
Concurrent Model Synchronization
with Conflict Resolution

Based on Triple Graph Grammars

Frank Hermann1,2,�, Hartmut Ehrig1, Claudia Ermel1, and Fernando Orejas3

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{frank.hermann,hartmut.ehrig,claudia.ermel}@tu-berlin.de

2 Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg
3 Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

orejas@lsi.upc.edu

Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyse correctness of bidirectional model transformations. Recently, also a corre-
sponding formal approach to model synchronization has been presented, where
updates on a given domain (either source or target) can be correctly (forward
or backward) propagated to the other model. However, a corresponding formal
approach of concurrent model synchronization, where a source and a target mod-
ification have to be synchronized simultaneously, has not yet been presented and
analysed. This paper closes this gap taking into account that the given and prop-
agated source or target model modifications are in conflict with each other. Our
conflict resolution strategy is semi-automatic, where a formal resolution strategy
– known from previous work – can be combined with a user-specific strategy.

As first result, we show correctness of concurrent model synchronization, that
is, each result of our nondeterministic concurrent update leads to a consistent
correspondence between source and target models, where consistency is defined
by the TGG. As second result, we show compatibility of concurrent with basic
model synchronization: concurrent model synchronization can realize both for-
ward and backward propagation. The results are illustrated by a running example
on updating organizational models.

Keywords: model synchronization, conflict resolution, model versioning, cor-
rectness, bidirectional model transformation, triple graph grammars.

1 Introduction

Bidirectional model transformations form a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [22]). Triple graph grammars
(TGGs) have been successfully applied in several case studies for bidirectional model
transformation, model integration and synchronization [20,25,14] and for the imple-
mentation of QVT [15]. Based on the work of Schürr et al. [24,25], we developed a

� Supported by the National Research Fund, Luxembourg (AM2a).

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 178–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Concurrent Model Synchronization with Conflict Resolution 179

formal theory of TGGs [9,16], which allows handling correctness, completeness, ter-
mination and functional behaviour of model transformations. Inspired by existing syn-
chronization tools [14] and frameworks [4], we proposed an approach for basic model
synchronization in [17], showing its correctness. In that paper we studied the problem
of how updates on a given domain can be correctly propagated to another model.

The aim of this paper is to provide, on this basis, also a correct TGG framework
for concurrent model synchronization, where concurrent model updates in different do-
mains have to be merged to a consistent solution. In this case, we have the additional
problem of detecting and solving conflicts between given updates. Such conflicts may
be hard to detect, since they may be caused by concurrent updates on apparently unre-
lated elements of the given models. Furthermore, there may be apparently contradictory
updates on related elements of the given domains which may not be real conflicts.

The main idea and results of our approach are the following:

1. Model synchronization is performed by propagating the changes from one model
of one domain to a corresponding model in another domain using forward and
backward propagation operations. The propagated changes are compared with the
given local update. Possible conflicts are resolved in a semi-automated way.

2. The operations are realized by model transformations based on TGGs [17] and
tentative merge constructions solving conflicts [11]. The specified TGG also defines
consistency of source and target models.

3. In general, the operation of model synchronization is nondeterministic, since there
may be several conflict resolutions. The different possible solutions can be visual-
ized to the modelers, who then decide which modifications to accept or discard.

4. The main result shows that the concurrent TGG synchronization framework is cor-
rect and compatible with the basic synchronization framework, where only single
updates are considered at the same time.

Based on TGGs we present the general concurrent model synchronization framework in
Sec. 2, the basic model framework in Sec. 3, and conflict resolution in Sec. 4. In Sec. 5
we combine these operations with additional auxiliary ones and present the construc-
tion of the concurrent synchronization operation, for which we show its correctness
and its compatibility with the basic synchronization case in Sec. 6. All constructions
and results are motivated and explained by a small case study. Finally, Secs. 7 and 8
discuss related work, conclusions and future work. Full proofs and technical details on
efficiency issues and the case study are presented in a technical report [10].

2 Concurrent Model Synchronization Framework

Concurrent model synchronization aims to provide a consistent merging solution for
a pair of concurrent updates that are performed on two interrelated models. This sec-
tion provides a formal specification of the concurrent synchronization problem and the
corresponding notion of correctness. At first, we motivate the general problem with a
compact example.1

1 More complex case studies are also tractable by our approach, e.g. relating class diagrams to
data base models [9].



180 F. Hermann et al.

Fig. 1. Concurrent model synchronization: compact example

Example 2.1 (Concurrent model synchronization problem). Fig. 1 shows two models in
correspondence that cover different aspects about employees of a company. The source
model contains information about employees of the marketing department only, but
shows more detailed salary information. Two model updates have to be synchronized
concurrently: on the source side (model update dS

1 ), Bill Clinton’s node is deleted and
Melinda Gates’ family name changes due to her marriage; moreover, being married, her
bonus is raised from 1000 to 2000. On the target side (model update dT

1 ), Bill Clinton is
switching from the marketing to the technical department (in the visualization in Fig. 1
this is indicated by a different role icon for Bill Clinton). His department change is
combined with a salary raise from 5000 to 6000. After performing updates dS

2 and dT
2 , a

“consistently integrated model” (see below) is derived that reflects as many changes as
possible from the original updates in both domains and resolves inconsistencies, e.g. by
computing the new Salary of Melinda Gates in the target domain as sum of the updated
source attributes Base and Bonus. Note that Bill Clinton is not deleted in the target
domain by the concurrent synchronization because in this case, the changes required by
dT

1 could not have been realized. This conflict can be considered an apparent one. If a
person leaves the marketing department, but not the company, its node should remain
in the target model. Thus, a concurrent model synchronization technique has to include
an adequate conflict resolution strategy.

A general way of specifying consistency between interrelated models of a source
and a target domain is to provide a consistency relation that defines the consistent pairs
(MS ,MT ) of source and target models. Triple graph grammars (TGGs) are a formal ap-
proach for the definition of a language of consistently integrated models [24,9]. TGGs
have been applied successfully for bidirectional model transformations [25,16] and ba-
sic model synchronization [14,17], where no concurrent model updates occur.

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs GS , GC , and GT , called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . Further concepts like attribution and inheritance can be used ac-
cording to [9,8]. The two mappings in G specify a correspondence r : GS ↔ GT , which
relates the elements of GS with their corresponding elements of GT and vice versa.
However, it is usually sufficient to have explicit correspondences between nodes only.
For simplicity, we use double arrows (↔) as an equivalent shorter notation for triple
graphs, whenever the explicit correspondence graph can be omitted.



Concurrent Model Synchronization with Conflict Resolution 181

Fig. 2. Two triple rules of the TGG

(GS

mS ��

G GC
sG��

mC
��

tG �� GT )
mT ��

(HSH
m
��

HC
sH

��
tH

�� HT )

Triple graphs are related by triple graph mor-
phisms m : G → H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).
Our triple graphs are typed. This means that a type triple graph TG is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeG : G → TG. It is required that morphisms between typed triple graphs
preserve the typing. For TG = (TGS ← TGC → TGT ), we use VL(TG), VL(TGS ), and
VL(TGT ) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.

L
m ��

� � tr �� R
n��(PO)

G
� �

t
�� H

A triple rule tr = (trS , trC , trT ) is an inclusion of triple graphs,
represented L ↪→ R. Notice that one or more of the rule components
trS , trC , and trT may be empty, i.e. some elements in one domain
may have no correspondence to elements in the other domain. In the
example, this is the case for employees of the technical department within the target
model. A triple rule is applied to a triple graph G by matching L to some subtriple
graph of G via a match morphism m : L→ G. The result of this application is the triple
graph H, where L is replaced by R in G. Technically, the result of the transformation
is defined by a pushout diagram, as depicted above. This triple graph transformation

(TGT) step is denoted by G =
tr,m
==⇒ H. Moreover, triple rules can be extended by negative

application conditions (NACs) for restricting their application to specific matches [16].

Example 2.2 (Triple Rules). Fig. 2 shows two triple rules of our running example using
short notation, i.e., left- and right-hand side of a rule are depicted in one triple graph and
the elements to be created have the label “++”. Rule Person2NextMarketingP requires an
existing marketing department. It creates a new person in the target component together
with its corresponding person in the source component and the explicit correspondence
structure. (The TGG contains a further rule (not depicted) for initially creating the mar-
keting department.) Rule FName2FName extends two corresponding persons by their
first names. There are further rules for handling the remaining attributes. In particular,
the rule for attribute birth is the empty rule on the source component.

A triple graph grammar TGG = (TG, S , TR) consists of a triple type graph TG, a triple
start graph S and a set TR of triple rules, and generates the triple graph language
VL(TGG) ⊆ VL(TG). A TGG is, simultaneously, the specification of the classes of con-
sistent source and target languages VLS = {GS | (GS ← GC → GT ) ∈ VL(TGG)}
and VLT = {GT | (GS ← GC → GT ) ∈ VL(TGG)} and also of the class C =

VL(TGG) ⊆ VL(TG) = Rel of consistent correspondences which define the consis-
tently integrated models. The possible model updates ΔS and ΔT are given by the sets
of all graph modifications for the source and target domains. In our context, a model
update d : G → G′ is specified as a graph modification d = (G ←i1−− I −i2−→ G′). The relating



182 F. Hermann et al.

Signature Laws

GS
1

dS
2
��

GS
0

dS
1�� �� r0 ��

:CSynch��

GT
0

dT
1 �� GT

1

dT
2

��
GS

2
��

r2
�� GT

2

∀ c ∈ C :
GS

1 �� ⇓:CSynch

GS1�� �� c �� GT 1 �� GT

1��

GS ��
c

�� GT

(a)

GS
1

dS
2 �� ⇓:CSynch

GS
0
��

r0 ��
dS

1�� GT
0

dT
1 �� GT

1

dT
2��

G2
S ��

r2 :C
�� G2

T

(b)

Fig. 3. Signature and laws for correct concurrent synchronization frameworks

morphisms i1 : I ↪→ G and i2 : I ↪→ G′ are inclusions and specify which elements are
deleted from G (all the elements in G \ I) and which elements are added by d (all the
elements in G′ \ I). While graph modifications can also be seen as triple graphs, it is
conceptually important to distinguish between correspondences and updates δ.

The concurrent synchronization problem is visualized in Fig. 3, where we use
solid lines for the inputs and dashed lines for the outputs. Given an integrated
model G0 = (GS

0 ↔ GT
0 ) and two model updates dS

1 = (GS
0 → GS

1 ) and dT
1 =

(GT
0 → GT

1 ), the required result consists of updates dS
2 = (GS

1 → GS
2 ) and

dT
2 = (GT

1 → GT
2 ) and a consistently integrated model G2 = (GS

2 ↔ GT
2 ). The

solution for this problem is a concurrent synchronization operation CSynch, which
is left total but in general non-deterministic, which we indicate by a wiggly ar-
row “�” in Thm. 2.3 below. The set of inputs is given by (Rel ⊗ ΔS ⊗ ΔT ) =
{(r, dS , dT ) ∈ Rel × ΔS × ΔT | r : GS

0 ↔ GT
0 , d

S : GS
0 → G2

S , dT : GT
0 → G2

T }, i.e., r co-
incides with dS on GS

0 and with dT on GT
0 .

Definition 2.3 (Concurrent Synchronization Problem and Framework). Given
TGG, the concurrent synchronization problem is to construct a left total and nonde-
terministic operation CSynch : (Rel ⊗ ΔS ⊗ ΔT ) � (Rel × ΔS × ΔT ) leading to the
signature diagram in Fig. 3, called concurrent synchronization tile with concurrent syn-
chronization operation CSynch. Given a pair (prem, sol) ∈ CSynch the triple prem =
(r0, dS

1 , d
T
1 ) ∈ Rel ⊗ ΔS ⊗ ΔT is called premise and sol = (r2, dS

2 , d
T
2 ) ∈ Rel × ΔS × ΔT is

called a solution of the synchronization problem, written sol ∈ CSynch(prem). The
operation CSynch is called correct with respect to consistency relation C, if laws
(a) and (b) in Fig. 3 are satisfied for all solutions. Given a concurrent synchroniza-
tion operation CSynch, the concurrent synchronization framework CSynch is given by
CSynch = (TGG,CSynch). It is called correct, if operation CSynch is correct.

Correctness of a concurrent synchronization operation CSynch ensures that any result-
ing integrated model G2 = (GS

2 ↔ GT
2 ) is consistent (law (b)) and, the synchronization

of an unchanged and already consistently integrated model always yields the identity of
the input as output (law (a)).

3 Basic Model Synchronization Framework

We now briefly describe the basic synchronization problem and its solution [17], which
is the basis for the solution for the concurrent synchronization problem in Sec. 5.



Concurrent Model Synchronization with Conflict Resolution 183

GS �� r ��

a
�� �:fPpg

GT

b��

G′S ��
r′

�� G′T

GS �� r ��

a
�� �:bPpg

GT

b��

G′S ��
r′

�� G′T

Fig. 4. Propagation operations

Given an integrated model GS ↔ GT

and an update on one domain, either GS or
GT , the basic synchronization problem is to
propagate the given changes to the other do-
main. This problem has been studied at a for-
mal level by several authors (see, for instance,
[12,19,26,3,28,18,5,6,17]). Many of these approaches [12,19,26,28] are state-based,
meaning that they consider that the synchronization operations take as parameter the
states of the models before and after the modification and yields new states of mod-
els. However, in [3,5] it is shown that state-based approaches are not adequate in gen-
eral for solving the problem. Instead a number of other approaches (see, for instance,
[3,18,6,17]) are δ-based, meaning that the synchronization operations take modifica-
tions as parameters and returns modifications as results. In particular, in [17], we de-
scribe a framework based on TGGs, where we include specific procedures for forward
and backward propagation of modifications, proving its correctness in terms of the sat-
isfaction of a number of laws. These results can be seen as an instantiation, in terms of
TGGs, of the abstract algebraic approach presented in [6].

To be precise, according to [17], a basic synchronization framework must provide
suitable left total and deterministic forward and backward propagation operations fPpg
and bPpg solving this problem for any input (see Fig. 4). The input for fPpg is an in-
tegrated model GS ↔ GT together with a source model update (graph modification)
a : GS → G′S , and the output is a target update b : GT → G′T together with a con-
sistently integrated model G′S ↔ G′T . The operation bPpg behaves symmetrically to
fPpg. It takes as input GS ↔ GT and a target modification b : GT → G′T and it returns a
source update a : GS → G′S together with a consistently integrated model G′S ↔ G′T .
Note that determinism of these operations means that their results are uniquely deter-
mined. Note also that we require that the resulting model after a propagation operation
must be consistent according to the given TGG.

We may notice that in a common tool environment, the inputs for these operations
are either available directly or can be obtained. For example, the graph modification of
a model update can be derived via standard difference computation.

The propagation operations are considered correct in [17], if they satisfy the four
laws depicted in Fig. 5. Law (a1) means that if the given update is the identity and
the given correspondence is consistent, then fPpg changes nothing. Law (a2) means
that fPpg always produces consistent correspondences from consistent updated source
models G′S , where the given correspondence r : GS ↔ GT is not required to be consis-
tent. Laws (b1) and (b2) are the dual versions concerning bPpg.

(a1) :

∀ c ∈ C :

GS �� c ��

1
�� �:fPpg

GT

1
��

GS ��
c

�� GT

(a2) :

∀ G′S ∈ VLS :

GS �� r ��

a
�� �:fPpg

GT

b
��

G′S ��
r′ :C

�� G′T

(b1) :

∀ c ∈ C :

GS �� c ��

1
���:bPpg

GT

1
��

GS ��
c

�� GT

(b2) :

∀G′T ∈ VLT :

GS �� r ��

a
�� �:bPpg

GT

b
��

G′S ��
r′ :C

�� G′T

Fig. 5. Laws for correct basic synchronization frameworks



184 F. Hermann et al.

In [17], we also present specific propagation operations: Given GS ↔ GT and the
modification a : GS → G′S , the forward propagation operation consists of three steps.
In the first step, we compute an integrated model G′S ↔ GT by deleting from the
correspondence graph all the elements that were related to the elements deleted by the
modification a. In the second step, we compute the largest consistently integrated model
GS

0 ↔ GT
0 that is included in G′S ↔ GT . Note that we do not build this model from

scratch, but mark the corresponding elements in G′S ↔ GT . Moreover, we delete from
GT all the unmarked elements. Finally, using the TGG, we build the missing part of the
target model that corresponds to G′S \ GS

0 yielding the consistently integrated model
G′S ↔ G′T . Backward propagation works dually.

Remark 3.1 (Correctness of Derived Basic TGG Synchronization Framework). Cor-
rectness of the derived propagation operations fPpg, bPpg is ensured if the given TGG
is equipped with deterministic sets of operational rules [17]. This essentially means that
the forward and backward translation rules ensure functional behaviour for consistent
inputs. For the technical details and automated analysis of this property using the tool
AGG [27] we refer to [17], where we have shown this property for the TGG of our
example and discussed the required conditions of a TGG in more detail. Note that the
concurrent synchronization procedure in Sec. 5 only requires correctness of the given
propagation operations and does not rely on the specific definition in [17].

4 Semi-automated Conflict Detection and Resolution

We now review the main constructions and results for conflict resolution in one domain
according to [11]. Note that we apply conflict resolution either to two conflicting target
model updates (one of them induced by a forward propagation operation fPpg) or to
two conflicting source model updates (one of them induced by backward propagation).
Hence, we here consider updates over standard graphs and not over triple graphs.

Two graph modifications (G ← Di → Hi), (i = 1, 2) are called conflict-free if they do
not interfere with each other, i.e., if one modification does not delete a graph element
the other one needs to perform its changes. Conflict-free graph modifications can be
merged to one graph modification (G ← D → H) that realizes both original graph
modifications simultaneously.

If two graph modifications are not conflict-free, then at least one conflict occurs
which can be of the following kinds: (1) delete-delete conflict: both modifications delete
the same graph element, or (2) delete-insert conflict: m1 deletes a node which shall be
source or target of a new edge inserted by m2 (or vice versa). Of course, several of
such conflicts may occur simultaneously. In [11], we propose a merge construction that
resolves conflicts by giving insertion priority over deletion in case of delete-insert con-
flicts. The result is a merged graph modification where the changes of both original
graph modifications are realized as far as possible2 We call this construction tentative
merge because usually the modeler is asked to finish the conflict resolution manually,
e.g. by opting for deletion instead of insertion of certain conflicting elements. The reso-
lution strategy to prioritize insertion over deletion preserves all model elements that are

2 Note that the conflict-free case is a special case of the tentative merge construction.



Concurrent Model Synchronization with Conflict Resolution 185

parts of conflicts and allows to highlight these elements to the user to support manual
conflict resolution. We summarize the main effects of the conflict resolution strategy by
Thm. 4.1 below (see also Thm. 3 in [11] for the construction).

Fact 4.1 (Conflict Resolution by Tentative Merge Construction). Given two con-

flicting graph modifications mi = G
Di
=⇒ Hi (i = 1, 2) (i.e., they are not conflict-free).

The tentative merge construction yields the merged graph modification m = (G ← D→
H) and resolves conflicts as follows:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G, then x
is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2 with x =
s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is preserved by m
(and vice versa for (m2,m1) being in delete-insert conflict).

Note that attributed nodes which shall be deleted on the one hand and change their
values on the other hand would cause delete/insert-conflicts and therefore, would not be
deleted by the tentative merge construction. Attributes which are differently changed by
both modifications would lead (tentatively) to attributes with two values which would
cause conflicts to be solved by the modeller, since an attribute is not allowed to have
more than one value at a particular time. Throughout the paper, we

G0
m1 ��

m2 �� �:Res

G1

��
G2

�� H

depict conflict resolution based on the tentative merge construc-
tion and manual modifications as shown to the right, where m1 and
m2 are conflicting graph modifications, and H is their merge after
conflict resolution. The dashed lines correspond to derived graph
modifications (G1 ← D3 → H) and (G2 ← D4 → H) with interfaces D3 and D4.

Example 4.2 (Conflict resolution by tentative merge construction). Consider the con-
flict resolution square 3:Res in the upper right part of Fig. 8. The first modification
dT

1,F deletes the node for Bill Clinton and updates the attribute values for Surname and
Salary of Melinda French. The second modification dT

1 relinks Bill Clinton’s node from
the marketing department to the technical department and updates his Salary attribute.
The result of the tentative merge construction keeps the Bill Clinton node, due to the
policy that nodes that are needed as source or target for newly inserted edges or at-
tributes will be preserved. Technically, the attribute values are not preserved automat-
ically. This means that the tentative merge construction only yields the structure node
of “Bill Clinton” (and the updated attribute), and the modeller should confirm that the
remaining attribute values should be preserved (this is necessary for the attribute values
for FirstName, LastName and Birth of the “Bill Clinton” node).

Variant: As a slight variant to the above example, let us consider the case that modi-
fication dT

1 also modifies Melinda’s surname from “French” to “Smith”. Since the same
attribute is updated differently by both modifications, we now have two tentative at-
tribute values for this attribute (we would indicate this by <Gates|French> as attribute
value for Melinda’s Surname attribute). This can be solved by the modeller, as well,
who should select one attribute value.



186 F. Hermann et al.

5 Concurrent Model Synchronization with Conflict Resolution

The merge construction described in Sec. 4 cannot be applied directly to detect and
solve conflicts in concurrent model synchronization. The problem here is that source
and target updates occur in different graphs and not the same one. To solve this problem
we use forward and backward propagation operations (Sec. 3) allowing us to see the
effects of each source or target update on the other domain, so that we can apply the
merge construction. In addition, we use two further operations CCS and CCT to reduce
a given domain model to a maximal consistent submodel according to the TGG.

GS
1

�:CCS
dS

1,C ��

GS
0

dS
1��

dS
1,C◦dS

1��

GS
1,C

GT
0

�:CCTdT
1,C◦dT

1 ��

dT
1 �� GT

1

dT
1,C��GT

1,C

Fig. 6. Consistency creating operations

Given a source update dS
1 : GS

0 → GS
1 ,

the consistency creating operation CCS
(left part of Fig. 6) computes a maximal
consistent subgraph GS

1,C ∈ VLS of the
given source model GS

1 . The resulting up-
date from GS

0 to GS
1 is derived by update

composition dS
1,C ◦ dS

1 . The dual operation CCT (right part of Fig. 6) works analogously
on the target component.

Remark 5.1 (Execution of Consistency Creating Operation CCS). Given a source
model GS

1 , the consistency creating operation CCS is executed by computing termi-

nated forward sequences (H0 =
tr∗F
==⇒ Hn) with H0 = (GS

1 ← ∅ → ∅). If the sets of
operational rules of the TGG are deterministic (see Thm. 3.1), then backtracking is not
necessary. If GS

1 is already consistent, then GS
1,C = GS

1 , which can be checked via opera-
tion CCS. Otherwise, operation CCS is creating a maximal consistent subgraph GS

1,C of
GS

1 . GS
1,C is maximal in the sense that there is no larger consistent submodel HS of GS

1 ,
i.e. with GS

1,C ⊆ HS ⊆ GS
1 and HS ∈ VLS . From the practical point of view, operation

CCS is performed using forward translation rules [16], which mark in each step the
elements of a given source model that have been translated so far. This construction is

well defined due to the equivalence with the corresponding triple sequence (∅ =
tr∗
=⇒ Hn)

via the triple rules TR of the TGG (see App. B in [10]).

The concurrent model synchronization operation CSynch derived from the given
TGG is executed in five steps. Moreover, it combines operations fSynch and bSynch
depending on the order in which the steps are performed. The used propagation oper-
ations fPpg, bPpg are required to be correct and we can take the derived propagation
operations according to [17]. The steps of operation fSynch are depicted in Fig. 7 and
Thm. 5.2 describes the steps for both operations.

Construction 5.2 (Operation fSynch and CSynch). In the first step (operation CCS),
a maximal consistent subgraph GS

1,C ∈ VLS of GS
1 is computed (see Thm. 5.1). In step 2,

the update dS
1,CC is forward propagated to the target domain via operation fPpg. This

leads to the pair (r1,F , dT
1,F) and thus, to the pair (dT

1,F , d
T
1 ) of target updates, which may

show conflicts. Step 3 applies the conflict resolution operation Res including optional
manual modifications (see Sec. 4). In order to ensure consistency of the resulting tar-
get model GT

2,FC we apply the consistency creating operation CCT (see Thm. 5.1) for the



Concurrent Model Synchronization with Conflict Resolution 187

Signature
GS

1

dS
2 ��

GS
0

dS
1�� �� r0 ��

⇓:fSynch

GT
0

dT
1 �� GT

1

dT
2��

GS
2
��

r2
�� GT

2

Definition

of

Components

GS
1

�1:CCS

dS
F

��

dS
2,FCB ��

�

�
�
�
� � �

GS
0

dS
1�� ��

r0 ��

dS
1,CC�� �2:fPpg

GT
0

dT
1,F��

dT
1 ��

�3:Res

GT
1

dT
2,FC��

GS
1,C

�� r1,F ��

dS
2,CB �� �5:bPpg

GT
1,F d′T2,FC

��

dT
2,CC��

GT
2,FC

dT
B

��

�4:CCT

GS
2,FCB

��
r2,FCB

�� GT
2,FCB

dS
2,FCB = dS

2,CB ◦ dS
F , d

T
2,FCB = dT

B ◦ dT
2,FC , (r2, dS

2 , d
T
2 ) = (r2,FCB, dS

2,FCB, d
T
2,FCB)

Fig. 7. Concurrent model synchronization with conflict resolution (forward case: fSynch)

Fig. 8. Concurrent model synchronization with conflict resolution applied to organizational model

target domain and derive target model GT
2,FCB ∈ VLT in step 4. Finally, the derived tar-

get update dT
2,CC is backward propagated to the source domain via operation bPpg lead-

ing to the source model GS
2,FCB and source update dS

2,CB. Altogether, we have constructed
a nondeterministic solution (r2, dS

2 , d
T
2 ) of operation fSynch for the premise (r0, dS

1 , d
T
1 )

with (r2, dS
2 , d

T
2 ) = (r2,FCB, dS

2,FCB, d
T
2,FCB) (see Fig. 7). The concurrent synchronization

operation bSynch is executed analogously via the dual constructions. Starting with
CCT in step 1, it continues via bPpg in step 2, Res in step 3, CCS in step 4, and finishes
with fPpg in step 5. The non-deterministic operation CSynch = (fSynch ∪ bSynch) is
obtained by joining the two concurrent synchronizations operations fSynch bSynch.

Example 5.3 (Concurrent Model Synchronization with Conflict Resolution). The steps
in Fig. 8 specify the execution of the concurrent synchronization in Thm. 2.1. Since the
given model GS

0 is consistent, step 1 (1:CCS) can be omitted, i.e. GS
1,C = GS

1 and dS
1,CC =

dS
1 . Step 2:fPpg propagates the source update to the target domain: Melinda Gates’



188 F. Hermann et al.

attributes are updated and the node representing Bill Clinton is deleted. The resolu-
tion 3:Res resolves the conflict between the target model update dT

1 and the propagated
source model update on the target side dT

1,F (see Thm. 4.2). We assume that the mod-
eler selected the old attribute value for Bill Clinton’s birthday. Step 4:CCT does not
change anything, since the model is consistent already. Finally, all elements that were
introduced during the conflict resolution and concern the source domain are propagated
to the source model via (5:bPpg). This concerns only the Bill Clinton node, which
now is assigned to the technical department. According to the TGG, such persons are
not reflected in the source model, such that the backward propagation does not change
anything in the source model. The result of the concurrent model synchronization with
conflict resolution is r2,FCB , where as many as possible of both proposed update changes
have been kept and insertion got priority over deletion.

Variant: Let us consider the case that both modifications dT
1 dT

1,F insert additionally
an edge of type married between the nodes of Melinda French and Bill Gates. The
conflict resolution operation 3:Res would yield two married edges between the two
nodes. But the subsequent consistency creating operation 4:CCT would detect that this
is an inconsistent state and would delete one of the two married edges.

Remark 5.4 (Execution and Termination of Concurrent Model Synchronization). Note
that the efficiency of the execution of the concurrent synchronization operations can
be significantly improved by reusing parts of previously computed transformation se-
quences as described in App. B in [10]. In [17], we provided sufficient static conditions
that ensure termination for the propagation operations and they can be applied similarly
for the consistency creating operations. Update cycles cannot occur, because the second
propagation step does not lead to a new conflict.

Note that operation CSynch is nondeterministic for several reasons: the choice between
fSynch and bSynch, the reduction of domain models to maximal consistent sub graphs,
and the semi automated conflict resolution strategy.

Definition 5.5 (Derived Concurrent TGG Synchronization Framework). Let fPpg
and bPpg be correct basic synchronization operations for a triple graph grammar TGG
and let operation CSynch be derived from fPpg and bPpg according to Thm. 5.2.
Then, the derived concurrent TGG synchronization framework is given by CSynch =
(TGG,CSynch).

6 Correctness and Compatibility

Our main results show correctness of the derived concurrent TGG synchronization
framework (Thm. 5.5) and its compatibility with the derived basic TGG synchroniza-
tion framework (Sec. 3). For the proofs and technical details see App. A and B in [10].
Correctness of a concurrent model synchronization framework requires that the non-
deterministic synchronization operation CSynch ensures laws (a) and (b) in Thm. 2.3.
In other words, CSynch guarantees consistency of the resulting integrated model and,
moreover, the synchronization of an unchanged and already consistently integrated
model always yields the identity of the input as output (law (a)).



Concurrent Model Synchronization with Conflict Resolution 189

GS
1 ∈ VLS ,

GS
0
��

r0 ��

dS �� �:fPpg

GT
0

dT��

GS
1
��

r1
�� G1

T
⇒

GS
1

id ��

GS
0

dS
�� ��

r0 ��

:CSynch��
GT

0
id �� GT

0

dT��

GS
1
��

r1
�� GT

1

Fig. 9. Compatibility with synchronization of single updates (forward case)

According to Thm. 6.2 below, correctness of given forward and backward propa-
gation operations ensures correctness of the concurrent model synchronization frame-
work.

Example 6.1 (Correctness and Compatibility). In [17], we presented a suitable realiza-
tion of a correct propagation operations derived from the given TGG (see Thm. 3.1).
This allows us to apply the following main results Thm. 6.2 and 6.4 to our case study
used as running example in Sec. 2-6.

Theorem 6.2 (Correctness of Concurrent Model Synchronization). Let fPpg and
bPpg be correct basic synchronization operations for a triple graph grammar
TGG. Then, the derived concurrent TGG synchronization framework CSynch =

(TGG,CSynch) (see Thm. 5.5) is correct (see Thm. 2.3).

The second main result (Thm. 6.4 below) shows that the concurrent TGG synchroniza-
tion framework is compatible with the basic synchronization framework. This means
that the propagation operations (fPpg, bPpg) (see Sec. 3) provide the same result as
the concurrent synchronization operation CSynch, if one update of one domain is the
identity. Fig. 9 visualizes the case for the forward propagation operation fPpg. Given
a forward propagation (depicted left) with solution (r1, dT ), then a specific solution
of the corresponding concurrent synchronization problem (depicted right) is given by
sol = (r1, id, dT ), i.e. the resulting integrated model and the resulting updates are the
same. Due to the symmetric definition of TGGs, we can show the same result concern-
ing the backward propagation operation leading to the general result of compatibility in
Thm. 6.4.

Definition 6.3 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg, bPpg be basic TGG synchronization operations and let CSynch be a concur-
rent TGG synchronization operation for a given TGG. The non-deterministic synchro-
nization operation CSynch is compatible with the propagation operations fPpg and
bPpg, if the following condition holds for the forward case (see Fig. 9) and a similar
one for the backward case:

∀ (dS , r0) ∈ ΔS ⊗ Rel, with (dS : GS
0 → GS

1 ) ∧ (GS
1 ∈ VLS ) :

(id, fPpg(dS , r0)) ∈ CSynch(dS , r0, id)

Theorem 6.4 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg and bPpg be correct basic synchronization operations for a given TGG and
let operation CSynch be derived from fPpg and bPpg according to Thm. 5.2. Then, the
derived concurrent TGG synchronization operation CSynch is compatible with propa-
gation operations fPpg, bPpg.



190 F. Hermann et al.

7 Related Work

Triple graph grammars have been successfully applied in several case studies for bidi-
rectional model transformation, model integration and synchronization [20,25,14] and
for the implementation of QVT [15]. Several formal results are available concerning
correctness, completeness, termination, functional behavior [16,13] and optimization
wrt. the efficiency of their execution [16,21]. The presented approach to concurrent
model synchronization is based on these results and concerns model synchronization of
concurrent updates including the resolution of possible merging conflicts.

Egyed et. al [7] discuss challenges and opportunities for change propagation in multi-
ple view systems based on model transformations concerning consistency (correctness
and completeness), partiality, and the need for bidirectional change propagation and
user interaction. Our presented approach based on TGGs reflects these issues. In partic-
ular, TGGs automatically ensure consistency for those consistency constraints that can
be specified with a triple rule. This means that the effort for consistency checking with
respect to domain language constraints is substantially reduced.

Stevens developed an abstract state-based view on symmetric model synchroniza-
tion based on the concept of constraint maintainers [26], and Diskin described a more
general delta-based view within the tile algebra framework [4,6]. These tile operations
inspired the constructions for the basic synchronization operations [17], which are used
for the constructions in the present paper. Concurrent updates are a central challenge in
multi domain modeling as discussed in [28], where the general idea of combining prop-
agation operations with conflict resolution is used as well. However, the paper does not
focus on concrete propagation and resolution operations and requires that model up-
dates are computed as model differences. The latter can lead to unintended results by
hiding the insertion of new model elements that are similar to deleted ones.

Merging of model modifications usually means that non-conflicting parts are merged
automatically, while conflicts have to be resolved manually. A survey on model version-
ing approaches and on (semi-automatic) conflict resolution strategies is given in [1]. A
category-theoretical approach formalizing model versioning is given in [23]. Similar to
our approach, modifications are considered as spans of morphisms to describe a partial
mapping of models, and merging of model changes is based on pushout constructions.
In contrast to [23], we consider an automatic conflict resolution strategy according to
[11] that is formally defined.

8 Conclusion and Future Work

This paper combines two main concepts and results recently studied in the literature.
On the one hand, basic model synchronization based on triple graph grammars (TGGs)
has been studied in [17], where source model modifications can be updated to target
model modifications and vice versa. On the other hand, a formal resolution strategy for
conflicting model modifications has been presented in [11]. The main new contribution
of this paper is the formal concept of concurrent model synchronization together with
a correct procedure to implement it, where source and target modifications have to be



Concurrent Model Synchronization with Conflict Resolution 191

synchronized simultaneously, which includes conflict resolution of different source or
target modifications. The main results concerning correctness and compatibility of basic
and concurrent model synchronization are based on the formalization of bidirectional
model transformations in the framework of TGGs [24,9,16] and the results in [17,11].

In future work, we plan to develop extended characterizations of the correctness and
maximality criteria of a concurrent synchronization procedure. In this paper, correct-
ness is defined explicitly in terms of the two laws formulated in Sec. 3 and, implicitly,
in terms of the properties of compatibility with basic model synchronization proven in
Thm. 6.4. We think that this can be strengthened by relating correctness of a synchro-
nization procedure with the total or partial realization of the given source and target
updates, for a suitable notion of realization. At a different level, we also believe that
studying in detail, both from theoretical and practical viewpoints, the combination of
fSynch and bSynch operations, discussed in Sec. 5, should also be a relevant matter.
Finally, we also consider the possibility of taking a quite different approach for defining
concurrent synchronization. In the current paper, our solution is based on implement-
ing synchronization in terms of conflict resolution and the operations of forward and
backward propagation. A completely different approach would be to obtain synchro-
nization by the application of transformation rules, derived from the given TGG, that
simultaneously implement changes associated to the source and target modifications.
In particular, it would be interesting to know if the two approaches would be equally
powerful, and which of them could give rise to a better implementation, on which we
are working on the basis of the EMF transformation tool Henshin [2].

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches.
IJWIS 5(3), 271–304 (2009)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)

3. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching lenses: align-
ment and view update. In: Proc. Int. Conf. on Functional Programming (ICFP 2010),
pp. 193–204. ACM (2010)

4. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 92–165.
Springer, Heidelberg (2011)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model transfor-
mations: the asymmetric case. Journal of Object Technology 10, 6:1–6:25 (2011)

6. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State- to Delta-
Based Bidirectional Model Transformations: The Symmetric Case. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–318. Springer, Heidelberg (2011)

7. Egyed, A., Demuth, A., Ghabi, A., Lopez-Herrejon, R., Mäder, P., Nöhrer, A., Reder, A.:
Fine-Tuning Model Transformation: Change Propagation in Context of Consistency, Com-
pleteness, and Human Guidance. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 1–14. Springer, Heidelberg (2011)



192 F. Hermann et al.

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science. Springer, Heidelberg (2006)

9. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidi-
rectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

10. Ehrig, H., Ermel, C., Hermann, F., Orejas, F.: Concurrent model synchronization with conflict
resolution based on triple graph grammars - extended version. Tech. Rep. TR 2011-14, TU
Berlin, Fak. IV (2011)

11. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-Based Con-
flicts in Model Versioning Using Graph Modifications. In: Giannakopoulou, D., Orejas, F.
(eds.) FASE 2011. LNCS, vol. 6603, pp. 202–216. Springer, Heidelberg (2011)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3) (2007)

13. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Seman-
tics and Implementation of Triple Graph Grammars. Tech. Rep. 37, Hasso Plattner Institute
at the University of Potsdam (2010)

14. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling 8, 21–43 (2009)

15. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: imple-
menting query/view/transformation with triple graph grammars. Software and Systems Mod-
eling (SoSyM) 9(1), 21–46 (2010)

16. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and
Complete Model Transformations Based on Triple Graph Grammars. In: Proc. Int. Workshop
on Model Driven Interoperability (MDI 2010), pp. 22–31. ACM (2010)

17. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)

18. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Proc. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2011), pp. 371–384.
ACM (2011)

19. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured documents
based on bidirectional transformations. Higher-Order and Symbolic Computation 21(1-2),
89–118 (2008)

20. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Tech. Rep. TR-ri-07-284, Dept. of Comp. Science, Univ. Paderborn,
Germany (2007)

21. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg
(2010)

22. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Version 1.0 formal/08-04-03, http://www.omg.org/spec/QVT/1.0/

23. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Category-Theoretical Approach to the For-
malisation of Version Control in MDE. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 64–78. Springer, Heidelberg (2009)

24. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg
(1995)

http://www.omg.org/spec/QVT/1.0/


Concurrent Model Synchronization with Conflict Resolution 193

25. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars Research Challenges, New Contri-
butions, Open Problems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

26. Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open questions.
Software and System Modeling 9(1), 7–20 (2010)

27. TFS-Group, TU Berlin: AGG (2011), http://tfs.cs.tu-berlin.de/agg
28. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based

on bidirectional transformation. Software and Systems Modeling, 1–16 (2011)

http://tfs.cs.tu-berlin.de/agg

	Concurrent Model Synchronization
with Conflict Resolution Based on Triple Graph Grammars
	Introduction
	Concurrent Model Synchronization Framework
	Basic Model Synchronization Framework
	Semi-automated Conflict Detection and Resolution
	Concurrent Model Synchronization with Conflict Resolution
	Correctness and Compatibility
	Related Work
	Conclusion and Future Work
	References





