Verified Resource Guarantees
for Heap Manipulating Programs

Elvira Albert?, Richard Bubel!, Samir Genaim?,
Reiner Hihnle!, and Guillermo Romén-Diez?

! CSE, Chalmers University of Technology, Sweden
2 DSIC, Complutense University of Madrid (UCM), Spain
3 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. Program properties that are automatically inferred by static
analysis tools are generally not considered to be completely trustwor-
thy, unless the tool implementation or the results are formally verified.
Here we focus on the formal verification of resource guarantees inferred
by automatic cost analysis. Resource guarantees ensure that programs
run within the indicated amount of resources which may refer to mem-
ory consumption, to number of instructions executed, etc. In previous
work we studied formal verification of inferred resource guarantees that
depend only on integer data. In realistic programs, however, resource
consumption is often bounded by the size of heap-allocated data struc-
tures. Bounding their size requires to perform a number of structural
heap analyses. The contributions of this paper are (i) to identify what
exactly needs to be verified to guarantee sound analysis of heap manipu-
lating programs, (ii) to provide a suitable extension of the program logic
used for verification to handle structural heap properties in the context of
resource guarantees, and (iii) to improve the underlying theorem prover
so that proof obligations can be automatically discharged.

1 Introduction

Formally proving the correctness of software can be crucial for many applica-
tions, e.g., in safety-critical systems. There are two possible approaches to cer-
tifying the correctness of software, (1) either perform full-blown verification of
the correctness of the system or (2) alternatively validate its results for every
execution. In the case of static analyzers, the first alternative is a daunting task,
among other things, because of the sophisticated algorithms used for the analy-
sis and their evolution over time. In this paper, we adopt the second alternative
based on constructing a validating tool [I4] which, after every run of the an-
alyzer, formally (and automatically) confirms that the results are correct and,
optionally, generates correctness proofs. Such proofs can then be translated to
independently checkable certificates in the proof-carrying code style [6I13].
Resource usage analysis aims at (over-)approximating the amount of resources
(time, memory, etc.) required to run a program in terms of its input arguments.
cosTA [12] is a cost analyzer which allows the user to select a particular resource

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 130-{[Z5] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Verified Resource Guarantees for Heap Manipulating Programs 131

(among those available in the system) and automatically generate resource us-
age upper bounds from Java bytecode (and hence Java) programs. Correctness of
the techniques that COSTA implements is proven at the theoretical level, but the
tool has not been formally verified. Thus, there is no guarantee that correctness
is realized by the implementation. In recent work [3], we have proposed a fully
automatic process of obtaining verified resource guarantees by using KeY [5], a
state-of-the-art theorem prover for Java programs, for verifying that the upper
bounds inferred by COSTA are correct. In essence, the cOSTA and KeY systems
cooperate in such a way that KeY produces formal correctness proofs for the dif-
ferent intermediate results used to obtain the upper bounds. When the resource
guarantees depend only on data of integer type, this cooperation results in a
fully automatic tool for producing verified resource guarantees.

However, it is often the case that resource guarantees depend on the struc-
tural properties of dynamically allocated data, e.g., the resource consumption of
executing a loop that traverses a list is typically a function of the length of such
a list. Resource analysis needs to keep track of how the size of data structures
changes along the execution. For this purpose, COSTA integrates as an addi-
tional component the path-length analysis [I7]. The path-length of a non-cyclic
data structure is the length of the maximal path starting from the root, i.e., its
depth. Inferring the path-length property also requires proving acyclicity of data
structures and keeping track of possible sharing between pointers.

The main achievement of this paper is the extension of [3] to handle heap
manipulating programs. In particular: (1) we identify the structural properties
inferred by cosTA which need to be verified and extend the Java Modeling Lan-
guage (JML) by suitable new constructs; (2) we extend the program logic used
during verification by additional theories for structural heap properties including
acyclicity or disjointness of heap regions. Extensive work with implementation
and improvement of the proof-search strategies for the newly introduced theories
was required to achieve a high degree of automation; (3) we formalize faithfully
the notion of maximal path-length of an acyclic data structure in KeY’s logic.
This theory is equipped with lemmas that match the requirements of the path-
length analysis performed in cOSTA; and (4) realizing the cooperation between
cosTA and KeY has required a number of non-trivial extensions of both systems.

The paper is organized as follows: Sec. 2 recalls the framework of [3]; Sec. Bl
presents the additional components that need to be verified for carrying out
the extension; Sec. @ describes how the KeY logic has been extended to express
and verify structural heap properties and path-length assertions; experimental
results are presented in Sec. B} and Sec. [fl concludes and discusses related work.

2 The Framework: Verification of Resource Guarantees

In this section we review the verification framework for upper bounds (UBs) as
proposed in [3] which does not take heap-allocated data structures into account.
Sec. 2] describes the components involved in a resource guarantees analysis
while Sec. details the formal verification of these components with KeY.

132 E. Albert et al.

1 void scoreBoard(int[][] v) {

2 //@ ghost int v len =v.length

s int i=0, j=0;

4 //@ assert (j=0 N i=0 A v.length=v len)

5 //@ ghost int i1=i, j1 =j, v leny =v.length

6 //@ ghost int i2=i, j2=j, v leno=v.length

7 //@ decreases ((v.length — i) > 0 ? (v.length — i) : 0)

s //@ loop invariant (i2=0 A i2=t A v lena>0) V (i2=0 N\ ©>1 N\ v leny>1)
9 while (i < v.length) {

10 j=0;

11 //@ assert (vleni>i A\ 1=t A j=0)

12 //@ ghost int i3=i, j3=j, v leng=v.length

13 //@ ghost int i4=1i, ja=j, v lena=v.length

14 //@ decreases ((i —j) > 07?2 (i—j):0)

15 //@ loop invariant (j4a=0 A ja=j A i4=i) V (ja=0 N j>1 N isa>j N\ ia=1)
16 while (j < i) {

17 vIil[j1=1i + j;

18 j++;

19 //@ assert (j=js+1 N i3=1);

20 //@ set i3=i, js=j, v lens=v.length
21 }

22 it++;

23 //@ assert (v.length,1>i A i=i1+1)
24 //@ set i1=1, j1=j, v leni =v.length
25 }

26 }

Fig. 1. cosTA’s output for a simple example working on integer data

2.1 Inference of Resource Guarantees

Cost analyzers [Il2] usually infer UBs for each iterative and recursive construct
(loops) and then compose the results in order to obtain UBs for the methods of
interest. W.l.o.g., we focus on polynomial UBs which are the result of composing
simple loops, but the same components are used to infer UBs for programs with
logarithmic and exponential complexities. Intuitively, in order to infer an UB for
a single loop, we infer an UB A on the worst-case cost of a single execution of its
body and an UB I on the number of iterations that it can perform. Then, A * I
is an UB for the loop. To infer A and I COSTA relies on the program analysis
components described below that provide the necessary information. The results
are provided by cosTA as JML annotations that KeY will attempt to verify.

Ranking functions. For each loop, COSTA infers as UB on the number of iterations
a linear function I from the loop variables to N which is strictly decreasing at each
iteration. Ranking functions are of the form nat(¢), where nat(¢) = max(0, ¢),
which can be translated to the JML annotation “//@ decreasing £ >0 ? £:07.

Verified Resource Guarantees for Heap Manipulating Programs 133

Ezample 1. Consider the method scoreBoard () given in Fig. [Tl where two nested
loops are used to initialize some matrix values. For the inner loop COSTA infers at
line 14 the ranking function f(i,j) = nat(i — j) which safely bounds the number
of iterations. For the outer loop, the number of iterations is bounded by the
ranking function that appears in line 7 which involves the length of the array.

Loop invariants. Loop invariants, together with size relations, are needed to
compute the worst-case cost A of executing one loop iteration. For each loop in
the program, COSTA infers an invariant ¢ that involves the loop variables © and
auxiliary variables w such that each w; represents the initial value of v;. The
JML annotation for this invariant consists of one line defining all w as ghost
variables (“//@ ghost int w1 = v1;...; int w, = v,”, lines 6,13 in Fig. [[l) and one
line for the loop invariant (“//@ loop invariant ¢”, lines 8,15 in Fig. [I]).

Example 2. Consider the invariant for the outer loop at line 8. The left disjunct
corresponds to first visit to that program point, and the right disjunct to visit it
after executing the loop body at least once. Note that separating the invariant
into these two cases results in a more precise UB, and in addition helps KeY in
verifying the invariant. We declared as ghost variable in line 6 such that is,72
and v leny correspond to the initial value of i, j and v.length when entering
the loop for the first time. The invariant states that i is always smaller than or
equal to the initial value of v.length (i < v leny) This is essential to bound the
worst-case cost of the loop, since the cost of each iteration depends on i.

Size relations. Given a fragment of code (a scope), COSTA infers size relations
between the values of the variables at a certain program point of interest within
the scope and their initial values when entering the scope. This allows composing
the cost of the different code fragments. In particular, for each loop (or method
call), cosTA infers the relation ¢ between the values of variables before a loop
(or call) entry and the entry of its parent scope. Suppose that the loop (or call) is
at line L;, its parent scope starts at line L,, ¥ are the variables of interest at line
L;, and w represent their values at line L,. Then we add the JML annotation
“//@ ghost int w1 = v1;...; int w, = vy;” immediately after line L, to capture the
values of v at line L, and the JML annotation “//@ assert ¢” immediately before
line L; to state that the relation ¢ must hold at the program point.

Ezample 3. Let us demonstrate the need for size relations: (1) during cost anal-
ysis, the cost of the outer loop is inferred first in terms of the values of i and
v.length before entering the loop, and later is transformed to be in terms of the
length of the input array. For this, COSTA uses the size relation at line 4 which
relates the values at that program point to those at line 2 using the correspond-
ing ghost variables; (2) similarly, the cost of the inner loop is first inferred in
terms of the values of i and j before entering the loop, and later is transformed
to be in terms of their values when entering the outer loop. Assuming that i1,
j1 and v len; are respectively the value of i, j, and v.length, line 11 includes
the size relation required to do such transformation. Note that since these code

134 E. Albert et al.

fragments appear inside a loop, the values of i1, j; and v len; should be updated
in each iteration. This is done by defining and initializing them at line 5 (for
the first iteration) and modifying them in each iteration at the end of the loop
(line 24). The size relation at line 23 is used by COSTA to synthesize a ranking
function, this also helps KeY in proving that it is indeed a ranking function; and
(3) lines 12, 19 and 20 encode the size relation of the inner loop.

Upper Bounds. In the verification phase it suffices to prove the correctness of the
inferred ranking functions, loop invariants, and size relations: based on these, it
is straightforward to compute an UB for the method by applying parametric
integer programming (PIP) to obtain A and then just multiply I * A.

Example 4. We start from the innermost loop at line 16. Assuming that exe-
cuting the condition costs (at most) ¢; instructions, and that the cost of each
iteration (i.e., the loop body) is co instructions, then it is clear that nat(iy —
Jja) * (c1 + c2) + ¢1 is an UB on the cost of this loop. Next, we move to the
outer loop at line 9. Let us assume that the cost of the comparison is (at most)
c3 instructions, the code at line 10 costs ¢4 instructions, and the code at line
22 is c5 instructions. Then, the cost of each iteration of this loop is ¢35 + ¢4 +
nat(iqy — ja) * (c1 + c2) + ¢1 + ¢5, where the highlighted subexpression is the cost
of the inner loop. Note that each iteration might have a different cost, since i4—j4
is not the same for all iterations. The solution is to find the worst-case cost A in
terms of v leng, is, jo such that A > iy — j4 in all iterations. Then, nat(v lens —
i9) % [c3+ca+nat(A) x (c1 + c2) + c1+¢5]+c3 is an UB for the loop. To find such
A, COSTA solves the PIP problem of maximizing the objective function iy — j4
w.r.t. the loop invariant (line 8) and the size relations (line 11) where v leng, iz, jo
are the parameters. This produces an expression in terms of v lens, i3, jo which
is greater than or equal to i4 — j4 in all iterations of the loop. In our exam-
ple, it is A = v lens — 1. We finally can compute the cost of the scoreBoard
method. Assume that the cost of line 3 is ¢g, then the cost of the method
is cg+nat(v leng —i2) * [c3 + c4 + nat(v lena — 1) * (c1 + ¢c2) + ¢1 + ¢5] + ¢3. We
need to express this UB in terms of the input parameter v len. For this, COSTA
maximizes (using PIP) v leng — iz and v leng — 1 w.r.t. the size relation at line 4
and, respectively, obtains v len and v len — 1. Therefore, ¢g + nat(v len) [cs +
cq + nat(v len — 1) x (¢1 + ¢2) + ¢1 + ¢5] + ¢3 is the UB for scoreBoard.

2.2 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic (JavaDL) [5], a first-
order dynamic logic with arithmetic. JavaDL extends sorted first-order logic by
a program modality (-)-. Let p denote a sequence of executable Java statements
and ¢ an arbitrary JavaDL formula, then (p)¢ is a formula which states that

program p terminates and in its final state ¢ holds. A typical formula looks like

p
A~

=0 Aj = 50 —> (i=j-ij=j-ii=ii) (i = JO A j = i0)

Verified Resource Guarantees for Heap Manipulating Programs 135

where i,j are program variables represented as mon-rigid constants. Non-rigid
constants and functions are state-dependent: their value can be changed by pro-
grams. The rigid constants 0, jO are state-independent: their value cannot be
changed. The formula above says that if program p is executed in a state where
i and j have values i0, j0, then p terminates and in its final state the values of
the variables are swapped. To reason about JavaDL formulas, KeY employs a
sequent calculus whose rules perform symbolic execution of the programs in the

modalities. Here is a typical rule:
I,b=> ({p}rest)p, A I',—b=> ({q}rest)¢, A

I' = (if (b) {p2 else {q} rest)¢, A

As values are symbolic, it is in general necessary to split the proof whenever an
implicit or explicit case distinction is executed. It is also necessary to represent
the symbolic values of variables throughout execution. This becomes apparent
when statements with side effects are executed, notably assignments. The as-
signment rule in JavaDL looks as follows:

I' = {x:=val}(rest)¢p, A

I' = (x = val; rest)¢p, A

The expression in curly braces in the premise is called update and is used in KeY
to represent symbolic state changes. An elementary update loc := val is a pair
of a program variable and a value. The meaning of updates is the same as that of
an assignment, but updates can be composed in various ways to represent com-
plex state changes. Updates u1,us can be composed into parallel updates uq||us.
In case of clashes (updates uq,ug assign different values to the same location) a
last-wins semantics resolves the conflict. This reflects left-to-right sequential ex-
ecution. Apart from that, parallel updates are applied simultaneously, i.e., they
do not depend on each other. Update application to a formula/term e is denoted
by {u}e and forms itself a formula/term.

ifSplit

assign

Verifying Size Relations. JML annotations are proven to be valid by symbolic
execution. For example, in the method scoreBoard() one starts with execution of
the variable declarations. Ghost variable declarations and assignments to ghost
variables (//@ set var=val;) are treated like Java assignments. If a JML assertion
“assert ¢;” is encountered during symbolic execution, the proof is split: the first
branch must prove that the assertion formula ¢ holds in the current symbolic
state; the second branch continues symbolic execution. In the scoreBoard exam-
ple, a proof split occurs before entering each loop. This verifies the size relations
among variables as derived by cOSTA and encoded in terms of JML assertions.

Verifying Invariants and Ranking Functions. Verification of the loop invariants
and ranking functions obtained from COSTA is achieved with a tailored loop
invariant rule that has a variant term to ensure termination:
(i) I'= InvAdec>0,A
(#1) I, {Ua}(b A Inv Adec=d0) =

{Ua}{body)(Inv A dec < dO A dec > 0), A
(731) I, {UA}(=b A Inv) = {Ua}(rest)p, A

I' = (while (b) { body } rest)¢, A

looplnv

136 E. Albert et al.

Inv and dec are obtained, respectively, from the loop invariant and decreasing
JML annotations generated by COSTA. Premise (i) ensures that invariant Inv
is valid just before entering the loop and that the variant dec is non-negative.
Premise (ii) ensures that Inv is preserved by the loop body and that the variant
term decreases strictly monotonic while remaining non-negative. Premise (iii)
continues symbolic execution upon loop exit. The integer-typed variant term en-
sures loop termination as it has a lower bound (0) and is decreased by each loop
iteration. Using COSTA’s derived ranking function as variant term obviously ver-
ifies that the ranking function is correct. The update U4 assigns to all locations
whose values are potentially changed by the loop a fixed, but unknown value.
This allows using the values of locations that are unchanged in the loop during
symbolic execution of the body.

Contracts. COSTA also infers contracts which specify pre- and post-conditions
on the input and output arguments of each method. Contracts are useful for
modular verification in KeY.

3 Upper Bounds for Heap Manipulating Programs

When input arguments of a method are of reference type, its UB is usually not
specified in terms of the concrete values within the data structures, but rather in
terms of some structural properties of the involved data structures. For example,
if the input is a list, then the UB would typically depend on the length of the
list instead of the concrete values in the list.

Ezxample 5. Consider the program in Fig. 2 where class List implements a linked
list as usual. For method insert, cOSTA infers the UB ¢; * nat(x) 4+ co where
x refers to the length of x, and ¢1/co are constants representing the cost of the
instructions inside/before & after the loop. The UB depends on the length of x,
because the list is traversed at lines [[T6HI9

The example shows that cost analysis of heap manipulating programs requires
inferring information on how the size of data structures changes during the
execution, similar to the invariants and size-relations that are used to describe
how the values of integer variables change. To do so, we first need to fix the
meaning of “size of a data structure”. We use the path-length measure which
maps data structures to their depth, such that the depth of a cyclic data structure
is defined to be oo. Recall that the depth of a data structure is the maximum
number of nodes (i.e. objects) on a path from the root to a leaf. Using this
size measure, COSTA infers invariants and size relations that involve both integer
and reference variables, where the reference variables refer to the depth of the
corresponding data structures. Once the invariants are inferred, synthesizing
the UBs follows the same pattern as in Sec. Bl In the following, we identify
the essential information of the path-length analysis (and related analyses) that
must be verified later by KeY.

Verified Resource Guarantees for Heap Manipulating Programs 137

1 //@ requires \acyclic(z)

2 //@ ensures \acyclic(\result)

3 //@ ensures \depth(\result) < \depth(z) + 1

4 public static List insert(List x, int v) {

5 //@ ghost List xo = x;

6 List p = null;

7 List ¢ = x;

8 List n = new List(v, null);

9 //@ ghost List co = c

10 //@ assert \depth(n) = 1 A \depth(co) = \depth(zo)

11 //@ decreasing \depth(c)

12 //@ loop invariant \depth(co) > \depth(c)

13 //@ loop invariant \acyclic(n) A \acyclic(p) A \acyclic(z) A \acyclic(c)
14 //@ loop invariant \disjoint ({n,z})A\disjoint({n, c})A\disjoint({n,p})
15 //@ loop invariant !\reachPlus(p,z) A !\reachPlus(n,z) A \reach(n,p)
16 while (¢ != null A c.data < v) {

17 p =c;

18 c = c.next;
19 }

20 if (p == null) {
21 n.next = x;
22 X = n;

23 } else {

24 n.next = c;
25 p.next = n;
26 }

27 return Xx;

28 }

Fig. 2. The running example, with (partial) JML annotations

3.1 Path-Length Analysis

Path-length analysis is based on abstracting program states to linear constraints
that describe the corresponding path-length relations between the different data
structures. For example, the linear constraint x < y represents all program states
in which the depth of the data structure to which x points is smaller than the
depth of the data structure to which y points. Starting from an initial abstract
state that describes the path-length relations of the initial concrete state, the
analysis computes path-length invariants for each program point of interest. In
order to verify the path-length information with KeY, we have extended JML
with the new keyword \depth that gives the depth of a data structure to which
a reference variable points. In particular, for invariants, size-relations, and con-
tracts, if the corresponding constraints include a variable x, corresponding to a
reference variable x, we replace all occurrences of « by \depth(x).

Example 6. We explain the various path-length relations inferred by cosTa for
the method insert of Fig. Bl and how they are used to infer an UB. Due to space

138 E. Albert et al.

limitations, we only show the annotations of interest. For the loop at lines [T6HI9]
COSTA infers that the depth of the data structure to which ¢ points decreases
in each iteration. Since the depth is bounded by 0, it concludes that nat(c) is a
ranking function for that loop. As a part of the loop invariant, COSTA infers that
co > ¢ where ¢ refers to the depth of the data structure to which c¢ points before
entering the loop and c to the depth of the data structure to which ¢ points after
each iteration. Using this invariant, together with the knowledge that the depth
of ¢y equals to the depth of x, we have that ¢; * nat(z) + ¢z is an UB for insert
(since the maximum value of ¢ is exactly x). Another essential relation inferred
by the path-length analysis (captured in the ensures clause in line [3)) is that
the depth of the list returned by insert is smaller than or equal to the depth
of x plus one. This is crucial when analyzing a method that uses insert since
it allows tracking the size of the list after inserting an element.

Path-length relations are obtained by means of a fixpoint computation which
(symbolically) executes the program over abstract states. As a typical example,
executing x=y.f adds the constraint 2’ < y to the abstract state if the variable
y points to an acyclic data structure, and 2’ < y otherwise. On the other hand,
executing x.f=y adds the constraints A{z’ < z+y | z might share with x} if
it is guaranteed that x does not become cyclic after executing this statement.
This is because, in the worst case, x might be a leaf of the corresponding data-
structure pointed to by z, and thus the length of its new paths can be longer
than the old ones at most by y. Obviously, to perform path-length analysis, we
require information on (a) whether a variables certainly points to an acyclic data
structure; and (b) which variables might share common regions in the heap.

3.2 Cyclicity Analysis

The cyclicity analysis of cosTA [9] infers information on which variables may
point to (a)cyclic data structures. This is essential for the path-length analysis.
The analysis abstracts program states to sets of elements of the form: (1) x~y
which indicates that starting from x one may reach (with at least one step) the
object to which y points; (2) OX which indicates that x might point to a cyclic
data structure; and (3) xoy which indicates that x might alias with y.

Starting from an abstract state that describes the initial reachability, alias-
ing and cyclicity information, the analysis computes invariants (on reachability,
aliasing and cyclicity) for each program point of interest by means of a fixpoint
computation which (symbolically) executes the program instructions over the
abstract states. For example, when executing y=x.f, then y inherits the cyclic-
ity and reachability properties of x; and when executing x.f=y, then x becomes
cyclic if before the instruction the abstract state included Y, y~x, or yox.

On the verification side, to make use of the inferred cyclicity relations, we ex-
tend JML by the new keyword \acyclic which guarantees acyclicity. In contrast
to cosTA, JML and KeY use shape predicates with must-semantics. Acyclicity
information is then added in JML annotations at entry points of contracts and
loops where we specify all variables which are guaranteed to be acyclic. For loop

Verified Resource Guarantees for Heap Manipulating Programs 139

entry points as invariants (as in line[[3)) and for contracts as pre- and postcondi-
tions (as in lines[I] [Z). To make use of the reachability relations we extend JML
by the new keyword \reachPlus(x,y), which indicates that y must be reachable
from x in at least one step, and use the standard keyword \reach(x,y) which
indicates that y must be reachable from x in zero or more steps (i.e., they might
alias). The may-information of COSTA about reachability and aliasing is then
added as must-predicates in JML (in loop entries and contracts) as follows: let
A be the set of judgments inferred by COSTA for a given program point, then we
add \reachPlus(x,y) whenever x~y ¢ A, and we add !\reach(x,y) whenever
xy € AANxoy ¢ A (for example, in line [TH).

3.3 Sharing Analysis

Knowledge on possible sharing is required by both path-length and cyclicity
analyses. The sharing analysis of COSTA is based on [I5] where abstract states are
sets of pairs of the form xey which indicate that x and y might share a common
region in the heap. The sharing invariants are propagated from an initial state by
means of a fixpoint computation to the program points of interest. For example,
when executing y=x.f, the variable y will only share with anything that shared
with x (including x itself); on the other hand, when executing x. £=y, the variable
x keeps its previous sharing relations, and in addition it might share with y and
anything that shared with y before.

Obviously, KeY needs to know about the sharing information inferred by
COSTA to verify acyclicity and path-length properties. To this end, we extended
JML by the new keyword \disjoint which states that its argument, a set of
variables, does not share any common region in the heap (for example, in line[Id]).

4 Verification of Path-Length Assertions

Structural heap properties, including acyclicity, reachability and disjointness,
are essential both for path-length analysis and for the verification of path-length
assertions. However, while the path-length analysis performed by COSTA main-
tains cyclicity and sharing, the complementary properties are used as primitives
on the verification side. The reason is that the symbolic execution machinery
of KeY starts with a completely unspecified heap structure that subsequently
is refined using the inferred information about acyclicity and disjointness. In
the following we explain how structural heap properties are formalized in the
dynamic logic (JavaCard DL) used in this paper and implemented in KeY [5].

4.1 Heap Representation

First we briefly explain the logical modeling of the heap in JavaCard DL[The
heap of a Java program is represented as an element of type Heap. The Heap

! Note that this is not the heap model described in earlier publications on KeY such
as [5]. In the present paper we use an explicit heap model based on [18].

140 E. Albert et al.

data type is formalized using the theory of arrays and associates locations to
values. A location is a pair (o, f) of an object o and a field f. The select function
allows to access the value of a location in a heap h by select(h, o, f). The comple-
mentary update operation which establishes an association between a location
(0, f) and a value val is store(h, o, f,val). To improve readability, when the heap
h it is clear from the context, we use the familiar notation o.f and o.f := val
instead of select and store expressions. Based on this heap model, we define a
rule for symbolic execution of field assignments (cf. the assign rule in Sec.22). It
simply updates the global heap program variable with the updated heap object:

I' = {heap := store(heap, o,f,v) }(rest)p, A
I' = (o.f = v; rest)p, A

assign

4.2 Predicates for Structural Heap Properties

For the sake of readability, in Sec. 3], we gave simplified versions of the predicates
\depth, \acyclic, \reach, \reachPlus and \disjoint as compared to the ac-
tual implementation. In reality, these predicates have an extra argument that
restricts their domain to a given set of fields. For example, instead of \depth(z)
we might actually have \depth({z.next}, z) which refers to the depth of x con-
sidering only those paths that go through the field next. A syntactic analysis
infers automatically a safe approximation of these sets of fields by taking the
fields explicitly used in the corresponding code fragment.

Ultimately, the various structural heap properties are reduced to reachability
between objects which, therefore, must be expressible in the underlying program
logic. The counterpart of JML’s \reach predicate in JavaCard DL is

\reach: Heap x LocSet x Object x Object X int

and expresses bounded reachability (or n-reachability): an object e is n-reachable
from an object s with respect to a heap h and a set of locations [(of type LocSet)
if and only if there exists a sequence s = 0109 - - - 0,, = e where 0;41 = 0;.f; and
(0i, fi) € L for all 0 < i < n. The predicate \reach(h,l, s, e, n) is formally defined
asn > 0As#null A((n=0As=¢)VIf.(o f) €lA\reach(h,l,s.f,e,n—1)).
As a consequence, from null nothing is reachable and also null cannot be reached.

Location sets in JavaCard DL are formalized in the data type LocSet which
provides constructors and the usual set operations (see [I8] for a full account).
Here we need only three location set constructors: the constructor empty for the
empty set, the constructor singleton(o, f) which takes an object o and a field f
and constructs a location set with location (o, f) as its only member, and the
constructor allObjects(f) which stands for the location set {(o, f) | 0 € Object}.

Ezample 7. \reach(h, allObjects(next), head, last,5) is evaluated to true iff the
object last is reachable from object head in five steps by a chain of next fields.

Based on \reach we could directly axiomatize structural heap predicates such as
\acyclic(h,l,0) or \disjoint(h,l, 0,u). Instead we prefer to reduce structural
heap predicates to \reachPlus(h,!l, o0, u) which is the counterpart of the JML

Verified Resource Guarantees for Heap Manipulating Programs 141

function of the same name in Sec. and expresses reachability in at least one
step. This has several advantages over using \reach: (1) the definition of predi-
cates such as \acyclic does not use the step parameter of the \reach predicate
and one would use existential quantification to eliminate it which impedes au-
tomation; and (2) for \reachPlus(h,l,0,u) to hold one has to perform at least
one step using a location in [. This renders the definition of properties such as
\acyclic less cumbersome as the zero step case has been excluded.

The predicate \reachPlus can defined with the help of \reach and this def-
inition can be used if necessary, however, in the first place we use a separate
axiomatization of \reachPlus. This helps to avoid (or at least to delay as long
as possible) the reintroduction of the step parameter and, hence, an additional
level of quantification. For space reasons, we do not give the calculus rules for
the axioms and auxiliary lemmas of the structural heap predicates like \acyclic
and \disjoint (which are not too surprising). Instead, we describe in the fol-
lowing section one central difficulty that arises when reasoning about structural
heap properties and how we solved it to achieve higher automation.

4.3 Field Update Independence

When reasoning about structural heap predicates one often ends up in a situation
where one has to prove that a heap property is still valid after updating a location
on the heap, i.e, after executing one or several field assignments. For instance, we
might know that \acyclic(h,l,u) holds and have to prove that after executing
the assignment o.f=v; the formula \acyclic(store(h,o, f,v),l,u) holds.

A precise analysis of the effect of a field update is expensive and makes au-
tomation significantly harder. As it is common in this kind of situation, it helps
to optimize the common case. In the present context, this means to decide in
most cases efficiently that a field assignment does not effect a heap property at
all. This is sufficiently achieved by two simple checks:

1. The expression singleton(o, f) C | checks whether an updated location o.f
is in the location set [of the heap property to be preserved. This turns out to
be inexpensive for most (if not all) practically occurring cases. Whenever this
check fails, the resulting store can be removed from the argument of the heap
property. For instance, an assignment o.data=5 to the data field of a list does
not change the list structure which depends solely on the next field. In that
case we can rewrite \acyclic(store(h,o,data,5),l,u) to \acyclic(h,l,u).

2. To check whether an object o whose field has been updated is reachable from
one of the other mentioned objects, is more expensive than the previous one,
but still cheaper than a full analysis. For example, we can check whether the
object o is reachable from object u in case of \acyclic(store(h,o, f,v),l,u).
If the answer is negative we can again discard the store expression.

4.4 Path-Length Axiomatization

In general, the JML assertions generated by COSTA refer to the path-length of a
data structure o as \depth(l, 0) where [is the location set restricting the depth

142 E. Albert et al.

Table 1. Statistics for the Generation and Checking of Resource Guarantees

Certificate Generation Cert. Size Generation/Checking

Bench Theap Tana ijl Tyer Nod Br Tgen Tcheck %
traverse 14 36 2 2300 1208 52 2338 1100 47.05
create 54 150 8 3100 1499 47 3258 1400 42.97
insert 282 374 16 40800 19252 636 41190 5800 14.08
index0f 26 86 4 5900 2439 67 5990 1800 30.05
reverse 72 130 8 20900 14206 673 21038 3400 16.16
array2List 62 154 8 2600 1457 37 2762 1400 50.69
copy 76 132 10 22600 14147 673 22742 3100 13.63
searchtree 142 202 6 3700 2389 97 3908 1500 38.38

to certain locations. This JML function is mapped to the JavaCard DL function
\depth(h, [, 0) which is evaluated to the maximal path-length of 0 in heap h using
only locations from [. Its axiomatization is based on the n-reachability predicate
\reach expressing that there exists an object u reachable in \depth(h, [, 0) steps
and that there is no object z reachable from o in more than \depth(h,, o) steps.
This definition is not used by default by the theorem prover, instead, automated
proof search relies mainly on a number of lemmas that state more useful higher-
level properties. For instance, given a term like \depth(store(h, o, f,v),l, u) there
is a lemma which checks that o is reachable from u and some acyclicity require-
ments. If that is positive then the lemma allows us to use the same approximation
for \depth in case of a heap update as detailed in Sec. Bl

5 Experimental Results

The implementation of our approach required the following non-trivial extensions
to cosTA and KeY: (1) generate and output in cosTA the JML annotations
\depth, \acyclic and \disjoint so that KeY can parse them; (2) synthesize
suitable proof obligations in JavaCard DL that ensure correctness of the resource
analysis; (3) axiomatize the JML \depth, \acyclic and \disjoint functions
in KeY as described in Sec. @l and implement heuristics for automation; and (4)
implement heuristic checks in KeY that allow fast verification of the common
case as described in Sec. .4l The resulting extended versions of KeY and cOSTA
are available for download from http://fase2012.hats-project.eu

Table [shows first experiments using a set of representative programs that
perform common list operations as well as searching for an element in a binary
tree. The experiments were performed using an Intel Core2 Duo at 2.53GHz with
4Gb of RAM running Linux 2.6.32. Columns Theap, Tana and Ty, show, re-
spectively, the times (in milliseconds) taken by COSTA to perform the heap anal-
ysis (cyclicity, sharing and path-length), to execute the whole analysis (heap and
other analyses performed by cOSTA), and to generate the JML annotations. Col-
umn T, shows the time taken by KeY to verify the JML annotations generated
by COSTA. The size of the generated proofs is indicated by their number of nodes
Nod and branches Br. Column T, shows the total time taken to generate the

http://fase2012.hats-project.eu

Verified Resource Guarantees for Heap Manipulating Programs 143

proof (Tana+Tjmi+Tyer) and Tepecr, shows the time taken by KeY to check the
validity of the proof. The last column (%) shows the ratio Tepeck /T gen-

Our preliminary experiments show already that a proof-carrying code ap-
proach to resource guarantees can be realized using cosTA and KeY with both
certificate generation and checking being fully automatic. In our framework the
code originating from an untrusted producer should be bundled with the proof
generated by cosTA + KeY for a given resource consumption. Then the code
consumer can check locally and automatically with KeY whether the claimed
resource guarantees are verified. As expected, checking an existing proof with
KeY takes on average only around 30% of the time to produce it.

6 Conclusions and Related Work

This paper describes the combination of a state-of-the-art resource analyzer
(cosTA) and a formal verification tool (KeY) to automatically infer and verify
resource guarantees that depend on the size of heap-allocated data structures in
Java programs. The distribution of work among the two systems is as follows:
COSTA generates ranking functions, invariants, as well as size relations, and out-
puts them as extended JML annotations of the analyzed program; KeY then
verifies the resulting proof obligations in its program logic and produces proof
certificates that can be saved and reloaded.

Many software verification tools including KeY [5], Why [8], VeriFast [16], or
Dafny [12] rely on automatic theorem proving technology. While most of these
systems are expressive enough to model and prove heap properties of programs,
such proofs are far from being automatic. The main reason is that functional
verification of heap properties requires complex invariants that cannot be found
automatically. In addition, automated reasoning over heap-allocated symbolic
data is far less developed than reasoning over integers or arrays.

With this paper we show that the automation built into a state-of-the-art ver-
ification system is sufficient to reason successfully about resource-related heap
properties. The main reasons for this are: (a) the required invariants are inferred
automatically in the resource analysis stage; (b) a limited and carefully axioma-
tized signature for heap properties expressed in logic is used. This confirms the
findings of the SLAM project [4] that existing verification technology can be
highly automatic for realistic programs and a restricted class of properties.

There exist several other cost analyzers which automatically infer resource
guarantees for different programming languages [I0/IT]. However, none of them
formally proves the correctness of the upper bounds they infer. An exception
is [6], which verifies and certifies resource consumption (for a small program-
ming language and not for heap properties). For the particular case of memory
resources, [7] formally certifies the correctness of the static analyzer. We have
taken the alternative approach of certifying the correctness of the upper bounds
that the tool generates. This is not only much simpler, but has the additional
advantage that the generated proofs can act as resource certificates.

144 E. Albert et al.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, the Spanish
Ministry of Science and Innovation (MICINN) under th TIN-2008-05624 DOVES
project, the UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the
Madrid Regional Government under the S2009TIC-1465 PROMETIDOS-CM
project.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161-203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157-172.
Springer, Heidelberg (2007)

3. Albert, E., Bubel, R., Genaim, S., Hahnle, R., Puebla, G., Romén-Diez, G.: Verified
Resource Guarantees using COSTA and KeY. In: Proc. of PEPM 2011, pp. 73-76.
ACM Press (2011)

4. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The Static Driver
Verifier Research Platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119-122. Springer, Heidelberg (2010)

5. Beckert, B., Hahnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Crary, K., Weirich, S.: Resource Bound Certification. In: POPL 2005, pp. 184-198.
ACM Press (2000)

7. de Dios, J., Pena, R.: Certification of Safe Polynomial Memory Bounds. In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 184-199. Springer, Heidelberg
(2011)

8. Filliatre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173-177. Springer, Heidelberg (2007)

9. Genaim, S., Zanardini, D.: The Acyclicity Inference of COSTA. In: Workshop on
Termination (WST 2010) (July 2010)

10. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static esti-
mation of program computational complexity. In: Proc. of POPL 2009, pp. 127-139.
ACM (2009)

11. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287-306. Springer,
Heidelberg (2010)

12. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348-370.
Springer, Heidelberg (2010)

13. Necula, G.: Proof-Carrying Code. In: POPL 1997, ACM Press (1997)

14. Pnueli, A., Siegel, M.D., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151-166. Springer, Heidelberg (1998)

15. Secci, S., Spoto, F.: Pair-Sharing Analysis of Object-Oriented Programs. In: Han-
kin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320-335. Springer,
Heidelberg (2005)

16.

17.

18.

Verified Resource Guarantees for Heap Manipulating Programs 145

Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An Automatic Verifier for Java-
Like Programs Based on Dynamic Frames. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 261-275. Springer, Heidelberg (2008)

Spoto, F., Mesnard, F., Payet, E.: A termination analyzer for java bytecode based
on path-length. ACM Trans. Program. Lang. Syst. 32(3) (2010)

Weif}, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, KIT (2011)

	Verified Resource Guarantees
for Heap Manipulating Programs
	Introduction
	The Framework: Verification of Resource Guarantees
	Inference of Resource Guarantees
	Verification by Symbolic Execution

	Upper Bounds for Heap Manipulating Programs
	Path-Length Analysis
	Cyclicity Analysis
	Sharing Analysis

	Verification of Path-Length Assertions
	Heap Representation
	Predicates for Structural Heap Properties
	Field Update Independence
	Path-Length Axiomatization

	Experimental Results
	Conclusions and Related Work
	References

