
Chapter 7  

Self-Evolvability for Cognitive Systems 

Abstract. The post-formal and closure aspects for cognitive developmental stages, 
geometry of logic, and relational complexity theories are presented. 

Conceptual and computational frameworks are presented as polytopic cognitive 
architectures. 

Physarum computing capabilities are evaluated. 

7.1   Developmental Stages 

Cognitive structures are patterns of physical or mental actions that underlie 
specific acts of intelligence and correspond to the stages of development (Piaget 
1970, 1971). 

According to Piaget, there are four primary cognitive development stages: 
sensory-motor, preoperational, concrete operational and formal. 

Fig. 7.1 shows the developmental stages hierarchy. 
It was observed that restriction of cognitive capability to the formal stage may 

correspond to systems stagnation and unavoidable failure (Yang and Bringsjord 
2005).  

This refers to automata that have a code or protocol that recommend some 
actions for situations requiring a completely different code. 

Growing complexity imposes to look for creativity and self-evolvability for 
automata. 

Piaget’s epistemology made room for cognition beyond the fourth stage. Piaget 
initiated the study of post-formal stages, beyond the fourth, in which agents are 
able to operate over logical systems. This refers to meta-processing of logics and 
formal theories expressed in those logics. It was considered that elaboration of 
axiomatic schemas may be considered as surpassing the formal stage and are to 
formal schemas what the latter are to concrete operations (Piaget 1973). 

The post-formal stages appeared as possible candidates for the so-called 5th 
cognitive development stage (Bringsjord et. al 2010). They are comparable to the 
formal framework in which post-formal reasoning involves the Self.  

Fig. 7.2 shows a polytopic presentation of the cognitive developmental stages. 
The initial four stages of Piaget, associated to S, K1, K2, and K3, have been 

completed in Fig. 7.2 by the self-evolvability stage. This allows describing 
systems able to self-evolve by internal structures modification.  
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Fig. 7.1 Developmental stages hierarchy 

There are four stages on the front face of the polytope. The notations are:  
S-Sensory Motor, K1-Preoperational, K2-Concrete Operational, and K3-Formal. 

The development is considered clockwise. 
Piaget considered that the sensorimotor stage differed from the latter stages in 

that the former was devoid of symbolic representation. 
The central stage the Self may ensure the cooperation and redistribution of the 

four stages on another face of the polytope, with another starting stage.  
Any stage embeds the previous ones. After one cycle an augmented reality may 

support a new cycle of development. The post-formal stage appears as a cognitive 
exemplar of the Self.  

As shown in Fig. 7.2 two ways should be considered for development. 
This means that after the integrative way S→K1→K2→K3 we need to look at 

the differentiation way K3′→K2′→K1′→S′.  
Using the developments of the direct way may produce symmetry-breaking 

results for the reverse way. The swinging from direct to reverse developmental 
stages mediated by the Self may be a source of creativity in complex problem 
solving or science development. 

That is because the boundaries where creative research stand out and new 
information is created consist of coexisting tendencies. Integration and 
differentiation coexists and the metastable coordination dynamics emerges as the 
delicate blend of integration and differentiation tendencies.  
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Fig. 7.2 Polytope for development stages 

7.2   Logical Polytope  

The Boolean logic operations may be illustrated by a polytope whose vertices 
represent the 16 traditional binary connectives that is, logical operations on two 
variables, of basic logic (Moretti 2009).   

Table 7.1 shows the binary propositional connectives. 

Table 7.1 Binary propositional connectives 

⊤ ∨  ← P → q ↔ ∧ NAND XOR ¬q N→ ¬p N← NOR ⊥  
T T T T T T T T F F F F F F F F 
T T T T F F F F T T T T F F F F 
T T F F T T F F T T F F T T F F 
T F T F T F T F T F T F T F T F 

 
The binary-connective labels in Table 7.1 correspond to the digital labels 

shown in Fig. 7.3.  Thus the binary-connective labels and the digital labels provide 
different ways of looking at the same abstract structure, which can itself  
be interpreted either as a Hasse diagram of a Boolean lattice or as a polytope.  
Table 7.1 shows the 16 connectives. We associate T to the digit “1” and F to the 
digit “0”. 

Fig. 7.4 shows a different presentation of the logical polytope. 
A projection of the 4-cube is retained.  
Specific forms of the logical polytope have been applied to substantiate the 

steps of the drug discovery processes (Afshar et al. 2007, Luzeaux et al. 2008). 
The polytope describes in a general way a rational agent and enables the 
supervision of the computing process. 
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Fig. 7.3 Logical polytope 
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Fig. 7.4 Logical polytope sequence 

7.3   Relational Complexity 

A theory capable to analyze the processing demands of problems, to explain the 
main components of understanding and problem-solving methods was proposed 
by Halford (Halford 1993).  

Structure mapping is the analogical reasoning that cognitive systems use to give 
meaning to problems by translating the given meaning of a problem into a 
representation or mental model that they already have and which allows them to 
understand the problem. The structure mappings that can be constructed 
depending upon the relational complexity of the structures they involve. The 
relational complexity of structures depends on the number of entities or the 
number of dimensions that are involved in the structure. The processing load of a 
task corresponds to the number of dimensions, which must be simultaneously 
represented, if their relations are to be understood. For example, to understand any 
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comparison between two entities one must be able to represent two entities and 
one relation between them.  

To understand a transitive relation, one must be able to represent at least three 
entities: otherwise it would not be possible to mentally arrange the entities in the 
right order that would reveal the relations between all entities involved. 

Halford identified four levels of dimensionality for cognitive processes. The 
first is the level of element mappings. Mappings at this level are constructed on 
the basis of a single attribute. The second is the level of binary relations or 
relational mappings. At this level two-dimensional concepts can be constructed. 
Thus, two elements connected by a given relation can be considered at this level. 
The next is the level of system mappings, which requires that three elements or 
two relations must be considered simultaneously. At this level ternary relations or 
binary operations can be represented.  

At the final level multiple-system mappings can be constructed. At this level 
quaternary relations or relations between binary operations can be constructed and 
four dimensions can be considered at once. The four levels of structure mappings 
correspond, in the theory of cognitive development of Piaget, to the sensorimotor, 
the preoperational, the concrete operational, and the formal stage. The four levels 
may be linked to the sensorimotor, interrelational, dimensional, and vectorial 
stages as described by Case (Case 1992). 

In an overall sense there is a clear correspondence between Piaget’s four major 
stages and the levels defined by Halford or by Case. 

Fig. 7.5 shows the development stages-relational complexity polytope. 
The elements of the front face of the polytope are presented in Table 7.2. 
Table 7.2 outlines some categorification aspects for development stages. 

Table 7.2 Categorification for development stages 

Author\ Stage K0 K1 K2 K3 Self 
- n=0 n=1 n=2 n=3 n≥4 

Piaget (1971) Sensori-
motor 

Preconceptual Concrete 
Operational 

Formal Post-Formal 

Halford 
(1993) 

Elemental 
Association 

Relational 
Mapping 

Binary 
Operations 

Quaternary 
Relations 

- 

Case (1992) Sensori-
motor 

Interrelational Dimensional Vectorial - 

 
A challenge is the study of development stages for self-integrative closure, 

connecting levels n=0, sensory-motor and n=3, formal, and the emergence of the 
Self, corresponding to the levels n≥4 and to post-formal stages. 

The notations for Fig. 7.5 are: K0-Elemental Association, K1-Relational 
Mapping, K2-Binary Operations, and K3-Quaternary Relation. 

Fig. 7.5 outlines the direct integrative way S→K1→K2→K3 and the reverse 
way of differentiation K3′→K2′→K1′→S′. 
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Fig. 7.5 Development stages: relational complexity polytope 

A useful heuristic is that relational complexity cannot be reduced if the 
variables interact.  This is analogous to analysis of variance method since 
interacting variables must be interpreted jointly. A procedure for determining 
effective relational complexity was described by Halford (Halford et al. 1998b). If 
a relation can be decomposed into simpler relations, then recomposed without loss 
of information, effective complexity is equivalent to the less complex relation. 

The frontiers where new information is created consist of synchronized 
integrative and derivative ways. This explains why complex problem solving 
needs both integrative and derivative ways and the right rhythm of swinging 
between them. 

The development stage theory of Piaget and the relational complexity theory 
open the problem of the level attained by different systems that learns and evolves. 

The properties of higher cognitive processes and how they can be modeled by 
neural networks have been extensively studied by Halford and collaborators 
(Wilson and Halford 1994, Halford et al. 1998a, 1998b). They proposed and 
evaluated the so-called STAR (Structured Tensor Analogical Reasoning) model 
for problem solving. 

The rank of tensor used in STAR is linked to the arity of relation, that is, to the 
number of attributes to the relation, and in the end, to the Piaget stages of 
cognitive development. The STAR model uses a tensor of rank-3 to represent a 
predicate of two arguments. 

Halford studies suggest that for early Piaget stages in cognitive development, 
the categorical coproduct, “ ∪”, prevails allowing the associative knowledge. 
This is a fast and parallel process. During the higher Piaget stages the categorical 

product, “ ×,” seems preponderant, allowing the relational knowledge. It is a 
slow, sequential, effortful, higher cognitive process. The categorical product is 
naturally adapted to represent relations because its structure is analogous to the 
Cartesian product space in which relations are defined. The study of tensor 
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product networks using distributed representations outlined the significant role of 
Hadamard matrices (Wilson and Halford 1994).  

These matrices are special solutions of the wave equations. 
The significance of Klein-4 group and of Latin squares for learning transfer in 

neural networks and in cognitive systems was also evaluated (Birney et al. 2006). 
Such structures are linked to the INRC group studied by Piaget (Inhelder and 
Piaget, 1958) as well as to standard solutions of the wave equation, WE model.  

7.4   Explanatory Levels with n-Categories 

Human inferential abilities like transitive inference and class inclusion, involve 
the dual category theory concepts, product and coproduct, respectively (Philips  
et al. 2009). Children around five years of age develop what is called transitive 
inference which is, for example, given that A is larger than B, and B is larger than 
C, one may infer that A is also larger than C. Class inclusion develops later in 
children and consists of the ability to discern between the cardinality of classes 
and subclasses. 

Category theory shows that these abilities can be formally connected. 
Transitive inference can be modeled with product, and class inclusion with its 

dual, the coproduct. This fact would explain that these two reasoning abilities have 
similar profiles of development, because they involve related sorts of processes, 
namely product and coproduct. 

The n-category theory is useful to formally contrast category theory 
explanation against classical and connectionist approaches (Philips and Wilson 
2010). Observe that the definitions of functor and natural transformation are very 
similar. In fact, they are morphisms at different levels of analysis. For n-category 
theory, a category such as Set is a 1-category, with 0-objects, that is, sets, for 
objects and 1-morphisms, that is, functions for arrows. A functor is morphism 
between categories. The category of categories, Cat, has categories for objects and 
functors for arrows. Thus, a functor is a 2-morphism between 1-objects, that is 1-
categories, in a 2-category. A natural transformation is a morphism between 
functors. The functor category, Fun, has functors for objects and natural 
transformations for arrows. Thus, a natural transformation is a 3-morphism 
between 2-objects, that is functors, in a 3-category. A 0-category is just a discrete 
category, where the only arrows are identities, which are 0-morphisms. In this 
way, the order n of the category provides a formal notion of explanatory level 
(Phillips and Wilson 2010). Classical or connectionist compositionality is 
essentially a lower-level attempt to account for systematicity. That level is best 
described in terms of a 1-category. Indeed, a context-free grammar defined by a 
graph is modeled as the free category on that graph containing sets of terminal and 
non-terminal symbols for objects and productions for morphisms. By contrast, the 
category theory explanation involves higher levels of analysis, specifically 
functors and natural transformations, which live in 2-categories and 3-categories, 
respectively. Of course, one can also develop higher-order grammars that take as 
input or return as output other grammars. Similarly, one can develop higher-order 
networks that take as input or return as output other networks. The problem is that 
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neither classical nor connectionist compositionality delineates those higher-order 
grammars or networks that have the systematicity property from those that do not. 

Fig. 7.6 outlines the polytope for explanatory levels. 
A decategorification way should be considered too. This means that after the 

integration way S→K1→K2→K3 we need to look at the differentiation way 
K3′→K2′→K1′→S′.  

The differentiation is a kind of reverse epistemology. Observe that making use 
of the developments of the direct way, the reverse way may offer a symmetry-
breaking results. 
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Fig. 7.6 Polytope for explanatory levels 

In such cases, the swinging from direct to reverse epistemology is beneficial. 
Swinging methods based on direct and reverse epistemology have been applied in 
knowledge evaluation and development because the boundaries where new 
information is created consist of simultaneous tendencies. Tendencies to integrate 
should coexist with tendencies to differentiate and it is the intermixing of both that 
matters for self-evovability. 

Table 7.3 outlines the categorification aspects for explanatory levels. 

Table 7.3 Categorification for explanatory levels 

Level K0 (S) K1 K2 K3 Self 
- n=0 n=1 n=2 n=3 n≥4 

Categories 0-category 1-category 2-category 3-category 4-category 
Example sets Set Cat Fun - 
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The study of exploratory levels for self-integrative closure and the emergence 
of the Self corresponding to n≥4 are necessary. 

7.5   LISA 

LISA (Learning and Inference with Schemas and Analogies) is a system used in 
the synchronous activation approach to model analogical inference (Hummel and 
Holyoak 1997, Hummel and Choplin 2000). It demonstrates that temporal 
synchrony in conjunction with structured neural representations suffices to support 
complex forms of relational information processing specific to cognitive systems. 

The problem for such systems is their suitability for reflexive or reflective 
cognitive processes. Reflexive processes are linked to categorical coproduct while 
reflective processes are linked to the categorical product. While reflexive and 
reflective processes follow different kinds of computational constraints, in most 
cases, the two types of processes interact and need to be integrated in the 
performance of a single task. 

LISA is a computational model based on temporal synchrony and designed for 
analogical inference and for schemas induction.  

LISA system is illustrated in Fig. 7.7. The basic level includes semantic units, 
s, the next includes the so-called localist units, L, (predicate/object or 
object/roles), the next level includes the sub-problems and the higher level the 
problems.  
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Fig. 7.7 LISA 
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LISA is a computational model based on temporal synchrony and designed for 
analogical inference and for schemas induction. The data for LISA network 
consists of a collection of trees and a representation that is a pattern of “0”, “1” 
and so on for each terminal symbol occurring in those trees. The tree contains a 
hierarchy of entities: problem, sub-problems, roles, objects and semantics. 

The task for the LISA network is to provide a means of compressing each tree 
into a representation, the so-called activation vector, and reconstructing the tree 
from its representation. The SKUP elements are naturally associated to the LISA 
elements. The problems to solve may be associated to the hierachy of conditions 
K1, K2 and K3. LISA contains a driver network associated to operators U, and to 
the reflective reasoning.  

The representational structure of LISA provides at least a starting point for 
reflexive reasoning capabilities.  LISA propositions are retrieved into memory via 
guided pattern matching. During retrieval and comparisons the proposition are 
divided into two mutually exclusive sets: a driver and one or more recipients or 
receivers. The receiver network is associated to possibilities P.  The swinging 
between reflexive and reflective passes through the semantics. The LISA 
semantics elements are associated to the states S in SKUP. 

The activation of semantic units is controlled by time. Often the analysts do not 
have the time to allow runaway activation of semantics since they needs make 
inferences quickly. Notice that in contrast to reflexive inferences which are fast, 
the reflective inferences may require more effort. An open problem is to establish, 
for imposed time frames, the number of swinging from reflexive to reflective and 
the order in which the swinging should be performed. 

The Self takes into account the timescales for transition between levels. This 
allows the transition from problem source to problem target that is from 
integration way S→K1→K2→K3 and a differentiation way K3′→K2′→K1′→S′.  

Inherently there appear differences between the two ways and this can be the 
source of creativity. That is because the boundaries where creative research grows 
require synchronized integration and differentiation tendencies. 

Observe that this suppose that problem source and problem target are different. 
Fig. 7.8 shows the polytope associated to LISA architecture. 
The notations are: S-Semantic units, K1-Localist units, K2-Sub-problems, K3-

Problems 
Fig. 7.9 suggests a potential application of differential posets as cognitive 

architecture. 
The D operator decomposes the problem while the U operator integrates and 

builds a problem target. 
DORA (Discovery of Relations by Analogy) is a symbolic connectionist 

network that learns structured representations of relations from unstructured 
inputs. DORA is an extension of the LISA model of relational reasoning (Doumas 
et al. 2008). 
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Fig. 7.8 Polytope for LISA framework 
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Fig. 7.9 Duality for LISA framework 

DORA provides a means by which the representations used by LISA are 
learned from examples, and, consequently, provides an opportunity to understand 
the interplay between the dual sources of knowledge accumulation and increasing 
capacity limits as effectors of the changes in analogy making. 

Like LISA, DORA dynamically binds distributed, that is connectionist, 
representations of relational roles and objects into explicitly relational, that is, 
symbolic, structures. The resulting representations enjoy the advantages of both 
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connectionist and traditional symbolic approaches to knowledge representation, 
while suffering the limitations of neither. DORA’s basic representational schema 
is adapted from LISA. In DORA, propositions are encoded by a hierarchy of 
structure unit. 

Predicate and object units locally code for specific roles and fillers. While 
LISA must use different types of units to code for roles and their fillers, DORA 
uses the same types of units to code both roles and fillers and differentiates 
between roles and fillers via its binding mechanism. A comparison between 
DORA and STAR capabilities is due to Halford (Halford et al. 2010). 

7.6   LIDA 

LIDA (Learning Intelligent Distribution Agent) is a conceptual and computational 
framework for intelligent, autonomous, and conscious software agent that 
implements some ideas of the global workspace, GW, theory (Baars 2002).  

LIDA appears as an attempt to adopt strategies observed in nature for creating 
information processing machinery. 

The architecture is built upon the IDA (Intelligent Distribution Agent) 
framework, which was initially designed to automate the whole set of tasks of a 
human personnel agent who assigns resources to new tours of duty. LIDA 
employs a partly symbolic and partly connectionist memory organization, with all 
symbols being grounded in the physical world (Franklin 2006, Baars and Franklin 
2009).  

Baars’ GW theory has inspired a variety of related consciousness models 
(Baars 1988). The central idea of GW theory is that conscious cognitive content is 
globally available for diverse cognitive processes including attention, 
evaluation, memory, and verbal report. The notion of global availability is 
suggested to explain the association of consciousness with integrative cognitive 
processes such as attention, decision making and action selection. Also, because 
global availability is necessarily limited to a single stream of content, GW theory 
may naturally account for the serial nature of conscious experience. 

GW theory was originally described in terms of a blackboard architecture in 
which separate, quasi-independent processing modules interface with a 
centralized, globally available resource. This cognitive level of description is 
preserved in the computational models of Franklin, who proposed a model 
consisting of a population of interacting software agents, and Shanahan, whose 
model incorporates aspects of internal simulation supporting executive control and 
more recently spiking neurons (Shanahan 2006, 2008). 

A central global workspace, GW, constituted by long-range cortico-cortical 
connections, assimilates other processes according to their salience. Other 
automatically activated processors do not enter the global workspace.  

A neuronal implementation of a global workspace, GW, architecture, the  
so-called neuronal global workspace was studied (Dehaene et al. 2003). 
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Fig. 7.10 Diagram for neuronal global workspace 

Fig. 7.10 contains a schematic of the neuronal global workspace. 
In this model, sensory stimuli mobilize excitatory neurons with long-

range cortico-cortical axons, leading to the genesis of a global activity pattern 
among workspace neurons. Any such global pattern can inhibit alternative activity 
patterns among workspace neurons, thus preventing the conscious processing of 
alternative stimuli, for example, during the so-called attentional blink. The global 
neuronal workspace model predicts that conscious presence is a nonlinear function 
of stimulus salience; that is, a gradual increase in stimulus visibility should be 
accompanied by a sudden transition of the neuronal workspace into a 
corresponding activity pattern (Dehaene et al. 2003). 

The complementary role of the conscious and unconscious for cognition and 
self-evolvability was emphasized.  

The swinging between conscious and unconscious is an important tool for 
designing creative systems that can autonomously find solutions to highly 
complex and ill-defined construction problems. 

When a module p1 invades the workspace, the others, as p2 are blocked at a 
similar depth. 

Fig 7.11 illustrates the global workspace architecture activity. 
In GW theory the processes, p1, p2 and so on, said to be unconscious, compete 

to enter the global workspace GW. This competition is at several levels. 
Such processes are often thought of as memory activities, as for instance 

episodic or working memories. 
Suppose that there are two levels of competition indexed by K1 and K2 and the 

competition is won by one process, for instance p2. 
Having entered the GW, the winning process becomes the conscious state of 

the system. This is continuously broadcast back to the originating processes that 
change their state according to the conscious state. This results in a new conscious 
state and so on linking sensory input to memory and conscious states. 
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Fig. 7.11 Global workspace architecture 

LIDA has distinct modules for perception, working memory, semantic memory, 
episodic memory, action selection, expectation and automatization (learning 
procedural tasks from experience), constraint satisfaction, deliberation, 
negotiation, problem solving, metacognition, and conscious-like behavior. Most 
operations are done by codelets implementing the unconscious processors, that is, 
specialized networks of the global workspace theory. A codelet is a small piece of 
code or program that performs one specialized, simple task. The LIDA framework 
incorporates three new modes of learning into the older IDA model: perceptual, 
episodic, and procedural learning, which are all of bottom-up type. Perceptual 
learning concerns learning of new objects, categories, relations, and so on, and 
takes two forms: strengthening or weakening of the base-level activation of nodes, 
as well as creation of new nodes and links in the perceptual memory. Episodic 
learning, on the other hand, involves learning to memorize specific events that is, 
the what, where, and when. It results from events taken from the content of 
consciousness being encoded in the transient episodic memory. Finally, 
procedural learning concerns learning of new actions and action sequences with 
which to accomplish new tasks. This combines selectionist learning that is, 
selecting from an obsolete repertoire, and the instructionalist learning, that is, 
constructing new representations, with functional consciousness providing 
reinforcements to actions. This architecture may explain many features of mind, 
however, it remains to be see whether high competence will be achieved in 
understanding language, vision, and common sense reasoning based on 
perceptions. 

The LIDA model covers a large portion of human-like cognition (Franklin and 
Patterson 2006). Based primarily on GW theory the model implements a number 
of psychological and neuropsychological theories.  



7.6   LIDA 149
 

The LIDA computational architecture is derived from the LIDA cognitive 
model. The LIDA model and its ensuing architecture are grounded in the LIDA 
cognitive cycle. Every autonomous agent, human, animal, or artificial, must 
frequently sample and sense its environment and select an appropriate response, 
an action.  

More sophisticated agents, such as humans, processes make sense of the input 
from such sampling in order to facilitate their decision making. The agent’s life 
can be viewed as consisting of a continual sequence of these cognitive cycles. 
Each cycle constitutes a unit of sensing, attending and acting. 

A cognitive cycle can be thought of as a moment of cognition, a cognitive 
moment. 

During each cognitive cycle the LIDA agent first makes sense of its current 
situation as best as it can by updating its representation of its current situation, 
both external and internal. By a competitive process, as specified by GW theory, it 
then decides what portion of the represented situation is most in need of attention. 
Broadcasting this portion, the current contents of consciousness enable the agent 
to choose an appropriate action and execute it, completing the cycle. 

Thus, the LIDA cognitive cycle can be subdivided into three phases, the 
understanding phase, the attention that is, the consciousness phase, and the action 
selection phase. Fig. 7.12 illustrates some elements of LIDA architecture. It starts 
in the lower-left corner and develops roughly clockwise (Snaider et al. 2011). 

The first module is denoted by S. During the understanding phase, incoming 
stimuli activate low-level feature detectors in Sensory Memory. The output is sent 
to Perceptual Associative Memory, where higher-level feature detectors feed in to 
more abstract entities such as objects, categories, actions, events, and so on. The 
resulting percept moves to the Workspace, denoted by K1. Here it triggers both 
Transient Episodic Memory, and Declarative Memory, producing local 
associations. These local associations are combined with the percept to generate a 
Current Situational Model, which represents the agent’s understanding of what is 
going on right now. 

Attention Codelets, associated here by K2, begins the attention phase by 
forming coalitions of selected portions of the Current Situational Model and 
moving them to the GW.  

A competition in the GW then selects the most salient, the most relevant, the 
most important, and the most urgent coalition whose contents become the content 
of consciousness. These conscious contents are then broadcast globally, initiating 
the action selection phase, associated here to K3.  

The GW space corresponds to the Self. The neuronal global workspace, GW 
appears in Fig. 7.12 as a working example of the Self.  

The action selection phase of LIDA’s cognitive cycle is also a learning phase in 
which several processes operate in parallel. 

New entities and associations, and the reinforcement of old ones, occur as the 
conscious broadcast reaches Perceptual Associative Memory. Events from the 
conscious broadcast are encoded as new memories in Transient Episodic Memory. 
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Possible action schemas, together with their contexts and expected results, are 
learned into Procedural Memory from the conscious broadcast. Older schemas are 
reinforced. 

In parallel with all this learning, and using the conscious contents, possible 
action schemas are recruited from Procedural Memory. A copy of each such 
schema is instantiated with its variables bound and sent to Action Selection, where 
it competes to be the behavior selected for this cognitive cycle. The selected 
behavior triggers Sensory-Motor Memory to produce a suitable algorithm for the 
execution of the behavior.  

Its execution completes the cognitive cycle. 
The Workspace requires further explanation. Its internal structure is composed 

of various input buffers and three main modules: the Current Situational Model, 
the Scratchpad and the Conscious Contents Queue. The Current Situational Model 
is where the structures representing the actual current internal and external events 
are stored. Structure-building codelets are responsible for the creation of these 
structures using elements from the various submodules of the Workspace. The 
Scratchpad is an auxiliary space in the Workspace where structure-building 
codelets can construct possible structures prior to moving them to the Current 
Situational Model. The Conscious Contents Queue holds the contents of the last 
several broadcasts and permits LIDA to understand and manipulate time-related 
concepts. 

The GW mediates between the direct integrative way S→K1→K2→K3 and the 
reverse differentiation way K3′→K2′→K1′→S′ as shown by Fig. 7.11 and  
fig. 712.  

The reverse epistemology allows making use of the developments of the direct 
way and will offer is a kind of symmetry-breaking result. The swinging from 
direct to reverse epistemology is beneficial.  
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Fig. 7.12 Polytope for LIDA framework 
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The wave character manifested as swinging behavior is applied for evaluation 
and creative behavior. The boundaries where creative research grows and new 
information is created consist of synchronized tendencies. Tendencies to integrate 
should coexist with tendencies to differentiate and it is the blend of both that 
counts for self-evolvability. 

Fig. 7.13 suggests a potential application of differential posets as cognitive 
architecture. 

The U operator transfer processes as p2 to the GW space while the D operator 
transfer processes from GW toward field. 

One feature of human thought not accounted for by the GW theory is the 
reflexivity. 

This is the capacity for a conscious thought to refer to itself or to other 
conscious states.  

Consider that thought is internally in simulation with the environment. This 
simulation hypothesis can explain our experience of an inner world. 
 

GW 
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Fig. 7.13 Duality for LIDA framework 

The simulation hypothesis is based on the following assertions: 

• The brain’s motor centers can be active without producing explicit action 
• The brain’s perceptual apparatus can be active without the presence of external 

stimuli 
• Internally generated motor activity can elicit internally generated perceptual 

activity through associative mechanisms 
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By augmenting the basic GW workspace architecture with an internally closed 
loop it is possible to reconcile the GW theory with the so-called simulation 
hypothesis (Shanahan 2006). The proposal is in support of the hypothesis  
that organisms whose brains are endowed with such an internal loop are capable 
of rehearsing the consequences of potential actions prior to actually carrying  
them out. 

Such implementations are useful as a proof-of-concept, despite the present lack 
of neurological plausibility, both at the level of the neuron model used and in its 
employment of a single attractor network to model the global workspace. 

Finally it should be observed that LISA, LIDA and global workspace GW 
theory are similar approaches. They mix serial and parallel computations, 
corresponding to different types of categorical product. 

This supports their study by similar polytopic architectures. 

7.7   Physarum Computing Systems 

The slime mold Physarum polycephalum is a multinuclear, single-celled organism 
that has properties making it ideal for the study of resource distribution networks 
and of cognitive capabilities (Nakagaki et al. 2000, Nakagaki 2001). 

The organism is a single cell, but it can grow to tens of centimeters in size so 
that it can be studied and manipulated with modest laboratory facilities. 

The presence of nutrients in the cell body triggers a sequence of chemical 
reactions leading to oscillations along the cell body. Tubes self-assemble 
perpendicular to the oscillatory waves to create networks linking nutrient sources 
throughout the cell body. There are two key mechanisms in the slime mold life 
cycle that transfer readily to resource distribution network problems. First, during 
the growth cycle, the slime mold explores its immediate surroundings with 
pseudopodia via chemotaxis to discover new food sources. The second key 
mechanism is the temporal evolution of existing routes through nonlinear 
feedback to efficiently distribute nutrients throughout the organism. In slime mold, 
it can be shown experimentally that the diameters of tubes carrying large fluxes of 
nutrients grow to expand their capacity, and tubes that are not used decline and 
can disappear entirely. Unlike any other circulatory system, networks in slime 
mold rebuild themselves dynamically to changing environmental conditions.  

Nakagaki proposed a simple yet powerful model for tube evolution in 
Physarum to reproduce slime mold maze-solving experiments (Nakagaki 2001). 
The model captures the evolution tube capacities in an existing network through a 
coupled system of ordinary differential equations. Flow through the network is 
driven by a pressure at each node. The diameter of the tubes evolves based on the 
flux of nutrients through the network.  

Nakagaki’s group makes considerable claims about robustness and intelligence 
level in the Physarum colonies (Nakagaki et al. 2000, 2001, 2004).  

Implementation of a general-purpose computing machine is the most 
remarkable feature of the plasmodium of Physarum.  

The cognitive levels of Physarum may be compared to these attained by some 
pointer machines (Ben-Amram 1995, 1998). 
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Experimentally it was demonstrated that the plasmodium can implement the 
Kolmogorov–Uspensky Machine (KUM), a mathematical machine in which the 
storage structure is an irregular graph (Adamatzky 2007). The KUM is a 
forerunner and direct ancestor of Schoenhage's storage modification machines 
(Schoenhage 1980).The storage modification machines are basic architectures for 
random access machines, which represent the basic architecture of modern-day 
computers. The plasmodium-based implementation of KUM provides a biological 
prototype of a general-purpose computer. 

The key component of the KUM is an active zone, which may be seen as a 
computational equivalent to the head in a Turing machine. Physical control of the 
active zone is of utmost importance because it determines functionality of the 
biological storage modification machine. 

Laboratory and computer experiments with Physarum show basic operations 
Add node, Add edge, Remove Edge implemented in the Physarum machine. They 
also provide results on controlling movement of an active zone.  

The filaments movements for Physarum suggest that their capabilities are at the 
level of the 1-categories and 2-categories. For 2-categories the pentagon relation  
is valid. 

Physarum is able to disconnect a filament and reconnect it in another position. 
This corresponds to 2-categories. At operadic level this corresponds to the 

associahedron K4. 
For 3-categories the so-called pentagon of pentagons or the associahedron  

K5 should be considered. This needs a spatial awareness that allows evaluating the 
Physarum computing capabilities. 

Table 7.4 shows the knowledge level associated to different associahedra 
It refers to categorification aspects. 
Needed are the study of exploratory levels for self-integrative closure and the 

emergence of the Self corresponding to n≥4. 
An interesting test for Physarum capabilities would be the evolution in a high-

dimensional space with restrictions as shown in Fig. 7.14. 

Table 7.4 Categorification for associahedra 

Level K0 K1 K2 K3 Self 
 n=0 n=1 n=2 N=3 n≥4 
Categories 0-category 1-category 2-category 3-category 4-category 
Associahedra K(2) K(3) K(4) K(5) K(6) 
Geometry - Trees Pentagon Pentagon of 

Pentagons 
- 

 

Figure 7.14 illustrates the node-disjoint path construction between the source  
x = 0000 and the destination y = 1110 in a 4-cube.  

The edges on the four node-disjoint paths are labeled with the corresponding 
dimensions. Since x and y differ in bits 0, 1, and 2, the four paths correspond to 
the dimension sequences (0,1,2), (1,2,0), (2,0,1), and (3,0,1,2,3). At least one of 
these paths is fault-free in the presence of any three or less faulty nodes. 
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Tsuda described an experimental setup that interfaces an amoeboid plasmodium 
of Physarum with an omni-directional hexapod robot to realize an interaction loop 
between environment and plasticity in control (Tsuda et al. 2006). Through this 
bio-electronic hybrid architecture the continuous negotiation process between 
local intracellular reconfiguration on the micro-physical scale and global behavior 
of the cell in a macroscale environment can be studied in a device setting. 
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Fig. 7.14 Disjoint paths in 4-cube 

The filaments movements for Physarum suggest that their capabilities are at the 
level of 1-categories and 2-categories. For 2-categories the pentagon relation is 
valid. This means cognitive capabilities 

For 3-categories the pentagon of pentagons or a kind of spatial sensitivity 
should be considered. 
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