
Chapter 3  

Differential Models 

Abstract. The models presented capture the intuition of the elementary 
differential calculus and provide the theoretical substrate for studying designs, 
schemas, shapes and constructions.  

Unconventional frames for time and space, as for instance Galois fields or 
cyclic groups, have been used to describe the finite or cyclic type of separation 
and classification processes. 

A wave equation is proposed as a differential model for separation and pattern 
recognition. This model is an abstract complement of transfer equations. The 
model generates design of experiment matrices as solutions. 

Differential posets are introduced as powerful tools in the study of high 
complexity.  
The connection with dual algebras is emphasized. 

The notion of a differential category provides a basic axiomatization of 
differential operators for categories.  

3.1    Cyclic Framework 

The adopted point of view is that the significance of the process parameters should 
agree firstly with the mechanism, the nature and goals of analysis for the studied 
system.  

Less-conventional mathematical frameworks are acceptable if these frames can 
naturally describe the system evolution and the system analysis can proceed on 
this basis. 

Evolvable systems study needs appropriate concepts for time and space 
(Iordache 2009, 2010, 2011).  

Specific chronotopoids should be associated to different reality levels (Poli 
2007).  

Different kinds of time and of space should be considered in multi-level 
modelling.  

Unconventional models for space of conditions, K, will be presented in the 
following.  

Algebraic finite frames, such as Galois fields and rings or cyclic groups, 
represent mathematical frameworks that have been used to describe the finite, 
logical or cyclic type of cognition processes. 
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A cyclic framework complementing the usual linear one from classical physics 
proves to be necessary. Evolvability description requires the slow time or cyclic 
conditions K-processes and the faster, dynamical or linear states S-processes.  

Algebraic finite fields represent a common choice for conditions K, whereas 
the real field is the commonplace structure for states, S. There is a natural 
hierarchical or cyclic structure associated to finite fields and this explains why 
they are considered as the appropriate tool for systems structured in conditional 
levels. 

An equation describing the cognitive and self-evolvable systems would contain 
parameter analogues to the space and the time from the dynamical mathematical 
models known from physics and engineering. 

Consider for example the space Z of vectors describing the properties of an 
object to be classified and the time T describing the degree of advancement of the 
pattern recognition, classification, or development, for that object. For the 
classification process it is possible to associate to different steps in a classification 
schema digits such as “0” or “1”, with significance as no or yes, true or false, 
separated or non-separated, identified or non-identified (Iordache et al. 1993a, 
1993b, 1993c).  

To any object to be classified, a vector Z will be associated in which the 
properties are specified by digits in the hierarchical order of significance for 
classification. The same vector Z will give a description of the classification 
stages in the associated pattern recognition schema. Z describes pattern 
recognition or stages in problem-solving or development stages for systems and so 
forth. Denote Z=z

0
z

1
.... z

j
. 

The component z
j
 should specify the presence of an attribute in classification 

step, its absence but also partial or uncertain results.   
The mathematical framework for Z cannot be limited to that of dyadic that is to 

Boolean calculus. The need for multi-valued characterization of classification 
steps and of objects, the uncertainty, imposes mathematical tools completing the 
better studied dyadic calculations. Detailed description of dynamical systems 
needs vector characterization corresponding to multi-valued logic such as: “0”, 
“1”, “2” and so on, meaning, for instance, low, average, high and so on. The 
coordinate “z

j
” characterizes the properties and also it is naturally associated to a 

stage of classification schemas that make use of the difference in properties noted 
by “z

j
” to perform that kind of classification, pattern recognition, or development.  

The degree of advancing in the classification, pattern recognition or in 
development, denoted by T, was defined as the necessary level of similarity T, 
between two objects representation, to be classified in the same class (Iordache et 
al. 1993 a, 1993c). It may be an expansion of the type: T = t

0
t1...tj with the digits t

j
 

= 0, 1, 2 and so on. Denote also this vector by T= (tj). Each value of T corresponds 
to another potential step in pattern recognition or in development. Single 
component vectors with modulo-m algebra structure will be presented as a first 
example. This is one of the weakest algebraic structures for T and Z still providing 
a mathematically tractable model adequate to classification and pattern 
recognition operations or to development study. A slightly different framework to 
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be considered is that of Galois finite fields. Recall that finite fields with the same 
number of elements are isomorphic. 

Examples of addition and product tables are presented in Table 3.1 and Table 
3.2. Here “⊕” denotes the addition and “⊗” denotes the product. The sum and 
product refers to component-wise operations for vectors as Z or T in K. Here C 
(m) denotes the modulo-m algebraic framework and GF (m) the Galois field of 
order m.  

C (m) enables to fit the physical intuition concerning the cyclic character of the 
classification operations in m steps and to justify this first choice for algebraic 
framework. If m=2 the sum ⊕ is defined as follows: for any two elements T= (tj) 

and S= (sj) the dyadic sum is: (t ⊕ s)
j
=((t

j
+ s

j
) mod 2). This means that 1⊕1=0, 

1⊕0=1. The sum is the dyadic addition, ⊕ equivalent to the dyadic difference. The 
rule of addition ⊕ signifies that two identical digits have no effects for 
classification. Only the difference in digits makes a contribution. This addition 
appears rather as a comparison than as a sum. The product ⊗ is introduced in a 
way related to cyclic operations too. Product definition takes into account that 
after m steps the classification process restarts. For the time T or space Z, no 
change should happen after completion of a cycle of classification operations.  

An elementary algebraic framework to be considered is the Galois finite field, 
GF (m). If m is not a prime number we are faced with rings instead of fields. 

Table 3.1 Sum and product in C (m) 

C (2) 
(x+y) mod2 (x.y) mod2 

 ⊕ 0 1 ⊗ 0 1 
0 0 1 0 0 0 
1 1 0 1 0 1 

C (3) 
(x+y) mod3 (x.y) mod3 

⊕ 0 1 2 ⊗ 0 1 2 
0 0 1 2 0 0 0 0 
1 1 2 0 1 0 1 2 
2 2 0 1 2 0 2 1 

C (4) 
(x+y)mod4 (x.y)mod4 
⊕ 0 1 2 3 ⊗ 0 1 2 3 
0 0 1 2 3 0 0 0 0 0 
1 1 2 3 0 1 0 1 2 3 
2 2 3 0 1 2 0 2 0 2 
3 3 0 1 2 3 0 3 2 1 
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This algebraic framework was extensively applied in formal logics. For 
illustration purposes, the operations in GF (3) and GF (4) are presented in  
Table 3.2. 

Let Y denotes the range, the output of a system that performs classification 
based on features or property examination. Y is element of the same algebraic 
frames as T or Z. Y may be single-dimensional vector and may assume values 0, 
1, 2 and so on, corresponding to various outputs. Multi-dimensional values like 
Y=y

0
y

1
y

2
…y

j 
should be examined too. Y, as T or Z, is represented by finite 

strings. Y definition needs to ensure the logical consistency of the framework. 
Appropriate algebraic structures for the range of Y are algebras or fields such 

as the field of real numbers, the modulo-m algebras, or the finite Galois field, GF 
(m) that provides physically significant and mathematically tractable models.  

Table 3.2 Sum and product in GF (m) 

GF (2) 
 (x⊕y) (x⊗y) 
⊕ 0 1 ⊗ 0 1 
0 0 1 0 0 0 
1 1 0 1 0 1 

GF (3) 
(x⊕y) (x⊗y) 
⊕ 0 1 2 ⊗ 0 1 2 
0 0 1 2 0 0 0 0 
1 1 2 0 1 0 1 2 
2 2 0 1 2 0 2 1 

GF (4) 
(x⊕y) (x⊗y) 
⊕ 0 1 2 3 ⊗ 0 1 2 3 
0 0 1 2 3 0 0 0 0 0 
1 1 0 3 2 1 0 1 2 3 
2 2 3 0 1 2 0 2 3 1 
3 3 2 1 0 3 0 3 1 2 

The dyadic differential calculus was initially developed for GF (2) situations 
(Harmuth 1977). If m is a prime-p, the range Y is the standard framework for 
multi-valued logic. Single-dimensional vectors T, Z, Y are useful if the 
classification process is based on a single property. For multiple-level cases the 
parameters T, Z and the functions as Y will be tensor products of single-level 
cyclic groups.  
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3.2    First Order Wave Equation 

The basic material balance for chemical engineering transport processes is 
represented by the first-order wave equation:  

0q(y)
z

y
v

t

y =+
∂
∂+

∂
∂

                                                                                     (3.1) 

Here y (t, z) may denote a concentration variable in t-time and z-space, v denotes 
the velocity, and q(y) denotes a separation rate (Rhee et al. 1989).  

The model (3.1) describes many phenomena of physical and technological 
interest, as momentum, heat and mass transfer.  

For mass transfer, the basic model (3.1) shows that the variation of 
concentration in time is due to the convective process with velocity v and to the 
kinetic process of interaction, q(y). All the parameters of the model (3.1) are 
defined on the mathematical real field. 

For physical systems study, the real field plays the dominant role.  
However this field may be unsuitable to describe some features of high 

complexity systems. 
Paralleling (3.1), a differential model for the space of conditions K, results. 
We start with a process of classification, where K is the space of classes. 
Classification and the judgment of similarity are fundamental in cognition, 

serving as the basis for actions. The classification, separation and pattern 
recognition are the key ingredients in data processing and in problem solving for 
both natural and artificial evolvable systems. Living or artificially living systems 
do not survive in environments that they do not recognize or misclassify. Living 
supposes identification, classification or categorization, separation or combination. 

Preliminary attempts for classification or pattern recognition modeling by 
differential equations outlined the major role of orthogonal arrays (Iordache 
2009). A significant result was that the pattern recognition methods parallel 
screening procedures in experiment design and in problem solving. In particular 
cases one obtained as solutions of the first-order wave equation orthogonal arrays 
matrices, Walsh-Hadamard matrices, or Latin squares. Models of cognitive 
processes such as pattern recognition prove to have as solutions logical thinking 
methods as that applied in designs of experiments. The result emphasized the deep 
relation between cognition and evolvability as presented in constructivist 
perspective and the assertion that both cognition and evolution should be based on 
similar sets of techniques and models. 

To establish the analogs of a dynamical model for classification or pattern 
recognition,   the concept of time and of space in the conditions space K, was 
adapted to the objectives of the present study.  

One of the simplest mechanisms of pattern recognition, classification or 
development is that in which small changes of the degree of pattern recognition, 
∂T, are associated to small changes of the answer, ∂Y. It should be emphasized 
that the differential is in fact a difference since T and Y are discrete.  
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Moreover, the change of answer ∂Y depends on both the existing answer Y and 
the change ∂T of T that is:  

(Y)Q
T

Y ∝
∂
∂

                                                                                                   (3.2) 

It is supposed that ∂T is non-null. Otherwise the differential equations are replaced 
by difference equations. The rate of pattern recognition or classification is denoted 
by Q. This mechanism is of kinetic type.  

Another classification mechanism takes into account that the variation of the 
answer Y, along the degree of recognition T, is proportional to the answer 
variation along the features space Z. Classification, pattern recognition and 
development mean in fact travel in time T, along the space of properties, Z. As Z 
is screened with a velocity V, the degree of pattern recognition varies 
proportionally.  

This means that:  

 
Z

Y
V

T

Y

∂
∂⊗∝

∂
∂

                                                                                              (3.3) 

Here the velocity is a vector V = v
0
v

1
v2... vj or V = (vj). This mechanism is of 

convection or drift type. 
The general model of the pattern recognition process including both types of 

recognition processes, corresponding to the evolution according to T and Z, is the 
first order wave equation WE: 

0YQ
Z

Y
V

T

Y =⊕
∂
∂⊗⊕

∂
∂

)(                                                                        (3.4) 

The initial condition is: 

Y (Z, 0) = F (Z)                                                                                                   (3.5) 

Obviously V and Q may depend on T and Z.  
The fact that the addition is equivalent to the difference suggests that a second-

order wave equation does not give new solutions in K, as defined. 
The mathematical formalism for modeling conditions K apparently follows that 

of the real states S as a first-order wave equation, WE, but with different addition 
and product operations taking into account the corresponding domain. Symbolic 
models, in K, and dynamical models, in S, are complementary in the sense that, 
neither type of model is reducible to the other. Both are necessary for 
understanding the whole system including classification schemas and dynamic 
processes.  

The first-order wave equation, WE, is formally similar to the model (3.1) 
extensively applied in different domains by chemical engineers. For this reason 
the methodology based on the wave equation, WE, may be considered as a kind of 
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artificial chemical engineering. It may be related to chemical engineering as the 
artificial chemistry is related to chemistry (Dittrich et al. 2001) or artificial life to 
natural life.  

The physical, biological or engineering domains offer inspiration for the 
artificial domains, both for calculus and for artifacts. 

3.3    Kinetic Model 

For V=0 the first-order wave equation, WE, reduces to the kinetic model: 

0YQ
T

Y =⊕
∂
∂

)(                                                                                             (3.6) 

The solution in GF (2) is presented here for illustration purposes. In GF (2), “0” 
denotes the null element. The real product and the sum were translated towards 
GF (2) operations.  

Suppose that the rate of pattern recognition, Q, is the constant expansion 
denoted by  

Q = q
0
q

1
q2... qj or Q = (qj). 

The solution similar to Euler solution for differential equations will be: 

Y (T) =Y (0) ⊕  Q ⊗ T                                                                                        (3.7) 

Recall that the sum ⊕ is equivalent to the dyadic difference. 
Suppose that, Y (0) = 1. In this case the solution of the first-order wave 

equation, WE, for different Q is Y (T, Q) and is shown in Table 3.3. 
The detailed equations for m=0 are: 

0q
t

y
0

0

0 =⊕
∂
∂

                                                                                                   (3.8) 

y
0
 (0) = f0                                                                                                             (3.9) 

Table 3.3 Kinetic model, m=0 

Q\T 0 1 
0 1 1 
1 1 0 

Table 3.4 Kinetic model, modified, m=0 

Q\T 0 1 
0 1 1 
1 1 -1 
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Denote, the resulting “0” by”-1”with the same logical signification, for instance 
“no”. Table 3.4 replaces Table 3.3. 

Suppose that Y, T, Q are vectors with two components: Y=y
0
y

1
, T=t

0
t
1
, Q=q

0
q

1
 

and F=f
0
f
1
. 

This corresponds to two conditioning levels. The first-order wave equation, 
WE, reduces in fact to two similar equations, one for each level. For m=0 the 
model is given by equation (3.8) with initial condition (3.9).  

For m=0 and m=1 a new equation and initial condition should be added: 

0q
t

y

1

1

1 =⊕
∂

∂
                                                                                                (3.10) 

y
1
(0) = f1                                                                                                                                     (3.11) 

The fact that one equation in K is replaced by two differential equations, one for 
each conditioning level, outlines one of the differences between models in K and 
in S.  

Consider the initial condition: 

Y (Z, 0) = F (Z) = f0 × f1                                                                                   (3.12) 

This means that the tensor product is interpreted as a categorical product, denoted 
by “ × ”. The selection of tensor product is not limited to this (Iordache 2009). 

The solution of the model will be: 

Y (T) = y0 × y1                                                                                                  (3.13)  

Specific case f0= f1, q0= q1, implies y0= y1. 
Table 3.5 shows the product solution. 

Table 3.5 Kinetic model, product Y (T) = y0 × y1  

1 1 1 1 
1 -1 1 -1 
1 1 -1 -1 
1 -1 -1 1 

This represents the Walsh-Hadamard, WH, matrices in DOE. With more 
coordinates in Y, T, Z it is possible to obtain Walsh matrices with 8, 16, 32, and so 
on elements.  
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Table 3.6 Kinetic model, product Y (T) = y0 × y1 × y2 

1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

Table 3.6 shows the three conditioning levels solution for Y=y
0
y

1
y

2
 and T 

=t
0
t
1
t
2
 a Walsh–Hadamard DOE matrix. 

It was considered that f0= f1= f2, q0= q1= q2, and this imposes y0= y1= y2. 
Walsh series as solution of differential equations in dyadic field have been 

obtained by (Iordache 2009).  

3.4    Differential Posets 

Differential posets are partially ordered sets of interest for the study of posets, 
lattices and polytopes. They have been introduced by Stanley in 1988 and since 
generalized in various different ways (Stanley 1988, Fomin 1994).  

A partially ordered set P, or a poset for short, is a pair P=(S, ≤ ) of a set S 
together with an order relation ≤ which satisfies the following conditions for all x, 
y, z ∈S: 

• x≤ x (reflexivity) 
• x≤ y and y ≤ x imply x=y (anti-symmetry) 
• x≤ y and y ≤ z imply x≤z (transitivity) 

A lattice is a poset in which any two elements have a unique supremum, the 
elements' least upper bound, called their join, and an infimum, the greatest lower 
bound, called their meet. A polytope is a set of vertices in Rn and their convex 
hull. 

Lattice and polytopes play a key role in many modern fields of research, such 
as algebraic geometry, combinatorics, physics and engineering. 

An element x is minimal if there is no y such that y<x and x is maximal if there 
is no y such that x<y. 

Given a poset P and elements x, y∈P, we say that y covers x if x < y and there 
is no z such that x < y< z. Then y is a cover of x and x is covered by y and we 
denote this relationship by x≺ y or y ;  x. 

For many posets, all order relations follow from the cover relations and 
transitivity.  

A poset with this property is called locally finite. 
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Every locally finite poset has a naturally associated Hasse diagram. This is a 
graph whose vertices are elements of the posets and whose edges denotes cover 
relations, where if x≺ y we draw x below y. 

If x and y are elements of the same poset P and x≤y or y≤x we say that x and y 
are comparable. 

A chain in a poset P is a set of elements of P which are pairwise comparable 
while an anti-chain is a set of points which are pairwise incomparable. 

A locally finite poset is graded if 
nn

PP ∪=  is the disjoint union of antichains 

Pn, indexed by a set of consecutive integers, such that x ∈  Pn and y ;  x imply 
y∈  Pn+1 and all minimal elements belong to the same Pi. 

Young lattices and Fibonacci-Young are two of the most studied differential 
posets (Lewis 2007). 

Given a non-negative integer n, a partition of n is a finite nonincreasing list of 
positive integers λ= (λ1, λ2,…, λk) such that  λ1 +λ2+…, +λk = n. 

We denote this by λ ⊢ n. An order on the partitions is defined as follows: given 
two partitions   λ= (λ1, λ2,…, λk) and μ=(μ1, μ2,…, μj), λ≤μ if and only if k ≤j and 
λi ≤  μi for 1≤i≤k. The poset composed of all integer partitions ordered in this way 
is known as Young’s lattice and is denoted by Y.  

Young’s lattices may be represented as a graph whose vertices are partitions 
and two vertices λ and μ are adjacent if and only if λ≤μ or μ≤ λ in the partial order  
of Y. 

0̂ 0

1

2

3

4

 

Fig. 3.1 Young lattice 

Fig. 3.1 shows a Young’s lattice. 
Observe that there are five partitions of 4: (4), (3,1), (2,2), (2,1,1) and (1,1,1,1). 
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A poset P is differential if it satisfies the following three axioms: 

DP1. P is locally finite and graded with a unique minimal element denoted  

by 0̂ . 
DP2. If x ≠ y are two elements of P and there are k elements of P covered by 

both x and y, there are exactly k elements of P which cover both x and y. 
DP3. If x∈P covers k elements of P then x is covered by exactly k+1 elements 

of P. 

Given any poset P, we may define a vector space: CxCP
Px∈

⊕= of finite linear 

combinations of elements of P with complex coefficients where no additive 
relations hold among elements of P. 

If in addition P is locally finite and each element of P is a member of only 
finitely many cover relations we may define two linear transformations U and D 
on CP as follows:  

For x∈P,  

∑=
yx

yUx
≺

  ;   ∑=
xy

yDx
≺

                                                                          (3.14)  

Both U and D should be extended to all of CP by linearity. 
The study of the transformations U and D provides information concerning 

various paths in the Hasse diagrams, the so-called Hasse walks. 
Basically Ux keeps track of all possible steps up in the Hasse diagram from x 

and Dx keeps track of all the steps down in the Hasse diagram. 
The behavior of certain combinations of U and D steps on an arbitrary x ∈P is 

of interest for differential posets. 
Observe that:  

∑=
xy,zy

zUDx
≺≺

     ;      ∑=
yx,yz

zDUx
≺≺

                                                        (3.15)  

It follows that DU-UD=I if and only if P is differential (Stanley 1988). 
Moreover for a differential poset P we have:  

DUn = nUn-1 + UnD ; D 0̂ =0                                                                              (3.16)  

Thus the action of D on U has a resemblance to that of a differential operator. 
This explains the name of differential poset. 
Several enumerative results on the class of differential posets have been derived 

using partial differential equations.  
A generalization of differential posets is that of dual graded graphs (Fomin 

1994). 
A graded graph is a triple G= (P, ρ, E) where: 

• P is a discrete set of vertices 
• ρ: P→ Z is a rank function 
• E is a multiset of arcs (x, y) where ρ (y) = ρ(x)+1 

The set Pn={x: ρ(x) = n ∈Z} are called levels of G. 
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As for the differential posets the down and up operators can be defined. 
Let G= (P, ρ, E) be a graded graph. Linear operators U and D are defined by: 

∑
∈

=
Z)y,x(

y)y,x(mUx      ;    ∑
∈

=
Z)y,x(

x)y,x(mDy                                      (3.17) 

Here m (x,y) is the multiplicity of the edge (x,y) in E. 
Let G1= (P, ρ, E1) and G2= (P, ρ, E2) be two graded graphs with a common set 

of vertices and a common rank function. 
The oriented graded graph G= (G1, G2) = (P, ρ, E1, E2) is then the directed 

graded graph on P with edge in E1, directed upwards and edges in E2, directed 
downwards. 

The down and up operators associated with the graph G= (G1, G2) are defined 
by: 

∑
∈

=
1

E)y,x(
1

y)y,x(mUx         ;            ∑
∈

=
2

E)y,x(
2

x)y,x(mDy                      (3.18) 

Here mi(x,y) denotes the multiplicity of (x, y) in Ei. 
Let (G1, G2) be an oriented graded graph such that: 

• It has a zero 0̂  
• Each rank has a finite number of elements 

Let r be a positive integer.  
Then, G1 and G2 are said to be r-dual as operators in G= (G1, G2) if: 

DU-UD=rI                                                                                                         (3.19) 

If G1 and G2 are r-dual graphs, we call the pair (G1, G2) an r-dual graded graph. 
A concept related to derivative poset is that of derivative complexes (Babson 

and Chan 2000). 
Fig. 3.2 shows examples of derivative complexes. 
If K is cubical poset, we can define a new cubical poset NK, with elements the 

ordered pairs (b, c) ∈K x K such that the join of b and c covers both, while b and 
c have no meet. 

Thus b and c are opposite facets of their join. The partial order on NK is the 
partial order on K taken component-wise.  

Let ε: NK → NK denote the involution ε (b, c) = (c, b) 
Then the derivative complex of K is the quotient poset DK=NK/ε.  
Observe that NK and DK are both cubical posets and NK is a double cover of 

DK. 
An element {b, c} = (b, c)/ε ∈DK corresponds to a slice through the interior of 

the join of b and c, parallel to b and c. An element (b, c) ∈NK corresponds to the 
side of {b, c} ∈DK which faces b in K.  

The NK and DK definitions are illustrated in Fig. 3.2. 
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Recall that a 1-D polytope is a line segment, a 2-D polytope is a polygon and a 
3-D polytope is a polyhedron. Higher dimensional polytopes have been studied 
despite the fact that they are hard to illustrate (Ziegler 1995). 

A cubical d-polytope is a d-dimensional convex polytope all of whose 
boundary faces are combinatorially equivalent to cubes. 

The f vector of a cubical complex K is the vector f (K) = (f0, f1,…, fd-1) or 
i

i i
tf∑ , where fi denotes the number of i-dimensional faces in K. 

Babson and Chan proved that:  

)t,DK(f)t,K(f
dt

d =                                                                                (3.20)  

Moreover D and N act as derivations with respect to product and disjoint union, 
that is: 

D (K1 x K2) = (DK1 x K2) ∪ (K1 x DK2)                                                         (3.21)  

Thus the action of D has a resemblance to that of a derivative and this explains the 
name of derivative complex. 

K= NK= DK=

K= NK=
DK=

 

Fig. 3.2 Examples of derivative complexes 

Examples of successful collaboration of the posets, lattices, polytopes and 
differential equations are due to Buchstaber (Buchstaber 2008). The approach is 
based on a differential ring of combinatorial polytopes. This allows applying the 
theory of differential equations to the study of polytopes. As an application, 
Buchstaber described explicitly the generating functions of important families of 
graph associahedra. 

3.5    Doubling and Contracting 

The operators U and D keeping track of the up or down steps for differential 
posets modify just one cell of a Hasse diagram. 
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A generalization of the differential poset concept is to consider the doubling 
and the contraction of intervals of lattices diagrams.  

Constructive properties of lattice are of interest for the study of lattice 
boundedness. 

A lattice is bounded if it can be constructed, starting with the one-element 
lattice, by applying a finite sequence of a simple operation called interval doubling 
(Day 1970). 

This operation assigns to a poset P and an interval I, a new poset P′ = P[I] by 
doubling in P the interval I, that is by replacing I in P with the direct product by a 
two-element lattice. 

Denote by “+” the disjoint set union. 
The interval doubling construction is defined as follows (Caspard et al. 2004): 
Let (P, ≤) be a poset and I ⊆ P an interval of P. Denote by B=({0,1} ≤) the 

two-element lattice where 0 <1. The poset P′ defined on the set (P-I) + (I x B) is 
denoted P′ = P[I] and is given by the following order: x′ ≤  y′ if and only if: 

• x′, ∈  P-I and x′ ≤  y′ or 
• x′∈  P-I , y′ =yi  ∈  I x B and x′ ≤  y′ or 
• x′=xi ∈  I x B, y′ ∈  P-I and x′ ≤  y′ or 
• x′=xi ∈  I x B, y′ =yj ∈  I x B, x ≤  y and i ≤j in  B. 

A lattice L is bounded if there exist a sequence B=L1, …,Li,…,Lp=L of lattices 
and a sequence I1, …,Ii,…,Ip-1 such that Ii is an interval of Li and Li+1=Li[Ii] for 
every i<p. 
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Fig. 3.3 Interval doubling 

Fig. 3.3 shows a series of interval doublings starting with the two-element 
lattice B. 

The lattices L1, L2 and L3 are bounded. 
Since a bounded lattice is a lattice which can be constructed starting from B by 

a finite sequence of interval doublings, such a lattice is equally characterized by 
the fact that it can be contracted until B by an iteration of the operation opposite to 
the interval doubling. We can call this operation, interval contraction. 
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First we need to define the gluing conditions: 
Let I be an interval of a lattice L, with I equal to the direct product of an 

interval I0 by B. 
We denote by I1, the interval I- I0, isomorphic with I0. We say that I satisfy the 

gluing conditions if the two following conditions are verified: 

• ∀ (y,x1,x0) ∈(L-I1) x I1 x I0. (y<x1 → y≤x0) 
• ∀ (z,x1,x0) ∈(L-I0) x I1 x I0. (z>x0→z≥x1) 

Let L be a lattice and I ⊆  L an interval of L. We say that I is contractible in L if 
the two following conditions hold: 

• I is equal to the direct product of an interval I0 by B. I1 denotes the interval 
composed of the elements of I-I0. 

• The gluing conditions are satisfied on I. 

Fig. 3.4 illustrates the interval contracting. 

L L0

I0I

0

1

2

3

0

3

2

1
3

2

1

0

 

Fig. 3.4 Interval contracting 

Let L be a lattice and I ⊆  L a contractible interval of L. We call contraction of 
I in L the operation of constructing a smaller lattice L0 by replacing I with I0 in L. 

The contraction of an interval is the inverse operation to the interval doubling. 
Fig. 3.4 shows the contraction of the interval I of the lattice L to the interval I0. 
For the lattice L the interval I is contractible to I0. 
Doubling and contracting allows obtaining a large variety of lattices 

generalizing the action of operators U and D defined for differential posets.  
Doubling is associated to operator U while contracting corresponds to operator D. 

3.6    Hopf Algebras 

Important tools for the study of differential posets are the Hopf algebras (Sweedler 
1969). 
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Hopf algebras were introduced, in the context of algebraic topology. The Hopf 
algebra is an algebra for which the dual space is also algebra so that the duality 
pairing is intertwined in a specific symmetric way. Examples range from group 
algebras, their duals, and universal enveloping algebras to deformations of such 
structures.  

More recently the study of these algebras included applications in quantum 
groups, renormalization and non-commutative geometry. 
Hopf algebra has been considered as a unifying framework for modeling several 
variants of multiplicative linear logic (Blute 1995). 

Joni and Rota introduced Hopf algebra in combinatorics (Joni and Rota 1979). 
Algebraic structures which are generated by a collection of constructors, like 

natural numbers generated by zero and a successor or finite lists and trees, are well 
known in engineering and computer science. Formally they are initial algebras. 
Induction is used for definition and for proofs for such structures. But there are 
also important dual coalgebraic structures which do not come equipped with 
constructor operations but with destructor operations also called observers, 
transition maps or mutators.  

Spaces of infinite data including infinite lists and non-well-founded sets are of 
this kind. Dynamical systems, with a hidden state space to which the user has only 
a limited access via specified observer or mutator operations, are coalgebras of 
different types. Coinduction is the appropriate technique in this coalgebraic 
context, both as definition and proof principle. The latter involves the so-called 
bisimulations (Jacobs and Rutten 1997). 

Coalgebras are structures that are dual, in the sense of reversing arrows 
to unital  associative algebras. The axioms of unital associative algebras can be 
formulated in terms of commutative diagrams. Turning all arrows around, one 
obtains the axioms of coalgebras.    

Hopf algebra is a structure that is simultaneously an unital associative algebra 
and a counital coassociative coalgebra, with these structures compatibility making 
it a bialgebra (Joni and Rota 1979).  

Fig. 3.5 shows the Hopf algebra diagram.  
To define the Hopf algebra, H as a k-vector space we need the following 

elements: 

• Product μ: H ⊗ H → H 
• Coproduct Δ: H→ H ⊗ H 
• Unit η: k → H 
• Counit ε: H ⊗ H → H 
• Antipode map χ: H → H 

Here H denotes a vector space, k is a discrete field, id denotes the identity operator 
for H. 

With these elements the diagram from Fig. 3.5 will commute. 
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Fig. 3.5 Hopf algebra diagram 

We refer to Hopf algebra H with antipode χ. 
The coproduct Δ is interpreted as producing sums of pairs of new objects and 

this explains the potential for combinatorics. 
The definition of Hopf algebra is self-dual, as reflected in the symmetry of the 

diagram from Fig. 3.5. So, if we can define a dual of H, which is always possible 
if H is finite-dimensional, then this dual is automatically Hopf algebra. 

For the self-evolvable systems the concept of dual Hopf algebra is of interest. 
Algebra and coalgebra, integration and differentiation are dual concepts. 
Fig. 3.6 shows the polytope including algebra and dual algebra. 
Fig. 3.6 suggests that after the integration or algebraic way S→K1→K2→K3 

we need to look at the differentiation or dual algebraic way K3′→K2′→K1′→S′.  
Making use of the developments of the direct way may offer in a kind of 

symmetry-breaking results. This opens the road for dual Hopf algebras 
interpretation (Hivert et al. 2005, Nzeutchap 2006). If the two ways offer the same 
results that is, in the case of self-duality the described system may be evolvable 
but not self-evolvable. 

The swinging from algebra to dual algebra is critical since the boundaries 
where creative research grows and new information is created consist of parallel 
tendencies of integration and differentiation. The Self describes the interaction of 
the two algebras in duality relation. 

Swinging method based on dual algebras has been applied in model evaluation 
and software correcting (Padawitz 2000, Jacob and Rutten 1997). 
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Fig. 3.6 Polytope for algebra and dual algebra 

3.7    Differential Categories 

Differentiation and differential models have been among the most fundamental 
tools for scientists and engineers.  

Recently several attempts have been made to abstract these notions including 
approaches based on geometry, category theory and logical intuitions. 

It was observed that the obtained new types of models are formally similar to 
the classical ones. They capture the intuitions from the ordinary calculus since we 
have calculus rules of differentiation expressed algebraically, formally similar to 
the classical ones. The new models represent an integral part of what it means to 
be differentiable. 

Attempts to build categories of smooth structures have been suggested and are 
applied to the general notion of differentiation.   

Synthetic differential geometry and linear logic are significant sources of 
inspiration for differential categories.  

According to synthetic differential geometry SDG, an infinitesimal quantity can 
be taken to be a straight micro segment just long enough to have a slope but too 
short to bend (Kock 2006). It is an entity possessing location and direction without 
magnitude, intermediate in nature between a point and a straight line. In a smooth 
world any interval is indecomposable in the sense that it cannot be split in any 
way whatsoever into two disjoint nonempty parts.  

The SDG provides the conceptual background for development of a 
mathematically based theory of potentiality and tendency. In conventional 
approaches, the life trajectory of actual items is characterized by the specific direction 
that it assumes at any one of its points and by the range of possibilities they have. On 
the other hand linelets and wavelets considered in SDG are too small to have either 
probabilities or directions. Instead, they have potentiality and tendency.  
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The SDG reasoning deals with space forms in terms of their structures that are 
the basic geometric and conceptual constructions that can be performed on them. 
The SDG constructions are morphisms which constitute the base category in terms 
of which we work, the space forms themselves being objects of it. This category is 
Cartesian closed.  

A Cartesian category is a category with a terminal object and for any two 
objects in the category for instance A, B, the objects and mapping of the 

categorical product A x B are in the category. The object ⊤ of a category is called 
a terminal object if for every object in that category there is a unique map from it 

to ⊤. A category is Cartesian closed if it has all finite products and for any pair of 
objects say A and B there exists an exponential or map object AB, the collection of 
all maps A→ B. 

SDG reasoning is based on a category over a natural base topos (Baez 2006). 
Depending on the nature of the subject under consideration, the corresponding 
natural geometric form of the objects determines the natural base topos and its 
logic.  

The objects of physics and chemistry have their own geometric form and 
corresponding logic. If the objects of the theory have a constant and crisp 
geometric form, we may use classical logic but if the geometric form is variable 
and fuzzy then we have to use a non-classical more flexible logic, for example the 
constructive logic. 

Another source of inspiration for differential categories is the linear logic 
(Girard 1987). This is a resource sensitive logic or logic of actions and is based on 
categorical semantics. 

The whole system of linear logic can be considered as an attempt to reconcile 
the systems of classical logic with the quest for constructive proofs that had led to 
constructive logic. 

Recent developments in the model theory of linear logic have uncovered a 
variety of models with differential structure. 

The development of formal systems for proving computational properties of 
programs constitutes an important research area of contemporary computer 
science. Among the aspects needing to be checked, one of the most important is 
the amount of resources a program will need during its execution. Resources to be 
bounded can be of different kinds, for instance memory space, or the non-
replicable data.  

A formal system modeling this idea of resource consumption was presented in 
Girard's quantitative semantics studies. This semantics establishes an analogy 
between linearity in the sense of computer science (programs using arguments 
exactly once) and algebraic linearity (commutation of sums and products with 
scalars), giving a new mathematically interpretation of resource consumption.  

Ehrhard and Regnier designed a formal programming language, called the 
differential λ-calculus that has a unique kind of argument but two kinds of 
applications: the usual one and a linear algebra application (Girard 1987, Ehrhard 
and Regnier 2003). This linear substitution operation can be seen as a formal 
derivative. Such a syntactic derivative operator can be fruitfully used to increase 
control over programs executed in environments with bounded resources. 
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Differential proof nets contain a graph-theoretic syntax for linear logic 
extended with a differential operator on proofs (Ehrhard and Regnier 2006). 

The differential categories and the differential Cartesian categories were 
defined on the basis of the works on differential λ-calculus (Blute et al. 2006, 
2009). 

For these categories a derivative operator on morphisms is axiomatized by 
equations. Typical examples are categories of vector spaces with normed or 
topological structure allowing defining a notion of smooth maps and of their 
differentiation. 

The notion of a differential category provides a basic axiomatization for 
differential operators in monoidal categories, which not only generalizes the work 
of Girard or of Ehrhard and Regnier but also captures the standard elementary 
models of differential calculus and provides a theoretical substrate for studying a 
number of non-standard examples. 

The basic categorical structure underlying the proof theory of Girard's linear 
logic (Girard 1987) is a symmetric monoidal closed category equipped with a 
comonad (Seely 1989).  

Monads and comonads are valuable concepts in category theory. To any 
canonical construction from one type of structures to another, an adjunction 
between the associated categories, will correspond. Adjoint functors are pairs of 
functors which stand in a particular relationship with one another. A functor can 
be left or right adjoint to another functor that maps in the opposite direction. A 
pair of adjoint functors typically arises from a construction defined by a universal 
property, and it can be seen as a more abstract and powerful view on universal 
properties. If F and G represent a pair of adjoint functors, with F left adjoint to G 
right adjoint, then the composition G◦F will be a monad. The categorical dual of 
monads, F◦G, will be a comonad. Every adjunction gives rise to a monad. A 
monad is a functor from a category to itself, in other words an endofunctor.  In 
general, the adjunctions relate categories of different natures. The monad theory 
tries to capture what is that adjunction preserves. The monads generalize closure 
operators on posets to arbitrary categories.  

The structure necessary to support differentiation is an additive, monoidal 
category with a coalgebra modality. The morphisms in a differential category 
should be thought of as linear maps with maps in the category being the smooth 
maps (Blute et al. 2006).  

Denote by ⊗  the multiplicative and, by 1 the unit, by ! the exponential 
modalities called: of course or bang.  

A comonad (!, δ, ε) on an additive symmetric monoidal category, is a coalgebra 
modality in case each object !X comes equipped with a natural coalgebra structure 
given by: 

Δ: ! X→ ! X ⊗ ! X ; e: !X→⊤ 

Here⊤ denotes the tensor unit. This data must satisfy some basic coherence 
relations (Blute et al. 2006). 
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The axioms for differential categories are: 
 

D.1 Constant maps: 
D [eA]=0 

Here eA denotes the constant map. 

D.2 Product rule: 

D [Δ (f ⊗ g)] = (1 ⊗ Δ) 1a−
⊗

( D[f] ⊗ [g]+(1 ⊗ Δ) 1a−
⊗

( )1c ⊗
⊗ ⊗

a (f ⊗ D[g]) 

Here f: !A→ B, g: !A→ C, and 
⊗

a , 
⊗

c are the associativity and commutativity 

isomorphisms. 

D.3 Linear maps: 

D [eA f]= (1 ⊗ eA) 
⊗

u f 

Here f: A→B and 
⊗

u  is the unit isomorphism. 

D.4 The chain rule: 

D [δ !f g]= (1 ⊗ Δ) 1a−
⊗

(D[f] ⊗ δ ! f) D[g] 

Here f: !A→ B!,  and g: !A→ C! 
Observe that according to (D.1) the derivative of a constant is null, and the 

derivative of a map which is linear is constant according to (D.3). The derivative 
of the composite of two functions is the derivative of the first function composed 
with the derivative of the second function at the value produced by the first 
function as shown by (D.4). 

A significant step was to develop an axiomatization which directly 
characterizes the smooth maps, in other words, to characterize the structure of 
differential categories directly (Blute et al. 2009). This leads to the notion of a 
Cartesian differential category. This notion embodies the multi-variable and multi-
scale differential calculus.  

The basic structure needed for Cartesian differential categories is simpler than 
is needed for differential categories. It is a left additive category with finite 
products. 

A Cartesian left additive category is a left additive category with products such 
that the structure maps π0 π1 and Δ are additive and that whenever f and g are 
additive the product is additive. 

The axioms for Cartesian differential categories are: 

CD.1 D[f+g] = D[f] + D[g]; D[0]=0 
Operators preserve additive structure that is the operator D is linear 

CD.2 D[f]◦<h+k,v> =D[f]◦ <h,v> +D[f]◦ <k,v> and D[f]◦ <0,v> =0 
This shows additivity in first argument 
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CD.3 D[1]=π0, D[π0]=π0◦π0  and D[π1]=π0◦π1   
Coherence maps are linear differential constant 

CD.4 D[<f,g>]=<D[f], D[g]>  
Operators preserve pairing, that is D behaves coherently with the product 

structure 

CD.5 D[f◦g]= D[f] ◦ <D[g], g◦π1 > 
This corresponds to the chain rule 

CD.6 D[D[f]] ◦ <<g, 0>, <h, k>> =D[f]◦ <g,k> 
Differentials D are linear in first argument. 

CD.7 D [D [f]◦ <<0, h>, <g, k>>  = D [D [f]]◦ <<0,g>,<h,k>> 

This means that partial differentials commute. 
In Cartesian differential category we obtain partial derivatives from the full 

ones by zeroing out the components on which the differentiation is not required. 
Developments of the notion of differential categories have been proposed 

(Fiore 2007, Bucciarelli et al. 2010). 
Observe that there is a general formalism of differential categories, but there 

are certain specific ways that, scientists and engineers may use these which turns 
out to have close analogues in different domains.  
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