover, in order to make observable a successful reconfiguration, we replace
the process T 4 of Table 4 with the process

T 4′ def
= σ.σ.[auth k  pair a]!〈a〉.R〈F s−1(k), k, s−1〉 .

Thus, the part of the protocol under examination can be defined as follows:

LiSP′ def
= m[σ.Z ′]

νm | kl[σ.L0]
νkl .

Our freshness requirement on authenticated keys can be expressed by the fol-
lowing abstraction of the protocol:

ρ(LiSP′)
def
= m[σ.Ẑ0]

obs | kl[σ.L̂0]
obs

where

– Ẑi
def
= !〈r〉.σ.

⌊
τ.σ.σ.!〈authi+1〉.R(ki+1, ks+i, s− 1)

⌋
Ẑi+1,

with r = pair(RequestKey, m) and authi = pair(auth, ks+i) as in Table 4;

– L̂i
def
=
⌊
τ.σ.!〈qi+1〉.σ.L̂i+1

⌋
σ.L̂i+1, and qi defined as in Table 4:

qi = pair(InitKey ri) with ri = pair(enc(kks:m, ks+i), hash(ks+i)).

It is easy to see that ρ(LiSP′) is a correct abstraction of key authentication
within the protocol, as the action authi occurs exactly Δrefresh time units (that
is two σ-actions) after the disclosure of key ks+i through packet qi.

Proposition 3. ρ(LiSP′)
Λ
==⇒ !qi�obs−−−−−−−→ Ω

==⇒ !authi�obs−−−−−−−−−→ implies #σ(Ω) = 2.

In order to show that LiSP′ satisfies our security analysis, we should prove that

LiSP′ ∈ tGNDC
ρ(LiSP′)
φ0,O

for O = nds
(
LiSP′) and initial knowledge φ0 = ∅. However, this is not the case.

Theorem 4 (Replay attack to LiSP). LiSP′ �∈ tGNDC
ρ(LiSP′)
∅,{kl,m} .

Proof . Let us define the set of attacking nodes A = {a, b} for LiSP′. Let
us fix the initial knowledge of the attacker φ0 = ∅. We set νa = {m, b} and
νb = {kl, a}, and we assume that O = {kl,m}. We give an intuition of the
replay attack in Table 5. Basically, an attacker may prevent the node m to
receive the InitKey packet within Δrefresh time units. As a consequence, m may
complete the protocol only after 2Δrefresh time units (that is, four σ-actions),

so authenticating an old key. Formally, we define the attacker A ∈ A
φ0

A/{kl,m} as

A = a[σ.σ.σ.X]
νa
∣∣ b[σ.σ.X]

νb where X = -?(x).σ.!〈x〉.nil.nil. We then consider
the system (LiSP′)AO | A which admits the following execution trace:

σ . !r�obs . σ . !q1�obs . σ . τ . !r�obs . σ . τ . σ . σ . !auth1�obs

containing four σ-actions between the packets q1 and auth1. By Proposition 3,
this trace cannot be matched by ρ(LiSP′). So, (LiSP′)AO | A �� ρ(LiSP′). �
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Table 5. Replay attack to LiSP

m −→ kl : r m sends a RequestKey and kl correctly receives the packet
σ−−→ the system moves to the next time slot

kl −→ m : q1 kl replies with an InitKey which is lost by m and grasped by b
σ−−→ the system moves to the next time slot

b → a : q1 b sends q1 to a
m → kl : r m sends a new RequestKey which gets lost

σ−−→ the system moves to the next time slot
a → m : q1 a replays q1 to m

σ−−→ σ−−→ after Δrefresh time units
m → ∗ : auth1 m authenticates q1 and signals the end of the protocol

4.1 LiSP with Nonces

Replay attacks as those described above appears also in other key management
protocols, such as μTESLA [15] and LEAP+ [17]. These protocols have been
amended by adding nonces to guarantee freshness. We propose to do the same
in LiSP. For this purpose, we extend our inference system with a new deduction
rule to model a pseudo-random function: The application prf(m,wi) returns a
pseudo-random value wi+1 associated to a node m and the last generated value
wi. In our amended specification of LiSP, we add a nonce to the RequestKey
packet. The nonce is then included in the corresponding InitKey packet to guar-
antee the freshness of the reply. These changes affect only those processes which
model the key request at the node side and the reply at the server side. We
modify these processes as shown in Table 6. The requesting nodes run the pro-
cess Zj, where j is the number associated to the current key request. At each
request j, the receiver generates a nonce nj which will be used to check the
freshness of the received key. The process L̄i, running at the key server, now
includes the received nonce in the InitKey packet. Notice that, as done before,
the process T 7

j signals a successful reconfiguration. Again, for our analysis, it
suffices to analyse the following fragment of the protocol:

LiSP′′ def
= m[σ.Z1]

νm | kl[σ.L̄0]
νkl .

According to Definition 8, the system LiSP′′ is time-dependent stable with re-
spect to the following sequence of knowledge:

φ0 = ∅
φ1 = {r1}
φi = φi−1 ∪ {qj} if j > 0 and i = 2j
φi = φi−1 ∪ {authj, rj+1} if j > 0 and i = 2j + 1

(1)

where

authj = pair(auth, ks+j)
rj = pair(RequestKey, pair(m,nj))
qj = pair( InitKey, pair( enc(kks:m, pair(ks+j , nj)), hash(ks+j) ) ) .

Intuitively, φi consists of φi−1 together with the set of messages an intruder can
get by eavesdropping on a run of the protocol during the time slot i.



416 D. Macedonio and M. Merro

Table 6. LiSP with nonces

Key Server:

L̄i
def
= "?(r).Īi+1#σ.L̄i+1 wait for request packets

Īi
def
= [r �fst r1]Ī

1
i ;σ.σ.L̄i+1 extract first component

Ī1i
def
= [r1 = RequestKey]Ī2i ;σ.σ.L̄i+1 check if r1 is a RequestKey

Ī2i
def
= [r �snd t] extract second component

[t �fst m]Ī3i ;σ.σ.L̄i+1 extract node name

Ī3i
def
= [t �snd n] extract nonce

[ks+i n �pair p] build a pair
[kks:m p �enc wi] encrypt p with kks:m
[ks+i �hash hi] calculate hash code for ks+i

[wi hi �pair ri] build a pair ri
[InitKey ri �pair qi] build a InitKey packet qi
σ.!〈qi〉.σ.L̄i+1 broadcast qi, move to L̄i+1

Receiver at node m:

Zj
def
= [m nj−1 �prf nj ] build a random nonce nj

[m nj �pair t] build a pair t with name m and nonce nj

[RequestKey t �pair r] send a RequestKey packet
!〈r〉.σ."?(q).Tj#Zj+1 wait for a reconfig. packet

Tj
def
= [q �fst q

′]T 1
j ;σ.Zj+1 extract fst component of q

T 1
j

def
= [q′ = InitKey]T 2

j ;σ.Zj+1 check if q is a InitKey packet

T 2
j

def
= [q �snd q′′] extract snd component of q

[q′′ �fst w]T 3
j ;σ.Zj+1 extract fst component of q′′

T 3
j

def
= [q′′ �snd h] extract snd component of q′′

[kks:m w �dec p]T 4
j ;σ.Zj+1 decrypt w

T 4
j

def
= [p �fst k]T

5
j ;σ.Zj+1 extract the key

T 5
j

def
= [p �snd n][n = nj ]T

6
j ;σ.Zj+1 verify nonces

T 6
j

def
= [k �hash h′][h = h′]T 7

j ;σ.Zj+1 verify hash codes

T 7
j

def
= σ.σ.[auth k �pair a]!〈a〉.nil reaching of synchronisation

With the introduction of nonces, the abstraction expressing key authentication
within Δrefresh time units becomes the following:

ρ(LiSP′′)
def
= m[σ.Ẑ ′

1]
obs | kl[σ.L̂′

0]
obs

where
Ẑ′

i = [m ni−1 �prf ni][m ni �pair t][RequestKey t �pair r]!〈r〉.σ.
⌊
τ.σ2.!〈authi+1〉

⌋
Ẑ′

i+1

L̂′
i =
⌊∑

v∈D(φ2i+1)
τ.σ.!〈qvi+1〉.σ.L̂′

i+1

⌋
σ.L̂′

i+1

with qvi = pair(InitKey pair(enc(kks:m, pair(ks+i, v)), hash(ks+i))).
In ρ(LiSP′′) keys are authenticated after Δrefresh time units (two σ-actions).

Proposition 4. ρ(LiSP′′)
Λ
==⇒

!qvi �obs
−−−−−−−→ Ω

==⇒ !authi�obs−−−−−−−−−→M implies #σ(Ω)=2.

Now, everything is in place to prove the safety of the LiSP protocol with nonces.
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Lemma 1. Given two attacking nodes a and b, for m and kl respectively, and
fixed the sequence of knowledge {φi}i≥0 as in (1), then

1. kl[σ.L̄0]
{b,obs} ∣∣ Topφ0

b/kl � kl[σ.L̂′
0]

obs

2. m[σ.Z1]
{a,obs} ∣∣ Topφ0

a/m � m[σ.Ẑ ′
1]

obs .

Theorem 5 (Safety of LiSP with nonces). LiSP′′ ∈ tGNDC
ρ(LiSP′′)
∅,nds(LiSP′′) .

Proof . By an application of Lemma 1 and Theorem 3. �
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Abstract. Runtime verification techniques are used to continuously
check whether software execution satisfies or violates a given correctness
property. In this paper, we extend our previous work of three-valued se-
mantics for Linear Temporal Logic (LTL) to predictive semantics. Com-
bined with the static analysis to the monitored program, the predictive
semantics are capable of predicting monitored property’s satisfaction/vi-
olation even when the observed execution does not convince it. We instru-
ment the monitored program based on its Program Dependence Graph
representation in order to emit ”predictive word” at runtime. We also
implement a prototype tool to support predictive semantics and use it to
find predictive words in real, large-scale project. The result demonstrates
that the predictive semantics are generally applicable in these projects.

Keywords: Runtime Verification, Three-Valued Semantics, Predictive
Semantics, Program Dependence Graph.

1 Introduction

As software systems become more and more pervasive in everyday life, it is
becoming increasingly necessary to guarantee their security and reliability. An
approach of continuously monitoring software execution is becoming more and
more popular. Runtime verification techniques do not assume the deployed soft-
ware is correct, but continuous check whether software execution satisfies or vio-
lates a given correctness property. Runtime verification techniques are frequently
used to prevent damage from happening when software is going to malfunction
and are quite effective in practice.

We propose a predictive semantics for runtime verification in this paper. The
predictive semantics enable monitors to foresee a property satisfaction or viola-
tion before the observed execution convince it. We formally define the predictive
semantics used in runtime verification. We also give an algorithm on how to
generate a monitor from a LTL formula and describe how to use it to check
program’s execution with predictive semantics.

The remainder of this paper is organized as follows: some preliminary infor-
mation are first introduced in section 2; in section 3, we formally define runtime
verification with predictive semantics; then in section 4, we give an algorithm to
generate a monitor from a LTL formula and describe how to check monitored

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 418–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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program’s execution with predictive semantics; in section 5, we implement a
prototype tool to support predictive semantics; in section 6, we use this tool to
do some experiments on some real projects; finally, we review related work in
section 7 and conclude in section 8.

2 Preliminaries

2.1 Linear Temporal Logic and Büchi Automata

LTL is a widely used formalism for specifying and verifying correctness of com-
puter programs. For the remainder of this section, let AP be a finite set of atomic
proposition symbols and Σ = 2AP be a finite alphabet. Σ∗ stands for all finite
traces over Σ and Σω stands for all infinite traces over Σ. Usually, u, v, u′ and
v′ are used to denote elements in Σ∗ and w and w′ in Σω. For a word w ∈ Σω,
the prefix set of w is pref(w) = {u|∃w′ ∈ Σω : (w = uw′)}.

The syntax of LTL is defined as follows.

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ

where p ∈ AP . There are some syntax sugar: Fϕ = true Uϕ; Gϕ = ¬F¬ϕ.
We define the semantics of a formula ϕ of LTL with respect to infinite traces.
Let w = a0a1... ∈ Σω be a infinite word with i ∈ N being a position. We de-
fine the semantics of LTL formulae inductively as follows: w, i  true; w, i 
p iff p ∈ ai; w, i  ¬ϕ iff w, i � ϕ; w, i  ϕ1 ∨ ϕ2 iff w, i  ϕ1 or w, i  ϕ2;
w, i  ϕ1 Uϕ2 iff ∃k ≥ i with w, k  ϕ2 and ∀i ≤ l < k with w, l  ϕ1; w, i 
Xϕ iff w, i + 1  ϕ.

In addition, w, 0  ϕ can be abbreviated as w  ϕ. We also use L(ϕ) = {w ∈
Σω | w  ϕ} to denote the set of models of a LTL formula ϕ. Two LTL formulae
ϕ and ψ are called equivalent (ϕ ≡ ψ) iff L(ϕ) = L(ψ). The language L(ϕ) can be
recognized by a corresponding Nondeterministic Büchi Automaton(NBA). NBA
is defined as a tuple A = (Σ,Q,Q0, δ, F ), where: Σ is a finite alphabet; Q is a
finite non-empty set of states; Q0 ⊆ Q is a set of initial states; δ : Q× Σ → 2Q

is a transition function; F ⊆ Q is a set of accepting states.
In order to state conveniently, we extend the transition function δ : Q×Σ →

2Q to δ′ : 2Q × Σ∗ → 2Q by δ′(Q′, ε) = Q′ and δ′(Q′, ua) =
⋃

q′∈δ′(Q′,u) δ(q
′, a)

for Q′ ⊆ Q, u ∈ Σ∗, and a ∈ Σ.
A run of an automaton A on a word w = a0a1... ∈ Σω is a sequence of

states and input symbols ρ = q0a0q1a1q2..., where q0 is an initial state of A and
qi+1 ∈ δ(qi, ai) for all i ∈ N . For a run ρ, we use Inf(ρ) denote the states visited
infinitely often. A run ρ of a NBA A is called accepting iff Inf(ρ) ∩ F �= ∅.

A Nondeterministic Finite Automata (NFA) A = (Σ,Q,Q0, δ, F ) is an au-
tomaton where Σ, Q, Q0, δ and F are defined as for a Büchi automata. A NFA
only accept finite words. A run of a NFA on a word u = a0...an ∈ Σ∗ is a se-
quence of states and input symbols ρ = q0a0q1a1...anqn+1 where q0 is an initial
state and qi+1 ∈ δ(qi, ai) for all i ∈ N . The run is called accepting if qn+1 ∈ F .
A NFA is called deterministic iff for all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1 and |Q0| = 1.
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2.2 Three-Valued Semantics for LTL in Runtime Verification

Andreas Bauer, Martin Leucker and Christian Schallhart have defined a three-
valued semantics for LTL on finite traces in article [1], which is tailored to the
use in runtime verification. The intuition is as follows: in theory, we observe an
infinite sequence w of some system. Thus, for a given formula ϕ, either w  ϕ
holds or not. In practice, however, we can only observe a finite prefix u of w.
The three-valued semantics are based on whether the observed finite prefix will
definitely lead to a satisfactory or violation verdict. The three-valued semantics
are defined as follows.

Definition 1 (Three-valued semantics). u ∈ Σ∗ is a finite word. The truth
value of a LTL formula ϕ with respect to u, denoted by [u  ϕ], is an element of
B3 ( B3 = {�,⊥, ?} ) defined as follows:

[u  ϕ] =

⎧⎪⎨⎪⎩
� if ∀σ ∈ Σω : uσ  ϕ

⊥ if ∀σ ∈ Σω : uσ � ϕ

? otherwise

Note that in the above definition and the remainder of this paper, we use the
notation [u  ϕ] to give a three-valued semantic to a formula based on a finite
word u. Further details about three-valued semantics can be found in [1].

3 Predictive Semantics for LTL in Runtime Verification

In a lot of application areas, it is quite appreciated that the verdict can be
predicted when the error prefix has not appeared. The three-valued semantics
given in the previous section hold an assumption that: the observed word increase
incrementally and letters arrive one at a time. When we judge the semantic
value of ϕ with respect to the observed prefix u, we do not know what the
following word is. Runtime verification is a body of verification techniques that
check whether program’s execution satisfies a formal property. The execution
is generated by the program’s code. If we can do some kinds of static analysis
to program code and draw some summary information, it is possible to predict
what the following word is. Based on this assumption, we propose a predictive
semantics for LTL formulae. Although the predictive semantics are only given
to LTL formulae in this paper, it can be easily extended to other property
specification languages.

Our predictive semantics for LTL formulae are also based on the finite prefix
word. But instead of without knowing what the future word is in three-valued
semantics, future words are predictable in predictive semantics. The predictive
semantics for LTL formulae are defined as follows.

Definition 2 (Predictive semantics). u ∈ Σ∗ is an observed word generated
by the monitored program so far, v ∈ Σ∗ is a finite predictive word which will be
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generated in the following time. The truth value of a LTL formula ϕ with respect
to u and v, denoted by [u v

p ϕ], is an element of B3 defined as follows:

[u v
p ϕ] =

⎧⎪⎨⎪⎩
� if ∀σ ∈ Σω : uvσ  ϕ

⊥ if ∀σ ∈ Σω : uvσ � ϕ

? otherwise

In runtime verification, the observed word u increases as the monitored program
runs. There is a distinction between the observed word (which is known) and
the word which is going to be generated (which is unknown). In the predictive
semantics definition, v is the word which is going to be generated by the moni-
tored program, but it is already known now. That is to say, the predictive word
v can be predicted at present. That is why we name our semantics as predictive
semantics. v is a predictive word.

The predictive semantics demand that the predictive word v should be iden-
tified every time the observed word u increases. That means, every time a moni-
tored letter happens in execution, we have to predict the word which is going to
be generated by the monitored program. Given the monitored program’s com-
plexity and dynamic feature, it is not realistic to predict a future word every
time a monitored letter happens. In order to make predictive semantics feasible,
we propose a implementation predictive semantics.

Only a fixed set of words are predictable in implementation predictive seman-
tics. In predictive semantics definition, we are able to predict the future word
every time a monitored letter happens. While in implementation predictive se-
mantics definition, we only have to predict it when it belongs to a fixed set. This
restriction releases the burden of predicting a future word every time a moni-
tored letter happens. Because we only predict the future word when it falls into
a fixed words set.

The implementation predictive semantics for LTL formulae are defined as
follows.

Definition 3 (Implementation predictive semantics). u ∈ Σ∗ is an ob-
served word generated by the monitored program so far, R ⊆ Σ∗ is a fixed pre-
dictive words set found in the monitored program. Let v′ denote the predictive
word which is going to be generated by the monitored program. The truth value
of a LTL formula ϕ with respect to u and R, denoted by [u R

i ϕ], is an element
of B3 defined as follows:

[u R
i ϕ] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

� if v′ is proven ∈ R : (∀σ ∈ Σω : (uv′σ  ϕ))

or (∀σ′ ∈ Σω : (uσ′  ϕ))

⊥ if v′ is proven ∈ R : (∀σ ∈ Σω : (uv′σ � ϕ))

or (∀σ′ ∈ Σω : (uσ′ � ϕ))

? otherwise

In implementation predictive semantics definition, R is a fixed predictive words
set found in the monitored program through some kinds of static analysis. Dif-
ferent monitored programs have different predictive words sets. R contains all
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predictable words for formula ϕ in the monitored program. The predictive word
v′ is quite different from the the word v in predictive semantics definition: v is an
identified word in predictive semantics definition; while v′ is only a place holder
in implementation predictive semantics, we can only identify it when it is proven
to belong to R. If v′ does not belong to R, we can not predict the word which
is going to be generated by the monitored program and the implementation
predictive semantics degenerate into three-valued semantics. Hence, the imple-
mentation predictive semantics definition is a compromise between three-valued
semantics and predictive semantics. This restriction sacrifices a kind of predic-
tion (when v′ is not proven to belong to R), but it also makes this semantics
more applicable.

In implementation predictive semantics definition, not every predictive word’s
(the word belongs to R) occurrence in program’s execution is predictable. If v′

can not be proven ∈ R through some kinds of static analysis, the implementa-
tion predictive semantics do not possess predictive capability. There are some
situations in which v′ is actually belongs to R but we can not prove it through
static analysis.

4 Monitor Construction for LTL with Predictive
Semantics

Predictive semantics definition is useless if we can not put it into practice. In
this section, we will describe the process of generating a monitor from a LTL
formula and describe how to use this monitor to check program’s execution with
predictive semantics. The monitor generating process is almost identical to the
“monitor construction” section in article [1]. We only sketch it here.

4.1 Generating Monitor from LTL Formulae

Given a formula ϕ, we will construct a monitor (a Finite State Machine(FSM ))
Mϕ that reads finite word u ∈ Σ∗, and produces [u v

p ϕ] with respect to the
predictive word v.

For a Nondeterministic Büchi Automata (NBA) A, we denote by A(q) the
NBA that coincides with A except for the set of initial states Q0, which is
redefined in A(q) as q. Let us fix ϕ ∈ LTL for the rest of this section, and let Aϕ =
(Σ,Qϕ, Qϕ

0 , δ
ϕ, Fϕ) denote the NBA that accepts all models of ϕ and let A¬ϕ =

(Σ,Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ) denote the NBA, which accepts all words falsifying ϕ.

The corresponding construction is standard and explained, for example in [2].
For the automaton Aϕ, we define a function Fϕ : Qϕ → B(with B = {�,⊥})

where we set Fϕ(q) = � iff L(Aϕ(q)) �= ∅. We evaluate a state q to � iff
the language of the automaton starting in state q is not empty. To determine
Fϕ(q), we identify in linear time the strongly connected components in Aϕ which
can be done using Tarjan’s algorithm [3]. Using Fϕ, we define the NFA Âϕ =
(Σ,Qϕ, Qϕ

0 , δ
ϕ, F̂ϕ) with F̂ϕ = {q ∈ Qϕ | Fϕ(q) = �}. Analogously, we set

Â¬ϕ = (Σ,Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂¬ϕ) with F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = �}.
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Lemma 1 (The evaluation of LTL formulae with predictive
semantics). 1 Let u ∈ Σ∗ is an observed word generated by the monitored
program so far, v ∈ Σ∗ is a finite predictive word which will be generated in the
following time. The truth value of a LTL formula ϕ with respect to u and v,
denoted by [u v

p ϕ], is an element of B3 defined as follows:

[u v
p ϕ] =

⎧⎪⎨⎪⎩
� if uv /∈ L(Â¬ϕ)

⊥ if uv /∈ L(Âϕ)

? otherwise

The lemma yields the following procedure to evaluate the semantics of ϕ for
a given finite word u and a predictive word v: we evaluate both uv /∈ L(Â¬ϕ)
and uv /∈ L(Âϕ) and use the above lemma to determine whether [u v

p ϕ].
Similarly, we have the same conclusion to the evaluation of LTL formulae with
implementation predictive semantics as follows.

Lemma 2 (The evaluation of LTL formulae with implementation pre-
dictive semantics). u ∈ Σ∗ is an observed word generated by the monitored
program so far, R ⊆ Σ∗ is a fixed predictive words set found in the monitored
program. Let v′ denote the future word which is going to be generated by the
monitored program. The truth value of a LTL formula ϕ with respect to u and
R, denoted by [u R

i ϕ], is an element of B3 defined as follows:

[u R
i ϕ] =

⎧⎪⎨⎪⎩
� if (v′ is proven ∈ R ∧ uv′ /∈ L(Â¬ϕ)) ∨ (u /∈ L(Â¬ϕ))

⊥ if (v′ is proven ∈ R ∧ uv′ /∈ L(Âϕ)) ∨ (u /∈ L(Âϕ))

? otherwise

As a final step, we now define a (deterministic) FSM Mϕ that outputs for each
finite word u and predictive word v their associated predictive semantical evalu-
ation. Let Ãϕ and Ã¬ϕ be the deterministic versions of Âϕ and Â¬ϕ, which can
be computed in a standard manner using the power-set construction. Then, we
define Āϕ as a product of Ãϕ and Ã¬ϕ.

Definition 4 (Monitor Mϕ for a LTL formula ϕ with predictive seman-
tics). Let ϕ be a LTL formula and Âϕ be a NFA. Let Ãϕ = (Σ,Qϕ, {qϕ0 }, δϕ,
F̃ϕ) be a deterministic automaton with L(Ãϕ) = L(Âϕ), Ã¬ϕ = (Σ,Q¬ϕ, {q¬ϕ

0 },
δ¬ϕ, F̃¬ϕ) be a deterministic automaton with L(Ã¬ϕ) = L(Â¬ϕ). The product
automaton Āϕ = Ãϕ × Ã¬ϕ is a FSM (Σ, Q̄, q̄0, δ̄, λ̄) where

– Q̄ = Qϕ ×Q¬ϕ,
– q̄0 = (qϕ0 , q

¬ϕ
0 ),

– δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)) and
– λ̄ : Q̄→ B3 is defined by

λ̄((q, q′), a) =

⎧⎪⎨⎪⎩
� if q′ /∈ F̃¬ϕ

⊥ if q /∈ F̃ϕ

? if q ∈ F̃ϕ ∧ q′ ∈ F̃¬ϕ

1 The proof is included in section 2.3 in article [1].
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The monitor Mϕ for a LTL formula ϕ is the unique FSM obtained by minimizing
the product automaton Ā.

Just as proved in article [1], the following theorem holds (there are similar theo-
rem holds for implementation predictive semantics). According to this theorem,
if we want to check whether finite word u and predictive word v satisfy or violate
the property ϕ, we just need to check whether uv drives the monitor Mϕ into
conclusive states (states labeled by � or ⊥ according to λ̄).

Lemma 3 (LTL monitor correctness). Let ϕ be a LTL formula, let Mϕ =
(Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding monitor and let v be a predictive word. Then,
for all u ∈ Σ∗, the following holds:

[u v
p ϕ] = [uv  ϕ] = λ̄(δ̄(q̄0, uv))

4.2 Checking Process

Once we generate the monitor from LTL formula, we can use it to check whether
the monitored program’s execution satisfies (driving the monitor into � state)
or violates (driving the monitor into ⊥ state) the formula. The checking process
of monitor with predictive semantics is slightly different from the traditional
runtime monitors. The traditional runtime monitors receive letters while in pre-
dictive semantics, they receive predictive words. When a monitor receives a pre-
dictive word, it first checks whether the run of predictive word goes through a
conclusive state. If so, the monitor can give a verdict before the observed word
driving it into conclusive states. If not, the monitor changes its current state
q̄ to δ̄(q̄, v) (δ̄ is the transition function, v is the predictive word). For runtime
monitors in implementation predictive semantics, there are two different types of
letters arising in program’s execution: an ordinary letter and a predictive word.
When a monitor receives an ordinary letter, it just changes its current state
according to the transition function and judge whether it arrives the conclu-
sive states. When receives a predictive word, it acts the same as the monitor in
predictive semantics.

4.3 A Demonstration Example

In Java library, Vector is a common class to hold a variable collection of objects.
The Vector class provides an iterator method to get an Iterator instance.
The Iterator instance allows users to enumerate all the elements belonging
to Vector. There is usage demand that once the Vector creates an Iterator

instance, Iterator’s next method should not be called if the underlying Vector
is modified though its own methods, such as remove etc, . If we use create to
stand for the letter of creating an Iterator instance, update for modifying the
Vector, and next of enumerating the Vector, the usage rule can be depicted
as the formula: G(create → G(update → ¬F(next))). Using the algorithm
described in the preceding section, we get the monitor in Fig. 1.
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update

create || next

nextcreate q2q1q0

create || update

Fig. 1. A monitor generated from G(create → G(update →! F(next)))

If the predictive words set found in the monitored program is update.next
(where .means concatenation). Then, the monitor can find the violation at state
q1 when it receives the predictive word. While for monitors without predictive
semantics, they can only find the violation at the state labeled with ⊥.

5 Implementation

We have implemented a prototype tool to support the implementation predictive
semantics. Our tool integrates our previous work of generating monitors from
LTL formulae and extends the work from Hossein Sadat-Mohtasham [4] of finding
and instrumenting predictive word in monitored program.

Fig. 2 depicts a typical usage scenario of our tool. Users first specify the
properties they want to monitor through LTL formulae. LTL formulae are then
converted into monitors through LTL3 2 tool. Predictive words sets are found
in monitored program according to the monitor’s alphabet. Finally, monitors
are injected into the monitored program by an AspectJ compiler abc [5] and
predictive words set are injected by a modified version of Transcut [4]. The result
program is the desired program with predictive runtime monitoring capability. It
is able to detect property’s satisfaction or violation before the software execution
driving monitor into conclusive states.

specify

LTL3

Transcut

ABC
M

Program

Program
with

Predictive
Runtime

Monitoring
Capability

Fig. 2. A typical usage scenario of our prototype tool

5.1 Converting a LTL Formula into a Monitor

We have described the process of generating a monitor from a LTL formula
in section 4. The monitor generation process is almost the same as the work

2 http://ltl3tools.sourceforge.net/
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in [1] and we have already implemented a LTL3 tool to realize this process. We
also adopt this tool to generate a monitor from a LTL formula. For example,
the monitor generated from formula G(create → G(update → ¬F(next))) by
LTL3 tool is depicted in Fig. 3.

u
|| (c&

&
u)c && n

(u&&n) || (c&&u&&n)

c && u

c &
&

n&
&

u

c || n

c || (c&& n)

q2

q1q0

c || u || c&&u

(c&&u&&n) || (c&&u) ||(u&&n) || n

u || n || (u&&n)

c||u||n||(c&&u) ||(c&&n)|| (u&&n)||(c&&u&&n)

Fig. 3. A monitor generated by LTL3 tool from G(create → G(update →! F(next))),
where: c denotes create, u denotes update and n denotes next

In Fig. 3, edges are labeled with a set of AP s. The || operator means there
are two edges between these two states. Each is labeled by one operand. The
&& operator means the two operands have to be true at same time when the
transition happens. For example, the edge labeled with (c||(c&&n)) between
state q0 and q1 denotes that there are actually two edges connecting these two
states. One is labeled with c and the other is labeled by c&&n.

In LTL3 tool, the alphabet of the monitor generated from ϕ is 2AP , where AP
is the set of automatic propositions in ϕ. In our implementation, an automatic
proposition stands for a certain kind of events in program execution and is
specified by a pointcut expression in AspectJ[6]. The problem of judging whether
two pointcut expressions would select a common event can be partly solved
through pointcut’s syntax analysis. We use this analysis to further simplify the
monitor. The edges whose label are the intersection of two or more automatic
propositions can be simply dropped off if the corresponding pointcut expressions
can not select a common event. For instance, the edge labeled by c&&n in Fig.
3 denotes events which belong to create and next at the same time. This is
actually impossible because the two pointcut expressions for create and next

(they are described in Fig. 4) can not select any common events. We also omit
the self-loop edges in the initial state q0 and the conclusive states. The self-
loop edge in the initial state can be omitted as we check the program’s whole
trace (instead of suffix traces). The self-loop edge in the conclusive states can be
omitted as there are no edges going out it. Through this kind of simplification,
we get the monitor in Fig. 1.
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5.2 Instrumenting Monitored Program

Once getting the monitor, we can use its alphabet to find a predictive words set
from monitored program and then instrument the monitored program according
to the predictive words set. As a letter in monitor’s alphabet corresponds to an
event in program’s execution. We first briefly introduce the map between a letter
in alphabet and an event in execution.

The Map Between a Letter in Alphabet and an Event in Execution. A
letter in monitor’s alphabet corresponds to a certain kind of event in program’s
execution. We use AspectJ’s pointcut to build this connection. A pointcut is
a set of well-defined points in the execution of the program and corresponds
to a letter in alphabet. A pointcut is defined in terms of an enumeration of
method signatures, wildcards and control flow relations [6]. For example, The
pointcut expressions for letters (create, update and next) in Fig. 1 are described
in Fig. 4. The first line is a pointcut expression denoting the event of calling
iterator method on Collection class or its subClass and corresponding to the
letter create. The following two pointcut expressions have similar meanings
and denote updage and next respectively.

pointcut create : call(* java.util.Collection+.iterator()) && target(c) ;

pointcut update : call(* java.util.Collection+.add*(..)) && target(c) ||

call(* java.util.Collection+.clear()) && target(c) ||

call(* java.util.Collection+.remove*(..) ) && target(c);

pointcut next : call(* java.util.Iterator+.next());

Fig. 4. A map between letters in monitor’s alphabet and events in program’s execution

Finding Predictive Words Set on Monitored Program’s PDG Repre-
sentation. While it is easy for AspectJ compiler to find the code place where a
letter (event) happens, it is not easy to find the code place where the subsequent
happening letter sequence (word) belongs is a predictive word (its length is big-
ger than 1). We find the predictive words set from monitored program’s control
flow graph (CFG) and program dependence Graph (PDG) representation.

A CFG is a directional graph in which nodes represent basic blocks. A CFG
can be depicted as < V,E >, where V denotes the nodes set, E denotes the
control flow edge set. A region includes the instructions in a program that execute
under the same control conditions. Two nodes in a CFG are in the same region if
they have the same set of control dependence predecessors [7]. Regions have an
important property that makes them very ideal for finding predictive words: if
the normal flow of control enters the region (which occurs only through the head
node of the region), it will go through all the nodes in the region, and eventually
exit through the tail node of the region. This is similar to the property of basic
blocks [8] with the difference that regions can consist of non-contiguous pieces
of code.
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There are two different types of region: strong region and weak region [7]. We
only concern strong region in this paper. Two nodes n1 and n2 are in the same
strong region iff n1 and n2 occur the same number of times in any complete
control-flow path. Thomas Ball provides an algorithm to find strong regions in
O(V + E) time for all CFGs [7]. Predictive words are found in strong regions.
Fig. 5 illustrates the concrete finding process. In this figure, the dashed ellipse
stands for a strong region. b1,b2,b3 and b4 are four basic blocks or statements.
They belongs to the same strong region. r1, r2 and r3 are three potential finding
area. Predictive words are found in these potential areas. For example, if b1 and
b4 generate letter a and b respectively, and b3, b4 do not generate monitored
letters, then we can find the predictive word ab in this strong region.

b1

b2

b3

b4

head

tail

protential
finding

area

control

flow

r1

r2

r3

Fig. 5. Finding predictive word in strong region

The predictive word finding process is complicated by the fact that strong
region are non-contiguous pieces of code. We not only have to ensure that the
code fragments surrounded by the predictive word in the same strong region
(such as b2, b3 in Fig. 5) do not generate monitored letters, but also that the
code fragments surrounded by the predictive word in CFG also do not generate
monitored letters. We ensure the latter condition based on the monitored pro-
gram’s PDG representation. PDG is an intermediate program representation. It
gives a hierarchial relation among regions. The code fragments surrounded by
predictive word in CFG are the subregions of the region generating predictive
word. If a predictive word is found in a region and the region has subregions,
we have to check whether the subregions are surrounded by predictive word and
generating monitored letters.

Our implementation for finding predictive words set in monitored program is
based on a modified version of the work from Hossein Sadat-Mohtasham [4] and
can only find predictive word in each method at present. The major modifications
includes matching predictive words in strong region instead of weak region and
checking whether the code fragments surrounded by predictive word generates
monitored letters. In the future, we are planing to find predictive words across
methods.
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6 Experiments

6.1 Experiments on Illustration Example

We have described a monitor in Fig. 1 and its alphabet is {create, update, next}.
We can use this alphabet to find predictive words in monitored program’s PDG
representation. For instance, to the code fragment in Fig. 6a and its corre-
sponding PDG representation in Fig. 6b, the found predictive words set is
{create.update.next}. That is because the code generating create (statement
2), update (statement 3) and next (statement 4) are in the same strong region
and there are no extra code surrounded by them. Fig. 7 describes another code
fragment (7a) and its PDG representation (7b), whose predictive words set is
also {create.update.next}. The code generating monitored letters (statements
2, 3, 7) are in the same strong region but are not contiguous in CFG. The code
(statements 4, 5) surrounded by predictive word do not generate monitored let-
ters. If we instrument the monitored program according to the predictive words
set, the monitor can find the violation at statement 2 in Fig. 6a and statement
3 in Fig. 7a.

It is necessary to point out that the code fragments in Fig. 6a, 7a only de-
note code templates rather than concrete code fragments. Users can scatter any
statements in these code fragments as long as they neither contain the monitored
letters nor change the monitored program’s PDG structure.

1 Vector v = new Vector ( c o l l e c t i o n ) ;
2 I t e r a t o r i t = v . i t e r a t o r ( ) ;
3 v . add ( ob j e c t ) ;
4 i t . next ( ) ;

(a) code fragment

ENTRY

1 432

(b) pdg representation

Fig. 6. A code fragment and its PDG representation whose predictive words set is
create.update.next

6.2 Experiments on Real Projects

We also use the monitor in Fig. 1 to find predictive words set on several big open-
source projects. These projects are chosen from Dacapo benchmark [9] and quite
representative for real projects.

We summarize the project size (class number, method number) and the ratio
of predictable shadows 3 and predictable regions in table 1. The row of pre-
dictable shadow’s ratio describes the percentage of the shadows for letters in
predictive words (compared to all the shadows for monitored letters). The frac-
tion in parentheses list the shadow’s actual number. The denominator is the
number of monitored letter’s shadow found in monitored program, while the

3 A shadow is a code area which may generate monitored letter at runtime.
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(a) code fragment

ENTRY

1 432

R1

5

R2

7

(b) pdg representation

Fig. 7. A code fragment and its PDG representation whose predictive words set is also
create.update.next

Table 1. The result of finding predictive words on real, large-scale projects

antlr eclipse fop hsqldb bloat lucene

class number 224 344 967 385 263 311

method num-
ber

2972 3978 6889 5859 3986 3013

predictable
shadow ratio

0% (0/23)
7.92%
(53/391)

24.65%
(83/288)

28.23%
(45/124)

17.06%
(608/1495)

25%
(61/224)

predictable
region ratio

0% (0/23)
3.33%
(22/360)

7.86%
(24/229)

11.83%
(14/93)

7.88%
(204/1091)

7.3%
(15/178)

numerator is the number of the shadow for letters which are included in predic-
tive words. Generally speaking, the percentage is more bigger, there are more
letters belongs to the predictive words and the predictive semantics are more
applicable. From the table’s fourth row, we can see that if the project contains
a large number of shadows, there are a considerable percentage (from 7.92%
to 28.23%) of letters (shadows) are predictable. The percentage of predictable
letters in antlr project is 0%. That is because the antlr project seldom generate
monitored letters (there are only 23 places generating monitored letters, and
they belong to 23 different regions).

We also list the percentage of the predictable region (the region which contains
predictive word) compared to the region which contains monitored letter. The
percentage of predictable regions is a bit low (less than 12%). That is because
we only find the predictive word in methods at present. In the future, we plans
to inline more methods and find predictive word across methods.

7 Related Work

As runtime verification is becoming more and more popular to guarantee soft-
ware’s reliability, many runtime verification frameworks are proposed. The Trace-
matches [10] framework uses regular expression to specify verification property.
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The Java-MOP [11] framework is designed in a way that is neutral among differ-
ent logical formalisms. Regular Expressions, Context-free Grammars and LTL
are all supported in Java-MOP. The Java-MaC [12] framework defines its own
property specification languages: Primitive Event Definition Language(PEDL)
and Meta Event Definition Language(MEDL). However, the semantics of above
frameworks’ property specification languages are not predictive. They all match
the observed word against the property. What the future word would like is
totally ignored.

Let us take Tracematches as an example. Tracematches is a popular runtime
verification framework developed by Oxford and McGill university [10]. Trace-
matches gives the verdict when the observed letter sequence satisfies/violates
the property. Hence, it catches the violation at statement 4 in Fig. 6a and at
statement 7 in Fig. 7a respectively. While our implementation catches the vio-
lation at statement 2 in these two figures. Obviously, our implementation can
catch the problem more earlier.

The semantics used in runtime verification which have a kind of prediction are
Feng Chen etc’s work [13]. Their work is mainly used in concurrent programs.
The prediction in their work means an un-execution trace can be inferred from
an execution path based on the program casual model. Hence, it is able to
“predict” potential violations of monitored property even when the violations
are not encountered in the observed executions. This kind of prediction is not
about the events which will happen in the future and is totally different from
our work.

8 Conclusions

In this paper, we propose predictive semantics for LTL formulae in runtime
verification. We give an algorithm on how to convert a LTL formulae into a
monitor and describe how to use it to check monitored program’s execution with
predictive semantics. We also implement a prototype tool to support predictive
semantics. We use it to do some experiments on several real, large-scale projects.
The result demonstrates that our predictive semantics is generally applicable in
these projects. As far as we know, this is the first predictive semantics definition
in runtime verification.
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Abstract. Embedded network systems support a variety of application domains,
including environmental monitoring, social networking, and healthcare. These
large networks of low-powered microcontroller-based nodes present challenges
in ensuring correctness of the software that runs on these systems. Most embed-
ded networked systems are programmed in C. Verifying software written in C is
difficult. In this paper, we take a different approach: We report on our work using
the RESOLVE language to program embedded networked systems. Our compiler
leverages the RESOLVE verification system and maintains the correctness guar-
antees established during verification. The verified code is then translated into
property-preserving C code that can run on the target hardware.

1 Introduction

Embedded network systems represent technology advances in computing capabilities
and communications with physical processes. These systems are essentially large
networks (thousands of nodes) of devices that are individually small and
resource-constrained. Embedded networked systems are typically deployed in settings
where maintenance efforts following deployment need to be performed remotely; phys-
ical access to every single node in a large system is not feasible.

In order to cope with this near-inability to perform software updates post-deployment,
a lot of research energy has been invested in creating ways of increasing confidence in
the software before it is deployed in an embedded network system setting. Much of this
work has centered around simulation [12, 17] and laboratory testbeds [1, 4, 19]. Despite
such efforts, producing reliable software for embedded networked systems still proves
to be difficult. An alternative to testing is formal behavioral verification: if the software
program installed on the devices can be proven correct against a formal specification,
maintenance costs will be reduced and system failures can be avoided.

Most embedded network systems are implemented using the C language. Several
approaches for verifying the correctness of C programs have been proposed, including
model checking [14], automated reasoning [3], and low-level memory models [18].
These approaches largely rely on hand-written annotations interspersed in the C code,
which may introduce complexities of their own. Rather than operate directly on C code,
we begin with code in a higher-level verification language that can be verified more
easily and directly, then compile down to correct-by-construction C code that targets
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embedded systems. We thus achieve software for embedded network systems that can
be certified with high confidence. The technique of generating correct-by-construction
code is well studied but to our knowledge this is the first attempt to explore the particular
challenges associated with small embedded systems.

As our verification language, we use RESOLVE [5], an integrated specification and
programming language. RESOLVE affords a number of advantages including clean se-
mantics, an extensible, modular specification language, an integrated minimalist prover,
and a web-based IDE. For a more detailed description and some basic examples, see
Appendix A. By design, RESOLVE separates specification from implementation and
thus supports multiple interchangeable realizations of a given component [2]. This is
a decided advantage for embedded systems where a large number of hardware ven-
dors supply components that compose a single embedded network system. We have
used RESOLVE to mathematically model a handful of low-level physical components
used by our embedded devices, presenting two here. We then present a RESOLVE-to-C
translator that permits application logic implemented and proved correct in RESOLVE
to be translated into corresponding C code that can execute on a microcontroller.

The rest of the paper is organized as follows. We present an overview of the MoteS-
tack embedded network platform in Section 2 and overview of the verification process
in Section 3. We describe the correctness-preserving translation strategy to generate C
code from RESOLVE in Section 4. After presenting related research in Section 5, we
conclude with a summary of our contributions in Section 6.

2 The MoteStack Platform

The MoteStack platform is representative of most embedded network system platforms.
The MoteStack includes a microcontroller that is connected to sensors that can capture
signals from the environment; analog sensors are interfaced to the microcontroller using
analog-to-digital converters. Data captured from sensors can be transmitted either via a
wired serial communication channel such as a UART, or more commonly, via a wireless
radio connection. Actuators that provide sensory output (e.g., LEDs) or modify the
surrounding environment (e.g., air conditioner) are connected to the microcontroller.
In addition to these peripherals, the Motestack has an internal clock that is used for
periodic or timed operation. Figures 1 and 2 show two of these interfaces as RESOLVE
concepts (the others are omitted for lack of space).

In RESOLVE, a concept defines an interface that a component provides via an ab-
stract state model and operations defined in terms of that model. A realization of a con-
cept is a component that implements that interface. An enhancement is a component
that adds additional behavior to a realization (similar to a subclass). Concepts, real-
izations, and enhancements can all be parameterized. A facility is used to instantiate a
parameterized component.

The model for the ADC peripheral is a cartesian product of three boolean variables,
respectively representing (a) the on/off status of the sensor, (b) whether or not the sen-
sor has been properly initialized, and (c) whether the sensor is in an error state. When
the component is initialized (Figure 1, Line 7), the sensor is off, and the hardware pe-
ripheral has not yet been initialized. To begin using the ADC, it must first be initialized
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1Concept ADC_Template;
2 uses Std_Integer_Fac, Std_Clock_Fac;
3 Var ADC:Cart_Prod
4 Sensor_On, Init, Error : B;
5 end;
6 Facility_Initialization ensures
7 ADC.Sensor_On = false and ADC.Init = false and ADC.Error = false;
8 Operation Sensor_On();
9 ensures ADC.Sensor_On;

10 Operation ADC_Init();
11 ensures (ADC.Sensor_On = false and ADC.Init) or ADC.Error;
12 Operation Read_ADC(evaluates I: Integer): Integer;
13 requires ADC.Init = true and ADC.Sensor_On and 0 <= I <= 7;
14 ensures Read_ADC > 0 and ADC.Sensor_On = false;
15end ADC_Template;

Fig. 1. RESOLVE Concept for ADC

1Concept Leds_Template;
2 uses Integer_Theory, Boolean_Theory, Std_Boolean_Fac, Std_Integer_Fac;
3 Var L:Cart_Prod
4 L0:B; L1:B; L2:B; L3:B; L4:B;
5 end;
6 Facility_Initialization ensures
7 L.L0 = false and L.L1 = false and L.L2 = false and L.L3 = false and L.L4 = false;
8 Operation LED0_Init();
9 Operation LED0_Set(evaluates b: Boolean);

10 ensures L.L0 = b;
11 Operation LED0_Toggle();
12 ensures L.L0 = not(L.L0);
13 Operation LED0_Status(): Boolean;
14 ensures LED0_Status = L.L0;
15 // Analogous operations for LED1 .. LED4
16end Leds_Template;

Fig. 2. RESOLVE Concept for LEDs

using ADC Init(). It can then be turned on by calling Sensor On(). Once the sen-
sor is ready for use, the sensor can be queried for its value by invokingRead ADC(),
which returns the current value of the sensor as a positive integer, then turns the sensor
off. Read ADC() takes one parameter, which is annotated with the evaluates key-
word, indicating that the parameter is pass-by-value. Other parameter passing modes
exist. For example, alters indicates that the parameter may be changed in an unspeci-
fied way over the course of the operation’s call. For more complete information, see the
discussion in Appendix A on the details of RESOLVE.

The Leds Template concept describes the LEDs on the MoteStack, which are
representative of actuators that the microcontroller can control. The MoteStack has five
LEDs and, correspondingly, the model of the Leds Template component is a carte-
sian product of five boolean variables, one for each LED. When the component is ini-
tialized, all five LEDs are off. The component provides three operations to operate each
of the LEDs: a Set() operation to turn the LED on or off, a Toggle() operation to
toggle the LED, and a Status() operation to query the current status of the LED.
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1Facility SenseAndBroadcastAverage;
2 uses Std_Boolean_Fac, Std_Integer_Fac;
3 Facility ADC is ADC_Template realized by Std_ADC_Realiz;
4 Facility XBEE is XBEE_Template realized by Std_XBEE_Realiz;
5 Facility Clock is Clock_Template realized by Std_Clock_Realiz;
6 Facility LED is Leds_Template realized by Std_Leds_Realiz;
7 Facility Integer_Queue_Fac is Queue_Template(Integer, 9)
8 realized by Circular_Array_Realiz;
9

10 Operation Main();
11 Procedure
12 Var Sample, Total, Average, Count: Integer;
13 Var On, Off: Boolean;
14 Var Data_Samples: Integer_Queue_Fac.Queue;
15

16 ADC.ADC_Init();
17 XBEE.XBEE_Init();
18 On := True();
19 Off := False();
20 While (True())
21 changing Sample, Total, Average;
22 maintaining True;
23 do
24 Clock.Wait_1S();
25 Sample := ADC.Read_ADC(0);
26 If (Sample mod 256 >= 0) then
27 LED.LED1_Set(On);
28 else
29 LED.LED1_Set(Off);
30 end;
31 // >=64 -> LED2; >=128 -> LED3;
32 // >=192 -> LED4, analogously
33

34 if (Integer_Queue_Fac.Rem_Capacity(Data_Samples) > 0) then
35 Integer_Queue_Fac.Enqueue(Sample, Data_Samples);
36 end else
37 Average := Average_Queue(Data_Samples);
38 Integer_Queue_Fac.Clear(Data_Samples);
39 XBEE_Send_Data(Average, 2);
40 end;
41 end;
42 end Main;
43end SenseAndBroadcastAverage;

Fig. 3. RESOLVE Facility for the Sense-and-Broadcast application

2.1 Application Example

Figure 3 presents a canonical embedded network system example written in RESOLVE.
This sense-and-broadcast example simply queries its sensor through the ADC interface
every second and sends an average of every ten data samples to the rest of the network
via radio broadcast using the XBEE interface.

The SenseAndBroadcastAverage facility depends on five other components,
four of which are specific to embedded systems: a timer component
(Clock Template), an interface to the sensor(s) (ADC Template), a radio inter-
face to broadcast sensor readings (XBEE Template), and an interface to the LED
actuators (LED Template). In addition to these components, the facility also de-
pends on a Queue Template component and a method for averaging the values in
a queue, which we will present momentarily. On startup, the application first initializes
the ADC and radio components (lines 16 and 17, respectively). Once that is done, the
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application executes a continuous non-terminating loop. The changing clause is re-
quired to clearly state which variables in the program may be changed within the loop
(line 21).

In each iteration, it first waits for a duration of one second (line 24). At the end of
this duration, a sample is read from the sensor by way of the ADC interface on channel
0 (line 25). Based on the value returned from the ADC, the application actuates one or
more of the LEDs on the sensor node. As samples are collected, they are enqueued into
Data Samples. When the queue is full, the average of the data samples in the queue
is computed and sent out via broadcast using the XBEE radio interface (line 39). Im-
portantly, each of these operations is formally and completely specified in a RESOLVE
component, so a proof obligation is raised, for example, that before Read ADC() is
called, the associated peripheral has been initialized and is on.

To readers familiar with writing software for embedded systems, some aspects of
this application code may raise concerns. In particular, the code in Figure 3 seems to
be performing several blocking input/output operations (waiting on the clock, waiting
for sensor readings, etc.). Such blocking implementations are typically bad form on an
embedded microcontroller. The current version of the compiler does not deal with this
limitation, and the generated code does execute these operations as blocking calls. We
made this choice largely because we gave preference to preserving correctness over per-
formance. Non-blocking implementations of these operations are possible using wrap-
pers that present the same abstraction as blocking ones, for example, using techniques
described in [13].

3 The Verification Process

The first step toward verifying RESOLVE code is to augment it with mathematical as-
sertions reflecting the proof obligations raised by that module’s corresponding specifi-
cation (for example, assertions are generated at the end of procedure implementations to
assert that they meet their ensures clauses.) This represents an intermediate verification
step wherein all proof obligations and assumptions are made explicit.

Next, this assertive code is passed to the verification condition generator. A verifi-
cation condition, or VC, is a mathematical statement that must be true for code to be
correct. VCs are generated in several situations, including the preconditions of called
methods, postconditions of methods being proved, and mathematical assertions related
to termination. The primary job of the VC generator is to generate those VCs both
necessary and sufficient to demonstrate the correctness of the program. Intermediate
mathematical variables (which are different from program variables and are only used
in the mathematical proof) must be introduced to reflect the changing state of program
variables. A more in-depth discussion of the nature and generation of VCs can be found
in [8].

Consider the Average Queue operation. We provide this functionality as a helper
procedure that takes a queue from our Integer Queue Fac (i.e, a Queue of up to 9
integers) and returns the floor of its average, restoring the queue to its original value.
We provide its specification here:
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1Operation Average_Queue(restores Q : Integer_Queue_Fac.Queue) : Integer;
2 requires |Q| < max_int / 2 and
3 Q /= empty_string and
4 Holds_for_All(Q, Non_Negative);
5 ensures Average_Queue = Fold_String_Right(Sum, 0, Q) / |Q|;

Note that the Average Queue operation has a requires clause that client code
must satisfy before it may be called–the length of the Queue, |Q|, must be less than
half the maximum representable integer for the platform. The reason for these require-
ments will be discussed later. In addition, the queue must not be empty, for the obvious
reason that it is unclear what the average of a set of zero numbers should be. Finally,
all the elements of Q must be non-negative, which removes the complexity of deal-
ing with negative modulos. Note that Holds for All() and Fold String Right()
are higher-order definitions imported from String Theory, which contains theorems
for reasoning about such constructions, and Non Negative() is a predicate imported
from Integer Theory. We then implement this operation as follows:

1 Procedure
2 Var Cur_Entry : Integer;
3 Var Included : Queue;
4 Var Running_Average : Integer;
5 Var Running_Remainder : Integer;
6 Var Remainder_Adjust : Integer;
7 Var Weighted_Cur_Entry : Integer;
8 Var Cur_Entry_Remainder : Integer;
9 Var Q_Length : Integer;
10

11 Q_Length := Length(Q);
12

13 While (Length(Q) > 0)
14 changing Cur_Entry, Included, Q, Running_Average, Running_Remainder,
15 Weighted_Cur_Entry, Cur_Entry_Remainder, Remainder_Adjust;
16 maintaining Included o Q = #Q and
17 Running_Average = Fold_String_Right(Sum, 0, Included) / |#Q| and
18 Running_Remainder =
19 Fold_String_Right(Sum, 0, Included) mod |#Q| and
20 0 <= Running_Average and
21 Running_Average <= max_int / |#Q| * |Included|;
22 decreasing |Q|;
23 do
24 Dequeue(Cur_Entry, Q);
25

26 Weighted_Cur_Entry := Div(Cur_Entry, Q_Length);
27 Cur_Entry_Remainder := Mod(Cur_Entry, Q_Length);
28

29 Running_Average := Running_Average + Weighted_Cur_Entry;
30 Running_Remainder := Running_Remainder + Cur_Entry_Remainder;
31 Remainder_Adjust := Div(Running_Remainder, Q_Length);
32 Running_Remainder := Mod(Running_Remainder, Q_Length);
33 Running_Average := Running_Average + Remainder_Adjust;
34

35 Enqueue(Cur_Entry, Included);
36 end;
37

38 Q :=: Included;
39

40 Average_Queue := Running_Average;
41 end;

The queue declared in this method shares a facility, and thus an implementation, with
the one from Section 2.1. This doubles our memory consumption, since we create two
circular arrays. Because RESOLVE verifies modularly, we could easily swap out for a
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linked implementation like the one presented in [10] if our design called for different
performance characteristics.

Note the maintaining clause, which asserts expressions that must be true at the
beginning and end of each loop iteration. The first conjunct asserts that as we transfer
elements out of the original queue (#Q) and into Included, the concatenation of In-
cluded and the current version of the queue (Q) will maintain the same contents and
order, together, as the original queue. The second indicates that Running Average
will always contain the integer average of the numbers that have already been trans-
ferred into Included. The third indicates that Running Remainder will always
contain the remainder of the integer average operation. The final two conjuncts establish
the bounds on Running Average. Since it is the average of positive integers, clearly
it will, itself, be positive, and since each number can be at most max int, clearly it can
be no greater than if it were the average of a series of max ints. These are important
for establishing that the running average never strays from the integer bounds.

It is the Running Remainder calculation that necessitates the, perhaps counter-
intuitive, limit on the length of the queue in the enhancement. An inspection of the code
will assure the reader that Running Remainder is upper-bounded by two less than
twice the length of the given queue. With the queue-length capped at half max int,
this value can never exceed max int.

The clause introduced by decreasing also bears explanation. This is called the
progress metric and expresses some natural-number-valued expression that is guaran-
teed to strictly decrease with each iteration through the loop. This also raises a proof
obligation for demonstrating that this while loop will terminate.

The above code produces 23 VCs. Many of these arise from the maintaining clause
or the decreasing clause. Some correspond to the requires clause on called opera-
tions such as Dequeue(). One simple and one complicated example of these VCs are
reproduced here.
1VC: 6_1:
2Base Case of the Invariant of While Statement
3

4Goal:
5(empty_string o Q) = Q
6

7Given:
8((((min_int <= 0) and
9(0 < max_int)) and

10((Last_Char_Num > 0) and
11((9 > 0) and
12((|Q| <= 9) and
13((min_int <= 9) and
14(9 <= max_int)))))) and
15(((|Q| <= (max_int / 2)) and
16Q /= empty_string) and
17Holds_For_Each(Q, Non_Negative)))

1VC: 7_1:
2Ensures Clause of Queue_Average
3

4Goal:
5(Fold_String_Right(Sum, 0, Included’) / |Q|) = (Fold_String_Right(Sum, 0, Included’)
/ |Included’|)

6

7Given:
8((((((min_int <= 0) and
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9(0 < max_int)) and
10((Last_Char_Num > 0) and
11((9 > 0) and
12((|Q| <= 9) and
13((min_int <= 9) and
14(9 <= max_int)))))) and
15(((|Q| <= (max_int / 2)) and
16Q /= empty_string) and
17Holds_For_Each(Q, Non_Negative))) and
18(((((Included’ o Q’) = Q and
19Running_Average’ = (Fold_String_Right(Sum, 0, Included’) / |Q|)) and
20Running_Remainder’ = (Fold_String_Right(Sum, 0, Included’) mod |Q|)) and
21(0 <= Running_Average’)) and
22(Running_Average’ <= ((max_int / |Q|) * |Included’|)))) and
23not((|Q’| > 0)))

The final step in the verification process is for the generated VCs to be recorded in
a format accepted by one or more automated provers. RESOLVE can target a variety
of back-end provers, some of which are discussed in [16], though this example cannot
be verified strictly mechanically. We note, however, that the VCs are straightforward
to discharge by hand. As a future direction for research, we would like to expand RE-
SOLVE’s own integrated prover to address these VCs more easily.

Assuming each VC is proved, the program can be certified correct. Once certified, the
original RESOLVE code is translated into code in another language for execution. This
code is thus correct by construction, assuming the translator can be trusted to be correct,
and as long as the generated code in the target language respects the design principles
prescribed by RESOLVE. Our compiler that generates C code to run on the MoteStack
platform preserves these principles; formally certifying it is left for future work. We
describe the key pieces of the translation (those pieces that are directly relevant to the
RESOLVE principles) in the next section.

It is important to realize that even a simple routine such as averaging presents com-
plicated challenges under verification, and this code went through many versions before
arriving at its final form. In particular, the presence of integer overflow and inexact di-
vision complicated the process of verifying the code. For example, we began with the
most obvious procedure for averaging—sum the integers in the queue, then divide by
the length. However, in this case, if we are to avoid overflow, we must require, very ar-
bitrarily, that each element in the queue be no greater than 1 / n * max int, where n
is the length of the queue. Not only is this restriction confusing to the client, it is likely
to be difficult to assure in many cases. A better attempt might be to divide as you go,
summing the weighted values, but the compounding round-off error means you are no
longer actually calculating the value required by Average Queues’s ensures clause.
An incrementally better attempt might be to divide as you go, summing the remainder
of each division until all of the values have been included, then finally accounting for
the accumulated remainder, but this leads to an even more counterintuitive restriction
on the use of the method that the sums of the remainders of the elements in the queue
when divided by the length of the queue be less than max int. Finally, we arrived at
the given example, whose restriction–while perhaps still perceived as arbitrary–is easy
to satisfy under most reasonable valuations of max int and min int. We note that it
is possible to further simplify the requires clause of our averaging operation to remove
the length restriction, but doing so complicates the logic significantly and thus makes
verification even more challenging.
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Fig. 4. Overview of Compiler Translation

4 Translation to C

Once all proof obligations have been met, either mechanically or by hand, the compiler
translates the RESOLVE source into equivalent C. The process is bottom-up; included
modules are translated first in order to correctly resolve dependencies. Figure 4 provides
an overview of the translation process for each type of RESOLVE module. A common
header file is created to include shared libraries.

4.1 The MoteStack API

The MoteStack API is a standard C library designed to expose the fundamental hard-
ware services provided by the platform. It comprises a collection of body files and
corresponding headers, with each such pair realizing a driver for a particular hardware
service. More precisely, the API includes drivers for the platform’s clock, the onboard
analog-to-digital converter, the onboard Zigbee radio, LEDs, and other services com-
monly used when developing embedded network applications. The constituent func-
tions used to realize each driver provide a high-level service interface, hiding low-level
implementation details (e.g., register access, timing-accurate delays). The design was
motivated by a desire to simplify the RESOLVE-to-C translation process.

4.2 Data Movement and the Swap Operation

The basic data movement operator in RESOLVE is the swap (:=:) operator. This de-
sign choice is fundamental to the proof system as it guarantees the absence of runtime
aliasing. Providing a constant-time implementation of the operator is straightforward in
a heap-based programming model (e.g., as provided by Java and C#). It is more chal-
lenging, however, in a heap-free programming model. Indeed, the C code generated by
our compiler may appear unusual. The departure from standard C-style programming
is attributable to the need to support an efficient swap implementation.

To support a constant-time swap implementation, all program variables must behave
as heap-allocated variables. This is in direct conflict with C, which maintains locals on
the stack. To overcome this obstacle, we first introduce an additional level of indirection.
All translated variables are defined as r type (resolve type) variables, as shown below
– effectively void pointers.
1typedef void* r_type;
2typedef r_type* r_type_ptr;
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To ensure object persistence across stack frames, all RESOLVE variables, including
locals, are translated to global storage locations; the corresponding r type pointers
reference those locations and serve as the only access mechanism. For instance, for an
Integer variable I VAR declared in RESOLVE, the following C code is generated:

1long int int_i_var = 0 ;
2r_type i_var = &int_i_var ;

This uniform abstraction enables a simple, constant-time implementation of swap
that accommodates both scalar and composite types:

1void swap(r_type_ptr var1, r_type_ptr var2) {
2 r_type temp = *var1;
3 *var1 = *var2;
4 *var2 = temp;
5}

Elevating all program variables to global scope may raise red flags in the reader’s
mind; this is hardly the hallmark of modular software. This code is not, however, in-
tended for programmer use.

4.3 Preserving the Component Model

Consider, for example, a snippet from theQueue Concept declaration in RESOLVE:

1 requires Max_Length > 0;

Queue Concept takes two parameters, corresponding to the type of queue en-
try and queue capacity, respectively. The requires clause imposes a constraint on the
allowable values that may be passed for Max Length at the point of concept instan-
tiation. The model is expressed using String theory:

1 exemplar Q;
2 constraint |Q| <= Max_Length;
3 initialization ensures Q = <>;

The exemplar represents a prototypical instance of Queue, used to define state
constraints (invariants) and initialization conditions. At the point of declaration,
each instance will be empty; it will never hold more than Max Length entries.

Each realization must define a state representation for the concept and provide op-
eration bodies implemented in terms of that representation. Consider a circular-array-
based realization of Queue Concept that relies on a record containing an array of
unknown type (Contents) and two integer variables (Front, Length):

1Realization Circular_Array_Realiz for Queue_Concept;
2Type Queue = Record
3 Contents: Array 1..Max_Length of Entry;
4 Front, Length: Integer;
5end;

Actual parameters for Entry and Max Length, defined by Queue Concept,
are supplied at the point of facility instantiation. For example, the following definition
instantiates a queue of integers with a maximum length of 5:

1Facility Integer_Queue_Fac is Queue_Concept(Integer, 5)
2 realized by Array_Realiz;
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The instantiated Queue type is realized in the generated C as follows:
1typedef struct iqf_queue_rep {
2 r_type contents[5-1+1];
3 long int contents_store[5-1+1];
4} Queue_rep;

Note that the Contents array is translated into two arrays. Again, this indirection
is introduced to support constant-time swapping over the array entries. One time, at
the point of declaration in the generated C code, each of the r type pointers within
contents is initialized to point at the corresponding entry within contents store.
(This process should not be repeated for a given local, say on subsequent calls to an
operation, since the element values may have been swapped out of the current scope1.)
The translation strategy mirrors, on an element-by-element basis, the treatment of local
variables.

Each operation defined within Queue Concept is translated to a corresponding
C function based on a facility declaration. For example, Enqueue in RESOLVE:

1Operation Enqueue(alters E: Entry; updates Q: Queue);

is translated to the following C code based on the Integer Queue Fac instantia-
tion:

1void iqf_enqueue(long int* e, iqf_queue_rep* q);

Each generated function takes a parameter of type iqf queue rep* — the target
of the operation. This is, in effect, an explicit version of the implicit this parameter in
object-oriented languages.

4.4 Example

We now present the generated source for the sense/broadcast application presented in
Figure 3. The original Queue instance (data samples) is translated to a pointer
variable of queue type (a renamed version of r type) and an associated storage
variable (Lines 3–4). Variable initialization is triggered prior to the point of first use
(Line 8).

1 Var Q1, Q2 : Queue;
2 Q1 :=: Q2;

In the case of a swap between two RESOLVE Queue variables, the translator gen-
erates a call to the uniform swap implementation discussed previously, passing the ad-
dresses of the r type pointers corresponding to the variables being swapped.

4.5 Evaluation

To evaluate the efficiency of the compiler, we implemented two standard sensing ap-
plications. The first, discussed in Section 2, periodically samples onboard sensors and
broadcasts the results via radio. The second is similar, but transmits the data to a PC via
a serial connection. Table 1 shows the memory usage of the compiled applications.

1 This is a correctable deficiency in our current implementation, but introduces a significant
initialization performance penalty.
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1// #include "Common.h", "Leds_Template.h", "ADC_Template.h", ...
2...
3queue data_samples;
4iqf_queue_rep data_samples_rep;
5

6void broadcast_average_main() {
7 ...
8 iqf_queue_initialize(&data_samples_rep);
9 data_samples = &data_samples_rep;

10 leds_template_led0_init();
11 ...
12 adc_template_adc_init();
13 uart_template_uart_init(9600);
14 xbee_template_xbee_init();
15 ...
16 while(boolean_template_true()) {
17 clock_template_wait_1s();
18 if(integer_template_are_equal(iqf_rem_capacity(&data_samples), 0)){
19 iqf_dequeue(&garbage, &data_samples);
20 leds_template_led0_set(off);
21 }
22 sample = adc_template_read_adc(0);
23 iqf_enqueue(&sample, &data_samples);
24 average = iqf_average(&data_samples);
25 average = integer_template_mod(average, 256);
26 if(integer_template_greater_or_equal(average, 0)){
27 leds_template_led1_set(on);
28 } else{
29 leds_template_led1_set(off);
30 }
31 // >=64 -> LED2; >=128 -> LED3;
32 // >=192 -> LED4, analogously
33 ...
34 uart_template_uart_send_bytes_blocking(&average, 1);
35 clock_template_wait_1s();
36 leds_template_led0_set(on);
37 }
38}

Fig. 5. Generated C Code for the SenseAndBroadcast Example

To further improve the compiler’s efficiency, we included a translation optimization
for scalar variables. Scalars (i.e., Integers, Booleans, and Characters) need not be
accessed indirectly to ensure constant-time data movement; value assignment is equally
efficient. Hence, scalar variables (and fields) are not translated to r types; they are
translated to standard value types and swapped through data assignment.

5 Related Work

Our experiment is based on work on the RESOLVE language, and in particular, recent
work on push-button verification for RESOLVE. As such, RESOLVE provides a unified
specification and programming language to build provably correct programs.

The Slede project [7] involves automatically verifying sensor network security pro-
tocols. The approach is based on formal verification using model-checking techniques
applied to nesC programs. VCC [15] performs formal verification based on logical infer-
ence. It generates verification conditions from annotated C programs, which are proved
using an automatic theorem prover. In [11], a dialect of C (C0) is compiled and verified
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Table 1. Memory Usage of Applications Compiled for the ATmega644 Processor

No Optimization With Optimization
Application Program (ROM) Data (RAM) Program (ROM) Data (RAM)

SenseBroadcastAvg 10860 686 6990 282
SenseBroadcast 9664 432 6348 126
Receiver 9634 432 5804 126

to check the correctness of program implementations in pervasive systems. This work
mainly focused on proving logical blocks that involve dynamic memory allocation, ad-
dress alignments, and function calls using Hoare’s partial correctness logic.

In [18], the authors present work on verifying system C code based on its low-level
memory model, and improved techniques to prove correctness of code, especially pro-
grams with pointer address arithmetic and structure types. The input C source code is
annotated with pre- and post-conditions and invariants for program functional blocks.
Similar work on verifying C programs with pointers, along with a prototype implemen-
tation based on Burstall’s model for structures is presented in [6]. This work inserts
annotated pre- and post-conditions, global invariants, and loop variants to C programs
and uses the Why tool for generating verification conditions.

6 Conclusions

In this paper, we have described our work on implementing a compiler for embedded
network systems that allows developers to create applications that are provably cor-
rect. As the basis for the verification effort, we use the RESOLVE language, which
is an integrated specification and programming language that is targeted primarily at
provably correct programs. Thus far, research in the RESOLVE language has largely
centered on the functional correctness of generic software components. The specifica-
tion and verification of performance characteristics is an active area of future work. The
work presented here uses this foundation as a basis to target a small but useful class
of embedded network systems applications. We have demonstrated the use of this ver-
ification system and compiler in the context of the MoteStack platform, which uses an
Atmel ATmega644 microcontroller.
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A RESOLVE

RESOLVE is an integrated programming, specification, and proof language intended
to explore and balance three goals: verifiability, scalability, and practical usefulness.
The design of the system is therefore intended to eliminate those practices that have
traditionally led to difficult- or impossible-to-verify code, such as uncontrolled object
aliasing, while providing alternatives on the same order of efficiency as the features
they replace. For the aliasing example, RESOLVE uses swapping as its basic method of
data transfer, rather than deep or reference copying [9]. This discourages aliasing while
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remaining only a constant factor less efficient. In this way, RESOLVE strives to be a
language that is easy to verify while remaining competitive with current industrial lan-
guages. This focus on verifiable-but-efficient makes it an excellent choice for embedded
applications where both time and memory resources are at a premium.

RESOLVE relies on well-developed, general theories to serve as the basis of the
mathematical correspondence of each programming class. As an example, in RESOLVE,
each of Stacks, Queues, and Lists may be specified in terms of the String concep-
tualization and thus make use of the full body of theory development about Strings.
These specifications are presented as a Concept in RESOLVE that defines the be-
havior and interface of that component. For an example of this style of specification,
consider this snippet from the specification of Queue:

1Concept Queue_Template(type Entry; evaluates Max_Length: Integer);
2 uses String_Theory, ...;
3 requires Max_Length > 0;
4 Type Family Queue is modeled by Str(Entry);
5 ...
6 Operation Enqueue(alters E : Entry; updates Q : Queue);
7 requires |Q| < Max_Length;
8 ensures Q = #Q o <#E>;
9 Operation Dequeue(replaces R : Entry; updates Q : Queue);

10 requires |Q| /= 0;
11 ensures #Q = <R> o Q;
12 ...
13end;

In the above example, Queue is parameterized by the type of entries (Entry) it
may hold and a maximum capacity (Max Length). Actual values are provided when
the concept is instantiated as a Facility in RESOLVE.

The parameters of each operation use parameter passing modes to summarize the ef-
fect of the operation on those parameters. A mode of alters indicates that the operation
is permitted to modify the parameter in some way. updates indicates that the incom-
ing value may be modified subject to the constraint of the ensures clause. replaces
indicates that the initial value of the parameter will be ignored, while the final value
will be as described in the ensures clause.

For each operation, the requires clause expresses the pre-condition that the opera-
tion expects the caller to have met, and the ensures clause expresses the post-condition
that the operation will terminate in. Note that references to an object in assertions such
as requires or ensures statements are references to that object’s model. So, the ex-
pression |Q| < Max Length is read as “the length of the String representing Q is
less than the mathematical integerMax Length.” The o operator is the concatenation
operator on Strings, and the syntax <X> denotes the singleton String containing
only X. In ensures clauses, variables preceded with the # symbol are references to
the value of the variable at the time the operation was called, while those not preceded
by the # symbol are references to the final value of the variable.

A corresponding implementation, called a Realization, must be provided in RE-
SOLVE’s imperative programming language. In addition to those operations defined
in the class concept, enhancement operations may be defined in separate modules and
then implemented using the public operations of the classes they extend. In this way, any
verified implementation of an enhancement on Queues may be applied to any verified
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implementation of Queue and be guaranteed to work. As an example, we might find
it useful to sort the entries of a Queue according to some ordering, an enhancement
for which might look like this:

1Enhancement Sorting_Capability(definition Ordering(X : Entry, Y : Entry) : B);
2 uses String_Theory, Ordering_Theory, ...;
3 requires Is_Transitive(Ordering) and Is_Total(Ordering);
4 Operation Sort(updates Q : Queue);
5 ensures Is_Permutation(Q, #Q) and Is_Conformal_With(Ordering, Q);
6end;

These enhancements inherit the parameterizations of the class specifications to which
they are applied and may be further parameterized to serve their unique purposes.
Functions like Is Transitive() and Is Total() are defined in Ordering Theory,
while functions like Is Permutation() and Is Conformal With() are defined in
String Theory. The corresponding theories contain theorems for manipulating the
functions therein.
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Abstract. In this paper we propose a general framework for distributed
statistical model checking of networks of priced timed automata. The
first contribution is a new algorithm to distribute sequential hypothesis
testing without introducing bias in the results. The second contribution is
an implementation of this algorithm in Uppaal. The major contribution
is an experimental and analytical evaluation of the approach through
case studies, including an analysis of the SMC algorithm itself.

1 Introduction

Statistical Model Checking techniques (SMC) [8,12,17], can be seen as a trade-
off between testing and formal verification. The core idea of the approach is to
conduct some simulations of the system and verify if they satisfy some given
property. The results are then used together with statistical algorithms in or-
der to decide whether the system satisfies the property with some probability.
Statistical model checking techniques can also be used to estimate the proba-
bility that a system satisfies a given property [8,6]. Of course, in contrast to an
exhaustive approach, a simulation-based solution does not guarantee a correct
result with 100% confidence. However, it is possible to bound the probability
of making an error. SMC is getting widely accepted in various research areas
and applied to problems that are beyond the scope of classical formal tech-
niques [1,2,10,11,13,19,20].
Unfortunately, extremely huge sized problems and a demand of extremely high

confidence may require generation of a large number of simulation runs, each
of which may itself be extremely time consuming. To address this confidence-
explosion problem, we suggest in this paper to take advantage of PC-clusters
and GRID computers. In fact, it is well-known that statistical solutions methods
that use samples of independent observations are often trivially parallelizable.
As observed in [18], SMC algorithms can be distributed through the help of a
master/slave architecture where multiple computers are used to generate the
simulations. The idea is as follows: one or more slave processes register their
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ability to generate simulation with a single master process that is used to collect
those simulations and perform the statistical test.
However, this process may become complex when considering sequential hy-

pothesis testing (when the number of simulations is not known in advance). The
problem is that there might exist a correlation between a time needed to generate
a random simulation and the fact that a property is satisfied by this simulation.
Thus it is important to guarantee that the technique will not introduce a bias
towards the results that are generated by shorter simulations.
In a series of recent works [4], we have extended Uppaal with SMC algo-

rithms applied to Networks of Priced Timed Automata – hence leading to the
first implementation of SMC for real-timed stochastic systems. The objective
of this paper is to go one step further and propose the first complete study of
distributed SMC, in general, and in the framework of Uppaal in particular. Our
contributions are:

1. A distributed implementation of the estimation algorithm proposed in [8].
Building on classical Monte Carlo techniques [7], an estimation algorithm
precomputes the number of simulations needed to estimate the probability
to satisfy a property with a given confidence. Such an algorithm which is triv-
ially parallelizable amounts to equally distribute the number of simulations
to perform between the slave computers.

2. A new distributed algorithm for sequential hypothesis testing where simu-
lations are computed on the fly until a threshold is passed and a decision is
taken. Here, it is important to avoid introducing bias in the results, which
may be potentially complex and eventually decrease the benefit of using sev-
eral processors. To counter this, [18] proposed a round-Robin solution where
the runs are counted in rounds. We generalise the solution in [18] by intro-
ducing batches and buffers. The batch is used to reduce communication by
sending an aggregate result of predefined size (instead of individual results).
The buffer is used to improve concurrency since the nodes are more loosely
synchronized.

3. A thorough evaluation of our implementation through new applications of
SMC algorithms. In particular, we apply the distributed SMC engine to
an analysis of an instance of the LMAC protocol of unprecedented size.
Additionally, a thorough evaluation of the distributed SMC framework itself
is made aiming at identifying optimal settings of the parameters for the
framework. The evaluation is carried out both experimentally (using the
implementation) as well as analytically (using SMC) based on a model of the
distributed SMC algorithm itself, and with high consistency in identifications
made by the two approaches.

2 Statistical Model-Checking in Uppaal

This section introduces the formalisms used in Uppaal for modeling systems
and and specifying properties. Then, we briefly survey existing Statistical Model
Checking (SMC) algorithms. Finally, a novel application of SMC is presented.
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2.1 Networks of Priced Timed Automata

The new SMC engine of Uppaal [3] supports the analysis of Priced Timed
Automata (PTAs) that are timed automata whose clocks can evolve with dif-
ferent rates, and with no restrictions in guards and invariants. Additionally, we
support other features of the Uppaal model checker’s input language such as
integer variables, data structures and user-defined functions. We also assume
PTAs are input-enabled, deterministic (with a probability measure defined on
the sets of successors), and non-zeno. PTAs communicate via broadcast channels
and shared variables to generate Networks of Price Timed Automata (NPTA).
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C’==4
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b?
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Fig. 1. An NPTA, (A|B|T )

Fig. 1 provides an NPTA with three compo-
nents A, B, and T as specified using the Up-
paal GUI. One can easily see that the com-
posite system (A|B|T ) has the transition se-
quence:
(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T
is reachable. In fact, location T3 is reachable
within cost 0 to 6 and within total time 0 and
2 in (A|B|T ) depending on when (and in which order) A and B choose to per-
form the output actions a! and b!. Assuming that the choice of these time-delays
is governed by probability distributions, a measure on sets of runs of NPTAs is
induced, according to which quantitative properties such as “the probability of
T3 being reached within a total cost-bound of 4.3” become well-defined.
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Fig. 2. Cumulative probabilities for time
and Cost-bounded reachability of T3

In our early works [4], the stochas-
tic semantic of PTA components as-
sociates probability distributions on
both the delays one can spend in a
given state as well as on the transition
between states. In Uppaal uniform
distributions are applied for bounded
delays and exponential distributions
for the case where a component can
remain indefinitely in a state. In a net-
work of PTAs the components repeat-
edly race against each other, i.e. they

independently and stochastically decide on their own how much to delay before
outputting, with the “winner” being the component that chooses the minimum
delay. For instance, in the NPTA of Fig. 1, A wins the initial race over B with
probability 0.75.

Properties. For specifying properties of NPTAs, we use cost-constraint tem-
poral properties over runs of the form ψ = �C≤cϕ. Here C is an observer clock
(that is never reset and should grow to infinity on any infinite run), c ∈ IR≥0
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and ϕ is a state-predicate. We say that a run π satisfies ψ = �C≤cϕ if there
exists a state (�, v) in π satisfying ϕ and with v(C) ≤ c. For an NPTA M we
define PM (ψ) to be the probability that a random run of M satisfies ψ.
Reconsider the example of Fig. 1, we can evaluate the the probabilities

Pr[time<=2](� T.T3) and Pr[C<=6](� T.T3) in Uppaal, obtaining as ex-
pected 0.75 for the composition (A|B|T ) for both of these probabilities. In fact
Fig. 2 gives the time- and cost-bounded reachability probabilities for (A|B|T )
for a range of bounds.

2.2 Statistical Model Checking Algorithms

We briefly recall statistical algorithms allowing to answer the following two types
of questions : (1) Qualitative : Is the probability that a random run of a given
NPTA A satisfies a property �C≤cϕ greater than a certain threshold θ? and (2)
Quantitative :What is the probability that a random run of A satisfies �C≤cϕ?
For both question a run of the system is encoded as a Bernoulli random variable
that is true if the run satisfies the property and false otherwise.

Qualitative Question. This reduces to test the hypothesis H: p = PA(�C≤cϕ)
≥ θ againstK : p < θ. To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0 : p ≥ p0 and H1 : p ≤ p1
with p0 = θ + δ0 and p1 = θ − δ1 (δ0 and δ1 are parameters of the algorithm).
The interval p0 − p1 defines an indifference region, and p0 and p1 are used as
thresholds in the algorithm. The parameter α is the probability of accepting H0

when H1 holds and the parameter β is the probability of accepting H1 when
H0 holds. The above test can be solved by using Wald’s sequential hypothesis
testing [16]. This test, which is presented in Algorithm 1, computes a proportion
r among those runs that satisfy the property. With probability 1, the value of
the proportion will eventually cross log(β/(1 − α) or log((1 − β)/α) and one of
the two hypothesis will be selected.

Algorithm 1. Hypothesis testing
function hypothesis(S:model , ψ: property)
r:=01

while true do2

Observe the random variable x corresponding to �C≤cϕ for a run.3

r := r + x ∗ log(p1/p0) + (1− x) ∗ log((1− p1)/(1− p0))4

if r ≤ log(β/(1− α)) then accept H05

if r ≥ log((1− β)/α) then accept H16

end

Quantitative Question. This reduces to a Monte Carlo approach that com-
putes the numberN of runs needed in order to produce an approximation interval
[p − ε, p + ε] for p = Pr(ψ) with a confidence 1 − α. The values of ε and α are
chosen by the user and N relies on the Chernoff-Hoeffding bound.
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2.3 Analysing SMC in Uppaal

In this section we will use the SMC engine of Uppaal to our first non-trivial task,
namely to analyse itself! More precisely, by suitably modeling the sequentual
testing algorithm as well as a sample model M , we will be able to use the SMC
engine of Uppaal to analyse the performance of SMC on M . Later, in Section
4, this will allow us to evaluate various naive (and even faulty) proposals for
distributing SMC.
The sample model M given in Fig. 3a1 makes an initial probabilistic choice

between the two branches, each having a looping transition taken repeatedly
with a delay choosen uniformly from ]0, 2]. Performing sequential testing of the
hypothesis H0: Pr[<=100](� OK)≥ 0.5 some 10 times with α = 0.05 as level
of significance and with an indifference region of ±0.01, we consistently (and
correctly) dismiss the hypothesis with an average of 408.6 runs and with standard
deviation 127.5.
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Fig. 3. Sample model M (a) satisfying Pr[<=100](� OK)= 0.42 and modeling SMC of
M (b,c) with respect to H0: Pr[<=100](� OK)≥ 0.5 with 0.05 as level of significance
and [0.49, 0.51] as indifference region

Now, aiming at obtaining a better understanding of sequential testing2 we
may simply model the sequential testing algorithm of M directly and analyse
its (expected) performance using Uppaal SMC. The resulting model is given in
Fig. 3 and consists of an extension of the sample model M into the component
Generator that will repeatedly generate random runs of M (of time-duration
100) and report the outcome to a Master using the channels add (when 100
time-units has elepased without OK having been observed) and sub (used as
soon as it is observed that the OK branch has been taken, note the absence of
the time>=100 guard on the right side of the Generator model). The Master
has the obligation of adjusting appropriately the ratio-variable r according to
Alg. 1, and conclude on H0 or H1 as soon as the value of r exceeds the given
threshold. Given the indifference region [0.49, 0.51] and level of significance 0.05,
we find that the approximate values to be used 3 in Alg. 1 are: − log(p1/p0) =

1 M is a timed variant of the model proposed in [17] and used to demonstrate bias in
a naive distributed approach to SMC.

2 The performance of sequential testing has been subject to significant studies and is
well-understood [15]. The aim here is to demonstrate that our Uppaal SMC engine
is a useful tool for obtaining such an insight.

3 Those values are obtained by observing Wald’s ratio on several application of the
SMC algorithm to the same problem, and then take the average of the observations.
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log(1 − p0/1 − p1) = 0.01715 and log((1 − β)/α) = − log(β/(1 − α)) = 1.2787
(≈ 1.262+0.017). In the model of Fig. 3 we are using scaled integer constants for
these values. Now, looking at the estimation of Pr[#<=20000](� Master.H1)
in Fig. 4, we find – as expected – that the probability of accepting H1 (H0) tends
to 1 (0) as the number of steps increases. We also see that the average number
of runs is estimated to 481.4. The “mismatch” with the experimentally found
average 408.6 is due to early termination when the threshold for H0 is exceeded.
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3 Distributed Statistical Model-Checking in Uppaal

SMC suffers from the fact that the high confidence required by an answer may
demand a large number of simulation runs, each of which may itself be time
consuming. As an example, the first hypothesis test shown later in this section
can generate between 14,000 and 2,390,000 runs if the parameters α, β, δ range
between 0.01 and 0.001. A possible way to leverage this problem is to use several
computers working in parallel using a master/slaves architecture: one or more
slave processes register their ability to generate simulation with a single master
process that is used to collect those simulations and perform the statistical test.
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Fig. 5. Probability distributions obtained
with 1 (top), 5, 10, and 20 (bottom) gener-
ator nodes

When working with an estimation
algorithm, this collection is trivially
performed as the number of simula-
tions to perform is known in advance
and can be equally distributed be-
tween the slaves. When working with
sequential algorithms, the situation
gets more complicated. Indeed, we
need to avoid introducing bias when
collecting the results produced by the
slave computers. This means that re-
sults should not be collected arbitrar-
ily as illustrated by considering the
model of Section 2.3 with several in-
stances of the Generator template.



Checking and Distributing Statistical Model Checking 455

Checking the property Pr[runs<=20000](� Master.H1) Fig. 5 shows that dif-
ferent distributions can be obtained with different numbers of generator nodes,
hence revealing a bias in the results. In fact the probability of accepting H1 tends
(incorrectly) to 0 when the number of Generator components increases.
A solution, which was proposed in [17], consists in observing that Wald’s

ratio r is updated as a function of the Bernouilli random variable x as r+ =
x∗racc+(1−x)∗rrej with racc and rrej being constants depending on the tested
hypothesis. To reduce blocking and still update r, the non-biased algorithm
updates two safe approximations for r (r1 and r2). If x is unknown then it
updates with r1+ = rrej and r2+ = racc, and then testing if r1 ≤ I to accept
H0 or if r2 ≥ S to accept H1

4. When all outcomes of a round are known then
we can reset r1 := r2 := r. This allows us to accept H0 even if some accepting
outcomes are missing or conversely to accept H1 if some rejecting outcomes are
missing.
We generalize [17] by aggregating the outcomes x by batches (of size B) and

also by implementing a buffer (of size K) of incoming results.

K
buffer
size

N number of nodes

Asynchronous incoming messages

Fig. 6. Buffer of results at the master
node

The batch is used to reduce communi-
cation by sending B aggregate results.
The buffer is used to improve concur-
rency since the nodes are more loosely
synchronized and they can be K runs
ahead of the slowest node. Fig. 6 illus-
trates our algorithm at the master node
that receives asynchronous messages from
all other nodes in a buffer. A message is an
aggregate result containing the outcome
of B runs. The master may take a deci-
sion as soon as r1 ≤ I or r2 ≥ S. When all
outcomes at the bottom line of the buffer
are known we reset r1 := r2 := r with
the exact updated value of r with those
outcomes, and free the bottom line of the buffer. In practice, our algorithm is
calibrated to count the runs up to a certain depth in the buffer. Indeed, the
outcomes are weighted by B so few missing aggregated outcomes can prevent
the algorithm from deciding. We have implemented this algorithm with asyn-
chronous communications (using OpenMPI). There can be at most K pending
messages due to the size of the buffer. If a slave tries to send more messages,
then the communication will block waiting for a “slot” to be free. The experi-
ment performed in the remainder of the paper has been carried out on varying
numbers of nodes on a cluster with dual Xeons 5650 (hexa-cores at 2.66GHz)
interconnected with infiniband.
We first make two types of experiments to exhibit the performance charac-

teristics of our algorithm. The experiments are carried out using the train-gate
example available as a demo of Uppaal. This model comprises a number of

4 I = log(β/(1− α)) and S = log((1− β)/α) as stated in Alg. 1.
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trains crossing a bridge with only one track. A gate controller stops and restart
the trains to ensure mutual exclusion on the bridge and absence of starvation
for the trains. Our first experiment concerns 6 trains and the property of being
in a state where train 5 is crossing while all the other trains are stopped.

Pr[<=100](<> Train(5).Cross and
(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The runs are relatively short with few components so they will be cheap to
compute and we expect the throughput of messages to be high. In addition, the
hypothesis we are testing is not deterministic, which means that the outcomes
and computation times of the runs will vary. The property is checked with high
confidence (99.999%) and small indifference regions (+/- 0.00001) to have a
precise and reliable result – and to stress our distributed algorithm.
Our second experiment considers a “large” instance with 20 trains, where we

check if the model satisfies mutual exclusion on the bridge, expressed by the
property

Pr[<=1000]([] forall (i : id_t) forall (j : id_t)
Train(i).Cross and Train(j).Cross imply i == j) >= 0.9999

Here, the runs are random but bounded by the same large bound and since
the inner property []forall(i : id_t)forall(j : id_t)... holds by model-
checking, all the runs will all reach their bounds. In addition, we have 20 trains
and the runs are long (1000 time units) so they are relatively expensive to gen-
erate. This means that all the runs are implicitely synchronized and small devi-
ations are amortized by the long runs. The throughput of messages will be low,
which means a low overhead compared to the actual useful work of generating
the runs.
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Fig. 7. Verification times on 16, 32, and 128 cores in function of B and K for the
“small” model (first row) and the “large” model (second row)

Figure 7 shows our results for different number of cores. The solution in [18]
corresponds to the particular case withK andB are equal to one, exhibiting in all
the experiments the worst verification time, and with performance deteriorating
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Fig. 8. Timed automata model of a statistical model checking process

with increasing number of cores (i.e. for 128 cores performance loss is a factor
of 4). Though the impact of the buffer size is less, the experiments indicate that
a buffer of size 2-4 will suffice. The results also demonstrate linear scalability of
our distributed implementation: for B = 32 and K = 2 the verification times for
16, 32 and 128 cores are 108, 56 and 19 seconds (respectively).

4 Analyzing Distributed SMC in Uppaal

In this section we model the implemented distributed algorithm of sequential
hypothesis testing and we check it using the SMC engine of Uppaal. The goal
is to estimate the verification time and processor utilization, check for bias in
the distributed algorithm, and explore the parameters of our distributed SMC
algorithm in an analytical manner.

Modeling. We model the master and slave processes described in Section 3 as
shown in Fig. 8. The master sends a broadcast request req! to verify batches
of runs (of size B). We use a standard modeling pattern to synchronize on the
corresponding req? as soon as possible. The master gathers the results with its
saveWork function and loops again if neither H0 nor H1 is accepted. Listing 1.1
shows this saveWork function that implements the distributed hypothesis testing
algorithm of Section 3.Uppaal uses floating point numbers that are not available
in the modeling language. Instead we encode fixed point arithmetics with integers
and we use precomputed tables for logarithm values. Once the master accepts
H0 or H1, it moves to the location Done and stops the clock time.
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Listing 1.1. Master code.
�

1 // buffer portion for early termination :
2 const int P = (K<=4)?K : ((K<=8)?5 : ((K<=16)?8 : ((K<=32)?10 : 12)));
3 bool H0 = false, H1 = false; // for hypothesis H0 and H1
4 int batch[N][K]; // buffer of batches (K batches for N nodes)
5 long satisfied =0, unsatisfied =0; // information about filled lines
6 long sat=0, unsat=0, unknown=N�P�B; // early results in unfilled lines
7 long logRatio = 0, ratioLow = 0, ratioUp = 0; // scaled by p.scale
8 void saveWork(const node t node, const int value) {
9 if (level [ node]<=P) { // entered the early results portion
10 sat += value; unsat += B−value; unknown −= B;
11 }
12 batch[node][ level [ node]] = value; level [ node]++; // store
13 if (level [ node]==1) { // entered at the lowest level
14 bool filled = forall (i : node t) level [ i ]>0;
15 if (filled ) { // line at the lowest level has been filled
16 int L;
17 for (i : node t) { // shift all queues one by one
18 satisfied += batch[i][0]; // count as firm results
19 unsatisfied += B−batch[i][0];
20 sat −= batch[i][0]; // discount from early results
21 unsat −= B−batch[i][0]; unknown += B;
22 level [ i ]−−; // remove from buffer
23 for (L=0; L<level[i ]; ++L) {
24 batch[i ][ L] = batch[i][ L+1]; // shift
25 if (L==P) { // entered the early results portion
26 sat += batch[i][L+1]; unsat += B−batch[i][L+1];
27 }
28 }
29 batch[ i ][ level [ i ]]=0; // cleanup
30 }
31 logRatio = p.valAcc�satisfied + unsatisfied �p.valRef ;
32 if (logRatio <= p.logInf) H0 = true;
33 if (logRatio >= p.logSup) H1 = true;
34 }
35 }
36 ratioLow = p.valAcc�(satisfied +sat+unknown) +
37 p.valRef�(unsatisfied +unsat);
38 ratioUp = p.valAcc�(satisfied +sat) +
39 p.valRef�(unsatisfied +unsat+unknown);
40 if (ratioUp <= p.logInf) H0 = true;
41 if (ratioLow >= p.logSup) H1 = true;
42 }
�

Slave processes proceed to compute their batches if their communication
buffers are not full (level[id] < K) or wait for the condition to hold. The
compute location models the computation time of a run, chosen according to
the distribution shown in Fig. 8b. This is encoded using probabilistic edges with
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weights matching the distribution. The distribution comes from a real verifica-
tion of the property in Section 3:

Pr[<=100](<> Train(5).Cross and
(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The last weighted edge (case i=H) is reserved for the runs that did not satisfy
the property.

Verification. In the hypothesis we test, the actual probability is very close to
0.46188. Since the real probability falls in the indifference region of our test, we
would expect that a non-biased implementation would accept H0 or H1 equally
often. Estimating the probability of confirming the hypothesis H0 with the query
Pr[<=10000000](<> master.H0) gives the probability 0.503±0.005 with 99.9%
confidence, confirming that our algorithm is not biased as well as the validity of
our model.
Similarly, we obtain the distribution of the verification time by the query

Pr[<=10000000](<> master.Done) for a model with number of nodes N = 128,
batch size B = 64, and buffer size K = 4. The result is 9557.6 time units in
average and the distribution histogram is depicted in Fig. 9a. To estimate the
processor usage time, we add another process with a single location with the
invariant usage’==sum(i:node t)busy[i]. Here, usage is a clock that grows
with a rate equal to the number of busy nodes.
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Fig. 9. Time estimation from 6000 runs of DSMC model

The question is now to find a good settings for the parameters of our algorithm
(B and K). We perform a parameter sweep to estimate the verification time for
values of B and K taking values in 1, 2, 4, 8, 16, 32, 64 for three topologies with
the number of processing nodes N = 16, 32, or 128. The results are depicted
in Fig. 10, where it is visible that the extremely small batch size requires more
time. Large batch sizes can also be detrimental in a large cluster setting (Fig. 10c
where too many runs are requested in bulk than actually needed to establish the
result). Buffer size of one has a huge penalty of blocking with small blocks,
but it is barely noticeable otherwise. This confirms the experimental findings of
Section 3.
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(a) 16 nodes. (b) 32 nodes. (c) 128 nodes.

Fig. 10. Estimated verification times in model time units

5 Lightweight Media Access Control

LMAC is a Lightweight Media Access protocol (studied in [4,5]) used for schedul-
ing communication in wireless sensor networks where the topology is determined
by physical location and radio connectivity of the individual nodes. One of the
goals of the LMAC protocol is to minimize the number of collisions in the net-
work and to reconfigure the network to avoid further collisions.

Fig. 11. LMAC protocol phases

The original model has been developed
in [5] where topologies of 4-5 nodes are stud-
ied exhaustively using classical Uppaal and
a number of topologies are identified as prob-
lematic, containing perpetual collisions. In
this paper we provide new insight as to the
likelihood of perpetual collisions in different
topologies. This insight could not be delivered
by the use of classical Uppaal and the exper-
iment conducted is of unprecedented size.
In LMAC communication media access

time is discretized into time frames and each
time frame is divided into time slots. The goal
of the protocol is to allocate the time slots
to each node efficiently. The challenge is that
there is no central node distributing and as-
signing slots and nodes cannot themselves listen while transmitting, hence neigh-
bours are responsible for detecting and informing each other about collisions.
After waiting phase, the node moves to a discovery phase and listens for

an entire time frame and notes which time slots are used by its neighbours.
The collision counting expression collisions=++cc; is added on the edge from
rec one0 to done0 in Fig. 12b. After one time frame of discovery phase, the
node chooses seemingly unused time slot and moves to an active phase. The
node falls back to waiting phase if there are no neighbours (no signal received)
or all slots are occupied. During active and discovery phases the node listens
and notes any collisions (several receptions during the same slot). During active
phase the node transmits information about collisions it has detected during its
time slot and listens for collisions and information about collisions during other
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time slots. From the active phase the node may fall back to discovery phase if
it is notified about the collisions on its time slot and falls back to the waiting
phase if it detects that neighbours are gone.
Figure 11 shows the four phases of the protocol. Initially all nodes except

the gateway are listening and waiting for a radio signal from its neighbourhood
during the initialization phase. The communication is triggered by a dedicated
gateway node. Upon reception of signal, the node notes the relative time offset
of the signal and moves to waiting phase, during which it chooses to wait for a
random amount of time frames. The random delay is modeled using probabilistic
branching (see Fig. 12a) with geometrical weights (weight array).
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Fig. 12. LMAC phases in the model

Starting from the model5 of [5], we removed the verification optimizations
constraining the parallelism, annotated it with power consumption and collision
counting (as cost variables). The model contains twice as many slots as nodes,
whereas one slot per node is enough to schedule flawless communication in any
topology if nodes were aware of each others choices.
First we examine the distribution of the first collisions over time. The first row

of Fig. 13 is a result of a query Pr[<=1000](� collision>0) and it shows that
most collisions happen early in time and in a ring topology some collisions may be
discovered later (possibly when the first signal propagation meets at the opposite
of the ring). In the second row of Fig. 13 the distribution of possible number
of collisions is examined using a query Pr[collisions<=100](� time>=1000):
in a chain and a ring topologies the collisions are unlikely to occur (> 90%
probability of 0 collisions), but in a star it is almost guaranteed to occur (only
8% probability of 0 collisions). The third row of Fig. 13 shows the probability
distribution of collision counts after twice as long period of time (using query
Pr[collisions<=100](� time>=2000)). Notice that the shape of distributions
has not changed, but the small bumps have shifted to the right at exactly twice
the number of collisions and almost identical probability density, which implies
that those particular collisions are accumulating proportionally to the progress
5 Thanks to Ansgar Fehnker and Angelika Mader.
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Fig. 13. Collision statistics in three different topologies, in rows: probability of a col-
lision over time, probabilities of a number of collisions up to 1000 and up to 2000 time
units

of time, and in other words it means that collisions are reoccurring perpetually
without recovery. We checked these three properties on a 128 cores cluster with
high precision (with α = β = 0.0001 and ε = 0.0005) in about 30 minutes, which
generated around 19 million runs.
We have demonstrated howUppaal SMC can be used to identify problematic

topologies and distributed implementation can provide a high degree of accuracy
in spotting the reoccurring collisions.

6 Conclusion and Future Work

In this paper we have developed, implemented, applied and evaluated a general
and scalable framework for distributed statistical model checking. We have thor-
oughly investigated the distribution of sequential algorithms where bias can be
introduced when collecting the samples produced by slave computers. In particu-
lar, we have identified best choices of batch and buffer sizes both experimentally
and analytically, with agreement in the findings of the two approaches. In the
future, we plan to implement and distribute other SMC algorithms, principaly
the Bayesian algorithms introduced in [20,9].
Finally, it is worth mentioning that we have tried to use other distributed SMC

model checkers such as Ymer [18] or PVesta [14]. Aside from the fact that the
Gui of those two tools is quite restricted, we observed that Ymer does not work
anymore and that PVesta only distributes those algorithms where the number
of simulations is precomputed in advance.
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Paşca, Ioana 85
Penninckx, Willem 210
Perez, Gilberto 147
Piessens, Frank 210
Pressburger, Thomas 267
Prevosto, Virgile 120

Ranise, Silvio 279
Regehr, John 120
Regula, Kalyan C. 433
Reynolds Jr., Paul F. 70
Rideau, Laurence 85
Robby, 295
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