
Chapter 11 

Design of Experiments 

Abstract. Latin squares and hypercubes are obtained as solutions of the wave 
equation. 

Multivariate modeling potential for evolvable designs of experiments is 
evaluated.  

The general PSM framework is presented as flexible guideline for a large 
variety of designs of experiments. 

Case studies refer to pharmaceutical pipeline, to drug discovery and 
development and to printed circuits quality evaluations. New informational 
entropy criteria have been applied for 2-phenylindole derivatives library design.  

11.1   Convection Model 

The connection with designs of experiments was established and illustrated in the 
study of matrices generations flowsheeting and coupling of operations (Iordache 
2009, 2010). 

Consider the convective part of the first-order wave equation, WE (eq. 3.4,  
eq. 3.5):  
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The initial condition is: 

Y (Z, 0) = F (Z)                                                                                                 (11.2) 

The operations are the sum ⊕ and the product ⊗ in GF (m).  
The general solution of the partial first-order wave equation, WE, is: 

Y (Z, T) =F (Z ⊕ (V ⊗ T))                                                                               (11.3) 

Consider the initial condition:  

Y (Z, 0) = F (Z) = Z                                                                                          (11.4) 
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This means that at T=0, the output Y of the classification schema at the distance Z 
in schema is exactly Z. This schema is that in which each new classification level 
activates a new difference in properties allowing classification. The initial 
condition ensures that the wave of the classification or separation process is 
initiated and is going on.  

It results in the characteristic: 

Y= Z ⊕ (V ⊗ T)                                                                                                (11.5) 

The GF (3) solution is presented in detail. For T=0 the solution Y is shown in 
Table 11.1. 

Table 11.1 Convection model, m=3: Y (0, Z) 

Z\V 0 1 2 
0 0 0 0 
1 1 1 1 
2 2 2 2 

For T=1 the solution is shown in Table 11.2. 

Table 11.2 Convection model, m=3: Y (1, Z) 

Z\V 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

For T=2 the solution of the convection model is shown in Table 11.3: 

Table 11.3 Convection model, m=3: Y (2, Z) 

Z\V 0 1 2 
0 0 2 1 
1 1 0 2 
2 2 1 0 

There is a relation between different solutions of the first-order wave equation, 
WE, and conventional DOE matrices.  

For different values of T, T=1, T=2 one obtained different (3x3) Latin-squares.   
Latin squares close association to DOE is well known (Hedayat et al. 1999) 
The procedures to obtain DOE are suggested by universal constructions in 

categorical framework. There are several DOE to be obtained by combining the 
solutions obtained for different values of T.  
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Table 11.4 Concatenated solutions, m=3 

000 012 021 
111 120 102 
222 201 210 

Superposing by concatenation the elements of the Table 11.1, Table 11.2, and 
Table 11.3, Table 11.4 will result. 

Table 11.4 shows the concatenated solutions, for m=3. 
Pasting down the 3-digit numbers from Table 11.4, column after column,  

Table 11.5 is obtained. 
Table 11.5 contains the pasting-down columns. 
It is a DOE with nine experiments for three factors, denoted here F0, F1,  

and F3. 

Table 11.5 Pasting down columns, m=3 

F0 F1 F2 

0 0 0 

1 1 1 

2 2 2 

0 1 2 

1 2 0 

2 0 1 

0 2 1 

1 0 2 

2 1 0 

Columns in Table 11.5 are orthogonal. Each column corresponds to first-order 
wave equation, WE, solutions at different velocities V. Associating one 
supplementary digit for each column in Table 11.4, the four-digit numbers as in 
Table 11.6 result. Here (0) is associated to the first column in Table 11.4,(1) to the 
second column and (2) to the third column. 

The resulting 4-digit numbers from Table 11.6 correspond to columns of well-
known orthogonal design with 9 experiments and 4 factors (Taguchi 1986, 1987, 
Hedayat et al. 1999). 

Table 11.6 shows the indexed concatenated solutions for m=3. 
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Table 11.6 Indexed concatenated solutions, m=3 

(0)000 (1)012 (2)021 
(0)111 (1)120 (2)102 
(0)222 (1)201 (2)210 

Concatenation and pasting-down operations are related to the coproduct “ ∪” 
type of operation in categorical framework. 

The previously obtained matrices are linked to the tensor product interpretation 
as coproduct “ ∪”. Obviously making use of tensor products as categorical 
product “ × ” will give another class of solutions, asking for significantly more 
experiments.  

11.2   Latin Hypercubes 

Computer experiments are widely used for the design and development of 
products. 

An actual reason for promoting the use of computer experiments is that 
physical experimentation is maybe expensive or out-of-the-way. Latin hypercube 
designs are beneficial for space-filling capability (Cioppa and Lucas 2007). 

A class of orthogonal Latin hypercubes obtained by Ye will be presented as 
WE solution (Ye 1998). 

The products we use, Kronecker or Hadamard, are necessary to reduce the 
dimensionality for data (Kolda and Bader 2009). 

The construction is based on three matrices denoted by S, M and T (Ye 1998, 
Nguyen 2008). 

The matrix S shown in Table 11.7 is obtained as solution of the kinetic part of 
the WE (section 3.3). 

Table 11.7 Kinetic model: Matrice S 

1 1 1 1 
1 -1 1 -1 
1 1 -1 -1 
1 -1 -1 1 

The matrix S is a Walsh-Hadamard design. 
The matrix M shown in Table 11.8 is obtained as solution of the convection 

part of the wave equation WE. 

Table 11.8 Convection model: Matrice M 

1 2 3 4 
2 1 4 3 
3 4 1 2 
4 3 2 1 
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The matrix M is a Latin square. 
The matrix T as shown in Table 11.9 results using Hadamard product of S and M. 

Table 11.9 Hadamard product: Matrice T 

1 2 3 4 
2 -1 4 -3 
3 4 -1 -2 
4 -3 -2 1 

The Latin hypercube results by the method described in the literature  
(Ye 1998), Cioppa and Lucas 2007). 

Table 11.10 shows the Latin hypercube. 
This consists in pasting down two times the matrix T with an intercalated null 

row. 

Table 11.10 Latin hypercube 

1 2 3 4 
2 -1 4 -3 
3 4 -1 -2 
4 -3 -2 1 
0 0 0 0 
-1 -2 -3 -4 
-2 1 -4 3 
-3 -4 1 2 
-4 3 2 -1 

The wave equation appears to be the source of new classes of orthogonal Latin 
hypercubes. 

11.3   Self-Evolvable DOE Frames 

The design of experiments for the exploration of high-dimensional experimental 
spaces may be addressed by evolvable DOE and EDOE methods. 

Significant applications concern drug discovery. 
We will consider that the activity of new drug discovery can be divided into 

four basic modules or steps. 
The first module K0 corresponds to resources and to research step. 
The second module K1 should be based on designs of experiments, DOE. 
The third module K2 is a meta-design and for this reason it was denoted by  

2-DOE. 
The fourth module K3 is a meta-meta-design and for this reason may be 

denoted by  
3-DOE.The general method is illustrated in Fig. 11.1. 
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The four modules of variation, K0, K1, K2 and K3, are denoted also by S, 1-
DOE, 2-DOE, and 3-DOE. 

To start the EDOE, we examine experimental space of properties. 
After a number of iterations at this level, we may make predictions of drug-

likeness too. 

Research-K0

Design-K1
1-DOE

K2-Test
2-DOE

K3-Evaluation
3-DOE

Self

K3′K0′

K1′ K2′

 

Fig. 11.1 Polytope for self-evolvable DOE basic framework 

The notations are: K0-Research, K1-Design, 1-DOE, K2-Tests, 2-DOE, and 
K3-Evaluation, 3-DOE. 

K1-Designs K2-Tests

K0-Research K3-Evaluation

k0
k1 k2

k3

 

Fig. 11.2 Operad for self-evolvable DOE framework 
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Fig. 11.1 suggests that after the integration way we need to look at the 
differentiation way. This may consist in changing the hierarchical orders in the 
matrices associated to different DOE. Making use of the developments of the 
direct way may result in a kind of symmetry-breaking result for the reverse way. 
The swinging from direct to reverse investigation is beneficial for new designs 
testing because the boundaries where creative research grows and new information 
is created consist of synchronized integration and differentiation tendencies.  

Fig. 11.2 highlights the operadic aspects of the self-evolvable DOE framework. 
The DOE may be associated to a set of molecules or an embedded design if a 

genomic analysis is possible. The fourfold framework may be applied to just one 
of the levels. 

Table 11.11 summarizes the categorification steps for DOE 

Table 11.11 Categorification for DOE 

Level K0 K1 K2 K3 Self 

- n=0 n=1 n=2 n=3 n≥4 

Categories 0-category 1-category 2-category 3-category 4-category 

Example Research DOE 2-DOE 
Tests 

3-DOE 
Evaluation 

Self 
Evolvable 

The study of DOE for self-integrative closure and the emergence of self-
evolvable DOE systems corresponding to n≥4 represent a challenge. 

Let us restrict here to the discovery stage associated to K1 as a first example. 
Different classes of Latin square designs may be obtained as solutions of the 

wave equation. 
A method of designing chemical substances was presented by Wood and Rose 

(1999).  
The method allows sampling combinatorial chemistry space for synthesis based 

on DOE with Latin squares or more general with orthogonal arrays. 
Libraries with four sites of variation for molecules may be designed using 

Greco-Latin squares.  
Consider four sites of variation, k10, k11, k12 and k13 for substitute groups. 

They correspond to sub-levels of the level K1. 
Then only four different substitutes are selected for each substitute or pendant 

group, k10, k11, k12 and k13. 
The substitute group k10 consists of four candidates, denoted 1, 2, 3 and 4, the 

substitute k11 from four candidates denoted a, b ,c ,d, the substitute k12 of four 
candidates denoted A, B, C, D and substitute k13 of four candidates denoted α, β, 
γ, and δ. 

Recall that the wave equation is able to generate Latin squares as solutions if 
the algebraic structures of functions and parameter are Galois Fields (Iordache 
2009, 2010).  
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Superposition of such solutions of the wave equation gives Greco-Latin  
squares as shown in Table 11.12. This superposition represents a specific 
categorical product. 

Table 11.12 shows the matrix of a Greco-Latin design. 
For this table the sub-levels of the level K1 are: k10 = {1, 2, 3, 4},  

k11 = {a, b, c, d}, k12 = {A, B, C, D}, and k13 = {α, β, γ, δ}. 

Table 11.12 Greco-Latin square design 

k10\k11 a b c D 
1 Aα Bβ Cγ Dδ 
2 Bδ Aγ Dβ Cα 
3 Cβ Dα Aδ Bγ 
4 Dγ Cδ Bα Aβ 

With 16 experiments only we may obtain significant information. 
Running the experiment, we may select the critical substituents. 
EDOE framework should be seen as a general pattern rather than as a 

predetermined fixed plan. This means that we may have partial Greco-Latins as 
micro-arrays. 

For different values of time T in the solution of the convection part of the wave 
equation, WE, we may obtain all the orthogonal Latin squares. 

A superposition of this mutually orthogonal Latin square gives the so-called 
Trojan squares.  The presentation as Latin cube is shown in Fig. 11.3.  

4 1 2 21 2 3 3 4 3 4 1
3 4 1 2
2 3 4 1
1 2 3 4

4 1 2 3
3 4 1 2
2 3 4 1

1 2 3 4
4 1 2 3
3 4 1 2

3 4 1 2
2 3 4 1
1 2 3 4
4 1 2 3

 

Fig. 11.3 Latin cube of order four 

The wave equation may generate inflated Latin squares as solutions if the 
algebraic structures of functions and parameters are cyclic groups. Such modified 
Latin squares have been studied by Bailey (Bailey 1992). Consider that the sub-
levels of K1 are the same. 

The cyclic-group-based solutions of the wave equation give inflated Latin 
squares shown in Table 11.13. The inflation which replaces each letter by four 
new letters corresponds to another definition of the categorical product. 
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Table 11.13 Inflated Latin square design 

1aAα 2bBβ 3cCγ 4dDδ 

4dDδ 1aAα 2bBβ 3cCγ 
3cCγ 4dDδ 1aAα 2bBβ 

2bBβ 3cCγ 4dDδ 1aAα 

Table 11.14 Comparison of DOE and self-evolvable DOE  

 

The complete EDOE frame implies to continue the cycle from DOE matrix that 
is from K1 level, to tests that is K2 level, evaluation and implementation that is 
K3 level as shown in Fig. 11.1. 

Table 11.14 compares conventional DOE to self-evolvable DOE methods. 
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11.4   Multi-level Data Analysis 

A structural model pertaining hierarchical classes analysis is presented in the 
following. The case study refers to solderability and surface finishes. Solderability 
is the ability of a surface to be wetted by molten solder. 

Good solderability for the PCB, as well as for the components has become an 
important element in achieving the quality required in competitive markets. 
Microelectronics requires the production of reliable assemblies in an ultra-low 
volume environment. As the new assembly technologies, such as ball grid array, 
flip chip, and chip on board, have progressed, there has been a demand to obtain 
new solderable surface finishes, alternative to the conventional hot-air level 
soldering, HASL. Complex PCBs demand to increase the functionality of the final 
surface finish.  

The challenge for printed circuits industry is to correlate the surface finish 
technology to specific application.  

Table 11.15 shows the surface finish quality framework. 
Table 11.15 includes the main factors for the surface finish quality (Iordache 

2009). 
They pertain to design, materials, processes and applications. 

Table 11.15 Surface finish quality framework 

Design,  D Materials, M Process, P  Application, A 
D1-Pad size M1-SF type P1-SF thickness A1-Therm. Cycling 
D2-Hole  size M2-SM type  P2-SM application A2-IST 
D3- Heat transfer  M3-Flux type P3-Contamination - 

- M4-Solder type - - 
SF-surface finish, SM-solder mask, IST-interconnect stress test.  

The surface finish selection system is based on EDOE methodology.  The 
center DOE contains PCB design factors, materials factors referring to surface 
finish and its application for solderability, processing factors and testing factors 
referring to solderability after reliability tests (thermal cycling and IST). DOE 
steps alternate with measurements and analyze steps followed by DOE 
reorganization.  

Different tests may be performed to evaluate surface finish, SF, solderability. 
Examples of typical tests are: 
 
• MUST- wetting balance test 
• SERA- sequential electrochemical reduction analysis 
• Dip & Look-standard solderability test.  

The problem is to quantify the results of all these solderability tests. An example 
of global criterion that summarizes the partial test significance is introduced next. 
It associates a real value to a digitalized vector and allows subsequent 
modification of the DOE matrix.  
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Denote by S= [i1,...,ik...] the test resulting vector for a sample. Here ik is the 
digit “1” or “0” corresponding respectively to the result pass or fail of the kth test. 
To any global test result S, a valuation V(S) defined by: V(S) = Σ k ik (0.5)k is 
associated. According to the valuation formula, the solderability for any sample 
depends on the significance associated in the hierarchical testing sequence to 
partial tests. For this case study, the first test has a weight 0.5, the next 0.25, the 
following 0.125 and so on, the proposed hierarchy for tests being: 
MUST>SERA>Dip& Look>…. 

The valuation V(S) is in fact a similarity as defined in Section 2.3. V(S) gives 
similarities relative to a reference vector containing only “1” as coordinates. 

The experiment is based on EDOE methodology. DOE steps alternate with 
measurements and analyze steps followed by DOE reorganization. 

Table 11.16 shows the element of surface finish-Design-D 

Table 11.16 Surface finish-Design-D 

Factor “-1” “1” 
D1-Pad size Small Large 
D2-Hole size Small Large 
D3-Heat transfer With Without 

The test mini-coupon allows performing all the solderability tests after an 
imposed number of interconnect stress test, IST, cycles. It evaluates solderability 
as a function of testing time. 

Fig. 11.4 shows the modules of self-evolvable DOE frame for surface finish. 
Fig. 11.4 suggests that we need to look at the integration way, 

K0→K1→K2→K3 and at the differentiation way, K3′→K2′→K1′→K0′. 

Materials-K1 K2-Processes

K3-TestsDesigns-K0

Products

K3′K0′

K1′ K2′

 

Fig. 11.4 General self-evolvable DOE frame  
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Preliminary tests assured that materials-M and processes-P factors are 
significant variables. Table 11.17 contains the notations for materials-M settings. 
ENIG denotes electroless nickel, immersion gold finish. S/M type depends on 
supplier (“D”, “C” or “T”). 

Table 11.17 Surface finish-Materials-M 

Factor “-1” “0” “1” 
M1-Surface finish ENIG(P) Electroplate Ni/Au Ag 
M2-Solder masks  “D” “C” “T” 

The DOE matrix of type L 9,2,3 with three settings is considered (Iordache 
2009). The main factor is M2 that is the S/M type. The processing-P factors are 
included in Table 11.18. 

Table 11.18 Surface finish-Processing-P 

Factor “-1” “1” 
P1-Coating thickness High Low 
P2-SM application After Prior 

From the DOE it results that the factor P1, the coating thickness, is more 
significant for solderability. An interaction experiment for M, P and A was 
performed at this stage on the first level of EDOE. The electroless Ni/Au and a 
compatible mask indexed by “T” have been selected to perform an application 
test. Nine values of the thermal cycling parameters corresponding to the 
application test have been considered. The time step for the number of cycles is 25 
cycles. In this case -4 is linked to 0 cycles, -3 to 25 cycles, and so on till +4 that is 
linked to 200 cycles. The corresponding matrices are of the type Ln,m,s (Iordache 
2009).  

Table 11.19 shows the factors for materials-M, processing-P, and application-A. 

Table 11.19 Factors for materials-M, processing-P, application-A 

Factor -4 -3 -2 -1 0 1 2 3 4 
A1-IST cycle 0 25 50 75 100 125 150 175 200 
Factor “-1” “0” “1” 
M2-SM type “D” “C” “T” 
P1-Coating thick. High Avg. Low 

The M, P, A factors are lumped together in the interaction type of experiment 
from Table 11.19. This test shows that the application factor that is thermal 
cycling plays significantly. The set of resulting DOE matrices is useful in the 
implementation of new surface finish technology.  

The EDOE method allows simulations for new surface finish.   
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New vectors, that is, settings of parameters for an experiment may enter as new 
rows in the DOE matrices. New vectors have been denoted as italicized rows.  

Suppose for instance that the new processing vector will be: [ 1, -1 ]. This 
designation is followed by a forward step. The performed experiment will be 
classified as run 2 in processing-P matrix. This allows predicting solderability 
valuation of 0.75. Consider also a new designation step in which the design-D 
vector is [1, 1, -1]. This is classified in the same class as the first run in matrix D.  
If high solderability means valuation higher than 0.75 these two vectors that is 
new experiments will provide digits “1” in the center matrix. These replacements 
summarize the information and represent backward steps. They translate a real 
valuation of the solderability into a digit only. Observe that a calculus of valuation 
that is of similarity allows shifting from forward to backward steps.  
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Fig. 11.5 Self-evolvable DOE frame for surface finish 

Coupled with materials M corresponding to lower than 0.75 solderability (that 
is “-1” digit in the central matrix) the new vector in the central matrix will be  
[ 1, -1, +1]. This is similar to the second run [1, -1, -1] in the initial center design 
and it is predicted that it will show performances similar to that run. 

Fig. 11.5 suggests that after the integration way D→M→P→A we need to look 
at the differentiation way A′→P′→M′→D′. This may consist in changing the 
hierarchical order or the elements in the matrices associated to D, M, P and A, in 
removing less significant factors. Making use of the developments of the direct 
way will result in a kind of symmetry-breaking result for the reverse way. The 
swinging from direct to reverse investigation is beneficial for self-evolution. 
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11.5   Pharmaceutical Systems 

Designing, building and controlling complex systems became a central challenge 
for scientists and engineers in the coming years.  A new approach to problem 
solving for complexity is represented by the evolvable designs of experiments, 
EDOE (Iordache 2009). It is based on the thesis that knowledge cannot be a 
passive reflection of reality, or a passive application of a formal problem-solving 
model, but has to be more of an active and interactive construction. EDOE is a 
modern way to cross industrial and technological complexity frontiers by 
replacing pre-programmed and fixed designs and problem-solving methods by 
evolvable ones. 

The EDOE methodology may find applications for complex problems as the so-
called pharmaceutical pipeline. 

This refers to the new product, to research and development in pharmaceutical 
industry. 

The typical sequence for new product implementation contains the following 
main steps:  

Resources →Discovery→ Development→ Launching 
Biological, chemical and other resources allow the discovery of drug lead. 
The development step includes tests, preclinical, P0, followed by three phases 

of tests, PI, PII, and PIII.  
The product launching starts with NDA, New Drug Application, and FDA, 

Food and Drug Administration, submissions and reviews, and continues with 
production and marketing steps.   

Some areas of pharmaceutical industry are facing a productivity crisis 
(Woodcock and Woosly 2008). Despite rising investment in pharmaceutical 
research and development, successful development of new drugs is slowing. The 
high costs of new drugs development may discourage investment in more 
innovative, risky approaches in therapeutics. 

The FDA, with its dual role of promoting and protecting health is charged  with 
implementing policies that ensure that the benefits of the new products will 
surpass their risks, while simultaneous by promoting innovations that can improve 
health. 

It was observed that chemical and biological systems may have huge behavior 
spaces and laboratory experiments and models cover only tiny aspects of a 
system's behavior. 

The models often ignore the essential temporal and conceptual space 
organization of the research and implementation components. Moreover, models 
and methodologies lack flexibility to adapt and to faster represent more areas of 
the behavior space. 

They neglect synergies – beneficial, nonlinear interactions between systems 
that cannot be inferred from existing resources and may be missed. 

The architecture of the models should be in correspondence with that of the 
studied system within physically, biologically or cognitive recognizable spaces. 

This will require combining multiple-level modeling methods in innovative 
ways, multiple levels of organization activated both in parallel as in series. 
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It is a need for new modeling and simulation methods, sufficiently flexible, 
adaptable and evolvable that is able to explore larger portions of the behavior 
space, a strong request for cognitive architecture reflecting the essential temporal 
and spatial organization of the real substrates and allowing autonomy of the new 
product development system. 

PSM and more specifically EDOE, are promising cognitive architectures 
proposed as new methodologies for self-level problem solving in pharmacology. 

The PSM general framework is based on four modules and their self-integrative 
closure. 

Fig. 11.6 suggests a transition from the pharmaceutical pipelines to pipecycles. 
The module K0 corresponds to substrate and resources, the module K1 to 

discovery step, K2 to developments and tests and the module K3 to product 
implementation and launching. 

The first module involves resource mining. Resources are material, biological 
and of knowledge type.  

The second module K1 is that of discovery and involves in this case drug-like 
molecules discovery, lead discovery and optimization. It may be a DOE. 

The third module K2 is that of drug testing and development. It is a meta-
design and for this reason may be denoted by 2-DOE since refers to processing 
DOE.  

The fourth module K3 includes application and approval processes, 
manufacturing, marketing and monitoring of the product.  

Each module may involve several sub-modules organized as epicycles. 
For instance, in the module K2 there exists a natural cycle P0, P1, P2 and P3.  

Thirdness

Modality

K0-Substrate, Resources

K1-Discovery

K3-Implementation

K2-Development,Tests

Chemical

Biological Knowledge

Models

Idea

Exploration

Lead opt.

Lead
P2P1

Market

Production

Pre-clinic P0 P3

FDA

NDA

Self

 

Fig. 11.6 Pharmaceutical pipecycles 
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For the module K3 the NDA step is followed by FDA step this by production 
and this by product marketing. 

The transition from pipeline to pipecycles proposes a methodology that closes 
the loop in iterated experimentation in a high dimensional space. The cycling 
refers to large cycles for the whole process of four modules or just to one module 
or sub-module and the corresponding epicycles. 

Some cycles may be fully automated if autonomous experimentation methods 
are used to conduct high-throughput experiments.  

Modeling of matrix designs and use of informational criteria accelerate the 
development of new drugs.    

K1-Discovery K2-Tests

K0-Substrates K3-Implementation

k0
k1 k2

k3

 

Fig. 11.7 Operad for pharmaceutical pipecycles 

Substrate
Resources-K0
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K3′
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Fig. 11.8 Polytope for pharmaceutical pipecycles 
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Fig. 11.7 shows the operad for pharmaceutical pipecycles.  
K0-Substrate, Resources, K1-Discovery, K2-Development Tests, K3-

Implementation.  
Fig. 11.8 illustrates the polytope of pharmaceutical pipecycles.  
There exist an integration way and a differentiation way. The reconciliation of 

these two ways is a negotiated process since lateness in drug discovery should be 
avoided.  

11.6   Library Design by Entropy Criteria 

Applicability of PSM methodology for 2-phenylindole library design is described 
here. 

Some 2-phenylindoles and their derivative prove to have anti-cancer activity 
(Basak et al. 2010). 

Fig. 11.9 shows the molecular structure of the 2-phenylindole derivatives. 
Different radicals are denoted by R1, R2, R3 and X (see Table 1, Basak et al. 
2010). 

For 2-phenylindole derivatives we considered associated vectors as: y= [R1, 
R2, R3, X] 

This means that the chosen significance order is R1>R2>R3>X. 
We associate the digit “1” to R1=H, R2=H, R3= OCH3 and X= C(CN)2 and the 

digit “0” to the radicals that are different from these. 

R3

R1

R2

X H

1

2

34

5

6
7 NH

 
Fig. 11.9 Molecular structure of 2-phenylindole derivatives 

We select the compound #2 (Table 1, Basak et al. 2010) as reference  
#2 = [1 1 1 1 1] 

Obviously the choice of the set of characteristics and of their hierarchy should 
be based on drug physiological mechanism and drug efficiency tests.  

Table 11.20 shows the radicals pertaining to different 2-phenylindoles 
derivatives. 

Table 11.21 outlines the reference set for 2-phenylindole derivatives-matrix 
Table 11.21 contains the same information as Table 11.20 in digitalized form.  
The half maximal inhibitory concentration (IC50) is a measure of the 

effectiveness of a compound in inhibiting biological or biochemical function. This 
quantitative measure indicates how much of a particular drug is needed to inhibit a 
given biological process by half. Here we focused on derivatives with high IC50. 
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Table 11.20 Reference set for 2-phenylindole derivatives 

No R1  R2 R3 X IC50(nM) 
#2 H H OCH3 C(CN)2 720 
#43 H H H O 420 
#30 H t-Bu OCH3 O 280 
#19 H n-Hexyl CF3 C(CN)2 150 

Table 11.21 Reference set for 2-phenylindole derivatives-matrix 

No R1  R2 R3 X 
#2 1 1 1 1 
#43 1 1 0 0 
#30 1 0 1 0 
#19 1 0 0 1 

The compounds of the reference set have been selected to obtain a Walsh-
Hadamard matrix for DOE. This offers the necessary variability for all types of 
drug compositions and substrate interaction. 

Adding a new compound to this reference mixture, the entropy H varies. 
There is only a small change of entropy, ΔH if the vector of the test compound 

is similar to the reference set and this supplementary compound is thought to have 
similar properties.  

If a database 2-phenylindoles shares similar bit patterns with reference set 
molecules, adding a similar compound will induce a change targeting the 
minimum entropy production. 

By contrast, inclusion of 2-phenylindoles derivatives compound having 
dissimilar vector leads to a higher entropy production, targeting the maximum 
entropy production, MEP criterion.  

In this way database compounds may be screened to identify compound that 
causes low or high changes of the reference set informational entropy and detects 
other promising drugs according to the established goal. 

Table 11.22 Informational entropies for 2-phenylindoles 

Mixture Reference Reference 
#11 

Reference 
#24 

Reference 
#33 

Reference 
#28 

Matrix [1111] 
[1100] 
[1010] 
[1001] 

[1111] 
[1100] 
[1010] 
[1001] 
[1011] 

[1111] 
[1100] 
[1010] 
[1001] 
[0110] 

[1111] 
[1100] 
[1010] 
[1001] 
[0011] 

[1111] 
[1100] 
[1010] 
[1001] 
[1000] 

H 7.5418 11.2615 12.8343 12.8343 11.2615 
ΔH 0 3.7197 5.2925 5.9525 3.7197 
DD 0 0.6348 0 0 0.6348 
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The component #11= [1011], #24 = [0110], #33= [0011], #38= [1000] were 
tested since they show high (IC50). 

The results are shown in Table 11.22. 
Table 11.22 shows the informational entropies for 2-phenylindoles. 
H denotes the entropy associated to the matrix shown in first row.  
ΔH denotes the difference between the entropy associated to reference and the 

entropy associated to reference plus one new compound. 
DD denotes the distance between the reference and the matrices corresponding 

to reference, plus one new compound, as shown in successive columns of  
Table 11.22. 

It appears that supplementing the reference mixture by #11, or #38, has lower 
effect for entropy than # 24 or #33. 

The compound #11 or #38 may be preferred for a conservative new drug search 
based on similarity and #24 or # 33 for an innovative search based on 
dissimilarity. 

High DD corresponds to differences allowing multiple, different classes and 
potential versatility of interaction. It was associated to maximum production of 
entropy production, MPEP criterion. 

To illustrate the selection criterion at this level we take into account that the 
organisms varies and show biorhythms. For different regimes for organism the 
delivery of different 2-phenylindole mixtures may be beneficial and ensures the 
evolvability maximization, EM that may be evaluated by comparing DD values.  

The DD criteria suggest using reference, #11 or #28, for maximum activity 
periods and #24 or # 33 for minimum activity periods.  

EM and SEM criteria should be correlated with the methods to monitor the 
biomarkers of the periodic functioning of organism (Ashdown 2004, Coventry  
et al. 2009). Researchers have discovered that the body’s immune system can 
destroy some cells within a window occurring every 12 to 14 days. By giving low-
dose treatment at exactly the right time, they succeeded in halting the spread of 
advanced disease.  Also they found the body has an immune cycle during which it 
swings “on” and “off”. When the immune system turns off, it releases inhibitory 
cells which prevent it from fighting the disease. Treating organisms at the right 
time may maximize their evolvability. The timed drug delivery supposes an 
iterated screening of drugs and drug delivery by interaction with the organism, 
resources and environment. 

Chronotherapy, which is an optimization of dose-time medication schedule, has 
been successfully applied for decades. The effects of chemotherapy exhibit 
circadian rhythms since the proliferation of normal cells and of damaged cells is 
gated by the circadian clock, damaged cells being less well synchronized. It is also 
known that the detoxification of cytostatic drugs depends on time of 
administration. 
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11.7   Self-Evolvable Experimentation Systems  

Quantitative, predictive understanding of complex systems requires adequate 
information. High-throughput methods and laboratory automation technology 
have the potential to deliver the necessary data. To harvest this potential, 
experimental systems have to become evolvable and autonomous. 

Self-evolvable experimentation systems are computational systems capable of 
autonomously investigating large experimental parameter space (Matsumaru et. al. 
2004, Lovel and Zauner 2009).  

Such systems should develop hypotheses, plan experiments and perform 
experiments in a closed-loop manner without human interaction. 

Fig. 11.10 illustrates the autonomous experimentation architecture principle. 
The notations are: K0-Experiment, K1-Model, K2-Prediction, and K3-Fitness. 
It is a self-integrative closure technique. 
The levels may be identified as follows: K0-Experiment, K1-Model, K2-

Prediction, K3-Evaluation and Fitness. The model is empiric. To these the central 
level of self-evolution linked to the previous levels is joined. The center is 
considered either as the starting area or as the final area of one cycle of 
investigations. The swinging between the two roles should be considered too. 

Experiment-K0

Model-K1 K2-Prediction

K3-Fitness

Self
Evolution

K3′

K2′K1′

K0′

 

Fig. 11.10 Polytope for self-experimentation system 

This suggests that after the integration or direct way we need to look at the 
differentiation or reverse way.  Making use of the developments of the direct way 
will give different results for the reverse way. The swinging from direct to reverse 
investigation is beneficial for model evaluation and evolution. 

In self-evolvable experimentation, artificial intelligence techniques are 
employed to carry out the entire cycle of cognition including the elaboration of 
hypothesis to explain observations, the design of experiments to test these 
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hypotheses and the physical implementation of the experiments using laboratory 
automats to falsify hypotheses. 

Investigating surprising observations, defined as those observations that 
disagree with a well-performing hypothesis, has been highlighted as a technique 
utilized by successful experimenters and has also been considered in previous 
computational scientific discovery techniques (Lovel et al. 2011).  

A surprising observation either highlights a failure in the hypothesis or an 
erroneous observation. If the observation is highlighting a failure of a hypothesis, 
especially an otherwise well performing hypothesis with a high prior confidence, 
then additional experiments should be performed to further investigate the 
behavior where that observation was found, to allow the development of improved 
hypotheses. As such we consider the use of surprise to manage the direct way-
reverse way trade-off, where obtaining surprising observations will lead to more 
direct way experiments, and unsurprising observations lead to reverse way 
developments. 

A mathematical formulation for surprise has been considered previously in the 
literature is Kullback-Leibler divergence used to identify surprising improvements to 
the models being formed. 

The informational distance DD defined by eq. 4.5 plays a similar role. 
The DD may be obtained associating similarity matrices to experimental 

recordings and predictions (Iordache 2009). 
Large value of DD states that the observation was surprising, as the overall 

confidence of the hypotheses has been reduced. A low value of DD states the 
observation was not surprising, as the overall confidence has increased. The result 
of DD can therefore be used to control the swinging between direct way and 
reverse way experiments. A large value for DD will dictate that the next 
experiment will be integrative, so as to allow investigation of the surprising 
observation. A low value of DD will lead to a reverse way experiment next, a 
differential one to search for new surprising features of the behavior. 

Thus a hypothesis is removed from consideration if the information loss caused 
by the removal is small. 

After DD has been calculated, the hypothesis manager will go through the 
process of creating new hypotheses.  

This process of evaluating experiments using surprise to choose the next 
experiment type is automatically continued until the maximum number of 
experiments allowed has been performed (Lovel et al 2011). 

In the coming decades a confluence of wireless networks and lab-on-chip 
sensor technology with application in health monitoring is expected. In such lab-
on-chip network each sensor node is endowed with a limited supply of chemicals. 
The network will collectively or via the self-evolution level decide how the drug 
resources will be spent.   

Environmental monitoring and improving new drugs and new material 
discoveries may be performed by similar autonomous experimentation 
architectures. 
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